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A B S T R A C T

We present new behavioral data and modeling that links priming, recognition, and source memory. In four
experiments, we found that the magnitude of the priming effect, as measured with identification response time in
a gradual clarification task, was (1) greater for studied items receiving correct source decisions than incorrect
source decisions, and (2) increased as confidence in the source decision increased. Building on the framework for
modeling recognition and priming proposed by Berry, Shanks, Speekenbrink, and Henson (2012), we developed
a single-system model in which source memory decisions are driven by the same memory strength signal as
recognition and priming. We formally compare the model against a multiple-systems model, in which the
(implicit) memory signal driving priming is distinct to the (explicit) one driving recognition and source memory.
The single-system model reproduces the qualitative patterns of the association between source memory and
priming better than the multiple-systems model. Comparison of the quantitative fits was not as clear-cut,
however: the single-system model tended to fit better in Experiments 1 and 2, but not in Experiments 3A and 3B,
where the observed association between priming and recognition was weaker. Our investigation is an initial
attempt at linking priming, recognition, and source memory in the same modelling framework, and provides a
basis for further exploration and refinement.

Memory can be expressed in a variety of ways. Three widely studied
phenomena are long-term repetition priming, recognition, and source
memory. Long-term repetition priming (henceforth priming) refers to a
change in identification, detection or production of an item (e.g., a
word), which occurs as a result of prior exposure to the same or similar
item. For example, identification latencies for words that have recently
been studied tend to be faster than those that have not been recently
studied. Recognition memory refers to the ability to judge whether an
item has been encountered before in a particular context (e.g., a study
phase). Source memory refers to the ability to retrieve specific con-
textual details associated with an item’s presentation in the study phase,
such as whether an item was previously presented in a study phase
towards the bottom or top of a screen. Prominent theories explain these
phenomena as being driven by distinct memory systems, signals or
processes. For example, under some theoretical accounts, priming is
driven by an implicit (unconscious or nondeclarative) memory system,
whereas recognition and source memory are driven by a functionally
and neurally distinct explicit (conscious or declarative) memory system
(e.g., Squire, 1994, 2004, 2009; Squire & Dede, 2015; Tulving &

Schacter, 1990).
Key evidence typically cited in support of multiple systems of

memory shows that levels of processing manipulations affect recogni-
tion memory but not priming (e.g. Jacoby & Dallas, 1981) while
changes in modality between study and test affect priming but not re-
cognition memory (e.g. Craik, Moscovitch, & McDowd, 1994). Further,
priming is associated with changes in cortical activity (e.g. Schacter,
Wig, & Stevens, 2007) while explicit memory is associated with medial
temporal lobe activity (e.g. Staresina, Duncan, & Davachi, 2011). In-
deed, patients with hippocampal damage typically show intact priming
but deficits in explicit memory tasks (e.g. Squire, 2009). Though evi-
dence challenging these dissociations has been reported for functional
dissociations (e.g. Buchner & Wippich, 2000; Dunn, 2003; Lukatela,
Moreno, Eaton, & Turvey, 2007; Meier, Theiler, Burgi, & Perrig, 2009;
Mulligan & Osborn, 2009; Ostergaard, 1992; Poldrack, 1996) and
neural dissociations (e.g. Berry, Kessels, Wester, & Shanks, 2014;
Addante, 2015; Thakral, Kensinger, & Slotnick, 2016), the multiple
systems account of memory is pervasive in psychology textbooks as the
default model of memory citing dissociative evidence (e.g. Baddeley,
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Eysenck, & Anderson, 2014) and independent memory systems are still
used to explain differential memory performance (e.g. Henson et al.,
2016).

Particularly fruitful for theoretical advancement has been the de-
velopment and testing of formal models of priming, recognition, and
source memory. Until relatively recently, however, these three phe-
nomena have tended to be modeled in isolation, rather than conjointly
(e.g. Rouder, Ratcliff, & McKoon, 2000; Slotnick, Klein, Dodson, &
Shimamura, 2000; Wixted, 2007). This is surprising given the potential
that conjoint modeling of diverse phenomena has for constraining
theory (e.g. Curtis & Jamieson, 2018; Kinder & Shanks, 2003; Zaki,
Nosofsky, Jessup, & Unverzagt, 2003). Where efforts of this kind have
been made for priming, recognition and source memory, they have only
modeled these phenomena in a pairwise fashion (e.g. Berry, Shanks,
Speekenbrink, & Henson, 2012; DeCarlo, 2003; Kinder & Shanks, 2003;
Shimamura & Wickens, 2009). Here, for the first time, we conjointly
model priming, recognition and source memory using a framework
based upon signal detection theory. Our modeling incorporates recent
advances in the conjoint modeling of recognition and source (e.g.
Hautus, Macmillan, & Rotello, 2008) and modeling of recognition and
priming (e.g. Berry et al., 2012). First, we describe previous research
concerning the conjoint modeling of priming and recognition, and re-
cognition and source. Next, we present a series of experiments that
show that priming, recognition and source memory are linked. Finally,
we explore the ability of single- and multiple-systems models to explain
these findings. We demonstrate that a single-system model with only
one underlying memory strength signal explains the qualitative and
quantitative pattern of results better than a multiple-systems model
assuming stochastically and functionally independent memory signals
underlying priming and source memory. More broadly, our aim in this
article is to encourage the modeling of different memory phenomena
within a common framework and to provide the groundwork for further
model development and exploration.

Priming and recognition

Berry et al. (2012) provided support for the view that priming and
recognition can be understood as being driven by the same memory
system, rather than distinct memory systems, as has been proposed
previously (e.g., Squire, 1994, 2004, 2009; Tulving & Schacter, 1990).
For instance, in Experiment 2 of Berry et al. (2012), studied and new
words were presented in the test phase using a continuous identification
with recognition (CID-R) task—a gradual clarification task in which
items emerge from a background mask over time (e.g., Feustel, Shiffrin,
& Salasoo, 1983; Stark & McClelland, 2000). On each trial, participants
pressed a button when they could identify the word, providing an
identification response time (henceforth referred to as identification
RT), which formed the basis of the measure of the priming effect.
Following identification, participants made a recognition judgment for
each item using a six-point rating scale (1= sure new to 6= sure old).
Identification RTs and recognition judgments were found to be linked in
several ways: (1) the mean identification RTs for items judged old were
faster than that of items judged new, (2) the priming effect, as measured
across all studied items, was greater than the priming effect for items
not recognized, and (3) identification RTs tended to decrease as re-
cognition confidence increased. Crucially, this pattern of results was
predicted by a formal single-system model. The model Berry et al.
presented is based on signal detection theory and assumes that, at test,
items are associated with a continuous memory strength signal. The
greater this signal for an item, the more likely it is to have a relatively
fast identification RT and to be judged old with greater confidence.

Other experimental work has confirmed specific predictions of this
model, and the model can also explain the differential effect that some
variables such as attention, amnesia, and aging have on recognition and
priming (e.g. Berry, Henson, & Shanks, 2006; Berry et al., 2014; Berry
et al., 2008a, 2008b; Berry, Shanks, Li, Rains, & Henson, 2010; Berry,

Ward, & Shanks, 2017; Ward, Berry, & Shanks, 2013; see Shanks &
Berry, 2012, for a review). Formal model comparisons have also shown
that the single-system model tends to outperform a variety of multiple-
systems models in which distinct memory signals drive performance in
priming and recognition tasks (Berry et al., 2012). However, under
some dual-process accounts of recognition memory, two distinct pro-
cesses (recollection and familiarity) contribute to recognition judg-
ments (e.g. Yonelinas, 2002), with repetition priming argued to be the
basis of familiarity (e.g. Jacoby & Dallas, 1981; Mandler, 1980). Here,
the faster identification of an item (i.e. priming) is attributed to the
previous presentation of an item and leads to a judgment of the item as
“old”. In other words, the association of both memory tasks observed in
Berry et al. (2012) may in fact be due to both priming and recognition
memory judgments relying on a shared implicit memory component. In
this paper, we therefore extend the single-system account to source
memory to test if the association of priming and recognition extends to
a memory task that does not similarly rely on implicit memory.

Recognition and source memory

Behavioral and modeling work has investigated if performance in
tasks that jointly measure recognition and source memory can be ex-
plained by a single memory system or by multiple, analogous to the
exploration of an association between priming and recognition. In a
typical conjoint recognition and source memory task, participants study
items in different contexts or presentation formats (i.e., sources), for
example words may be studied at the bottom (Source A) or top (Source
B) of the screen. In the test phase, previously studied items are pre-
sented, intermixed with novel items. Participants are typically asked to
give a recognition confidence rating first followed by a source memory
confidence rating. The recognition confidence rating scale ranges from
sure-new to sure-old ratings, while source confidence ratings range
from sure-Source-A to sure-Source-B ratings. Models fitted to the re-
sulting data include those that assume a single memory signal to un-
derlie performance (e.g. Banks, 2000; DeCarlo, 2003; Glanzer, Hilford,
& Kim, 2004; Hautus et al., 2008; Slotnick & Dodson, 2005; Starns,
Hicks, Brown, & Martin, 2008; Starns, Pazzaglia, Rotello, Hautus, &
Macmillan, 2013; Starns, Rotello, & Hautus, 2014) and those that as-
sume that distinct, independent processes drive performance in both
tasks (e.g. Yonelinas, 1994, 1999, 2002; Wixted & Mickes, 2010;
Onyper, Zhang, & Howard, 2010). The single-system models, just like
the model for priming and recognition (Berry et al., 2012), are based
upon signal detection theory. They assume that a single underlying
memory signal is expressed differently given the task demands of the
recognition and source memory task. A stronger underlying signal
would therefore tend to give rise to higher recognition confidence and,
for studied items, a greater probability of a correct source decision
made with greater confidence. Indeed, the patterns of observed data
overall can be accounted for better and more parsimoniously by models
implementing such a single system idea than those based on multiple
memory systems or processes (for a review, see Rotello, 2017).

Linking priming, recognition, and source memory

If, on the one hand, recognition and priming can be modeled as
arising from the same strength signal and, on the other hand, so can
recognition and source memory, then this begs the question of whether
priming and source memory can be modeled as being driven by the
same signal. While an association between priming and recognition
could potentially be explained on the basis of a shared implicit com-
ponent, an association of priming and source memory could not. There
are hints that this association exists for priming and source memory.
For instance, in Experiment 3 of Berry et al. (2012), participants
identified each item in the test phase in the CID-R task and then per-
formed a remember-know task for each item (e.g. Gardiner, 1988).
They were instructed to respond remember if they could retrieve specific
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contextual details associated with the item’s presentation at study, or to
respond know if they thought the item was old but in the absence of
remembering specific contextual details. In other words, remember re-
sponses were required to be based on the same type of information
typically associated with successful source responding (e.g., Johnson,
Hashtroudi, & Lindsay, 1993). Identification RTs for studied items re-
ceiving remember judgments were found to be faster than for those re-
ceiving know judgments, suggesting a link between the information in
memory that drives the priming effect and the information in memory
that drives remember responses. The single-system model explained this
finding simply by assuming that the strength signal for items receiving a
remember response is greater than that of know responses (following
Donaldson, 1996; Dunn, 2004). Greater strength tends to translate into
faster identification RTs. Similar experimental findings have been ob-
tained when word-stem completion and lexical decision tasks were used
to measure priming (Sheldon & Moscovitch, 2010).

