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THE HYDROTHERMAL RARE EARTH ELEMENT MINERALISATION AT THE 

PERALKALINE CARBONATITE FEN COMPLEX IN NORWAY 

Christian Marien  

ABSTRACT 

 

The Fen Complex in Norway consists of a composite carbonatite-ijolite-pyroxenite 

diatreme intrusion. Locally, the hydrothermally altered, hematite-rich rock rødbergite 

exhibited high grades (up to 2.1 wt% REE) of rare earth elements (REE). In order to 

secure the supply of REE for future technology markets in Europe, it becomes 

increasingly important to establish potential domestic REE sources like the Fen Complex.  

This project aims to develop a model for the carbonatite-hosted hydrothermal REE 

deposit (‘Rødbergite’) in the Fen Complex, Norway. SEM and ICP-MS trace element 

analyses of 73 bulk samples taken along various geological key transects showed the 

transformation of carbonatite, damtjernite, gneiss and fenite to rødbergite. An 

alteration mineral assemblage of dolomite, Fe-dolomite, barite, Ba-bearing phlogopite, 

hematite with accessory apatite, calcite, monazite-(Ce) and quartz replaced the original 

minerals of the protolith. The transformation to rødbergite is accompanied by an 

increase in REE concentrations (up to 23-fold) — mainly light REE— and Th. The overall 

REE concentration of rødbergite varies strongly and depends on the REE concentration 

of the protolith, density of hydrothermal micro-veins — containing monazite, 

bastnäsite, synchysite and allanite — and locally apatite relics.  

While Th-Pb geochronology of zircons established a robust age for the emplacement of 

the Fen Complex carbonatite with 550 Ma ± 10 Ma, monazite from rødbergite gave U-

Pb and Th-Pb ages of 272 Ma ± 5 Ma and 272 Ma ± 10 Ma respectively. The age of the 

REE-mineralisation coincides with the Oslo rift formation, which is interpreted as the 

heat source triggering the hydrothermal formation of rødbergite at the Fen Complex 

The major findings are combined in a new ore deposit model for rødbergite that can 

help to improve exploration strategies in the Fen complex and has implications for 

carbonatite-hosted hydrothermal REE resources around the world. 
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GLOSSARY 

 

The classification of samples used in this thesis is following the International Union of 

Geological Sciences (IUGS) classification by Le Maitre et al. (2002).  

 

Carbonatite: igneous rock type with more than 50 % of primary carbonate minerals (Le 

Maitre 2002) 

Søvite: coarse carbonatite with calcite as dominant carbonate species 

Rauhaugite: coarse carbonatite with dolomite as dominant carbonate species 

Modern classification uses calcite/dolomite/ankerite carbonatite based on the 

most abundant carbonate species or calcio/magnesio/ferro/natrocarbonatite 

based on the chemical composition  

 

 

 

Fenite: the fenite of the Fen Complex is an alkali feldspar-rich rock with a minor 

concentration of calcite and nepheline plus fine black veins of aegirine, aegirine-augite 

and arfvedsonite. Apatite, titanite, zircon, pyrite and magnetite are accessory minerals  



 
XVII 

 

Fenitisation: alteration/contact metasomatism of country rock due to the intrusion of 

carbonatite or alkaline rocks. The alteration is caused by alkali-rich fluids which 

commonly changes the chemical composition of granite or gneiss to the composition of 

an alkali syenite 

 

Ijolite-pyroxenite series: Nepheline rich rock with or without carbonate and/or alkali 

feldspar with varying content of mafic components (olivine, aegirine-augite, 

hornblende, biotite, melanite-garnet and apatite)  

 Urtite: nepheline > 70 % 

 Ijolite: nepheline 30 - 70 % 

 Melteigite: nepheline < 30 % 

Vipetoite: calcite bearing pyroxenite with little to none nepheline 

 

Rødbergite: Rødbergite (literally: red rock) is usually defined as a calcite-dolomite 

carbonatite stained red by disseminated fine crystals of hematite (Andersen, 1984) 

 

Silicocarbonatite: Carbonatites with more than 20 % SiO2 (Le Maitre 2002) 

Kåsenite: leucocratic pyroxene calciocarbonatite (silicate content 40 %: 

nepheline, apatite and titanite) 

Hollaite: melanocratic calcite-rich pyroxenite (silicate content up to 80 %) 



 
XVIII 

 

Ringite: alkali feldspar (up to 30 %) pyroxene calciocarbonatite with a great 

mineralogical variety. Probably the result of the assimilation of fenite into 

carbonatite  

 

Tinguaite: phonolitic dyke with alkali feldspar and nepheline porphyritic texture in a 

greenish matrix  

 

Ultramafic Lamprophyres: M > 90, inequigranular, olivine and phlogopite macrocrysts 

and/or phenocrysts, primary carbonate bearing (aillikite, alnöite and damtjernite) 

(Tappe et al. 2005). The differentiation between UML, kimberlites and orangeites is not 

possible without chemical analyses from groundmass minerals!  

Damtjernite (ouachitites is a more felsic variety): UML with nepheline and or 

alkali feldspar in the groundmass but without melilite 

Alnöite: UML with melilite  

Aillikite: Carbonate-rich UML without melilite, nepheline and alkali feldspar -> 

only a detailed chemical analysis of spinels, phlogopite and clinopyroxene makes 

it distinguishable from kimberlite and orangeite 

LIP: Large igneous provinces 

OIB: Ocean island basalt 

Ulefoss: a small village with approximately 2700 inhabitants 
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1 Introduction 

 

The sustainable economic development of our society depends on the secure supply of 

raw materials. These raw materials are needed to produce high technology applications. 

However, most industrialised countries strongly depend on raw material imports, as 

their domestic raw material deposits and exploitation activities are small (Behrens et al., 

2007). The current supply of raw materials comes from a small number of countries and 

companies (Sievers and Tercero, 2012), which gives them significant power in the raw 

material market and poses a serious threat to different industries as both higher prices 

and the limited availability of essential raw materials compromise their competitiveness 

(Campbell, 2014; Parthemore, 2011).  

On 6th October 2010 — one month after the collision of a Chinese fishing trawler with 

two Japanese Coast Guard patrol boats around the uninhabited islands known as the 

Senkaku Islands — China responded by restricting the export of Rare Earth Elements 

(REE) (Agence France-Presse, 2010; Hatch, 2012). The territorial dispute over the 

Senkaku Islands triggered a price race for REE (Fig. 1-1) and brought the issue of the 

dependence on critical raw materials into the focus of the media, the political and 

scientific communities and the economy in general. Before the REE bottleneck situation 

occurred, our society was largely unaware of the existence, let alone the importance of 

REE for our everyday life.  
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Figure 1-1: Price fluctuation of dysprosium, neodymium and gold relative to their price in January 2008 

(Bloomberg, 2015).  As a reaction of Chinas decrease in REE export, the price for REE increased sharply in 2011 

and in the case of dysprosium increased twenty-fold.   

 

Rare Earth Elements (REE) are a group of elements, which are essential components in 

a large range of high-technology applications such as smartphones, TV-screens, lasers 

and catalysts. Their usage in powerful permanent magnets makes them important for 

wind turbines as well as for electric cars (Wall, 2014). Without REE, modern technology 

cannot be manufactured, and more importantly, the green revolution cannot be 

accomplished. 

The EU report regarding raw materials classified REE as a critical commodity due to their 

economic importance and high supply risk (European Commission, 2014) (Fig. 1-2). The 

National Defence Authorization Act for 2019 of the US-government states for the first 

time to minimise the purchase of sensitive material, e.g., rare earth magnets from the 

countries China, Russia, Iran and North Korea and to seek alternate sources of supply as 

far as possible (Thornberry and Smith, 2018). 
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Figure 1-2: Economic importance vs. supply risk of critical raw material (CRM) for the European Market 

(European Commission, 2017).  

 

In 2010 China was accountable for over 97% of the world’s REE production (USGS, 2012). 

The global production dropped due to reduced domestic production in China. However, 

new REE mines opened worldwide — most importantly, Mount Weld (Lynas Corp., 

Australia). Nevertheless, a European REE mining operation would not only be beneficial 

for the European high technology industry but would also take the environmental and 

social issues into account, which are caused by the exploitation of raw materials in 

general (Wall, 2014), and are especially a cause for concern in China. An important part 

of reaching this ambitious goal is research in order to understand the petrogenesis and 

mining potential and challenges of known European REE reserves. 
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The Fen Complex in Norway (Fig. 1-3) is subject of REE exploration since the early 1960s. 

Recent estimations calculated 84 Mt of Rare Earth Oxides (REO) at 1.08 wt% (inferred 

resources) and 400 Mt of REO at 0.9 wt% (unconfirmed) for two separate claims 

respectively (Schiellerup et al., 2017), which makes the Fen Complex one of the largest 

REE deposits in Europe (Fig. 1-4). Given current demand levels, the estimated amount 

of REE at the Fen Complex is sufficient to meet worldwide demands of REE for 

approximately the next 47 years. Despite the ongoing exploration programs, there is still 

much work to be done before REE can be exploited. This PhD project sets out to 

undertake a geochemical and mineralogical study of potentially REE-enriched rocks of 

the Fen Complex, Norway. The data will help to develop a REE-mineralisation model for 

the Fen Complex, which companies can use to improve the REE exploitation at the Fen 

Complex and potentially similar deposit types worldwide.  

 

 

Figure 1-3: REE deposits in REE2O3 grade vs. tonnage modified after Smith et al. (2016) using size 

classification after Laznicka (1999).  The two separate claims of REE-Minerals AS and Fen Minerals AS 

(Schiellerup et al., 2017) are illustrated as well as their combined resources for the Fen Complex.  
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Figure 1-4: REE resources, deposits and occurrences in Europe recognised by the EURARE project ©NERC 

(Deady et al., 2017). The Fen Complex is labelled with number 20.  

 

 

1.1 Aims and Objectives 

The Fen Complex in Norway is host to a variety of uncommon rock types, e.g., 

carbonatites, highly alkaline silicate rocks such as ijolites, and ultramafic lamprophyres. 

Carbonatites contain the highest average content of REE of any igneous rock (Cullers 

and Graf, 1984) and are especially fertile to the formation of REE-deposits. This project 

proposes a geochemical and mineralogical approach to identify the highest REE-

potential amongst the rocks of the Fen Complex and to develop a deep understanding 

of the underlying REE-ore formation processes. The goal will be to develop a REE-model, 

which can potentially help to improve REE exploitation at the Fen Complex and similar 

mineralisation worldwide.  
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Previous work on the Fen Complex (Schilling, 2013) suggested rødbergite – red 

hematised carbonate rock – yielded the highest – but often very variable - grades of REE. 

Associated with high REE concentrations in rødbergite is a higher abundance of 

radioactive elements, e.g., Th and U, which are a major obstacle for the exploitation of 

REE resources worldwide. The current models for the formation of rødbergite by 

Andersen (1989b) and Mitchell & Brunfelt (1975) do not explain the formation of 

rødbergite in sufficient detail. Although the occurrence of rødbergite specifically was 

only mentioned for the Fen Complex, there are reports from other localities describing 

hydrothermal alteration of carbonatite with striking similarities to rødbergite (Groves 

and Vielreicher, 2001). The occurrence of rødbergite might be rather underrepresented 

in the literature rather than being unique to the Fen Complex. 

 

Based on these outstanding issues, several objectives were defined for this project.  

1. To collect representative samples of the major rock types and subsequently 

analyse them for their REE potential 

2. To locate and describe key sections in the field that record the 

transformation of unaltered carbonatite to rødbergite, and to systematically 

sample these sections for petrographic and geochemical analysis 

3. To carry out a thin section and scanning electron microscopy analysis of 

samples from the chosen key sections to describe and record the 

transformation of protolith to rødbergite in terms of mineralogy and texture; 

4. To carry out trace element analyses of samples from key transect 

5. To find suitable samples/minerals for age dating of the emplacement of the 

Fen Complex and formation of REE mineralisation 

6. To develop a holistic REE ore-deposit model for the Fen Complex. 
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2 Rare Earth Elements 

 

Rare Earth Elements (REE) are considered the most useful of all trace elements and can 

be used in igneous, sedimentary, as well as metamorphic petrology (Rollinson, 1993). 

Their partitioning in igneous systems and their redox behaviour are powerful tools to 

decipher the petrogenetic history of rocks (Henderson, 1996). Furthermore, REE are of 

great importance for a variety of high tech applications. This chapter will provide a short 

introduction into the geochemistry of REE, their economic potential and the general 

geology associated with REE deposits. It will demonstrate the challenges of supplying 

the European market with REE and propose the exploitation of domestic REE deposits 

as part of the solution to overcome REE criticality.  

 

2.1 General 

According to the International Union of Pure and Applied Chemistry (IUPAC), REE are a 

group of 17 elements, combining the 15 lanthanides (lanthanum to lutetium), yttrium 

and scandium. The traditional usage of the term REE in geology — as it is adopted in this 

thesis — does not include scandium (Sc) (Henderson, 1996), due to its small ionic radius 

compared to the other REE, which allows it to substitute relatively easily for smaller ions 

e.g., Ca2+, Mg2+, Fe2+, Zr4+ and Sn4+ (Chakhmouradian and Wall, 2012; Wall, 2014). 

Geochemists further subdivide REE into Light Rare Earth Elements (LREE) and Heavy 

Rare Earth Elements (HREE). There is disagreement amongst authors on the specific 

definition of these groups.  
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Table 2-1: List of Rare Earth Elements with further subdivision into the groups of LREE and HREE.  

 

 

In this thesis, the group of LREE incorporates the elements lanthanum (La) to europium 

(Eu) and the group of HREE incorporates gadolinium (Gd) to lutetium (Lu). Yttrium (Y) is 

grouped with HREE due to its similar chemical properties (Tab. 2-1). Contrary to their 

name, most of the REE are rather abundant in the continental crust — based on 

elemental concentration after Rudnick and Gao (2003). Cerium (Ce), the most abundant 

REE, has an average concentration of 63 ppm in the upper continental crust, which is 

more abundant than commonly used metals, e.g., copper (28 ppm) or nickel (47 ppm). 

HREE are generally less abundant than LREE and Lu is the least abundant REE with a 

concentration of 310 ppb in the upper continental crust. Nevertheless, this is 

significantly more abundant than silver (53 ppb) and gold (1.5 ppb). However, deposits 

of REE-minerals are rare, which explains the “Rare” in Rare Earth Element. “Earth” is an 

old word for oxide and indicates that REE are preferentially found as oxides rather than 

metals (Wall, 2014).  
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REE are a group of elements with similar chemical behaviour. Differences in their 

chemical behaviour are subtle between rare earths of close atomic number (e.g., La57 

and Ce58) and increase systematically with a growing difference in atomic numbers 

(Rollinson, 1993). The outer electron configuration of La is [Xe]5d16s2, which means 3 

electrons can participate in chemical reactions. The next element of the lanthanides, Ce, 

adds one electron in the 4f sub-shell [Xe]4f15d16s2, as do all the following lanthanides. 

The 4f shell can incorporate 14 electrons; hence, the lanthanides are comprised of 14 

elements plus La. The electrons of the 4f shell are shielded by the outer 5d and 6s 

orbitals and do not normally participate in chemical reactions in geological 

environments — except for Ce. Hence, the ionic charge stays 3+, and the increasing 

number of electrons does not change the chemical properties of the element 

significantly. Therefore, REE occur in natural systems as a group and do not tend to 

concentrate individually (Chakhmouradian and Wall, 2012). The only exception for the 

trivalent state of REE is Ce, also existing in a tetravalent state and Eu in a divalent state. 

As Ce and Eu have different charges and ionic radii (Fig. 2-1), their partitioning between 

phases varies strongly compared to the other REE.  

Increase in the number of protons within lanthanides, while in general maintaining a 

constant configuration of the outer electron shell, causes a systematic smooth change 

in the ionic radii from La to Lu (1.18 to 0.97 Å for coordination 8; (Shannon, 1976)). This 

change is referred to as the lanthanide contraction, which is the main reason for the 

slight differentiation among REE (Fig. 2-1). While the change from one REE to the 

neighbouring REE is very subtle, it has a more significant impact between REE with a 

greater difference in atomic numbers, e.g., La and Lu. The subdivision between LREE and 

HREE is due to these incremental changes and differences in abundance. 
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Figure 2-1:  Ionic radii of the trivalent rare earth elements REE3+, Eu2+ and Ce4+ versus the ionic radii of Sr2+, 

Ca2+, Th4+, U4+, Fe2+, Mg2+, Zr4+ and Nb4+.  The systematic decrease of the ionic radii is named Lanthanide 

contraction (Henderson, 1996).   

 

Occasionally the group of Middle Rare Earth Elements (MREE), which encompasses the 

elements from Sm – Ho, is introduced to differentiate the REE even further (Rollinson, 

1993). 

REE concentrations are normalised against a common reference standard, which in this 

thesis is the average CI chondrite data after McDonough and Sun (1995). Chondrites are 

the least fractionated rock in the Solar System, which makes them ideal reference 

standards. The normalisation of REE against chondrite values identifies any REE 

fractionation and nullifies the Oddo-Harkins effect (Rollinson, 1993), which describes 

that elements with even atomic number are more abundant than adjacent elements 

with smaller or larger odd atomic numbers. Normalised values are denoted with a 

subscript “N” and are presented in a concentration vs. atomic number diagram, 
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expressed as a logarithm to the base 10 of the normalised value. Because of the gradual 

lanthanide contraction, and therefore the gradual change in chemical and physical 

behaviour, the REE pattern of the curve is generally smooth. As a result, for the presence 

of a tetravalent state in Ce and the divalent state in Eu, the normalised concentration of 

Ce and Eu frequently differ from the expected trend line for the REE concentration. This 

difference can be expressed in the ratio Eu/Eu* and Ce/Ce* respectively. Eu* and Ce* 

are the geometrical means of the neighbouring REE:  

 

Eu* = √ (SmN*GdN) 

Ce* = √ (LaN*PrN) 

 

The ratios Eu/Eu* and Ce/Ce* are called cerium anomaly and europium anomaly 

respectively. Both of these ratios are sensitive to the redox conditions of the system. 

The speciation of Ce and Eu under different physical conditions, e.g., p, T, fO2, pH and 

Eh in combination with different ligands, e.g., Cl-, SO4
2-, PO4

3- is still poorly constrained. 

However, these anomalies mainly depend on the redox conditions during the 

fractionation process, although T and complexation reactions seem to play an important 

role as well (Liu et al., 2017). Experimental and empirical evidence demonstrate that 

fractionation of feldspar results in a Eu anomaly in the residual melt (Bédard, 2006).  

The shape of chondrite-normalised profiles reflects variation in the REE budget. The 

ratio of (La/Yb)N quantifies the tilt of the curve with respect to the x-axis and the ratio 

(Dy/Yb)N is occasionally used to determine whether the REE profile maintains a uniform 

slope or shows downwards bulging in the middle, which locally occurs in igneous rocks 

(Chakhmouradian et al., 2017). 
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2.2 Economic Importance 

REE are essential to a range of high-tech applications, such as catalysts for fluid cracking, 

components in highly adapted glass and alloys, yttrium-aluminium-garnet lasers (YAG-

laser), permanent neodymium-iron-boron (NdFeB) magnets for wind turbines, special 

ceramics and military weapons (Charalampides et al., 2015). At the moment, the 

greatest demand is for dysprosium (Dy), neodymium (Nd) and praseodymium (Pr), 

europium (Eu), terbium (Tb) and Y (Charalampides et al., 2015; Wall, 2014). Ce, La and Y 

are part of a matured market that is driven by the growth of the general economy. Dy, 

Nd and Pr are used in the high growth permanent magnet sector, which is essential for 

batteries of electric cars, generators for automobiles and wind turbines. The permanent 

magnet sector has an annual growth rate of 8-10 % (Charalampides et al., 2015). This 

development is likely to continue because the shift of the European industry towards a 

low carbon industry with renewable energy technologies requires the input of REE. One 

of the driving forces will be the future growth of the market for hybrid electric vehicles 

(HEV) and electric vehicles (EV), which in turn will drive the demand for NdFeB magnets. 

Demand for the most critical REE — Nd, Pr and Dy — is forecasted to increase between 

2016 and 2026 by 4.7 % per year for Nd and Pr, and 5 % for Dy (Roskill, 2016). 

Due to their similar chemical properties, REE are concentrated together in deposits and 

are therefore mined together. Naturally, the demand for individual REE does not reflect 

the natural abundance of these elements in their deposits, which creates the so-called 

“balance problem” (Binnemans and Jones, 2015). A deposit enriched in LREE will 

produce a high amount of valuable Nd but will automatically produce even more Ce and 

La, which are not needed in the same quantity as Nd. In response, the REE industry tries 

to either find new ways to apply REE, which are available in excess or reduce the amount 
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of REE, which are high in demand. For instance, researchers from the Fraunhofer Society 

were able to reduce the amount of Nd in permanent magnets to 20% of their original 

composition by replacing it largely with Ce (Fraunhofer IMWS, 2018). One particular case 

is thorium (Th). Although Th is not a REE, it is commonly associated with REE deposit due 

to being a high-field-strength element (HFSE) with similar chemical properties to REE. 

Th-mineral concentrates are a radioactive waste product, which is an issue for future 

REE operations. The problem is somehow ironic because once REE were a waste product 

of Th mining and scientists tried to find commercial applications for the REE leftovers. 

This demonstrates how the importance and value of materials changes in time driven by 

the available technology and the needs of society. Therefore only the combination of 

new technology — Th-molten salt reactor  — diversification of REE resources, recycling 

and urban mining, substitution, reduced use and new high-volume application 

(Binnemans and Jones, 2015) will solve the balance problem in the future.  

The development of new specialised technologies increased the demand for REE, and 

the mining production grew from 64,500 tonnes in 1996 to 130,000 tonnes in 2017 

(USGS, 1996; USGS, 2017). Most REE are currently coming from a small number of 

deposits, e.g., Bayan Obo in China; Mount Weld in Australia; Lovozero in Russia; heavy 

mineral sands in India and ion-adsorption-clay deposits in China.  In 2017, China was the 

largest producer of REE worldwide with 105,000 t of REE, which corresponds to a market 

share of over 80%. Besides China’s monopoly in REE mining, China managed to control 

all aspects of the supply chain — from mining to separating and purifying the REE to 

producing powerful REE-magnets. Using 50 % of the world’s REE production, China is the 

largest consumer of REE worldwide (USGS, 2017). It is not just a monopoly of a 

commodity but also a monopoly of technology and knowledge. Considering the strategic 
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importance of REE for present and future technologies, concerns about the dependence 

on Chinese sources and about the sustainability and long-term security of supplies have 

been highlighted at national and international levels (British Geological Survey, 2012; 

DERA, 2017; European Commission, 2014; European Commission, 2016; U.S. 

Department of Energy, 2011). REE have been widely cited as a critical material with the 

highest supply risk. To overcome the issue of its dependency on China, the EU started a 

variety of different programs for a better understanding of geological REE resources and 

production processes, e.g., EURARE. EURARE’s objective is to develop a sustainable 

exploitation scheme for Europe's Rare Earth ore deposits (Deady et al., 2017).  

 

2.3 REE-Deposits 

REE can be concentrated in all the major rock types (igneous, metamorphic and 

sedimentary) in various settings (Orris and Grauch, 2002). The two main categories for 

REE-deposits are; high-temperature deposits including carbonatites, alkaline igneous 

rocks and their associated hydrothermal systems and low-temperature deposits such as 

placers, bauxites, laterites and ion-adsorption-clays (Fig. 2-2). However, the most 

important deposits worldwide are associated with carbonatites and peralkaline silicate 

rocks (Chakhmouradian and Zaitsev, 2012; Goodenough et al., 2017; Wall, 2014). Bayan 

Obo and Maoniuping in China, Mt Weld in Australia and Mountain Pass mine in the USA 

are all associated with carbonatite magmatism (Goodenough et al., 2017).  
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Figure 2-2: Global distribution of REE deposits divided into nine major deposit types (British 

Geological Survey, 2011).  

 

Carbonatites are igneous rocks with a modal amount of primary (magmatic) carbonate 

minerals of > 50 % (Le Maitre et al., 2002). The Bayan Obo Fe–REE–Niobium (Nb) deposit 

in China is the largest REE deposits in the world with an estimated high-grade reserve of 

48 Mt at 6 wt% of Rare Earth Oxides (REO) (Drew et al., 1990). Dolomite marble and 

banded ores of Fe- and REE-minerals are the hosts of the high-grade REE zones. The low-

grade ore zone is associated with massive magnetite and hematite with an estimated 

resource of 750 Mt at 4.1 wt% REO (Smith et al., 2015). Bayan Obo is primarily a Fe mine 

exploiting Nb and REE as by-products. The deposit still has significant resources of 1500 

Mt at 35 wt% Fe (Drew et al., 1990) and 1 Mt at 0.13 wt% Nb2O3 (Chao et al., 1997). The 

annual production of REO at Bayan Obo is 55,000 t (Long et al., 2010), which means that 

42 % of the world production of REE are mined as a by-product from one region in China. 

The REE-mineralisation is strongly LREE enriched (Fan et al., 2016) and primarily hosted 

in bastnäsite and monazite.  
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The origin of the host dolomite and banded ores of Fe- and REE-minerals are still subject 

of ongoing debate. The ore originally formed around 1.3 Ga — associated with 

sedimentary carbonates and carbonatite dykes — and was deformed several times, 

metamorphosed and hydrothermally overprinted, culminating in the Caledonian 

subduction of the Mongolian Plate under the North China Craton from 450 to 420 Ma 

(Smith et al., 2015). This multitude of processes caused a remobilisation of the original 

Fe and REE mineralisation and a resetting of the isotope signature. Smith et al. (2015) 

identified the key for the exceptional metal concentration of the Bayan Obo area exactly 

in the described complex geological history of multiple stages of alkaline, HFSE-rich 

metasomatic fluid flow.  

Besides the current carbonatite associated mining operations, which are responsible of 

the majority of the world production of REE, there are a few carbonatite complexes 

which are the focus of current REE exploration e.g., Kangankunde in Malawi (Lynas 

Corporation Ltd., 2007), Tomtor in Russia (Kravchenko and Pokrovsky, 1995), Wigu Hill 

in Tanzania (Montero Mining & Exploration Ltd., 2018) and Fen in Norway (21st North, 

2014a). The current focus on carbonatite deposits will increase the earlier discussed 

balance problem even further (Goodenough et al., 2017) with an oversupply of La and 

Ce. 

Peralkaline rocks are, besides carbonatites, another important source for REE. In 

peralkaline rocks, the concentration of Na and K together exceeds the concentration of 

Al (Le Maitre et al., 2002). The excess of alkali metals is expressed in the formation of 

characteristic minerals rich in K or Na, e.g., aegirine (Na-pyroxene) and riebeckite 

(Na-amphibole) (Bailey, 1989). Peralkaline intrusions are either silica undersaturated 

(nepheline syenites) or silica oversaturated (peralkaline granites). Silica undersaturated 
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(peralkaline nepheline syenite) intrusions show a greater REE deposit potential than 

saturated intrusions. Especially agpaitic intrusions, which are known for REE enrichment 

by purely magmatic processes (Goodenough et al., 2017). This agpaitic group of 

peralkaline nepheline syenites contains complex Na-K-Ca-(Fe)-silicates — rich in Ti or Zr 

— including most of the HFSE, instead of more common minerals such as zircon, titanite, 

ilmenite or Ti-bearing magnetite. If these complex Na-K-Ca-(Fe)-silicates, e.g., eudialyte, 

aenigmatite and astrophyllite are present, then the rock is called an agpaitic peralkaline 

nepheline syenite in contrast to a zircon bearing miaskitic peralkaline nepheline syenite 

(Le Maitre et al., 2002; Marks et al., 2011). The only active REE mine in peralkaline rocks 

is at the agpaitic nepheline syenite complex Lovozero in Russia, where REE are extracted 

from the mineral loparite — a REE-bearing perovskite (Kogarko et al., 2002). Several of 

the European agpaitic nepheline syenite complexes are currently explored for REE, 

including Ilímaussaq, Motzfeld and Kvanefjeld in Greenland and Norra Kärr in Sweden 

(Goodenough et al., 2016).  

REE enriched peralkaline deposits are characterised by large volumes but generally low 

concentrations (< 1 wt%) of REO. In contrast to carbonatites, they show much flatter 

REE patterns with a distinct negative Eu anomaly. The exploitation of the peralkaline 

prospect in Greenland would be sufficient to meet the European demand for HREE but 

insufficient for the supply of La and Ce (Machacek and Kalvig, 2016). This could cancel 

out the balance problem caused by the exploitation of carbonatites. A smart 

combination of two or more deposits from carbonatites and peralkaline igneous rocks 

with a limited and controlled production should meet the demands of the European 

industry. Additionally, peralkaline deposits have low Th and uranium (U) concentrations 

(Goodenough et al., 2017; Wall et al., 2017). On the other hand, peralkaline deposits 
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yield the mineralogically most diverse and complex assemblages of all rock types — over 

550 minerals are present in Lovozero and Khibiny alone (Arzamastsev et al., 2008). This 

diverse mineralogy makes every REE deposit unique, which requires a complex and 

expensive development of individual processing routes for each deposit (Wall, 2014). 

The geological setting for carbonatite and peralkaline silicate rocks is similar, and 

composite intrusions of syenite and carbonatite suggest a link between those two rock 

types by either by extreme differentiation (Wyllie and Tuttle, 1960) or liquid-liquid 

immiscibility (Lee and Wyllie, 1998) 

One prominent example of a low-temperature REE deposit type are the ion adsorption 

clays deposits of the Nanling area in China (Kanazawa and Kamitani, 2006). The deposits 

formed due to intense lateritic weathering of REE enriched granites. Although the grades 

are relatively low (< 4,000 ppm REO) compared to carbonatites or peralkaline rocks, the 

REE can be easily removed from the clay surface of the weathered granite by using 

ammonium sulphate (Goodenough et al., 2017; Moldoveanu and Papangelakis, 2012). 

Weathered horizons with significant size and more than 500 ppm of exchangeable REE 

are already considered ore (Bao and Zhao, 2008). Despite their low REE concentration, 

ion-adsorption clays make up 35% of China’s REE production and 80% of the world’s 

HREE production (Yang et al., 2013). These deposits are the principal source of HREE in 

the world and therefore, yield great economic power. This type of deposit was 

considered to be unique for southern China (Kanazawa and Kamitani, 2006) but research 

over the last decade identified similar deposits outside of China e.g., Serra Verde in Brazil 

and Tantalus in Madagascar — although they do not necessarily show the same 

enrichment in HREE (Moldoveanu and Papangelakis, 2016). 
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Many of the carbonatite and peralkaline REE deposits exhibit a hydrothermal overprint, 

which leads to the further enrichment of their already magmatically enriched REE 

concentration. Well known examples for hydrothermally overprinted REE deposits are 

the giant Bayan Obo Fe-REE-Nb deposit in China (Smith et al., 2015; Yang et al., 2009), 

Browns Range in Western Australia (Cook et al., 2013), Gallinas Mountains deposit in 

New Mexico, USA (Williams-Jones et al., 2000) and Strange Lake in Canada (Salvi and 

Williams-Jones, 1996). Hydrothermal fluids can carry large amounts of REE (1300 ppm 

in Banks et al. (1994)) and to understand the mobility of REE in hydrothermal fluids is 

important for understanding the formation of REE deposits in general.  

 

2.4 REE-Mining and Processing 

There are many challenges when it comes to the processing of REE-mineral bearing ores 

and their separation into the individual REE (Wall et al., 2017). Although there are more 

than 250 known REE-minerals — not counting REE-bearing minerals like apatite — an 

economically successful extraction of REE was only accomplished for monazite, 

xenotime and bastnäsite so far (Jordens et al., 2013; Tyler, 2004). Bastnäsite is one of 34 

identified REE-fluorocarbonates minerals (Owens et al., 2018). Other members of REE-

fluorocarbonate group with a potential economic application are synchysite and 

parisite. They are common REE-minerals in carbonatites and have a similar structure to 

bastnäsite. Nevertheless, mineral processing techniques used for bastnäsite do not work 

the same for other REE-fluorocarbonates. For instance, bastnäsite is paramagnetic while 

synchysite is diamagnetic (Al Ali, 2016), which means bastnäsite mineral processing 

cannot be applied to synchysite in the same way. As long as there is no economically 

viable way of extracting REE from other REE-fluorocarbonates than bastnäsite, they 
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cannot be considered as actual ore minerals. However, the zeta potential — can be used 

to deduce surface properties, which are important for mineral flotation — of parisite 

and bastnäsite are similar, which justifies a similar approach in mineral processing 

(Owens et al., 2018). This highlights the importance of the mineralogy of a potential REE 

deposit along with the less meaningful REE grade of the rock and the individual 

concentrations of economically more important REE, e.g., Dy or Nd. The amount of Th 

in REE ores is a major obstacle for REE mining (Wall et al., 2017) as was seen by the 

strong opposition Lynas Corp. had to face for opening up its extraction and separation 

facility LAMP in Malaysia (Ali, 2014).   

According to Goodenough et al. (2017) secondary monazite in weathered carbonatites 

appears to be the favourable ore mineral for REE processing. Secondary (postmagmatic) 

monazite contains lower concentrations of Th and U than primary magmatic monazite 

and can benefit from the already established processing routes for monazite. 

Additionally, REE extraction as a by-product is a potential way of generating a rapid 

supply of REE. For instance, REE concentrations in red mud from aluminium productions 

would be a potential solution. The REE concentration is generally less than 1 wt% in red 

mud (Binnemans et al., 2015) but the volume of stockpiled red mud is more than 2.7 

billion tonnes (Klauber et al., 2011). The fertiliser production from apatite or the Fe-

extraction from Kiruna type mineralisation, are also promising alternative resources for 

the production of REE as a by-product (Al-Thyabat and Zhang, 2015; Binnemans et al., 

2015). Additionally, the majority of carbonatites mined in the past were exploited for 

other commodities than REE (Woolley and Kjarsgaard, 2008a), which demonstrates their 

versatile economic value. 
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3 Carbonatites 

 

Carbonatites are igneous rocks with a modal amount of primary (magmatic) carbonate 

minerals of > 50 % (Le Maitre et al., 2002). They are the magmatic rocks with the highest 

Rare Earth Element (REE) concentration, which commonly exceeds 1 wt% (Bühn, 2001; 

Hornig-Kjarsgaard, 1998). The high REE grade of carbonatites relative to other potential 

REE deposits means that there is less area to be disturbed by mining for the same 

amount of REE, which makes carbonatites more environmentally friendly than other low 

REE grade deposits, e.g. peralkaline rocks (Wall et al., 2017).  Mining of deposits 

associated with carbonatites secures the major part of the annual REE demand. 

   

3.1 Beginning of Carbonatite Research 

The first mention of a carbonatite in the scientific literature was in 1846. The rock was 

described as a “kristallinen gangähnlichen Karbonatgesteins” — German for crystalline 

dyke-like carbonate rock (Verwoerd, 1966). The rock specimen was collected from the 

Kaiserstuhl volcano, which is nowadays known for its carbonatite dykes and tephra. A 

similar rock from the island Alnö — type locality for the ultramafic lamprophyre, alnöite 

— was described as a pyrochlore-bearing marble (Högbom, 1895). Although the rock 

was classified as a contact metamorphic product, a magmatic origin for the calcite was 

posited (Högbom, 1895). The monography “IGNEOUS ROCKS AND THEIR ORIGIN” (Daly, 

1914) mentioned the undoubtedly primary origin of calcite in various magmatic rocks. 

The concept of magmatic calcite was further developed to the idea of carbonatite 

magma by Brøgger (1921) about the Fen Complex in Norway, and a new nomenclature 

regarding carbonatite and associated rocks was established. Rock type denotations like 
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søvite and fenite are still part of the scientific nomenclature. The origin of carbonatite 

magma was explained with the assimilation of large amounts of carbonates by a silicate 

magma and subsequent differentiation to a CO2-rich and SiO2-poor magma composition 

(Brøgger, 1921). Melting experiments showed a minimum temperature of 1339°C to 

melt calcite (Smith and Adams, 1923), which was used as an argument against the 

potential existence of carbonatite magma. Nevertheless, the discovery of many 

carbonatites worldwide — especially in the Chilwa-Alkali-Province — seemed to prove 

the existence of carbonatite magma. Eventually, experiments demonstrated the 

theoretical existence of carbonatite magma (Wyllie and Tuttle, 1960). Depending on the 

pressure (2.7 MPa – 400 MPa), the potential minimum temperature for the system CaO-

CO2-H2O was calculated to be between 640°C and 685°C. In the same year, nature 

produced the ultimate proof with the first scientifically documented eruption of 

Oldoinyo Lengai — the only active carbonatite volcano in the world (Dawson, 1962). 

Since then, hundreds of new carbonatite complexes where discovered and their 

economic and scientific potential is the focus of many scientific endeavours.  

 

3.2 Origin and Classification of Carbonatites 

In theory, there are three ways to generate a carbonatite magma (Bell et al., 1998):  

a) carbonatitic melts can derive from carbonate-silicate melts (e.g., nephelinite 

melts) by liquid immiscibility (Hamilton et al., 1979; Potter et al., 2017). Liquid 

immiscibility is the coexistence of two or more liquid phases and occurs when 

the sum of the free energies of the different liquid phases is smaller than the free 

energy of their mixture (Freestone, 1989). Liquid immiscibility is the commonly 

accepted mechanism to explain the presence of the natrocarbonatite at the 
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Oldoinyo Lengai in Tanzania (Sharygin et al., 2012). Crystallisation and alteration 

often masked the process of liquid immiscibility in older carbonatites. Therefore, 

eruptions of the Oldoinyo Lengai are a unique opportunity to learn more about 

this process in a carbonatite magma. For the eruption in 1993, Potter et al. (2017) 

identified a multi-stage liquid immiscibility between silicate, carbonatite, 

fluoride and halide phases — even a carbonate-carbonate unmixing was 

identified. 

b) Carbonatite melt can originate from very low degrees of partial melting of 

mantle lherzolite, which directly produces a primitive carbonatite melt. 

Experimental data from Dalton and Presnall (1998) show that melting of model 

lherzolite with a CO2 content of 0.15 wt%  produces a continues magma with a 

composition ranging from carbonatite to ultramafic lamprophyre to kimberlite 

magma. The different types of magma are generated by changing the degree of 

partial melting from 0 to 1 %.   

 

c) Fractional crystallisation of silicate phases leads to the concentrating of 

immobile elements and molecules like CO2. For instance, the fractional 

crystallisation of nepheline, sodic pyroxene and melanite can produce silicate-

free natrocarbonatite from a silicate-bearing natrocarbonatite, similar to the 

melt observed at the Oldoinyo Lengai (Petibon et al., 1998). Weidendorfer et al. 

(2016) demonstrated in the case of Brava Island that fractional crystallisation of 

Si-undersaturated primitive alkaline magmas leads to silicate melts evolving into 

the silicate-carbonatite melt miscibility gap. The fractional crystallisation of 

olivine and augitic clinopyroxene increases alkalis without increasing SiO2. 
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Continuous fractionation of oxides (perovskite, titanomagnetite) and augitic 

clinopyroxene will lead to liquid immiscibility (f > 50%), providing the CO2 

concentration is high enough. Additionally, the saturation in alkali feldspathoids 

or feldspars will prohibit liquid immiscibility.    

Based on phase equilibrium experiments, liquid immiscibility, as well as partial melting 

and fractional crystallisation, can produce carbonatite melts. All three processes are 

supported by integrated petrological studies, which indicate the existence of 

carbonatites with different paths of origin (Bell et al., 1998). 

 

The source of carbonatites remains unclear and isotopic work from the last decades 

suggests that carbonatite melts can be generated in the lithosphere (Bell et al., 1982), 

the sub-lithospheric mantle (Bell and Simonetti, 2009) or show a mixed origin (Simonetti 

et al., 1998) (Fig. 3-1). According to Bell and Simonetti (2009), radiogenic and stable 

isotope data from carbonatites worldwide are consistent and point to a sub-lithospheric 

source for their parental melts. The melting process is associated with either 

asthenospheric upwelling or a more deep-seated activity (plume).  
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Figure 3-1: Schematic diagram to illustrate the two principal source region for carbonatite magmatism. According 

to Bell and Simonetti (2009), the source region for carbonatitic magmatism is either within the lithosphere (1), the 

sub-lithospheric mantle (2) or in both. Based on experiments by Dalou et al. (2009) suggest a possible generation 

of carbonatitic magma in the Mesosphere (2b). Additionally, the figure depicts the main process of mantle 

metasomatism by fluids from the subducted slab.  

 

The evidence listed by Bell and Simonetti (2009), which links the carbonated melts 

(parental melts to carbonatite) to the sub-lithospheric mantle are:  

a) The association of carbonatites with Large Igneous Provinces (LIPs), e.g., Deccan 

and Parana  

b) Carbonatites with primitive noble gas isotopic signatures 

c) Radiogenic isotope ratios similar to Ocean Island Basalts (OIBs)  

d) The uniform, time-integrated Rb/Sr and Sm/Nd development lines for Sr and Nd 

isotopic data for carbonatites from the Superior Province, Canada, and the Kola 

Peninsula, Russia.  
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Additionally, modelling studies show that a very low degree of partial melting is not 

sufficient to explain the high degree of incompatible elements in carbonatite and 

peralkaline rocks. The source rock has to be metasomatically enriched (Fig. 3-1) in 

incompatible elements prior to partial melting (Arzamastsev et al., 2001). The 

metasomatic enrichment of the lithospheric mantle is most certainly associated with 

fluids rising from subducted slabs (Goodenough et al., 2014). The involvement of 

recycled crust in the petrogenesis of extrusive carbonatites has been questioned 

(Stoppa and Schiazza, 2013). However, experimental studies demonstrate that 

carbonatite or kimberlitic melts can be produced by melting of carbonated eclogite 

(Hammouda et al., 2009).    

 

The publication “Carbonatites and Carbonatites and Carbonatites” (Mitchell, 2005) 

discusses the issues of classifying genetically different carbonatites and establishes a 

classification based on associated rock types, so-called “clans”, and distinguishes 

between carbonite sensu stricto, bona fide, sensu lato and pseudocarbonatites (Fig. 3-

2). A variation in the source region for carbonatite parental magma, as described by Bell 

and Simonetti (2009), is plausible if you take multiple modes of origins into account The 

group of primary magmatic carbonatites (sensu stricto) comprises carbonatites 

associated with the nephelinite clan, melilite clan, aillikite association and peralkaline 

nephelinite - natrocarbonatites association (Mitchell, 2005).  
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Figure 3-2: Carbonatite classification after Mitchell (2005).  

 

Carbonatite bona fide additionally include carbonatites associated with kimberlites. 

These late-stage differentiates of kimberlite are recommended to be classified as calcite 

kimberlite to avoid that other types of carbonatites are mistakenly considered potential 

targets for diamond exploration (Mitchell, 2005). Carbonatites sensu lato include 

carbothermal residues from a wide range of magmatic rocks. Carbothermal carbonatites 

are precipitated at the subsolidus temperature from a CO2-H2O fluid that can be rich in 

CO2 (carbothermal) or H2O (hydrothermal). Carbonatite magmas, as well as alkaline 

silicate magmas, can generate carbothermal carbonatites (Woolley and Kjarsgaard, 

2008b). A variety of sodic and potassic alkaline silicate rocks can produce late stage 

carbohydrothermal fluids, which can precipitate a variety of carbonate and silicate 

minerals to form carbothermal carbonatites (Mitchell, 2005). The mineral assemblage 

associated with carbothermal processes typically comprises calcite ± barite ± fluorite ± 
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quartz ± sulphides ± K-feldspar ± zeolites (Woolley and Kjarsgaard, 2008b). Late stage 

events involving carbothermal fluids typically concentrate REE, Sr and Ba but not 

niobium (Nb). The concentration of these elements results in the formation of Sr-, Ba-, 

and REE-bearing carbonates (Mitchell, 2005; Wall and Mariano, 1996). Although these 

hydrothermal fluids are important for REE-mineralisation,  it is suggested to use the term 

“carbothermal residue” rather than “carbonatite (sensu stricto)” (Mitchell, 2005). 

Another group of carbonate-rich rocks (pseudocarbonatites) formed by anatectic 

melting of crustal rocks should not be considered carbonatites at all. The classification 

after Mitchell (2005) classifies carbonatite based on their genetic component and 

differentiates between three major groups of mineralogical similar rock types. However, 

within the sensu stricto carbonatite group —carbonatites in the purest sense — 

carbonatites of the nephelinite clan and melilite clan can be generated by partial 

melting, fractional crystallisation and liquid immiscibility. In an attempt to classify 

carbonatites based on their clan association, which indirectly groups carbonatites with 

the same origin, the classification after Mitchell (2005) created a group of sensu stricto 

carbonatites including at least ten differently generated carbonatites. 

The classification of the International Union of Geological Sciences (IUGS) is simpler, and 

carbonatites are classified by the dominant carbonate mineral, e.g., calcite-carbonatite. 

If the carbonate species cannot be identified, the carbonatite is classified chemically (Fig. 

3-3). Note that based on the classification after Mitchell (2005) and the IUGS 

classification, the world’s only exponent of an active carbonatite volcano — the 

Oldoinyo Lengai — cannot be included and requires its own category (natrocarbonatite).  
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Figure 3-3: Carbonatite classification according to the IUGS (Le Maitre et al., 2002). 

 

The classification after Woolley and Kjarsgaard (2008b) classify carbonatites, similar to 

Mitchell (2005), based on their associated rock types (Fig. 3-4).  

 

 

Figure 3-4: Carbonatite classification after Woolley and Kjarsgaard (2008b). The Fen Complex belongs to Group 

VI, which accounts for 28% of all carbonatites in the world.  
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The classification after Woolley and Kjarsgaard (2008b) divides carbonatites into 

magmatic carbonatites and carbothermal carbonatites. Carbothermal carbonatites are 

related to fluids from either carbonatite magmas or alkaline silicate magmas and can be 

distinguished from magmatic carbonatites based on their mineralogy and texture. 

Magmatic carbonatites make up for 84 % of the classified carbonatite occurrences and 

are of two principal groups: those generated directly in the mantle and those that have 

evolved from a silicate magma. The group of direct mantle melts make up 26 % of 

magmatic carbonatites and include the group of carbonatites (only) and carbonatite 

with less than 1% silicate rocks. Additionally, to the absence of mantle-derived silicate 

rock, which is precluding an origin from high-level differentiation for the carbonatites, 

there is strong evidence for these carbonatites to be true mantle melts. As pointed out 

earlier experimental studies showed the possibility that such melts exist (Dalton and 

Presnall, 1998). Further evidence is the presence of mantle xenoliths and xenocrysts in 

several extrusive diatreme-like carbonatite bodies and a mantle isotopic signature of the 

carbonatite bodies (Gittins and Harmer, 2003; Gittins et al., 2005). The other group of 

carbonatites — carbonatites evolved from a silicate magma — consist of eight different 

silicate rock associations, which further classified based on their genetic relation 

(Woolley and Kjarsgaard, 2008b). The ultramafic dunite, peridotite, pyroxenite ± syenite 

association is considered to represent a cumulate deposit fractionated from a parental 

magma. However, evidence from carbonatites and silicate rocks (e.g., nephelinite-ijolite 

association) show that these cumulates are generated by both magmas, which makes 

the origin of the cumulate unclear. Carbonatites associated with lamprophyre and 

kimberlite are regarded products of high-level differentiation processes. Over 50 % of 

all magmatic carbonatites are associated with one of the five alkaline silicate rock groups 
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— melilitite-melilitolite, nepheline-ijolite, phonolite-feldspathoidal syenite, trachyte-

syenite and basanite-alkaligabbro. For most of these alkaline rocks, melting of a 

metasomatised mantle material is necessary (Menzies and Murthy, 1980; Pilet et al., 

2008) — a similar theory is widely accepted to produce carbonatite (Jones et al., 2013). 

The change in the degree of partial melting or the type of mantle metasomatism triggers 

the formation of different types of magmatic rocks (Mitchell, 2005). Additionally, alkali 

silicate rocks can evolve into each other by fractional crystallisation (Woolley and 

Kjarsgaard, 2008b). The final formation of carbonatite melts from these silicate melts is 

the result of liquid immiscibility, fractional crystallisation or a combination of both 

processes. 

Carbonatite associated with the group’s “carbonatite only”, “lamprophyres”, 

“nephelinite” and “melilite” have sublithospheric signature, while carbonatites 

associated with shallower alkali silicate magmatism (e.g., phonolite, trachyte and 

basanite), can have a lithospheric signature as well as sublithospheric signature 

depending on the magmatic history.  

The majority of the scientific community, including Mitchell (2005), believe in a genetic 

implication between carbonatites and their associated silicate rocks — most commonly 

nephelinites, ijolites, phonolites and nepheline syenites (Woolley and Kjarsgaard, 

2008b). Gittins and Harmer (2003), on the other hand, argue that the association of 

carbonatite and silicate rocks is spatial rather than genetic. Commonly, the isotopic data 

does not indicate a genetic relationship and occasionally, proves the opposite (Gittins 

and Harmer, 2003). Silicate magma uses the same conduits as the carbonatite magma 

on their way to the crust. Therefore, according to Gittins and Harmer (2003), the silicate 

rocks should be referred to as “accompanying” rather than “associated”. While this must 
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be true for the carbonatites without any associated silicate rocks, there is evidence 

showing a genetic relation between silicate rocks and carbonatites. The presence of 

interlayered tuffs of nephelinite and carbonatite shows a genetic relation between 

alkaline rocks and carbonatites (Woolley and Kjarsgaard, 2008b). Additionally, many 

carbonatite-silicate complexes show the emplacement of relatively minor amounts of 

young carbonatite in the centre of the complex or carbonatite ring dykes in the outer 

rim of the complex. This geometry of many carbonatite complexes is highly unlikely to 

be the product of magmatism, which uses the same magma pathways. The geometry, 

timing and volume strongly suggest a differentiation mechanism in these types of 

complexes. Additionally, studies from the Oldoinyo Lengai strongly indicate magma 

unmixing as the major process for the formation of the natrocarbonatite (Potter et al., 

2017).  

In summary, one must be aware of the differences between pseudocarbonatites, 

carbothermal carbonatites and magmatic carbonatites. There is strong evidence for one 

group of magmatic carbonatites to be derived directly from the mantle and another 

group of carbonatites to be the product of differentiation processes of specific rock 

types (n=8). However, although carbonatites in a silicate-carbonatite complex are likely 

to be associated with the silicate rocks, they can also accompany these rocks by using 

the same conduit. Considerable information about the geochemistry, mineralogy and 

texture of the carbonatite-silicate rocks has to be acquired before a proper classification 

is justified, and every carbonatite occurrence has to be discussed individually. To 

simplify the issue of classification, the IUGS classification is applied for the general rock 

description, and the classification after Woolley and Kjarsgaard (2008b) is restricted to 

a genetic discussion of carbonatites.  
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3.3 Spatial and Temporal Distribution  

Over the last decades, there has been a steady increase in identified carbonatite 

complexes from 200 in the 60s, to 330 in the late 1980s (Woolley, 1989) to currently 527 

known occurrences worldwide (Woolley and Kjarsgaard, 2008a) (Fig. 3-5).  