These results suggest that there may be an association between
priming and source memory, and that it could be fruitful to extend the
single-system model of priming and recognition to source memory. The
main assumption of this extended model is that the same underlying
memory strength signal that drives priming and recognition also drives
source memory judgments. Recognition and source decisions are
modeled as in multidimensional signal detection models of recognition
and source memory (e.g., Banks, 2000; DeCarlo, 2003; Hautus et al.,
2008; Slotnick & Dodson, 2005; Starns et al., 2008). For a given item,
the greater its underlying strength value, the higher its performance in
a priming task (e.g., faster identification RT in the CID-R task), the
greater the confidence with which it will be classified as old and the
greater the confidence with which its source will be correctly classified.
Thus, a general prediction is that priming, recognition and source de-
cisions will be associated.

One way of conceptualising this model is that it implements the idea
that performance in different memory tasks are not driven by distinct
memory signals (arising from, for example, distinct implicit and explicit
memory systems) but rather that memory tasks access the same in-
formation in memory in different ways. If the same memory signal
underlies responding in these memory tasks, this could have far-
reaching implications. There is an on-going debate in the ERP literature
regarding the origin of the FN400. The debate concerns whether the
waveform reflects item familiarity or repetition priming (e.g. Strozak,
Bird, Corby, Friskoff, & Curran, 2016; Voss & Federmeier, 2011.). If in
fact the same memory signal underlies responding in repetition priming
and explicit memory tasks, this debate may concern a false dichotomy.

We will contrast that single-system model with a competing mul-
tiple systems model that implements the popular assumption that the
process underlying priming (familiarity) is stochastically and func-
tionally independent from the one underlying source memory (re-
collection). While multiple systems models need not implement sto-
chastic independence (e.g., the MS2 model in Berry et al., 2012; DPSD
models in Moran & Goshen-Gottstein, 2015; Pratte & Rouder, 2011), it
is nevertheless the case that prominent models and widely used ex-
perimental methods do make such assumptions (e.g., Yonelinas, 1994,
2002; the process dissociation procedure, Jacoby, 1991). We will de-
scribe both the single-system and the multiple-systems models in detail
following the description of the behavioural data.

For the behavioral data, we will extend the paradigm in Berry et al.
(2012) to include a source manipulation. Thus, we will adapt the study
phase such that each item is associated with a source. Source manip-
ulations used in previous research include, for example, distinguishing
words spoken by different speakers (e.g. Starns et al., 2014; Slotnick
et al., 2000), words and images (e.g. Onyper et al., 2010), visual and
auditory information (e.g. Kurilla, 2011) or different locations of the
screen (e.g. Yonelinas, 1999). To ensure the same modality for all three
memory tests, we will present the words in the study phase in different
locations of the screen. Such a spatial manipulation has been shown to
activate the hippocampus (Ross & Slotnick, 2008; Slotnick & Thakral,

2013), with hippocampal activation implicated in the retrieval of epi-
sodic features as in source memory tasks (Brown & Aggleton, 2001;
Diana, Yonelinas, & Ranganath, 2010). Beyond the addition of the
source manipulation, the experimental paradigm will be the same as
presented in Berry et al. (2012). Following study, participants will
complete the test phase. For each item shown at test, participants will
first identify it (to provide an identification RT), then give a recognition
confidence rating followed by a source confidence rating (CID-RS task).
Note, these experiments do not permit us to address the issue of func-
tional independence of priming and source memory but they allow us to
address the issue of stochastic independence. In Experiment 1, we at-
tempted to establish whether priming and source memory are linked in
this paradigm. In Experiment 2, we looked to replicate and amplify the
key findings of Experiment 1. In Experiment 3, we set out to determine
whether the associations we observed in Experiments 1 and 2 critically
depend upon obtaining recognition and source ratings immediately
after identifying an item. To foreshadow our key findings, the magni-
tude of the priming effect was consistently related to both recognition
and source decisions.

Experiment 1

If priming and source decisions are driven by the same memory
signal, as outlined in the above single-system account, then we would
expect the magnitude of the priming effect to be greater for items re-
ceiving correct source decisions than those receiving incorrect deci-
sions. Furthermore, if confidence is a proxy for memory strength, then
we would also expect the priming effect to vary with the confidence
with which the source decision is made. We investigated this in
Experiment 1. In the study phase, words were presented below or above
a central fixation point. In the test phase, each word was presented in a
CID procedure. Participants identified each word as early in the pro-
cedure that they could, providing an identification RT—the measure of
priming. They then provided a recognition rating to the word, followed
by a source memory rating. This design therefore allowed us to de-
termine whether priming is associated with source memory, whilst si-
multaneously determining whether the associations between priming
and recognition reported by Berry et al. (2012) can be replicated.

Method

Participants
36 individuals (six male; M age=20.06, SD=4.38) took part in

the experiment for partial course credit. This sample size provided a
power of 0.8 to detect a medium-sized effect in a repeated measures
design with two levels (i.e., a Cohen’s dz approximately equal to 0.48).
We used the same sample size in each subsequent experiment.
Participants in each experiment were recruited using a University of
Plymouth participation pool. Ethical approval was gained from a
University of Plymouth faculty ethics board.

Materials
The stimulus pool consisted of 384 four-letter low frequency words,

selected from the Medical Research Council psycholinguistic database
(Coltheart, 1981). The frequency of occurrence ranged from 1 to 13 per
million, and there were no concreteness or imageability constraints.
Archaic and colloquial terms were excluded. For each participant, 176
words were randomly assigned to be the old stimuli, another 176 words
were selected to be the new stimuli, and a further 32 words were se-
lected to be the stimuli appearing on primacy and recency buffer trials
in the study phase.

Procedure
At the beginning of the experiment, participants completed six

practice trials of the CID procedure (Berry et al., 2012; Feustel et al.,
1983; Stark & McClelland, 2000) in order to familiarize themselves with
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the task prior to the experimental trials. The CID procedure was the
same as that of Berry et al. (2012). On each CID trial a single word was
flashed for longer and longer durations, becoming clearer over time.
Participants were instructed to press the Enter key as soon as they were
sure that they could identify the word correctly. Accuracy and speed
were emphasized in the task instructions. At the start of each trial a
fixation mask “####” was presented in 24-point Courier font for
1000ms. Next, the word was presented in 20-point Courier font for
16.7 ms (one screen refresh at 60 Hz). The mask was then presented for
233.3 ms, forming a 250ms presentation block. There were thirty
250ms presentation blocks. The stimulus duration increased by 16.7ms
on each alternate block, and the mask was always presented for the
remainder of the 250ms block. Thus, each CID trial was potentially
7500ms long, but could be terminated prematurely by the participant
pressing the Enter key. When the Enter key was pressed, the mask was
then re-presented for 16.7 ms. Next, a white outlined box was presented
that indicated to the participant that he or she must type the word on
the keyboard. Key presses were displayed in the box. Participants were
told to press Enter after typing the word to advance to the next trial.

Study phase. Participants were told that they would see words
presented below or above the center of the screen for a brief duration
and that their task was to remember the location of each word for a
later test. Participants completed four study-test blocks, which were
identical except that the stimuli in each block were unique. At the start
of each study block a “+”-fixation was presented for 500ms in the
center of the screen. The words were presented for 2 s each, with half of
them presented 0.9 cm below the central fixation point (i.e., subtending
a vertical visual angle of approximately 0.69°, from a viewing distance
of approximately 75 cm) and the other half 0.9 cm above the fixation
point. The inter-stimulus interval was 100ms. The assignment of words
to the location and the order of presentation was randomized across
participants. Participants completed 52 study trials per block, with the
first and last four trials in each block designated as primacy and recency
buffer trials. The buffer stimuli were not presented in the experiment
again.

Test phase. Next, instructions were presented for the first CID-RS test
phase. Participants were told that they would again complete
identification trials, and that some of the words were from the
previous study block and some were novel. They were told that they
must decide whether they thought the word was new (i.e., not shown
previously) or old (i.e. studied) after each identification, and to indicate
whether it was previously shown at the bottom or the top of the screen.
They were informed to make that location judgment even for items they
indicated were new and to guess if unsure. Participants were told that
half of the words would be new and half would be old, and that half of
the old words were presented at the bottom of the screen and half were
presented at the top. There were 88 trials in each test block, composed
of 44 old and 44 new items. On each trial a word was presented in the
center of the screen using the same CID procedure as in the practice
trials. After participants made their identification, the word was
replaced by a recognition probe (“Is the word New or Old?”) and a
rating scale (“1= sure new, 2=probably new, 3= guess new,
4= guess old, 5= probably old, 6= sure old”). After participants
made their recognition judgment a source memory probe was
presented (“Was the word presented at the bottom or top?”) with a
rating scale (“1= sure bottom, 2= probably bottom, 3= guess
bottom, 4= guess top, 5= probably top, 6= sure top”). Participants
used the number keys 1 through 6 on the main part of a QWERTY
keyboard for both judgments. After making their source memory
judgment, a prompt was presented instructing participants to press
the Enter key to start the next trial. On completion of the test block,
participants were presented with the next study block. On completion
of the final test block, the experiment terminated.

Initial screening of identification trials
In this experiment and subsequent ones, a trial was not included in

the analysis if a word was misidentified during the identification phase
of a trial. Identification responses were corrected for minor typo-
graphical errors (e.g., where a number or a symbol was typed after the
correctly typed word). We excluded trials on which the word was
misidentified after correction for typographical errors (M=5.57%,
SD=3.76), no response was given (M=0.09%, SD=0.25) and on
which the identification RT was less than 200ms or greater than three
standard deviations above the mean identification RT (within partici-
pant) (M=1.15% of trials, SD=0.50). These trials were not analyzed
further, following Berry et al. (2012). After exclusions the number of
valid trials was M=93.19% (SD=3.86, Min= 82.10%).

Measures
All analyses were conducted in R (R Core Team, 2017). For all re-

levant statistical comparisons, we excluded participants listwise if they
had missing data in any cell of that analysis. ANOVAs were calculated
using aov_car in the afex package (Singmann, Bolker, & Westfall, 2015),
with posthoc contrasts calculated with emmeans (Lenth, 2016). Degrees
of freedom were corrected for violation of sphericity where necessary
using the Greenhouse-Geisser correction. An alpha level of 0.05 was
used for all statistical analyses and all t-tests were two-tailed. We also
conducted equivalent Bayesian analyses for all reported frequentist
tests using the BayesFactor package (Morey & Rouder, 2018), using the
package’s default default priors for all tests. We report the following
effect sizes: ηP2 for ANOVAs, Cohen’s dz (dz; mean difference of two
dependent measures, divided by the average standard deviation of the
difference of the two measures) for t tests. Trials were collapsed across
study-test blocks for all analyses.

The priming effect was calculated as the mean identification RT for
new items minus the mean identification RT for old items. Recognition
discrimination was measured with d′ (henceforth referred to as re-
cognition d′), which is calculated as z[p(“old”|old)]− z[p(“old”|new)],
where p(“old”|old)= (number of hits+ 0.5)/(number of old
items+1) and p(“old”|new)= (number of false alarms+0.5)/
(number of new items+ 1), following Snodgrass and Corwin (1988).
The pattern of results for Pr, which is the measure of discriminability in
the two-high threshold model and is calculated as p(“old”|old)− p
(“old”|new), was the same, so we only report recognition d′ throughout.
Recognition response bias was measured with c (henceforth referred to
as recognition c), which is calculated as −0.5 * (z[p(“old”|old)]+ z[p
(“old”|new)]). Source discrimination was also measured with d′ (hen-
ceforth referred to as source d′). For this measure, source-top items were
arbitrarily designated as targets and source-bottom items as non-tar-
gets; thus, source d′= z[p(“top”|top)]− z[p(“top”|bottom)], where p
(“top”|top)= (number of correct top responses+ 0.5)/(number of
source-top items+1) and p(“top”|bottom)= (number of incorrect top
responses+ 0.5)/(number of source-bottom items+1)). The pattern of
results for source accuracy—calculated as (number of “top”|top
items+number of “bottom”|bottom items)/number of old items—was
the same, so only the former is reported. Source bias was measured with
c (henceforth referred to as source c) and calculated as −0.5 * (z[p
(“top”|top)]+ z[p(“top”|bottom)]).

For the analysis of identification RTs classified according to source
confidence ratings, responses were collapsed across source-top and
source-bottom items. Source ratings 3, 2 and 1 for source-bottom items
and 4, 5, and 6 for source-top items constituted correct source decisions
with increasing certainty of response, while source ratings 4, 5 and 6 for
source-bottom items and 3, 2 and 1 for source-top items constituted
incorrect source decisions.

Reliability of measures. Prior research has shown that it is important to
consider the relative reliabilities of direct and indirect memory tasks
when comparing task performance (Buchner & Wippich, 2000).
Accordingly, split-half correlations were used to determine the
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reliability of the priming, recognition and source measures in all
experiments. To calculate these, we first split the data from each
participant into odd and even numbered trials and then calculated the
priming effect, recognition d′ and source d′ in each half. The split-half
correlations were then given as the Pearson correlation between
performance in each half across participants. In Experiment 1, these
were large and significant (priming, r(34)= 0.51, p= .001, BF=32;
recognition d′, r(34)= 0.90, p < .001, BF=8.61×109; source d′, r
(34)= 0.77, p < .001, BF=1.85×105), indicating that the measures
were highly reliable. The lower reliability of the priming measure
relative to the recognition and source measures is consistent with
previous findings (e.g., Buchner & Wippich, 2000).

Results

Considering first overall levels of memory performance, the priming
effect, recognition d′ and source d′ all exceeded chance (0) (M
priming= 152ms, SE= 19, t(35)= 8.05, p < .001, d=1.34,
BF=6.52×106; M recognition d′=0.80, SE= 0.09, t(35)= 8.80,
p < .001, d=1.47, BF=4.90× 107; M source d′=0.48, SE= 0.08, t
(35)= 5.96, p < .001, d=0.99, BF=1.97×104). Table 1 shows the
mean identification RT for new and old items, and also the mean hit
rate and false alarm rate for recognition and source decisions. Re-
cognition responding was significantly biased (recognition c=−0.12,
SE= 0.06), t(35)= 2.15, p= .039, d=0.36, BF=1.37, suggesting
overall liberal responding, but source responding was not biased
(source c= 0.03, SE= 0.04), t(35)= 0.80, p= .43, d=0.13,
BF=0.24. Across participants, the priming effect (in ms) was sig-
nificantly correlated with recognition d′, r(34)= 0.54, p < .001,
BF=57.96, and also source d′, r(34)= 0.57, p < .001, BF=103.13.
Recognition d′ and source d′ were also highly positively correlated, r
(34)= 0.84, p < .001, BF=1.09× 107.

Turning to the relation between priming and source decisions, we
analyzed the priming effect associated with correct and incorrect source
decisions, regardless of whether those items had been recognized
(deemed “old”) in the recognition task to test for the association of
priming and source memory irrespective of recognition judgments. Two
associations were evident. First, the priming effect for items with cor-
rect source decisions was significantly greater than for items with in-
correct source decisions (M difference= 45ms, SE=14), t(35)= 3.13,
p= .003, d=0.52, BF=10.51 (see the left-hand side of Fig. 1A). This
difference was consistent across individuals, being present in 75% of
participants. Second, identification RTs tended to decrease (i.e., the
priming effect was greater) as confidence in the source decision in-
creased, as is shown in the right-hand side of Fig. 1A. This trend was
confirmed in a 3 (source confidence: guess, probably, sure)× 2 (source

decision: correct, incorrect) repeated measures ANOVA, which yielded
a significant main effect of source confidence, F(1.49, 44.80)= 13.58,
MSE=51670, p < .001, ηP2= 0.31, BF=4.70× 104. Five partici-
pants could not be included in this ANOVA because they had zero re-
sponses for particular cells of the analysis (hence N=31 for this ana-
lysis). The main effect of source decision F(1, 30)= 0.71,
MSE=23682, p= .41, ηP2= 0.023, BF=0.19, and the interaction
were not significant, F(1.40, 42.05)= 2.89, MSE=38313, p= .083,
ηP2= 0.088, BF=0.65, though visual inspection of Fig. 1A reveals a
trend for RTs to only be faster for correct versus incorrect source de-
cisions when source decisions were made with the highest level of
confidence (i.e., “sure” responses).

Next, regarding the relation between the priming effect and re-
cognition decisions, the results reported by Berry et al. (2012, Exp. 2)
were replicated. First, identification RTs for items judged old were
faster than those judged new. This was the case for old items (i.e., M
RT(hit) < M RT(miss)) (M= 167ms, SE= 28), t(35)= 6.07,
p < .001, d=1.01, BF=2.65× 104, and also new items (i.e., M
RT(false alarm) < M RT(correct rejection)) (M= 131ms, SE= 24), t
(35)= 5.57, p < .001, d=0.93, BF=6.54× 103. Second, the
priming effect for items judged new (i.e., M RT(correct rejection) – M
RT(miss)) was significantly greater than chance (0ms) (M=83ms,
SE=23), t(35)= 3.62, p < .001, d=0.60, BF=33.74, and, cru-
cially, this priming effect was significantly smaller than the priming
effect calculated across all items (M difference=69ms, SE=20), t
(35)= 3.46, p= .001, d=0.58, BF=22.77. Third, identification RTs
tended to decrease as confidence that an item is old increased (Fig. 2A),
as shown by significant linear trends for old stimuli, t(150)= 6.65,
p < .001, and new stimuli, t(150)= 5.18, p < .001, with higher order
relationships not reaching significance for either type of item (all
ps > .09). Again, five participants could not be included in this
ANOVA because they had zero responses for particular cells of the
analysis (hence N=31 for this analysis).

Finally, regarding the relation of recognition and source memory,
source d′ significantly exceeded chance for old items that were correctly
recognized (source d′=0.60, SE= 0.10), t(35)= 5.96, p < .001,
d=0.99, BF=1.97×104, but did not significantly differ from chance
for old items that were not correctly recognized (source d′=0.09,
SE= 0.07), t(35)= 1.26, p= .21, d=0.21, BF=0.37. Source d′ was
significantly higher for recognized than unrecognized old stimuli (M
difference= 0.51, SE=0.13), t(35)= 4.08, p < .001, d=0.68,
BF=109.68. Analysis of source accuracy led to the same pattern of
results.

Table 1
Mean identification RTs for new and old items across experiments and mean hit and false alarm rates for the recognition and source memory tasks.

Identification RT (ms) Recognition Source

Old items New
items

Priming effect Hit False alarm (completely
new)

False alarm (partially
new)

d' (completely new) d' (partially new) Hit False
alarm

d'

Experiment 1
M 2065 2217 152 0.69 0.40 – 0.80 – 0.59 0.41 0.48
SE 85 83 19 0.03 0.02 – 0.09 – 0.02 0.02 0.08

Experiment 2
M 1983 2242 259 0.73 0.29 – 1.27 – 0.65 0.35 0.84
SE 73 73 23 0.02 0.02 – 0.11 – 0.02 0.02 0.13

Experiment 3A
M 1869 2142 273 0.79 0.34 0.60 1.35 0.57 0.64 0.36 0.75
SE 60 66 22 0.02 0.03 0.04 0.11 0.10 0.02 0.02 0.11

Experiment 3B
M 1980 2230 250 0.70 0.23 0.49 1.38 0.61 0.57 0.43 0.38
SE 73 90 30 0.02 0.03 0.03 0.10 0.09 0.01 0.01 0.07
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Discussion

The main finding from Experiment 1 was that the priming effect
varied according to the correctness and confidence of the source deci-
sion. Specifically, the priming effect was greater for items with correct
versus incorrect source decisions, and the priming effect tended to in-
crease as confidence in the source decision increased. There was a
suggestion of an interaction, such that the priming effect for correct
source decisions was greatest for high confidence ratings (i.e., “sure”
decisions; Fig. 1A), but the Source Decision× Source Confidence in-
teraction suggested this was not reliable. It is possible that the failure to
detect this interaction (and the main effect of source decision) is due to
high variance in the identification RTs for some of the source responses
made infrequently (e.g., incorrect source responses made with high
confidence; see Supplemental Materials for details), and we test for this
interaction again in the subsequent experiments.

The priming effect also varied according to the recognition decision,
replicating key results of Berry et al. (2012), see Fig. 2A. Thus, the
magnitude of the priming effect was linked to both recognition and
source decisions. An important consideration with this set of results is
that, compared with many published studies, source memory in Ex-
periment 1 was relatively low (i.e., M source d′=0.48), and many
correct source decisions were guesses or were made with low con-
fidence. Accordingly, in Experiment 2 we examined whether the asso-
ciations between the priming effect and source decisions would persist
with superior source memory.

Experiment 2

In Experiment 2, we aimed to increase source memory by using a
shorter study list length than was used in Experiment 1. Previous

research has shown that both source discrimination and recognition are
superior for items presented in a shorter study list than a longer one
(Glanzer et al., 2004; Slotnick et al., 2000). Similarly, priming effects
also tend to be greater for items in shorter study lists (e.g., Berry et al.,
2006). Accordingly, in Experiment 2, we used half the number of items
in the study phase, compared to Experiment 1. In order to keep the total
number of old and new stimuli the same as in Experiment 1, partici-
pants completed eight, rather than four, study-test cycles. Experiment 2
was otherwise identical to Experiment 1.

Method

Participants
36 individuals (11 male;M age=21.61, SD=3.12) took part in the

experiment for partial course credit.

Procedure
The materials, experimental set up and measures were identical to

Experiment 1. Participants completed eight study-test blocks (compared
to four in Experiment 1). Each study block consisted of 26 items, with
the first and last two designated as primacy and recency buffer items. In
the test phase, participants were shown 22 old items and 22 new items
in a random order. On each trial, they first identified the word in the
CID phase, and then gave a recognition and a source memory judge-
ment using separate six-point scales.