 

Figure 3-5: Geological world map showing all the known carbonatite localities (n = 527) in 2008 (Woolley and 

Kjarsgaard, 2008a).  

 

Carbonatites are associated with dome structures, especially at an extensional 

intracontinental rift setting formed either by pull-apart tectonics or by asthenospheric 

upwelling (Chakhmouradian and Zaitsev, 2012). Thinning of the continental lithosphere 

during extension leads to a decompressional melting of the mantle and generates 

various melts, e.g., carbonatite and peralkaline magmas. The extensional setting in 

which carbonatite magmatism occurs is not limited to continental extension but can be 

widened to post-orogenic settings (Chakhmouradian et al., 2008).  

The majority of carbonatites are located on relatively stable intraplate areas with an 

affinity to Precambrian rocks (Woolley and Kjarsgaard, 2008a). Although carbonatites 

rarely occur in a mountain belt, there is a spatial and temporal relationship to orogenic 
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processes with clustering of complexes along with defined areas outside of the orogenic 

belt (Woolley, 1989). A subordinate number of carbonatites are directly associated with 

oceanic fracture zones. The emplacement of carbonatites is along rifts, graben, crustal 

lineaments and transcurrent fault systems, which are major lithospheric structures 

providing pathways for magma to rise into the crust. At times, these deep structures are 

reactivated, which explains the episodic emplacement of carbonatites at the same 

locality — carbonatite magmatism at the Kapuskasing structure ranges from 1900 Ma to 

1000 Ma (Bell et al., 1987). This ongoing magmatism of over 900 Ma favours magmatism 

controlled by structures in the underlying lithosphere (Woolley and Bailey, 2012). The 

post-Archean alkaline magmatism in West Greenland lead to the formation of 

carbonatites, kimberlites and ultramafic lamprophyres in three distinct but proximal 

regions within  a period of approximately 1 Ga — Mesoproterozoic (1284–1209 Ma), 

Neoproterozoic (604–555 Ma) and Jurassic (165–155 Ma) (Secher et al., 2009). 

Protracted magmatism is common for carbonatite complexes, i.e. ultramafic dykes and 

carbonatite at Aillik Bay (590 Ma – 555 Ma) (Tappe, 2006).  

The number of carbonatite intrusions exhibits an exponential increase in time, from the 

late Archaeon Era to the Cenozoic Era. This results in an accumulation of carbonatites in 

certain geographical areas and a correlation with generally larger orogenic and tectonic 

events (Woolley, 1989). The increase in carbonatite activity over time could be partly 

due to a preservation bias. Nevertheless, the number of Phanerozoic carbonatites in 

Precambrian rocks exceeds by far the number of Precambrian carbonatites. Modelling 

of the progressive modification of the mantle demonstrates the increase in the 

metasomatised mantle from the Archean onwards to a more metasomatised 

Proterozoic mantle source (Griffin et al., 2003). The reason for the increase in 
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carbonatite intrusions over time might be the increased proportion of metasomatically 

enriched lithosphere due to ongoing subduction processes (Woolley and Kjarsgaard, 

2008a).  

Although more than half of the dated carbonatites are younger than Precambrian, they 

still preferably occur in Precambrian rocks (Woolley and Kjarsgaard, 2008a), which could 

be an effect of the difference in thickness between Precambrian lithosphere and 

younger lithosphere. The thickness of continental lithosphere varies strongly and 

depends on its age and mechanisms of its formation. Most post-Archean lithosphere is 

between 100 and 200 km thick, whereas Archean lithosphere commonly exceeds 

200 km (Condie, 2016). A thicker lithosphere prevents the migration of metasomatic 

fluids and helps to concentrate these fluids on the root of the lithosphere (Woolley and 

Kjarsgaard, 2008a). Additionally, an older lithosphere is also more likely to have 

experienced metasomatic events. The roots of Archean cratons can reach temperatures 

which are higher than those of well-mixed mantle (Michaut et al., 2009). This results in 

partial melting and the formation of carbonatite or nephelinite melts, especially in areas 

of strong metasomatism. The Canary and Cape Verde hot spots are the only hot spots 

producing oceanic carbonatites, and both have a lithospheric thickness of 90 km — the 

maximum thickness of oceanic lithosphere (Humphreys and Niu, 2009; Weidendorfer et 

al., 2016). Although the setting is different, it highlights the favourable formation of 

carbonatite in relatively thick lithosphere. In the case of partial melting of a 

metasomatised mantle, in order to produce either carbonatite magma or silica-

undersaturated parental carbonatite magma the question of a conduit to reach the 

crustal level of emplacement remains. The common association of carbonatite with 

deep-seated faults is not a coincidence because they provide an effective pathway for 
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these migrating melts. The distribution of carbonatites in Precambrian rock is not 

random, and clusters are preferentially along or close to borders of these Precambrian 

rock units. This spatial association could be due to the easier ascent of magmas at these 

borders. The thickness of cratons generally declines towards the rims and deep-seated 

sutures or transform faults at the borders are marking the welding points of different 

terranes/micro terranes. This makes terrane borders optimal pathways for migrating 

melts, which originated at the root of a lithospheric keel.  

 

3.4 Mineralogical and Geochemical Characteristic  

Carbonate minerals are, by definition, the major component of carbonatites and consist 

of up to > 90 modal % in carbonate cumulates (Xu et al., 2007). The dominant carbonate 

species are calcite and dolomite-ankerite (Woolley and Kempe, 1989). The evolution of 

carbonatites is complex and involves a variety of postmagmatic processes, e.g., 

exsolution, subsolidus re-equilibration of igneous minerals, hydrothermal 

crystallisation, recrystallisation, isotopic resetting, grain abrasion, fragmentation, 

comminution, dissolution and tectonic mobilisation (Chakhmouradian et al., 2015b). 

Chakhmouradian et al. (2015b) point out that carbonatites are significantly more 

susceptible to change of their original magmatic texture than silicate rocks. For example, 

the brittle-ductile transition of a fine-grained calcite marble will occur at P<1kbar at 

ambient T (Fredrich et al., 1989). As a result, the original igneous texture is normally not 

preserved, and the carbonatite texture exhibits a juxtaposition of different petrographic 

characteristics.  

Depending on the melt composition (Na, Ca, Mg, CO2 and H2O), the earliest carbonate 

phases are calcite, dolomite, nyerereite and gregoryite (Mitchell and Kjarsgaard, 2010).  
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Calcite — Ca(CO3) 

The early calcite is most likely to have a large amount of Mg and will undergo exsolution 

with decreasing T to Mg-poor calcite and dolomite (Chakhmouradian et al., 2015b). Vice 

versa, the exsolution of calcite from Ca-rich dolomite is unlikely because of the 

chemically narrow dolomite field. The crystallisation of calcite will increase the Mg 

concentration in the magma, which triggers the precipitation of dolomite. Eutectic-

based graphic intergrowth of carbonate and non-carbonate minerals is rare but does 

occur (Chakhmouradian et al., 2015b). Zoning of calcite and dolomite is common. 

Dolomite develops Fe-rich rims and the capacity for calcite to include other elements 

decreases due to cooling. Calcite forms only limited solid solutions with Mg, Fe and Mn. 

The incorporation of trivalent ions is even more complicated and requires a coupled 

substitution to balance the charge. Nevertheless, REE enrichment in calcite can reach up 

to 2000 ppm (Chakhmouradian et al., 2016).  The incorporation of tetravalent ions is 

even harder than the incorporation of trivalent ions; hence the concentration of Zr, Th 

and U tends to be less than 1 ppm (Chakhmouradian et al., 2016).  

 

Dolomite-Ankerite — CaMg(CO3)2 - CaFe(CO3)2 

The substitution of Fe2+, Mg2+ and Mn2+ is common in mineral systems due to their 

similar charge/size ratio. Most natural dolomite CaMg(CO3)2 contains minor amounts of 

Fe (up to 2 mol%) and traces of Mn (Gregg et al., 2015). Dolomite forms a solid solution 

with the Fe endmember ankerite CaFe(CO3)2 and Mn endmember kutnahorite 

CaMn(CO3)2. In this PhD thesis, only trace amounts of Mn were analysed in dolomite-

group minerals. Hence the focus for the following classification lies on the ankerite-

dolomite series. There is no accepted universal definition for the compositional 
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boundaries between ankerite and dolomite. However, the International Mineralogical 

Association guidelines propose that solid solutions are classified using the “dominant-

constitute rule” (Hatert and Burke, 2008) better known as the “50% rule” (Nickel, 1992). 

Therefore, Ankerite sensu stricto, as part of the ankerite-dolomite series, has to have 

more Fe atoms per formula unit (a.p.f.u.) than Mg a.p.f.u. (> 18 wt% FeO or 50 mol% 

CaFe(CO3)2). This is rare to find in carbonatites and seems to be restricted to late-stage 

postmagmatic mineral assemblages (Chakhmouradian et al., 2015b). As a result, most 

of the described ankerite from literature is, in fact, dolomite or ferroan dolomite. 

Ferroan dolomite is not universally defined either and sometimes used interchangeably 

with ankerite (Reeder and Dollase, 1989). In this study, ferroan dolomite is used to 

describe dolomite distinctly enriched in Fe with more than 2 mol% of FeCO3, according 

to Tucker and Wright (1990).  

 

Apatite — Ca5(PO4)3(F,OH,Cl) 

Hence, in apatite, the dominant anion contributes the prefix fluor-, hydroxyl- or chlor-. 

The structure of apatite allows a great range of substitution, which in turn can even 

change the normal hexagonal symmetry of apatite. Apatite is the most common non-

carbonate mineral in carbonatitic rocks with an average of 6 wt% (Chakhmouradian et 

al., 2017) but its modal content can reach up to 90 % in cumulate rocks of the magmatic 

origin or hydrothermally formed quartz-apatite rocks (Broom-Fendley et al., 2016). 

Locally, carbonatites are associated with apatite-rich rocks (up to 70%) ± magnetite, 

(tetra-ferri)-phlogopite, forsterite, baddeleyite and pyrochlore. These apatite-rich rocks 

are of economic importance and are called phoscorite — also known as camaforite or 

the forsterite-free variety nelsonite (Cordeiro et al., 2010; Giebel et al., 2017; Haggerty 
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and Fung, 2006; Krasnova et al., 2004). Primitive carbonatite melts experimentally 

produced by low degree partial melting of carbonate-phosphate bearing lherzolite can 

incorporate up to ~20 wt.% P2O5 (Ryabchikov and Hamilton, 1993). However, 

experimental studies of natural dolomitic melts equilibrated with apatite show a lower 

concentration of 7.6 – 10.8 wt.% P2O5 (Guzmics et al., 2008). Apatite incorporates 

significant amounts of REE, which changes the distribution of REE, occasionally causing 

a decoupling of Y3+ and Ho3+ (Broom-Fendley et al., 2017a; Chakhmouradian et al., 

2017). The REE partitioning between apatite and carbonate-rich melts is not established, 

and experimental studies give contradictory results (Hammouda et al., 2010; Klemme 

and Dalpé, 2003). However, calculated REE partitioning coefficients between natural 

apatite and their host carbonatite show REE are compatible in apatite with Middle Rare 

Earth Elements (MREE) having the highest compatibility (Brassinnes et al., 2005). 

According to Chakhmouradian et al. (2017), the absence of a general trend for the 

evolution of trace elements in apatite could be the result of different proportions of 

coprecipitated minerals, e.g., calcite, dolomite, amphibole, zircon, pyrochlore, 

columbite, monticellite, andradite and titanite. Apatite usually crystallises early in the 

magmatic history of a carbonatite due to the relatively low solubility of P2O5, together 

with magnetite, olivine and clinopyroxene (Chakhmouradian et al., 2008; Le Bas, 1989). 

The continued formation of carbonates maintains the residual melt saturation of P2O5, 

which allows the formation of apatite until the late-stage mineralisation events (Gittins, 

1989). If the parental carbonatite magma is saturated in P2O5, apatite (or monazite) 

crystallises, and the bulk of REE will be removed early in the evolutionary stage. The 

fractionation of large quantities of calcite will enrich the residual liquid in REE. If the 

amount of fractionated apatite remains small compared to the amount of calcite, REE-
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fluorocarbonates can become a stable liquidus phase (Xu et al., 2010). Classically, apatite 

crystals exhibit an increase of REE from the core to the rim of the crystal, which is 

contrary to what could be expected from the partitioning behaviour of REE between 

apatite and carbonatite magma. Possibly, the coprecipitation of non-phosphate mineral 

with a low DREE causes an increase of P and REE in the remaining melt and triggers the 

precipitation of REE-rich apatite. Another potential explanation for REE-rich apatite rims 

is a mechanism behind the incorporation of REE in apatite. The incorporation of REE3+ 

into the mineral structure of fluorapatite requires a coupled substitution to keep the 

charge in apatite balanced. According to Hammouda et al. (2010), the REE compatibility 

depends on the Si content of apatite. REE are compatible in Apatite containing 3.5-5 

wt% SiO2 and incompatible in Apatite with 0.2 wt% SiO2. The incorporation of Si in 

apatite is one way to keep the charge in apatite balanced: 

 

   REE3+ + SiO4- = Ca2+ + PO4
3- (Pan and Fleet, 1995) 

 

Therefore, the higher concentrations of REE in the outer rim of apatite might be a result 

of a higher Si content in the magma, which therefore enables the increased 

incorporation of REE in apatite. Locally apatite becomes the main carrier of REE and in 

extreme cases can incorporate up to 8.3 wt% of REE (Hogarth, 1989).   
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Geochemical characteristics  

Carbonate-rich magmas generated by partial melting of carbonated peridotite, from 2 

GPa to at least 7 GPa, are dolomitic with a Ca/(Ca + Mg) ratio between 0.7 and 0.5 (Wyllie 

and Lee, 1998). During the ascent of carbonatitic melts, they are likely to react with the 

surrounding mantle and become more calcitic in composition. This process is called 

metasomatic wehrlitization (Wyllie and Lee, 1998). The evolution of primitive 

carbonatitic magma to higher CaCO3 composition is increased by degassing and 

fractionation of magnetite and forsterite (Chakhmouradian et al., 2015b). Compared to 

basaltic magma, silica undersaturated magmas and carbonatite magmas show a strong 

enrichment of LREE and a greater degree of fractionation between LREE and HREE, 

which implies a very low degree of partial melting (< 1%) for their parental magma 

(Chakhmouradian and Zaitsev, 2012). The origin of the LREE enrichment in carbonatites 

is part of an ongoing debate. Hornig-Kjarsgaard (1998) suggest that the LREE-

enrichment is inherent from the parental magma and is produced during partial melting 

because the crystallisation of most of the minerals does not change the REE pattern. 

Minerals like calcite, dolomite and apatite do not preferentially incorporate REE, and 

minerals which preferably incorporate certain REE occur in an insignificant quantity (e.g. 

pyrochlore) (Fig. 3-6A). Ionov and Harmer (2002) on the contrary identified a significant 

difference between LREE enrichment in calcite phenocrysts and LREE of later interstitial 

calcite crystals, which means that fractional crystallisation has to be an effective and 

necessary process to increase LREE enrichment in carbonatites (Fig. 3-6B). 
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Figure 3-6: REE concentrations normalised to CI1-chondrite values from McDonough and Sun (1995). A) 

Normalised REE values for whole rock, pyrochlore, apatite and calcite from the Kaiserstuhl carbonatite. The 

negative slope of the graph indicates an enrichment in LREE relative to HREE. However, the parallel slope of the 

different phases and whole rock data indicates that fractional crystallisation has not caused the LREE enrichment 

(Hornig-Kjarsgaard, 1998). B) Normalised REE values for whole rock, early calcite phenocryst and late interstitial 

calcite from the Spitskop Carbonatite. Early calcite has a flat REE curve, while later interstitial calcite has a steeper 

curve. The strong LREE enrichment in interstitial calcite relative to early calcite phenocryst indicates that fractional 

crystallisation has played a significant role in producing this pattern (Ionov and Harmer, 2002).  

 

Bühn (2001) modelled REE fractionation for a carbonite melt for various amounts of 

precipitating calcite, fluorapatite and clinopyroxene. Results were coherent with 

enrichment and slope of chondrite-normalised REE plots of actual carbonatites. 

However, some pristine mantle-derived carbonatites show a strong LREE enrichment, 

which indicates that fractional crystallisation is not necessary to produce a strong LREE 

enrichment signature. Although the different levels of LREE for pristine carbonatite 

could be due to the source material and melting conditions. Additionally, the dismissal 

of fractional crystallisation as a potent process for LREE does not automatically mean 

that LREE enrichment must be inherent by the parental magma because other processes 

like immiscibility in relation to the pressure can change the REE pattern significantly 

(Moine et al., 2004). Xu et al. (2010) showed that monazite could be part of early 

precipitation, which in turn would change the REE composition of the evolving melt 

drastically. Besides REE, trace element distribution diagrams normalised to the primitive 
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mantle composition show in general negative anomalies for Pb, Zr and Hf in calcite 

carbonatite worldwide (Nelson et al., 1988; Woolley and Kempe, 1989). 

 

3.5 Petrology of Carbonatites 

Carbonatite complexes exhibit the same magmatic features — lava, tephra, diatreme, 

dykes, ring-dykes, sills, ring complexes  — as silicate complexes (Barker, 1989). The main 

difference is the smaller size and shorter magmatic life span of the carbonatite 

magmatism. Common textures in carbonatites are polygonal texture, rounded autoliths 

of disaggregated cumulate, classic igneous texture, spinifex texture, randomly oriented 

laths to irregularly shaped grains of variable size either as a granular fabric or 

interstitially(Barker, 1989). Carbonatites usually make up the smallest proportion in a 

composite magmatic complex. Furthermore, they form at a late stage in the magmatic 

history of the complex either in the centre of the complex or as outer ring-dykes 

(Verwoerd, 1966). SiO2-undersaturated alkali silicates from the nephelinite clan or 

melilite clan are normally forming the main part of a composite intrusion. Carbonatites 

do not cause a contact metamorphic reaction of the surrounding country rock due to 

their relatively low T. Nevertheless, carbonatite magmas are highly enriched in 

chemically aggressive alkalis and typically form an alkali metasomatic halo — called 

fenite. Fenitisation exhibits in comparison to other alkali metasomatic events a 

pronounced deficiency of SiO2. Plutonic carbonatites commonly grade into a variety of 

meso- to melanocratic cumulate rocks dominated by apatite, silicate or oxides 

(Chakhmouradian et al., 2015a). It is because of the ultralow viscosity and generally low 

density (≤ 2.6 g/cm3) of carbonatitic melts (Kono et al., 2014), that the formation of 

cumulate layers is enabled (Dobson et al., 1996).  
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3.6 REE-Rich Carbonatites 

Carbonatites are enriched in large-ion lithophile elements (LILE) and high-field-strength 

elements (HFSE), and form minerals especially high in these elements. Some of these 

minerals — e.g., bastnäsite, monazite, apatite, pyrochlore, fluorite, baddeleyite, thorite, 

and uraninite — were economically exploited in the past for REE, P, Nb, Fe, Zr, Th, U and 

F. In addition, Cu, fluorite, vermiculite and limestone were mined and by-products such 

as Ta, Ag, Au and PGEs were utilized (Woolley and Kjarsgaard, 2008a).  

Carbonatites have the highest REE concentration of all magmatic rocks and are the 

major source for REE mining (Cullers and Graf, 1984). In most carbonatites, REE are 

primarily incorporated in rock-forming minerals such as calcite, dolomite, apatite and 

silicates (Hornig-Kjarsgaard, 1998). REE concentrations, as well as REE-minerals, are 

commonly enriched in magnesiocarbonatite and ferrocarbonatite that may be either 

igneous or carbohydrothermal rocks (Ruberti et al., 2008; Wall and Mariano, 1996). REE 

behave as incompatible elements in a carbonatite magma, and REE concentration 

generally increases from a primitive calciocarbonatite (0.45 wt%) to 

magnesiocarbonatite (0.50 wt%) to an evolved ferrocarbonatites (1.29 wt%) (Woolley, 

1989). Although the formation of magmatic REE-minerals is possible, for example, 

bastnäsite in Mountain Pass or monazite in Miaoya, it is a rare exception (Mariano, 1989; 

Wall and Mariano, 1996; Xu et al., 2010). Experimental data from Wyllie et al. (1996) 

demonstrates an initially low REE concentration in the magma, which is dispersed 

among the major rock-forming minerals so that a REE mineralisation does not develop 

in this early stage. The presence of hydrothermal REE minerals, e.g., REE-

fluorocarbonates, monazite and ancylite as veins or fine-grained polycrystalline clusters 

(Marien, 2014) in interstitial fillings are most common for carbonatites (Wall and 
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Mariano, 1996). REE are amongst the least soluble trace elements and are considered 

to be immobile during low-grade metamorphism, weathering and hydrothermal 

alteration (Rollinson, 1993). This is however, in conflict with the majority of REE-

deposits, which have a clear hydrothermal origin. Humphris (1984) emphasised that one 

must be careful with interpreting REE in highly altered rocks because of the incompletely 

immobile nature of REE. Since the 1990s considerable evidence has been accumulated 

— for elevated REE concentration in hydrothermally altered rocks, REE-bearing minerals 

in fluid inclusions and REE deposits of hydrothermal origin — showing the possibility for 

REE to be mobilized by crustal fluids (Broom-Fendley et al., 2017a; Dowman et al., 2018; 

Marien, 2014; Migdisov et al., 2009). Since then the physicochemical controls on REE 

mobility have been subject of multiple experiments, which highlight the mobility of REE 

complexes with chloride, fluoride, sulphate and hydroxide ligands (Migdisov and 

Williams-Jones, 2014; Williams-Jones and Migdisov, 2014; Williams-Jones et al., 2012). 
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4 Fen Complex 

 

The Fen Complex is located in the southern part of Norway, ca. 120 km SW of Oslo, in 

proximity to the small town of Ulefoss and 12 km outside of the Oslo Graben (Fig 4-1). 

It is a composite intrusion of Ediacaran age (578±24 Ma Rb-Sr isochron age (Dahlgren, 

1994) and 583±15 Ma Ar/Ar age (Meert et al., 1998)) comprising of peralkaline silica 

undersaturated rocks and carbonatites, which intruded into the 1105 Ma old Telemark 

Gneiss. Rødbergite is one of the petrological units of the Fen Complex with the highest 

concentration of Rare Earth Elements (REE) (Andersen, 1984; Andersen, 1989b; Bergstøl 

and Svinndal, 1960; Marien et al., 2018; Schilling, 2013). The focus of this thesis is to 

create an improved REE-mineralisation model for the formation of rødbergite, which in 

turn will support mining companies to conduct their REE exploration at Fen in a more 

effective way. This chapter will provide an overview of the regional and local geological 

setting of the Fen Complex and will help the reader to familiarise themselves with the 

uncommon rock types of the Fen Complex.  
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Figure 4-1: A) Simplified geological map of Norway with the rocks of the Oslo rift in red. The Fen Complex is within 

the outline of map B (NGU, 2017). B) Geological map of the counties Vestfold and Telemark, illustrating the Fen 

Complex (green) proximal to Ulefoss (Gea Norvegica Geopark, 2018) C) Simplified geological map of the Fen 

Complex modified after Bergstøl and Svinndal (1960) with minor incorporation of features from Ihlen et al. (2014) 

modified after Dahlgren (2004).  
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4.1 The Discovery of the Fen Complex and Subsequent Work  

The Fen Complex was part of ongoing Fe-ore exploitation from 1652 to 1927 (Vogt, 

1910). The unique peralkaline rock association of the Fen Complex was first scientifically 

described by Brøgger (1921). Based on the observation made at the Fen Complex, the 

concept of carbonatite magma was formulated, and a range of new rock types was 

defined. Although the carbonatite classification introduced by Brøgger (1921) is now to 

a large extent superseded (and therefore not applied in this thesis), it is necessary to be 

familiar with rock names like søvite and rauhaugite, which have their type locality in the 

Fen Complex — please see the rock glossary for further information or chapter 4.4.  

Bowen (1924) and Sæther (1957) were opposing the theory of carbonatitic magma and 

argued that the carbonatites of the Fen Complex are the product of metasomatic 

replacement of the silicate rocks by carbonate-rich fluids. Other authors postulated a 

connection to the Oslo magmatism, either in the form of contact metamorphism or as a 

differentiate from the Oslo magmas (Tomkeieff, 1958). A genetic connection between 

the Fen Complex and the Oslo-rift magmas was later on falsified by Faul et al. (1959) 

using K-Ar geochronology on biotite resulting in a Precambrian age for the Fen Complex. 

(Friedrichsen, 1968)The calculated formation temperatures of 600 – 700°C for søvite 

(calcite carbonatite) and rauhaugite (dolomite carbonatite) supported a magmatic origin 

of the Fen carbonatites. The formation temperature of ~200°C for rødbergite indicated 

a metasomatic formation instead (Friedrichsen, 1968). By the early 70s, the magmatic 

origin of carbonatite at the Fen Complex and the Precambrian to Cambrian age of the 

complex (530-600 Ma) was generally accepted by the scientific community (Poorter, 

1972). Since then the Fen Complex has been the focus of continuous research and 

especially Ramberg (1973), Mitchell and Brunfelt (1974); (1975), Griffin and Taylor 
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(1975) and Andersen (1984); (1986; 1991) contributed much to the general 

understanding of the Fen Complex.  

 

4.2 The Geological Setting of Scandinavia  

The geological history of Norwegian rocks is a long and complex story of continental 

growth through plate accretion during multiple orogenic processes and rifting events. In 

the context of this PhD-thesis, the geological setting is an essential framework to 

understand the formation of the Fen Complex.  

The Creation of Fennoscandia (3.5 Ga – 1.85 Ga) 

The geological creation of the oldest rocks from the microcontinent Fennoscandia 

(Fig. 4-2), which Norway is a part of, dates back to the Paleoarchean, ca. 3.5–3.2 Ga 

(Slabunov et al., 2006).  

Fennoscandia was largely formed through the accretion of terrane blocks with an 

interim rifting event during 3.1 Ga – 2.7 Ga and 1.95 Ga – 1.85 Ga (Bogdanova et al., 

2008; Lahtinen et al., 2005) 

Formation of the East European Craton (ca. 1.85 Ga) 

After 1.85 Ga, Fennoscandia started to collide with Volgo-Sarmatia to create the East 

European Craton (ECC) (Fig. 4-2). The Volyn-Orsha and Mid-Russian aulacogens outline 

the suture between these two microcontinents.  

ECC as Part of Columbia (ca. 1.7 Ga – 1.4 Ga)  

At 1.7 Ga the EEC became part of the supercontinent Columbia (Karlstrom et al., 2001) 

and grew between 1.73 and 1.48 Ga through the accretion of three NS-trending crustal 

belts on its southwest rim. First the Eastern Segment between the Protogine Zone in the 

east and the Mylonite Zone in the west (Bogdanova et al., 2008), second the Idefjorden 
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terrane west of the Mylonite Zone and third the Telemarkia terrane which, is separated 

from the Idefjorden terrane by the small Bamble and Kongsberg terranes (Bingen et al., 

2005) (Fig. 4-3). 

 

 

Figure 4-2: Late Paleoproterozoic to Early Neoproterozoic tectonic complexes in the East European Craton (Baltica) 

(Bogdanova et al., 2008) . B, Bashkirian uplift (S. Urals); D, Dala basin; E, Eastern Segment; G, Gävle graben; I, 

Idefjorden terrane; K-B, Kama-Belsk aulacogen; K-D, Kandalaksha-Dvina graben; M, Moscow graben; Mez, Mezen 

rifts; MR, Mid-Russian aulacogen; Mu, Muhos graben; MZ, Mylonite Zone; Mz, Mazury igneous complex; Pa, 

Pachelma aulacogen; P-L, Pasha-Ladoga graben; PZ, Protogine; Zone R, Riga pluton; T, Telemarkia; S, Salmi pluton; 

S-A, Sernovodsk-Abdulino aulacogen; St, Satakunta graben; Srb, Strombus basin; Str, Strömmingsbådan basin; V, 

Valday graben; V-O, Volyn-Orsha aulacogen; Vy, Vyborg pluton; WGC, Western Gneiss Complex. 

 

Between 1.5 and 1.4 Ga a range of igneous events, metamorphism and structural 

deformation occurred that are the result of the collision of the EEC with Amazonia. The 

so-called Danopolonian Orogeny caused extensive EW faulting in large parts of southern 

Fennoscandia and adjoining parts of Sarmatia (Bogdanova et al., 2001). Around 1.4 Ga 

the supercontinent Columbia broke apart, and a predominantly extensional setting 

occurred in the formation of aulacogens and bimodal magmatism in large parts, 



 
51 

 

especially in the eastern ECC. The gabbro-tonalite Tromøy complex in the Bamble 

terrane formed between 1.20 and 1.18 Ga. As a remnant of an island arc, it represents 

a subduction-related setting right before the start or the Sveconorwegian Orogeny.  

  

Figure 4-3: Main Precambrian units of SW Scandinavia (Åhäll and Connelly, 2008). Askersund suite 

(AS), Oskarshamn-Jönköping Belt (OJB), Transscandinavian Igneous Belt (TIB), Klarälven-Ätran 

segment (K and Ä), Idefjorden terrane (Id), Western Gneiss Region (WGR) and Telemarkia terrane. B, 

Ba and Ko mark the Begna, Bamble and Kongsberg terranes, and MZ the Mylonite Zone.  
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Sveconorwegian Orogeny (1140 Ma – 900 Ma) 

The Sveconorwegian belt developed during the Grenvillian-Sveconorwegian orogeny 

between 1140 and 900 Ma as the result of a collision of Baltica and possibly Amazonia 

(Viola et al., 2011). The Grenvillian-Sveconorwegian orogeny is part of large-scale 

mountain building processes, which finally produced the supercontinent Rodinia 

(McMenamin and McMenamin, 1990). During the Sveconorwegian Orogeny, the 

Bamble terrane and Kongsberg terrane were thrusted onto Telemarkia, developing 

strong NE-SW trending structural grain in the Bamble terrane (Henderson and Ihlen, 

2004). The main collision event caused widespread regional metamorphism within the 

Telemarkia and Idefjorden terranes. General N-S to NW-SE trending shear zones were 

developed due to transpression and formation of a nappe complex (Bogdanova et al., 

2008). The final Sveconorwegian convergence is associated with a major deformation in 

the Mylonite Zone and crustal melting of Telemarkia (Bogdanova et al., 2008). Locally, 

the eastern part of the Sveconorwegian belt contains relics of eclogite, which represent 

deeply buried Fennoscandian crust during the height of the orogenic process. Already 

during the time of the Sveconorwegian orogeny in the SW, parts of the EEC passive 

continental margins showed incipient features of break-up and subsequent rifting of the 

EEC occurred throughout the Cryogenian (Pease et al., 2008).  

 

The Breakup of Rodinia (620 Ma – 550 Ma) 

The breakup of Baltica from supercontinent Rodinia started around ca. 620-550 Ma, 

with the opening of the Iapetus Ocean between Baltica and Laurentia (Pease et al., 

2008).  
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Caledonian Orogeny (490 Ma – 390 Ma) 

During the early Ordovician, the Caledonian orogeny starts with the subduction of the 

Iapetus Ocean under Baltica and reaches its final stage with the collision between Baltica 

and Laurentia in the mid-Silurian to early Devonian (Gee et al., 2008). The continent 

collision resulted in the partial melting of the underthrusted plate (Baltica) and an E and 

W-vergent thrust system was established. Today most of the basement in southern 

Norway consists of the lower part of the orogenic belt, which contains material from 

both the closed Iapetus Ocean and proto-Baltica (Gee et al., 2008)  

Oslo rift (308 Ma – 245 Ma) 

The Oslo rift is part of a prolonged period of extensional faulting and volcanism in NW 

Europe during the late Carboniferous and Permian. According to Larsen et al. (2008), the 

rift was formed by lithospheric stretching initiated during the last stage — the 

consolidations stage or tectonic collapse (Wilson et al., 2004) — of the Variscan orogeny. 

Over a period of 65 Ma, the Oslo rift went through six stages of magmatic and tectonic 

activity (Larsen et al., 2008). The entire Oslo rift is 500 km long and is limited to the S by 

the Sorgenfrei-Tornquist zone. The classic Oslo Graben is composed of two grabens — 

Akershus and Vestfold — and has a length of 220 km with a width of 60 km. The Oslo 

Graben is characterised by a large volume of volcanic material similar to the East African 

rift zone (Larsen et al., 2008) — known for its high concentration of carbonatites. 

Neumann et al. (2004) describe at least two mantle sources involved in the melting 

processes of the Oslo rift. The eruption of Skien basalt and Brunlanes basalt in the 

southern part of the Oslo rift mark the earliest magmatic activity. These silica 

undersaturated magmas of basanite, melilites and nephelinites are highly alkaline-rich 

lavas with the isotopic signature of a metasomatically enriched mantle — HIMU (high-
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µ). They are generated by a low degree of partial melting of the asthenosphere, which 

was subsequently modified by the lithospheric mantle and crustal components 

(Neumann et al., 2004). The involvement of a potential plume has been indicated 

(Wilson et al., 2004). The magmatic sequence is just 12 km away from the Fen Complex, 

and the carbonatitic magmatism of the Fen Complex is seen as the cause of the HIMU 

signature of the mantle in this area (Neumann et al., 2004).  

Uplift of Scandinavia (65 Ma – today) 

Extension persisted and the mid-Norwegian margin experienced several periods of 

rifting since the formation of the Caledonides culminating in the final break-up and 

subsequent opening of the North Atlantic Ocean ca. 56 Ma ago (Eldholm et al., 1989; 

Mosar et al., 2002). The topographic evolution of Norway is controversial and likely to 

be the result of glacio-isostatic rebound and a tectonic component — most likely 

associated with the Alpine orogeny (Anell et al., 2009; Mörner, 1977).  

 

4.3 Origin of the Fen Complex 

Several geological events mentioned in chapter 4.2 play an important role in the 

formation of the Fen Complex. 

Tectonic Setting 

The Fen Complex is located at the eastern part of the Telemarkia terrane close to the 

former Bamble (25 km), Kongsberg (40 km) and Idefjorden terranes (80 km) (Fig. 4-3). 

The contact zones between those terranes are marked by deep and extensive shear 

zones — Kristiansand-Porsgrunn Shear Zone, Saggrenda-Sokna Shear Zone and 

Vardefjell Shear Zone (Fig. 4-4)—, which were created during the Sveconorwegian 

orogeny (Ebbing et al., 2005; Starmer, 1993). Like most of the carbonatite and alkaline 
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complexes in the Fennoscandian Shield, the Fen Complex is associated with deep 

fracture zones (Brøgger, 1921). These kinds of deep-seated shear zones tend to be 

reactivated repeatedly over time and the presence of the Oslo rift indicates that under 

a certain stress field, the area is prone to rifting — a typical tectonic setting for the 

formation of carbonatites (e.g. East African Rift System) (Woolley, 1989).  

 

 

Figure 4-4: Structural map of the Oslo Rift, surrounding terranes and the Fen Complex (green circle) modified after 

Ebbing et al. (2005). T, Telemark sector; K, Kongsberg sector; B, Bamble sector; SFDZ, Sveconorwegian frontal 

deformation zone; SSS, Saggrenda-Sokne shear zone; MMS, Mjøsa-Magun mylonite zone; ØMS, Ørje mylonite 

zone; A ˚ MS, A ˚ mot-Vardefjell shear zone; PKF, Porsgrunn-Kristiansand shear zone; MANUS, Mandal-Ustaoset 

Fault; TIB, Transcandinavian Igneous Belt. 

 

Besides the association with major faults, there is evidence for a link with areas of higher 

seismic activity and elongated gravity anomalies (Ramberg, 1973). Carbonatite 

complexes like Fen occur in areas of thinner lithosphere compared to the rest of 

Fennoscandia (Heincke et al., 2008; Meert et al., 1998; Tappe, 2006). The thinning of 
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crust can be observed specifically in the Oslo Graben and in varies graben of the Kola 

Peninsula, where a positive gravity anomaly has been interpreted as a result of crustal 

thinning (Ramberg, 1973). Additionally, the Vestfold Graben and the Skagerrak Graben 

significantly disrupt the geometry of the Oslo rift. Both graben are mechanically 

connected via the Langesund Accommodation Zone (LAZ) (Larsen et al., 2008). Lake 

Norsjø and the Fen Complex are located in the extension to the LAZ. The elongated 

geometry of Lake Norsjø indicates the propagation of the LAZ or a similar kind fault zone. 

The Fen Complex is located at the intersection of the extended NW-SE striking LAZ and 

the NNE-SSW striking Oslo rift (Larsen et al., 2008; Ramberg, 1973). Carbonatites are 

typically associated with the intersection of two fault systems (Woolley, 1989). The Oslo 

rift follows the contact shear zone of the terranes Telemarkia, Idefjorden, Kongsberg 

and Bamble (Fig. 4-4) partly. Although the Fen Complex is older than the Oslo rift, the 

Oslo rift fault zones are likely to be partly reactivated zones of structural weakness, 

which might have already worked as a conduit for the parental magma of the Fen 

Complex in the past. The link to deep tectonic structures indicates a common deep 

magmatic process for the Oslo Graben and the Fen Complex.  

In summary, the Fen Complex is in an area located at the intersection of two major deep-

seated fault zones, which can be partly traced back to Precambrian terrane borders. The 

NE-SW trending Oslo Graben and the presumed extension of the NW-SE trending 

Danish-Polish depression mark the former terrane boundaries. These fault zones were 

reactivated multiple times and showed a clear tendency for rifting. The formation of 

carbonatite is typically associated with these characteristics (refer to chapter 3.3).    
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Mantle Source 

In chapter 3.2, the presence of a metasomatised mantle as the source for carbonatite 

magmatism is highlighted (Arzamastsev et al., 2001). Lherzolite nodules from Fen 

damtjernites coming from just below the base of the continental crust close to 33 – 34 

km and support the mantle origin of the Fen magmatism (Griffin, 1973). Reported 

mantle garnet xenocrysts in the damtjernite (Dahlgren, personal communication) 

suggest a depth >60-85 km – the depth where garnet becomes stable in a lherzolitic 

mantle rock at the mantle solidus (Wood et al., 2013). The subduction of oceanic crust 

is a potential mechanism to change the mantle chemistry (Goodenough et al., 2014; 

Woolley and Kjarsgaard, 2008b). There are several reasons to assume that the mantle 

source of the Fen Complex was such a metasomatised lithospheric mantle:  Most parts 

of the Telemarkia, Bamble, Kongsberg and Idefjorden terranes were formed in an active 

continental margin setting (Bingen et al., 2005); Relics of eclogite prove the subduction 

of fluid into the mantle (Bogdanova et al., 2008); The HIMU signature of the early Oslo 

graben magma, proximal to the Fen Complex prove the presence of a metasomatised 

mantle region underneath a larger part of the Telemarkia, Bamble and Idefjorden 

continental crust (Neumann et al., 2004). The carbonatitic magmatism of the Fen 

Complex is seen as the reason for the HIMU signature of the mantle in this area 

(Neumann et al., 2004). Regarding the general small volume of carbonatite magma in 

complexes around the world, it is questionable whether carbonatitic magmatism could 

alter a mantle source to the degree that would have a significant effect on the isotopic 

signature of voluminous basaltic magma produced by partial melting of this altered 

mantle. The HIMU signature of the early Oslo graben magma is rather an indication of 

the regional metasomatised mantle signature and the geological processes able to melt 
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this mantle source and conduit the magma to the upper crustal level. The HIMU mantle 

was the source for the carbonatite magma rather than the result of it. The HIMU mantle 

was also the source of alkali-rich nephelinites of the Oslo Graben, which essentially 

represent the volcanic equivalent of the plutonic ijolite rock suite. Besides carbonatites, 

peralkaline ijolites (urtite-ijolite-melteigite) comprise a major part of the Fen Complex 

and are often considered to represent the parental magma for carbonatites in general 

(Woolley and Kjarsgaard, 2008b). A dyke located 50 km north of the Fen Complex and 

mineralogically resembling damtjernite was dated by a 2-point Rb-Sr mineral isochron 

at 324 ± 4 Ma (Dahlgren, 1994). This indicates the presence of comparable magmatism 

in the same area, over 275 Ma after the emplacement of the Fen Complex and shortly 

before the Oslo rifting started (Larsen et al., 2008; Meert et al., 1998).  

The periodical reoccurring of HIMU signature magmatism; and mineralogical and 

geochemical anomalous magmatism strongly indicates the source of this magmatism to 

be a Precambrian HIMU reservoir within the sub-continental lithospheric mantle (Fig. 3-

1 (1)).  

 

Emplacement  

The area around the Fen complex is characterised by a high density of deep fault zones 

and a potentially metasomatically altered lithospheric mantle, which promotes the 

formation of parental melt to carbonatite and enables the ascend of mantle-derived 

melt into the crust. The parental carbonatite magma is originated by a low degree of 

partial melting of the HIMU reservoir and subsequent ascending of the parental magma 

along the deep-seated fault zones created during the Sveconorwegian Orogeny. The 

event, which finally triggered the generation and the emplacement of the Fen Complex, 
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is the opening of the Iapetus Ocean (620 Ma) (Pease et al., 2008). The actual 

emplacement of the Fen Complex happened during a minor extensional activity during 

the drift phase and separation of Baltica and Greenland (Meert et al., 1998). More than 

50 satellite intrusions of co-genetic damtjernite occurred in an area of 1500 km2 around 

the Fen Complex (Dahlgren, 1994).  

 

4.4  Rock Types of the Fen Complex 

The Fen Complex is host to a carbonatite-ijolite rock association, which belongs to the 

nephelinite–ijolite association of Woolley and Kjarsgaard (2008b). This is the most 

common group among the magmatic carbonatites. The various rock bodies show steep 

inward dipping and sharply contrasted densities (Ramberg, 1973). 

 

4.4.1 Carbonatite 

The central part of the complex consists of carbonatite rocks, which are surrounded by 

an incomplete ring of mixed calcite-silicate rocks (Fig. 4-5). Carbonatite accounts for 

60 % of the outcrop at the Fen Complex and based on old mining, prospection continues 

to at least 250 m depth (Ramberg, 1973). According to Brøgger (1921), there are two 

types of intrusive carbonatite — søvite (calcite-carbonatite) and rauhaugite (dolomite-

carbonatite). Over time, researchers have used different classifications for carbonatite 

rocks of the Fen Complex. To avoid any confusion, please refer to the glossary. The main 

søvite body consists of steeply dipping white bands of søvite alternating with dark mica-

rich carbonate-silicate rocks and fenites (Ramberg, 1973) (Fig. 4-6). The bands are 

varying in thickness from 10 cm to several metres. Concentric and radial carbonatite 

dykes can be observed universally in the complex and country rocks. The average 
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mineral composition for søvite (calcite-carbonatite) given by Brøgger (1921) is calcite, 

apatite (8%), manganophyllite (Mn-rich biotite), biotite, tremolite-hornblende (blue), 

microlite (pyrochlore group), schlieren of magnetite and pyrite. Rauhaugite (dolomite-

carbonatite) is composed of dolomite and apatite with minor proportions of pyrite, 

feldspar and barite. In rauhaugite, manganophyllite is absent, and the amount of apatite 

is 0 – 5%. Quartz, albite, barite and chlorite are late- or postmagmatic. 
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Figure 4-5: Simplified geological 

map modified after Bergstøl and 

Svinndal (1960) with minor 

incorporation of features from 

Ihlen et al. (2014) modified after 

Dahlgren (2004). The Bjørndalen, 

Fen Road and Gruveåsen 

transects are marked on the 

map.  
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Figure 4-6: Photos from Tufte tunnel of the old Nb-mine are showing rocks with different proportions of 

carbonatite (white) and silicate (black bands) layers. These vertical layers range in thickness from <1 mm (A) to 

0.5 m (B). (C) Clusters of phlogopite phenocryst are present in white and black layers and resemble optically 

damtjernite phlogopites. (D) Large lumps of black silicate rocks are cut by white carbonatite dykes and are adjacent 

to finely laminated silicate-carbonatite rocks. (E) Locally fine laminated silicate-carbonatite rocks and dark 

coloured silicate rocks are part of a breccia surrounded by bands of white carbonatite and cut by later carbonatite 

dykes. 

 

Carbonates in rauhaugite comprise of >75 % dolomite and <25 % calcite, and vice versa 

for søvite. Rauhaugite is a dense, yellow-whitish rock with occasional rusty coloured, 

irregular veins and makes up the largest part of the eastern Fen Complex (Brøgger, 

1921). Locally rauhaugite is mixed with greenish to blackish chlorite-carbonate rock, 
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which Brøgger (1921) defines as an alteration product of the ijolite rock series. Later 

authors defined this chlorite-carbonate rock as a variety of rauhaugite (ferrocarbonatite 

or rauhaugite II), which is irregular, spotty and veined and occasionally brecciated 

(Andersen, 1984; Sæther, 1957). The chlorite-carbonatite rock has a higher 

concentration of Fe and contains magnetite deposits, which were exploited for Fe — the 

old Rauhaug mine was such a deposit (Sæther, 1957). Additionally, the rock contains 

minor amounts of quartz, rutile, barite, barian feldspar, allanite, monazite and 

synchysite (Andersen, 1984). The white-yellowish varieties of rauhaugite occur in the 

søvite-dominated part of the complex, near the hamlets of Tufte and Vipeto, as ENE 

striking dykes of 0.5 to 10 m thickness. They are interlayered with søvite and show 

gradual contact zones between each other (Sæther, 1957). The rauhaugite dykes show 

the same mode of occurrence as the søvite dykes; they are associated with, and run 

parallel to the margins and layering within the søvite complex. Based on the similarities 

in fabric, orientation and mode of occurrence, Sæther (1957) proposed a similar mode 

of origin for søvite and the white-yellowish variety of rauhaugite dykes. In contrast, the 

chlorite-carbonate rock (ferrocarbonatite or rauhaugite II, please refer to glossary) was 

described as a metasomatic product formed in-situ by carbonisation of silicate rocks, 

preferentially damtjernite (Sæther, 1957).    

 

4.4.1 Rødbergite 

Rødbergite (literally: red rock) of the Fen Complex is defined as a calcite-dolomite 

carbonatite stained red by disseminated fine crystals of hematite (Andersen, 1984). 

Rødbergite was originally described by Vogt (1910) as a metasomatised iron limestone 

surrounding veins of hematite/magnetite ore and grading into Fe-rich calcite limestone. 
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According to Sæther (1957), rødbergite contains calcite, ankerite and hematite with 

minor proportions of chlorite, quartz, albite and barite. Rødbergite displays a 

heterogeneous irregular microstructure with intimate intergrowth of constituent 

minerals and strongly sutured boundaries between coarser grains (Andersen, 1984). 

Calcite and dolomite occur in fine intergrowths, and ankerite is present in the form of 

relics of resorbed grains (Andersen, 1984).  

The largest volumes of rødbergite are in the eastern part of the Fen Complex — in the 

area surrounding the Gruveåsen hill (Fig. 4-5). Locally, smaller bodies of rødbergite occur 

throughout the Fen Complex (Andersen, 1984). Additionally, there is evidence for a 

reddish hematised rock type outside of the Fen Complex, which might represent a 

similar hematisation event (Andersen, 1989a).  

Iron-ore, which is most of the time surrounded by rødbergite, is found in veins, lenses 

or dyke-like bodies (Sæther, 1957). These veins have a width of a few centimetres to 

several metres and are up to 100 m in length (Andersen, 1983; Vogt, 1910). Because of 

the former extensive mining of the Fe-ore and a thick cover of vegetation and soil in the 

area, only a few surface outcrops are accessible. The mining activities left deep, long and 

narrow pits which show an en-echelon structural pattern and have a preferred 

orientation of NNW to NW (Andersen, 1983) (Fig. 4-7). The Fe-ore was exploited in open 

pits as well as in underground mines, where operations reached a level of 225 m below 

the water level of Lake Norsjø (Fig. 4-8) (Andersen, 1983). The concentration of iron in 

the Fe-vein surrounding rødbergite ranged between 15% and 30% and was not regarded 

as economically exploitable (Brøgger, 1921). 
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Figure 4-7: Simplified geological map of the Fen Complex showing the extent of rødbergite and the distribution of 

Fe-ore zones modified after Sæther (1957). The long axes of the Fe-mineralisation are all aligned towards NW.  

 

 Figure 4-8: Cross section of 

the central part of 

Gruveåsen (Aksnes and 

Årtveit, 2014), showing the 

depth and extension of the 

most prominent mining 

cavities. The deepest level 

of this cross-section is 

158.5 m below the water 

level of Lake Norsjø. 
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Formation of Rødbergite 

The origin of rødbergite has been previously widely discussed in the literature. Earlier 

publications concluded that rødbergite is a metasomatic product of carbonatite caused 

by intense entry of ferric iron into the system (Barth and Ramberg, 1966; Brøgger, 1921; 

Sæther, 1957). Mitchell and Brunfelt (1975) suggest that rødbergite is a metasomatised 

transformation of damtjernite, which gradually altered into rauhaugite and finally 

rødbergite. Locally, silicate-rich varieties of ferrocarbonatite with chlorite phenocrysts 

represent a potential transitional rock type between damtjernite and ferrocarbonatite 

(Andersen, 1983; Andersen, 1984). A more detailed study of damtjernite and 

ferrocarbonatite convinced Andersen and Qvale (1986) of a co-genetic relationship 

between ferrocarbonatite and damtjernite due to their simultaneous emplacement at 

Gruveåsen and gradual transition into each other. Andersen (1983) stated that there 

was no need for a substantial introduction of Fe to a carbonatite as proclaimed by earlier 

authors (Barth and Ramberg, 1966; Brøgger, 1921; Sæther, 1957) and that the hematite 

ore associated with the rødbergite was formed by the oxidation of pre-existing 

magnetite-pyrite ore, which is associated with unaltered carbonatite. Andersen (1984) 

suggests rødbergite was formed by the replacement of older ferrocarbonatites 

(rauhaugite II) by an oxidising fluid along zones of intense fracturing. The original mineral 

assemblage of ferrocarbonatite (ankerite + calcite + magnetite ± pyrite ± ilmenite) was 

replaced by a rødbergite mineral paragenesis of calcite, dolomite and hematite, and 

accessory phases like quartz, chlorite, apatite, Ba- and REE phases remained stable. The 

position for REE minerals in the crystallisation sequence in ferrocarbonatite is not clear 

as REE minerals are found in the matrix and crosscutting veins (Andersen, 1984). 