Initial screening of identification trials
The proportion of misidentified trials, after correction for typo-

graphical errors, was M= 4.08% (SD=2.35). The proportion of trials
on which participants did not make a response was M=0.43%
(SD=0.24). The proportion of trials on which the identification RT

Fig. 1. Identification RTs across source confidence for Experiment 1 (A), Experiment 2 (B), Experiment 3A (C), and Experiment 3B (D) for correct and incorrect
source decisions. Error bars are 95% between-subjects confidence intervals of the mean.

Fig. 2. Identification RTs across recognition confidence for Experiment 1 (A), Experiment 2 (B), Experiment 3A (C) and Experiment 3B (D) for old and new items.
Error bars indicate 95% between-subjects confidence intervals of the mean.
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was less than 200ms or greater than three standard deviations above
mean identification RT (within-participants) was M= 1.15%
(SD=0.45). After exclusions the number of valid trials was
M=94.70% (SD=2.49, Min=86.65%).

Reliability of measures
Once again, the measures of priming, recognition and source

memory were reliable (priming effect, r(34)= 0.59, p < .001,
BF=181.23; recognition d′, r(34)= 0.92, p < .001,
BF=1.91×1011; source d′, r(34)= 0.90, p < .001,
BF=6.16×109).

Results

As in Experiment 1, the priming effect, recognition d′ and source d′
all exceeded chance (M priming= 259ms, SE= 23, t(35)= 11.42,
p < .001, d=1.90, BF=3.23× 1010; M recognition d′=1.27,
SE= 0.11, t(35)= 11.10, p < .001, d=1.85, BF=1.54× 1010; M
source d′=0.84, SE= 0.13, t(35)= 6.38, p < .001, d=1.06,
BF=6.39×104). Table 1 shows the mean identification RT for new
and old items, and also the mean hit rate and false alarm rate for re-
cognition and source decisions. Recognition responding was not sig-
nificantly biased (recognition c=−0.03, SE= 0.05), t(35)= 0.51,
p= .61, d=0.08, BF=0.20, nor was source responding (source
c= 0.04, SE= 0.04), t(35)= 1.23, p= .23, d=0.20, BF=0.36. The
magnitude of the priming effect, recognition d′ and source d′ were
significantly greater than in Experiment 1 (ts > 2.32, ps < .024,
d > 0.61, BF > 2.36), as was intended by the shorter study list length.
Across participants, the priming effect was significantly correlated with
recognition d′, r(34)= 0.46, p= .005 BF=11.14, and source d′, r
(34)= 0.52, p= .001, BF=37.01. Recognition d′ and source d′ were
also significantly correlated, r(34)= 0.85, p < .001, BF=4.80× 107.

Regarding the association between the priming effect and source
decision, as was found in Experiment 1, the priming effect was greater
for items with correct source decisions than those with incorrect deci-
sions (M= 129ms, SE= 28), t(35)= 4.62, p < .001, d=0.77,
BF=470.96, see the left-hand side of Fig. 1B. Once again, this effect
was consistent, being present in 80% of participants. A 3 (Source
Confidence)× 2 (Source Decision) repeated measures ANOVA, re-
vealed that, as in Experiment 1, identification RTs decreased (i.e., the
priming effect increased) with increasing source confidence, F(2,
66)= 18.74,MSE=39489, p < .001, ηp2= 0.36, BF=2.59×107, as
is shown in the right-hand side of Fig. 1B. The main effect of source
decision was significant though the evidence for this main effect was
not substantive, F(1, 33)= 6.03, MSE=25944, p= .020, ηp2= 0.15,
BF=1.01. The main effects were moderated by the Source Con-
fidence× Source Decision interaction, F(2, 66)= 6.81, MSE=17403,
p= .002, ηp2= 0.17, BF=3.90. Note that two participants could not
be included in this ANOVA because they had zero responses for parti-
cular cells of the analysis (hence N=34 for this analysis). Closer in-
spection of the data showed that priming was greater for correct source
decisions than incorrect source decisions, only when the source deci-
sion was made with high confidence, F(1, 33)= 11.93, MSE=31611,
p= .002, ηp2= 0.27, BF=19.30. Identification RTs did not differ for
items with correct and incorrect source decisions at lower levels of
source confidence, both ps > .30, BFs < 0.40.

With regards to the relation between the priming effect and re-
cognition decisions, as in Experiment 1, the results replicated Berry
et al. (2012, Exp. 2). First, identification RTs for items judged old were
faster than those judged new. This was the case for old items
(M= 222ms, SE= 29), t(35)= 7.57, p < .001, d=1.26,
BF=1.77×106, and also new items (M= 84ms, SE= 25), t
(35)= 3.36, p < .001, d=0.56, BF=17.94. Second, the priming ef-
fect for items judged new (M= 112ms, SE= 22) exceeded chance, t
(35)= 5.02, p < .001, d=0.84, BF=1.41×103, and was smaller
than the priming effect across all items (M difference= 147ms,

SE= 25), t(35)= 5.87, p < .001, d=0.98, BF=1.51× 104. Third,
identification RTs tended to decrease as confidence that an item is old
increased (Fig. 2B). For old items, there were significant linear, quad-
ratic, and cubic trends (ps < .03), although, pairwise comparisons
(Bonferroni-adjusted) indicated that these trends were driven by the
identification RTs for items receiving sure-old ratings being faster than
those of items receiving any other rating (ps < .001; for all other
pairwise comparisons, ps > .17). For new items, there were significant
linear and quadratic trends (ps < .01), with pairwise comparisons
(Bonferroni-adjusted) indicating that these trends were again driven by
the identification RTs for new items receiving sure-old ratings being
significantly faster than those receiving sure-new, probably-new and
guess-new ratings, ps < .01 (all other comparisons, ps > .07). Thus,
the variations in the priming effect with recognition confidence were
primarily driven by identification RTs being shortest for “sure old”
ratings. Note that N=31 for this trend analysis due to five participants
having zero responses in some of the response options.

In regards to the relationship of recognition and source memory,
source d′ was significantly higher for recognized than unrecognized
items (M difference=1.05, SE=0.13), t(35)= 7.81, p < .001,
d=1.30, BF=3.47× 106. Source d′ significantly exceeded chance for
recognized (M= 1.11, SE= 0.15), t(35)= 7.38, p < .001, d=1.23,
BF=1.05×106, but not unrecognized items (M= 0.06, SE= 0.08), t
(35)= 0.74, p= .46, d=0.12, BF=0.23.

Discussion

As expected, a shorter list length led to superior source memory,
recognition, and priming, relative to Experiment 1. Importantly, the
association between priming and source decisions was, if anything,
stronger than in Experiment 1. That is, the priming effect was greater
for items with correct versus incorrect source decisions, and also tended
to increase as confidence in the source decision increased. Furthermore,
although only weakly present in Experiment 1, the Source
Confidence× Source Decision interaction was significant in
Experiment 2. This arose because the priming effect was only greater
for items with correct versus incorrect source decisions at the highest
level of source confidence. Once again, the associations between the
priming effect and the recognition decision reported by Berry et al.
(2012, Exp. 2) were found in this experiment.

Experiment 2 thus confirmed that the magnitude of the priming
effect is related to both the correctness and confidence of the source
decision, even when overall memory strength is higher. These findings
are consistent with an account in which priming, recognition and
source memory are driven by a single continuous strength signal. Before
considering these findings in more detail and modeling the data, we
consider an alternative explanation for the associations between the
three tasks. It is possible that the interleaved nature of the identification
and memory rating trials encourages speed of identification to influence
the memory rating. Such a link has been proposed between priming and
recognition. For example, if an item is identified relatively quickly,
participants may attribute this relative ease of identification to the
item’s prior exposure at study (Jacoby & Dallas, 1981). This would lead
to items with fast identification RTs being given higher recognition
ratings. Given that high confidence source ratings tend to follow high
confidence “old” ratings (Hautus et al., 2008; Onyper et al., 2010; see
also Rotello, 2017), it follows that identification RTs would also de-
crease as confidence in the source decision increases, and this is the
pattern we observed in Experiments 1 and 2. We investigated this al-
ternative explanation of our findings in Experiments 3A and 3B.

Experiments 3A and 3B

In Experiments 3A and 3B, we tested whether the association be-
tween priming and source memory would still be found under condi-
tions where the fluency of an item’s identification would not affect the
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memory decisions it received. This was achieved by presenting the CID
trials in a separate phase to the memory ratings. Following the study
phase, participants were first asked to identify old and new items in CID
trials. Participants then completed a memory rating phase containing
all old items, the new items from the CID phase (henceforth referred to
as partially-new items), and previously unseen (henceforth completely-
new) items.1 Both types of new items were included in the rating phase
in order to encourage recognition decisions to be based on whether an
item was presented in the study phase or not. That is, including par-
tially new items helped to prevent participants from making their re-
cognition ratings solely on the basis of whether an item seemed familiar
from its presentation in the CID phase, since partially new items were
also presented in this stage. Experiment 3A was based upon Experiment
1, and had four study-test blocks. Experiment 3B had only one study-
test block and further differed minimally in wording and presentation
of the recognition and source memory probes from previous experi-
ments to eliminate possible design artefacts as an explanation for the
observed experimental effects.

Method

Participants
36 individuals (5 male; M age 19.75, SD=1.76) took part in

Experiment 3A and 37 individuals (6 male, M age=19.95, SD=3.09)
took part in Experiment 3B for partial course credit. Two participants in
Experiment 3B failed to follow instructions and were excluded from
analyses.

Procedure
The materials, experimental set up, and study phase of Experiment

3A were identical to Experiment 1 except that, in the study phase, each
item was shown twice in the same spatial location, with at least one
intervening item before being repeated. An identification phase fol-
lowed the study phase in which participants identified all 44 old items
and 22 new items using the CID procedure. In the following memory
rating phase, participants were shown all 44 old items, 22 partially-new
items and 22 completely-new items. For each trial, the item was pre-
sented in the center of the screen with the recognition probe (“Was the
word presented in the previous study phase?” 1= sure no, 2= prob-
ably no, 3= guess no, 4= guess yes, 5= probably yes, 6= sure yes”)
presented beneath the word. When the recognition rating was made,
the probe was replaced with the source memory probe (“Was the word
presented at the bottom or top? 1= sure bottom, 2=probably bottom,
3= guess bottom, 4= guess top, 5= probably top, 6= sure top”).

Experiment 3B had the following differences to Experiment 3A:
First, there was one study-test cycle, rather than four, and there were 64
old items in the study phase rather than 44 old items. In the CID phase,
the 64 old items were presented with 48 new words. Then, in the rating
phase, participants were shown all 64 old and 48 partially-new items,
together with 16 completely-new items. There were also minor changes
in the wording of the recognition and source probes. For the recognition
rating, the probe was “Was the word presented in the previous study
phase? 1= high confidence no, 2=medium confidence no, 3= low
confidence no, 4= low confidence yes, 5=medium confidence yes,
6= high confidence yes”. For the source rating, the probe was “Was the
word previously presented towards the top or the bottom of the screen?
1= high confidence top, 2=medium confidence top, 3= low con-
fidence top, 4= low confidence bottom, 5=medium confidence
bottom, 6=high confidence bottom”.