According to Andersen (1984), the replacement of ferrocarbonatite by rødbergite is 
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postdated only by a crosscutting ferrocarbonatite dyke with rødbergite xenoliths in the 

main adit of the Fen iron mine. Hematite is evenly distributed within the carbonates in 

the form of microinclusions (Andersen, 1984) and was formed by the exsolution of an 

iron-bearing carbonate:  

 

Ankerite + O2 -> hematite + calcite + dolomite + CO2 

 

Andersen (1984) argued that the homogenous distribution of Fe in rødbergite could not 

simply be produced by a penetrating fluid because of the time-integrated water/rock 

ratio, which would have to be unrealistically high. Furthermore, an iron-bearing solution 

would have to stay in equilibrium with the carbonates for a prolonged time. However, 

the pH of any iron-bearing fluid would be low enough to cause the dissolution of the 

carbonates and rather precipitate massive hematite at the reaction front than finely 

disseminated hematite along the entire rock sequence. Therefore, Andersen (1984) 

argued that a local enrichment of hematite reflects the dissolution of carbonates rather 

than an introduction of Fe. The breakdown of magnetite, pyrite and ilmenite supplied 

additional Fe.  

The decrease of δ18O and increase of δ13C values from ferrocarbonatite to rødbergite 

are interpreted by Andersen (1984) as the result of an interaction of the rock with 

hydrothermal fluid at temperatures below 300°C, which is in accordance to the 

calculated T (200°C) of Friedrichsen (1968). The oxygen fugacity during the alteration 

increased due to the influx of oxidising groundwater. Initial oxygen fugacity below the 

hematite-magnetite (HM) buffer caused Fe and Mg mobilisation. As the oxygen fugacity 

increased above the HM buffer, Fe formed hematite, while Mg and Ca were leached 
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(Andersen, 1987b). The oxidation of pyrite caused a decrease in pH and triggered the 

dissolution of carbonate minerals and a loss of as much as 70 Vol% of material that led 

to a local enrichment of insoluble phases, e.g. hematite and REE-minerals. Because of 

high 87Sr/86Sr values, Andersen (1984) suggested that the fluid has to have passed a 

reservoir rich in radiogenic Sr, such as the surrounding Precambrian gneisses (Fig. 4-5). 

The relatively low whole-rock strontium concentrations are the result of the removal of 

Sr during the hydrothermal alteration. Rødbergite displays many areas of small-scale 

disequilibria such as relics. A whole rock equilibrium for rødbergite, therefore, cannot 

be assumed (Andersen, 1984). 

While carbonate minerals were dissolved during the formation of rødbergite, the REE-

minerals (monazite-(Ce) and synchysite-(Ce)) survived the alteration process, according 

to Andersen (1986). Nevertheless, LREE preferential partitioning into the hydrothermal 

fluid, which caused a decrease of La/Sm ratios during oxidation. Fluoride ions increased 

the mobility of lighter REE and are the reason for the LREE depletion during the 

hydrothermal alteration (Andersen, 1986). MREE, Y and Th were the least soluble 

elements and were strongly enriched in the solid residue (Andersen, 1984; Andersen, 

1987b). In contrast, Mitchell and Brunfelt (1975) reported an extreme LREE enrichment 

in rødbergite, which they suggested is strongly connected to a volatile process of REE 

enrichment.  

 

4.4.2 Urtite-Ijolite-Melteigite-(Vipetoite)  

Rocks of the urtite-ijolite-melteigite are the most common silicate rocks of the Fen 

Complex. They occur mainly in the SW of the complex and account for 9 % of the outcrop 

area (Ramberg, 1973) (Fig. 4-5). They consist of nepheline and pyroxene (aegirine-
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augite) ± calcite, alkali feldspar, olivine, amphibole, biotite, melanite and apatite 

(Brøgger, 1921). They are classified on the bases of their content of nepheline in: Urtite 

> 70 % of nepheline, ijolite for 30 – 70 % and melteigite with < 30 % (Le Maitre et al., 

2002). Ijolitic rocks are the oldest intrusives in the Fen Complex and are the main source 

for fenitisation (Griffin and Taylor, 1975). In the south of the Complex is a small body of 

nepheline bearing alkali pyroxenite called vipetoite — originally misspelt by Brøgger 

(1921) as vibetoite — which represents a rock with more than 90 % of Ti-augite and 

minor amounts of nepheline, hornblende, biotite, calcite and albite (Brøgger, 1921). A 

more common term for a nepheline-bearing (±titanomagnetite, apatite, perovskite and 

melanite) alkali pyroxenite is jacupirangite (Le Maitre et al., 2002). Ultramafic bodies are 

part of more than 60 % of the carbonatite complexes in nephelinite–ijolite association 

and are generally interpreted as cumulates (Woolley and Kjarsgaard, 2008b). 

Nevertheless, ultramafic cumulates can be a product of carbonatite as well as urtite-

ijolite-melteigite magmatism.  

 

4.4.3 Silicocarbonatite 

Rocks, which represent the solidification of a carbonatite-silicate melt are located in the 

western part of the Fen Complex, close to the old church ruin at Holla (Brøgger, 1921; 

Ramberg, 1973). Silicocarbonatites show strong indications of an initial mingling process 

in the form of silicate and carbonate schlieren(Brøgger, 1921). Brøgger (1921) assumed 

the silicate magma to be of ijolitic chemistry due to the similarity in mineral composition. 

Silicocarbonatites show a gradual transition from a more carbonatite-rich rock with up 

to 57 % of calcite and 34 % of silicate, to a silicate-rich variety with 15 % of calcite and 

72 % of silicate (Brøgger, 1921). Rocks with more than 55 % of calcite are named 
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kåsenite, and the more silicate-rich variety is referred to as hollaite (Brøgger, 1921). The 

main minerals are calcite, pyroxene, muscovite and cancrinite (pseudomorph after 

nepheline), apatite and melanite with minor proportions of biotite, chlorite, sphene, 

magnetite, ilmenite and pyrite (Brøgger, 1921). For all silicocarbonatites varieties at Fen 

— formed of a carbonatite-ijolite-melteigite magma mixture — three minerals are 

distinctive: green pyroxene (aegirine-augite), calcite ± nepheline (mostly replaced by 

cancrinite). Occasionally the rocks exhibit a graphic intergrowth texture of silicates and 

carbonate minerals indicating a eutectic composition (Brøgger, 1921).   

 

4.4.4 Damtjernite   

Damtjernite belongs to the group of ultramafic lamprophyre (UML), which is defined by 

the following characteristics: M (percentage of mafic minerals) > 90, porphyritic, with 

olivine and phlogopite macrocrysts and/or phenocrysts and magmatic carbonate (Tappe 

et al., 2005). According to the extended classification of Le Maitre et al. (2002) by Tappe 

et al. (2005), the group of UML is further subdivided into damtjernite, alnöite and 

aillikite. Damtjernite contains nepheline and/or alkali feldspar and can be distinguished 

from alnöite by the absence of melilite. Damtjernite occurs in several separate bodies 

within and outside of the Fen Complex (Dahlgren, 1994). The Fen Complex damtjernite 

is a porphyritic ultramafic rock consisting of megacrysts of biotite, amphibole, pyroxene 

and olivine in a matrix of the same minerals plus nepheline, microcline, albite and calcite 

(ocelli, ankerite) (Ramberg, 1973).  

The composition is inhomogeneous due to the presence of xenoliths in various 

proportions — in some cases, xenoliths are the major component. Xenoliths range from 

fenites, gneisses, granites, lherzolite nodules to rounded barkevikite (Fe-hornblende) 
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(Griffin, 1973). Griffin (1973) showed that the lherzolite nodules in damtjernite 

equilibrated at pressures of 10-13 kb at 1200 – 1250 °C, which implies a mantle origin 

for the damtjernite. Locally, damtjernite shows signs of repeated fragmentation.  

A more homogeneous equivalent of the Fen Complex damtjernite occurs outside the 

complex with a sharp contact to the wall rock (Dahlgren, 1994). Andersen (1984) 

describes a silicate-rich carbonatite in the Gruveåsen road section with subhedral laths 

of chloritised biotite suggesting a genetic link to damtjernite. Based on the presence of 

carbonate ocelli, Griffin and Taylor (1975) postulated that rauhaugite might be an 

immiscible melt separated from a damtjernite melt. Rather than the formation of 

rauhaugite as a derivative of damtjernite, Sæther (1957) suggested damtjernite was 

subsequently metasomatised by a magnesium-rich carbonatite magma to rauhaugite 

and rødbergite. Note that Sæther (1957), Griffin and Taylor (1975) as well as Andersen 

(1984) suggest a genetic link between damtjernite and rauhaugite.  

 

4.4.5 Telemark Gneiss 

The country rock of the Fen Complex is the c. 1.1 Ga Ma old Telemark Gneiss. The rock 

is a heterogeneous medium-grained, migmatitic hornblende-biotite gneiss of the 

amphibolite facies with minor intercalations of amphibolite (Verschure and Maijer, 

2005). According to Verschure and Maijer (2005), the Telemark gneiss has 

approximately equal amounts of quartz, microcline and oligoclase with roughly 10 % of 

mafic minerals, e.g., biotite and green hornblende. Accessory minerals are opaques, 

apatite, metamict allanite, titanite and zircon. The gneissosity is indicated by a preferred 

orientation of biotite and hornblende. The protolith of the Telemark gneisses formed 

during the accretion of Telemarkia on Baltica around 1.7 Ga – 1.5 Ga, was 



 
72 

 

metamorphosed by the Sveconorwegian orogeny (1140 Ma – 900 Ma) and was later 

intruded by post-orogenic granites roughly at 0.9 Ga (Verschure and Maijer, 2005). 

Towards the contact zone to the Fen Complex, the gneiss exhibits a gradual replacement 

of the original biotite, hornblende and quartz by aggregates of Na-pyroxene and Na-

amphibole. Additionally, microcline is replaced by mesoperthite and chessboard albite, 

and oligoclase shows signs of saussuritisation and in severe cases replacement by albite. 

Accompanied by the increasing alteration is a gradual brecciation of the country rock 

(Verschure and Maijer, 2005).    

Brøgger named the metasomatism of the country rock due to the emplacement of the 

Fen Complex “fenitisation” and the product “fenite”.   

 

4.4.6 Fenite 

The intrusion of carbonatites and alkaline rocks typically causes a metasomatic 

alteration of the country rock. The alteration product is termed fenite, after the type 

locality of the Fen Complex (Brøgger, 1921). During the fractional crystallisation and 

cooling of a carbonatite or alkaline intrusive body, typically alkali- and volatile-rich fluids 

separate from the main magma and infiltrate into the surrounding host rock. The 

aureole can reach from centimetres (Marien, 2014) to several kilometres in scale (Elliott 

et al., 2018). The hot and very reactive fenitisation fluids typically produce K-feldspar, 

albite, alkali pyroxene and/or alkali amphibole. Depending on several parameters, e.g. 

fluid temperature, pressure and composition in combination with protolith mineralogy, 

permeability and structure, the mineral assemblage can vary significantly.  
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The variability and complexity of fenitisation are reflected in the numerous names and 

classifications for fenites throughout the literature (Verwoerd, 1966). Fenites are 

divided into two general groups:  

 

Na-rich fenites: albite, Na-amphibole (arfvedsonite, riebeckite, ferro-richterite, 

and soda tremolite), Na-pyroxene (aegirine-augite) -> aureole is deep, large and 

early  

K-rich fenites: K-feldspar, microcline, phlogopite -> aureole is shallow, smaller, 

late and intensely brecciated  

Other minerals: quartz, iron oxides, ilmenite, apatite, calcite 

 

Another reason for the variable nature of fenites is the different mobility of potassium 

and sodium. Sodium is considerably less mobile than potassium and therefore creates 

an earlier, deeper, hotter and wider Na-rich zone followed by a later, shallower, cooler 

and narrower K-rich zone. Potassium fenites are often brecciated, which underlines the 

idea of a shallower and cooler formation under more brittle conditions (Elliott et al., 

2018; Rubie and Gunter, 1983). The fenite fluid is a former constituent of the magma 

and is therefore important for reconstructing the chemical composition of the original 

magma reservoir (Le Bas, 2008). Additionally, the link between the chemical 

composition of the fenite fluid and the adjacent intrusive body can be potentially utilised 

as an exploration tool (Dowman et al., 2018; Elliott et al., 2018).       

The fenitisation at Fen happened in at least two stages first producing a fenite aureole 

of 700 m in size and the second aureole of > 1,500 m in width (Verschure and Maijer, 

2005) — this is far beyond the 200 m zone observed by former authors, e.g. Brøgger 
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(1921), Sæther (1957). The method which was used by Verschure and Maijer (2005) to 

map the extent of the aureole is based on the petrographical modification of the rock 

due to fenitisation which is correlated with chemical composition and Rb-Sr isotopes. 

The Rb-Sr isotopes systematic, relative to a completely unfenitised Telemark gneiss 

sample, was used to map the chemical alteration — this detection limit cannot be 

accomplished with classical fieldwork and thin section microscopy as done by earlier 

researchers, who used the alteration of annite to map the extent of the fenite aureole 

(Brøgger, 1921). The two metasomatic events were caused by the intrusion of both the 

carbonatite and alkaline rocks (Kresten and Morogan, 1986). According to Brøgger 

(1921), the fenitisation of the Precambrian granite adjacent to the melteigite-ijolite-

urtite sequence caused: quartz replacement by albite, biotite replacement by aegirine, 

orthoclase transformation into microperthite and albite and oligoclase transformation 

into albite. The final product is an alkali feldspar-aegirine rock. The chemical 

composition of the fenite strongly varies, and none of the elements can be used as a 

simple tool to determine the grade of fenitisation. Nevertheless, general trends for the 

major elements are a decline for SiO2 and an increase in Na2O, K2O, Fe2O3, MnO, MgO, 

CaO and possibly P2O5 with fenitisation. Carbonatites have a lower concentration of K2O 

and Na2O than unfenitised Telemark gneiss, and ijolitic rocks have lower concentrations 

of K2O than unfenitised Telemark gneiss (Kresten and Morogan, 1986). An alkali 

metasomatism caused by a source with fewer alkalis than the protolith seems to be a 

paradox. The reason for this might be that the alkalis were completely expelled during 

the solidification of carbonatite (to a lesser degree in case of the ijolitic rocks). The alkali 

contents of the Oldoinyo Lengai — the only active carbonatite volcano — are so high 

that the Oldoinyo Lengai has its own category in carbonatite classification, which 
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matches with none of the other 526 carbonatites worldwide (Dawson et al., 1987; 

Woolley and Kjarsgaard, 2008b). It is likely that the carbonatites at Fen and the rest of 

the world are not representing their original magmatic chemical composition anymore 

and mostly lost their alkali content due to processes like fenitisation, alteration or 

weathering. Brøgger (1921) mentions the occurrence of independent fenite dykes in the 

melteigite group. The rheomorphic behaviour of the fenite might be a result of partial 

melting of the protolith due to fluxing of volatiles. The potential mobilisation of fenite 

remains a controversial topic. The occurrence of fenite is mainly restricted to the 

western part of the Fen complex. The fenite and Telemark gneisses are pierced by bodies 

of autoclastic breccias, tinguaite and damtjernite.  

 

4.5 The Architecture of the Fen Complex 

The gravity model and interpretation are based on Ramberg (1973). The concentric 

shape of the gravity lines suggests a pipe-like downward extension of the complex to at 

least 15 km. The pipe widens at depth or exhibits a significant increase in density. The 

explosive character of carbonatite emplacement suggests an excess of volatiles, which 

is likely to be achieved in large vertical magma chambers in tectonically stable shield 

areas (Sæther, 1957). The surface area of the Fen Complex, which is largely dominated 

by carbonatites, has an average density of 2.9 g/cm3 and stands out against the 

surrounding gneiss with 2.67 g/cm3. The overall density of the whole pipe is with 

3.1 g/cm3 significantly higher. This indicates that carbonatites represent only the volatile 

end fraction accumulated in the upper part of a long vertical magma chamber and do 

not extend to more than 0.5 – 1 km below the present erosional level. The root is 

probably an alkaline ultramafic ring complex comprised of denser rock, e.g. vipetoite or 
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damtjernite. The eroded top of the Fen Complex might have originally been nephelinite 

(Mitchell and Brunfelt, 1975) and carbonatite volcanoes.  

 

4.6 Genetic relations  

After Sæther (1957) the intrusion of the main complex happed in two distinct sequences. 

The initial one comprised rocks of the ijolite-urtite-series, silicocarbonatites and 

carbonatites (dominantly søvite, minor rauhaugite dykes type I). The intrusion of the 

first series caused an intense fenitisation of the granitic Telemark gneisses at the 

western margin. The rocks of the ijolitic series have higher 87Sr/88Sr ratios than søvite. 

Therefore the carbonatite melt cannot be a residual differentiation product of a 

carbonated ijolitic magma as it would have inherited the high 87Sr/88Sr ratios of the 

parental silicate magma (Mitchell and Crocket, 1972). Mitchell and Crocket (1972) 

considered the formation of the ijolitic sequence by the mixing of carbonatite magma 

with rheomorphic fenite. The second sequence is comprised of damtjernite, rauhaugite 

II and rødbergite. Sæther (1957) indicated that damtjernite was subsequently altered by 

a carbonate-rich solution to rauhaugite II and finally to rødbergite. The Sr isotopic 

signature of damtjernite negates a simple relation to søvite. The isotopic signature of 

rauhaugite II and rødbergite could be the result of a damtjernite alteration with a 

carbonate solution with a high 87Sr/86Sr ratio and the removal of Rb by this solution 

(Mitchell and Crocket, 1972).  
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4.7 Exploitation and Exploration at the Fen Complex  

Fe/(F): The hematite deposits in the eastern part of the complex were exploited for 

almost 300 years — between 1656 and 1925 — mining roughly 1 Mt of Fe-ore (Vogt, 

1918). By far the most ore was mined on Gruveåsen, and only a small quantity was 

gained from numerous small pits at Fen Farm, Rauhaug, Vipeto, the stream valley east 

of Søve and Torsnes. Most ore bodies consist of hematite, but subordinate magnetite 

bodies were mined for instance at Rauhaug. The largest unmined area of magnetite 

mineralisation is located between Oygard and Skippervoll and is described as a 

magnetite impregnation with up to 0.1 Mt of ore (Sæther, 1957). Fluorite was 

occasionally mined in smaller quantities in the Fen iron mines (Vogt, 1918).   

Ca: The first signs of limestone (carbonatite) mining date back to the 11th century 

(Aksnes and Årtveit, 2014). Carbonatite was mainly used for decoration of churches and 

as an additive in iron production. The Søve dyke close to Lake Norsjø was exploited 

between 1910 and 1920 to produce lime nitrate fertiliser. Eventually, the production 

stopped due to relatively high Fe-concentration in the søvite.  

P: In the early 1940s, the Norwegian government wanted to secure the production of 

apatite-based fertiliser and started to explore the “Hydro” carbonatite dyke at the 

embankment of lake Norsjø (Aksnes and Årtveit, 2014). Later on, the German 

occupation force shifted the focus to Nb, which was crucial for their “Wunderwaffen” 

programme.    

Nb: The Germans never managed to start the production of Nb (Aksnes and Årtveit, 

2014). However, exploration just stopped briefly because the government of the USA 

pressured the Norwegian government to start producing Nb for the American nuclear 

and military industry. In 1953, mining operations started at the Cappelen quarry. Later 
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on, it was discovered that the Cappelen carbonatite vein was cut off by a fault and 

operation had to go underground to follow the vein (Aksnes and Årtveit, 2014). Further 

on the construction of a 900 m long tunnel was initiated (Tuftestollen) from lake Norsjø 

to the central part of the søvite area. From 1953 to 1965, 3000 t of Niobium and 350 t 

of Ferro-Niobium were produced from the pyrochlore-bearing søvite body (Hydro) 

(Aksnes and Årtveit, 2014).   

REE: Norsk Bergverk A/S continued prospecting for Nb and discovered an area high in 

radioactivity due to a high concentration of Th, and U to a lesser extent. At the same 

time, Norsk Bergverk A/S demonstrated that the Th-mineralisation correlates with a 

high concentration of REE. Exploration work conducted by the Norwegian Geological 

Survey (NGU) in the 60s and 70s gathered information on the REE mineralisation and 

concluded that a major REE deposit was located close to the historic Fen mining area 

(21st NORTH, 2014b). The area coincides mainly with rødbergite (Schilling, 2013). A 

radiometric survey was carried out by the NGU in order to map areas of high radiation 

(Heincke et al., 2008). The eastern part of the Fen complex is enriched in Th and to a 

lesser extent in U (Schilling, 2013). There seems to be a general correlation between 

areas of higher radiation and REE mineralisation. Several Norwegian junior companies 

started to claim parts of the Fen Complex in the last two decades. Since the REE price 

raced up in the early 2010s, the exploration work intensified with Fen Mineral AS 

claiming the largest part of the central and western part of Fen and REE Mineral AS 

obtaining the exploration rights to the eastern part of the complex.  
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4.8 The Potential REE-Ore Rødbergite 

The general increasing trend in REE concentration for the rock types at the Fen Complex 

is ijolite-damtjernite < søvite-rauhaugite < rødbergite. Carbonatites + carbonate-rich 

rocks show the highest REE concentrations. Within the group of carbonatites, the 

commonly observed trend for REE increase is from Ca < Mg < Fe (Woolley and Kempe, 

1989). The exploration campaign conducted by the NGU in the 60s and 70s 

demonstrated an increase of REE concentration towards the east of the Fen Complex 

with a maximum in the Gruveåsen area. During this campaign, three drill holes in the 

Gruveåsen area with a total length of 510.35 m exhibit an average grade of Rare Earth 

Oxides (REO) of 1.03 wt%, 1.06 wt% and 1.32 wt% respectively. The drill cores mainly 

comprised rauhaugite and rødbergite ± damtjernite. Recent analytical work confirms 

rødbergite as the rock type with the highest average concentration of REE within the 

Fen Complex (21st North, 2014a; Marien et al., 2016b). Additionally, rauhaugite 

demonstrated a high average concentration of REE as well. 

The NGU conducted beneficiation tests, which showed low recovery rates of REE due to 

the fine grain size of the REE-minerals. Another obstacle in the economic exploitation of 

the REE mineralisation is Th, which is a major hindrance in REE exploitation all over the 

world. A close association of REE with Th would preclude any REE exploitation at the Fen 

Complex. According to the chemical data from the NGU, both rødbergite and rauhaugite 

do show a significant variation in REE contents within a few meters (21st North, 2011; 

Svinndal, 1967; Svinndal, 1968; Svinndal, 1973) and although Th is generally enriched in 

rødbergite and rauhaugite, it is not necessarily enriched in REE. Additionally, the 

mineralisation history of REE-minerals within carbonatite, the presence of REE-mineral 
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bearing veins and the preferential enrichment of LREE, MREE and HREE during 

rødbergitisation is controversial and poorly constrained.    

To understand the REE-mineralisation process in detail, this thesis takes a close look at 

the mineralogical and chemical changes occurring during the formation of rødbergite, 

which enhances the REE concentration due to passive enrichment during dissolution 

processes. A detailed observation will help to build a new REE-model based on the 

Andersen-model (Andersen, 1983; Andersen, 1984; Andersen, 1986; Andersen, 1987b; 

Andersen, 1989b). Although rødbergite was thought to be unique to the Fen Complex 

(Barth and Ramberg, 1966; Sæther, 1957) there is evidence for a common late-stage Fe-

rich fluid alteration associated with carbonatite complexes all over the world (e.g., Drew 

et al. (1990); Maravic and Morteani (1980); Onuonga et al. (1997); Secher and Larsen 

(1980)). A more accurate and detailed model has the potential to improve REE-

exploration campaigns at the Fen Complex as well as in similar carbonatite complexes 

worldwide.  
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5 Methods 

 

The following chapter summarises the practices, techniques and instruments, which 

were used to characterise the mineralogy and geochemistry of rock specimens from the 

Fen Complex in order to understand the underlying REE-mineralisation processes.  

 

5.1 Fieldwork 

At the beginning of April 2015, a 10-day reconnaissance field trip to the Fen Complex 

was carried out. During this field trip, 94 samples from 44 localities were collected from 

all the major rock types previously mapped in the area (Appendix I; Fig. 5-1). Rødbergite 

became a major target for the sampling campaign since reports about the Fen Complex 

highlighted the high concentration of REE in this rock type (21st North, 2011; Mitchell 

and Brunfelt, 1975; Schilling, 2013).  

Twenty-eight samples of rødbergite and rødbergite-related rocks were collected. Most 

of the samples came from two different localities: Gruveåsen and Bjørndalen (Fig. 5-1). 

Gruveåsen is an old iron-mining district in the northeastern part of the Fen Complex and 

the primary exposure of rødbergite within the Fen complex. The area is mainly covered 

with forest, but remnants of former mining activity in the form of deep narrow 

excavations and adits where iron ore was removed are conspicuous. Samples were 

mainly collected from the remaining unexploited wall rock, supplemented by loose 

specimens from the vicinity of old mines.  

The Bjørndalen study area is located in the eastern part of the Fen Complex, and this 

area has played a key role in our project in understanding the transformation from 

carbonatite to rødbergite (Fig. 5-1; UTM 32V 517541 6569595). The site displays the 
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gradual alteration from an unaltered carbonatite to a rødbergite on a relatively short 

distance of 30 m along a dirt road to a water tank.  

A number of 16 representative samples were taken along the so-called Bjørndalen 

transect in order to study the progressive change from an unaltered carbonatite to a 

highly altered rødbergite in detail. The samples were chosen in such a way that the main 

varieties of rock types (e.g. colour, colour patterns/distribution, type of minerals, crystal 

size, veins, fractures), were represented and the distance between sampling points was 

less than 7 m.  

 Several other rødbergite samples were collected from smaller outcrops (< 1m) within 

the eastern part of the Fen Complex. Another focus of the sampling strategy was 

damtjernite – an ultramafic lamprophyre – that was described to contain mantle 

xenoliths (Griffin, 1973; Griffin and Taylor, 1975). In order to learn more about the 

mantle as the initial REE source for the Fen Complex, damtjernite samples were 

collected from different locations. Throughout the project, the focus entirely shifted to 

understanding the complex REE mineralisation, and thus the work on damtjernite was 

put on hold.    

The second and final field trip was undertaken in July 2016. During this 10-day field trip, 

152 samples from 34 localities were collected (Appendix I; Fig. 5-1). REE concentrations 

of rock samples collected during the first field trip confirmed rødbergite to be one of the 

most promising rock types regarding high REE concentrations (Marien et al., 2016a). The 

objective of the second field trip was, therefore, to sample transects of rødbergite in a 

variety of localities to obtain a general understanding of the whole range of 

REE-mineralisation within rødbergite. Additional 13 samples were taken from 

Bjørndalen transect, which decreased the maximum distance between two sampling 
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points of less than 2.5 m and helped to fathom the extent of alteration zones in greater 

detail. A similar site to the Bjørndalen transect is located along the Rv36 road leading 

from Porsgrunn to Ulefoss just before entering the Fen municipality (UTM 32V 517477 

6570053). This locality is referred to as Fen Road transect (Fig. 5-1). Nineteen samples 

were collected across the Fen transect, including samples of chloritised granite-gneiss, 

carbonatite, rødbergite, fluorite mineralised rocks and rødbergite veins. Similar to the 

Bjørndalen transect, the Fen Road samples were chosen in such a way that the main 

varieties of rock types (e.g. colour, colour patterns/distribution, type of minerals, crystal 

size, veins, fractures), were covered and the distance between sampling points was less 

than 7 m within the zone of alteration and less than 15 m in more homogenous 

lithofacies distal to the alteration. 

The Grønvoldvegen road runs along the northern boundary of the Gruveåsen mining 

district along Lake Norsjø and gives insight into the chemical and mineralogical changes 

occurring due to the formation of rødbergite on a larger scale (Fig. 5-1). On a length of 

ca. 850 m, 37 samples were collected from a variety of rocks, e.g., carbonatites, 

rødbergite, hematite-rich rock, damtjernite, dolerite, fenite and gneiss. Additionally, 

hematite-ore samples were taken within the centre of the Gruveåsen mining area. In 

intervals with continuous outcrop, one sample was taken roughly every 10 m. In case 

the section could not be properly represented due to lithofacies changes, the distance 

between two sample points was adjusted accordingly. The longest section without a 

possibility to sample was ca. 100 m in length. Additional hematite-ore samples were 

taken within the centre of the Gruveåsen mining area.  

A sampling campaign in the Tufte tunnel was commissioned by Fen Minerals AS during 

the second field trip. Representative samples were taken approximately every 50 m 
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inside the Tufte tunnel. The geochemical and mineralogical characterisation of these 

samples was done separately and has not become part of this thesis, except one sample 

for the geochronology. 
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Figure 5-1: Simplified geological map 

modified after Bergstøl and Svinndal 

(1960) with the incorporation of minor 

features from Ihlen et al. (2014) 

modified after Dahlgren (2004). 

Sample points with location number 

are marked. Samples taken along a 

transect on the same day have the 

same location number, e.g. western 

Gruveåsen transect. Samples taken at 

the same site but not on the same day 

have different location numbers.   
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5.2 Sampling and Sample Preparation 

Samples (n = 247) were collected in the field and named according to the following 

system: XX-YY-ZZ. The name of each sample is composed of the two last digits of the 

sampling year (XX-), an on-going sequence of sample numbers for that respective year 

(YY-) and a project abbreviation FE (Fen Complex, ZZ). Following this logic, the first 

sample from 2015 has the name 15-01-FE, and the first sample from 2016 has the name 

16-01-FE. The sample code for the samples taken in the commission of Fen Minerals AS 

is “TS” for Tufte tunnel followed by the metre mark indicating where along the Tufte 

tunnel the sample was taken, e.g. TS100. A list of all samples is located in the Appendix 

I. Sample reduction is illustrated in Appendix II.  

 

5.2.1 Local rules for working with radioactive material  

An Airborne gamma-ray spectrometer survey, was conducted by the NGU in 2006, and 

high concentration for thorium and significant concentrations of uranium were 

measured within the Fen Complex  (Heincke et al., 2008). Therefore, generic local rules 

for working with geological samples containing naturally occurring radioactive material 

were written, which, after minor editing by Dr Alex Taylor and Prof. William Blake, were 

adopted by the School of Geography, Earth and Environmental Sciences. These rules 

helped to ensure safe working procedures with sample material from the Fen Complex 

and provided a way to quantify and limit exposure to radioactive material.  
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5.2.2 Sample preparation 

For a more detailed description of the sample preparation process, please refer to 

Appendix III. In the laboratory, the samples were cut perpendicular to the texture of 

interest. A batch of 26 samples from the first field trip was used to produce thin sections 

of the major lithotypes with a standard thickness of 30 µm. Optical microscopy was of 

limited use for this project due to the small grain size and unfamiliar microscopic 

properties of the prevalent REE-minerals. Therefore, the Scanning Electron Microscope 

became essential for the mineralogical and textural characterisation of the samples. 

After the initial use of thin sections, the majority of the samples were prepared as 

polished blocks, which is less time consuming and more cost effective.  

The first step of producing a polished block was to put a sample chip in a mould, covered 

in a mix of liquid resin (EPO Flo resin) and a liquid hardener (EPO Flo hardener). The 

curing process stopped after two days, and the block was stepwise polished to a final 

grain size of 1 µm. 

Rock powder for geochemical analysis with XRF or ICPMS was produced from ca. 100 g 

of representative rock material. First, the sample was crushed using a bench-top 

jaw-crusher with adjustable aluminium-oxide ceramic plates. The crushed sample was 

milled to a fine powder using the Retsch RS 100 vibratory disc mill, with an agate ring-

and-puck mill (for the last stage of the project a tungsten-carbide (WC) ring-and-puck 

mill was used) to obtain a fine powder of less than 30 µm particle size.  

Before working on a polished block or thin section using the SEM, the polished sample 

surface was coated with a thin film (ca. 15 nm) of carbon in order to create a conducting 

surface.  
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5.3 Scanning Electron Microscope (SEM) 

5.3.1 SEM principles 

A SEM is a type of electron microscope where a sample surface is scanned with a focused 

electron beam to create an image of the sample (Fig. 5-2). While the electron beam 

scans in a raster scan over a specific area (frame) of the sample surface, the interaction 

of the electron beam with the sample surface produces a range of signals. These signals 

are combined with the position of the electron beam to produce an image. In this study, 

only the secondary electron (SE) signal, the backscattered electron (BSE) signal and the 

characteristic X-rays were used. The part of the sample from which these signals are 

generated from is the so-called interaction volume. 

 

 

Figure 5-2: Schematic diagram of a Scanning Electron Microscope (SEM) with an Backscatter 

Electron Detector (BSE) and an Secondary Electron Detector (SE) (Steff and ARTE, 2015) 

 

The interaction volume can be described with the electron range, which is the radius of 

the hemisphere constructed from the entry point of the electron beam to a certain 



 
89 

 

range incorporating a specific fraction of the electron trajectories, for example 90 % 

(Goldstein et al., 2003). The electron range for 90 % of the electron trajectories — given 

an accelerating voltage of 20 kV and a spot size of 10 nm — is for typical selection of 

carbonatite forming minerals less than 2700 nm (Fig. 5-3; Fig. 5-4). 

 

 

Figure 5-3: Monte Carlo simulation of electron paths for 20 kV electrons in calcite using a spot size of 10nm. Paths 
of BSE are in red; those of absorbed electrons are in blue. This model was run using the software Casino 2.5.1.0 
(Couture, 2000). 

 

SE, BSE and characteristic X-rays are generated from different parts of the interaction 

volume. Generally, the depth of SE is with 5 – 50 nm much shallower compared to the 

depth of BSE and characteristic X-rays (Liao, 2018 ). The Monte Carlo electron trajectory 

simulations visualised individual electrons, which penetrated the calcite sample up to 

1300 nm before the electron reversed its course and returned to the sample surface to 

escape as a backscattered electron (Fig. 5-3). The sampling depth of BSE is a significant 

fraction of the electron range — in case of carbon (low atomic number) 95% of all BSE 

have a sampling depth of less than 63 % of the total penetration depth in contrast to 
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gold (high atomic number) where 95% of all BSE have a sampling depth of less than 29.5 

% of the total penetration depth (Goldstein et al., 2003). The BSE signal is therefore not 

just representing the surface information like the SE signal but is also influenced by 

hidden features such as the inclusion of for example high-density minerals, e.g. thorite 

inclusion below the surface of low-density matrix of calcite. The volume from which 

characteristic x-rays emanating is always slightly smaller than the actual interaction 

volume and depends on the critical excitation energy of the sample material (Friel and 

Lyman, 2006; Goldstein et al., 2003). The different depth and volumes of SE, BSE and 

characteristic x-rays are important for the resolution of these signal. The spatial 

resolution of a signal is an expression of the maximal depth of their production. SE have 

therefore, the highest spatial resolution and are used to image the fine surface structure 

of samples. The spatial resolution, which depends on the geometry and range of their 

interaction volume, for BSE is at least two magnitudes less than for SE (50 nm x 50 nm) 

and slightly better than the resolution of characteristic x-rays. Especially high beam 

energy in combination with low-density material increases the interaction volume and 

decreases the spatial resolution for BSE and characteristic x-ray signals. This is especially 

important for heterogeneous materials. Therefore, for accurate analysis, the specimen 

must be homogeneous over the electron range (Goldstein et al., 2003).  

The electron source for the electron beam is traditionally an electron gun with a W-

filament cathode. Alternatively, a field emission gun (FEG) can be used as a cold-cathode 

or a Schottky type. 
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Figure 5-4: Cumulative probability plot for the maximum penetration depth Z max for monazite-(Ce), fluorapatite, 

dolomite and calcite. The results are based on the Monte Carlo method using the program CASINO V. 2.5.1.0 

(Couture, 2000). For the simulation the following parameters were used: acceleration voltage of 20 keV, the spot 

size of 10 nm and density for monazite-(Ce) 5.34 g/cm3, fluorapatite 3.2 g/cm3, dolomite 2.876 g/cm3 and calcite 

2.715 g/cm3. The most important parameters for the simulation are acceleration voltage and density of the 

material. The spot size of the electron beam has only a minor influence, and a variation between 10 and 100 nm 

does not have a significant effect on the interaction volume.  

 

A Schottky field emission gun can produce a more stable electron beam than a W-

filament electronic gun, which is advantageous for longer acquisition runs (Claverie and 

Mouis, 2012).  Additionally, the resolution of the FEGSEM is much better due to having 

a smaller source size with a higher electron density (Joy, 1991).  

The accelerating voltage between the electron source (cathode) and the anode is 

typically between 500 V – 30 kV creating an oriented electronic beam. The higher the 

acceleration voltage, the higher is the energy of the electron beam. It is generally a 

trade-off between high-count rate and shorter acquisition time with a higher 

acceleration voltage, and a better resolution and preservation of the sample with a 

lower acceleration voltage. Additionally, in order to produce characteristic x-rays, the 

ionisation energy of the inner electron, which is called critical excitation energy, has to 

be overcome by the energy of the beam electrons (Goldstein et al., 2003). This aspect 

will be explained in more detail in chapter 5.3.4. The beam current is controlled by the 
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condenser lenses and has to be balanced between high beam current for enhanced 

contrast and faster analysis and low beam current for high resolution and preservation 

of the sample.  

On the way through the column, a range of condenser, lenses and deflection coils or 

plates are focussing the electronic beam and adjusting the diameter of the beam. The 

last set of lenses can change the position of the electron beam in a specific x and y-

direction, creating the typical rectangular raster of the scan. The sample itself can be 

moved in x, y and z-direction. The z-axis is the distance between the final lens and the 

sample surface. The distance between the final lens and the focus point is referred to as 

working distance. The sample is in focus if z equals the working distance. The current 

that finally impinges on the sample is called the probe current, which is responsible for 

the generated signal.  

The resolution depends on the size of the electron spot and the size of the interaction 

volume, which both depending on various parameters (e.g. sample material and energy 

of the electron beam). The highest spatial resolution of commercial SEM is less than 

1 nm for SE signals. 

The scan itself consists of a series of discrete locations to which the beam is addressed 

(Goldstein et al., 2003). The pixel represents the area to which one beam signal is 

transferred to on the monitor. The magnification is given by the length of the scan in 

relation to the length of the scan on the computer screen. Because the size of a pixel 

(represented on the specimen surface) also depends on the magnification, the 

resolution is also influenced by the magnification. For a specific magnification, images 

are considered to be in sharpest focus, if the signal produced by the beam at one 

location only corresponds to a single pixel (Goldstein et al., 2003). The duration that the 
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electron beam remains in the centre of each ‘spot’ is called dwell time. An image 

resolution of 1024 x 768 multiplied with a dwell time of 70 µs for each pixel results in an 

acquisition time of 55 s for one frame. The quality of the image can be improved by 

running multiple scans of the same frame.  

 

5.3.2 Backscattered electrons (BSE) 

The standard operating mode with the SEM was backscattered electron (BSE) imaging 

in a magnification range of 25 to 10000 times. The BSE signal is the result of an elastic 

event in which an electron from the electron beam interacts with the electric field of an 

atom within the interaction volume of the sample (Goldstein et al., 2003). During this 

elastic event, the electron is redirected without a significant transfer of energy. If the 

scattered electron deflects out of the sample back into the vacuum chamber, the 

electron is classified as a backscattered electron (BSE) and can be detected by the BSE-

detector. The energy distribution of BSE has a maximum close to the initial energy 

before the electron-specimen interaction happened and tails of exponentially to lower 

energies. Detected electrons with an energy below 50 eV are not considered to be BSE 

anymore but SE instead (Goldstein et al., 2003). The energy of SE is very low compared 

to BSE, with a maximum of around 10 eV. Therefore the energy of SE and BSE show 

almost separate distribution. The intensity of the BSE signal from an analysed spot is 

transferred into a greyscale coloured pixel. Elements with a high atomic mass are more 

likely to elastically reflect an incoming electron, hence compounds (minerals) with a high 

mean atomic number (z) generating a stronger BSE signal transferred into a whiter a  

colour compared to darker compounds (minerals) with a low mean atomic number. BSE 

imaging can be very helpful to find small minerals with a high mean z compared to the 
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surrounding groundmass. For instance, REE-fluorocarbonates, which are typical REE 

minerals in carbonatites, often have small crystal sizes and share similar optical 

characteristics with calcite and dolomite. It is therefore hard to distinguish REE-

fluorocarbonates from the surrounding carbonate groundmass using a petrographic 

microscope. Since REE are heavier elements than Ca, C or O, minerals like 

REE-fluorocarbonates have a relatively high mean z; hence appear much brighter in BSE 

images, than the surrounding carbonates, making it easier to spot them. Areas of 

interest were captured with a high-resolution BSE image (2048x1536) and dwell time of 

35 µs. BSE imaging followed by X-ray spectroscopy point analysis is a powerful tool to 

find and classify minerals.  

Additionally, the BSE image, in combination with Corel PHOTO-PAINT X7, was used to 

estimate the porosity of a sample (Fig.5-5). The contrast of a BSE image was changed to 

obtain a b/w image with pores being black and the rest of the image in white. 

Subsequently, the histogram of Corel PHOTO-PAINT X7 was used to identify the 

percentage of black in the image, which corresponds the percentage of porosity in the 

BSE image. This procedure was carried out for six representative samples from the 

Bjørndalen transect.  

 



 
95 

 

 

Figure 5-5: The contrast of the BSE image on the left was changed to create the right b/w image. Pores are coloured 

in black while sample material appears in white. The percentage of black in the image equals the amount of 

porosity of the sample.  

 

5.3.3 Energy dispersive X-ray spectroscopy (EDS) 

Characteristic X-rays are produced by electron beam expulsion of an electron from the 

specimen. If the vacancy in an atomic orbital is filled with an electron from a higher 

orbital, the difference in energy between these two orbitals can be emitted in the form 

of X-rays. The energy level of orbitals is element specific, so the energy difference causes 

X-rays with a specific energy (keV), hence the name characteristic X-rays. The ionisation 

energy of the inner electron, which is called critical excitation energy, has to be 

overcome by the energy of the beam electrons (Goldstein et al., 2003) in order to 

expulse the electron. However, the efficient generation of X-rays requires the energy of 

the electron beam to be at least 1.5 (optimum value is ca. 2.7) as much as the critical 

excitation energy (ammrf, 2014). The energy of the prominent characteristic x-rays (L-

line) for Nd, Sm, Tb and Ho lies between 4.5 keV and 9 keV (Fowler et al., 2017). 

According to Bearden (1967), the critical ionisation energy of Lu is with 9.249 keV (LIII-

line) the highest among the REE. Therefore, a reliable analysis of lanthanides requires a 
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minimum of 15 kV. These characteristic X-rays can be detected by either energy 

dispersive (ED) or wavelength dispersive (WD) detectors. For this project, an ED-

detector was used to analyse the number and energy of the emitted X-rays. Detected X-

ray energy is converted into a voltage signal, which is further processed and then 

displayed in the form of intensity peaks. The EDS can be used to identify elements 

present in the interaction volume and to estimate their relative concentration. Every 

element from boron to uranium can be detected simultaneously.   

The EDS was used in combination with a BSE image. BSE images show different mineral 

phases in various greyscales. To analyse a mineral phase, a point target was set on live 

BSE image of the minerals using the software Aztec from Oxford Instruments. The result 

shows a spectrum of the analysed point and the chemical composition of this point. 

Figure 5-6 illustrates the spectrum of barite, which is a common mineral among the 

analysed carbonatite samples. The software AZtec does the peak identification and 

chemical composition of the point analysis automatically. The EDS analysis was 

calibrated with internal standards and gave a semi-quantitative chemical analysis of the 

relative concentration of major elements. The spectrum was checked for peak overlaps, 

which might disguise small quantities of unidentified elements, and missing elements 

were added accordingly. The chemical composition of the point analysis was given as 

at% and wt% normalised to 100. The chemical composition in at% was used for the 

stoichiometric calculation to identify the analysed mineral (Tab. 5-1). The Key EDS-SEM 

analyses are summarised in the appendix V EDS-SEM Analysis. The precision of the EDS 

analysis depends on the element and matrices but generally lies between 0.1 and 0.5 

wt%. The accuracy is not possible to determine exactly because geological standards 

have not been used. Nevertheless, according to the formula of barite (BaSO4), it is 
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possible to calculate the expected values for the elements. The deviation from the true 

value is less than 20 %, and elements with high z are generally overrepresented (Tab. 5-

1). The final mineral identification was made using the at% of the spectrum in 

combination with other important information like geological setting, rock type, 

macroscopic and microscopic observation, paragenesis, texture and mineral habitus.  

 

 

Figure 5-6: Spectrum from an EDS-SEM point analysis with the energy of x-ray photons on the x-axes and counts 

per second divided by the energy of the photon on the y-axes. Based on the chemical composition of the analysis, 

which is given in at% and wt%, the mineral is identified as barite.  

 

Table 5-1: Element concentration of ideal barite compared to the element 

concentration analysed by an EDS point analysis of real barite (Fig. 5-6).  

 

 

The elements H, Li and Be cannot be detected, which has been to taken into account for 

mineral identification. Additionally, because all the samples were carbon coated, C was 

excluded from the list of detectable elements, which has to be considered for C bearing 
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minerals, e.g. carbonates. Nevertheless, this will not affect the relative ratio of other 

elements, which allows differentiating between different carbonate minerals.   

Although this technique helps to identify minerals and especially small quantities of tiny 

minerals, it can lead to focus too much on an unrepresentative area of the sample and 

rely solely on the ability to distinguish phases using  EDS. In order to gain a better 

overview, it is possible to use the EDS for the entire image using multiple point analysis, 

giving each element a colour and combining these points to generate a 2D map – one 

map for each element, or a combined map based on several elements. Multiple EDS 

maps can be stitched together to create a larger map. This technique is called Large Area 

Mapping (LAM) and can produce a coloured EDS-map of the entire sample. 

 

5.3.4 Large Area Mapping (LAM) 

Large Area Mapping (LAM) is a very powerful tool to detect less abundant mineral 

phases in the sample and show texture and element/mineral variations on a larger scale. 

The electron beam scans a defined area and obtains EDS spectra by mapping point after 

point creating an EDS map. Different elements are displayed in different colours creating 

a coloured 2D map of each element and a combined map of every selected element. 

Multiple fields of view were measured in sequence – frame after frame – and were then 

stitched together to create a larger map. Doing a LAM is always a trade-off between 

time and data size vs. spatial and spectral resolution. To improve accuracy the 

magnification of every frame, the dwell time, image resolution and several scans across 

the same frame can be increased, resulting in increased measurement time and file size. 

Because LAM is a time-consuming process and does not need any supervision, it was 

generally done overnight. The EDS run was set up for to a magnification of 100x, 400 
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frames, three repeating scans, image resolution of 1024 x 1024 pixels and 70 µs dwell.  

The setting for the BSE image run were 100x, 400 frames, one scan, image resolution of 

512 x 512 pixels and 35 µs dwell. After the acquisition, the single frames were stitched 

together and montaged. The montaging equalises the colouration of the individual EDS 

maps and creates a large EDS map. The size of these files is considerably large (ca. 10 Gb) 

and can make further data processing time-consuming. Although increasing the number 

of scans or dwell time results in increased acquisition time, it does not affect the file size 

and can be used to produce a higher quality map. Occasionally weekend runs were used 

to measure multiple (up to 5) samples one after another.     

 

5.3.5  JEOL FE-SEM 7001 

Mineral identification and textural analysis of thin sections and polished blocks were 

carried out using the JEOL FE-SEM 7001 at the Plymouth Electron Microscopy Centre. 

The JEOL FE-SEM 7001 is an ultra-high resolution instrument equipped with a Schottky 

field emission gun. The instrument is equipped with an Oxford Instruments EDS detector 

and software, designed for point analysis and acquisition of large-area mosaics of 

elemental maps. EDS data was acquired using an acceleration voltage of 15 or 20 kV, a 

beam current of 11 nA and a working distance of 10 mm. Acquisition and data 

processing was carried out using Oxford Instruments’ Aztec software. A combination of 

back-scattered electron imaging, EDS X-ray point analysis, and EDS X-ray mapping was 

used to identify the chemical composition, size, shape and texture of the mineral phases.  

The single sided copper tape was used on four different points to provide a conducting 

contact between the sample surface and the sample holder. The sample holder for 

polished blocks can fit five blocks at the same time, which makes the sample loading 
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very effective. On the downside, it takes more time to reach the vacuum conditions 

when more samples are in the vacuum chamber. Especially for automated large area 

mapping, this was taken into consideration. At least 2 h before starting the automated 

run the samples had to be loaded into the vacuum chamber to ensure enough time for 

the vacuum to build up. The method of using liquid nitrogen to cool the vacuum 

chamber and force the vacuum to build faster turned out not to be sustainable because 

the vacuum chamber would eventually warm up again, which in return could cause the 

vacuum to collapse, producing large-area EDS mosaics with gaps and artefacts. A high-

resolution scan of every sample was done in advance and used as a map to navigate on 

the sample during measurements.  

 

5.4 Geochemical analysis  

The geochemical analysis of the Fen Complex samples is one of the pillars of this thesis. 

Gaining a reliable element concentration, especially for REE, was a fundamental 

requirement to understand the REE mineralisation processes and to preselect key 

samples for the SEM. Although EDS-SEM delivers quantitative analysis for most 

elements of the periodic table, the geochemical data acquisition was carried out using 

inductively coupled plasma mass spectrometry (ICPMS) — an initial attempt using X-ray 

Fluorescence did not work out. The detection limit of EDS-SEM depends on various 

variables and lies roughly between 0.1 wt% and 1 wt%. The detection limit for ICPMS is 

orders of magnitudes lower and commonly enables to detect trace element 

concentration of less than 1 ppb. To account for all REE and other important trace 

elements fully, EDS-SEM analysis was not precise enough. Another advantage is that 

geochemical analysis with ICPMS produces a representative element concentration of 
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the whole sample, which can be used for whole rock geochemistry contrary to mineral 

composition acquired by EDS-SEM point analysis. Although LAM-EDS mapping can 

identify chemical distribution on a larger scale, it is not precise enough for qualitative 

reliable whole rock geochemistry. Additionally, using the SEM produces data from a 2D 

slice of rock, which might not be representative for the whole sample. EDS-SEM is 

designed and developed to identify chemical composition on a small-scale, e.g. chemical 

composition of a mineral and not designed to acquire data for whole rock geochemistry, 

especially for trace elements.      

The first sample batch (n=15) was sent away to a professional geochemistry lab at the 

Ocean and Earth Science, National Oceanography Centre Southampton for trace and 

isotope analysis (87Sr/86Sr and 143Nd/144Nd). Rare earth element (REE) concentration, as 

well as a selection of other elements (Hf, Nb, Ta, Th, U, and Zr), were measured in a 

conventional multi-acid (HNO3, HCl, and HF) solution using the ICP-MS. The lab reported 

various degrees of precipitation in some solutions. A complete digestion of the sample 

is important for gaining a reliable REE concentrations and is challenging in the presence 

of refractory minerals such as zircon, which can contain a significant amount of HREE in 

its crystal lattice. In order to try out alternative methods for geochemical analysis, the 

decision was made to utilise the facilities at Plymouth University. One way to avoid 

problems with dissolution and reprecipitation is by using an analytical method that does 

not require samples digestion to begin with, i.e., XRF. 

 

 

http://www.southampton.ac.uk/soes/index.page?
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5.4.1 X-ray Fluorescence  

X-ray Fluorescence (XRF) is one possibility of producing quantitative bulk-rock analysis 

without any digestion. In this PhD project for the PANalytical Wavelength Dispersive X-

Ray Fluorescence Spectrometer (WD-XRF; Axios Max) from the ISO-certified 

Consolidated Radio-isotope Facility (CORiF) at Plymouth University was used. 

 

5.4.1.1 XRF Principles 

XRF spectrometry is based on the detection of characteristic radiation from an atom 

after being exited by X-rays. If the incoming radiation has enough energy, it can expel 

electrons from an inner orbital of an atom. When an electron from the outer orbital 

jumps in to fill the gap, the energy difference of those two orbitals is emitted as X-rays. 

The wavelength of these secondary X-rays is characteristic of the element it was emitted 

from, and the intensity of the X-ray is proportional to the element concentration in the 

sample (Rollinson, 1993). Similar to the SEM, these X-rays can be measured by an ED-

detector or further separated by crystals of a WD-detector, which allows a better 

resolution. Although the detection limit of the XRF is higher compared to ICPMS analysis, 

the XRF has many advantages, e.g. analysing of a solid sample is possible, no upper 

detection limit, which makes it possible to analyse trace and major elements at the same 

time. Although this is possible, trace elements are generally analysed using press pellets 

while major elements are analysed using fused beads. 
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5.4.1.2 Pressed pellets 

The process of making pressed pellets involves pressing a powder-wax mixture under 

high pressure to a solid pellet. The particle size of the sample should be less than 30 µm. 

Grinding is normally combined with homogenising wax and the sample. Wax is needed 

as a binding agent to hold the press pellet together. In this project, because the powder 

was already created, mixing of wax and sample was done in a shaker. Centrifuge tubes 

were filled with 10 g of sample, 2.5 g of wax and three agate balls and shaken by hand 

for 1 min. Afterwards, the centrifuge vial was put in the mechanical shaker and shaken 

for another hour. The next step was to fill the powder into an aluminium cup and apply 

pressure of 200 kN by using a sample press. The maximum pressure was held for a 

couple of seconds and then released again. After this last step, the pressed pellet was 

stored in a petri dish and was ready to be analysed.  

 

5.4.1.3 Fused beads 

In order to make a fused bead, 9.0000 g of Lithium tetra/metaborate, 0.9000 g of 

ammonium nitrate and 0.9000 g of sample material was funnelled into a Pt-crucible. 

Lithium tetra/meta borate serves as a flux in the melting process and ammonium 

nitrate-was used as an oxidising agent. Afterwards, the Pt-crucible was loaded into a 

special furnace and heated up to 1050°C. Following this, the melt in the Pt-crucible was 

automatically poured into a Pt-disk and cooled down to form a glass bead. After the Pt-

crucibles cooled down, they were placed in a beaker with citric acid for cleaning. 

Following, the beaker was transferred into an ultrasonic warm water bath and heated 

up to 70°C.  
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5.4.1.4 XRF analysis  

REE-1 Certified Reference Material (Strange Lake REE-Nb ore, Natural Resources 

Canada) was part of the analytical procedure and showed the reliability for major 

element analysis, whereas the concentration of trace elements and especially REE 

showed a significant error with respect to the certified values. The issue is likely due to 

the high REE concentration that probably lies outside of the calibration curve of the 

instrument. To this point, the issue with the REE concentration could not be fixed, and 

no data acquired with the XRF was used for this PhD-project. Sodium peroxide sintering 

digestion with Inductively Coupled Plasma Mass Spectrometry was tested as an 

alternative analytical procedure for analysing trace element concentration.   

 

5.4.2 Inductively coupled plasma mass spectrometry (ICP-MS) 

Analysing a sample using an ICP-MS requires the sample to be completely dissolved into 

solution. The risk of incomplete digestion with a conventional multi-acid (HNO3, HCl, HF) 

digestion as it was described before, led to an alternative fusion technique, sodium 

peroxide sintering.   

 

5.4.2.1 ICP-MS principles 

An ICP-MS instrument is a combination of an Inductively Coupled Plasma (ICP) and a 

mass spectrometer (MS) (Fig. 5-7) — the principal mode of operation is described after 

Thomas (2013).  

 



 
105 

 

 
Figure 5-7: Schematic diagram of an Inductive Coupled Plasma Mass Spectrometry (ICPMS) instrument with a 

quadrupole mass filter (BIOCHEMISTRY, 2017). 

 

The ICP torch produces a plasma, which can reach temperatures of 6000 – 10000 K. The 

argon plasma of the ICP torch is generated by inductive heating of a radio-frequency coil 

and ignited by a high-frequency spark. The sample solution is injected as an aerosol from 

a nebuliser into an argon plasma (Rollinson, 1993). The high temperature of the argon 

torch causes the sample to ionise. The ions then pass through a small hole in the sampler 

cone into a vacuum chamber. After passing the skimmer cone, the ions are directed by 

electrostatic lenses into the MS. Once the ions enter the MS, a magnetic field separates 

the ions by their mass-to-charge ratio, which causes the ions to hit the detector at 

different times. Typically, a quadrupole filter is used to increase the resolution of the 

ICPMS drastically. The quadrupole filter consists of 4 rods to which alternating AC and 

DC voltage is applied. Certain frequencies only allow specific ions to pass through the 

filter and hit the detector at a given moment. However, some interferences can still 

cause issues because of the similar masses of, for instance, 87Sr = 86.90889 amu and 87Rb 

= 86.90918 amu (Evans and Giglio, 1993). This effect is called isobaric interference and 

can be limited via the instrumental approach or using a mathematical strategy of 
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subtraction the contribution of interfering isotopes from measurements of non-

interfering isotopes (Meija and Caruso, 2004).  

 

Sodium peroxide sintering 

Before using the ICPMS for analysis, the sample has to be fully dissolved. Because the 

conventional multi-acid (HNO3, HCl, HF) digestions could not completely dissolve the 

sample material, it was worth trying an alternative procedure. Sodium peroxide 

sintering after Bokhari and Meisel (2016) was tested, and rock material like granite 

dissolved completely without using HF. 

For the sintering and dissolving process, the following chemicals were used: analytical 

reagent-grade sodium peroxide (ACS ISO Merck KGaA, Darmstadt), HCl, HNO3 and Milli-

Q water (resistivity = 18.2 MΩcm at 25°C). Sintering was carried out in 8 ml high purity 

Ni crucibles from Camlabs. In preparation for sintering sample material, the Ni crucibles 

were cleaned with one teaspoon of NaOH and heated to 380 °C for 45 min. The heating 

produced a thin protective layer of NiO on top of the metallic Ni. After the crucibles 

cooled down, they were put in a Teflon beaker filled with Milli-Q, where they soaked in 

the basic solution overnight.  

Sample sintering preparation started by mixing 100 mg of finely milled sample powder 

with 600 mg of fine milled N2O2 in high purity Ni crucibles using a wooden toothpick. 

The powder mix was then heated for 120 min at 480 °C in a conventional muffle oven. 

The process of weighing before heating was done as quickly as possible to prevent the 

reaction of the hygroscopic Na2O2 with air moisture, which would have introduced an 

added uncertainty with respect to sample mass and make sintering less effective. After 

cooling down, the outer sidewall of the crucibles was cleaned using Milli-Q water to 
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prevent any contamination with material from the furnace. The crucibles were then 

transferred into 100 ml PTFE beakers, and ultrapure water was added dropwise to 

dissolve the sinter cake. After the reaction stopped, the crucibles were tilted over, 

placed on a hot magnetic stirring plate, and heated at ca. 90 °C (set up to 160 °C to 

compensate the heat resistance of PTFE beaker) for about 20 min with a magnetic 

rotation of ca. 60 rpm. The addition of a magnetic bar is not necessary due to the 

magnetic properties of the Ni-crucibles, which spin for themselves. The content of the 

crucible and PTFE beaker were transferred into a 50 ml centrifuge vial. The Ni crucibles 

were filled with Milli-Q water, and 1 ml of 10% HCl was added to the crucible to dissolve 

any remaining residue. Since the reaction attacks the Ni crucible, it should not be longer 

than necessary to keep the Ni contamination of the solution as low as possible. The 

dissolved content of the Ni crucible was added into the centrifuge vial. Once the reaction 

in the vial finishes, the vials were filled up and closed. The undissolved residue was 

separated from the supernatant via centrifugation (10 min at 2500 rpm). The clear 

supernatant was poured back into the beaker, and the undissolved residue was treated 

with 1 ml of 70% HNO3 and 3 ml of 10% HCl and left overnight to react. In case any 

residue remained, this step was repeated. If residue was left after the repetition residue 

was treated with 1 ml of 70% HNO3 and 2 ml of 37% HCl. After this step, normally, no 

residue was present. Occasionally, if a sample was treated with 37% HCl too early and 

before adding 70% HNO3 cloudy precipitation of amorphous silica occurred (confirmed 

with SEM). Once silica was formed, there was no way of dissolving it again, and the 

precipitation had to be filtered out to prevent a cloaking of the ICP-MS.  

After dissolving and residue, the clear sample solutions were stepwise made up to the 

mark in a 100-ml volumetric flask with Milli-Q water to give the solution enough time 
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equilibrate to the higher pH. In case of the formation of new precipitation, more acid 

was added to have a slightly more acid solution then it needed to be. This was done to 

ensure the dissolution of the whole sample material while keeping the total amounts of 

ions in the solution as low as possible. The final solution had an effective dilution of ca. 

1000 times and was transferred into plastic bottles for storage and transportation.  

The cleaning process involved a rigorous rinsing with deionised water and soaking of the 

PTFE beakers, glassware and tweezers in 2% solution of HNO3 for at least two days 

followed by rinsing with deionised water and a final rinsing with Milli-Q water. Ni 

crucibles were cleaned with NaOH as described before. Every batch of samples included 

at least three procedure blanks, two digestions of REES1 Certified Reference Material 

(Strange Lake REE-Nb ore, Natural Resources Canada) or OREAS 461 Certified Reference 

Material (carbonatite supergene REE-Nb ore, Mount Weld, Australia) and one acid 

blank.  

 

5.4.2.2 ICPMS analysis 

The solutions obtained with sodium peroxide sintering were analysed for trace elements 

using the quadrupole VG PQ3 ICP-MS in the trace metal laboratory at Plymouth 

University. The preparation of the ICPMS run included three different steps:  

a) Preparation of the sample solution  

20 µl of the internal standard was added into a 15 ml centrifuge tube before adding 5 

ml of the sample solution. The solution was shaken to ensure a homogenous mix of the 

two liquids. The internal standard is made up of 10 mg/l of In and Ir and helps to correct 

for instrumental drift. The procedure blanks are especially important because they are 

used to calibrate the In and Ir signal at the beginning of each run.  
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b) Making of single element standards  

The presence of signal interferences happens when two isotopes of different elements 

are having the same mass (isobaric) or the combination of two or more isotopes from 

different elements combined having the same mass (polyatomic). In both cases, the 

isotopes are indistinguishable based on their m/z ratio and the resulting signal will be a 

combination of both signals.   

The inference effects between REE and Ba are usually minimal and can be neglected. 

Most of the samples happened to be extremely enriched in LREE and Ba relative to HREE. 

Under these circumstances, interference can affect the concentration of HREE, which 

has to be taken into account. In order to investigate the effect LREE and Ba have on the 

concentration of HREE, single element standards were made for La, Ce, Nd, Pr and Ba. 

The single element standard for La, for example, was created by taking a 25 ml 

volumetric flask and pipetting 1.25 ml of 10,000 mg/l La solution and filling it up with 

groundmass solution. From this 500 mg/l La solution, 1.25 ml and 0.25 ml were put into 

25 ml volumetric flasks and filled up with groundmass solution to make up the 

calibration solutions 2.5 µg/l and 0.5 µg/l respectively. From the 2.5 mg/l La solution, 

0.5 ml and 0.05 ml were put into 25 ml volumetric flasks and filled up with groundmass 

solution to make up the calibration solutions 0.05 µg/l and 0.005 µg/l respectively. The 

other single element standards were made in the same way. No internal standard had 

to be added.  

c) Making of the calibration standards 

The calibration solutions contain all the elements of interest (REE, Pb, Sc, Y, Nb, Ta, U, 

Th, Zr, Hf) and include the full range of these elements as they can be expected from the 

sample material. In order to prepare the calibration solution more efficiently, two stock 
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solutions - A and B - were prepared first. Stock A was prepared in a 25 ml volumetric 

flask by pipetting 2.5 ml of 1,000 mg/l V solution and 0.25 ml of 10,000 g/l Zr, Pb, U, Sc, 

Th and Y solutions. The flask was then filled up to the mark with 2 % HNO3. Stock B was 

prepared in a 25 ml volumetric flask by pipetting 2.5 ml of 1,000 mg/l Hf, Nb and Ta 

solutions. A few drops of 37 % HCl were added to the flask to secure the stability of stock 

B in a low pH environment. Finally, the flask was filled up to the mark with 2 % HNO3. 

The concentration of each element in stock A and B was 100 mg/l, the same as the 

individual REE in the REE standard solution. In order to prepare the calibration solution, 

multiple step dilution had to be performed. In order to avoid cross-contamination 3 ml 

of stock A, B and REE were poured into individual centrifuge tubes. The calibration 

solution for 5,000 µg/l, 1,000 µg/l and 100 µg/l were prepared by pipetting 1.25 ml, 0.25 

ml and 0.025 ml respectively into 25 ml volumetric flasks and filling up with groundmass 

solution. Additionally, 100 µl of internal standard (Ir+In) was added. From the 1,000 µg/l 

calibration solution, 0.25 ml and 0.025 ml were put into 25 ml volumetric flasks and filled 

up with groundmass solution to make up the calibration solutions of 10 µg/l and 1 µg/l 

respectively. From the 100 µg/l calibration solution, 0.125 ml and 0.025 ml were put into 

25 ml volumetric flasks and filled up with groundmass solution to make up the 

calibration solutions 0.5 µg/l and 0.1 µg/l respectively. At last 100 µl of internal standard 

(Ir+In) was added to the calibration solutions 10 µg/l, 1 µg/l, 0.5 µg/l and 0.1 µg/l. The 

full range of trace elements in the calibration solution is, therefore between 0.1 ppb and 

5,000 ppb. In case the concentration of one element in a sample solution might be above 

5,000 ppb, the sample was diluted by a factor of 10 and measured again.   

After preparing all the necessary solutions, runs were started in a specific order starting 

with the calibration standard, then the single element standards, followed by the 
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procedure and acid blank and the sample solution. Each measurement was executed 

three times, and the software calculated a mean automatically. After each sample, a 

cleaning run with 2% HNO3 helped to eliminate any stuck material in the instrument. 

After 10 samples, a check run with one of the lower concentration calibration standards 

was done.  

 

5.4.2.3 ICPMS data processing 

After data was checked by Dr Rob Clough and Christian Marien the data sheet was 

extracted as an excel file. Total procedural blanks were analysed to have approx. 0.5 ppb 

for Ce but less than 0.2 ppb for the other REE, typically 0.025-0.002 ppb for Eu-Lu, which 

shows a very low degree of REE contamination during the sodium peroxide and ICPMS 

sample preparation and measurement. The detection limit was calculated for every 

ICPMS run with 3* standard deviation (confidence level of 99%) of the procedure blank 

(Tab. 5-2) The precision of the analysis is represented as the relative standard deviation 

(RSD) was calculated by the standard deviation of each analysis divided by the mean of 

analysed concentration and was generally <1%. The accuracy calculated as relative error 

of the measured CRM values in (with respect to certified values of the trace element 

concentrations, estimated by repeated analysis of the REE-1 CRM, were typically <15% 

(Tab. 5-2).  
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Table 5-2: ICPMS analysis of sample 15-94-FE with a selection of trace elements, showing the most important 

statistical variables — detection limit, RSD (expression of precision) and relative error (expression of accuracy). 

 

 

The single element data showed interferences between the LREE and HREE, but most of 

the interferences could be avoided by a judicious choice of the mass on which the 

concentration of the element in question was measured. As it turned out, only Ce and 

Nd caused significant overlaps that could not be resolved analytically. These 

interferences were corrected off-line by using the standard solutions of Ce and Nd 

spanning the full range of expected concentrations. For example, 140Ce16O was causing 

an overlap for the signal of 156Gd. The signal of 156Gd in the single element Ce standard 

derives from the Gd concentration of the matrix solution (acid and Milli-Q water) plus 

the signal interference of CeO on 156Gd. After subtracting the mean procedural blank 

concentration from the Gd concentration, the rest is caused by interference of CeO. This 

effect was measured for four different concentrations of Ce to identify the relation 

between the concentration of Ce and relative interference with Gd. The final subtraction 

value [%] was calculated as the mean of the Gd concentration relative to the Ce 

concentration for the four different Ce concentrations. This is possible because the data 

points were showing a linear trend (R2=1) (Fig. 5-8). Other elements were measured via 

their interference free isotopes. In order to obtain final values for the element 
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concentration, the procedural blank was subtracted from the samples, the interference 

was subtracted, and the dilution factor was multiplied.   

 

 

 

Figure 5-8: Plot A) The concentration of 156Gd as a function of Ce concentration in three single element aqueous 

solution of Ce. Because the solution (minus blank) does not contain any significant Gd, the 156Gd signal is produced 

entirely by 156CeO interference. The function of the trendline can be used to correct for 156Gd in a sample produced 

by 156CeO interference. Plot B) REE concentrations normalised to CI1-chondrite values from McDonough and Sun 

(1995) illustrates that without a CeO interference correction, Gd would cause a strong positive anomaly, which 

cannot happen naturally.  The corrected value of Gd2 (154 ppm) using the function of the trendline in plot A fits 

the curve much better. Gd1 = Gd signal caused by CeO interference; Gd2 = real Gd signal after correction.     
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6 Bjørndalen transect 

This chapter will focus on the mineralogy, texture and geochemistry of rock samples 

from the Bjørndalen transect. The purpose of this chapter is to show the distribution of 

the rare-earth elements (REE) along the transect and to establish a descriptive and 

inferred petrogenetic link between the REE mineralisation and the process of 

rødbergitisation (hydrothermal alteration with red colouration by disseminated Fe-

oxides). Thorium (Th) is commonly associated with REE-mineralisation and is one of the 

major obstacles for a profitable REE-exploitation, as it leads to a radioactive mine waste 

product. Therefore, the distribution and mineralisation of Th will be part of the 

discussion. Furthermore, this chapter will explain the underlying ore-forming processes 

at Fen and establish a REE-mineralisation model for the Bjørndalen transect.  

This study has been published in the journal Mineralogical Magazine as Marien et al. 

(2018), therefore most of the content of this chapter is shared with the publication. 

Nevertheless, this chapter incorporates additional figures, is largely rewritten and 

contains new SEM and ICPMS analysis. The Bjørndalen transect (UTM 32V 517541 

6569595) located in the SE of the Fen Complex (Fig. 5-1) is a suited introductory site for 

understanding the processes of rødbergitisation in detail. The transect is relatively well 

exposed and displays the full range of rock types from unaltered carbonatite to a highly 

altered rødbergite within a short distance of only 30 m (Fig. 6-1A). For a detailed 

description of the sampling procedure, please refer to chapter 5. The term transitional 

rødbergite was established to describe rocks that are between carbonatite and 

rødbergite in terms of their optical evidence for alteration (Fig. 6-1B). The most 

noticeable change during alteration is in colour, from white-grey through yellowish-

ochre to a rich red — hence the name rødbergite (Norwegian for “red rock”) — this 
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colour spectrum is illustrated in Fig. 6-1C. Additionally, transitional rødbergite and 

rødbergite have a higher density of veins and show a grain size reduction relative to the 

unaltered carbonatite.  
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Figure 6-1: (A) Stitched 

photograph of the 

Bjørndalen transect. (B) 

Classification of the 

Bjørndalen transect 

into unaltered 

carbonatite (blue), 

transitional rødbergite 

(yellow) and rødbergite 

(red). The actual 

outcrop of the 

alteration zone is 

highlighted by shading. 

Sampling locations are 

marked as blue stars. 

(C) Representative 

samples of the 

alteration zones show 

the variation in colour 

and texture across the 

Bjørndalen transect.  
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6.1 Rock types  

The Bjørndalen transect comprises the three major rock types: unaltered carbonatite, 

transitional rødbergite and rødbergite.  Unaltered carbonatite makes up the western 

part of the transect, followed by two zones of transitional rødbergite surrounding a 

central zone of rødbergite and a small strip of rødbergite at the eastern end of the 

transect (Fig. 6-1B).  

 

6.1.1 Calcite-bearing Dolomite-Carbonatite 

The carbonatite from the Bjørndalen transect is a calcite-bearing dolomite-carbonatite 

with little to no apparent alteration, a white to grey colour with darker spots of opaque 

minerals and a grain size of approximately 2 mm (Fig. 6-2).  

 

 

Figure 6-2: Photograph of 

sample 15-82-FE as a 

representative sample for 

unaltered carbonatites. 

The centre of the sample is 

relatively unaltered while 

the outer surface displays 

signs of alteration or 

weathering. 
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The principal minerals, determined based on optical properties and mineral chemical 

composition by means of EDS analysis, are (in order of decreasing overall modal 

abundance): dolomite, calcite, apatite, pyrite, magnetite, columbite and zircon, with 

accessory quartz, barite, pyrochlore, fluorite, synchysite-(Ce) and monazite-(Ce). 

Locally, the calcite-bearing dolomite-carbonatite displays a banded texture of whitish 

carbonate-rich layers and grey blueish apatite rich layers with most of the opaque 

minerals concentrating in the apatite rich layer (Fig. 6-3, Fig. 6-4).  

Although carbonates appear as uniformly sized crystals (~2 mm grain size) in hand 

specimen (Fig. 6-2), a microscopic analysis shows an irregular fine intergrowth of calcite 

and dolomite (Fig. 6-4). 

 

 

 

Figure 6-3: Scan of a 

polished block (Ø = 3 cm) 

from the same sample 

displayed in Figure 1.2 

(15-82-FE). The blue-grey 

areas have a high amount 

of apatite (Ap) whereas 

the white layers are 

almost entirely made of 

calcite (Cal) and dolomite 

(Dol).  
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Figure 6-4: BSE-SEM image of an unaltered carbonatite (15-82-FE). Note the complex irregular intergrowth of 

calcite and dolomite in the groundmass and a distinct zone/layer of apatite (blue dashed line). The elongated 

polycrystalline apatites show a preferred orientation. Ap – Apatite, Cal – Calcite, Col – Columbite, Dol – 

Dolomite and Py – Pyrite. 

 

Apatite is the most common non-carbonate mineral and typically occurs as subhedral 

lozenge-shaped crystals or aggregates, with a preferred orientation (Fig. 6-4). Pyrite is 

frequently present as aggregates (>0.5 mm) of subhedral pyrites intergrown with calcite, 

fluorite and REE-fluorocarbonates (Fig. 6-5) or in the form of individual euhedral cubes 

(0.5 mm). Columbite forms equidimensional crystals (~ 0.5 mm) and occasionally has a 

poikilitic texture with inclusions of apatite phenocrysts (Fig. 6-6). A small number of large 

zircons (2 mm) used for radiometric geochronology of the carbonatite formation — for 

more information, please refer to chapter 9. These zircons are euhedral aggregates with 

a poikilitic texture and distinct pressure shadows of dolomite (Fig. 6-7). The main mineral 

hosts for REE are the REE-fluorocarbonates: synchysite-(Ce) and parisite-(Ce).  
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Figure 6-5: BSE-SEM image of a pyrite cluster with minor amounts of fluorite and parisite-(Ce) in an unaltered 

carbonatite (15-82-FE). Ap – Apatite, Cal – Calcite, Dol – Dolomite, Fl – Fluorite, Par – Parisite-(Ce) and Py – Pyrite. 

 

 

Figure 6-6: BSE-SEM image of a hypidiomorphic columbite phenocryst with inclusions of prismatic apatite crystals, 

which are significantly larger than the apatite crystals within the groundmass. The columbite crystal displays signs 

of zonation (15-83-FE). Ap – Apatite, Cal – Calcite, Col – Columbite and Dol – Dolomite. 
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Figure 6-7: BSE-SEM image of a large poikilitic zircon with dolomite inclusions (unaltered carbonatite: 15-82-FE). 

There is a flow pattern of carbonate minerals and an apatite layer around the zircon phenocryst (blue dashed line) 

with coarsely crystallised dolomite in the pressure shadow of the zircon. Ap – Apatite, Cal – Calcite, Dol – Dolomite 

and Zrn – Zircon. 

 

Besides being a minor component in pyrite aggregates (Fig. 6-5), REE-fluorocarbonates 

occur in veins, as small inclusions (5-20 µm) in calcite, dolomite and apatite as well as in 

the form of larger anhedral grains (20-50 µm) in intergrowth with barite (Fig. 6-8). To 

minor extent, monazite-(Ce) is present as small inclusions (<2.5 µm) in apatite, and 

pyrochlore (Fig. 6-9).  

Some areas of the carbonatite have undergone incipient alteration in the form of dark-

coloured Fe-oxide, which preferentially occurs along with fractures and grain boundaries 

(Fig. 6-10). The fine-grained calcite surrounding the Fe-oxide alteration shows a speckled 

appearance in BSE images, caused by fine disseminated Fe-oxides.  
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Figure 6-8: BSE-SEM image shows a xenomorphic cluster of synchysite-(Ce) and barite in an unaltered carbonatite 

(15-83-FE). Brt – Barite, Cal – Calcite, Col – Columbite, Dol – Dolomite, Fl – Fluorite, and Syn – Synchysite-(Ce). 

 

 

Figure 6-9: BSE-SEM image illustrate micro (<3 µm) monazite-(Ce) inclusion in apatite as well as larger (20 µm) 

crystals in the groundmass of an unaltered carbonatite (15-85-FE).  Ap – Apatite, Cal – Calcite, Dol – Dolomite and 

Mnz – Monazite-(Ce). 
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Figure 6-10: Thin section scan of an unaltered carbonatite (15-82-FE).  The left-hand side of the thin section shows 

initial alteration of the carbonatite along cracks (major crack is highlighted by the red dashed line) in the form of 

Fe-oxide precipitation, while the right-hand side shows little to no signs of alteration. 

 

 

Figure 6-11: Reflective light image of an unaltered carbonatite (15-82-FE) shows the mosaic replacement of 

pyrite by Fe-oxide.  This illustrates the first stage of the rødbergitisation process. Cal – Calcite, Dol – Dolomite, 

Fe – Fe-oxide, Py – Pyrite and Phl – Phlogopite. 
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Pyrite is the most susceptible mineral to this incipient alteration and shows a mosaic 

texture resembling that of a breccia (Fig. 6-11, Fig. 6-12A).  

Nevertheless, pyrite is not the only mineral being replaced by Fe-oxide. The only 

occurrence of REE-fluorocarbonates in the slightly altered part of the carbonatite is 

within pyrite aggregates (Fig. 6-12). The irregular shape and crosscutting features of the 

REE-fluorocarbonates indicate the replacement of the REE-fluorocarbonates by Fe-oxide 

(Fig. 6-12B).  

 

 

 

Figure 6-12: (A) BSE-SEM image is showing the 

mosaic replacement texture of pyrite by Fe-

oxides. In the centre of the image is synchysite-

(Ce) which frequently occurs as a minor 

component of pyrite clusters in unaltered 

carbonatites.  Note that the edges of the 

synchysite-(Ce) crystal, which are in contact 

with Fe-oxides, are etched (white arrows). The 

black box marks the extent of the zoomed in 

image B, which, shows the dissolution of 

synchysite-(Ce) in detail (15-82-FE). Brt – Barite, 

Fe – Fe-oxide, Py – Pyrite and Syn – Synchysite-

(Ce). 
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6.1.2 Transitional rødbergite 

Transitional rødbergite is a massive calcite bearing dolomite-carbonatite and 

intermediate between unaltered grey carbonatite and highly altered red rødbergite. The 

more intense rødbergitisation caused a colouration ranging from greyish to ochre, red 

and brownish of irregularly shaped patches (Fig. 6-1C; Fig. 6-13). Additionally, some 

samples show multiple generations of veins and different types of aggregates. These 

features are further discussed in chapter 6.1.4 Veins and 6.1.5 Relics. 

 

 

Figure 6-13: Photograph of a transitional rødbergite (15-93-FE). The hand specimen displays patches of different 

beige, orange and brown colours together with two visible vein generations. 
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Figure 6-14: BSE-SEM image of a transitional rødbergite showing similar mineral composition and textures to 

unaltered carbonatite, e.g. the irregular intergrowth of calcite and dolomite in the groundmass (16-19-FE).  Note 

the increasing proportion of small (< 5 µm) inclusions of Fe-oxides (brighter grey) in groundmass calcite and almost 

complete replacement of pyrite, indicating the progressing rødbergitisation. Ap – Apatite, Cal – Calcite, Dol – 

Dolomite, Fe – Fe-oxide and Py – Pyrite. 

 

The main minerals in the transitional rødbergite are dolomite and calcite as irregular 

fine-grained intergrowths as well as medium-grained dolomite aggregates (Fig. 6-14). 

Accessory minerals in declining order are barite, barian phlogopite, apatite, quartz, 

pyrite, monazite-(Ce) and synchysite-(Ce) (Fig. 6-14; Fig. 6-15). Barite is evenly 

distributed in the groundmass as well as in veins, ranging from 50 µm to 1 mm (Fig. 6-

15). Barian phlogopite is less abundant than barite and is more commonly restricted to 

veins or surrounding groundmass. The precipitation of Fe-oxide along grain boundaries 

and fractures is more pronounced than in unaltered carbonatite (Fig. 6-14; Fig. 6-15; Fig 

6-16). Fe-oxide commonly occurs in calcite but rarely in dolomite.  
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Figure 6-15: Combined EDS element map shows a representative section of a transitional rødbergite with barite 

homogenously distributed in the groundmass of the rock (Brt1) as well as incorporated in small veinlets (Brt2), 

which are partly highlighted by a dashed white line (15-91-FE). Ap – Apatite, Brt – Barite, Cal – Calcite, Dol – 

Dolomite, Fe – Fe-oxide and Py – Pyrite. 

 

Occasionally, Fe-oxide is in a fine intergrowth with monazite-(Ce), which is the main REE 

carrier in transitional rødbergite (Fig. 6-16). Coarser grains (> 200 µm) of monazite-(Ce) 

are intergrown with barite (Fig. 6-17). Part of the larger monazite-(Ce) grains exhibit a 

halo of calcite and minor postmagmatic apatite (Fig. 6-18). Locally, monazite replaces 

apatite-forming high concentrations of monazite around larger apatite relics (chapter 

6.1.5).  

The overall REE budget is mainly influenced by the presence of monazite-(Ce) and to a 

lesser degree by allanite and REE-fluorocarbonates from allanite veins (chapter 6.1.4). 

Besides being a minor component of allanite veins, synchysite-(Ce) also occurs, similarly 

to monazite-(Ce), in intergrowth with barite (Fig. 6-19) and infilling fractures with Fe-
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oxide (Fig. 6-20). The EDS-SEM rarely detected HREE minerals due to the low 

concentration of these elements in carbonatites.  

 

 

Figure 6-16: BSE-SEM (A) 

image of a fine network of Fe-

oxide micro veins penetrating 

a transitional rødbergite 

sample (15-88-FE). The blown 

up section (B), marked by a 

black frame, displays the fine 

intergrowth of Fe-oxide and 

monazite-(Ce), indicating the 

coprecipitation of these two 

mineral phases. Dol – 

Dolomite, Fe – Fe-oxide and 

Mnz – Monazite-(Ce). 

 

 

A single example of a zircon-xenotime-(Y) fine crystalline mixed phase occurs as part of 

a Fe-oxide veinlet, filling cracks and surrounding a monazite-(Ce) crystal (Fig. 6-21).  
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Figure 6-17: Combined EDS element maps illustrate the intergrowth of coarse hypidiomorphic barite and 

monazite-(Ce) (15-91-FE).  EDS maps are especially helpful to distinguish between monazite-(Ce) and barite 

because both minerals display a similar grey tone in the BSE-SEM image. Brt – Barite, Cal – Calcite, Dol – Dolomite 

and Mnz – Monazite-(Ce). 
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Figure 6-18: A) Combined EDS element 

maps of coarse hypidiomorphic 

monazite-(Ce) with barite in a 

groundmass of calcite and apatite (15-92-

FE). Note the pyrite cube with a monazite 

core in the left corner of the picture. B) 

The blown up BSE-SEM image, which is 

marked by the orange frame, shows 

homogenous idiomorphic to 

hypidiomorphic apatite crystals in a 

groundmass of inclusion free calcite. Ap – 

Apatite, Brt – Barite, Cal – Calcite, Dol – 

Dolomite, Mnz – Monazite-(Ce), Phl – 

Phlogopite and Py – Pyrite. 

 

 

 

Figure 6-19: BSE-SEM image of 

xenomorphic barite cluster in an 

intergrowth with synchysite-

(Ce).The same texture is common 

for barite and monazite-(Ce) (16-19-

FE). Brt – Barite, Cal – Calcite, Dol – 

Dolomite and Syn – Synchysite-(Ce). 
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Figure 6-20: BSE-SEM image of a partly oxidised pyrite in a calcite-dolomite groundmass.  Note synchysite-(Ce) in 

the intercrystalline space between quartz and growing around the partly oxidised pyrites (16-19-FE). Cal – Calcite, 

Dol – Dolomite, Fe – Fe-oxide, Py – Pyrite, Qz - Quartz and Syn – Synchysite-(Ce). 

 

 

Figure 6-21: Combined EDS element maps showing hydrothermal monazite-(Ce) and hematite mineralisation. 

Monazite-(Ce) is surrounded by a later phase of zircon and xenotime-(Y). Whether it is a solid solution between 

zircon and xenotime-(Y) or a fine intergrowth of both phases cannot be determined (15-91-FE). Dol – Dolomite, 

Fe – Fe-oxide, Mnz – Monazite-(Ce), Xtm – Xenotime-(Y) and Zrn – Zircon. 
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6.1.3  Rødbergite 

 

Figure 6-22: Photograph of a representative rødbergite sample (15-89-FE). The heterogeneous colouration and 

texture of the transitional rødbergite are replaced by a more homogeneous red colouration. 

 

Rødbergite is an intensely altered massive carbonatite (Fig. 6-22). The fine crystalline 

carbonate groundmass is coloured in different shades of red and ranges from a 

homogenous colour to a heterogeneous mix of different red coloured schlieren. Average 

Porosity, determined from a large area mapping scanning electron microscopy image, is 

less than 2% (Fig. 5-5). Rødbergite consists of a varying proportion of dolomite, ferroan 

dolomite, barite, calcite, barian phlogopite, Fe-oxides, apatite with accessory monazite-

(Ce), quartz, pyrite and barian orthoclase.  

The groundmass comprises euhedral to anhedral dolomite surrounded by a network of 

calcite grains with small hematite inclusions (Fig. 6-23). While some parts of the 

groundmass display finely intergrown calcite and dolomite, other parts have coarser 

crystal sizes and show evidence for the replacement of dolomite by calcite.  
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Figure 6-23: BSE-SEM image showing the dolomitic groundmass of a rødbergite sample with high proportions 

of barite and Fe-oxides. Fe-oxide intergrown with calcite is permeating the rødbergite via a network of veinlets. 

The pyrite in the centre of the image is largely replaced by hematite (15-89-FE). Brt – Barite, Cal – Calcite, Dol 

– Dolomite, Fe – Fe-oxide and Py – Pyrite. 

 

 

Figure 6-24: BSE-SEM image showing the impregnation of Fe-oxides and calcite along a vein (red colouration) and 

migrating through crystal boundaries into the carbonate groundmass (15-90-FE).Brt – Barite, Cal – Calcite, Dol – 

Dolomite, Fe – Fe-oxide and Phl – Phlogopite. 
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Emanating from fractures, a wide network of fine crystalline barite and Fe-oxide 

penetrates the carbonatite along grain boundaries, locally forming 20 % of the total rock 

volume (Fig. 6-24). Barite typically forms large agglomerates (~ 500 µm) with barian 

orthoclase, barian phlogopite and monazite-(Ce) (Fig. 6-25). Irregularly shaped barite-

phlogopite patches (0.2–2 mm) contain clusters of euhedral to subhedral blade-shaped 

phlogopite (100 μm) (Fig. 6-26). Both phlogopite and barite are unaltered and contain 

few or no inclusions of hematite. Euhedral crystals of pyrite of up to 2 cm in size occur 

in rødbergite and show signs of replacement by hematite, with minor amounts of 

carbonate, barite and monazite-(Ce) (Fig. 6-27). Monazite-(Ce) is the most common 

REE- carrier in rødbergite and is commonly part of a fine intergrowth of barite and 

hematite precipitating along grain boundaries or replacing apatite grains (Fig. 6-28, Fig. 

6-29 & Fig. 6-30). Locally, REE-fluorocarbonates are neighbouring monazite-(Ce) and 

occur in the same Fe-oxide-calcite veinlets as monazite-(Ce) (Fig. 6-31). Similar to the 

mineralisation styles of monazite-(Ce), synchysite-(Ce) also occurs as part of barite-

barian orthoclase clusters (Fig. 6-32). REE-fluorocarbonates frequently display a cluster 

of thin fibrous sheets similar to sheaves of straw (Fig. 6-33).   
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Figure 6-25: BSE-SEM image of a dolomite (dark grey) groundmass with a fine network of calcite (grey) with Fe-

oxide (bright grey) inclusions and occasionally monazite-(Ce) (very bright grey). A black line in the upper right 

corner of the image highlights the calcite network with Fe-oxide inclusions. In the centre of the image, there is an 

aggregate comprising two opposing sectors of barite and two sectors of barian orthoclase, which are typical for a 

rødbergite mineral assemblage. Barian orthoclase is commonly associated with rødbergitisation in the Bjørndalen 

transect (15-89-FE). Brt – Barite, Dol – Dolomite, Fe – Fe-oxide, Fsp – Barian Orthoclase and Mnz – Monazite-(Ce). 
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Figure 6-26: BSE-SEM image of a barite-phlogopite cluster along barian phlogopite, calcite, Fe-oxide-vein. Note the 

fine network of calcite and Fe-oxide surrounding the centre of the image (15-90-FE).Brt – Barite, Cal – Calcite, Dol 

– Dolomite, Fe – Fe-oxide and Phl – Phlogopite. 

 

 

Figure 6-27: Combined EDS element map of large hypidiomorphic pyrite partly replaced by a mix of 

monazite-(Ce), Fe-oxide, barite and quartz. Note the high proportion of monazite-(Ce) as part of the 

alteration mineral assemblage. Monazite-(Ce) inclusions (blue) are present in the seemingly 

unaltered centre of the pyrite (15-94-FE). Brt – Barite, Cal – Calcite, Dol – Dolomite, Fe – Fe-oxide, 

Mnz – Monazite-(Ce), Phl – Phlogopite, Py – Pyrite and Qz – Quartz. 
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Figure 6-28: Combined EDS element map showing the dispersed distribution of Fe-oxide (green). The red 

coloured monazite-(Ce) is in intergrowth with Fe-oxide and is concentrated around apatite, replacing parts of 

the apatite crystals (15-88-FE).Ap – Apatite, Cal – Calcite, Dol – Dolomite, Fe – Fe-oxide, Mnz – Monazite-(Ce) 

and Phl – Phlogopite. 

 

 

Figure 6-29: BSE-SEM image showing the fine intergrowth of Fe-oxide and monazite-(Ce) around an apatite 

crystal, which is to a large portion replaced by monazite-(Ce) (15-88-FE). Ap – Apatite, Cal – Calcite, Dol – 

Dolomite, Fe – Fe-oxide and Mnz – Monazite-(Ce). 
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Figure 6-30: BSE-SEM image of a large (Ø 750 µm) Fe-oxide aggregate with inclusions of apatite. One part of 

the apatite crystal is largely replaced by monazite while other apatites are not affected (15-88-FE). Ap – Apatite, 

Cal – Calcite, Dol – Dolomite, Fe – Fe-oxide and Mnz – Monazite-(Ce). 

 

 

Figure 6-31: BSE-SEM image showing the replacement of dolomite groundmass by calcite. Besides the 

omnipresent inclusions of Fe-oxides in the calcite vein, spatially associated monazite-(Ce) and synchysite-(Ce) 

crystals are present (15-89-FE).Cal – Calcite, Dol – Dolomite, Fe – Fe-oxide, Mnz – Monazite-(Ce) and Syn – 

Synchysite-(Ce). 
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Figure 6-32: BSE-SEM image showing a cluster of barite, synchysite-(Ce), phlogopite and barian orthoclase 

(15-89-FE).  This mineral assemblage indicates that monazite-(Ce) — the main REE-host in rødbergite — 

can be substituted by synchysite under the right physicochemical conditions. Brt – Barite, Dol – Dolomite, 

Fe – Fe-oxide, Fsp – Barian Orthoclase and Syn – Synchysite-(Ce).  

 

 

Figure 6-33: BSE-SEM image of a section of an apatite relic showing fibrous sheets of Synchysite-(Ce) together with 

very small (<0.5 µm) Nb-minerals filling pore space between apatite, barite and Fe-oxide (15-90-FE). Ap – Apatite, 

Brt – Barite, Fe – Fe-oxide and Syn – Synchysite-(Ce). 
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6.1.4  Veins 

Veins are present in every zone of the Bjørndalen transect in varying density and mineral 

composition. Some of the vein types contain REE-minerals and are therefore important 

for the overall REE budget along the Bjørndalen transect.  

Veins occur in the unaltered carbonatite (Fig. 6-34) but are significantly less abundant 

compared to transitional rødbergite and rødbergite. Cross-cutting relationships indicate 

two vein generations. The younger veins are entirely made of calcite while older veins 

comprise ferroan dolomite and barite with minor amounts of quartz, REE-

fluorocarbonates, barian phlogopite and pyrite. While the eastern transitional 

rødbergite has almost no veining, the western transitional rødbergite shows a high 

density of veins with two veins per cm2 (Fig. 6-1). Three different micro-vein types are 

present in the eastern transitional rødbergite (Fig. 6-35).  

 

 

Figure 6-34: Combined EDS element maps show a representative section of an unaltered carbonatite (15-82-FE). 

Fe-dolomite-barite veins with minor amounts of quartz, REE-fluorocarbonates, barian phlogopite and pyrite (blue 

dashed line) are crosscut by a calcite vein (red dashed line). Note the irregular fine intergrowth of calcite and 

dolomite, pyrite-fluorite clusters, elongated apatite crystals with preferred orientation and two cross-cutting veins. 

Ap – Apatite, Brt – Barite, Cal – Calcite, Col – Columbite, Dol – Dolomite, Fl – Fluorite, Py – Pyrite and Oz – Quartz. 
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Figure 6-35: a) The image 

shows a polished block of 

transitional rødbergite (15-

93-FE). Three different 

generations of veins are 

marked as VT I, VT II and 

VT III. b) Large-area EDS 

mapping of the area marked 

by the black frame in image 

a).  The VT II and III are easily 

distinguishable due to their 

different mineral 

composition. Cal – Calcite, Dol 

– Dolomite and Phl – 

Phlogopite. 
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The vein generations are numbered based on the observed crosscutting relations in the 

studied transect. Fe-oxide veins (Vein type I) are thin (10 μm) straight veins of Fe-oxide 

and clay minerals. Barite-phlogopite veins (Vein type II) consist of barian phlogopite, 

barite ± monazite-(Ce), chlorite and hematite. Monazite-(Ce) grains (100 μm x 30 μm) 

are either enclosed by barian phlogopite or intergrown with Fe-oxides. Irregular patches 

of monazite-(Ce) occur within the groundmass proximal to the barite-phlogopite veins 

(Fig. 6-36). Barite-phlogopite veins are the most common veins in transitional rødbergite 

and are parallel to each other but occasionally branch and display an undulating to en-

echelon pattern (Fig. 6-35). The EDS-BSE elemental maps reveal a mild halo of higher Ca 

concentrations in carbonates near barite-phlogopite veins.  

 

 

Figure 6-36: Combined large-area EDS mosaic of a section of Figure 1-14. Two veins belonging to VT II and VT III 

are visible in the image. REE-minerals in these veins are coloured in neon green, highlighting allanite and monazite-

(Ce) as part of their mineral assemblage (15-93-FE). Aln – Allanite, Brt – Barite, Cal – Calcite, Dol – Dolomite, Mnz 

– Monazite-(Ce) , Phl – Phlogopite and Qz – Quartz. 
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Pyrite occurs as euhedral cubes close to barite-phlogopite veins. Partly barite-

phlogopite veins engulf older patches of quartz-barite aggregates. Barite-Phlogopite 

veins are very common in western transitional rocks and appear to a lesser degree in 

rødbergite as well. The younger ferroan dolomite–barite vein, described for the 

unaltered carbonatite, has a very similar mineral composition to the barite-phlogopite 

vein and is most likely a variation with synchysite-(Ce) instead of monazite-(Ce). Allanite 

veins (Vein type III) consist of calcite with minor amounts of barite, dolomite, coarse-

grained allanite (0.3 mm x 2 mm) and rarely coarse-grained synchysite-(Ce). The allanite 

veins are significantly thicker (300 μm) than vein type I and II and represent the youngest 

generation of these three vein types.  

A variety of rødbergite samples displays red coloured apatite veins up to 3 mm across 

(Fig. 6-37). The red colouration is the result of small (< 5 µm) Fe-oxide crystals evenly 

dispersed within the apatite. Around the red apatite veins, a halo of coarser subhedral 

calcite, dolomite and barite occurs. The red apatite veins are brecciated by smaller 

barite-calcite-dolomite-hematite veins, which locally crosscut the apatite vein but 

typically follow along the centre of the vein, which is partly replaced by barite. In one 

case, the apatite vein is in contact with oriented magmatic apatite crystals (Fig. 6-37C). 

The red apatite from the vein engulfs part of the apatite crystal without disrupting its 

position or replacing the apatite crystal. Therefore, it is possible that the apatite vein did 

not cause any displacement and developed through chemical replacement along a crack 

leaving the magmatic apatite crystals undisturbed.    
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Figure 6-37: A: Scan of a polished block from the 

rødbergite sample 16-23-FE with dark ruby-coloured 

apatite veins in a red-grey-blackish coloured rødbergite 

groundmass. B: Combined large-area EDS mosaic of the 
same sample (16-23-FE) highlights the apatite veins in 
orange-red. The apatite veins are an approximate 
portion of 66 Vol-% of the whole sample. C: Combined 
large-area EDS mosaic of sample 15-86-FE displays a 
disrupted apatite vein (red) marked by white dashed 
lines. Ap – Apatite, Brt – Barite, Dol-Cal – Dolomite-
Calcite intergrowth, Fe – Fe-oxide and Phl – Phlogopite. 

 

 

6.1.5 Apatite-Relics 

Occasionally, transitional rødbergite (Fig. 6-38) and rødbergite (Fig. 6-39) samples 

display prominent rounded elliptical inclusions (5 – 20 mm) of apatite and dolomite with 

minor amounts of barite, barian phlogopite, monazite-(Ce), calcite and hematite. 

Apatite is a common early crystallisation product in carbonatitic magmas and occurs in 

layers, frequently disrupted by magmatic and postmagmatic processes.  
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Figure 6-38: (A) Scan of polished block showing a transitional rødbergite with apatite-, dolomite- and aluminium 

silicate-relics (16-111-FE). (B) Combined EDS element maps of the same image (A). (C) A blown up section of the 

image (B) marked by the orange box. There is a high concentration of monazite-(Ce) around the apatite relic 

together with barite, phlogopite, quartz and hematite. Ap – Apatite, Brt – Barite, Cal – Calcite, Dol – Dolomite, Fe 

– Fe-oxide, Mnz – Monazite-(Ce), Phl – Phlogopite, Py - Pyrite and Qz – Quartz. 
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Figure 6-39: Varies images showing the mineralogical composition and texture of apatite relics  (A) Combined large-

area EDS mosaic of a rødbergite sample showing apatite (purple) relics in a groundmass of dolomite (red) infiltrated 

by a fine network of barite-phlogopite veins. (B) Combined large-area EDS mosaic of the same picture with 

modified colours for the elements to specifically highlight the concentration of monazite-(Ce) (neon green) around 

and within the apatite relic. (C) Combined EDS element map of the outer rim of an apatite relics from the same 

sample with the alteration mineral assemblage of hematite hopper crystals in intergrowth with barite, calcite, 

rutile and a high concentration of hypidiomorphic monazite-(Ce). (D) BSE-SEM image showing the basal section of 

a hematite hopper crystal as part of an apatite relic (15-90-FE). Ap – Apatite, Brt – Barite, Cal – Calcite, Dol – 

Dolomite and Fe – Fe-oxide, Mnz – Monazite-(Ce) and Phl – Phlogopite. 

 

These layers are generally interpreted as cumulates (Chakhmouradian et al., 2017; 

Hornig-Kjarsgaard, 1998; Ihlen et al., 2014). Andersen (1987a) and Schilling (2013) also 

describe apatite cumulate inclusions in calcite carbonatites of the Fen Complex. Similar 

apatite inclusions are in samples from the unaltered carbonatite and have partly 

survived the rødbergitisation event as apatite-rich relics. The central part of apatite 
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relics is mainly made of polycrystalline apatite relic with dendritic patches of dolomite, 

barite and barian phlogopite (Fig. 6-38). Scattered large hopper crystals of hematite 

occur in some of these relics (Fig. 6-39D). The apatite relics are partly replaced, and the 

amount of alteration minerals increases towards the rim. The rim itself is completely 

replaced by an alteration mineral assemblage (Fig. 6-39C) with a high concentration of 

hydrothermal monazite-(Ce) of up to ~20 Vol-% in the outer 500-µm layer (Fig. 6-38C, 

Fig. 6-38B). Similar to the earlier-described REE-mineralisation in fractures, veins and 

patches (Fig. 6-16; Fig. 6-17; Fig. 6-18; Fig. 6-28), monazite-(Ce) is often intergrown with 

barite. A halo of calcite is detectable near monazite-(Ce) crystals.  