In both Experiments 3A and 3B, the rating phase instructions ex-
plicitly informed participants that the study phase was the phase in

which words were presented towards the bottom or top of the screen.
This was done to avoid confusion with the CID phase in which the items
appeared in the center of the screen. Also, in each experiment, there
were four additional trials at the start and end of the study phase (to
control for primacy and recency effects), and the words from these trials
were not presented again at test.

Initial screening of identification trials
The proportion of misidentified trials, after correction for typo-

graphical errors, was M= 3.58% (SD=2.68) in Experiment 3A and
M=3.35% (SD=2.86) in Experiment 3B. The proportion of trials on
which no response was given in the identification phase was
M= 0.03% (SD=0.09) in Experiment 3A and M= 0.02% (SD=0.13)
in Experiment 3B. The proportion of trials on which the identification
RT was less than 200ms or greater than three standard deviations
above mean identification RT (within participant) was M= 1.01%
(SD=0.43) in Experiment 3A and M=1.32% (SD=0.82) in
Experiment 3B. After excluding these trials, the number of valid trials
was M=95.38% (SD=2.68, Min=86.93) in Experiment 3A and
M=95.31% (SD=3.27, Min=85.94) in Experiment 3B.

Measures
To take into account the two types of new items presented during

the rating phase, we report recognition measures separately for the
discrimination of old and partially-new and old and completely-new
items. Beyond that, calculation of measures was the same as in previous
experiments. In Experiment 3B, the source memory rating scale was
reversed compared to previous experiments, so here source-bottom
items were designated target items, and source confidence for source-
top items was recoded when collapsing across source-top and source-
bottom items.

In Experiment 3A, priming, recognition and source memory mea-
sures were reliable (priming, r(34)= 0.40, p= .015, BF=4.73; re-
cognition d′ for old and partially-new items, r(34)= 0.81, p < .001,
BF=1.67×106; recognition d′ for old and completely-new items, r
(34)= 0.87, p < .001, BF=2.11×108; source d′, r(34)= 0.82,
p < .001, BF=5.46×106). In Experiment 3B, priming, r(33)= 0.39,
p= .022, BF=3.58, recognition d′ for old and partially-new items, r
(33)= 0.61, p < .001, BF=280.33, and for old and completely-new
items, r(33)= 0.39, p= .020, BF=4.01, were reliable, but for source
memory was not, r(33)= 0.13, p= .44, BF= 0.50.

Results

Experiment 3A
The priming effect, recognition d′ for both types of new items and

source d′ all exceeded chance (M priming= 273ms, SE= 22, t
(35)= 12.53, p < .001, d=2.09, BF=4.02×1011; M recognition
partially-new d′=0.57, SE= 0.10, t(35)= 5.60, p < .001, d=0.93,
BF=7.03×103; M recognition completely-new d′=1.35, SE= 0.11,
t(35)= 11.85, p < .001, d=1.97, BF=8.81× 1010; M source
d′=0.75, SE= 0.11, t(35)= 6.84, p < .001, d=1.14,
BF=2.35×105). Table 1 shows the mean identification RT for new
and old items, and also the mean hit rate and false alarm rate for re-
cognition and source decisions. As in Experiment 1, recognition re-
sponding was significantly liberally biased for both discrimination of
old and partially-new items (recognition c=−0.58, SE= 0.07), t
(35)= 8.55, p < .001, d=1.42, BF=2.52× 107, and also old and
completely-new items (recognition c=−0.19, SE= 0.07), t
(35)= 2.83, p= .008, d=0.47, BF=5.28. Source responding was not
significantly biased (source c= 0.03, SE= 0.04), t(35)= 0.88, p= .39,
d=0.15, BF=0.26. Across participants, the priming effect was cor-
related with recognition d′ for old and completely-new items, r
(34)= 0.51, p= .002, BF=28.84, but only marginally for old and
partially-new items, r(34)= 0.32, p= .055, BF= 1.84. The priming
effect was significantly correlated with source d′, r(34)= 0.56,

1 See the Supplemental Material for a pilot study for this experiment in which
the new items were unique in the identification and rating phases (i.e., there
was no repetition of new items across phases).
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p < .001, BF= 84.40. Recognition d′ and source d′ were significantly
correlated: for old and partially-new items, r(34)= 0.67, p < .001,
BF=2.26×103; for old and completely-new items, r(34)= 0.73,
p < .001, BF=2.22× 104.

As in Experiments 1 and 2, the priming effect was greater for items
with correct source decisions than those with incorrect source decisions
(M difference= 66ms, SE= 23), t(35)= 2.90, p= .006, d=0.48,
BF=6.25, see the left-hand side of Fig. 1C. Two-thirds of participants
showed this difference. Like in Experiment 1, there was no significant
corresponding main effect of source decision in a 3 (Source Con-
fidence)× 2 (Source Decision) ANOVA, F(1, 29)= 0.11, p= .74,
ηP2= 0.004, BF= 0.16. Once again, identification RTs decreased with
increasing confidence in the source decision (see the right-hand side of
Fig. 1C), F(2, 58)= 9.68, MSE=42400, p < .001, ηP2= 0.25,
BF= 365, but, as was found in Experiment 1, the Source Con-
fidence× Source Decision interaction was not significant, F(2,
58)= 0.39, p= .68, ηP2= 0.01, BF= 0.18. Six participants could not
be included in this ANOVA because they had zero responses for parti-
cular cells of the analysis (hence N=30 for this analysis).

With regards to the relation between the priming effect and re-
cognition decisions, the association was generally weaker than in
Experiments 1 and 2. First, identification RTs tended to be faster for
items judged old than those judged new, but this was only significant
for old items (M difference= 79ms, SE= 32), t(35)= 2.51, p= .017,
d=0.42, BF=2.70, and not for new items (M= 37ms, SE= 34), t
(35)= 1.09, p= .28, d=0.18, BF= 0.31. Second, the priming effect
for items judged new (M=236ms, SE=26) exceeded chance, t
(35)= 9.02, p < .001, d=1.50, BF= 8.64× 107, but there was no
substantial support for this effect being smaller than the priming effect
across all items (M difference=37ms, SE=21), t(35)= 1.75,
p= .088, d=0.29, BF= 0.71. Third, as shown in Fig. 2C, the change
in identification RTs with recognition confidence was clearly less pro-
nounced than in Experiments 1 and 2. Only 18 out of 36 participants
provided the full range of confidence ratings to permit this trend ana-
lysis, and it must be kept in mind that this analysis therefore has low
power relative to Experiments 1 and 2. In these individuals, a sig-
nificant linear trend was evident in old items, t(85)= 2.06, p= .042,
although, as can be seen in Fig. 2C, identification RTs did not follow a
clear monotonically decreasing function as old-new confidence in-
creased (for both old and new items). For example, for old items, the
mean identification RT for guess-old responses was actually numeri-
cally faster than sure-old responses. Furthermore, the linear trend for
new items was not significant, t(85)= 1.07, p= .29.

Finally, regarding the relation of recognition and source memory, as
in the previous experiments, source d′ was significantly higher for re-
cognized than unrecognized stimuli (M difference=0.78, SE=0.16), t
(35)= 4.80, p < .001, d=0.80, BF=763. Source d′ significantly
exceeded chance for recognized (M= 0.91, SE= 0.13), t(35)= 6.83,
p < .001, d=1.14, BF=2.31× 105, but not unrecognized stimuli
(M= 0.13, SE= 0.10), t(35)= 1.31, p= .19, d=0.22, BF=0.39.

Experiment 3B
The priming effect, recognition d′ for both types of new items and

source d′ all exceeded chance (M priming= 250ms, SE= 30, t
(34)= 8.26, p < .001, d=1.40, BF= 9.30×106; M recognition
partially-new d′=0.61, SE= 0.09, t(34)= 7.15, p < .001, d=1.21,
BF= 4.78×105; M recognition completely-new d′=1.38, SE= 0.10,
t(34)= 13.60, p < .001, d=2.30, BF=2.42×1012; M source
d′=0.38, SE= 0.07, t(34)= 5.27, p < .001, d=0.89,
BF=2.63×103). Table 1 shows the mean identification RT for new
and old items, and also the mean hit rate and false alarm rate for re-
cognition and source decisions. In line with Experiment 3A, recognition
responding was significantly liberally biased for the discrimination of
old and completely-new items (recognition c=−0.28, SE= 0.08), t
(34)= 3.43, p= .002, d=0.58, BF=21.03. In contrast to Experiment
3A, recognition responding for old and completely-new items was

conservatively biased (recognition c= 0.15, SE= 0.07), t(34)= 2.23,
p= .033, d=0.38, BF= 1.60. Source responding was conservatively
biased (source c= 0.11, SE= 0.04), t(34)= 2.92, p= .006, d=0.49,
BF=6.52, indicating a tendency to respond “top” over responding
“bottom”.

Across participants, the priming effect was significantly correlated
with recognition d′ for partially-new items, r(33)= 0.48, p= .003,
BF=15.54, and completely-new items, r(33)= 0.49, p= .003,
BF=18.24, but not significantly correlated with source d′, r
(33)= 0.10, p= .57, BF= 0.43. Recognition d′ for partially-new items
was significantly correlated with source d′, r(33)= 0.48, p= .004,
BF=14.13, but not for completely-new items, r(33)= 0.28, p= .097,
BF=1.23.

As in Experiment 3A, the priming effect was greater for items with
correct source decisions than those with incorrect source decisions (M
difference= 57ms, SE= 21), t(34)= 2.76, p= .009, d=0.47,
BF=4.54, see the left-hand side of Fig. 1D. Three-quarters of partici-
pants showed this difference. As in Experiment 3A, there was no sig-
nificant corresponding main effect of source decision in a 3 (Source
Confidence)× 2 (Source Decision) ANOVA, F(1, 27)= 0.66,
MSE=48265, p= .42, ηP2= 0.02, BF=0.21. Once again, identifica-
tion RTs decreased with increasing confidence in the source decision
(see the right-hand side of Fig. 1D), F(1.51, 40.83)= 8.54,
MSE=83875, p= .002, ηP2= 0.24, BF=187.32, and, as was found in
Experiment 3A, the Source Confidence× Source Decision interaction
was not significant, F(2, 54)= 2.08, MSE=50991, p= .14,
ηP2= 0.07, BF=0.46. Eight participants could not be included in this
ANOVA because they had zero responses for particular cells of the
analysis (hence N=27 for this analysis).