Locally, Barite-Phlogopite veins are in contact with apatite relics, which triggered the 

preferred precipitation of monazite-(Ce) from the vein fluid along with the apatite relic 

(Fig. 42A). The formation of hydrothermal monazite at the expense of apatite is a 

commonly observed feature in carbonatites and is caused by the interaction of 

carbonatite with hydrothermal fluids (Chakhmouradian and Mitchell, 1998; Giebel et al., 

2017; Moore et al., 2015; Smith et al., 1999). This highlights the importance of barite-

phlogopite veins as an essential feeder system for monazite.  

 

6.2 Geochemical results  

The progressive rødbergitisation of the Bjørndalen transect is visible at outcrop scale 

from the change in colour (reddening) and texture (grain size reduction) of the rock. This 

visible change during rødbergitisation of the carbonatite is associated with a systematic 

change of the whole-rock chemical composition. This chapter will focus on the 

distribution of Rare Earth Elements (REE) and thorium (Th) along the Bjørndalen transect 

(Fig. 6-40). 
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Figure 6-40: Sketch of the Bjørndalen transect, which is divided into three different alteration zones: rødbergite 

(red), transitional rødbergite (yellow) and unaltered or very weakly altered carbonatite (blue).For each sampling 

point, the concentration for REE, LREE, HREE and Th is plotted exactly below the sampling location. Additionally, 

the bottommost plot shows the ratios of La/Yb as an indicator for LREE to HREE fractionation.  

 

On average, the unaltered carbonatites within the Bjørndalen transect contain a low 

concentration of REE (≤1600 ppm) and Th (≤220 ppm). Transitional rødbergite shows a 

large variation in REE concentration. The western transitional rødbergites have the 

lowest REE concentration within the transect (≤1000 ppm), whereas the eastern 

transitional rødbergites contain the highest concentration of REE within the whole 
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Bjørndalen transect (≤16,000 ppm). Although the western and eastern transitional 

rødbergites are optically very similar, the eastern transitional rødbergites exhibit a high 

density of REE mineral bearing micro-veins (type I-III; Fig 6-35; Fig. 6-36). Fully 

transformed rødbergite is enriched in REE (1200–11,000 ppm) and has the highest 

concentration of Th within the transect (≤1000 ppm). 

Figure 6-40 shows the concentration of REE, LREE, HREE, Th and La/Yb ratio for each 

sample relative to the sample position along the transect. The graphs for REE, LREE and 

La/Yb are similar with a maximum at the eastern transitional rødbergite. This peak of 

REE and LREE corresponds to higher amounts of monazite-(Ce) bearing veins (vein type 

II; Fig 6-35; Fig. 6-36). Besides increasing the concentration of REE, Monazite-(Ce) 

separates LREE and HREE much more efficiently than apatite or calcite and therefore 

causes higher La/Yb ratios (Chakhmouradian et al., 2016). Unlike LREE, the graphs of 

HREE and Th show a maximum in central rødbergite — with up to 500 ppm HREE. 

Samples (16-23-FE) enriched in HREE correlate with high amounts (~65 Vol-%) of red 

apatite veins (Fig. 6-37). In cases where the REE budget is mainly influenced by apatite 

rather than monazite, lower La/Yb ratios are the result. This is in agreement with the 

REE partitioning of monazite and apatite, which produces significantly flatter REE 

pattern in apatite compared to the steep LREE enriched REE pattern of monazite 

(Brassinnes et al., 2005; Chakhmouradian et al., 2017; Chen et al., 2017). In cases where 

monazite is replaced by apatite, LREE are preferentially leached, which results in a 

relative enrichment in HREE (Smith et al., 2018).   

The chondrite-normalised data plot (Fig. 6-41) shows a similar picture with an overall 

LREE-dominated distribution, which is typical for magmatic rocks in general and 

carbonatite in particular.  
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Figure 6-41: REE concentrations normalised to CI1-chondrite values from McDonough and Sun (1995).A) Igneous 

carbonatites show a relative enrichment of LREE to HREE with a moderately decreasing slope towards HREE. The 

range of carbonatite curves from A is displayed as a grey area in plot B and C for comparison. B) Transitional 

rødbergite samples show two distinctly different groups. One group of samples have a similar REE distribution to 

the unaltered carbonatites and belong to the western transitional zone. The sample 16-20-FE shows a slight HREE 

enrichment. The second group in the diagram has a much higher concentration of LREE and a slightly higher 

concentration of HREE and belongs to the eastern transitional rødbergite. The slope of the curve is much steeper, 

and the curve has a slightly irregular shape. C) Rødbergite samples show a range of REE patterns with some samples 

(apatite veins) having a flat HREE slope and relatively high HREE concentrations not accompanied by large LREE 

enrichments compared to unaltered carbonatites. Other rødbergite samples show a strong LREE enrichment 

similar to the eastern veined transitional rødbergites, but with generally higher concentrations of HREE.  
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Samples dominated by monazite-(Ce), e.g., the eastern transitional rødbergite, show the 

highest values of LREE with a very steep slope. On the contrary, the REE pattern of 

sample 16-23-FE is influenced by the presence of apatite, showing a flat curve with high 

absolute HREE concentrations (Fig. 6-41).  

The element distribution in the Bjørndalen transect produces a zonation with Th and 

HREE concentrated in rødbergite at the centre of the alteration zone, and LREE locally 

concentrated in transitional rødbergite with a high vein density. 

 

6.3 Discussion 

In this subchapter, the geochemistry of the transect is linked with the mineralogy to 

create a deeper understanding of the REE mineralisation forming processes. Prior to 

this, the focus will be on the alteration of the unaltered mineral composition and on the 

important definition of what “unaltered” actually means.  

 

6.3.1 Original and alteration mineral assemblage 

There is clear textural evidence that the minerals of the unaltered carbonatite (e.g. 

pyrite, synchysite-(Ce) and apatite) are systematically replaced by an alteration mineral 

assemblage (e.g., hematite, monazite-(Ce), barite, phlogopite, quartz, calcite, barian 

orthoclase and allanite)e.g. the breakdown of pyrite and replacement by hematite (Fig. 

6-11; Fig. 6-12; Fig. 6-23); the breakdown of synchysite-(Ce) and replacement by 

hematite (Fig. 6-12); the replacement of apatite and apatite relics by an alteration 

mineral assemblage of monazite-(Ce) and minor amounts of barite, phlogopite, calcite 

and hematite (Fig. 6-28; Fig. 6-29; Fig.6-38; Fig. 6-39); the precipitation of a network of 

hematite with minor amounts of calcite and monazite-(Ce) within the original dolomite-
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calcite groundmass (Fig. 6-10; Fig.6-16; Fig. 6-23; Fig. 6-24; Fig. 6-25; Fig. 6-31); the 

increasing amount barite (Fig. 6-15; Fig. 6-23; Fig. 6-25), quartz (Fig. 6-27), barian 

orthoclase (Fig. 6-25) and phlogopite (Fig. 6-26) with progressing rødbergitisation; veins 

with various amounts of phlogopite, barite, allanite, synchysite-(Ce), calcite and quartz 

(Fig. 6-24, Fig. 6-36).  

However, it is important to understand that even pristine carbonatite (unaltered) is 

likely to have experienced postmagmatic alteration. As pointed out in chapter 3, 

carbonatites are significantly more susceptible to changes in their original magmatic 

texture than silicate rocks, and their evolution commonly involves a variety of post-

magmatic processes, including exsolution and subsolidus re-equilibration with 

carbothermal-derived fluids (Broom-Fendley et al., 2016; Chakhmouradian et al., 

2015b). Because the focus of this thesis lies on the rødbergitisation process, the term 

‘unaltered carbonatite’ used here includes rocks affected by early post-magmatic 

processes before the rødbergitisation. The unaltered carbonatite of the Bjørndalen 

transect is no exception and displays signs of postmagmatic processes (Fig. 6-4).  

As argued by Andersen (1989b) and as will be shown in chapter 6.3.6, the hydrothermal 

event causing the formation of rødbergite involves an intense reaction of carbonatite 

with an oxidising, at least partly external, fluid. The formation of rødbergite discussed 

here therefore goes beyond the classic early post-magmatic processes of exsolution and 

subsolidus re-equilibration in carbonatites.  

One of the most obvious non-magmatic textures in the unaltered carbonatite is the fine-

grained intergrowth of calcite and dolomite in the groundmass (Fig. 6-4). This is a 

common observation in carbonatites and is likely to be the product of post-magmatic 

dolomitisation. According to Chakhmouradian et al. (2016), dolomite has a much smaller 
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capacity to incorporate REE into its structure compared with calcite (up to 2000 ppm 

REE). During dolomitisation, the excess REE are released, which could have served as an 

initial REE source, forming the accessory REE-fluorocarbonates in the unaltered 

carbonatite. The pyrite-fluorite-REE-fluorocarbonate cluster shows textural evidence of 

a postmagmatic origin (Fig. 6-5). However, these clusters are part of the unaltered 

carbonatite, which is being attacked by the rødbergitisation fluid, and more importantly, 

cannot be seen in transitional rødbergites and rødbergites. Therefore, it is likely that 

these clusters are either the product of postmagmatic processes or alteration caused by 

an early/distant rødbergitisation fluid.  

The main minerals of the Bjørndalen carbonatite – dolomite, calcite, apatite, magnetite, 

pyrite and columbite – are considered as the unaltered mineral assemblage. They are 

typically part of an “unaltered” mineral assemblage in carbonatites in the Fen Complex 

and worldwide (Woolley and Kempe, 1989). Some of the textures provide supporting 

evidence of their original magmatic nature. For example, the lozenge-shaped, oriented 

apatite relics show evidence for a magmatic/late magmatic segregation (Fig. 6-4). This 

segregation is not seen in any rødbergite samples and can be better explained by 

cumulate forming processes in the carbonatitic magma reservoir (Chakhmouradian et 

al., 2017). Therefore, the segregation is considered to have happened before the 

rødbergitisation. Columbite locally contains inclusions of apatite, which are not coming 

from the surrounding groundmass due to their different shape and size (Fig. 6-6). This 

indicates columbite was formed at an earlier magmatic stage (cumulate) and was 

incorporated in the carbonatitic magma during ascent. On the other hand, there is 

textural evidence that the accessory minerals in the unaltered carbonatite, e.g. barite 

and quartz formed in a hydrothermal environment. These minerals are part of vein 
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mineral assemblages in the unaltered carbonatite (Fig. 6-34) as well as part of the 

rødbergitisation alteration mineral assemblage (Fig. 6-15; Fig. 6-23; Fig. 6-25; Fig. 6-27), 

and therefore indicate a postmagmatic origin in the unaltered carbonatite. Based on the 

available evidence, it is not possible to tell if they are the result of post-magmatic 

processes or the remote alteration halo of the rødbergitisation. REE-fluorocarbonates, 

which are the dominant REE carrier in the unaltered carbonatites (Fig. 6-5; Fig 6-8), show 

similar textures. Amongst the four described forms (inclusion, intergrowth, vein and 

pyrite-aggregate) only the small inclusions of REE-fluorocarbonates in minerals of the 

unaltered assemblage are, without a doubt, prior to the rødbergitisation.  

The presence of a fine network of Fe-oxide veins along carbonate grain boundaries are 

signs of initial alteration of carbonatite (Fig. 6-10; Fig. 6-14). Although REE-

fluorocarbonates are dissolved and replaced by Fe-oxides during initial rødbergitisation 

(Fig. 6-12B), REE-fluorocarbonates, e.g. in pyrite clusters could result from a distant early 

rødbergitisation halo, which is not easily distinguished by red Fe-oxide precipitation. As 

the amount of fine disseminated Fe-oxide between grain boundaries increases, it 

produces a stronger red colouration in the rock, hence the name rødbergite. The 

alteration includes oxidation (of magnetite and pyrite to Fe-oxides), recrystallisation and 

replacement of unaltered mineral assemblage, leading to alteration mineral assemblage 

of ferroan dolomite, barite, barian phlogopite, calcite and hematite minor monazite-

(Ce), quartz, pyrite and barian orthoclase and accessory REE-fluorocarbonates and 

allanite (Fig. 6-15; Fig.6-23; Fig. 6-27; Fig. 6-36).  
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6.3.2  Hydrothermal REE-mineralisation 

As REE-fluorocarbonates are replaced by the initial rødbergitisation of unaltered 

carbonatite (Fig. 6.12), monazite-(Ce) becomes the most common REE-carrier in 

transitional rødbergite (Fig. 6-16, Fig. 6-17, Fig. 6-18, Fig. 6-21, Fig. 6-38) and rødbergite 

(Fig. 6-25, Fig. 6-27, Fig. 6-28, Fig. 6-29, Fig. 6-30, Fig. 6-39). Monazite-(Ce) is part of the 

alteration mineral assemblage of hematite, calcite, barite and barian phlogopite and 

occurs in three different forms: (a) in monazite-(Ce) veins and veinlets (Fig. 6-16, Fig. 6-

25, Fig. 6-27, Fig. 6-28, Fig. 6-31, Fig. 6-36), (b) in the groundmass (Fig. 6-17, Fig. 6-18, 

Fig. 6-36) and (c) around apatite-dolomite relics and apatite grains (Fig. 6-28, Fig. 6-29, 

Fig. 6-30, Fig. 6-38, Fig. 6-39). During the penetration of the carbonatite by the 

rødbergitisation fluid, hematite, barite, phlogopite and carbonates precipitated 

together with minor monazite-(Ce) in the form of (a) veins and (b) in interstitial grain 

boundary spaces within the groundmass. This explains the intergrowth of monazite-(Ce) 

with barite (Fig. 6-17; Fig. 6-18; Fig. 6-36; Fig. 6-42), barian phlogopite (Fig. 6-36; Fig. 6-

42) and hematite (Fig. 6-16; Fig. 6-25; Fig. 6-28) in monazite veins as well as in the 

groundmass. The concentration of hydrothermal monazite-(Ce) on the outer rim of 

apatite-dolomite relics in rødbergite (Fig. 6-39) and transitional rødbergite (Fig. 6-38) is 

the result of the apatite-replacement reaction (Fig. 6-42). When the rødbergitisation 

fluid came in contact with apatite, the REE preferentially precipitated as monazite-(Ce), 

by either partial or full replacement of apatite (Fig. 6-28; Fig. 6-29; Fig. 6-30).  
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Figure 6-42: Combined large-area EDS mosaic and a schematic line drawing of an ‘apatite 

trap’ for REE-mineralisation in rødbergite (sample 15-90-FE). A) Combined large-area EDS 

mosaic of a rødbergite illustrates the distribution of monazite-(Ce) (green-yellow) on the 

outer rim of an apatite relic from an unaltered apatite-inclusion-bearing carbonatite, partly 

replaced during rødbergitisation. There is a rootless barite-phlogopite vein (set II) – a possible 

feeder fracture – to the right of the apatite relic. Mineral abbreviations: Ap – apatite, Phl – 

phlogopite, Brt – barite, Hem – hematite, Mnz – monazite-(Ce). B) Schematic diagram 

showing the replacement of the apatite relic. Transport of the replacement fluid occurred 

along set II veins, which are comprised of barite, phlogopite ± hematite and monazite-(Ce). 

The concentration of replacement minerals, e.g., monazite-(Ce), trace a ghost outline. The 

outer rim of the apatite relic is significantly enriched in monazite-(Ce) plus barite, phlogopite 

and dolomite. The replacement zone is a mix of apatite relics and hydrothermal minerals like 

barite and phlogopite. The core of the apatite relic consists mainly of apatite and dolomite.  
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Hence apatite, and in particular the apatite-rich relics, acted as a REE ‘trap’ during the 

formation of rødbergite. The source of the REE is, in all three cases, the rødbergitisation 

fluid. The zone of transitional rødbergite with the highest concentration of REE (Fig. 6-

40) also has the highest density of veining (Fig. 6-13). The fully-transformed rødbergite 

has, in general, a lower density of veins and there is an analogy with replacement skarn 

deposits where the margins of replacements are characterised by vein skarn (feeder 

fractures), whereas massive skarn shows no clear vein assemblage (Kim et al., 2015).  

Minor carriers of REE are allanite and REE-fluorocarbonates. Allanite only occurs as part 

of allanite vein type III in transitional rødbergite (Fig. 6-36). The allanite vein postdates 

the main hematisation and represents an evolved feeder structure —please refer to 

chapter 6.1.4 for more details. REE-fluorocarbonates are rarely part of transitional 

rødbergite and rødbergite. They occur, occasionally in veinlets of hematite-calcite with 

monazite-(Ce) (Fig, 6-31), in interstitial groundmass space intergrown with, e.g. barite 

(Fig. 6-19, Fig. 6-32). Therefore, it is possible that the rødbergitisation fluid, out of which 

monazite-(Ce) precipitates, is also able to precipitate REE-fluorocarbonates under the 

right physicochemical conditions. Occasionally, allanite veins show the precipitation of 

REE-fluorocarbonates. Monazite-(Ce) is the only REE-mineral that concentrates around 

apatite relics (“apatite trap”) (Fig. 6-42), due to the unique nature of the replacement 

reaction. 

 

6.3.3  REE stability in the hydrothermal fluid of the Bjørndalen transect 

The breakdown of REE-fluorocarbonates in igneous carbonatites (Fig. 6-12) and the 

strong enrichment of REE in rødbergite (Fig. 6-40) — by formation of hydrothermal REE-

minerals in the groundmass (Fig. 6-17), in veins (Fig. 6-16, Fig. 6-36) and around apatite 
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“traps” (Fig. 6-29, Fig. 6-39) — is evidence for solubility and mobility of REE in the 

rødbergitisation fluids. The REE are relatively insoluble in aqueous solution due to their 

high charge and high ionic potential and are therefore considered to be immobile 

elements during hydrothermal alteration (White, 2013). Nevertheless, under the right 

conditions, REE can undergo complexing with preferentially “hard” ligands and become 

mobile elements. Several experimental studies have emphasized the important role of 

fluoride, sulphate and chloride ligands to form stable REE complexes in hydrothermal 

fluids at 200–400 °C in geological environments (Williams-Jones and Migdisov, 2014; 

Williams-Jones et al., 2012), with REE-sulphate complexes dominating at temperatures 

>300 °C in weakly acidic fluids (Migdisov and Williams-Jones, 2014). The ubiquitous 

presence of barite as part of the alteration mineral assemblage in rødbergite (Fig. 6-15; 

Fig. 6-23), including in the monazite and allanite veins (Fig 6-36), suggests an important 

role for sulphate complexes in REE mobilisation. Additionally, experimental studies have 

shown that sulphate inhibits the formation of monazite from fluorapatite (Harlov and 

Förster, 2004), which highlights the importance of barite precipitation coupled to 

monazite-(Ce) formation (Feng et al., 2016). Sulphate was released by the breakdown of 

sulfides in unaltered carbonatites (Fig. 6-11, Fig. 6-27) through the reaction with 

oxidising hydrothermal fluid.  

Experimental studies have further demonstrated that the stabilities of REE-fluoride, -

sulphate and -chloride complexes decrease strongly with decreasing temperature and 

increasing pH (Migdisov and Williams-Jones, 2014; Williams-Jones and Migdisov, 2014; 

Williams-Jones et al., 2012). Therefore, cooling of the hydrothermal fluid, or reaction 

with carbonate host rocks leading to a pH-increase in the fluid, are potential geological 

mechanisms for triggering precipitation of REE-minerals from aqueous solutions. Of 
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particular relevance to the Bjørndalen transect is the experimental evidence that fluid-

rock reactions of fluorine- and sulphate-bearing aqueous fluids with phosphate-rich host 

rock is a highly effective trigger for the destabilisation of the aqueous REE-complexes, 

resulting in the precipitation of REE-phosphate minerals such as monazite-(Ce) (Louvel 

et al., 2015; Migdisov and Williams-Jones, 2014). This mechanism fully explains the 

textural evidence that relics of apatite layers acted as a trap for REE via the crystallisation 

of monazite-(Ce) in rødbergite (Fig. 6-38; Fig. 6-39; Fig. 6-42) in the Bjørndalen transect. 

 

6.3.4  LREE and HREE decoupling 

The mobilisation of the REE, as discussed in the previous chapter 6.3.3 is variable within 

the group of REE because the radii of the REE are variable (Fig. 2-1). The HREE have 

sufficiently small radii that they can substitute in common minerals (e.g. garnet that can 

concentrate the HREE relative to the LREE in a garnet-bearing rock). The geochemical 

results of the Bjørndalen transect show clear evidence for a decoupling of LREE and HREE 

during the formation of rødbergite, and monazite-(Ce) and allanite veins. While some 

rødbergite samples show a concentration of HREE relative to LREE (Fig, 6-40), the 

majority of the REE mineralised samples shows a tendency towards high La/Yb ratios 

(Fig. 6-41). Experimental work has shown that at temperatures >150 °C, aqueous LREE-

complexes are generally more stable than HREE-complexes, in particular, those 

involving fluoride as the dominant transporting ligand (Williams-Jones et al., 2012). This 

means that HREE first drop out of solution when aqueous REE-complexes are 

destabilised and that LREE remain in solution longer and are transported over longer 

distances compared to HREE. For instance, Williams-Jones et al. (2012) showed how a 

temperature drop of a REE-bearing fluid in a feeder vein system resulted in a distinct 
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fractionation of REE, with the LREE being transported further along the feeder veins, 

down the temperature gradient (Fig. 6-43). Therefore, the observed LREE-HREE 

decoupling and the concentration of HREE in the central rødbergite (Fig. 6-40) in the 

Bjørndalen transect can be explained by their relative immobility compared to LREE. 

HREE precipitated in the area of strongest alteration (rødbergite), whereas LREE 

remained in solution and migrated further away from the centre of alteration domain, 

into the alteration halo (now represented by the transitional rødbergites). The 

hydrothermal monazite and allanite micro-veins are an inherent part of the rødbergite 

formation process. Areas with a high abundance of these veins (possible feeder 

fractures), as in the eastern transitional rødbergite zone, show the strongest enrichment 

of LREE in the bulk rock samples. Additionally, red apatite veins influence the La/Yb ratio 

(Fig. 6-37). Samples with a high amount of red apatite veins show the lowest La/Yb ratios 

within the Bjørndalen transect (Fig. 6-23; Fig. 6-40). This is likely due to the portioning 

curve of apatite, which combines two overlapping portioning curves for the Ca1 site and 

Ca2 site. The resulting portioning curve is almost flat, with a slight maximum for the 

MREE (Chakhmouradian et al., 2017). The relatively even portioning of REE into apatite 

would result in relatively low La/Yb ratios. Another potential mechanism could be the 

preferential depletion of LREE from apatite by fluids as it was described for apatite from 

IOCG and IOA deposits (Krneta et al., 2017b). Apatite with such a LREE depletion 

commonly shows inclusions of the overprinting fluid in the form of hematite and or 

sericite (Krneta et al., 2017a). The red colouration of the apatite veins caused by 

hematite inclusion (Fig. 6-23) could be an indication of such a hydrothermal LREE 

depletion process.    
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Figure 6-43: Sketch is redrawn from Williams-Jones et al. (2012) to illustrate the different mobility of REE with 

respect to fluid temperature.(A) Progressing interaction of 1 kg of nepheline syenite (100 ppm Phosphate) with 

fluid containing 10 wt% NaCl, 500 ppm F and 50 ppm of La, Ce, Nd, Sm and Gd. During a constant pressure of 500 

bar and initial pH of 4.5, the fluid temperature cooled down from 400 °C to 200 °C. (B) Fractionation of individual 

REE after interaction of the rock with five aliquots of fluid. The enrichment factor is defined as 

(REE/ΣREE)Rock/(REE/ΣREE)initial solution. Note the tendency of heavier REE, e.g. Sm and Gd to stay closer to a hotter 

centre of fluid interaction than lighter REE (La, Ce and Nd), similar to HREE close to the centre of rødbergitisation 

in the Bjørndalen transect.  
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6.3.5  Th enrichment during rødbergitisation 

Thorium is one of the major obstacles for REE exploitation. Th is enriched in rødbergite 

along the Bjørndalen transect in a similar pattern like REE (Fig. 6-40). HREE and Th are 

enriched in rødbergite, relative to transitional rødbergite and unaltered carbonatite. Th 

is hosted in Th-minerals (thorite) and Th-bearing minerals (e.g. monazite-(Ce) – P6-15, 

P6-37, P6-43; synchysite-(Ce) – P6-11, P6-32, P6-52), as part of the alteration mineral 

assemblage associated with the rødbergitisation. The main Th host in the unaltered 

carbonatite is REE-fluorocarbonate (P6-11 in Fig. 6-8). The Th concentration in monazite-

(Ce), found in the monazite veins in the transitional rødbergite, is mainly below the 

detection limit of the EDS SEM (<0.5 wt%) and samples that show a significant LREE 

concentration due to a high density of REE-mineral bearing veins do not show elevated 

Th concentrations (Fig. 6-40). This indicates that Th was less mobile than LREE and 

precipitated earlier, together with HREE, in the centre of the alteration domain. 

 

6.3.6  Nature of the hydrothermal fluids of the Bjørndalen transect 

A comparison between the original and alteration mineral assemblages described in 

chapter 6.3.1 suggests that the hydrothermal fluids involved in the formation of 

hematite-barite-rich rødbergite and the observed REE enrichment, were more oxidised 

than the unaltered magnetite-pyrite-bearing carbonatites; this oxidised character of the 

fluid must have been acquired outside of the Fen Complex. Furthermore, Andersen 

(1984) presented strontium and oxygen isotopic evidence to show that fluids involved 

in rødbergite formation had high 87Sr/86Sr ratios and elevated δ18O. This suggests that 

the fluids involved in the REE mineralisation in the Fen Complex were not simply evolved 

melt-like hydrous fluids; such late-magmatic fluids often play a critical role in producing 
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high grades in REE-resources (Bodeving et al., 2017; Broom-Fendley et al., 2017b; 

Duraiswami and Shaikh, 2014; Smith et al., 2016; Wall and Mariano, 1996). Instead, the 

rødbergite fluids were hydrothermal and had at least partly equilibrated with 

Precambrian quartzofeldspathic gneisses outside of the Fen Complex, and possibly with 

groundwater (Andersen, 1984). REE are highly mobile in such fluids, producing REE-

mineralisation well outside of their magmatic source rock. This has been demonstrated 

for carbonatites, e.g. Kangankunde (Broom-Fendley et al., 2017b; Wall and Mariano, 

1996), as well as for peralkaline complexes, e.g. Strange Lake (Gysi and Williams-Jones, 

2013). Sediment-hosted replacement-type carbonatite REE deposits, e.g. Bayan Obo 

(Campbell and Henderson, 1997; Wu, 2008; Smith et al., 2015), breccia-hosted Fe-Cu-

Au-REE deposits, e.g. Olympic Dam (Groves and Vielreicher, 2001; McPhie et al., 2011; 

Oreskes and Einaudi, 1990), and unconformity-type REE ± U deposits, e.g., Athabasca 

Basin (Fayek and Kyser, 1997) are examples of even more distal deposits for which a link 

with fluids sourced by igneous carbonatite at depth have been proposed. Especially the 

REE mineralisation of Mount Weld shows indications of similar processes with a horizon 

of monazite within carbonatite laterite produced by groundwater alteration of apatite 

(Lottermoser, 1990; Smith et al., 2016).   

It is important to realise that the rødbergitisation process is happening in multiple stages 

as can be seen by the various generations of veins associated with the rødbergitisation 

(please refer to chapter 6.1.4 and Fig. 6-35; Fig. 6-36). The difference in vein mineral 

assemblage (monazite-(Ce), allanite and REE-fluorocarbonate) is evidence for the 

physicochemical change of the hydrothermal fluid during the rødbergitisation. A range 

of variables can change during the hydrothermal alteration of the carbonatite, which is 

effectively an equilibration process of carbonatite with hydrothermal fluid. The 
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temperature of the fluid alters as well as chemical composition, Eh, pH and fO2 due to 

mineral dissolution and reprecipitation. The intergrowth of REE-fluorocarbonates with 

barite and hematite, similar to monazite-(Ce)-mineralisation, shows the close stability 

fields of these REE minerals. Additionally, shifts in the redox potential of the 

hydrothermal fluid occurred. The general oxidising nature of the fluid caused the 

breakdown of pyrite in the unaltered carbonatite and formation of barite and Fe-oxides 

during the rødbergitisation. The presence of euhedral pyrite crystals, some of which 

display inclusions of monazite-(Ce), indicate the formation of hydrothermal pyrite (Fig. 

6-18). Although the alteration fluid mainly caused oxidation and formation of 

monazite-(Ce), there must have been occasions when REE-fluorocarbonates were 

formed, or reduction (pyrite formation) occurred during alteration. 

 

6.3.7 Rare Earth mineralisation model for Bjørndalen transect 

As already pointed out in Marien et al. (2018), the described findings of this thesis are 

not fully consistent with the existing model of Andersen (1984; 1986) for the REE 

mineralisation in rødbergite of the Fen Complex. Therefore, this chapter will introduce 

a new model involving parts of the Andersen model in unison with new observations 

from the Bjørndalen transect. 

A key element of the existing model by Andersen involves a progressive residual 

enrichment of insoluble REE-minerals by leaching and removal of the carbonate 

minerals during hydrothermal alteration (Andersen, 1984). Please refer to chapter 4 for 

a complete summary of Andersen’s model. Andersen’s model and the present model 

both propose alteration with post-magmatic oxidising hydrothermal fluids, which 

equilibrated with rocks outside of the Fen Complex. However, there are three main 
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reasons why the REE concentration cannot solely be explained by a residual enrichment 

of magmatic REE-minerals: 

a) The main REE carrier-mineral changes from REE-fluorocarbonates in the unaltered 

carbonatite (Fig. 6-5; Fig. 6-8; Fig. 6-12), to monazite-(Ce) in the transitional rødbergite 

(Fig. 6-16; Fig. 6-17, Fig. 6-18) and rødbergite (Fig. 6-28; Fig. 6-29). In Andersen’s REE-

mineralisation model, this must be due to a change of rock units from a REE-

fluorocarbonate-rich carbonatite to a monazite-(Ce)-rich carbonatite. However, the 

evidence presented in chapter 6.1 and further discussed in 6.3.1 clearly show the 

dissolution of REE-fluorocarbonates in unaltered carbonatites (Fig. 6-12) and formation 

of hydrothermal monazite-(Ce) as the major REE host in transitional rødbergite (Fig. 6-

16) and rødbergite (Fig. 6-28). The change of the REE host mineral is therefore not 

because of a change in rock units but rather a dissolution and reprecipitation process of 

REE minerals triggered by a hydrothermal fluid. The REE minerals do not remain stable 

during this process, as would be required by the Andersen model.   

b) Monazite-(Ce) in the transitional rødbergite and rødbergite is predominantly found in 

a network of fine veins (Fig. 6-16; Fig. 6-28) and is common where these veins are in 

contact or closely associated with apatite-dolomite relics of unaltered carbonatite as a 

result of the replacement of apatite by monazite-(Ce) (Fig. 6-42), with the relic apatite 

acting as a REE-trap. These textures are not present in unaltered carbonatite and require 

REE to be transported in a fluid phase.  

c) Geochemical analysis of samples from the Bjørndalen transect showed REE 

enrichment by more than an order of magnitude from carbonatite to rødbergite (Fig. 6-

40). This would require a major volume reduction by 90% in order to concentrate the 

supposed stable REE minerals and would be predicted to be accompanied by the 
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formation of porous rocks with cavernous mineral assemblages (Chakhmouradian et al., 

2015b), as well as collapse breccias. No field evidence for extensive brecciation 

(Andersen, 1987a) (Fig. 6-13; Fig. 6-22), or formation of highly porous, vug-rich rocks 

(Fig. 5-5) is apparent in the Bjørndalen transect.  

The new general model for the formation of rødbergite in the studied transect at 

Bjørndalen is consistent with the findings (Fig. 6-44). The model involves leaching of REE-

fluorocarbonates from unaltered carbonatites by highly oxidising, fluorine and sulphate-

rich fluids, and transport, reprecipitation and concentration of REE in new hydrothermal 

REE minerals, mainly monazite-(Ce). These zones of extensive fluid-rock interaction are 

marked by rødbergite, surrounded by alteration halos of transitional rødbergite. The 

progressive alteration of carbonatite to rødbergite in the Bjørndalen transect (Fig. 6-1) 

by an oxidising hydrothermal fluid caused the breakdown of REE-fluorocarbonates in 

unaltered carbonatite (Fig. 6-12) and precipitation of hydrothermal monazite-(Ce) along 

a fine, pervasive, irregular network of micro veins and around apatite-dolomite relics 

from unaltered carbonatite, where monazite-(Ce) is replacing apatite (Fig. 6-16; Fig. 6-

28).  

The newly formed monazite-(Ce) together with multiple generations of monazite-, 

allanite- and REE-fluorocarbonate-bearing veins account for the REE enrichment in 

rødbergite and transitional rødbergite samples by an order of magnitude relative to the 

unaltered carbonatite (Fig. 6-40). The relative enrichment of HREE, LREE and Th are 

variable throughout the Bjørndalen transect due to different element mobilities and the 

density of the REE-vein networks, which cause the development of overlapping zones of 

enrichment, with Th and HREE-rich zones being closer to the centre of alteration than 

the LREE-rich zone found in the alteration halo (Fig. 6-40).  
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Figure 6-44: Sketch of a schematic cross-

section of the Fen Complex (A) 

Hydrothermal alteration by external fluid 

along fault zones is causing 

rødbergitisation of the carbonatites. The 

alteration is preferentially located at the 

outer rim of the complex with monazite 

and allanite-veins extending beyond the 

rødbergitisation as part of a feeder 

structure. (B) Overlapping zones of REE 

leaching and precipitation zones of Th, 

HREE and LREE. The Bjørndalen transect 

is marked with a black ellipse in an area of 

carbonatite, rødbergite and feeder veins. 

HREE and Th are spatially closer 

associated with the centre (faults) of the 

rødbergitisation. LREE are more stable 

and therefore more mobile resulting in a 

concentration of LREE in feeder veins.  
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The newly proposed model for REE-mineralisation in the rødbergite has significant 

implications for a REE exploration strategy. The model predicts the existence of separate 

zones of HREE, LREE and Th enrichment throughout the Fen Complex. The selective 

exploitation of HREE and LREE without high Th concentrations (generally considered an 

undesirable element in REE exploitation) can now be better assessed. Moreover, LREE 

potentially form an enriched halo further away from the centre of alteration than 

expected. Because passive enrichment of REE minerals from unaltered carbonatites is 

not the cause for the REE mineralisation, the alteration fluid must have contained REE. 

Therefore, any lithotype in the complex (e.g., damtjernite or fenite) that was exposed to 

the same rødbergite-forming fluid is a potential exploration target.  

 

6.4 Conclusion  

Results of the study of the Bjørndalen transect reported in this chapter show that 

detailed mineralogical and geochemical investigations of the progressive transformation 

of unaltered carbonatite to rødbergite are essential to gain a deeper understanding of 

the REE-mineralisation process in the Fen Complex. There are four major key points:  

(i) The progressive alteration is associated with a 10-fold enrichment of REE in the 

altered samples relative to the unaltered carbonatite (Fig. 6-40). The main cause of this 

enrichment is the precipitation of hydrothermal monazite-(Ce) in the groundmass, and 

the occurrence of monazite- and allanite micro-veins, all associated with the rødbergite-

forming process (Fig. 6-16; Fig. 6-28, Fig. 6-38).  

(ii) The breakdown of REE-fluorocarbonates in unaltered carbonatites (Fig. 6-12) and the 

formation of monazite-bearing rødbergite (Fig. 6-16; Fig. 6-28) are caused by the 
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interaction between carbonatite and an oxidising aqueous hydrothermal fluid, in which 

REE were mobile. 

(iii) Locally, hydrothermal monazite-(Ce) is concentrated around apatite-rich relics in 

rødbergite (Fig. 6-38; Fig. 6-39, Fig. 6-42). These apatite-rich relics acted as a trap for REE 

by triggering the precipitation of monazite-(Ce), a mechanism predicted by physical-

chemical experiments.  

(iv) In addition to the enrichment of REE, the formation of rødbergite is also associated 

with an increased concentration of Th. However, there is evidence for partial decoupling 

of LREE, HREE and Th in the Bjørndalen transect, and the formation of separate zones of 

LREE, HREE and Th enrichment (Fig. 6-40).  

Based on the model for rødbergite formation by Andersen (1984), the new model can 

explain all the reported features and has significant implications for future REE 

exploration strategies. The model predicts the existence of separate zones of LREE, HREE 

and Th enrichment throughout the Fen Complex and highlights the importance of 

apatite-rich relics and REE-mineral veining for high-grade REE ore. If the REE 

mineralisation mechanism from the Bjørndalen transect are unique to the Bjørndalen 

transect or transferrable to the rest of the Fen Complex, is discussed in chapter 10.  
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7 Fen Road transect 

 

This chapter describes and explains the mineralogy, texture and geochemistry of rock 

samples from the Fen Road transect (Fig. 7-1). Similar to the previous chapter, the focus 

lies on the distribution of the rare-earth elements (REE), the prominent REE-minerals 

and the genetic link between postmagmatic petrological processes (e.g., 

rødbergitisation) and the REE mineralisation and distribution of Th. The Fen Road 

transect is treated as an individual system initially, but results and conclusions will be 

compared to those from the Bjørndalen transect (please refer to chapter 6).  

 

 

 

Figure 7-1: Photo of the Fen transect which is located alongside the road RV36 leading from Skien to Ulefoss.  
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Figure 7-2: Stitched photograph of the Fen transect with a corresponding classification sketch right . Starting in the SE, the Fen transect is divided into chloritised granitic gneiss, dolomite carbonatite, rødbergite and chlorite-bearing dolomite carbonatite. Blue stars mark samples (n = 

20) from the Fen Road transect. Large saw cutting marks from a former exploration campaign are illustrated as thick black lines.  
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7.1 Rock types  

The SE end of the Fen transect starts with a narrow zone of chloritised granitic gneiss 

(green), followed by unaltered carbonatite (blue), then rødbergite (red) and the largest 

part of the Fen Road transect comprises of carbonatite II (turquoise) (Fig. 7-2). The 

following section summarises the main observations for these rock types. The mineral 

composition of the different lithotypes of the Fen Road transect is illustrated in Tab. 7-

1.  

 

Table 7-1: Summary table of the identified minerals at the Fen Road transect and their approximate proportion in 

the different lithotypes. The three samples of dolomite-carbonatite are listed separately and exhibit a natural 

variation in the mineral assemblage. Mineral proportion symbols: xxx - >20 Vol%; xx – 5-20 Vol%; x – 1-5 Vol%; o - 

< 1 Vol%.  
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7.1.1 Chloritised Granitic Gneiss 

Chloritised granitic gneiss is a relatively dark coloured rock type with irregular shaped 

pinkish areas, surrounded by chlorite veins (Fig. 7-3).  

 

 

Figure 7-3: Scan of a chloritised granitic gneiss polished block (Ø = 3 cm) from sample 16-80-FE. Chlorite 

dominates the dark areas while the pinkish patches are a mix of fine-grained quartz, calcite and apatite.  
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Figure 7-4: Combined large-area EDS mosaic of sample 16-80-FE in Fig. 7.3. There are two main areas visible, a 

chlorite-rich yellow area and a quartz-rich red area. The yellow area represents a chlorite-rich vein cutting through 

the quartz dominated chloritised granitic gneiss in red. Ap – Apatite, Cal – Calcite, Chl – Chlorite, Fe-Dol – Fe-

Dolomite and Qz – Quartz. 

 

The main minerals (Tab. 7-1) in the chloritised gneiss are chlorite, quartz, apatite and 

calcite, which occur in a complex fine-grained intergrowth (Fig. 7-4). Chlorite causes the 

dark colouration of the rock. The pinkish patches show a higher concentration of quartz, 

calcite and apatite. Black veins of chlorite and ferroan dolomite (Vein type 1 (V1) – 

please refer to chapter 7.1.7) crosscut the chloritised granitic gneiss.  
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Accessory minerals are barite, albite, zircon, columbite, TiO2, pyrite and sphalerite; the 

latter is a minor component of a thin quartz vein (Vein type 2 (V2) – please refer to 

chapter 7.1.7). Zircons appear in chloritised gneiss as fractured subhedral crystals (Fig. 

7-5) which is a distinctly different texture compared to the round poikilitic grains in 

chlorite veins. REE-minerals or REE-bearing minerals are not present in chloritised 

granitic gneiss. The obliteration of the original texture and mineralogy of the protolith 

makes a proper classification problematic. During the field campaign, the rock was first 

classified as a fenite because of the brecciated texture with pinkish patches (Fig. 7-3). 

The classification as chloritised granitic gneiss is supported by the fact that chlorite is 

rather uncommon as the main mineral in fenites (please refer to chapter 3). Additionally, 

there is no alkali-rich mineral (e.g., arfvedsonite, riebeckite, aegirine-augite, K-feldspar 

or phlogopite) — commonly present in fenites (Elliott et al., 2018) — with the chloritised 

granitic gneiss.  

 

Figure 7-5: BSE-SEM image of chloritised granitic gneiss groundmass comprised of a complex heterogeneous 

intergrowth of chlorite (Chl), Fe-dolomite (Fe-Dol), apatite (Ap) and quartz (Qz). Zircons (Zrn) occurs as fractured 

anhedral crystals (16-80-FE).  
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Additionally, Andersen (1984; 1987 & 1989) described a chloritised granitic gneiss in the 

eastern part of the Fen Complex postdating the fenitisation and linking it with the A3 

metasomatism (chapter 4). According to Andersen (1989a), the A3 metasomatic event 

was caused by groundwater-derived hydrothermal fluids infiltrating the eastern part of 

Fen and is seen as the reason for rødbergitisation of ferrocarbonatite. 

7.1.2 Fluorite-rich Carbonatite 

Fluorite mineralisation in the Fen transect occurs in the contact zone between 

chloritised granitic gneiss and unaltered carbonatite (Tab. 7-1). The fluorite 

mineralisation is visible due to its strong purple colouration (Fig. 7-6).  

 

 

Figure 7-6: Scan of a polished block (Ø = 3 cm) showing fluorite mineralisation (purple) crosscut by 

two different vein generations (16-81-FE). Clusters of calcite-REE-fluorocarbonates are highlighted 

(transparent red area). Ap – Apatite, Cal – Calcite, Dol – Dolomite and Fl – Fluorite. 
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Additionally, the rock type exhibits brown to whitish coloured relics of dolomite and 

multiple white to ochre coloured veins. The groundmass is mainly composed of fluorite 

with 5-10 Vol% of dolomite and barite. The dolomite crystals show a weak preferred 

orientation, are homogeneously distributed within the fluorite groundmass (Fig. 7-7) 

and are not associated with a vein. Furthermore, the texture of dolomite crystals 

resembles the texture of dolomite from carbonatite I (please refer to chapter 7.1.3).  

 

 

Figure 7-7: The combined large-area EDS mosaic of Fig. 7.6 reveals a complex genetic history of the fluorite 

mineralisation with an apatite vein, dolomite-quartz vein and barite-quartz vein cross-cutting the fluorite 

mineralised zone (16-81-FE). Brt – Barite, Cal – Calcite, Dol – Dolomite, Fl – Fluorite, Py – Pyrite, Qz – Quartz and 

Syn – Synchysite-(Ce). 
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Barite, on the other hand, forms irregular clusters with spatial affinity to veins and is, 

therefore, part of the alteration mineral assemblage. The whitish apatite vein (Vein type 

3 (V3) – please refer to chapter 7.1.7) is up to 5 mm thick (Fig. 7-6). A detailed EDS-BSE 

map reveals a thin central part of barite, quartz and apatite within the apatite vein (Fig. 

7-8). The outer rim of the apatite vein shows relics of groundmass dolomite, which 

indicates the formation of a vein salvage as opposed to a fracture-filling vein. Minor 

amounts of fine-grained synchysite-(Ce) are in the centre of the vein, intergrown with 

barite and quartz. The second set of whitish-yellowish veins (Vein type 4 (V4) – please 

refer to chapter 7.1.7) of 0.5 to 2 mm thickness can be distinguished (Fig. 7-6). The 

second set of veins comprises dolomite with minor quartz and sporadic pyrite clusters 

(Fig. 7-7, Fig. 7-8). 

 

 

Figure 7-8: A blown-up section of the combined large-area EDS mosaic shows an area where all the main vein types 

are visible. The apatite vein is several mm wide with a homogenous distribution of dolomite crystals. Dolomite 

veins are discontinuous, with varying thickness and cross-cut the apatite vein. The quartz-barite vein runs along 

the centre of the apatite vein and cross-cuts the dolomite veins. A small amount of synchysite-(Ce) is associated 

with the barite clusters and the quartz-barite vein (16-81-FE). Ap – Apatite, Brt – Barite, Dol – Dolomite, Fl – 

Fluorite, Py - Pyrite and Qz – Quartz. 
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The dolomite vein seems to cross cut the apatite veins for the most part but does not 

cut through the central part of barite and quartz 

Red coloured clusters of calcite-synchysite-(Ce) are randomly distributed within the 

fluorite groundmass (Fig. 7-6) with no apparent genetic relationship to the apatite or 

dolomite veins (Fig. 7-7). These clusters are up to 2 mm in size and have the highest 

concentration of REE minerals in the fluorite sample (Fig. 7-9). Synchysite-(Ce) and 

calcite are in a complex intergrowth, which indicates co-precipitation of the two mineral 

phases (Fig. 7-10; Fig. 7-11).    

 

 

Figure 7-9: A blown up section of the combined large-area EDS mosaic (Fig 7.7), showing a complex intergrowth of 

synchysite-(Ce) and calcite (16-81-FE).Ap – Apatite, Brt – Barite, Cal – Calcite, Dol – Dolomite, Fl – Fluorite, Py – 

Pyrite, Qz – Quartz and Syn – Synchysite-(Ce). 
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Figure 7-10: A blown-up BSE-SEM image section of the combined large-area EDS mosaic (Fig 7.9), showing the 

replacement of fluorite and pyrite by the synchysite-(Ce) – calcite cluster (16-81-FE). Ap – Apatite, Brt – Barite, Cal 

– Calcite, Dol – Dolomite, Fl – Fluorite, Py – Pyrite, Qz – Quartz and Syn – Synchysite-(Ce). 

 

 

Figure 7-11: A blown-up BSE-SEM image section (Fig 7.10), showing the complex intergrowth of synchysite-(Ce) 

and calcite (16-81-FE). Cal – Calcite and Syn – Synchysite-(Ce). 
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7.1.3 Dolomite-Carbonatite  

Dolomite-carbonatite shows no sign of rødbergitisation (Fig. 7-12A) or is weakly 

influenced in contact with rødbergitised other lithotypes (Fig. 7-12B). Dolomite-

carbonatite mainly comprises of ferroan dolomite, dolomite, apatite, and pyrite with 

minor amounts of barite, quartz, columbite, Fe-oxide and REE-fluorocarbonates (Tab. 7-

1; Fig. 7-13).  

 

  

Figure 7-12: A: Scan of a polished block (Ø = 3 cm) of an unaltered carbonatite with white carbonate and greyer 

translucent apatite (16-84-FE). The opaque minerals, e.g., pyrite, are showing a preferred orientation. B: Scan of a 

polished block of an unaltered dolomite-carbonatite in sharp contact with a heterogeneous carbonatite breccia, 

which is mineralogically similar to the chlorite-bearing dolomite carbonatite (16-85-FE). The carbonatite breccia 

has a red colouration due to rødbergitisation. The precipitation of Fe-oxide stops almost completely at the contact 

between both carbonatites marked by a dashed orange line. 

 

Apatite forms weakly undulating elongated aggregates and disrupted layers with a 

strong preferred orientation (Fig. 7-13; Fig. 7-14). Pyrite forms subhedral to euhedral 

cubes that are solitary or part of elongated aggregates with similar orientations as the 

apatite layers (Fig. 7-13).  
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Figure 7-13: The combined large-area EDS mosaic of Fig. 7.12A shows undulating apatite layers with preferred 

orientation in a groundmass of dolomite.  The apatite layers are internally disrupted and cross-cut by an irregular 

network of ferroan dolomite veins. The chemical composition of the dolomite groundmass — A7-1 (marked with 

a blue line) — was reconstructed for a homogeneous area using the EDS-LAM (16-84-FE). Ap – Apatite, Brt – Barite, 

Col – Columbite, Dol – Dolomite, Fe-Dol – Ferroan Dolomite, Py – Pyrite and Syn – Synchysite-(Ce).  

 

A network of randomly oriented ferroan dolomitic to ankeritic veins (Vein type 10 (V10) 

– please refer to chapter 7.1.7) cut through the dolomitic to ferroan dolomitic 

groundmass (Fig. 7-13; Fig. 7-14; Fig. 7-15). The Fe concentration of the carbonate 

minerals in veins is always higher than the Fe concentration of the groundmass 

carbonates. The density of these Fe-rich carbonate vein networks varies, and veins can 

make up to 20 Vol% of the sample (Fig. 7-15). 
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Figure 7-14: The enlarged view of Fig. 7.13 illustrates the undulating apatite layers and highlights the network of 

ferroan dolomite veins with dashed blue lines (16-84-FE). Ap – Apatite and Dol – Dolomite. 

 

Besides the fine network of Fe-dolomite veinlets (V10), there are four other vein types. 

Calcite-dolomite-barite veins (V5) with a significant amount of red coloured synchysite-

(Ce) (Fig. 7-13). Quartz veins (V6) with an irregular intergrowth of quartz, hematite, 

barite, apatite and REE-fluorocarbonates (Fig. 7-15; Fig. 7-16). Pyrite-ankerite veins (V7) 

comprising euhedral pyrite in a groundmass of ankerite and quartz with subordinate 

amounts of REE-fluorocarbonates (Fig. 7-15; Fig. 7-17). Apatite-barite veins (V8) with 

minor amounts of quartz, apatite, chlorite, monazite-(Ce) and REE-fluorocarbonates 

(Fig. 7-18; Fig. 7-19; Fig. 7-20; Fig. 7-21). Please refer to chapter 7.1.7 for more 

information on the different vein types. 
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The concentration of barite in the dolomite-carbonatite groundmass significantly 

increased towards the contact with rødbergite (Fig. 7-18). Chlorite occurs intergrown 

with irregular-shaped apatite (V8) as well as barite (Fig. 7-19). Similar to barite, the 

chlorite concentration increases towards the contact with rødbergite (Fig. 7-18). 