With regards to the relation between the priming effect and re-
cognition decisions, the pattern of the association was similar to the one
observed in Experiment 3A. First, identification RTs tended to be faster
for items judged old than those judged new, but this was only sig-
nificant for old items (M difference= 128ms, SE= 39), t(34)= 3.26,
p= .003, d=0.55, BF=14.08, and not for new items (M=−9 ms,
SE= 38), t(34)=−0.24, p= .82, d=0.04, BF=0.19. Second, the
priming effect for items judged new (M= 142ms, SE= 37) exceeded
chance, t(34)= 3.84, p < .001, d=0.65, BF= 58.10. In line with
Experiments 1 and 2, and more clearly than in Experiment 3A, this was
smaller than the overall priming effect (M difference=108ms,
SE=38), t(34)= 3.06, p= .004, d=0.52, BF=8.73. Third, as shown
in Fig. 2D, the change in identification RTs with recognition confidence
was similar to Experiment 3A. Only 16 out of 35 participants provided
the full range of confidence ratings to permit this trend analysis, so this
analysis, as was the case in Experiment 3A, has relatively low power. In
these individuals, a significant linear trend was evident in old items, t
(75)= 2.72, p= .008, though the quadratic trend was also significant,
p= .049. As Fig. 2D shows, identification RTs more clearly follow a
monotonically decreasing function as old-new confidence increased
than was the case in Experiment 3A. However, none of the pairwise
comparisons were significant, all ps= 1 (Bonferroni-adjusted). Fur-
thermore, the linear trend for new items was not significant, t
(75)= 0.88, p= .38.

Finally, regarding the relation of recognition and source memory,
once again, source d′ was significantly higher for recognized than un-
recognized stimuli (M difference= 0.42, SE=0.12), t(34)= 3.42,
p= .002, d=0.58, BF=20.27. Source d′ also significantly exceeded
chance for recognized (M= 0.50, SE= 0.09), t(34)= 5.79, p < .001,
d=0.98, BF=1.13×104, but not unrecognized stimuli (M= 0.09,
SE= 0.10), t(34)= 0.92, p= .36, d=0.16, BF=0.27.

Discussion

The results of Experiments 3A and 3B show that an association
between the priming effect and the source decision persists, even when
identification RTs and memory ratings are measured in separate test
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phases. Under these conditions, fluency of identification of an item
would not be expected to affect the recognition and source ratings. As
was found in Experiments 1 and 2, the priming effect was greater for
items with correct versus incorrect source decisions. The size of these
effects was comparable across experiments: Cohen’s dz was 0.52 in
Experiment 1 versus 0.48 and 0.47 in Experiments 3A and 3B, respec-
tively. Also like previous experiments, the priming effect tended to
increase as confidence in the source decision increased: ηp2 for the main
effect of source confidence was 0.31 in Experiment 1 versus 0.25 and
0.24 in Experiments 3A and 3B, respectively. Thus, the association
between the priming effect and the source decision is not attributable to
participants using the speed with which they identify an item in a CID
procedure to inform their memory decisions. The association also per-
sists despite minor procedural variations across experiments (i.e., the
wording and polarity of source and recognition probes, and whether
performance is measured across multiple study-test phase cycles or
not).

Although evidence for an association between the magnitude of the
priming effect and recognition decisions was found in these two ex-
periments, the association was clearly weaker than in Experiments 1
and 2. At first glance, this might be taken to support an account in
which fluency of identification drove the observed association between
priming and recognition in Experiments 1 and 2 (and Berry et al., 2012,
Exp.2), but not in Experiments 3A and 3B. However, if the association
between priming and recognition is driven by fluency, then this does
not explain why an association persisted in Experiment 3A and 3B when
the influence of fluency was precluded. That is, the priming effect was
still greater for studied items that were recognized than those that were
not recognized (see also Ostergaard, 1998; Sheldon & Moscovitch,
2010, for a similar findings). It is also not clear how a fluency attri-
bution account would explain why the priming-source association
persisted in Experiments 3A and 3B.

A more plausible explanation for the weaker association between
priming and recognition in Experiments 3A and 3B is that the ability to
decide whether a studied item was presented in the study phase was
affected by its additional presentation in the CID phase. Recognition
decisions may then have sometimes been based on memory strength
that originated from an item’s presentation in the CID phase, rather
than the study phase. The effect of this would be to weaken the asso-
ciation between recognition and priming because both would no longer
be driven by the same memory strength signal (i.e., the signal from the
study phase). Consistent with this explanation, the false alarm rate to
partially-new items was greater than that of completely-new items in
Experiment 3A (M difference=0.26, SE=0.03), t(35)= 8.96,
p < .001, d=1.49, BF=7.54×108, and Experiment 3B (M differ-
ence= 0.27, SE=0.03), t(34)= 9.39, p < .001, d=1.59,
BF=1.72×108. This suggests that recognition ratings were indeed
sometimes based on the familiarity from an item’s presentation in the
CID phase. Regardless of the cause of the weaker association between
priming and recognition in Experiments 3A and 3B, most important for
our purposes is that an association between priming and source
memory was still found.

The main findings from our behavioral work are thus: (1) priming is
associated with source memory, such that higher priming is associated
with correct source decisions and source decisions made with greater
confidence, (2) priming is associated with recognition memory, such
that higher priming is associated with recognition of studied items as
old. Additionally, (3) recognition memory is associated with source
memory, such that studied items recognized as old are associated with
correct source decisions, whereas source d′ does not differ from chance
for studied items that are not recognized. Fluency, as a result of inter-
leaved identification and memory rating trials, cannot account com-
pletely for these associations. In the next section we explore the po-
tential for an extended version of the single-system model proposed by
Berry et al. (2012) to explain these associations simultaneously. We will
additionally formulate a simple multiple-systems version of the model

that assumes a distinct, stochastically independent memory system for
the priming task and memory rating tasks to compare both models’
quantitative fit and qualitative predictions for the associations.

Modeling

In this section we will formally test whether the assumption of a
single memory signal underlying performance in priming, recognition,
and source memory is sufficient to explain the observed data, or if we
need to assume that an additional distinct, stochastically independent
memory signal drives priming. To formalize the single-system model,
we extended the single-system (SS) model of priming and recognition
(Berry et al., 2012) to source memory. We extended this model in a
straightforward manner by assuming that, for a given item, the greater
its underlying strength value, the faster it will tend to be identified, the
greater the confidence with which it will tend to be judged as old, and
the greater the confidence with which its source will tend to be cor-
rectly classified. As a baseline for comparison, we also derived a mul-
tiple systems (MS) version of model. The MS model tests the idea that
the memory system driving priming is stochastically independent from
the one driving the explicit memory measures of recognition and
source. This implements a multiple systems view of implicit and explicit
memory where “memory systems of the mammalian brain operate in-
dependently and in parallel to support behavior” (Squire & Dede, 2015,
p. 9). This view suggests that “the priming effects […] are independent
of recognition memory” (Tulving, Schacter, & Stark, 1982, p. 1) and
results in predictions such as that an “individual might have a fear of
large dogs [resulting from implicit memory], quite independently of
whether the event itself is remembered” (Squire & Dede, 2015, p. 3).
Further, such a multiple systems model also implements the assumption
of independence central to dual-process theory. While dual-process
theory can be formulated to not assume stochastic independence (e.g.,
similar to the MS2 model in Berry et al., 2012; DPSD models in Moran &
Goshen-Gottstein, 2015; Pratte & Rouder, 2011), it is nevertheless the
case that prominent models and widely used experimental methods do
make such assumptions (e.g., Yonelinas, 1994, 2002; the process dis-
sociation procedure, Jacoby, 1991). This MS model thus formally im-
plements multiple, independent systems within our signal detection
framework. We first present formal specification of these models, then
describe how their parameters are estimated, and how well the models
account for the data from Experiments 1-3A/3B. To preview, both the
SS and MS model show grave misfits of model predictions to data at the
outset. Accordingly, we then modify the SS model (along with the MS
version of it) in order to incorporate recent developments in modeling
conjoint recognition and source rating data. These modifications turn
out to be particularly important for the SS model to better explain the
pattern of results of Experiments 1-3A/3B. While the SS model accounts
for the pattern of data in Experiments 1 and 2 particularly well, results
are less conclusive for Experiment 3A and 3B.

Model specification

SS model
The main assumption of the SS model is that the same memory

strength signal drives priming, recognition and source memory. Each
item in the test phase is associated with a memory strength-of-evidence
variable f, which is a random variable drawn from a normal (Gaussian)
distribution with mean µk and variance σf2 (i.e. fk∼N(µk, σf2)). The k
subscript stands for the item type, k={N, A, B}, where N=new items,
A= source-A items and B= source-B items. As in Berry et al. (2012),
the mean f of studied items is higher than that of new items due to being
presented in the study phase, hence if µN is fixed to zero, then
µA= µB= µ≥ 0.

Identification RT and recognition judgments are modeled as in Berry
et al. (2012). One value of f is sampled for each individual item from
the relevant distribution, and this value is combined with a randomly
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sampled, normally distributed noise value. Identification RT is modeled
as RT= b – sfk+ ep, where ep∼N(0, σp2) and b and s are scaling
parameters whose value is greater than 0. The variable giving rise to
recognition judgments, Jr, is modeled as Jr=fk+ er, where er∼N(0,
σr2). The noise variables ep and er are uncorrelated, and both are un-
correlated with f. In line with signal detection theory, each resulting
value of Jr is compared with decision criteria in order to determine the
recognition confidence rating (e.g., Cr1 – Cr5 when there are six re-
cognition rating options).

When making the source decision, a participant must decide whe-
ther an item was previously presented in one of a two sources (e.g.,
towards the bottom or top of the computer screen). We assume that
participants make this decision by comparing the source-A and source-B
strengths of an item, that is, the source decision is a relative judgment,
rather than an absolute one, as is the case with recognition. Responses
are therefore based upon the difference in the source-A and source-B
strengths of an item, fA− fB. As with the generation of RT and Jr, the
assessment of fA− fB is also subjected to a noise variable, es, to give Js,
where Js=fA− fB+es, where es∼N(0, σs2). As with ep and er, es is not
correlated with the other noise variables or with f.

For source-A items, fA∼N(µ, σf2), and there will be no memory
strength associated with source-B for these items on average, and so
fB∼N(0, σf2). The converse is true for source-B items: that is, fB∼N(µ,
σf2) and fA∼N(0, σf2). Thus, for source-A items, Js∼N(µ, 2σf2+ σs2),
and for source B items, Js∼N(−µ, 2σf2+ σs2). For new items, the value
of fN is not associated with either source, as is assumed in multivariate
signal detection models of item recognition and source memory (e.g.,
DeCarlo, 2003). Accordingly, we make the simplifying assumption that
only noise drives ratings for new items. Hence, for new items, Js = es,
and Js∼N(0, σs2). Thus, we can write Js for each type of item k as
Js|k∼N(βkµk, 2βk2σf2+ σs2), where βN=0, βA=1, and βB=−1. As in
signal detection models of source decisions (DeCarlo, 2003), an item’s
value of Js is compared with decision criteria in order to determine the
source rating (e.g., Cs1-Cs5 when there are six source rating options),
with the source decision criteria the same across all recognition ratings,
i.e. assuming linear decision bounds. This closely matches how source
memory is typically modeled in two-dimensional signal detection
models of recognition and source memory (e.g. DeCarlo, 2003; Hautus
et al., 2008; Starns et al., 2008; Slotnick & Dodson, 2005). In contrast to
those implementations, we merely make it explicit that source judg-
ments are based on a relative judgment of strength values associated
with both sources. Thus, we assume that participants’ source judgments
are relative strength judgments, following from participants weighing
an item’s source-A strength against an item’s source-B strength. As a
consequence of this implementation, correct source decisions will tend
to arise if an item’s source strength exceeds the noise from the com-
peting source, and incorrect source decisions will tend to arise if there is
little to no signal or memory strength from the correct source, and thus
noise exceeds the signal. This means that correct source decisions will
tend to be associated with high source-specific memory strength (e.g., a
relatively high value of fA for a source-A item) and incorrect source
decisions will tend to be associated with low source-specific memory
strength (e.g., a relatively low value of fA for a source-A item).