 

 

Figure 7-15: The combined large-area EDS with two different colour settings. The left part of the image is the 

standard colouration, and the right part has a different colour set to highlight the network of ferroan dolomite 

veinlets (16-96-FE). Pyrite- (V7), quartz- (V6) and Fe-dolomite veins (V10) are annotated. Additionally, Fig. 7-16 and 

Fig. 7-17 are marked by a red frame. Ap – Apatite, Brt – Barite, Bst – Bastnäsite, Dol – Dolomite, Fe – Fe-oxide, Fe-

Dol – Ferroan Dolomite, Py – Pyrite and Qz – Quartz. 
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Figure 7-16: A magnified BSE-SEM section of a quartz vein (V6) showing a cluster of bastnäsite-(Ce), fluorite, quartz 

and hypidiomorphic blades of Fe-oxide (16-96-FE). Ap – Apatite, Bst – Bastnäsite-(Ce), Fe – Fe-oxide, Fe-Dol – Fe-

Dolomite, Qz – Quartz and Syn – Synchysite-(Ce). 

 

 

Figure 7-17: A magnified BSE-SEM section of a pyrite vein (V7) showing bastnäsite-(Ce)-synchysite-(Ce) aggregates 

as minor component of the vein assemblage (16-96-FE). Ank – Ankerite, Brt – Barite, Bst – Bastnäsite-(Ce), Py – 

Pyrite, Qz – Quartz and Syn – Synchysite-(Ce). 
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Figure 7-18: The combined 

large-area EDS mosaic of Fig. 

7.12B. The heterogeneous 

carbonatite breccia is 

characterised by smaller 

crystal size and a higher 

proportion of non-carbonate 

phases, barite in particular. 

The dolomite-carbonate has a 

higher concentration of 

hydrothermal barite proximal 

to the carbonatite breccia (16-

85-FE). Apatite-barite veins 

(V8) are annotated, and a red 

frame marks Fig. 7-19, which 

represents a synchysite-(Ce)-

rich section of V8. Ap – 

Apatite, Brt – Barite, Dol – 

Dolomite, Py – Pyrite, Qz – 

Quartz and Syn – Synchysite-

(Ce). 

 

Depending on the sample, the most dominant REE mineral is either synchysite-(Ce) or 

bastnäsite-(Ce). Synchysite-(Ce) forms elongated clusters in intergrowth with chlorite 

(Fig. 7-19; Fig. 7-20). These clusters are up to 3 mm long and are in loose association 

with apatite-barite veins (V8) and Fe-dolomite veinlets (V10). Locally, synchysite-(Ce) is 

replaced by monazite-(Ce) and barite (Fig. 7-21). Red clusters (0.5 x 2.0 mm) of 

synchysite-barite are part of calcite-dolomite-barite veins (V5) (Fig. 7-12A). 

Bastnäsite-(Ce) occurs in quartz veins (V6) (Fig. 7-15; Fig. 7-16) and pyrite veins (V7) (Fig. 

7-15; Fig. 7-17) — individual crystals in quartz veins are generally less than 200 µm in 

size (Fig. 7-16). 
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Figure 7-19: A magnified BSE-SEM section of Fig. 7-18 is showing a synchysite-(Ce) cluster as part of an apatite-

barite vein (V8) within dolomite-carbonatite (16-85-FE). Note the brecciation of the dolomite groundmass by a fine 

network of ferroan dolomite (V10). Ab – Albite, Ap – Apatite, Dol – Dolomite, Fe-Dol – Ferroan Dolomite and Syn 

– Synchysite-(Ce). 

 

 

Figure 7-20: A magnified BSE-SEM section of Fig. 7-19 is illustrating the intergrowth of synchysite-(Ce) and 

hypidiomorphic chlorite blades as part of an apatite-barite vein (V8) (16-85-FE). Brt – Barite, Chl – Chlorite, Dol 

– Dolomite, Fe-Dol – Ferroan Dolomite and Syn – Synchysite-(Ce). 
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Figure 7-21: A BSE-SEM image of a sheet-like synchysite-(Ce) with minor bastnäsite-(Ce). The REE-fluorocarbonates 

are being replaced by barite and monazite-(Ce) aggregates. (16-85-FE).  Brt – Barite, Bst – Bastnäsite-(Ce), Dol – 

Dolomite, Fe-Dol – Ferroan Dolomite, Mnz – Monazite-(Ce) and Syn – Synchysite-(Ce).  

 

 

 

 

 

 

 

 

 

 

 



 
189 

 

7.1.4 Chlorite-bearing Dolomite-Carbonatite 

 

Figure 7-22: Scan of a polished block of a heterogeneous chlorite-bearing dolomite-carbonatite (16-95-FE). 

 

The second carbonatite variety is a dark coloured chlorite-bearing dolomite-carbonatite 

with little or no sign of rødbergitisation (Fig. 7-22). The mineral composition is similar to 

the dolomite-carbonatite (Tab. 7-1) with a significantly higher amount of chlorite and 

higher Fe concentration of the ferroan dolomite — 

(
𝐹𝑒+𝑀𝑛

𝑀𝑔
)

dolomite−carbonatite
= 0.16   <   (

𝐹𝑒+𝑀𝑛

𝑀𝑔
)

chlorite−bearing 

dolomite−carbonatite

= 0.48  
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(A7-1; Fig. 7-13; A7-2; Fig. 7-23). Chlorite-bearing dolomite-carbonatite is comprised of 

ferroan dolomite, ankerite, chlorite, apatite, Fe-oxides, quartz, pyrite with minor 

amounts of fluorite, barite, bastnäsite-(Ce) and synchysite-(Ce) (Tab.7-1).  

Hydrothermal apatite occurs as irregularly shaped clusters (ø ca. 1 cm) intergrown with 

chlorite and Fe-oxide (Fig. 7-23). These clusters have a poikilitic texture with inclusions 

of ferroan dolomite. Locally, apatite relics thin out and become part of a quartz vein (V9 

– please refer to chapter 7.1.7). Pyrite is present in the form of euhedral to subhedral 

solitary cubes and aggregates (Fig.7-23). Clusters of Fe-oxide (< ø 0.3 cm) show a 

poikilitic texture comparable to the apatite clusters. Additionally, they have inclusions 

of small barite crystals (< 5 µm) and are in intergrowth with ankerite (7-24).  
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Figure 7-23: The combined large-area EDS mosaic of Fig. 7.25 (16-95-FE).The chemical composition of the ferroan 

dolomite groundmass — A7-2 (marked with a blue line) — was reconstructed for a homogeneous area using the 

EDS-LAM. Ap – Apatite, Chl – Chlorite, Fe – Fe-oxide, Fe-Dol – Ferroan Dolomite, Py – Pyrite, Qz – Quartz and Ti – 

Ti-oxide. 

 

Chlorite with minor quartz and barite has precipitated as a fine network in interstitial 

areas permeating through the whole rock, resulting in the dark colouration of the 

carbonatite. Chlorite-bearing dolomite-carbonatite is cross-cut by parallel veinlets (V9), 

containing quartz, hematite, chlorite, apatite and barite (Fig. 7-23). The dominant REE 

minerals are bastnäsite-(Ce) and synchysite-(Ce) in the form of stacked sheets in variable 

proportions of the individual minerals (Fig. 7-24; Fig. 7-25). These stacks are 50 – 200 µm 
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in size with a subhedral shape and show clear signs of alteration. Some crystals have a 

poikilitic texture with a high concentration of apatite inclusions (Fig. 7-26, Fig. 7-27).  

 

 

Figure 7-24: A BSE-SEM image of sheeted bastnäsite-(Ce) - synchysite-(Ce) crystal in the vicinity of an Fe-oxide 

cluster with small (<5 µm) barite inclusions. The stack of REE-fluorocarbonates displays straight edges as well as 

rigid edges indicating partially replacement by the surrounding groundmass (16-95-FE). Ank – Ankerite, Bst – 

Bastnäsite-(Ce), Brt – Barite, Fe – Fe-oxide, Fe-Dol – Ferroan Dolomite and Syn – Synchysite-(Ce). 

 

In turn, the apatite inclusions contain Fe-oxide inclusions. The shape and texture are 

distinctly different from the other forms of REE-fluorocarbonates described in the Fen 

transect and the Bjørndalen transect. REE-fluorocarbonates are in proximity or direct 

contact with Fe-oxides and are surrounded by ankerite as part of the Fe-oxide mineral 

assemblage, which is distinctly different from the ferroan dolomite groundmass of the 

carbonatite (Fig. 7-24). 
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Figure 7-25: A BSE-SEM image of Fe-oxide cluster with a sheeted bastnäsite-(Ce) - synchysite-(Ce) crystal (50 x 75 

µm) and many irregulars formed pieces of smaller (50 x 75 µm) REE-fluorocarbonates. Thorite occurs as small 

idiomorphic crystals within the ferroan dolomite groundmass and as an inclusion with the REE-fluorocarbonates. 

The EDS point analysis of thorite shows impurities of Fe, REE and Ca from the surrounding minerals.  

 

The REE-fluorocarbonate crystals show a euhedral shape towards the hydrothermal Fe-

oxide-ankerite assemblage and a completely irregular shape towards the ferroan 

dolomite groundmass (Fig. 7-24). Occasionally, bastnäsite-(Ce) and synchysite-(Ce) 

contain 1 – 5 wt% of Th and inclusions of thorite (Fig. 7-25).  

Thorite is the only Th-mineral present at the Fen Road transect and occurs either as 

idiomorphic cubes (< 2 µm) or as inclusion in REE-fluorocarbonates (0.5 – 10 µm) (Fig. 7-

27). Thorite is associated with the alteration mineral paragenesis of Fe-oxide, chlorite 

and REE-fluorocarbonate. 
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Figure 7-26: A BSE-SEM image of bastnäsite-(Ce) with minor synchysite-(Ce) within an apatite vein. The outline 

of the REE-fluorocarbonates is rigid, and the crystal partially displays a Swiss-cheese texture (16-95-FE). Ap – 

Apatite, Bst – Bastnäsite-(Ce), Fe – Fe-oxide, Fe-Dol – Ferroan Dolomite and Syn – Synchysite-(Ce). 

 

 

Figure 7-27: The enlarged BSE-SEM image of Fig. 7-26 reveals the poikilitic texture of bastnäsite-(Ce) with 

inclusions of idiomorphic small (< 2 µm) apatite crystals (16-95-FE). The EDS analysis of bastnäsite-(Ce) in P7-42 

reveals a Th concentration of 4.2 wt%. Ap – Apatite and Bst – Bastnäsite-(Ce). 
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7.1.5 Rødbergite 

 

 

Figure 7-28: Photo of a røbergite hand specimen with different shades of red (16-89-FE). 

 

The protolith of Fen Road rødbergite is carbonatite. The intense Fe-oxide alteration 

(rødbergitisation) caused a strong colouration in multiple shades of red (Fig. 7-28). The 

different coloured patches intertwine and mingle in irregular to schlieren-type shape. 

Relics of pinkish carbonatite are common in rødbergite samples. The contact between 

rødbergitised carbonatite breccia and dolomite carbonatite is sharp (Fig. 7-12B), with no 

sign of the formation of transitional rødbergite. Zones enriched in hydrothermal barite 

outside of the rødbergitisation front show that the effect of alteration goes beyond the 

visible red precipitation of Fe-oxide (Fig. 7-18).  
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7.1.6 Rødbergite Veins 

Rødbergite veins (V11 – please refer to chapter 7.1.7) occur in chloritised granitic gneiss 

(Fig. 7-29), dolomite-carbonatite and chlorite-bearing dolomite-carbonatite. They stand 

out due to their red colouration induced by Fe-oxide inclusions and Fe-oxide clusters 

within the veins (Tab. 7-1; Fig. 7-30; Fig. 7-31). Besides Fe-oxide, they consist of variable 

proportions of quartz, calcite, pyrite and monazite-(Ce) with minor chlorite, apatite, 

barite, barian orthoclase, synchysite-(Ce) and thorite (Tab. 7-1).  

Rødbergite veins are composed of a fine intergrowth of calcite and quartz (Fig. 7-32). 

Pyrite crystals form euhedral to subhedral cubes between 0.25 – 1.00 mm in size (Fig. 

7-31, Fig. 7-32) and occur within the rødbergite vein groundmass as well as several 

centimetres into the host rock.  Although some samples of rødbergite contain euhedral 

pyrite, the concentration tends to be significantly lower than in rødbergite veins.  
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Figure 7-29: Field photo of a heterogenous vein of rødbergititic and chloritic parts within chloritised granitic gneiss 

(16-79-FE). 
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Figure 7-30: Photo of hand specimen of a rødbergitic vein cutting through heterogenous chlorite-bearing 

dolomite- carbonatite (15-79-FE). The contact zone exhibits a higher pyrite concentration than carbonatite further 

away from the rødbergite vein. 

 

 

Figure 7-31: 

Photograph of a 

polished block of a 

red rødbergite vein 

with dark reflecting 

idiomorphic pyrites 

(16-82-FE). 
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Figure 7-32: The combined large-area EDS mosaic of Fig. 7-31. The left part of the image illustrates mineral phases 

of the vein, and the right part highlights the distribution of monazite-(Ce) (yellow) within the vein (16-82-FE). Ap – 

Apatite, Brt – Barite, Cal – Calcite, Chl – Chlorite, Fe – Fe-oxide, Fe-Dol – Ferroan Dolomite, Mnz – Monazite-(Ce), 

Py – Pyrite and Qz – Quartz. 

 

Rødbergite veins contain a high concentration of monazite-(Ce) (Fig. 7-32; Fig. 7-33), 

which is associated with the highest concentration of REE within the Fen transect with 

up to 20000 ppm. Monazite-(Ce) contains an average Th concentration of 3 wt%. The 

individual crystal size of monazite-(Ce) is between 2.5 and 20 µm, but the individual 

monazite-(Ce) crystals regularly form larger aggregates (1 mm) (Fig. 7-33; Fig. 7-34; Fig. 

7-35).  
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Locally, monazite-(Ce) engulfs crystals of synchysite-(Ce), but more commonly forms 

crystals along the grain boundaries of quartz and calcite (Fig. 7-33; Fig. 7-34),  

and occasionally is intergrown with chlorite surrounded by calcite (Fig. 7-34; Fig. 7-35). 

SEM-EDX point analyses of groundmass calcite show a high concentration of Fe. 

Nevertheless, Fe concentrations are not high enough to match the mineral composition 

of ankerite or siderite. The cause for the detectable concentration of Fe is a high density 

of homogenously distributed tiny (< 500 nm) Fe-oxide inclusions within the calcite 

(Fig. 7-35). Calcite without inclusions occurs as small cross-cutting veinlets (Fig. 7-34). 

The contact between the rødbergite vein and the host rock is sharp to irregular with only 

a narrow zone of mild alteration of the host rock mineralogy caused by the rødbergite 

vein. The most common Th-bearing mineral is monazite-(Ce), with a Th concentration 

between 0.5 – 1.0 wt% (Fig. 7-33).   

 

Figure 7-33: A BSE-SEM image of a rødbergite vein with large idiomorphic pyrites in a groundmass 

of quartz and calcite. Monazite-(Ce) is the very bright phase, which penetrates the rødbergite vein 

through a fine network of micro veins (16-82-FE). The EDS analysis of monazite-(Ce) in P7-43 shows 

a Th concentration of 2.9 wt%. Cal – Calcite, Py – Pyrite, Mnz – Monazite-(Ce) and Qz – Quartz. 
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Figure 7-34: The enlarged combined EDS element map of Fig. 7-33 shows fine-grained monazite-(Ce) 

forming around chlorite and calcite. The calcite has many inclusions of tiny (< 5 µm) Fe-oxides giving the 

phase a bluish tint. A later generation of inclusion-free calcite veins crosscut the other phases and has a 

more turquoise colouration. (16-82-FE). Cal – Calcite, Chl – Chlorite, Fe – Fe-oxide, Mnz – Monazite-(Ce) and 

Qz – Quartz. 

 

 

Figure 7-35: The enlarged combined BES-SEM image shows monazite-(Ce) in intergrowth with the inclusion-

rich calcite. Spot analysis do not provide a reliable chemical composition of the inclusion due to their small 

crystal size, but the analyses showed that besides Fe-oxide, a Ca-P phase has to be present. This phase is 

likely to be apatite. (16-82-FE). Ap – Apatite, Cal – Calcite, Fe – Fe-oxide and Mnz – Monazite-(Ce). 
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7.1.7 Other vein types 

 

Table 7-2: Vein types of the Fen transect with their mineral composition, host rock and detected REE-minerals. 
 = rarely – common          = REE mineral contains Th     Gr = Chloritised Granite Gneiss; Fl = Fluorite 

mineralisation; C1 = Dolomite-Carbonatite; C2 = Chlorite-bearing Dolomite-Carbonatite.  

 

 

A wide range of veins is distinguished within the Fen transect (Tab. 7-2). Although they 

vary in terms of their mineral composition and texture, it is possible to simplify and 

summarise the veins into categories.  
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Broadly speaking they are either apatite-dominated, quartz-dominated or carbonate-

dominated (Fig. 7-36) with additional amounts of pyrite, Fe-oxide, chlorite, barite, 

fluorite, synchysite-(Ce), bastnäsite-(Ce), monazite-(Ce), barian orthoclase, orthoclase 

and accessory thorite, sphalerite, galena and chalcopyrite.   

 

 

 

Figure 7-36: Fen transect vein classification based on the relative amount of Qz = quartz, Cab = carbonate and Ap 
= apatite.   = no REE-minerals to many REE-minerals       = REE-mineral contains Th.  
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7.2 Geochemical results  

 

Figure 7-37: Sketch of the Fen Road transect, which is divided into four different zones: rødbergite (red), 

carbonatite II —chlorite-bearing dolomite-carbonatite (turquoise), carbonatite I — dolomite-carbonatite (blue) 

and chloritised granitic gneiss (green) For each sampling point, the concentration of REE, LREE, HREE and Th is 

plotted exactly below the sampling location. Additionally, the last plot shows the ratios of La/Yb as an indicator for 

LREE to HREE fractionation. Three vein samples are excluded from the trend line and are represented with the  

symbol. 
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The REE concentration along the Fen transect (Fig. 7-37) varies from ca. 500 ppm REE in 

chloritised granitic gneiss to a rødbergite vein with ca. 21,000 ppm (2.1 wt%) of REE.  

 

Table 7-3: Average concentration of REE, LREE, HREE, Th and La/Yb for the main rock types of Fen transect.  
 

 

 

The average REE concentration of dolomite-carbonatite from the SE is 918 ppm (Tab. 7-

3). Locally the REE concentration can be significantly higher (up to 4871 ppm REE) due 

to the presence of REE-mineral bearing vein types V6 and V7 (Fig. 7-15). Chlorite-bearing 

dolomite-carbonatite has an average REE concentration of 5835 ppm, which is the 

highest observed REE concentration in lithotypes, unaffected by red rødbergitisation, at 

the Fen Road transect. The REE concentration of chlorite-bearing dolomite-carbonatite 

is ca. 6 times higher than the REE concentration of chlorite-free dolomite-carbonatite. 

Rødbergite and rødbergite veins have an average REE concentration of 8393 ppm and 

14729 ppm, respectively (Tab. 7-3).  

All of the samples are strongly enriched in LREE relative to HREE, which is illustrated by 

the ratio of La/Yb » 1 and is seen in the negative slope of the REE-normalized plot 

(Fig. 7-38).  
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Figure 7-38: REE concentrations normalised to CI1-chondrite values from McDonough and Sun (1995). The range 

of REE normalised values is represented in coloured boxes for rødbergite veins (n = 3), rødbergite (n = 4), 

carbonatite I (dolomite-carbonatite) (n = 2) and carbonatite II (chlorite-bearing dolomite-carbonatite) (n = 6) 

samples. Additionally, two dashed lines represent samples of fenite as well as fluorite mineralisation, respectively. 

The diagram shows a strong LREE enrichment relative to HREE in various degrees for all the rock types. While the 

boxes largely overlap for HREE, the values for LREE spread strongly with magnitudes between carbonatite I samples 

and rødbergite veins. There are no Ce or Eu anomalies present but a positive Yb anomaly for rødbergite veins and 

to a lesser degree for carbonatite II. The Yb anomaly is likely to be an artefact of an unidentified spectral overlap.   

 

A positive correlation between La/Yb ratio and REE concentration (Tab. 7-4) and 

furthermore a positive correlation between HREE and REE (Tab. 7-4) suggest that the 

process which concentrated REE lead to an absolute enrichment of LREE and HREE and 

a relative enrichment of LREE compared to HREE in the sample. Additionally, this is 

supported by the chondrite-normalised diagram (Fig. 7-38). In the HREE range, the curve 

is relatively flat and narrow while the LREE section of the graph has a steep curve with 

larger variations in concentration levels. Interestingly, the highest La/Yb is in a dolomite-
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carbonatite sample from the NW part of the section which is unaffected by Fe-oxide 

alteration but has a high density of REE-mineral bearing veins (V6 & V7). The presence 

of the REE-mineral-bearing veins caused a significant increase in LREE, while the HREE 

concentrations remained unaffected and are at the same level as in an unveined 

dolomite-carbonatite from the SE (Fig. 7-38). The concentration of Th in the Fen Road 

transect correlates positively with the concentration of REE and correlates slightly better 

with LREE than with HREE (Tab. 7-4). The highest concentrations of Th are in rødbergite 

veins, rødbergite and chlorite bearing dolomite-carbonatite (Tab. 7-3).  

The geochemical data show strong enrichment of REE, especially LREE and Th, during 

rødbergitisation.  

 

Table 7-4: Correlation matrix of REE, LREE, HREE, Th and La/Yb for the Fen Road transect. 
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7.3 Discussion 

7.3.1 Original and alteration mineral assemblage 

The mineral composition of unaltered dolomite-carbonatite and chlorite-bearing 

dolomite-carbonatite includes magmatic and early-postmagmatic minerals (Table 7-5). 

Carbonatites are significantly more susceptible to changes in their original magmatic 

texture than silicate rocks, and their evolution commonly involves a variety of post-

magmatic processes, including exsolution and subsolidus re-equilibration with 

carbothermal-derived fluids (Broom-Fendley et al., 2016; Chakhmouradian et al., 

2015b). Therefore, magmatic minerals, e.g., apatite, carbonate and pyrite, are likely to 

change.  

 

Table 7-5: The original- and alteration mineral assemblages of dolomite-carbonatite and chlorite-bearing 

dolomite-carbonatite in comparison to the minerals common in a rødbergite.   

 

 

For instance, apatite-carbonate layering in dolomite-carbonatite is a common feature in 

carbonatites worldwide (Chakhmouradian et al., 2017) and indicates a cumulate 
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formation or late magmatic solidification (flow foliation). The alignment of pyrite in the 

same layers could be the result of coprecipitation during crystallisation (Fig. 7-13). 

Alternatively, a subsolidus deformation event could have been responsible for creating 

oriented layers of apatite and pyrite. However, these layers are not present in chlorite-

bearing dolomite-carbonatite or rødbergite. Another observed feature is the fine 

irregular network of ferroan dolomitic to ankeritic veinlets in dolomite-carbonatite and 

chlorite-bearing dolomite-carbonatite (Fig. 7-13; Fig. 7.14; Fig. 7-15). It is unclear, if this 

feature developed in an early postmagmatic stage, or as part of a later alteration 

process. The fluorite mineralisation is a special case of carbonatite alteration. The 

texture of individual dolomite crystals and dolomite patches within the fluorite 

mineralisation described earlier (Fig. 7-7), indicates a replacement of carbonatite by a 

fluorite-rich solution. Later apatite veins crosscut the fluorite mineralisation but do not 

affect the individual dolomite crystals and are further crosscut but dolomite veins (Fig. 

7-7). The dolomite veins cross-cut most of the apatite but are interrupted by the centre 

of the apatite vein. This could be explained by a sequence of initial apatite, followed by 

dolomite and finally barite-quartz vein. The barite-quartz vein used the same pathway 

as the apatite vein and caused a reopening of the apatite vein. 

The REE concentration of dolomite-carbonatite is roughly six times less the REE 

concentration of chlorite-bearing dolomite-carbonatite. This significant difference in 

REE concentration is the result of a magmatic or hydrothermal enrichment or a 

combination of both processes. There is a general trend in carbonatite systems 

worldwide from an early calciocarbonatite to magnesiocarbonatite to an evolved 

ferrocarbonatite (please refer to chapter 3) (Woolley and Kempe, 1989). The 

evolutionary trend is usually associated with an increase in REE at the same time 
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because REE behave as incompatible elements in a carbonatite system (Woolley and 

Kempe, 1989). In the Fen transect the prevalent carbonate species in dolomite-

carbonatite and chlorite-bearing dolomite-carbonatite is ferroan dolomite with an 

observed significant increase of the (Fe+Mn)/Mg ratio from ca. 0.16 for dolomite-

carbonatite (Fig. 7-13), to 0.48 in chlorite-bearing dolomite-carbonatite (Fig. 7-23). 

Although the (Fe+Mn)/Mg ratio is based on semiquantitative LAM EDX-SEM analysis, the 

increase in (Fe+Mn)/Mg ratio in ferroan dolomite is significant. In case the increase in 

Fe is the result of magmatic evolution, the REE concentration should have increased at 

the same time. Alternatively, the increase in Fe could be the result of chloritisation. The 

chlorite-bearing dolomite-carbonatite comprises a high amount of chlorite, Fe-oxides, 

apatite and quartz (Fig. 7-23; Tab. 7-1). Based on their texture and mineral 

characteristics, these minerals belong to the alteration mineral assemblage (Fig. 7-24 & 

Tab. 7-5). The hydrothermal fluid responsible for the alteration mineral assemblage 

must have been enriched in Fe in order to form Fe-oxide and chlorite and could have 

caused an increase of Fe in the groundmass carbonates. The REE minerals present in 

chlorite-bearing dolomite-carbonatite are stacked sheets of synchysite-(Ce) and 

bastnäsite-(Ce) (Fig. 7-24 & Fig. 7-26). Although they are associated with the alteration 

mineral assemblage, they occur as partly replaced, subhedral and poikilitic crystals. This 

texture is significantly different from the usual fine intergrowth texture of hydrothermal 

REE-minerals observed in the rest of the Fen road transect (Fig. 7-10; Fig. 7-16; Fig. 7-

20). Nevertheless, this type of REE-fluorocarbonates is exclusively associated with a 

hydrothermal chlorite-Fe-oxide-apatite mineral assemblage, which indicates a 

hydrothermal origin for the REE-fluorocarbonates as well.  
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The minerals of the alteration assemblage (chlorite, apatite, quartz and Fe-oxide) in 

chlorite bearing dolomite-carbonatite are also an essential part in the rødbergite fluid 

as well as other vein fluids (Fig. 7-32). The similarities of the minerals assemblages draws 

a possible link between chloritisation and hydrothermal REE-mineralisation and 

rødbergitisation. The rødbergitisation at the Fen Road transect altered dolomite-

carbonatite and chlorite-bearing dolomite-carbonatite into red rødbergite, while 

simultaneously enriching the rock in REE and Th (Fig. 7-37; Fig. 7-38). The similarities 

between chloritisation and rødbergitisation indicate a genetic link. It is possible that the 

chemical alteration halo of the rødbergitisation fluid goes beyond the red coloured 

rødbergite. The lack of red colouration normally associated with the Fe-oxide 

precipitation might not be an absolute criterion for the alteration of the rock by 

rødbergitisation fluids —Fe-oxides are also part of the alteration mineral assemblage 

associated with the chloritisation.    

  

7.3.2 Hydrothermal Rare Earth Mineralisation 

All REE minerals observed in the Fen Road transect are of hydrothermal origin. This 

makes hydrothermal processes especially important for the REE enrichment at the Fen 

Road transect.  

The rødbergite veins are the fluid feeder system for a more widespread rødbergitisation 

of carbonatite. Since rødbergite veins are the source of REE enrichment in the 

rødbergitisation process, it makes sense that they show the highest concentration of 

REE (Fig. 7-38; Tab. 7-3). Rødbergite veins are not the only REE-mineral bearing veins in 

the Fen transect. From the 11 different vein types described for the Fen transect, 

including rødbergite veins, REE-minerals were detected in eight of the vein types (please 
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refer to chapter 7.1.7; Tab. 7-2). Contrary to rødbergite veins, the other REE-mineral 

bearing veins are thinner and range between 50 µm in case of Fe-dolomite-ankerite 

veins (V10; Fig. 7-14) and 5 mm for apatite veins (V3; Fig. 7-7). Additionally, the main 

REE carrier of V3, V4, V5, V6, V7, V8, V9 and V10 are REE-fluorocarbonates in contrast 

to the monazite-(Ce) dominated rødbergite veins (Tab. 7-2). The REE concentration 

varies between the different vein types. The presence of V5, V6 and V8 will significantly 

enhance the REE-concentration of a rock unit. The REE concentration of the dolomite-

carbonatite sample 16-96-FE (Fig. 7-15) is 5x above the average REE-concentration of 

dolomite carbonatite (918 ppm) due to the presence of V6 and V7 (Tab. 7-3). Although 

rødbergite veins are not the only vein-type to enhance the REE-concentration of a rock 

unit, they are more potent due to their greater thickness (5 – 15 cm).    

There are three major attributes influencing the overall REE budget of samples at the 

Fen transect A) the density of veining B) the rock type before rødbergitisation and C) 

rødbergitisation. Rødbergite veins or rødbergite altered chlorite bearing dolomite-

carbonatite with a high density of veining are the most promising targets for a high REE 

concentration. 

The main REE-mineral in rødbergite veins is monazite-(Ce) with minor amounts of REE-

fluorocarbonates. Monazite-(Ce) generally coprecipitates with chlorite, embedded in a 

groundmass of inclusion-rich (Fe-oxide and apatite) calcite, which is preferentially in 

vicinity of pyrite (Fig. 7-33; Fig 7-34). At the rim of rødbergite veins, the mix of calcite, 

Fe-oxide and monazite-(Ce) penetrates the wall rock along a network of ferroan 

dolomite and ankerite veinlets. This network of Fe-dolomite veinlets (V10) is present in 

most of the carbonatites at the Fen road transect and is likely to be the path for the 

more pervasive distal rødbergitisation. Besides the main REE-carrier monazite-(Ce), 
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minor amounts of REE-fluorocarbonates occur within the same cluster or micro-vein. 

Monazite-(Ce) and REE-fluorocarbonates are interchangeable depending on the 

physicochemical parameters at a given moment, and small local changes can lead to the 

change of the prominent REE-phase (Fig. 7-21). Monazite-(Ce) as the major REE phase is 

restricted to rødbergite veins. All the other types of REE-mineral bearing veins are 

dominated by synchysite-(Ce) and bastnäsite-(Ce).  

REE-fluorocarbonates are genetically associated with the alteration mineral assemblage 

and are often in intergrowth with apatite, Fe-oxide, barite, chlorite, quartz, ankerite and 

calcite. They are present in three different forms: 

A) In fluorite mineralisation as clusters of synchysite-(Ce) embedded in calcite with 

minor quartz and barite. Texturally very similar to monazite-(Ce) mineralisation in 

rødbergite veins (Fig. 7-9; Fig. 7-10; Fig. 7-11).  

B) As subhedral to anhedral aggregates in various kinds of calcite-dolomite-quartz-

apatite-barite veins (Fig. 7-16; Fig. 7-17; Fig. 7-19; Fig. 7-20; Fig. 7-21). 

C) As partly corroded-looking subhedral, occasionally poikilitic, stacks of bastnäsite-(Ce) 

and synchysite-(Ce) within apatite-Fe-oxide replacement fronts in chlorite-bearing 

dolomite-carbonatite (Fig. 7-24; Fig. 7-25; Fig. 7-26; Fig. 7-27).  

 

7.3.3 REE stability in the hydrothermal fluid of the Fen Road transect 

Based on the different styles of alteration mineral assemblages (Tab.7-2), which are 

associated with REE-minerals, the alteration mineral assemblages cannot be the result 

of a single hydrothermal fluid. The different styles of hydrothermal alteration were 

caused either by different fluid pulses generated by different sources and processes or 

by multiple hydrothermal cycles triggered by the same process that generated a variety 
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of fluids, which changed due to progressive interaction with the wall rock or a 

combination of both scenarios.  

The alteration mineral assemblage of rødbergite and rødbergite veins is more oxidised 

compared to the unaltered mineral assemblage (Tab. 7-5), which is underpinned by the 

higher concentration of Fe-oxides within the rødbergite and rødbergite veins (Fig. 7-32), 

and by the presence of the sulphate mineral barite (Fig. 7-39). The oxidised nature of 

the rødbergite fluid must have been acquired outside of the Fen complex. This notion is 

confirmed by strontium and oxygen isotopic analysis presented by Andersen (1984) that 

shows the fluid involved in rødbergite formation had high 87Sr/86Sr ratios as well as 

elevated ∂18O and therefore was at least partly equilibrated with Precambrian 

quartzofeldspathic gneisses outside of the Fen Complex, and possibly with groundwater.  
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Figure 7-39: Stability diagram of Fe-minerals depending on pH and fO2 at 250°C. Dashed lines mark the stability 

fields of S- specification. During the hydrothermal alteration of the carbonatite (blue), the unaltered mineral 

assemblage of magnetite and pyrite oxidised to hematite and barite, forming rødbergite (red). Rødbergite veins 

are comprised of barite, hematite as well as pyrite, which required more acidic conditions than rødbergite. The 

plot was modelled using the Geochemical Workbench Student edition V12.0 and the following parameters: T = 

250°C; p = 1000 bar; a[Fe2+] = 1; a[H2O] = 1; a[SO4
2-] = 10-2 (speciation enabled); a[K+] = 10-2; troilite supressed  

 

This suggests that the fluids involved in the REE mineralisation in the Fen Complex were 

not simply evolved melt-like hydrous fluids; such late-magmatic fluids often play a 

critical role in producing high grades in REE-resources (Bodeving et al., 2017; Duraiswami 

and Shaikh, 2014; Smith et al., 2016; Wall and Mariano, 1996). 

While rødbergite veins frequently contain pyrite and Fe-oxide together (Fig. 7-32; Fig. 7-

33; Fig. 7-34), other REE-mineral bearing veins show a high concentration of pyrite with 

very little or no Fe-oxides (V4; V7; Tab. 7-2). There is no evidence that a fluid producing 

a REE-mineral bearing pyrite-dolomite vein is more oxidised than an unaltered 
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carbonatite with essentially the same mineral paragenesis. Rather than assuming there 

is a separate reduced fluid able to mobilise REE, the presence of pyrite indicates the 

range of redox potential from a reduced fluid to an oxidised fluid. The progressive 

interaction of the oxidised external fluid with the carbonatite decreases the oxygen 

fugacity of the fluid. Therefore, even an initial oxidising fluid can create a reduced 

mineral paragenesis further down the evolution. It is important to realise that the 

hydrothermal alteration generally happens in multiple pulses. The carbonatite wall rock 

less chemically buffers the second pulse of fluid, and the redox-boundary is shifted from 

the fluid source further into the wall rock. In case the pathway of the fluid changes into 

primary carbonatite, the whole cycle starts again. In that way, it is possible to produce 

a range of different veins while having reduced and oxidised mineral assemblages at the 

same time (Fig. 39).  

In summary, the hydrothermal fluid causing rødbergitisation is an externally derived 

oxidising fluid. The fluid contains a variable concentration of Ca, Mg, Fe, Si, Ba, S, P, F, C 

and REE, although some of these elements, e.g., REE were acquired via interaction with 

the Fen Complex intrusives. The fluid preferentially forms calcite, dolomite-ankerite, 

barite, quartz, apatite, Fe-oxide, pyrite and chlorite (Tab.7-2). REE minerals are found in 

both oxidising and more reducing conditions with synchysite-(Ce) and bastnäsite-(Ce) 

being the dominant REE carrier in reduced environments (V3, V4, V5, V6, V7, V8, V9 and 

V10), and monazite-(Ce) preferentially found under more oxidizing conditions (V11).  
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7.3.4 REE mobilisation and precipitation  

The REE from the hydrothermal fluid are coming from the dissolution of REE-minerals 

(e.g. REE-fluorocarbonates) or REE-bearing minerals (e.g. calcite, dolomite-ankerite and 

apatite) from the unaltered carbonatite mineral assemblage. Carbonatite is a more 

fertile source for REE than the surrounding gneiss or other rock types of the Fen 

Complex. Chlorite-bearing dolomite-carbonatite contains partly corroded stacks of REE-

fluorocarbonate in contact with a Fe-oxide-apatite cluster (Fig. 7-26). This indicates a 

dissolving potential of REE-fluorocarbonates by an oxidising fluid.  

The mobilisation of the REE into solution is most efficiently accomplished by fluoride, 

sulphate and chloride ligands to form stable REE complexes in hydrothermal fluids at 

200 - 400 °C in geological environments (Williams-Jones and Migdisov, 2014; Williams-

Jones et al., 2012), with REE-sulphate complexes dominating at temperatures >300 °C in 

weakly acidic fluids (Migdisov and Williams-Jones, 2014). The presence of barite as part 

of the alteration mineral assemblage in rødbergite and six from eight REE-mineral 

bearing veins (Tab. 7-2) suggests an important role for sulphate complexes in REE 

mobilisation, especially under oxidising environments. The fine intergrowth between 

barite and REE-minerals (Fig. 7-9; Fig. 7-13; Fig. 7-21) indicates coprecipitation of these 

phases and underlines the importance of sulphate complexing. The breakdown of 

original sulfides in unaltered carbonatites after being in contact with the oxidising 

hydrothermal fluid is the most likely source for sulphate in the fluid. Additionally, 

fluoride might play a role as a complexing agent for REE ions, especially in reduced 

environments because fluoride can be form stable REE complexes with no sulphate 

present. The association of apatite (Fig. 7-27; Fig. 7-35) and fluorite (Fig. 7-10; Fig. 7-16) 

with REE-minerals and the presence of fluorite (V6; V9) and apatite (V3; V6; V8; V9; V11) 
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in REE-mineral bearing veins illustrates the importance of fluoride ligands for the REE-

mineralisation. Chlorite and calcite with Fe-oxides inclusions are also a common 

coprecipitation for REE-minerals (Fig. 7-10; Fig. 7-20; Fig. 7-34). The precipitation of REE-

minerals can be triggered by decreasing the stability of these complexes. Experimental 

studies have demonstrated that the stabilities of REE-fluoride, -sulphate and -chloride 

complexes decrease strongly with decreasing temperature and increasing pH (Migdisov 

and Williams-Jones, 2014; Williams-Jones and Migdisov, 2014; Williams-Jones et al., 

2012). Therefore, cooling of the hydrothermal fluid, or reaction with carbonate host 

rocks leading to a pH-increase in the fluid, are possible mechanisms for triggering 

precipitation of REE-minerals from aqueous solutions.  

 

7.3.5 A comparison between Bjørndalen and Fen Road 

Bjørndalen was the first site for a detailed investigation of the formation of rødbergite 

with 27 samples taken on a length of 30 m and the extensive use of SEM on these 

samples. The Fen Road transect has a length of 60 m with 19 samples taken along this 

transect and a fraction of the SEM time used compared to the investigation of the 

Bjørndalen transect. Nevertheless, lessons learned from the Bjørndalen transect were 

applied on the Fen Road transect for a more efficient and resourceful approach in 

collecting data. Therefore, the comparison between those two data sets is possible 

because both are based on reliable and representative data collection.  

The rock types chloritised granitic gneiss, fluorite-rich carbonatite and chlorite-bearing 

dolomite-carbonatite are not part of the Bjørndalen transect sensu stricto. While the 

dark chlorite-bearing dolomite-carbonatite and chloritised granitic gneiss are not 

present in the surrounding area, fluorite mineralisation is present proximal to the 
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Bjørndalen transect. Similarly to the Fen road transect, the fluorite mineralisation occurs 

at the contact between wall rock (fenite) and carbonatite. A brief investigation of the 

fluorite mineralisation in Fenite proximal (< 20 m) to the Bjørndalen transect failed to 

detect REE-minerals, in contrast to the fluorite mineralisation with synchysite-calcite 

clusters found at the Fen Road transect (Fig. 7-9).  

The level of REE concentration is on a similar level (± 1000 ppm) for unaltered dolomite-

carbonatite of both transects (Fig. 6-40; Tab. 7-3). The dark coloured chlorite-bearing 

dolomite-carbonatite, which does not occur at the Bjørndalen transect, has a higher 

average REE concentration with 5800 ppm (Tab. 7-3). The REE level for rødbergite is 

significantly higher for the Fen transect. Rødbergite veins which do not occur in the 

Bjørndalen transect are thicker than REE-mineral bearing veins within the Bjørndalen 

transect and have the highest concentration of REE of all the analysed samples (Fig. 7-

37). The process of rødbergitisation created a transitional alteration of carbonatite to 

rødbergite at the Bjørndalen transect (Fig. 6-1). A similar progressive alteration was not 

be observed at the Fen Road transect. The observed red colouration of the 

rødbergitisation seems to be rather sharp with a narrow halo of higher barite, chlorite 

and Fe-oxide concentration in the contact zone to carbonatite (Fig. 7-12B; Fig. 7-18). 

Veins also play an important role in the overall REE budget in both transects. Besides the 

REE-rich rødbergite veins, there are many different vein types with REE minerals in the 

Fen transect and Bjørndalen transect. For instance, the eastern transitional rødbergite 

from the Bjørndalen transect shows an increase of REE relative to the western 

transitional rødbergite by a factor of 10 (Fig. 6-40). Intense veining of the eastern 

transitional rødbergite causes this increase in REE. Similarly, the NW dolomite-

carbonatite (16-95-FE) of the Fen transect has two different REE-mineral bearing sets of 
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veins and a REE concentration that is five times higher than the average dolomite-

carbonatite from the Fen Road transect (Tab. 7-3). Apatite relics in rødbergite and 

transitional rødbergite from the Bjørndalen transect provide an effective way to 

precipitation clusters of monazite-(Ce) (Fig. 6-37; Fig. 6-38). Samples of the Fen Road 

transect do not show a similar trap mechanism, which might be for the following reason:  

a) It was not sampled or not accessible for sampling.  

b) The prevalent REE-minerals at the Fen Road transect are REE-fluorocarbonates 

rather than monazite-(Ce). The precipitation mechanism of REE-

fluorocarbonates is less affected by the addition of P into the hydrothermal 

system.  

REE-fluorocarbonates are the main carrier for REE at Fen Road transect, whereas 

monazite-(Ce) dominated mineralisation is prominent in the Bjørndalen transect. 

However, for REE-mineralisation associated with rødbergitisation at the Fen Road 

transect (e.g. rødbergite veins) the main REE-carrier is monazite-(Ce) (Fig. 7-33). 

The REE-mineral bearing veins of both transects have a similar mineral composition 

consisting of calcite, dolomite, quartz and barite ± Fe-oxide and apatite (Tab. 7-1; Fig. 6-

36). Barian phlogopite, which is typical of the alteration mineral assemblage of the 

Bjørndalen transect (Fig. 6-26), is not present at the Fen Road transect. Instead, chlorite 

is omnipresent as the dominant alumosilicate (Fig. 7-34). 

Both transects show a strong LREE enrichment relative to HREE due to hydrothermal 

processes. While the Bjørndalen transect shows a decoupling of HREE and LREE (Fig. 6-

40), this was not detected at the Fen transect. The Fen transect demonstrates a strong 

positive correlation of LREE, HREE and Th (Tab. 7-4).    
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Apatite veins from the fluorite mineralisation of the Fen Road transect have the same 

texture as those from the rødbergite of the Bjørndalen transect (Fig. 7-7; Fig. 6-37). In 

both cases, the thick apatite veins incorporate minerals from the host rock and preserve 

the orientation of these minerals. This evidence suggests, therefore, a metasomatic 

replacement of the rock by apatite. The centre of the metasomatic vein is, in both cases, 

a quartz-barite mix (Fig. 7-7; Fig. 6-37). The apatite zone is either part of a quartz-barite 

vein envelope or a preceding vein generation.   

 

7.3.6 Rare Earth mineralisation model for the Fen transect 

Similar to the Bjørndalen transect, the findings described for the Fen Road are not 

consistent with the model of Andersen (1984; 1986) for the REE-mineralisation in 

rødbergite of the Fen Complex. The following is a REE mineralisation model based solely 

on the Fen Road section. After evaluating all the data, including the Gruveåsen transect, 

chapter 10 will illustrate a unifying REE mineralisation model.   

The REE mineralisation of the Fen transect is the result of multiple stages: 

 

1. Fractional Crystallisation or Chloritisation?  

The Fen Road transect has two different types of carbonatites with significantly 

different REE concentrations. The groundmass carbonates of chlorite-bearing 

dolomite-carbonatite (Fig. 7-23) have a higher concentration of Fe and Mn 

relative to Mg than the groundmass carbonates of dolomite-carbonatite (Fig. 7-

13). This is generally a sign of a more evolved carbonatite magma. REE are 

incompatible elements in evolving carbonatite systems and enrich with 

continuing fractional crystallisation. However, during chloritisation Fe is added 
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to the system and could potentially increase the Fe-content of the groundmass 

carbonate as well. Based on textural evidence, the chloritisation of chlorite-

bearing dolomite-carbonatite is a hydrothermal alteration process. Chlorite is in 

general associated with a fine network of Fe-oxide, apatite and REE-minerals 

(Fig. 7-23; Fig. 7-24). Although the REE-minerals are only found in this mineral 

assemblage, which links them genetically (spatially) to the chloritisation, the 

texture suggests a more complex relationship. The REE-minerals are partly 

corroded subhedral, occasionally poikilitic, stacks of bastnäsite-(Ce) and 

synchysite-(Ce) (Fig. 7-24; Fig. 7-25; Fig. 7-26). This texture does not support a 

coprecipitation of REE minerals with the chlorite mineral assemblage and has not 

been observed for any other hydrothermal REE minerals within the Fen Road 

transect. However, the spatial association and texture indicate a relationship 

between hydrothermal process and REE mineralisation. The relative effect of 

fractional crystallisation and chloritisation on the REE enrichment is hard to 

quantify.  

 

2. Rødbergitisation  

Rødbergitisation at the Fen Road transect is a hydrothermal alteration of 

dolomite-carbonatite and chlorite-bearing dolomite-carbonatite caused by 

oxidising fluid penetrating the rock through crystal boundaries and rødbergite 

veins. Rødbergitisation caused the formation of monazite-(Ce), which correlates 

to a substantial increase of REE in the rock to an average of 8393 ppm in 

rødbergite (Tab. 7-3). The generally higher REE level of Fen Road rødbergite 

compared to Bjørndalen rødbergite is because the REE source for the rødbergite 
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fluid is chlorite-bearing dolomite-carbonatite rather than dolomite-carbonatite. 

Chlorite-bearing dolomite-carbonatite is, because of its higher REE 

concentration, a more fertile REE source than dolomite-carbonatite, resulting in 

higher REE concentration in the rødbergite fluid.  

Alternatively, the hydrothermal alteration is at a level for increased REE 

precipitation. There is necessarily an area of REE leaching and an area of REE 

precipitation. The higher REE concentration of the Fen Road rødbergite 

compared to the Bjørndalen rødbergite could be due to a position in the volume 

of hydrothermal alteration, which is in a more effective zone of REE 

precipitation.      

     

3. Veining 

Multiple generations of REE-mineral (either synchysite-(Ce) or bastnäsite-(Ce)) 

bearing veins are part of the Fen Road transect (Tab. 7-2). Although the mineral 

composition varies, most of the veins incorporate the following minerals: barite, 

apatite, chlorite, Fe-oxide, calcite and dolomite.   

The lack of cross-cutting relationships makes it impossible to establish relative 

timing. Additionally, it is important to note that the same minerals in different 

proportions make up the rødbergite veins. Therefore, it is likely that some of 

these veins represent different stages in the evolution of the rødbergitisation 

fluid. Pyrite-dominated veins represent a more reduced fluid chemistry than the 

oxidised rødbergite veins.  
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7.4 Conclusion  

Research on the Fen Road transect showed that the combination of a detailed 

mineralogical and geochemical investigation is necessary to understand the complex 

history of REE-mineralisation. The comparison between the Bjørndalen transect and the 

Fen transect revealed some fundamental commonalities with an additional layer of 

complexity. There are five major key points:  

a) Rødbergite, chlorite-bearing dolomite-carbonatite and none-rødbergite REE-

mineral bearing veins show similar mineral and geochemical characteristics (Tab. 

7-1; Tab. 7-2), which points to a common source.   

b) The REE concentration of the chlorite-bearing dolomite-carbonatite is 

significantly higher than the REE concentration of dolomite-carbonatite or any 

other rock type (excluding rødbergite) of the Fen Complex (Tab. 7-3).  

c) The hydrothermal formation of rødbergite from carbonatite caused an 8-fold 

and 1.5-fold average increase in REE concentration of for dolomite-carbonatite 

and chlorite-bearing dolomite-carbonatite, respectively (Tab. 7-3). Rødbergite 

veins yield the highest REE concentration, which is 21-fold and 4-fold higher than 

the average dolomite-carbonatite and chlorite-bearing dolomite-carbonatite, 

respectively. This increase in REE is caused by the formation of hydrothermal 

synchysite-(Ce), bastnäsite-(Ce) and monazite-(Ce) (Fig. 7-16; Fig. 7-24; Fig. 7-

33).  

d) The externally derived oxidising hydrothermal fluid, causing the rødbergitisation, 

produced a range of different mineral paragenesis with the following key 

minerals: calcite, dolomite-ankerite, barite, quartz, apatite, Fe-oxide, pyrite and 

chlorite (Tab. 7-2; Fig. 7-36). The ongoing reaction of the oxidising external fluid 
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with the reducing carbonatite host rock creates variable reaction conditions – 

from a carbonatite dominated reducing environment to a more oxidising 

environment in equilibrium towards the external fluid. REE minerals are found in 

both oxidising and reducing condition with synchysite-(Ce) and bastnäsite-(Ce) 

being the dominant REE carrier in reduced environments, and monazite-(Ce) 

preferentially found under oxidising conditions.  

e) The REE mineralisation at the Fen Road transect is similar to the Bjørndalen 

transect with regards to the following exceptions: The REE-rich chlorite-bearing 

dolomite-carbonatite from Fen Road transect does not have an equivalent at the 

Bjørndalen transect and is a major reason for the significantly higher level of REE 

concentration in the Fen Road rødbergite compared to the Bjørndalen 

rødbergite. REE-fluorocarbonates are significantly more abundant at the Fen 

Road transect compared to the monazite-(Ce) dominated Bjørndalen transect. 

Finally, there were no observed apatite traps concentrating REE at the Fen Road 

transect.     
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8 Gruveåsen Transect 

 

This chapter will focus on the effect of hydrothermal rødbergite-type alteration on REE 

and Th concentrations in different lithofacies within the Gruveåsen transect. The 

samples for this study were acquired along the Grønvoldvegen road following the 

northern side of Gruveåsen mining area. Along a length of ca. 850 m, 40 samples were 

collected, from which 25 samples were further chemically analysed. The Gruveåsen 

transect displays a greater variation of lithotypes compared to the other sites 

investigated in the Fen Complex and allowed for an investigation and visualisation of the 

REE distribution on a larger scale compared to the Bjørndalen transect or Fen Road 

transect. 

 

8.1 Rock types  

Figure 8-1 illustrates the distribution of the lithofacies and sample points at the 

Gruveåsen transect. The original map by Bergstøl and Svinndal (1960) had to be 

modified to represent the identified rock type of the sample along the Grønvoldvegen 

road. A detailed investigation to further map the extent of these newly defined 

lithological units across a wider area in the Fen Complex was not carried out.  

The Gruveåsen transect can be broadly divided into three parts. The western part is 

mainly comprised of carbonatites; the central part is a heterogeneous mix of 

carbonatite, damtjernite and rødbergite; and the eastern part comprises brecciated 

fenite, rødbergite and gneiss.  
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Figure 8-1: Simplified geological map of the Gruveåsen transect, which is located along the Grønvoldvegen road between the Gruveåsen mining district and lake Norsjø. Sampling points are marked by a green spot. Sampling points which were included in the study of the 

Gruveåsen transect are annotated. Map was modified after Bergstøl and Svinndal (1960).  
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The following subchapter summarises the main characteristics for the rock types of the 

Gruveåsen transect. The Gruveåsen transect is important for the understanding of 

rødbergitisation because all the major rock types (lithofacies), e.g., carbonatite, 

damtjernite and fenite underwent rødbergitisation. In the central part of the Gruveåsen 

area, around the Gruveåsen hill, it is generally not possible to identify the protolith of 

rødbergite because the alteration completely obliterated any feature of the former rock, 

whereas, at the Gruveåsen transect, which represents the outer zone of the 

rødbergitisation, remnants of unaltered rock are partially preserved. Contrary to the 

Bjørndalen- and Fen Road transect, the identification of the mineral species relies 

exclusively on field observation. With the experience gained from work on the other 

parts of the Fen Complex, it was possible to identify the main mineral composition. 

 

8.1.1 Carbonatite  

The carbonatite of the Gruveåsen transect is a leucocratic to mesocratic rock with a 

general increase of dark minerals from the west to the centre of the transect. The light 

coloured groundmass is composed of different proportions of white, beige, slightly 

blueish and reddish patches, which comprise of carbonate minerals and apatite (Fig. 8-

2). There is no preferred orientation within the groundmass visible. Minor amounts (1-

5 Vol-%) of pyrite are present in the form of irregularly shaped clusters. Rusty coloured 

coating around the pyrites is a sign for incipient oxidation of pyrite. There are minor 

amounts of euhedral, small, black crystals of magnetite and columbite. Fine irregular 

veins, clusters and patches of chlorite are the cause of the dark colouration of some 

carbonatite samples (Fig. 8-3) — comparable to the chlorite-bearing dolomite-

carbonatite from the Fen Road transect. Samples are often heterogeneous with white 
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and grey parts of mixed carbonate-apatite and dark parts of chlorite-magnetite in close 

proximity. Additionally, the sharp edges of some compartments are textural evidence 

for brecciation and incorporation of older carbonatite.  

 

 

 

 

Figure 8-2: Photo of 

a leucocratic 

carbonatite hand 

specimen with 

incipient signs of 

oxidation (16-25-

FE).  Ap – Apatite, 

Cal – Calcite, Dol – 

Dolomite and Py – 

Pyrite.  

 

Figure 8-3: Photo 

of a mesocratic 

carbonatite hand 

specimen with dark 

veins and schlieren 

of chlorite and 

magnetite 

illustrated by the 

black dashed line 

(16-27-FE). 
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Occasionally, carbonatite samples display a noticeable higher density, which due to a 

higher content of pyrite and magnetite, generally associated with the chlorite veinlet 

network.  

 

8.1.2 Dolerite 

One dolerite dyke cross-cuts the rocks in the centre of the Gruveåsen transect. The dyke 

is 25 cm wide and strikes N-S (356-81-W). The dolerite dyke is comprised of white to 

yellowish feldspar lath-shaped phenocrysts (ca. 2 mm) showing a slightly preferred 

orientation in the dark, fine-grained groundmass (Fig. 8-4). Additionally, there are 

angular to rounded light-coloured clast, possibly carbonatite xenoliths. The dolerite 

cross-cuts lithotypes mildly affected by the rødbergite alteration process, but is itself 

unaffected, and therefore post-dates the alteration. 

 

 

Figure 8-4: Photo of a 

porphyritic dolerite dyke with 

oriented laths of plagioclase 

and rounded grey inclusions 

of carbonate (16-49-FE). 
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8.1.3 Calcitic Ultramafic Lamprophyre 

The classic damtjernite from the type locality Damtjern occurs as a porphyritic intrusive 

dyke with phlogopite, amphibole and pyroxene phenocrysts in a black to slightly 

greenish silicate groundmass with magmatic carbonate. Damtjernite occurs in multiple 

localities throughout the Fen Complex and exhibits a characteristic dark colouration with 

reflective phlogopite phenocryst. However, the ultramafic lamprophyre at the 

Gruveåsen transect has ambiguous properties, placing it between a classic damtjernite 

and a mesocratic carbonatite. Ultramafic lamprophyre from the Gruveåsen transect has 

a porphyritic texture with phlogopite phenocrysts (Fig. 8-5), which are less abundant 

and smaller (< 1 cm) compared to a classic damtjernite. The grey fine-grained carbonate 

groundmass of ultramafic lamprophyre incorporates rounded and fragmented 

aggregates of carbonate. 

 

 

Figure 8-5: Photo of a calcitic 

ultramafic lamprophyre with 

phlogopite phenocrysts and 

carbonate fragments. There are 

two veins cutting through the 

lamprophyre with a centre of 

pastel coloured alteration 

surrounded by a narrow halo of 

bleached groundmass (16-55-

FE). 
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The colour and the appearance of the groundmass resemble those of the darker 

varieties of the mesocratic carbonatite, especially those specimens with minor amounts 

of phlogopite phenocrysts. Loose specimen of classic damtjernite along the Gruveåsen 

transect and the occurrence of damtjernite north of the Gruveåsen transect towards 

Lake Norsjø indicate a possible genetic relationship of the ultramafic lamprophyre to 

classic damtjernite. The ultramafic lamprophyre resembles the C-lamprophyres — 

nepheline- and alkali feldspar-free with 25–50 vol. % modal carbonate — described by 

Dahlgren (1994). According to the classification of ultramafic lamprophyres, the C-

lamprophyres correspond to aillikites (Tappe et al., 2005). Without proper mineralogical 

analyses of multiple sets of these Gruveåsen ultramafic lamprophyres, it is not possible 

to distinguish between an aillikites and a calcitic damtjernite. Therefore, the rock unit 

will be referred to as a calcitic ultramafic lamprophyre.    

The close spatial occurrence of damtjernite, carbonatite and calcitic ultramafic 

lamprophyre, which looks like a transitional rock type between damtjernite and 

carbonatite, must have prompted Sæther (1957) to create a model of the formation of 

rauhaugite by the replacement of damtjernite (chapter 4). Furthermore, the presence 

of possible carbonate enclaves as a form of carbonatitic magma blob in a silicate-

ultramafic magma indicates a genetic link between an ultramafic parental magma 

(damtjernite) and the formation of an evolved carbonatitic magma through magma 

unmixing. To test the magma-unmixing hypothesis, a representative sample number of 

damtjernite, carbonatite and calcitic ultramafic lamprophyre in close vicinity could be 

analysed for trace elements, and Sr and Nd isotopes. A separate analysis of the 

carbonatite enclaves, the calcitic ultramafic lamprophyre, carbonatite and damtjernite 

would show the genetic relationship between those lithotypes. The process of magma 
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unmixing will not affect the ratios of 87Sr/86Sr and 143Nd/144Nd and lead to similar isotopic 

ratios for all the analysed samples, which shows the genetic relations between the 

different lithotypes (Zaitsev and Bell, 1995). At the same time, magma unmixing will 

have a significant effect on the trace element data. Additionally, a study of oxygen 

isotopes will allow reconstructing the temperature of the different magmas and more 

importantly, help to identify any postmagmatic alteration event.  

 

8.1.4 Fenite & Gneiss 

According to the geological map N50 of the NGU (Geological Survey of Norway) the 

easternmost 150 m of the Gruveåsen transect is mapped as gneiss, which is in direct 

contact with the rødbergite unit without the formation of fenite in-between. The 

absence of fenite on the eastern margin of the Fen Complex is in accordance with every 

geological map of the Fen Complex. Nevertheless, the identified rock units at the 

easternmost 200 m of the Gruveåsen transect are not simple gneisses.  

Foliated Gneiss: The least altered rock sample collected from the very end of the 

Gruveåsen transect (east) is a foliated gneiss. The foliated gneiss comprises bright layers 

of medium grain sized quartz and feldspar, which are interrupted by layers of dark 

blueish and greenish minerals (Fig. 8-6). Small veins of Fe-oxide cut through the foliated 

gneiss and partly join the dark layers. The dark minerals are likely to be amphibole and 

chlorite, although a reliable mineral identification requires a microscopic analysis.  
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Brecciated Fenite: Moving west towards the centre of the Gruveåsen transect, the 

foliated gneiss becomes a massive brecciated fenite (Fig. 8-7). The brecciation was 

caused by a network of a millimetre to decimetre thick veins of Fe-oxide, chlorite and 

minor calcite — quartz is absence from the rock. Partly fenite is largely replaced by 

 

Figure 8-6: Photo of a 

foliated gneiss with light 

quartzofeldspatic areas and 

darker cross-cutting 

amphibole-phlogopite 

areas. Additionally, there is 

a fine network of randomly 

oriented red veinlets. (16-

68-FE). 

 

Figure 8-7: Photo 

of fenite, which is 

brecciated and 

partly replaced by 

a network and 

clusters of Fe-oxide 

(16-49-FE). 
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rødbergite leaving remnants of altered feldspar and metamorphic layering. 

Occasionally, phenocrysts of chlorite, or a pseudomorph after dark mica phenocrysts, 

are part of the rødbergite groundmass surrounding clusters of brecciated fenite (Fig. 8-

8). The presence of chlorite phenocrysts indicates the brecciation of fenite by former 

calcitic ultramafic lamprophyre or damtjernite, which in turn was altered to rødbergite. 

Xenolith of rødbergite within the altered calcitic ultramafic lamprophyre suggests at 

least two events of rødbergitisation with the emplacement of calcitic ultramafic 

lamprophyre in between. Additionally, 50 cm wide carbonatite sill cross-cuts through 

the brecciated fenite. The multiple brecciations created large (> 2m) blocks of brecciated 

fenite. 

 

 

Figure 8-8: Photo of brecciated fenite in a rødbergite groundmass with chlorite phenocrysts  (16-62-FE). A 

fragment of older rødbergite is incorporated into the rødbergite groundmass.  
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8.1.5  Explosive Damtjernite Breccia 

A rock unit with varies different types and sizes of angular xenoliths is located in the 

middle of the brecciated fenite (Fig. 8-9). The collected hand specimen contains 

unaltered foliated and unfoliated gneiss, fenite, different types of carbonatite and 

rødbergite. The groundmass is greyish to greenish and contains smaller angular 

xenoliths, rounded aggregates and a few brown phlogopite phenocrysts. The variety and 

concentration of xenoliths within the breccia is the result of an explosive reaction. The 

presence of phlogopite phenocrysts indicates damtjernite magma to be the source of 

this explosive event.   

 

Figure 8-9: Photo of an explosive lamprophyric breccia. The sample has a greenish groundmass with bronze 

coloured phlogopite phenocrysts and comprises a variety of xenoliths, e.g., fenite, gneiss, carbonatite, 

rødbergite and dark veins (16-65-FE). 
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8.1.6 Rødbergite 

Massive rødbergite was analysed from the central and eastern section of the Gruveåsen 

transect. Proximal to the eastern rødbergite outcrop are the remnants of an old iron ore 

mine. In general, mining activities left numerous deep, long and narrow pits within the 

Gruveåsen area (Fig. 8-10), which show a preferred orientation of NW-SE. Locally the Fe-

exploitation left elliptical shaped cavities of up to 40 m in length. At the old iron mine 

adjacent to the Gruveåsen transect are three different types of rødbergite present, i.e., 

a massive fine crystalline variety, one type with schlieren in different shades of red, and 

one type with rather circular clusters and nests of different shades of red. 

 

 

Figure 8-10: A)-D) Remnants of Fe-mines at Gruveåsen hill. A) The largest mining cavity at Gruveåsen 

hill B)-D) Other remnants generally resemble narrow (<5 m), steep and long (up to 100 m) canyons 
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The alteration process forming the massive rødbergite unit affected the adjacent rock 

units and the influence of Fe-oxide (patches and veinlets) can be traced until the eastern 

end of the Gruveåsen transect (Fig. 8-6). The brecciated fenite, NE of the rødbergite, is 

characterised by a high density of veinlets, veins and flakes of Fe-oxide that occasionally 

transform into massive rødbergite (Fig. 8-11). Locally, rødbergite samples collected at 

the eastern end of the Gruveåsen transect show layering, which indicates the 

replacement of a foliated gneiss (Fig. 8-12).  

 

Figure 8-11: Photo of a dark red rødbergite with remnants of fenite surrounded by a porous metallic halo. (16-

66-FE). 
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Figure 8-12: Photo of a rødbergite with remnants of oriented layers of foliated gneiss (16-67-FE). 

 

The damtjernite and carbonatite units southwest of the rødbergite unit are less 

intensely fractured by rødbergitisation and are more extensively replaced. One group of 

rødbergite samples contain phenocrysts of chlorite pseudomorphs after phlogopite 

surrounded by a red groundmass, which points to calcitic ultramafic lamprophyre or 

damtjernite as being one of the protoliths before rødbergitisation (Fig. 8-8; Fig. 8-13).  
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Figure 8-13: (A) Photo of a rødbergite specimen with a porphyritic texture of rounded chlorite phenocrysts. (B) 

Polished surface of the same specimen, is showing differently oriented stacks of silverish chlorite phenocrysts in a 

groundmass of rødbergite (16-57-FE). 
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8.2 Bulk REE and Th concentrations 

The measurements of bulk REE and Th concentrations measured by ICP-MS after 

sodium-peroxide sintering (please refer to chapter 5 for details about the method) 

reveals variations in the distribution of REE, LREE, HREE, Th and La/Yb along the 

Gruveåsen transect, which correlates with the type of protolith. The concentration of 

total REE ranges from 155 ppm in a foliated gneiss to 22,538 ppm in a rødbergite vein 

(Fig. 8-14; Tab. 8-1).  

Table 8-1: Average concentration and range of REE, LREE, HREE, Th and La/Yb for the main rock types of 
Gruveåsen transect. 

 

The range in REE and Th concentration along the transect mirrors the diverse nature of 

rock types described in section 8.1. Additionally, the enrichment of REE, LREE, HREE and 

Th do not necessarily correlate with each other. The distribution of LREE and REE is 

almost identical along the transect, which is expressed by a perfect correlation of the 

two variables (Tab. 8-2). A very strong or perfect correlation is not surprising because 

LREE constitute an average of 94% of the REE budget. Th shows a strong positive 

correlation with REE. The distribution of HREE is slightly different and shows a strong 

positive correlation with REE and a moderately strong positive correlation with Th (Tab. 

8-2). 
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Figure 8-14: Element concentration distribution of REE, LREE, HREE, Th and La/Yb along the 

Gruveasen transect. The analysed data were categorised into five classes using the Jenks-Caspall-

Algorithm for generating natural breaks. 
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Table 8-2: Correlation matrix of REE, LREE, HREE, Th and La/Yb for the Gruveåsen transect.  

 

 

The transect is divided into a western, a central and an eastern section. REE and Th 

systematics are discussed for each of these sections separately.  

The western part of the Gruveåsen transect is comprised of carbonatite (n=5). The 

westernmost sample of the transect (16-25-FE) has the lowest concentration of LREE, 

HREE and Th (Fig. 8-2). Going eastward, the following four samples are on average 

elevated in HREE and Th by a factor of three and seven respectively. LREE are elevated 

as well but differ stronger than HREE or Th. The sample 16-27-FE has the highest LREE 

concentration with 17,285 ppm, which corresponds to a 10-fold enrichment (Appendix 

IV). The samples enriched in LREE, HREE and Th appear much darker due to a higher 

proportion of chlorite and magnetite. Additionally, sample 16-27-FE has a high 

proportion of black veinlets, similar in appearance to REE-mineral bearing veins from 

the Bjørndalen transect (Fig. 8-3; Fig. 6-13).    

The central part of the Gruveåsen transect is comprised of carbonatite (n=5), rødbergite 

(n=4), dolerite (n=1) and a calcitic ultramafic lamprophyre (n=1) (Fig. 8-1). The 

carbonatite samples from the central part are similar to the western part of the transect 

in terms of optical appearance, as well as LREE and HREE concentrations.  
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Carbonatite (16-54-FE) adjacent to a rødbergite vein exhibits an ochre-beige 

colouration, and yields elevated LREE and Th concentrations and the highest 

concentration of HREE (913 ppm) within the Gruveåsen transect. Rødbergite samples 

exhibit variable concentrations of LREE, HREE and Th, and show the highest LREE and Th 

concentrations in the central section. Rødbergite 16-57-FE is the alteration product of a 

calcitic ultramafic lamprophyre or damtjernite and has the lowest concentrations of 

LREE, HREE and Th within the central rødbergite group. Rødbergite sample 16-56-FE is 

comprised partly of pure hematite/magnetite ore and therefore especially enriched in 

Th (903 ppm). Sample 16-55-FE is a calcitic ultramafic lamprophyre with small vein 

alteration and shows relatively low concentrations of LREE, HREE and Th, which are 

slightly less than in the rødbergitised calcitic ultramafic lamprophyre sample (16-57-FE). 

The dolerite dyke stands out with its relatively low concentration of LREE (286 ppm), 

HREE (49 ppm) and Th (8 ppm) (Tab. 8-1).  

The eastern part of the Gruveåsen transect is mainly comprised of brecciated fenite (Fig. 

8-7; Fig. 8-8) and gneiss (Fig. 8-6) with several rødbergite veins and lenses of massive 

rødbergite (Fig. 8-11), and is characterised by a low average REE concentration of less 

than 1,000 ppm (Fig. 8-14; excluding 16-64-FE). The foliated gneiss (Fig. 8-6) from the 

eastern end of the Gruveåsen transect is the sample least affected by the rødbergite 

alteration and has a relatively low REE concentration of 230 ppm. The next sample 

(collected 90 m apart) along the transect is a rødbergite with a remnant of a gneissic 

foliation (Fig. 8-12), which indicates that the protolith was most likely a foliated gneiss. 

The REE concentration of 961 ppm is relatively low for a rødbergite but four-times as 

much as the REE concentration of the foliated gneiss (Tab. 8-1).  
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The following rødbergite sample along the Gruveåsen transect has relics of brecciated 

fenite (Fig. 8-11) and with 155 ppm the lowest REE concentration of the Gruveåsen 

transect, which is below the average upper crustal REE concentration of 170 ppm 

(Rudnick and Gao, 2003). The brecciated and strongly altered fenites 16-60/61/63-FE 

(Fig. 8-15) have elevated but still relatively low REE concentrations (341 ppm – 

669 ppm). The only exception is a rødbergite sample 16-62-FE with 3,148 ppm REE and 

a rødbergite vein 16-64-FE (Fig. 8-15). The REE concentration of the rødbergite vein is 

with 22,538 ppm the highest concentration of Gruveåsen transect. 
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The chondrite-normalised REE concentration diagrams show negative slopes for the 

samples of the Gruveåsen transect because LREE are relatively enriched to HREE 

(Fig. 8-16). The relative enrichment of LREE is significantly more pronounced in 

carbonatites, rødbergite and rødbergite veins compared to gneiss and fenite. Within the 

LREE-enriched rock types, the effect is in general stronger for samples with a relatively 

high REE concentration. Within the group of carbonatites, the chondrite-normalised 

plots show very similar values for the last four HREE Ho-Lu and more variable values for 

the lighter REE (Fig. 8-16A). The most significant difference of the graphs occurs from 

Gd to Ho and results in a change from an asymptotic trend for lower REE carbonatites 

to a sigma trend in higher REE carbonatites. Sample 16-58-FE has an exceptionally high 

HREE concentration and appears to be an outlier. The chondrite-normalised plot for 

rødbergite samples enriched in REE show a similar trend than the group of carbonatites 

while also having samples with a very low REE concentration and a relatively flat trend 

(Fig. 8-16B). Especially, rødbergite samples collected distal to the main rødbergite zone 

within fenite and gneiss show flatter curves and lower REE concentrations. The Fe-ore 

sample (16-54-FE) has the highest level of HREE and has a maximum in Pr and Nd 

enrichment and a negative Ce anomaly (Fig. 8-16D). Rødbergite veins show a similar REE 

distribution to rødbergite, but exhibit a straight to weakly asymptotic trend in contrast 

to the sigmoidal trend of rødbergite (Fig. 8-16C). The lithotypes dolerite, gneiss and 

brecciated fenite with Fe-oxide mineralisation have low REE concentrations relative to 

rødbergite and carbonatite with relatively flat curves (Fig. 8-16E). The calcitic ultramafic 

lamprophyre (16-55-FE) with veins has a similar curve than a low REE carbonatite 

sample. 
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Figure 8-16: REE concentrations of the Gruveåsen transect samples normalised to CI1-chondrite values from 

McDonough and Sun (1995). A) Carbonatites have high REE concentration and show a strong LREE to HREE 

enrichment, which is more pronounced in mesocratic carbonatite than in the leucocratic variety. B) 

Rødbergite samples show a great variety of REE concentration ranging from low level to high levels of REE 

enrichment. They show a strong LREE to HREE enrichment but with higher HREE concentration compared to 

carbonatite samples. C) Rødbergite veins show a similar trend to rødbergite samples but have a more gradual 

increase in slope and the highest REE concentration of all samples. D) Fe-ore has a less steep slope with 

relatively high HREE values and a Ce anomaly. E) Dolerite, calcitic ultramafic lamprophyre and gneiss samples 

show a LREE to HREE enrichment with relatively low REE concentrations compared to A to D. F) Plot showing 

the relation between the prominent rock types and the medians for carbonatite and rødbergite  
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8.3 Discussion 

8.3.1 Chloritisation 

The carbonatites of Gruveåsen transect yield a high capacity for REE mineralisation with 

two samples containing more than 10,000 ppm REE (Fig. 8-15). Although there was no 

sign for rødbergitisation, which would have been an explanation for the high REE 

contents, the samples show signs of post-magmatic alteration. The western end of the 

Gruveåsen transect is marked by a leucocratic carbonatite with a REE concentration of 

1,900 ppm and no obvious signs of alteration (Fig. 8-2). Compared to the first sample 

the rest of the carbonatites are mesocratic and relatively dense, associated with a higher 

amount of chlorite, magnetite and pyrite, while simultaneously having a much higher 

REE concentration (Fig. 8-16A). Chlorite, magnetite and pyrite are forming schlieren, 

patches and veinlets indicating a hydrothermal origin of these minerals (Fig. 8-3). 

Additionally, a majority of the carbonatites are brecciated, which further underlines the 

presence of a fluid phase. All the evidence suggest a link between the alteration mineral 

assemblage of chlorite, magnetite and pyrite with the enrichment in REE by a factor of 

2 to 9 (Tab. 8-1).     

8.3.2 Rødbergitisation at Gruveåsen transect  

The process of rødbergitisation cannot only alter, replace and completely obliterate the 

original texture of carbonatite (Fig. 6-22; Fig. 7-28) but has the same effect on 

gneiss/fenite and calcitic ultramafic lamprophyre. The complete alteration to rødbergite 

does not allow a reliable reconstruction of the protolith. Nevertheless, textural evidence 

in chapter 8.1 indicates different degrees of rødbergitisation for gneiss, fenite and 

calcitic ultramafic lamprophyre (Fig. 8-7; Fig. 8-11; Fig. 8-12). The presence of relics with 

the original texture helped to reconstruct the protolith.  
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The variation in REE concentration for rødbergite and rødbergite veins ranges from the 

lowest to the highest value for the Gruveåsen transect – 155 ppm to 22,538 ppm (Fig. 

8-16B; Fig. 8-16C). While rødbergite situated adjacent to carbonatite and/or calcitic 

ultramafic lamprophyre has systematically high REE values, REE concentrations in 

rødbergite and rødbergite veins in fenite and gneiss show large variations with a 

significantly lower average REE content. This indicates an important role of the host rock 

for both REE concentration and mineralisation during rødbergitisation. Two aspects of 

the host rock are of general significance a) being a fertile source for REE and b) being a 

potential trap for REE. Brecciated fenite altered by rødbergitisation (16-61-FE; REE = 661 

ppm) showed the general potential for fenite to trap REE and proved the existence of 

fenite samples elevated in REE. It is however not possible to quantify the efficiency of 

incorporating/trapping REE within fenite, and it is likely to be less than in carbonate-

bearing rock, e.g., carbonatite and calcitic ultramafic lamprophyre. Additionally, the 

presence of rødbergite veins – highly enriched in REE – proved the possible existence of 

an REE-mineralisation within fenite (Fig. 8-15).  
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Figure 8-17: (A) Cumulative average LREE and HREE concentration for carbonatite, calcitic UML, fenite breccia and 

gneiss. (B) Cumulative average LREE and HREE concentration of rødbergite samples divided into protoliths. 

Additionally, the cumulative average LREE and HREE concentration of rødbergite veins in fenite breccias are 

illustrated. One rødbergite vein (red star) was excluded from the average calculation due to the high values of REE. 

The similar relative distribution of REE between (A) and (B) illustrates a connection between the REE concentration 

of the rock and the REE concertation of its rødbergitised rock variety.      

 

Nevertheless, the generally low REE concentration of rødbergite samples in the eastern 

part of Gruveåsen transect strongly suggest a link between the REE concentration of the 

host rock and a potential REE-mineralisation in areas altered by rødbergitisation 

(Fig. 8-17). 
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For most of the rødbergite samples in the eastern part of the transect, fenite and gneiss 

are the host rock as well as the source rock at the same time. The redistribution of the 

REE through rødbergitisation fluids was a local process, and more fertile sources were 

not part of the hydrothermal cell or were too far away for effective transport of REE.  

Contrary to the general low REE concentration of rødbergite samples collected from the 

eastern part of the Gruveåsen transect, is one rødbergite vein containing the highest 

REE concentration of all the samples of the Gruveåsen transect (Fig. 8-15). This 

rødbergite vein (16-64-FE; REE = 22,538 ppm) is 4 and 8 m apart from other rødbergite 

veins with relatively low REE concentrations. The surrounding source rock is fenite in all 

three cases. This REE-rich vein might be connected to a deeper fault providing fluid from 

a deeper but fertile source (e.g. carbonatite). In this case, fenite could have had an 

enhancing effect on the REE concentration within the vein, due to its more inert 

chemical composition. Besides altered fenite, the vein also contains clasts of beige 

carbonatite, which suggest the availability of carbonatite in the hydrothermal system. 

Additionally, the vein is in proximity to an explosive damtjernite breccia (Fig. 8-15), 

which might enhance fluid permeability or could provide fertile REE sources.  

The high REE concentration of rødbergite veins and rødbergite samples show the 

general capacity for rødbergite fluid to transport REE and enrich an area in REE. The 

curve for the median chondrite-normalised diagrams for rødbergite has a strong 

negative slope due to a stronger LREE relative to HREE enrichment of the rock (Fig. 8-

16B). The curve for the median chondrite-normalised diagram for carbonatite has a 

similar trend with a stronger LREE enrichment relative to HREE than rødbergite (Fig. 8-

16A). The rødbergite median has a higher concentration for the five heaviest REE (Ho, 

Er, Tm, Yb, Lu) compared to the carbonatite median (Fig. 8-16F). However, within the 
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group of Fe-oxide mineralised rocks, there is a distinct variation in the (La/Yb)N ratio with 

a general decrease in the following order: rødbergite vein (160) > rødbergite (49) > Fe-

ore vein (23). Fe-ore veins contain relatively high HREE concentrations (921 ppm) while 

having low La/Yb ratios (Tab. 8-1).  

The geometry and orientation of the mining pits at the Gruveåsen area (Fig. 8-10) 

confirm the preferred orientation of the Fe-vein mineralisation discussed by Sæther 

(1957) and Andersen (1983). The parallel set of Fe vein-type ore bodies with the same 

orientation can be traced until the centre of the Fen Complex (Fig. 8-18). Therefore, a 

regional stress field must have been the cause of the formation of a set of parallel faults 

or fractures, which the rødbergite fluids then used as the preferred fluid pathway.  

 

Figure 8-18: Simplified geological map of the Fen Complex showing the extent of rødbergite and the 

preferred orientation of Fe-vein mineralisation at the centre of rødbergite (Sæther, 1957).   
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8.3.3 REE Fluid Chemistry  

The formation of rødbergite was the result of the hydrothermal alteration of a protolith 

by a REE-bearing oxidising fluid. The oxidising conditions did not affect the cerium 

concentration of rødbergite or rødbergite veins. However, the chondrite-normalised 

plots for REE show a negative cerium anomaly in one Fe-ore vein (Fig. 8-16). The 

hydrothermal fluid must have caused the oxidation of Ce3+ to Ce4+ in the REE source 

rock. In a hydrothermal system, Ce4+ is less soluble than Ce3+ and remains in the REE 

source rock, resulting in a negative cerium anomaly in the Fe-ore vein. The fact that a 

cerium anomaly is missing in rødbergite or rødbergite veins and only occurs in the Fe-

ore vein indicates especially oxidising conditions during the formation of the Fe-ore vein. 

These conditions can be achieved by overcoming the redox buffer of the host rock 

through, e.g., multiple events of hydrothermal alteration.  

The presence of magnetite and pyrite in the alteration process (Fig. 8-3), which causes 

an REE enrichment in carbonatite of the Gruveåsen transect, indicates a more reducing 

environment relative to the rødbergitisation. In both types of alteration, the fluid 

contains REE, Th and Fe. There might be a link between the two types of alteration, 

showing the evolution from a reduced environment of pyrite and magnetite 

mineralisation to a more oxidised environment of red Fe-oxides precipitation. This 

evolution could be the result of the decreasing chemical buffer ability of the reduced 

host rock and an increasing equilibration to atmospheric conditions, which produces 

oxidising hydrothermal fluid.  
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8.4 Conclusions 

The analysis of the effect of rødbergite-type hydrothermal alteration on different 

lithofacies presented in this chapter, in particular on the bulk rock REE concentrations, 

revealed five key conclusions:  

a) An alteration of carbonatite by less oxidising fluids is characterised by the 

formation of chlorite, magnetite and pyrite (Fig. 8-3). The altered carbonatite is 

darker, denser and displays a 9-fold enrichment of REE and 8-fold enrichment of 

Th, relative to the unaltered igneous carbonatite (Tab 8-1). 

b) An oxidising fluid producing a red Fe-mineralisation and an associated 

enrichment in REE and Th in the host rock caused the rødbergitisation. 

c) The process of rødbergitisation completely replaced every major rock type along 

the transect — calcitic ultramafic lamprophyre, carbonatite, fenite and gneiss 

(Fig. 8-7; Fig. 8-8; Fig. 8-11; Fig. 8-12; Fig. 8-13). In turn, the REE concentration of 

the underlying host rock before rødbergitisation influenced the REE 

concentration of rødbergite (Fig. 8-17). This highlights the importance of local 

redistribution of REE for the most part of rødbergite formation, rather than the 

transport of REE over a long distance. However, a minority of rødbergite veins 

contradict these observations; these veins are evidence for long-range transport 

of REE, which have been provided by a more distal, probably deeper source (Fig. 

8-15). This led to the formation of rødbergite veins, highly enriched in REE, within 

a host rock low in REE concentration. 
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d) Both alteration processes involve the transport and subsequently enrichment of 

REE, Fe and Th via a hydrothermal fluid. Therefore, the processes might be 

genetically linked and represent endmembers on a range of redox potentials 

rather than two separate processes.    
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9 Geochronology 

 

This chapter will review previously reported geochronology and present new (U)-Th-Pb 

radio-isotopic geochronology for the emplacement of the carbonatite-peralkaline Fen 

Complex in Norway and the formation of hydrothermal monazite-(Ce) in altered 

carbonatite – classified as rødbergite. The aim is to create a deeper understanding of 

the REE-mineralisation processes in rødbergite and elaborate on underlying geological 

processes, which initiated the hydrothermal alteration.  

The relative intrusive ages of the Fen Complex rock suite has been established using the 

cross-cutting relationship of the rocks in the field and drill cores. The ijolite rock 

sequence is considered the oldest intrusive unit within the Fen Complex and the main 

source for high alkaline fluids causing the fenitisation of the gneiss country rock (Kresten 

and Morogan, 1986). They were followed by carbonatite dykes and ring dykes that 

overlapped with the intrusion of damtjernite dykes (Mitchell and Brunfelt, 1975). Finally, 

phonolite dykes (tinguaite), which are affiliated with the Fen magmatism, intruded 

adjacent to the Fen Complex (Bergstøl, 1979).  

To date, geochronology of the different rock types is sparse, imprecise and does not 

encompass all key magmatic events (Tab. 9-1). For instance, the emplacement of the 

ijolite suite has not been dated so far. More importantly, for this thesis, though, there 

has been no attempt to date the hydrothermal REE-mineralisation associated with 

rødbergitisation. Because the REE-minerals were identified as magmatic minerals by the 

former researcher (Andersen, 1984; Andersen, 1986), there was no reason to assume a 

different age between carbonatite emplacement and the formation of the REE-minerals. 

The best emplacement age for the Fen Complex magmatism itself is derived from a 
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single Ar-Ar age of a damtjernite 60 km outside of the Fen Complex, which is thought to 

be coeval with the carbonatite-damtjernite magmatism of the Fen Complex (Meert et 

al., 1998). The same laboratory dated a phonolite dyke 10 km SW of the Fen Complex.  

 

Table 9-1: Currently available age constraints for the different evolutionary stages of the Fen Complex. Updated 

with new unpublished age dates (*) for the carbonatite emplacement and formation age of hydrothermal 

monazite-(Ce).  1 - Andersen and Taylor (1988); 2 – Dahlgren (1994); 3 – Meert et al. (1998); 4 – Andersen and 

Sundvoll (1987); 5- Verschure et al. (1983).  
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This phonolite dyke is 10 Myr younger than the damtjernite, which indicates the age 

range of the protracted nature of magmatism. Unaltered dolerite dykes in the Fen 

Complex are associated with the Oslo Rift and show a Carboniferous to Early Permian 

Age (Verschure et al., 1983).   

As discussed in chapter 6 the formation of rødbergite is the product of a post-magmatic 

alteration. The formation of rødbergite has not been dated so far, which in turn means 

the timing of REE-mineralisation associated with the formation of rødbergite is unclear. 

In order to establish a reliable age for the Fen Complex magmatism in relation to the 

REE-mineralisation of the rødbergite in-situ U-Th-Pb analysis was performed on zircon 

and monazite from the Fen Complex by LA-ICPMS the NERC Isotope Geosciences 

Laboratory (NIGL), British Geological Survey, Keyworth, UK in collaboration with Dr 

Simon Tapster. At the time this thesis was written, the geochronology project was still 

in progress. Nevertheless, robust preliminary data was included for the benefits of the 

proposed REE-model.   

 

9.1 Samples for Dating 

Zircons are one of the most common accessory minerals used in determining the age of 

a rock, due to its chemical resistance to alteration, the minerals high closure 

temperature and the normally high concentrations of the parent element U. The 

generally low U concentration of the zircons, which was typically below 10 ppm in 

sample TS650a and below 1 ppm for 15-83-FE, is a challenge in dating zircons from the 

Fen Complex (Appendix VII). Zircons with the same characteristics are described for a 

number of carbonatite-alkaline-kimberlite systems, e. g., Kovdor alkaline–ultramafic 

complex (Rodionov et al., 2012), Miaoya carbonatite complex (Ying et al., 2017) and 
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Bayan Obo REE–Nb–Fe deposit (Campbell et al., 2014), which is a common feature for 

zircons in carbonatite-peralkaline complexes (Ying et al., 2017). This effect is caused by 

the preferential incorporation of Th and U in minerals at the early stages of the 

carbonatite complex formation such as in pyrochlore (Rodionov et al., 2012). Hence 

producing zircons with low U, which causes problems for geochronology (Amelin and 

Zaitsev, 2002). Additionally, high common Pb concentration of the selected zircons due 

to their inclusion-rich nature presented another issue for U-Pb dating. In order to obtain 

reliable age constrains for the emplacement of the Fen Complex, Th-Pb dating was 

applied instead of the more common and well-established U-Pb isotopic system for 

zircons.  

Zircons were selected form carbonatites from two different localities 2 km apart. Sample 

15-83-FE is from the intensely studied Bjørndalen transect, and sample TS650a is from 

the Tufte tunnel (Fig. 5-1). Sample 15-83-FE is a dolomite carbonatite with signs of initial 

alteration (Fig. 6-1). In contrast to transitional rødbergite of the Bjørndalen transect, 15-

83-FE still shows a preferred orientation of carbonate layers, pyrite and apatite. The 

zircons are present as a few relatively large subhedral clusters of polycrystalline stumpy 

zircons with up to 5 mm in size and contain a high concentration of dolomite inclusion 

(Fig. 9-1). The origin of the zircons is not purely magmatic and exhibits signs of 

recrystallisation (either hydrothermal or late magmatic). Nevertheless, the coeval 

formation of dolomite and zircon indicates that the zircon age is likely to be close to the 

formation age of the rock.   

The main REE-mineral in rødbergite and transitional rødbergite from the Bjørndalen 

transect is hydrothermal monazite-(Ce). In general, monazite-(Ce) contains Th and U to 

various degrees, which can be used for U-Th-Pb dating.  
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Monazite-(Ce) is present at the Bjørndalen transect in the form of veins, around apatite-

relics and interstitial areas in the groundmass (Fig. 6.36; Fig. 6.38, Fig. 6.16). Based on 

textural evidence, these three mineralisation styles are caused by precipitation from a 

REE-rich hydrothermal fluid.  

 

 

 

Figure 9-1: Photo (upper left) of a polished block of transitional carbonatite with zircons marked with a red box.  

Combined large-area EDS mosaic (upper right) of the same block with zircons coloured in purple. Blown up BSE 

image of the #1 red box zircon from the upper right picture. Note the poikiloblastic texture of the zircon crystal 

with dolomite inclusion (15-83-FE). Dol – Dolomite & Zrn – Zircon.  

 



 
262 

 

However, a magmatic origin of interstitial monazite-(Ce) cannot be ruled out 

completely, while a postmagmatic formation of hydrothermal monazite-(Ce) is the only 

explanation for the apatite replacement texture and monazite-(Ce) bearing veins. 

Additionally, monazite-(Ce) is associated and intergrown with barite, phlogopite, calcite 

and apatite, which makes it technically challenging to analyse monazite-(Ce) without 

acquiring a mixed signal.  

 

 

Figure 9-2: Photo (upper 
left) of a polished block of 
transitional carbonatite 
with apatite relics. The 
combined large-area EDS 
mosaic (upper right) of the 
same block shows a rim of 
dominantly barite and 
monazite-(Ce) around the 
apatite relic. The blown up 
image (orange box) 
highlights monazite-(Ce) 
crystals that were further 
used to establish the U-Pb 
and Th-Pb age for the REE-
mineralisation (16-111-
FE). Ap – Apatite, Brt – 
Barite, Cal – Calcite, Fe – 
Fe-oxide, Mnz – monazite-
(Ce), Phl – Phlogopite and 
Py – Pyrite.  
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Therefore a large (500-µm) monazite-(Ce) crystal from an apatite replacement zone was 

chosen for further LA-ICPMS work because the monazite-(Ce) has a clear hydrothermal 

origin and the interference of other mineral phases can be minimised due to its size (Fig. 

9.2). The selected monazite-(Ce) is part of a transitional rødbergite (16-111-FE) from the 

Bjørndalen transect and was analysed for U-Th-Pb isotopic data. 

 

9.2 LA-ICP-MS U-Th-Pb Geochronology Results 

The low U concentration of the analysed zircons in combination with their high 

concentration of common Pb made date interpretation based on U-Pb isotopes 

unreliable. Fortunately, much higher Th concentrations (500-9000 ppm) enabled the use 

of the Th-Pb isotopic system. However, the correction for common Pb was not 

completely possible. Nevertheless, the Th-Pb isotopic age from two samples are in 

agreement: TS650a: 565.2 +- 7.1 (n=13 of 14; MSWD 1.4) and 15-83d Th-Pb: 576 +-10 

(n=8 of 9; MSWD 1.4) (Fig. 9.3). Monazite-(Ce) from sample 16-111-FE were dated using 

U-Pb and Th-Pb isotopic system. Monazites exhibited high common Pb with a lower 

intercept of the line of Discordia yielding a U-Pb age of 259 +- 77 Ma (n=15, MSWD= 1.8) 

(Fig. 9.4). Additionally, the U-Pb Concordia plot identified monazite-(Ce) analysis most 

affected by common lead. Three analysis were rejected because their ellipses — 

representing the analysis — were not in agreement with the Discordia (Fig. 9.4). After 

the rejection of the three analyses most affected by common Pb, a Th-Pb weighted mean 

age of 279.2 +-3.4 Ma (n=12; MSWD =1.8) was obtained (Fig. 9.5). 
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Figure 9-3: Th-

Pb isotopic age 

of zircon 576 +-

10 Ma was 

calculated using 

8 of 9 analyses 

(15-83d-Fe). 

 

 

Figure 9-4: U-Pb Concordia diagram with Discordia yielding a U-Pb isotopic monazite age of 259 

+- 77 Ma (16-111-FE). Additionally, the Discordia helped to identify monazite crystals with a high 

content of common Pb.    
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Figure 9-5: Th-Pb isotopic age of monazite-(Ce) 279.2 +-3.4 Ma was calculated using 12 analyses (16-111-FE). 

 

9.3 Fen Complex Geochronology Discussion 

Zircons from carbonatite yielded a Th-Pb age of ~570 Ma, which confirms an Ediacaran 

to Cambrian intrusive age for the Fen Complex acquired by earlier age date analyses of 

Fen Complex carbonatite (Andersen and Taylor, 1988; Dahlgren, 1994). This age 

coincides with the breakup of Rodinia and the opening of the Iapetus Ocean from 620 – 

550 Ma (Pease et al., 2008), which was described in chapter 4.2 and 4.3. Strictly 

speaking, the emplacement of the Fen Complex happened during a minor extensional 

activity during the drift phase and separation of Baltica from Greenland (Meert et al., 

1998). 
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The isotopic age of the apatite replacement zone of hydrothermal monazite-(Ce) is 

significantly younger and cannot be genetically associated with the magmatic 

emplacement of the Fen Complex. However, the Fen Complex is less than 20 km away 

from the magmatic rock sequence of the Oslo Graben. The Oslo Graben, part of the Oslo 

Rift, is described as a high-volcanicity continental rift system similar to the East African 

Rift System (Sundvoll and Larsen, 1994). The magmatic activity of the Oslo Graben 

extends from 308 Ma to 245 Ma (Larsen et al., 2008; Sundvoll and Larsen, 1994). The 

isotopic age of monazite-(Ce) 272.9 Ma ± 3.4 Ma coincides with the mature stage of the 

Oslo rift (288 Ma – 265 Ma), characterised by central volcanos and caldera collapse 

(Larsen et al., 2008). More importantly, the emplacement of dolerite dykes (253 Ma ± 

20 Ma) at Fen and the monazite mineralisation in rødbergite are within the uncertainty 

of their isotopic ages, which links Permian magmatic activity at Fen with the REE-

mineralisation event. The prolonged magmatic activity of ~63 Myr of the Oslo Graben 

fitted spatially and temporally with the isotopic age of the monazite-(Ce) and had the 

potential to provide the necessary hydrothermal fluid circulation. Therefore, it is likely 

that the magmatic activity of the Oslo Graben triggered the circulation of the 

hydrothermal fluid at the Fen Complex.   

Geochronology provides an important constraint on the REE-mineralisation model. 

There are two end member explanations for the isotopic ages of the hydrothermal 

monazite-(Ce) crystals. Either: 1) a hydrothermal event caused the resetting of the 

isotopic signature of the monazite-(Ce) crystals or 2) the hydrothermal fluid caused the 

precipitation of new monazite-(Ce) at 272.9 Ma ± 3.4 Ma. In this context, it is crucial to 

understand if the hydrothermal fluid was forming new monazite-(Ce) or if the 

hydrothermal fluid partly or fully reset the isotopic signature of much older, potentially 
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magmatic (~570 Ma) monazite. In other words, is the REE mineralisation caused by an 

event linked to the formation of the Fen Complex that was subsequently masked as a 

new mineralisation event, or is it a REE mineralisation event caused by a much younger 

process linked to the Oslo rift? It is important to note that in both cases, the observed 

textures demand the presence of hydrothermal fluid. 

Scenario 1 requires a reset of the isotopic age of monazite-(Ce). The closure temperature 

of monazite is reasonably well established by Cherniak et al. (2004), however, isotopic 

resetting can be greatly expedited in the presence of fluid through the dissolution of 

older monazite-(Ce) and reprecipitation to younger monazite-(Ce) (Harlov et al., 2005; 

Rasmussen and Muhling, 2007; Teufel and Heinrich, 1997). Therefore, it is likely that a 

fluid that was able to mobilise monazite at the minimum of the crystal scale would have 

to have been present at ~270 Ma. However, partial resetting would generate a variation 

of isotopic data and mixed analyses of both initial and reset isotopic ages. The data 

exhibit characteristics of a single statistical population (as identified by a statistically 

acceptable MSWD), this suggest that a partial resetting of pre-existing monazite is less 

probable as a possible explanation for the isotopic signature of monazite-(Ce) and lends 

itself to the formation of hydrothermal monazite at 272.9 Ma ± 3.4 Ma.  

This is further supported when the textural evidence of monazite formation is also taken 

into account. Textures such as monazite-(Ce) bearing veins, monazite-(Ce)-apatite 

replacement zones or monazite-(Ce) in interstitial groundmass space (Fig. 6-16, Fig. 6-

17, Fig. 6-28, Fig. 6-36, Fig. 6-38) indicate that the fluid responsible for the monazite ages 

at 272.9 Ma ± 3.4 Ma was also responsible for the significant event of REE re-

mobilisation and precipitation that generated REE mineralisation at Fen.  
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Therefore on the basis of a link between the monazite geochronology and the significant 

hydrothermal alteration at Fen, it is plausible that following emplacement of the Fen 

complex at ~570 Ma, rødbergitisation and REE redistribution did not take place until 300 

Myr later, when the magmatic expression of the Oslo rift occurred, injecting dolerite 

dykes into the region and causing the hydrothermal circulation required for REE 

mobilisation. 

For the practical reason and to ensure a monomineralic signal, the LA-ICP-MS analysis 

was done on the largest (> 500 µm) monazite-(Ce) crystal within sample 16-111-FE (Fig. 

9-2). However, the REE-mineralisation event, which caused the formation of the large 

monazite-(Ce) crystals, might not be the same event, which precipitated smaller 

monazite-(Ce) crystals or monazite bearing veins. Although the mineral paragenesis and 

texture of large monazite-(Ce) crystal are the same as for the smaller monazite-(Ce) 

crystals, the question of representation has to be addressed. Future geochronology will 

encompass the analysis of different sizes as well as textures of monazite-(Ce) from a 

variety of samples and locations. This will identify the potential existence of multiple 

REE-mineralisation events and clarify if the age of large monazite-(Ce) crystals is 

representative for the whole of the hydrothermal monazite-(Ce) population. 

Furthermore, accurate WDS trace element analysis and mapping of monazite-(Ce) will 

clarify the existence of potential zonation within the monazite-(Ce) crystals and/or the 

presence of multiple monazite-(Ce) population. Trace element signature is especially 

important to ensure the representation of very small (< 100 µm) monazite-(Ce) crystals, 

where reliable geochronology will be more prone to errors due to mixed signals.  
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9.4 Age Dating Conclusions  

The chapter on age dating revealed two important points. First, Th-Pb dating of zircons 

from two different carbonatite locations established an age for the emplacement of the 

Fen Complex carbonatite at ~570 Ma and hence supported the broad Ediacaran 

temporal bracket for the Fen complex intrusion as indicated by earlier indirect 

constraints from comparable magmatic activity in the region. Second, the robust Th-Pb 

age at 272.9 Ma ± 3.4 Ma from hydrothermal monazite in REE-rich transitional 

rødbergite, is significantly (~300 Myr) younger than the Fen Complex magmatism. 

Textural and geochronological evidence indicates that the Oslo rift (308 Ma – 245 Ma 

Larsen et al. (2008)) is the cause for the hydrothermal overprint and the hydrothermal 

REE-mineralisation of the Fen Complex.   
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10 REE Mineralisation Model  

 

In this chapter, a synthesis is put forward combining the REE mineralisation model of 

the Bjørndalen transect with the observations made at the Fen Road transect and 

Gruveåsen transect. The aim is to create an REE-mineralisation model, which can be 

applied to the whole of the Fen Complex and incorporates possible local REE-

mineralisation anomalies from different sampling sites.  

The previous model for the formation of rødbergite and the associated REE-

mineralisation describes a progressive residual enrichment of insoluble REE-minerals by 

leaching and removal of the carbonate minerals during hydrothermal alteration 

(Andersen, 1984). For a more detailed explanation of the REE-mineralisation model by 

Andersen (1984), please refer to chapter 4.4.1.  