MS model
The MS model can be derived from the SS model by extending it to

multiple signals such that we define fp, fr and fs as distinct memory
signals underlying performance in the priming, recognition, and source
tasks respectively. Whereas one value of f is sampled in the SS model to
derive an item’s priming, recognition and source memory performance,
in the MS model, each item is associated with three values of f at test.
Now the distribution underlying priming is defined as fp|k∼N(µp|k,
σf2). The distribution underlying recognition performance is defined as
fr|k∼N(µr|k, σf2) respectively. As in the SS model, µp|N= 0 and
µp|A= µp|B= µp≥ 0 and µr|N= 0 and µr|A= µr|B = µr≥ 0.
Analogously, the source distribution is defined as fs|k∼N(µs|k, σf2).

RT, Jr and Js are derived as in the SS model by combining each value
of f with their respective task-specific noise terms. Js is again derived by
comparing fs|B and fs|A for both source-A and source-B items. In the
multiple systems model µp, µr and µs are free to vary.

Since values of fp, fr, and fs are sampled from three distinct dis-
tributions, an additional consideration has to be given to the correla-
tions (w) between these variables (i.e., wpr, wps, wrs). In the SS model,
the strength distributions underlying performance in priming, re-
cognition and source memory tasks are identical, hence
wpr=wps=wrs= 1. A fully unconstrained version of the MS model (as
in the MS2 model in Berry et al., 2012) that does not assume stochastic
independence of the memory signal underlying priming and that un-
derlying recognition or source memory would implement µp, µr and µs
as parameters that are free to vary but would allow fp, fr and fs to be
positively correlated across items. This means that an item’s priming,
recognition and source performance may be related, even though the
mean memory strengths in the distinct systems are unrelated. A strict
version of the multiple-systems model (as in the MS1 model in Berry
et al., 2012) would not allow fp, fr and fs to correlate across items. Under
such a model, not only would µp, µr and µs be free to vary, identification
RTs, recognition and source memory judgments would not be corre-
lated across trials.

A fully constrained version of this MS model (as in the MS1 model in
Berry et al., 2012) would assume stochastic independence of all
memory signals. This would be achieved by allowing µp, µr and µs to
vary freely and constrain fp, fr and fs to not correlate across items.
Critically, such a model would assume not only priming and recognition
or priming and source memory, but also recognition and source
memory are driven by distinct, stochastically independent signals.

Here we implement a version of this MS1 model that assumes sto-
chastic independence only for the priming and recognition as well as
the priming and source memory relationship, while assuming that the
same memory signal underlies recognition and source memory re-
sponding. Within the framework we have presented thus far, this is
implemented such that µp and µr are allowed to vary for old items,
while µs = µr. Additionally, as in the SS model, fr and fs correlate per-
fectly (wrs = 1), but fp and fr (wpr= 0) and fp and fs (wps= 0) do not.
This means this MS model implements the idea that the signal driving
priming is independent of the one that drives recognition and source
memory (e.g., Squire & Dede, 2015; Tulving et al., 1982). Given that
recognition and source memory are modeled in this MS model in the
same way as in the SS model, this means that any differences in
goodness of fit of the models can be largely attributed to the nature of
the assumed relationship of priming with recognition and source
memory, as the key relationships we are investigating in this paper.

Formal specification
Based on the above distributional and decisional assumptions, the

mean vector for RT, Jr and Js can then be defined for both the SS and MS
models as
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In the SS model, µp|k= µr|k= µs|k= µk with µN= 0 and
µA= µB= µ≥ 0, as well as wpr=wps=wrs= 1. For the MS model, µp|k
and µr|k= µs|k are free to vary, but µp|N= µr|N= µs|N= 0 and
µp|A= µp|B≥ 0, µr|A= µr|B≥ 0, µs|A= µs|B≥ 0. Further, in the MS
model, wrs= 1, and wpr=wps= 0. Additionally, as in Berry et al.
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(2012), the slope s in the MS model is set to be equal to the slope es-
timated in the SS model.2 To implement equal variance for old and new
items, in line with the implementation in Berry et al. (2012),
σf = σr= 1/√2 for both old and new items. σp and σs are free to vary but
are set equal for old and new items. The SS model for priming, re-
cognition and source memory is thus described by 15 parameters in
total (µ, b, s, σp, σs, Cr1, Cr2, Cr3, Cr4, Cr5, Cs1, Cs2, Cs3, Cs4, Cs5) as is the
MS model (µr, µp, b, σp, σs, Cr1, Cr2, Cr3, Cr4, Cr5, Cs1, Cs2, Cs3, Cs4, Cs5). In
the first instance, we are therefore describing a SS and MS model with
linear decision bounds and equal variance assumptions (henceforth
referred to as SS-Lin-EV, MS-Lin-EV models). We will later modify these
models by replacing the linear source decision bounds with criteria
converging with increasing recognition confidence (SS-Con-EV, MS-
Con-EV models), and finally adding an unequal variance assumption
(SS-Con-UV, MS-Con-UV). As suggested, these modifications will
iteratively improve model fits of the SS model in particular.

Parameter estimation
The parameters of all models were determined with maximum

likelihood estimation procedures.3 The likelihood for a tuple of ob-
servations (RT, R, S), where RT denotes the identification RT, R the
recognition judgement and S the source memory judgement on a given
test trial is given as
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The full likelihood of a trial can therefore be expressed as

= ×μL RT R S k F C C RT RT ϕ RT μ σ( , , | ) ( , | | , Σ| ) ( | , )m upper lower RT RT
2

where k={New, source-A=Top, source-B=Bottom}; RT is identifi-
cation RT; R is recognition confidence rating 1…6; S is the source
confidence rating 1…6; Fm denotes the cumulative normal distribution
function for the multivariate normal distribution; µ|RT denotes the
mean of the conditional distribution of R and S given RT and Σ|RT
denotes the covariance matrix; Cupper denotes the upper truncation
points corresponding to the regions in a bivariate signal detection space
for judgments R and S, and Clower denotes the lower truncation points of
these regions, such that for an item classified with R= i, S= j,
Clower= {Cri-1, Crj-1} and Cupper= {Cri, Csj}, where Cr0=−∞, Cr1-5 are
the recognition criteria, Cr6=∞ and Cs0=−∞, Cs1-5 are the re-
cognition criteria, Cs6=∞; ϕ denotes the normal density function;
µRT=b− sµp|k and σRT2= s2σf2+ σp2.

Fitting procedure and expected values
The maximum likelihood parameters of each model were de-

termined for each participant using the following procedure. For each
participant’s data, the likelihood function was used to determine the
likelihood of every valid trial (i.e., on which the item was correctly
identified, the identification RT > 200ms and<mean identification
RT ± 3 SD), given a set of parameter values. The log-likelihood was
summed across all trials and converted to a negative value to be used by
a function minimization algorithm (Nelder-Mead), as implemented by
optim in R (R Core Team, 2017). The minimization routine was run ten
times for each participant’s data set in the first instance. Different
starting values of the parameters to be estimated were used for the
minimization routine in order to maximize the chance of finding the
global minimum for the negative log-likelihood of each model, with the
starting parameters for the first half of runs drawn from normal dis-
tributions centered on the respective mean parameter values estimated
from the data, and half drawn from uniform distributions with appro-
priate constraints. We next fitted the model again a further five times,
using the parameter estimates from the best-fitting run of the initial ten
runs as the starting parameters for the first of the five runs. For the
following four runs, we used the estimated parameter values from the
preceding run as starting parameters to avoid premature termination of
the simplex fitting procedure to identify the parameter estimates as-
sociated with the lowest negative log-likelihood.4

The maximum likelihood parameter estimates from the best-fitting
run for each participant were used to simulate an identification RT,
recognition decision and source decision for 25,000 simulated old items
(12,500 source-top, 12,500 source-bottom items) and 25,000 simulated
new items. Priming, recognition and source memory performance
measures were then calculated from the simulated trials in the same
way as the experimental data. This gave the expected priming, re-
cognition and source results for each model (see Figs. 3, 4 and 7 in this
paper, and Figs. S2–S6 in the Supplemental Material).

2 Alternatively the slope could be estimated as a free parameter or eliminated
from the MS models altogether (by setting s=1). We explored these possibi-
lities, see the Supplemental Material for details. In brief, estimating the slope as
a free parameter prevents the MS models from being identifiable. Eliminating it
from the model, and leaving other parameters to account for the elimination,
leads to the same fits as fixing it to the slope estimated by the SS model for the
equal variance models, but a worse fit for the unequal variance, multiple sys-
tems model.

3 We thank Maarten Speekenbrink for assistance with deriving an earlier
version of the likelihood function.

4 In the Supplemental Material, we report results of parameter recovery si-
mulations for all models. With increasing complexity of the model, parameter
recovery becomes less successful, in particular when simulating a relatively low
number of trials.
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Model fitting results

SS and MS models with linear decision bounds and equal variance
assumption (SS-Lin-EV, MS-Lin-EV)

Parameters estimates of the models are shown in Table 2; their
qualitative predictions are illustratively shown in Figs. 3 and 4 (panels
SS-Lin-EV, MS-Lin-EV)5. The SS-Lin-EV model predicts that identifica-
tion RTs will be faster for items with correct versus incorrect source
decisions, as found in Experiments 1-3A/3B, see Fig. 3, left-hand side.
For items with correct source decisions, it also reproduces the trend for
identification RTs to decrease as confidence in the source decision in-
creases, see Fig. 3 (SS-Lin-EV, right-hand side). However, in contrast to
the observed data (Fig. 1, A-D, right-hand side), for items with incorrect
source decisions it predicts that identification RTs increase as con-
fidence in the source decision increases (Fig. 3, SS-Lin-EV, right-hand
side). Thus, the SS-Lin-EV model does not completely explain the ob-
served relation between priming and source confidence. With regards to
the association between priming and recognition (for the observed data,
see Fig. 2, A–D), the SS-Lin-EV model correctly predicts that identifi-
cation RTs will decrease as recognition confidence increases (Fig. 4, SS-
Lin-EV). In contrast, the MS-Lin-EV model incorrectly predicts that
identification RTs do not vary according to the source decision (Fig. 3,
MS-Lin-EV) or recognition confidence (Fig. 4, MS-Lin-EV).