As already pointed out in Marien et al. (2018), the findings made in the course of the 

present project and reported in this thesis are not fully consistent with the previous 

model of Andersen (1984). The main contradictory points are: 

a) The main REE carrier-mineral changes during rødbergitisation from synchysite-

(Ce) in unaltered carbonatite (Fig. 6-8; Fig. 6-12)to monazite-(Ce) in rødbergite 

and rødbergite veins (Fig. 6-16, Fig. 6-17, Fig. 6-18; Fig. 6-28; Fig. 7-33). Therefore 

rødbergitisation has to involve the dissolution of REE-minerals in the unaltered 

carbonatite (Fig. 6-12) and formation of new hydrothermal REE-minerals, which 

is contrary to idea of preservation of insoluble REE-phases during 

rødbergitisation Andersen (1984). 

b) REE-mineral bearing veins contribute a substantial amount of REE to the total 

REE content of various lithotypes e.g. transitional rødbergite, rødbergite of the 
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Bjørndalen transect (Fig. 6-36) and dolomite carbonatite, chlorite-bearing 

dolomite carbonatite and rødbergite of the Fen Road transect (Tab. 7-2; Fig. 7-

15; Fig. 7-16; Fig. 7-17). Samples with a high density of REE mineral bearing veins 

(Fig. 7-15 – 16-96-FE; Fig. 6-36 – 15-93-FE; Fig. 8-3 – 16-27-FE) have an increased 

REE-concentration compared to unveined samples from the same rock unit of 

16x to 5x5 respectively (Fig. 6-40; Tab. 7-3). Rødbergite veins at the Fen Road 

transect (Tab. 7-3) and Gruveåsen transect (Tab. 8-1) show the highest REE 

concentrations detected in this project. Additionally, melanocratic carbonatite 

(Fig. 8-3), from the Gruveåsen transect, with a high concentration of dark veins 

show 10x more REE than adjacent leucocratic carbonatite (Fig. 8-2). These 

observations support the mobilisation of REE during rødbergitisation and 

indicate the importance of hydrothermal processes for the REE mineralisation. 

c) The Bjørndalen transect (chapter 6.2), the Fen Road transect (chapter 7.2) and 

at the Gruveåsen transect (chapter 8.2) show an REE enrichment in rødbergite 

relative to the adjacent protolith by more than an order of magnitude. For 

instance, the difference in REE concentration between a transitional rødbergite 

(15-93-FE – REE = 14161ppm) and an unaltered carbonatite (15-85-FE – REE = 

864 ppm) of the Bjørndalen transect is by a factor of 16.39. In order to achieve a 

16-fold residual enrichment, a major volume reduction by 93.75% is required in 

a purely passive enrichment model. Such an order of volume reduction would 

cause an intense brecciation and a formation of porous rocks. This could not be 

confirmed by field observations (e.g. Fig. 6-13). A representative batch of 

rødbergite samples from the Bjørndalen transect showed porosity of 2-3 Vol% 

without any signs of brecciation (Fig. 5-5). Brecciation was only observed in rocks 
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of the Gruveåsen transect and is not related to an increase in REE. For the 

majority of the samples, there is no evidence of a major volume reduction during 

rødbergitisation and no connection to an increase in REE. Hence, a passive 

enrichment via volume reduction cannot be the major cause for the REE 

enrichment.   

d) Several rødbergite samples show the preservation of original magmatic textures 

(Fig. 6-38; Fig. 7-13; Fig. 8-7; Fig. 8-11). The replacement of foliated gneiss by 

rødbergite occasionally preserved the metamorphic foliation within the 

rødbergite (Fig. 8-12). The rødbergitisation of damtjernite caused the alteration 

of phlogopite to chlorite while preserving the original magmatic flow texture in 

some cases (Fig. 8-13). The preservation of magmatic texture in rødbergite is not 

consistent with massive volume reduction. Volume reduction would necessarily 

cause brecciation, which in turn disrupts the original rock textures.  

e) Th-Pb dating of zircons from two different carbonatite locations established a 

robust age for the emplacement of the Fen Complex carbonatite of 550 Ma ± 

10 Ma (please refer to chapter 9.4). Hydrothermal monazite from REE-rich 

transitional rødbergite gave U-Pb and Th-Pb ages of 272 Ma ± 5 Ma and 272 Ma 

± 10 Ma respectively, which is coincident with the main magmatic stage of the 

Oslo rift formation (Larsen et al., 2008). The hydrothermal REE-mineralisation of 

the Fen Complex is likely to be associated with Oslo rift magmatism and 

hydrothermal fluid circulation rather than with the Fen Complex magmatism 

itself.  
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To explain the observations made at the three localities, a new REE model is proposed 

which combines elements of Andersen’s (1984) model with new evidence from the 

Bjørndalen, Fen Road and Gruveåsen transects.  

 

10.1 Source and Host Rock 

The observations and evidence related to the source rock and host rock are listed in Tab. 

10-1 and Tab. 10-2. Source and host rock are described in the same chapter because 

evidence suggests a link between the two.  

Zones of intense fluid-rock interaction are marked by massive red rødbergite. Rocks of 

moderate fluid-rock interaction are marked by beige-ochre massive transitional 

rødbergite (Fig. 6-40)). Although transitional rødbergite forms a distinct zone around 

massive red rødbergite of the Bjørndalen transect, it is not present at the Fen Road 

transect and occurs very rarely at the Gruveåsen transect. In general, areas affected by 

rødbergitisation have sharp rather than gradual boundaries (Fig. 7-12B). In addition to 

massive rødbergite, there are mineralogically similar rødbergite veins with a red-whitish 

colouration (Fig. 7-30). Rødbergite veins have a thickness of 1 to 10 cm and show a very 

narrow chemical influence on the surrounding host rock. Replacement zones and relics 

of protolith in rødbergite show that any of the following calcite-dolomite-ankerite-

chlorite carbonatite (Fig. 6-22; Fig. 7-28), calcite damtjernite (Fig. 8-14), brecciated 

fenite (Fig. 8-7) and foliated gneiss (Fig. 8-12) can be completely replaced by rødbergite. 

These rock types display a variety of average REE concentrations ranging from 230 ppm 

to 7,769 ppm for foliated gneiss and chlorite carbonatite, respectively (Tab. 8-1). 

Rødbergite created by the replacement of these host rocks tends to be significantly 

enriched in REE but is influenced by the REE concentration of the host rock at the same 
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time. This is the reason for the large concentration range in REE for the rødbergite of 

the Gruveåsen transect from 155 ppm to 11,811 ppm because rødbergite replaced rocks 

that are very low in REE, e.g. gneiss, and REE fertile rocks, e.g. carbonatite and ultramafic 

lamprophyre. The Fen transect largely consists of dolomite-ankerite-chlorite 

carbonatite, which is the most fertile REE source rock. Rødbergite of the Fen transect is 

largely the product of replacement of REE-rich carbonatite and contains an average of 

8393 ppm REEs – the highest average of any rock type analysed in this study (Tab. 7-3). 

Only rødbergite veins have higher average REE concentrations. The correlation between 

total REE concentration in host rocks and REE concentration in rødbergite veins are less 

distinctive than for host rock and rødbergite.  

REE concentrations in rødbergite are variable at the Gruveåsen transect and are partially 

controlled by the replaced- and surrounding protolith. The close relationship between 

the REE concentration of the rødbergite and the adjacent host rock implies a local 

redistribution of REE (Fig. 8-17). However, it is difficult to quantify the exact distance 

between sites of leaching and sites of reprecipitation because the vertical extent of the 

rock types in the Fen Complex is unknown. There is one notable exception of a REE-rich 

rødbergite vein in a low REE level host rock (16-64-FE - Fig. 8-15).  

It is plausible that the REE concentration of the rødbergite is partly dependent on the 

REE-concentration of the alteration fluid. At the same time, the REE concentration of 

the rødbergite correlated with the REE concentration of the surrounding host rock. This 

connection means that the source rock for the REE component of the alteration fluid is 

likely to come from the same rock unit as the host rock.  
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Therefore, the rødbergite fluid is not limited to carbonatites but must be able to leach 

the REE carriers in the different host rocks. The dominant REE minerals in the 

investigated carbonatites are REE-fluorocarbonates. The rødbergite fluid can dissolve 

REE-fluorocarbonates in order to enrich the REE concentration of the fluid. Unaltered 

carbonatite from the Bjørndalen transect showed evidence of the replacement of REE-

fluorocarbonates by a Fe-oxide rich fluid, which indicates the ability of rødbergite fluid 

to leach REE-fluorocarbonates (Fig. 6-12).  

 

Table 10-1:  Summary of source rock properties for the Bjørndalen-, Fen Road- and Gruveåsen transect. 
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Table 10-2: Summary of host rock properties for the Bjørndalen-, Fen Road- and Gruveåsen transect. 

 

 

10.2 Fluid chemistry 

The observations and evidence related to the fluid chemistry are listed in Tab. 10-3. The 

alteration mineral assemblage of rødbergite at the Bjørndalen transect and rødbergite 

veins at the Fen Road transect indicates that the hydrothermal rødbergite fluid was rich 

in O2, Ca, Fe, Ba, REE, Th, CO3, S and F. The alteration mineral assemblage is more 

oxidised than the unaltered mineral assemblage, which indicates an oxidised fluid. The 

oxidised character of the fluid must have been acquired outside of the Fen Complex. 

Andersen (1984) presented strontium and oxygen isotopic data which shows high 

87Sr/86Sr ratios and elevated ∂18O for the fluid and further suggests that the fluids 

involved in the REE mineralisation of the Fen Complex were not simply evolved melt-like 

hydrous fluids. The rødbergite fluids were hydrothermal and had at least partly 

equilibrated with Precambrian quartzofeldspathic gneisses outside of the Fen Complex, 

and possibly with groundwater (Andersen, 1984).  
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However, the rødbergitisation process occurs in multiple stages indicated by the 

presence of many different vein generations with similar but changing mineral 

assemblages. The different mineral assemblages are the result of changing 

physicochemical conditions of the hydrothermal fluid, e.g., change in T of the fluid, 

dissolution/reprecipitation of minerals and ongoing fluid-rock interaction. The host rock 

equilibrated with the external hydrothermal fluid and became more oxidised while 

simultaneously losing its ability to buffer the hydrothermal fluid.   

 

Table 10-3: Summary of hydrothermal fluid properties for the Bjørndalen-, Fen Road- and Gruveåsen transect. 
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10.3 REE Mineralisation 

The observations and evidence related to the REE mineralisation are listed in Tab. 10-4. 

The formation of rødbergite alters and replaces the original mineral assemblage of the 

host rock. The typical alteration mineral assemblage comprises various amounts of Fe-

oxide, barite, chlorite, calcite, quartz, barian phlogopite and ferroan dolomite to 

ankerite with minor amounts of apatite, REE-minerals and barian orthoclase (Fig. 6-23; 

Fig. 6-25; Fig. 6-36; Fig. 7-32).  

Present REE-minerals are in descending order: monazite-(Ce), synchysite-(Ce), 

bastnäsite-(Ce) and allanite-(Ce). Monazite-(Ce) is the main REE-mineral in interstitial 

areas, veins and aggregates within rødbergite and transitional rødbergite at the 

Bjørndalen transect but it is less common at the Fen Road transect. There is no evidence 

for mineralised apatite relics at the Fen Road transect and REE-fluorocarbonates 

dominate the different generations of REE-mineral veins. At the same time, these veins 

have little or no Fe-oxide and can have considerable amounts of pyrite. There is a 

connection between the redox potential during mineralisation of a vein and the 

prevalent REE-mineral, with the formation of monazite-(Ce) under more oxidising 

conditions and the precipitation of REE-fluorocarbonates under less oxidising 

conditions. The similarity of mineralisation textures of monazite-(Ce) and REE-

fluorocarbonates suggests a flexible change in the mode of precipitation, which 

occasionally happens within the same sample.  
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The hydrothermal REE-minerals form in multiple different ways: 

a) As irregular aggregates (nm to mm range) of monazite finely intergrown with 

calcite as part of rødbergite veins (Fig. 7-33; Fig. 7-34; Fig. 7-35) and texturally 

similar synchysite blades (< 5 µm in length) and sheets (ca. 250 µm) intergrown 

with calcite surrounded by fluorite (Fig. 7-10; Fig. 7-11). 

b) Within a fine pervasive network of Fe-oxide and carbonate along grain 

boundaries (Fig. 6-16; Fig. 6-28; Fig. 6-31) (<5 µm). 

c) Subhedral to euhedral crystals (>500 µm) surrounded by calcite with tiny (5 –

25 µm) inclusions of blade-shaped apatite (Fig. 6-18). 

d) In intergrowth with minerals of the alteration assemblage (100 – 500 µm), e.g., 

barite (Fig. 6-8; Fig. 6-17; Fig. 6-19), chlorite (Fig. 7-20), quartz (Fig. 7-16) and 

hematite (Fig. 7-25). 

e) As part of REE-mineral bearing veins (Fig. 6-36). 

f) As apatite relic (Fig. 6-29; Fig. 6-38; Fig. 6-39). 

The replacement of apatite-dolomite relics of unaltered carbonatite (f) by the rødbergite 

fluid triggered the precipitation of monazite-(Ce). These relics function as an REE trap 

for the REE-bearing fluid and lead to a concentration of monazite-(Ce) in rocks with 

apatite relics and a high density of REE-mineral bearing veins (Fig. 6-29; Fig. 6-38; Fig. 6–

39). The REE mineralisation mechanism (f) was only identified at the Bjørndalen 

transect. Without a SEM analysis, it is not possible to identify this style of REE-

mineralisation that is why it could not have been detected at the Gruveåsen transect. 

For further details of the lack of apatite replacement REE-mineralisation at the Fen Road 

transect, please refer to chapter 7.3.5. 
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The Bjørndalen transect has a distinct enrichment of HREE and Th in the centre of 

intense fluid-rock interaction (red rødbergite) (Fig. 6-40). Zones of LREE enrichment 

occur in the western transitional rødbergite, which has the highest density of REE-

minerals veins. The Gruveåsen transect shows a different trend with congruent zones of 

LREE and Th and a separation of HREE (Fig. 8-14). Samples with an exceptionally high 

concentration of HREE are veins of pure Fe-oxide ore (Tab. 8-1). The Fen Road transect 

does not show separation with congruent zones of LREE, HREE and Th enrichment. The 

process of pervasive massive oxidisation of unaltered protolith to red rødbergite does 

not necessarily lead to different zones of LREE, HREE and Th enrichment. For different 

zones to occur, additional processes have to be involved. For instance, the formation of 

LREE-veins caused LREE enrichment, and the formation of pure Fe-oxide veining caused 

an enrichment of HREE. Furthermore, samples with an unproportioned amount of Th 

relative to LREE and HREE exist, but further mineralogical studies are required for an 

explanation.   
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Table 10-4: Summary of REE-mineralisation properties for the Bjørndalen-, Fen Road- and Gruveåsen transect. 
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10.4 Chloritisation-Rødbergitisation  

The chloritisation of carbonatite and minor amounts of gneiss was observed at the Fen 

Road transect and Gruveåsen transect. For Further information, please refer to chapter 

8 section 8.1.1, 8.1.4 and 8.3.1. The chloritisation of the host rock occurs by veinlet 

infiltration and along grain boundaries and causes a black colouration and an increase 

in density of the rock (Fig. 8-3). Thicker veins of chlorite could be observed in gneiss of 

the Fen Road transect (Fig. 8-6). The main alteration minerals are chlorite and magnetite 

with minor amounts of pyrite. The increasing amount of dark mineral phases is 

accompanied by an increase in REE and Th concentration (Fig. 8-16A; Tab. 8-1). The REE 

concentration in chloritised carbonatite is relatively high with an average REE 

concentration of 5,835 ppm and 7,769 ppm for the Fen Road transect and Gruveåsen 

transect respectively. The chloritised gneiss of the Fen Road has a low REE and Th 

concentration and comprises no pyrite or magnetite that makes it distinctly different 

from chloritised carbonatites (Fig. 7-4).  

It is important to note that the process of chloritisation and rødbergitisation are very 

similar in terms of trace element concentration (REE & Th enrichment), REE chondrite 

normalised patterns (Fig. 8-16), alteration texture (via veins, veinlets and grain 

boundaries) and the presence of Fe-oxide. Chlorite is a common constituent in the 

rødbergite mineral paragenesis and occasionally, intergrown with monazite-(Ce) (Fig. 7-

36), which shows a connection between REE-mineralisation and chlorite formation. 

Carbonatites from the Gruveåsen transect show a positive correlation between the 

amount of chlorite (dark schlieren) and the REE concentration. The characteristic 

difference between a rødbergitised carbonatite and a chloritised carbonatite is their 

colour due to different contents of hematite, magnetite and chlorite. The alteration 
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mineral assemblage in zones of chloritisation (magnetite and pyrite) indicates a more 

reduced environment compared to Fe-oxide (hematite or goethite) and pyrite 

assemblage in rødbergite. Chlorite and hematite are in general a common hydrothermal 

alteration assemblage. The giant hydrothermal hematite deposits Carajás (Brazil), 

Hamersley (Australia), Krivoy Rog (Ukraine), Quadrilátero Ferrífero (Brazil), Bailadila 

(India) and Thabazimbi (South Africa) all show wall-rock alteration of hematite-chlorite 

paragenesis (± carbonate) (Dalstra and Guedes, 2004). Additionally, hypogene hematite-

carbonatite formation in BIFs coincides with wall rock intensely altered with carbonate, 

chlorite and talc (Dalstra and Guedes, 2004).    

It is common for a hydrothermal fluid to change its physicochemical properties during 

fluid-rock interaction. The fO2 of the initial hydrothermal fluid will decrease with 

progressing interaction with Fen rock intrusives, e.g., carbonatite. Therefore, it is likely 

that chloritisation and rødbergitisation represent two end members of the same 

hydrothermal alteration process. However, there is no evidence in the field, linking both 

processes to the same hydrothermal event. Rødbergite shows a gradual transition into 

carbonatite (transitional rødbergite) or displays sharp boundaries to the unaltered host 

rock. An actual transition into a chloritised rock (± magnetite and pyrite) has not been 

documented. Therefore, rødbergitisation and chloritisation are defined as two separate 

processes.  

10.5 Implications for REE-Exploration 

At the end of chapter 6 about the Bjørndalen transect, a preliminary model was 

introduced, and several predictions were made for REE-exploration. Data gathered from 

the Fen Road transect, and Gruveåsen transect is used to test these predictions and 

develop new insights. 
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So far, the existence of separate zones rich in LREE, HREE or Th, which is described in 

chapter 6.3.7, are a unique feature of the Bjørndalen area, and such segmentation is not 

obvious along the Gruveåsen or Fen Road transect. While the absence of proof is not 

the proof of absence, along the Fen Road and Gruveåsen transects rødbergitisation 

created a coupled enrichment of LREE, HREE and Th (Fig. 6-40). The results suggest that 

a clear decoupling in the behaviour of LREE, HREE and Th only occurs in areas with a high 

density of REE-mineral-bearing veins, or Fe-ore veins. REE-mineral-bearing veins cause 

a LREE enrichment relative to HREE and Th (please refer to chapter 6, sample 15-93-FE, 

Fig. 6-35; Fig. 6-40; chapter 7, sample 16-96-FE, Fig. 7-15; Tab. 7-3 Dolomite-Carbonatite 

(NW); chapter 8 - Fig. 8-14 La/Yb) and Fe-ore veins have the same effect for the 

enrichment of HREE (please refer to chapter 8, sample 16-54, Fig. 8-16 D). In order to 

find a zone of selective enrichment, one of these vein types must be present in a 

sufficiently high abundance. 

Because the formation of rødbergite is caused by an external REE-rich fluid, the 

formation of rødbergite derived from other protoliths than carbonatite was predicted 

in chapter 6.3.7. The Gruveåsen transect showed the potential formation of rødbergite 

from any available precursor rock. At the same time, a correlation between the REE 

concentration of the resultant rødbergite and the REE concentration of the surrounding 

host rock (protolith) suggested a rather localised (< 50 m) mobilisation of REE (Fig. 8-17), 

which lowered the probability of forming REE-rich rødbergite in a REE-poor host rock. 

However, it is likely that high REE level rødbergite veins or REE-mineral-bearing veins 

occur within low REE level host rock due to their ability to transport REE over a larger 

distance (Fig. 8-15).  
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The rocks with the highest REE concentration and the best potential for REE exploration 

are chlorite-rich carbonatite, rødbergite and rødbergite veins. Rødbergite has the 

highest variation in REE concentration due to the dependency on REE concentrations of 

the surrounding host rock. The host rock influence on rødbergite veins is less strong, and 

rødbergite veins typically show very high REE concentrations. Chlorite-rich carbonatites 

have a less variable high REE concentration. The REE concentration increases with an 

increasing proportion of dark mineral phases. 

Additionally, rock samples with a high density of veins and/or the presence of apatite 

relics are more likely to be enriched in REE. Even unaltered lithotypes originally low in 

REE can be greatly enriched in REE, if REE-mineral-bearing veins are present, as was 

shown for transitional rødbergite at the Bjørndalen transect (Fig. 6-40). Another telling 

example was collected during a sampling campaign in the Søve tunnel in the western 

part of the Fen Complex. In the middle of a long on-going sequence (270 m) of unaltered 

carbonatite, a specimen with a high density of dark veins was collected, and the analysed 

REE concentration showed a 10-fold increase compared to the surrounding host rock 

carbonatites. The REE-mineralisation of a country rock such as the gneiss is possible if 

fluid pathways were available, and a close look at the prevalent fault systems will 

present an idea of potentially mineralised areas. A reddish hematised rock type has been 

observed outside of the Fen Complex (Andersen, 1989a), which is evidence for the 

hematisation event extending beyond the borders of the Fen Complex. However, the 

REE-mineralisation of the country rock is not likely to be greater than the REE-

mineralisation within the Fen Complex, due to the more proximal distance to the REE-

source.        
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10.6 Similar REE-Mineralisation worldwide 

The REE-mineralisation associated with the rødbergitisation of the Fen Complex is an 

exceptional case of a carbonatite-related hydrothermal REE-deposit. Several REE-

deposits worldwide show similarities to the Fen Complex e.g., the hydrothermal Red 

REE-rich Veins (RRV) of the Bachu Carbonatite (Cheng et al., 2018), the heavily altered 

HREE-enriched carbonatite dykes of the Huanglongpu district (Smith et al., 2018), the 

REE-rich ferrocarbonatite-breccia of Kuge in Kenya (Onuonga et al., 1997), the Th-rich 

hydrothermal altered shear zone at Sarfartoq in Greenland (Bedini and Rasmussen, 

2018). The implementation of the major findings of this thesis will enhance the 

understanding of these REE-deposits.  

The nearest equivalent to the Fe-ore veins and rødbergite of the Fen Complex are the 

ironstone veins of the Gifford Creek Ferrocarbonatite Complex (GFC) in Western 

Australia (Pirajno et al., 2014). The GFC comprises dykes, sills and veins of 

ferrocarbonatite that are associated with complex and irregular distributed zones of 

fenite together with a swarm of ironstone (hematite, magnetite and goethite) veins. 

Pirajno et al. (2014) obtained an average U-Pb age of 1075 ± 35 Ma for the GFC, which 

is within the range of ages for the Warakuna Large Igneous Province. Monazite from the 

fenite of the ironstone yielded a younger age of 1050 ± 25 Ma, which is interpreted as 

the second phase of carbonatite magmatism. During this second phase, a pull-apart 

structure formed and reactivated the carbonatite system, which resulted in the 

emplacement of a swarm of sinuous ironstone veins (Pirajno et al., 2014). The genetic 

model of the ironstones of GFC is based on a dissolution of primary of Fe-bearing 

minerals and multiple stages of redistributing of Fe in the form of magnetite, hematite 

and goethite. For the formation of REE-minerals Pirajno et al. (2014) refer to Andersen 
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(1984), which suggests a magmatic origin with passive enrichment during hematisation. 

However, if the REE were, in fact, mobile, similar to the result of this thesis for the Fen 

Complex, this would change the perspective for the REE-exploration. A REE-mineralised 

horizon would not be restricted to the ironstone and ferrocarbonatite but instead could 

extend in the proximity (<100 m) of the centre of hematisation, depending on the 

permeability of the surrounding rock. Especially host rocks rich in carbonate and/or 

apatite are of major importance because they are more susceptible to hydrothermal 

alteration and are more effective in destabilising REE-complexes compared to granitic 

host rocks. Additionally, the GFC has single veins and not overlapping zones of multiple 

alteration cells; this makes a decoupling of HREE and LREE during hydrothermal 

alteration, comparable to the Bjørndalen transect, more likely. In fact, according to 

Pirajno et al. (2014), most of the REE-mineralisation is hosted in the fenitic halos, which 

indicates a hydrothermal origin of REE-minerals. The Fenites of GFC surround 

ferrocarbonatites as well as ironstones. A link between the hematisation events of the 

ironstone associated with a hydrothermal REE-mineralisation is therefore already 

indicated.         

Carbonatites from the east-northeast-trending Cape Cross lineament in northern 

Namibia Kalkfeld, Ondurakorume and Onsongombo all show hematite ore associated 

with radioactivity (Verwoerd, 1966). The Fe- and Th-mineralisation style is very similar 

to that of the Fen Complex. Therefore, a hydrothermal mobilisation of REE similar to the 

Fen Complex can be anticipated, and features like REE-mineral bearing veins, LREE-HREE 

enriched zones and apatite-traps are likely to be present. Additionally, the application 

of remote sensing (radioactive – and electromagnetic radiation) could help to localise 

hidden Fe-Th-REE mineralised systems within the whole Cape Cross lineament.  
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The apatite Seligdar deposit in Russia is one of many similar apatite deposits within the 

Nimnyrskaya apatite zone, which is about 400 km long (Prokopyev et al., 2017). The 

origin of the Seligdar deposit is still subject of an ongoing debate. According to 

Prokopyev et al. (2017), the deposit is a hydrothermally altered and metamorphosed 

dolomite carbonatite, which subsequently altered the primary mineralogy of apatite, 

dolomite and magnetite to a rødbergite-like paragenesis of quartz, calcite, monazite-

(Ce), xenotime-(Y), hematite, thorite, sulphates and sulphides. Chloride brines caused 

the remobilisation of REE and Th into hydrothermal monazite and subsequently evolved 

into oxidised carbonate-ferrous solution forming sulphates, monazite-(Ce) and hematite 

(Prokopyev et al., 2017). Analogous to the hydrothermal REE-mineralisation of the Fen 

Complex the focus of REE-exploration should be on understanding the fluid pathways 

(faults, vein generations) and to map potential zones of HREE, LREE and Th separations 

especially because HREE-minerals (xenotime-(Y)) and LREE-minerals (monazite-(Ce)) are 

present. The application of remote sensing would help to identify hidden mineralised 

pathways (electromagnetic) of hematised or magnetised ore veins. Additionally, 

radioactivity surveys could help to identify potential REE-mineralised areas on a regional 

scale of the Nimnyrskaya apatite zone. The occurrence of platform sediments in the 

Nimmyrskaya apatite zone could be beneficial for REE-mineralisation. Carbonate 

sediments are more effective in the destabilisation of REE-complexes than metamorphic 

rocks. REE3+ bearing hydrothermal fluid originating from the alteration of apatite 

deposits will neutralise in contact with platform sediments and precipitate REE-

minerals. 
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The Hoidas Lake deposit in northern Saskatchewan is characterised by LREE-rich 

diopside-allanite veins and various generations of apatite breccia veins (Halpin, 2010). 

According to Pandur et al. (2016), the source of the mineralisation is most likely a 

carbonatite or syenitic intrusion. Locally the REE-mineralisation got redistributed by an 

oxidising hydrothermal fluid causing a chlorite-hematite alteration with secondary 

monazite, REE carbonatites, REE-Sr carbonates and allanite veins (Pandur et al., 2016). 

The mineralisation style shows many similarities to the REE-mineral bearing veins of the 

Fen Complex, e.g. LREE-enriched, associated with hematite, chlorite and barite, caused 

by an oxidising fluid. Therefore, the application of remote sensing (radioactive – and 

electromagnetic radiation) might identify a mineralised root system — analogue to the 

hematite and magnetite ore bodies of the Fen Complex. Similar to the HREE-dominated 

Fe-ore veins, apatite veins and central rødbergite zones of the Fen Complex, a central 

and deeper part of alteration is more likely to be enriched in HREE, due to less mobile 

nature of HREE compared to LREE.       

The main findings of this thesis will help to change the perspective on some REE-deposits 

and extend the range of features that are important for REE-exploration, especially in 

hydrothermal systems enriched in REE, Fe and Th.  
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10.7 Economic evaluation 

To properly decide if the exploitation of a deposit is economically viable is a complex 

process that requires much experience and has to take various types of information 

(geological, economic, legal) into account. Generally, this analysis is achieved in a 

feasibility study. The following analysis is based on the author’s best knowledge and 

does not claim to be on the same level as a feasibility study. 

Under the current situation and knowledge, the exploitation of REE from the 

hydrothermal REE-mineralisation of the Fen Complex appears unlikely.  

First, the deposit is mainly enriched in LREE, which are less economically viable than 

HREE. Second, although some parts of the REE-mineralisation show the low 

concentration of Th, the majority of the REE-enriched rock has Th concentrations 

between 500 – 1500 ppm. The concentration process of REE-minerals and later 

beneficiation of the REE would produce a Th-rich concentrate. The proper disposal or 

storage would produce additional costs for the mining business. Third, the cost of 

building a mine solely for the production of REE is relatively high with respect to the 

world market value of REE. Most of the worldwide REE are mined as a by-product. 

Fourth, the average hourly labour cost in Norway is relatively high and with 50 € almost 

twice as high as the average hourly labour cost of the UK (27.4 €) or the average hourly 

labour cost of the EU with28 € (Eurostat, 2018). Fifth, Europe has large quantities of 

waste material with considerable REE-concentrations e.g. 2.7 billion tonnes (Klauber et 

al., 2011) of red mud with REE concentration of less than 1 wt% (Binnemans et al., 2015), 

apatite dumps from fertilizer production and Fe-extraction from Kiruna type 

mineralisation (Al-Thyabat and Zhang, 2015; Binnemans et al., 2015). From an 

environmental point of view, it appears better to reuse dumps than open new mines. 
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Depending on the mineralogical characteristic of the waste material, it is potentially also 

economically more feasible to reprocess old dumps to extract REE.  

Although the hydrothermal REE-mineralisation associated with rødbergite shows the 

highest potential for REE enrichment within the Fen Complex, it might be economically 

more viable to mine the Nb-rich calciocarbonatite (søvite of the Tufte tunnel). The 

calciocarbonatite of the Tufte tunnel could potentially deliver the following 

commodities: Nb from pyrochlore or columbite, P from apatite, calcite, Fe from 

magnetite and REE from monazite-(Ce) and REE-fluorocarbonates — especially, 

calciocarbonatite with REE-mineral bearing veins near rødbergite. Even though the REE 

concentration is below the rødbergitised or chloritised lithotypes, the combination of 

multiple commodities could make REE extraction feasible.  

On the other hand, if Th becomes a useful commodity (Th-molten salt reactor 

technology) instead of expensive waste product, rødbergite becomes a valuable Th-REE-

ore. Additionally, discoveries of REE-mineralisation at the Fen Complex are still possible. 

The elongated hematite ore bodies grade into magnetite bodies in the more central area 

of the Fen Complex. The magnetite mineralisation represents different pH and fO2 

conditions during the Fe-mineralisation. However, it is unclear how LREE, HREE and Th 

mineralisation are influenced by these parameters during hydrothermal alteration.   

 

10.8 Conclusion 

The REE-mineralisation of the Fen Complex is a REE-enrichment process triggered by the 

alteration with external hydrothermal fluids (Fig. 10-1). These fluids migrate along zones 

of structural weakness into the rocks of the Fen Complex and cause the dissolution and 
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oxidation of the carbonatite. The heat source, caused the circulation of the 

hydrothermal fluid, is supplied by an upwelling of hot mantle material during the 

formation of the Oslo rift. The reacted hydrothermal fluid was rich in Ca2+, Mg2+, 

Fe
2+/+3

, K+ , Ba+ , REE3+, Th4+, CO3
2−, SO4

2− and F−  due to the dissolution of the 

unaltered mineral assemblage, e.g., carbonates, pyrite, apatite and REE-

fluorocarbonates (Fig. 6-12). The ascending hydrothermal fluid has caused a local 

redistribution of those elements along major NNW-SSE to NW-SE oriented fault zones 

(Andersen, 1983) and surrounding areas (see chapter 4) where the hydrothermal flow 

was most concentrated massive narrow veins of hematite/magnetite ore formed (Fig. 

8-10). Hydrothermal fluid further invades the wall rock via veinlets, rødbergite veins and 

through pervasive migration along crystal boundaries (Fig. 6-16; Fig. 6-36; Fig. 7-32). The 

hydrothermal alteration has caused large-scale oxidation of carbonatite to rødbergite. 

Although rødbergite has preferentially formed by the replacement of carbonatite, 

evidence for the rødbergitisation of damtjernite, fenite and gneiss was observed (Fig. 8-

7; Fig. 8-11; Fig. 8-12). The alteration mineral assemblage is characterised by varying 

amounts of Fe-oxide, barite, calcite, chlorite, quartz, phlogopite, ferroan dolomite-

ankerite and with minor amounts of apatite, REE-minerals and barian orthoclase. 

Monazite-(Ce), synchysite-(Ce) and bastnäsite-(Ce) are the most common hydrothermal 

REE-minerals and are part of the veinlet, vein assemblage and interstitial areas in 

rødbergite (Tab. 7-2). The hydrothermal REE-minerals are commonly in intergrowth with 

barite, calcite, chlorite or phlogopite (Fig. 6-17; Fig. 6-28; 7-34).  
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Figure 10-1: Simplified evolutionary stages of REE-mineralisation at the Fen Complex. 1. Emplacement of the 

magmatic Fen carbonatite around 570 Ma. Formation of REE-minerals during late-magmatic processes within the 

carbonatite. 2. Fracturing and faulting of the solidified carbonatite. 3. External heat from the Oslo rift activates a 

hydrothermal cell at 273 Ma. The hydrothermal cell is circulated meteoric water along deep faults into the 

magmatic rock sequence, which is causing the oxidation of carbonatite. 3a The hydrothermal alteration of the 

carbonatite caused the breakdown of unaltered mineral assemblage (e.g., REE-minerals) and formation of 

hydrothermal REE-minerals from the altered mineral assemblage. The REE redistribution caused REE enriched 

zones in rødbergite with a narrow zone of HREE enrichment along the hydrothermal pathways. 3b Multiple cycles 

of rødbergite formation. 3c LREE-rich veins formed within the rødbergite and unaltered carbonatite during the last 

stage of the hydrothermal alteration.  
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Additionally, monazite concentrates as a replacement halo around apatite relics from 

unaltered carbonatite (Fig. 6-38; Fig. 6-39). Thorium is mainly incorporated in monazite, 

REE-fluorocarbonates or forms the Th-mineral thorite. The precipitation of REE-minerals 

during rødbergitisation caused a general enrichment of REE and Th in the replaced host 

rocks by up to 23 times of the original REE concentration (Fig. 6-40; Fig. 7-37; Tab. 7-3; 

Tab. 8-1). The REE concentration within rødbergite varies strongly (Tab. 8-1) and is 

positively influenced by the presence of veinlets, rødbergite veins and apatite relics. 

Furthermore, the REE-level of rødbergite is related to the REE concentration of the 

surrounding host rock and is especially high for chlorite-rich carbonatite (Fig. 8-17). 

During the evolution of the passage of the hydrothermal fluid, the physicochemical 

properties of the system were constantly changing, which caused multiple sets of cross-

cutting veins and overprinting rødbergitisation events. Figure 10-2 is a simplified 

geological cross-section of the Fen Complex and shows the formation of rødbergite 

relative to the rest of the Fen Complex.  
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Figure 10-2: Schematic cross-section of the Fen Complex. Hydrothermal alteration of external fluid along fault 

zones is causing rødbergitisation of the carbonatites. The alteration is preferentially located at the outer rim of the 

complex with REE-mineral-veins extending beyond the rødbergitisation as part of a feeder structure. Location 1 is 

mainly rødbergite with REE-mineral bearing veins and represents Bjørndalen- and Fen Road transect. Location 2 

comprises a larger part of the complex with carbonatite, chloritised carbonatite, damtjernite and rødbergite, which 

represents the Gruveåsen transect. 
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11 Final Conclusion & Future Research 

 

The Fen Complex in south Norway is with 484 Mt of Rare Earth Oxides (REO) at 0.93 wt% 

one of the largest REE resources in Europe and object of ongoing mineral exploration. 

However, the last period of intense research about the origin of the REE-mineralisation 

at the Fen Complex was done in the 1980s by Andersen. Due to the recent challenges 

regarding a secure supply of REE for the European market, this project set out to 

investigate the nature of the REE-mineralisation at the Fen Complex. The aim was to use 

a combination of geochemical data and high-resolution imaging to create an improved 

model of the REE-mineralisation and to provide companies a tool to strengthen their 

exploration campaigns.     

The major findings of this study are: 

a)  Rødbergite is a hydrothermally altered red alteration product from different 

kinds of protoliths (gneiss, fenite, carbonatite and damtjernite).  

b) The rødbergitisation of the protoliths caused an enrichment in REE 

concentrations in varying degrees (up to 23-fold of the original REE 

concentration), depending on the REE level of the protolith, REE-

mineral/rødbergite vein density and the presence of apatite relics.  

c) The precipitation of hydrothermal REE-minerals (monazite-(Ce), bastnäsite-(Ce), 

synchysite-(Ce) and allanite) dominated in LREE — and not the residual 

enrichment of insoluble original REE-minerals — caused the increase in REE 

concentration. 
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d) The increase in REE concentration is associated with a variable increase in Th, 

which is mainly incorporated in monazite-(Ce), REE-fluorocarbonates and rarely 

in thorite. 

e) Th-Pb geochronology on zircons from two different carbonatite locations 

established an age for the emplacement of the Fen Complex carbonatite at 

~570 Ma, an age that is in accordance with previous Rb-Sr and Ar/Ar dating of 

damtjernites that are coeval with the carbonatites. 

f) According to Th-Pb ages of 272.9 Ma ± 3.4 Ma from hydrothermal monazite in 

REE-rich transitional rødbergite, the hydrothermal REE-mineralisation in 

rødbergite is significantly younger than the emplacement of the Fen Complex 

and indicates the Oslo rift as the main heat source for the hydrothermal 

rødbergitisation.    

The project identified rødbergitisation as an effective process for REE enrichment due 

to the precipitation of hydrothermal REE-minerals. However, there is evidence at the 

Fen Road transect and Gruveåsen transect for a spatial association between rødbergite 

and chlorite-bearing dolomite-carbonatite. Rødbergitisation and chloritisation are 

similar processes as both are hydrothermal processes, which in general increase the REE 

and Th concentration of protoliths and precipitate, among others, Fe-oxides, pyrite and 

chlorite. Chloritisation — or the formation of grønnbergite as an equivalent to 

rødbergite — is potentially a more reduced version of rødbergitisation as the 

hydrothermal fluid penetrated deeper into the reduced intrusive rock of the Fen 

Complex (Fig. 11-1). The evolution towards a reduced and more alkaline fluid could 

explain the formation of magnetite bodies in the extension of hematite veins (Fig. 11-

2).  
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Figure 11-1: Schematic sketch of the vertical change in pH and fO2 of hydrothermal fluid along faults due to 

reaction with the carbonatite (stage I). A vertical change in fluid properties is accompanied by a horizontal 

change from the periphery of the Fen Complex to a more central part of the complex. (stage II). Red areas 

indicate oxidised conditions (rødbergite) while the green parts represent more reduced conditions associated 

with chlorite-magnetite mineralisation. 

 

 

Figure 11-2: Simplified geological map of the Fen Complex showing the extent of rødbergite and the 

distribution of Fe-ore zones. The Fe-mineralisation overlaps partly with zones of magnetic intensity (unit is γ = 

1 nT) calculated by Sæther (1957) indicating the presence of magnetite bodies.   
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A mineralogical and geochemical investigation should address the connection between 

rødbergite, chlorite-bearing dolomite-carbonatite and magnetite ores with focus on 

REE-mineralisation, Th concentration (potentially low around magnetite mineralisation) 

and other potentially interesting mineralisation, e.g. sphalerite, galena and chalcopyrite. 

Alternatively, evidence suggests that chloritisation is limited to dolomite-ankerite 

carbonatite and therefore might be a late- to post-magmatic alteration process unique 

to the Fe-rich carbonatite units. 

The presence of postmagmatic pyrite is evidence for the hydrothermal fluid to have 

been equilibrated to atmospheric conditions. Based on the stability diagram of Fe-

minerals, the formation of pyrite requires a pH below 9 (Fig. 11-3). A hydrothermal fluid 

in equilibrium with a carbonatite ranges between pH of 11.5 and 13 and would form 

magnetite under reducing conditions rather than pyrite. A hydrothermal fluid 

equilibrated with atmospheric CO2 concentration is having a significantly lower pH in 

equilibrium with carbonatite and might be essential to the formation of pyrite 

(Langmuir, 1997). This supports the idea that the rødbergitisation fluid derived from 

meteoric water. Further modelling based on fluid inclusion data is necessary to check 

this hypothesis.  

Additionally, more research is needed to investigate the nature of corroded alternating 

stack of REE-fluorocarbonates at the Fen Road transect, which could be part of the 

original- or alteration mineral assemblage.  
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Figure 11-3: Stability diagram of Fe-minerals depending on pH and fO2 at 250°C. The pH of a hydrothermal fluid in 

equilibrium with carbonatite is marked by a yellow box. The purple box represents the pH level of a hydrothermal fluid 

in equilibrium with carbonatite and atmospheric CO2 concentrations. The hydrothermal fluid forming rødbergite veins 

had to be equilibrated with atmospheric CO2 conditions in order to have been able to form pyrite. For details about the 

construction of the phase diagram, see the caption of figure 7.41. 

 

To this point, the isotopic age of the REE-mineralisation was only calculated for samples 

from the Bjørndalen transect. To verify that the Permian age of the mineralisation, which 

coincides with the formation of the Oslo rift, is not an outlier, monazite-(Ce) from the 

Fen Road -and Gruveåsen transect should be analysed.  

The Fen Road transect and especially the Gruveåsen transect display a correlation 

between the REE-concentration of rødbergite and the REE concentration of the former 
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protolith. One particular rødbergite vein in a host rock of brecciated fenite has a very 

high concentration of REE despite being surrounded by rock and vein with a low level of 

REE. This might be due to an adjacent unexposed host rock with a high level of REE, or 

due to the unique nature of this vein. A detailed mineralogical investigation is needed 

to clarify this case.  

Apparent xenoliths of rødbergite occur locally in brecciated rødbergitised damtjernite 

and make the connection between rødbergite and REE-mineralisation more complex 

than initially thought. Was the Fen Complex subject of multiple events of 

rødbergitisation? How much time passed between these different rødbergitisation 

events (Ediacaran to Permian)? Are some of the damtjernite magmatism post-

Ediacaran? Was there more than one event of hydrothermal REE-mineralisation, and 

were any additional mineralisation events necessarily associated with rødbergitisation? 

A better constrain about the geochronology of the REE minerals at different transects in 

combination with more mineralogical work targeting these rødbergite xenoliths will help 

to address these questions.  

Rødbergitisation and chloritisation show a clear link between hydrothermal Fe-

mineralisation, Th-mineralisation and REE-mineralisation. There are some properties 

which cause the mobilisation of REE — a group of elements which were regarded to be 

resistant against hydrothermal mobilisation of any kind — and Th and Fe at the same 

time (plus S, Ba, P, Ca, Mg, Si and Al). This is not just the case for the Fen Complex but 

can also be seen for other carbonatite associated complexes, e.g., Bayan Obo and even 

other types of deposits, e.g. IOCG or Kiruna-type deposits. Future research should also 

identify the common denominator as well as the differences in these types of deposits.    
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Finally, yet importantly, rødbergitisation and chloritisation are crucial processes to 

understand the REE-mineralisation of the Fen Complex. These processes involve 

common minerals and are happening under rather normal hydrothermal conditions. 

Nevertheless, they are rarely reported as key processes in other REE-mineralised 

carbonatites. Due to their similarity to typical hydrothermal mineral assemblages, it is 

unlikely that rødbergitisation and chloritisation are unique REE-mineralisation processes 

of the Fen Complex. Some carbonatite complexes report similar mineral parageneses 

that indicates processes like rødbergitisation to be the reason for the REE-

mineralisation. For example, Bayan Obo, China (Drew et al., 1990), Lueshe, DR Congo 

(Maravic and Morteani, 1980), Buru and Tuge, Kenya (Onuonga et al., 1997), Sarfartôq, 

Greenland (Secher and Larsen, 1980). Therefore, future research should focus on 

recognising rødbergitisation and chloritisation related processes at other carbonatite 

complexes and similar REE-mineralisations worldwide and apply the findings of this 

thesis in order to improve the understanding of the REE-mineralisation of the respective 

complex.     
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APPENDIX 

I Sample list 
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II Sample Reduction  

 

Figure A-1: Chart illustrating the sample number and criteria for the different sample preparation steps: thin 
section; sample powder; polished blocks; ICPMS and SEM.  
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III Sample Preparation (detailed) 

 

 all samples were cut in half using a diamond saw;  

 the two halves were then separated into one archive piece for storage and one 

working piece for further sample processing; 

 one thin slice was cut from the working piece to represent the overall texture of 

the rock; 

 approximately 100 g of rock material was cut to smaller blocks (< 2cm) for 

further crushing to produce rock powder, and a larger representative block was 

cut from every sample to produce polished blocks for microscopic analysis; 30 

µm 

 

Thin Section  

 thin section was ordered with standard thickness of 30 µm and polished for 

further use in the Scanning Electron Microscope; 

 the majority of the samples were prepared as polished blocks — polished blocks 

are a quicker and cheaper way of preparing samples for the Scanning Electron 

Microscope compared to thin sections; 

 

Polished Block Preparation 

 liquid resin (EPO Flo resin) and a liquid hardener (EPO Flo hardener) are mixed 

together in a ratio of 10:3 (by weight) and slowly stirred with a wooden toothpick 

for at least 2 min to ensure homogenisation;  
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 before mounting the sample chip into a 3 cm round plastic tube with a 

removable bottom, a release agent was spread on the inner wall of the mould; 

 the chip was put into the mould and the resin mix was poured slowly over the 

sample to avoid trapping of air bubbles; 

 the mould was placed on a hotplate at 60°C and left for at least 2 days for curing; 

 the cured resin block was grinded with a grinding plate to remove any sharp 

edges; 

 the blocks was hand polish using two different sized diamond grinding paper 

attached to a polishing plate;  

 preparation with diamond grinding paper was done for at least 4 min for each 

sample to ensure full exposure of the specimen surface;  

 further polishing was done in two steps with a slurry of water and alumina with 

a grain size of 14 µm and 9 µm, respectively — between each step the sample 

and the plate were washed and sonicated to remove any remnants of the slurry;  

 mechanical polishing involved 3 steps with diamond pastes with 6 µm, 3 µm and 

1 µm grain sizes; 

 diamond paste was put on a polishing glove together with lubricant Buehler 

MetaDi and spread on the glove using the sample itself; 

 after each step the sample was washed, put into an ultrasonic bath to get rid of 

any remaining polishing paste, and dried with an airgun before moving to the 

next finer polishing step; 
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Rock Powder Preparation (<30 µm) 

 bench-top jaw-crusher with adjustable aluminium-oxide ceramic plates was used 

to crush approximately 100 g material of each sample  

 to protect the ceramic plates from abrasion, the rock chips were less than 3 cm 

in size and crushed in 3 to 5 steps, starting with the largest distance between the 

ceramic plates and finishing with slightly less than the smallest distance possible; 

the last crushing step ensured that the particle size was less than 0.5 mm and 

therefore small enough to be effectively milled with the agate mill; 

 after each sample the two jaws were screwed off and rigorously washed with 

hot water and a brush — more resistant impurities were successfully removed 

using crushed quartz powder; 

 the jaw crusher was cleaned with paper towels and dry-cleaned with the airgun; 

 after every second sample and every rødbergite sample, broken chips of Cornish 

quartz pebbles were crushed in > 10 steps for cleaning purpose; 

 crushed sample material was milled using the Retsch RS 100 vibratory disc mill, 

with an agate ring-and-puck mill to obtain a fine powder of less than 30 µm 

particle size; 

o after the agate ring broke the rock samples of the Gruveåsen transect 

were milled with a tungsten-carbide (WC) ring-and-puck mill; 

 duration of milling was variable and could take up to 10 min at 700 rpm (11.6̅ s-

1) for the agate mill and 2 min at 1400 rpm (23.3̅ s-1) for the WC mill; 

 the mill was emptied on a blank sheet of paper and sticking material was 

scratched off the agate mill; 
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 common problems with the agate mill occurred with phlogopite- and Fe-oxide 

rich samples;  

o phlogopite is hard to crush because it bends easily and absorbs the 

impact; 

o in a similar way Fe-oxides coat the agate mill and every particle with an 

impact absorbing layer; 

o in both cases less material and longer mill time was required;   

 

Carbon Coating 

 any impurities on the sample surface were cleaned off using an analytical duster 

spray; 

 a rotary-pumped carbon and sputter coating system with a carbon rod 

evaporation head was used to carbon coat the samples; 

 for carbon coating, two carbon rods were sharpened with a special sharpener to 

get a spigot; 

o one spigot was then grinded to an anvil shape using a special tool and 

grinding paper with 600- and 1200-grit; 

 both rods were clamped into the electrodes of the evaporation head making sure 

that the sharpened tips were in contact; 

 after the sample was placed in the chamber, the evaporation head was closed 

tightly and the program “ramped carbon” was selected; 

o evacuation took between 10 to 30 min depending on the porosity and 

size of the sample; 
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 when the required vacuum was reached, a high current was applied stepwise on 

the carbon rods to produce thermal evaporation of carbon, which deposited on 

the sample; 

o to ensure an even coating the sample was placed on a rotating stage 

during the whole process.  

 for various reasons large area maps were more prone to charging and therefore 

samples, which were supposed to be mapped entirely, were coated twice; 
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IV Transect Rare Earth Element Concentration 

 

Bjørndalen transect 

 
 

Fen Road transect 
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Gruveåsen transect 
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V EDS-SEM Analysis 

All analysis are normalised to 100%. Please consider this when working on minerals with 

a high concentration of OH, H, CO3, e.g., calcite, dolomite, REE-fluorocarbonates and 

apatite.   
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VI Polished samples 

 

 

Figure A- 2: Polishes blocks from the Bjørndalen transect part 1.  
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Figure A- 3: Polishes blocks from the Bjørndalen transect part 2. 
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Figure A- 4: Polishes slices from the Bjørndalen transect.  
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Figure A- 5: Polishes slices from the Fen Road transect part 1. 
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Figure A- 6 Polishes slices from the Fen Road transect part 2. 
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VII ICPMS chemical data table [dl in ppb, samples in ppm] 
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VIII Certified Reference Material 

T a b l e  A -  1 :  D e v i a t i o n  i n  %  o f  t h e  a n a l y s i s  f r o m  C R M s  f r o m  t h e  v a l u e s  d e l i v e r e d  b y  t h e  C R M  p r o d u c e r .  * R E E  i s  a n  o r e  c o n t a i n i n g  R E E s ,  Z r  a n d  N b  f r o m  t h e  S t r a n g e  

L a k e  d e p o s i t ,  Q u e b e c ,  C a n a d a .  * * O R E  ( O R E A S  4 6 1 )  i s  a n  o r e  c o n t a i n i n g  R E E  a n d  r e p r e s e n t  a  m i x t u r e  f r o m  a  b a r r e n  s i l t s t o n e  a n d  t h e  l a t e r i t i c  M o u n t  W e l d  d e p o s i t .   
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IX Procedural Blanks & Acid Blanks 

 

 