Despite the obvious inability of either the SS-Lin-EV or the MS-Lin-
EV model to account for qualitative pattern of data, we also compared
the quantitative model fit across experiments. In Experiments 1 and 2,
the SS-Lin-EV model outperforms the MS-Lin-EV model when summed
across participants (Table 5, top rows)6 and a higher percentage of
participants is best fit by the SS model (Fig. 5, -Lin-EV panel). For Ex-
periments 3A and 3B, the MS-Lin-EV model is preferred over the SS-Lin-
EV model. While the difference in the likelihood summed across par-
ticipants is small in Experiment 3B (Table 5, top rows), in both Ex-
periments 3A and 3B the majority of participants are better accounted
for by the MS-Lin-EV than SS-Lin-EV model (Fig. 5, -Lin-EV panel).
However, contrasting the observed and predicted relationship of
priming and source memory (observed: Fig. 1, panel C and D; predicted:
Fig. 3, left column) shows that in both experiments correct source de-
cisions are associated with faster identification than incorrect source
decisions, as predicted by the SS model. The gains of the MS-Lin-EV
model relative to the SS-Lin-EV model in fitting the data of Experiments
3A and 3B are likely driven by the weaker relationship of priming and
recognition in these experiments, compared to Experiments 1 and 2
(compare Fig. 2, panel C and D, with Fig. 2, panel A and B, and see

Fig. 3. Illustrative model predictions for the relationship of identification RTs and source confidence for correct and incorrect source decisions to studied items. The
predictions were generated by simulating 25,000 old (and 25,000 new) items according to the maximum likelihood parameter estimates for each participant in
Experiment 2. Error bars indicate 95% between-subjects confidence intervals of the mean. SS= single-system model, MS=multiple-systems model, -Lin= linear
decision bounds, -Con= converging criteria, -EV= equal variance, -UV=unequal variance.

5 Figures showing direct comparisons of observed and predicted data for all
experiments for overall identification RT, proportions of items assigned re-
cognition and source ratings, identification RT across recognition ratings and
identification RT across source ratings are in the Supplemental Material. We
focus on general trends predicted by the models for ease of illustrating in-
dividual models’ predictions in the main of the paper.

6 We report AIC and BIC in the table alongside the negative log-likelihood for
later comparison of fit between SS models. Given SS-Lin-EV and MS-Lin-EV
model have the same number of parameters (as do the later pairs of models
discussed), the quantitative comparison within the SS/MS model pair here is
naturally equivalent for negative log-likelihood, AIC and BIC. In the
Supplemental Material, we report five-fold cross-validation analyses for all
models for Experiment 2 and 3A. The results of these analyses lead to equiva-
lent conclusions as the use of AIC and BIC for model selection reported in the
paper.
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Fig. 4. Illustrative model predictions for the relationship of identification RTs and recognition decisions to new and old items. The predictions were generated by
simulating 25,000 old and 25,000 new items according to the maximum likelihood parameter estimates for each participant in Experiment 2. Error bars indicate 95%
between-subjects confidence intervals. SS= single-system model, MS=multiple-systems model, -Lin= linear decision bounds, -Con= converging criteria,
-EV= equal variance, -UV=unequal variance.

Table 2
Means and standard deviations (in parentheses) of the parameter estimates of the standard SS and MS models across participants in Experiments 1, 2, 3A, and 3B.

SS-Lin-EV MS-Lin-EV

Parameter Exp 1
N=25

Exp 2
N=30

Exp 3A
N=25

Exp 3B
N=24

Exp 1
N=25

Exp 2
N=30

Exp 3A
N=25

Exp 3B
N=24

μr 0.75 (0.32) 1.07 (0.50) 0.76 (0.36) 0.61 (0.24) 0.76 (0.31) 1.07 (0.52) 0.74 (0.37) 0.58 (0.24)
μp =μr =μr =μr =μr 0.92 (0.52) 1.34 (0.47) 1.85 (1.11) 1.46 (1.04)
μs =μr =μr =μr =μr =μr =μr =μr =μr
wpr =1 =1 =1 =1 =0 =0 =0 =0
wps =1 =1 =1 =1 =0 =0 =0 =0
wrs =1 =1 =1 =1 =1 =1 =1 =1
b 2159 (477) 2200 (463) 2054 (422) 2173 (481) 2179 (482) 2229 (453) 2162 (443) 2247 (517)
S 213

(114)
215
(83)

207 (101) 202 (117) =SS =SS =SS =SS

σf|new =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2
σf|old =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2
σr =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2
σp 553

(125)
560
(127)

545
(129)

497
(163)

551
(124)

557
(126)

530
(127)

484
(157)

σs 1.06 (0.62) 1.09 (0.60) 0.90 (0.85) 1.70 (1.45) 1.18 (0.83) 1.08 (0.55) 0.89 (0.81) 1.74 (1.71)
Cr1 −1.10 (0.56) −0.51 (0.58) −1.59 (1.36) −1.73 (1.29) −1.09 (0.56) −0.52 (0.59) −1.50 (1.15) −1.59 (1.04)
Cr2 −0.30 (0.48) 0.09 (0.47) −0.57 (0.78) −0.76 (0.67) −0.30 (0.47) 0.09 (0.47) −0.59 (0.81) −0.77 (0.67)
Cr3 0.11 (0.31) 0.42 (0.38) −0.17 (0.45) −0.08 (0.55) 0.12 (0.30) 0.43 (0.39) −0.18 (0.45) −0.10 (0.55)
Cr4 0.49 (0.33) 0.73 (0.37) 0.13 (0.38) 0.46 (0.47) 0.50 (0.33) 0.74 (0.37) 0.12 (0.39) 0.45 (0.47)
Cr5 1.10 (0.40) 1.18 (0.37) 0.70 (0.58) 1.10 (0.58) 1.10 (0.40) 1.19 (0.37) 0.70 (0.58) 1.08 (0.57)
Cs1 −2.02 (1.20) −1.77 (0.91) −1.82 (2.09) −3.01 (2.72) −2.26 (1.74) −1.76 (0.88) −1.83 (2.12) −3.10 (3.16)
Cs2 −0.89 (0.78) −0.80 (0.63) −0.73 (0.91) −1.62 (1.93) −1.03 (1.08) −0.80 (0.60) −0.70 (0.86) −1.64 (2.14)
Cs3 0.24 (0.30) 0.13 (0.34) 0.06 (0.19) 0.19 (0.57) 0.26 (0.33) 0.13 (0.32) 0.06 (0.18) 0.13 (0.56)
Cs4 1.28 (0.91) 1.03 (0.53) 0.83 (0.81) 1.63 (1.38) 1.44 (1.28) 1.03 (0.49) 0.80 (0.77) 1.54 (1.41)
Cs5 2.24 (1.53) 1.91 (0.89) 1.80 (1.55) 2.90 (1.95) 2.52 (2.19) 1.89 (0.84) 1.78 (1.49) 2.88 (2.04)

Note. A value preceded by an equal sign indicates that the value was fixed.
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Discussion of Experiments 3A and 3B). Since both the SS-Lin-EV model
and MS-Lin-EV model attempt to model all three bivariate relationships
at the same time, the weaker recognition and priming relationship in
Experiments 3A and 3B will lead to the MS-Lin-EV model making gains
on the SS-Lin-EV model. This is what we observe. A second aspect of the
data that both SS-Lin-EV and MS-Lin-EV models struggle to explain is
that of the association of recognition and source memory. This re-
lationship has not been central to our investigation here, but the misfits
here (see Fig. 7) naturally influence each models’ overall ability to
predict the observed data. We will discuss this aspect further in the
General Discussion.

In sum, neither the SS-Lin-EV or MS-Lin-EV model was able to re-
produce the full qualitative pattern of results. Measures of fit tended to
favor the SS-Lin-EV model across Experiments 1 and 2, while the MS-
Lin-EV model was favored in Experiments 3A and 3B. The SS-Lin-EV
model was able to reproduce many of the data patterns, but, crucially
for the key investigation here, for items with incorrect source decisions,
it incorrectly predicted that identification RTs would decrease as source
confidence increases, and this is the opposite pattern to the one ob-
served in Experiments 1-3A/3B.

Recent attempts to model recognition and source memory with
signal detection theory indicate two ways in which the SS-Lin-EV model
can be modified in order to provide a better account of the data. The
first is to allow convergence in the source criteria as recognition con-
fidence increases. The second is to allow old and new item memory
strength variance to be unequal. We consider each of these modifica-
tions in turn. For comparison, we also applied these modifications to
the MS-Lin-EV model.

SS and MS models with converging source criteria and equal variance
assumption (SS-Con-EV, MS-Con-EV)

A variety of published data shows that in joint recognition and
source memory paradigms, source ratings following high confidence
“old” ratings tend to be more confident than those that follow “old”
ratings made with lower confidence or “new” ratings (e.g. Slotnick &
Dodson, 2005; Onyper et al., 2010; Starns et al., 2013), that is, source
ratings change with recognition ratings, rather than vary independently
of them. To account for this pattern of data, Hautus et al. (2008) de-
fined a signal detection model of recognition and source memory that
implemented non-linear likelihood-ratio decision bounds rather than
linear decision bounds that resulted in more closely predicting the
observed association of recognition and source ratings. In more recent
models, linear approximations of these likelihood-ratio bounds simply
defined separate source criteria for some or all recognition ratings,
which improves model predictions but necessitates a high number of
additional parameters (Onyper et al., 2010; Starns et al., 2014). To

account for the same pattern of data, Klauer and Kellen (2010) adapted
guessing parameters in their discrete-state model of recognition and
source memory. Here, the idea of converging criteria was implemented
by a function that compressed probabilities of responses to the middle
of the source scale with lower recognition confidence, such that mid-
scale source responses (i.e. guessing the source) were more likely when
they were preceded by lower recognition ratings. In contrast to the
separate estimation of criteria for all levels of recognition confidence,
and thereby increasing the number of estimated parameters, the ad-
vantage of this compression function in the discrete-state model is that
convergence of responses is implemented with only one additional
parameter.

We adapted the compression function (Klauer & Kellen, 2010) to our
signal detection based model to implement the idea of converging cri-
teria here with a minimal number of additional parameters. As in the
SS-Lin-EV and MS-Lin-EV models, we estimated one set of recognition
criteria for all levels of source response. For the baseline source criteria
to compress (CS), we first estimated source criteria for the items given a
high-confidence old (6= “sure-old”) rating. We then derived criteria
for lower recognition ratings by fanning or de-compressing the criteria,
such that with decreasing recognition confidence, mid-scale source
ratings (i.e. guess-source responses) become more likely. In addition to
estimating source criteria directly for 6= sure-old, we therefore de-
rived source criteria for 5= probably-old and 4= guess-old ratings as
well as 3–1= guess to sure-new ratings. Thus, while we do not assume
guessing following “new” ratings (e.g. as in Hautus et al., 2008; Klauer
& Kellen, 2010), we assume the same criteria for all “new” responses.
This means that we assume that “new” responses still follow from
evaluation of a memory strength signal.

Extremity of a confidence rating is quantified as the distance of
rating i from the high-confidence sure-old category (h=6), that is
|h− i|, for i={6, 5, 4, 3} (with 3 as the representative for the 3–1 bin
of recognition ratings). The decompressed version of the criteria CS* is
thus generated by CS*=exp(|h− i|λ)CS (adapted from Klauer &
Kellen, 2010). Thus, in the SS and MS models with converging source
criteria (henceforth referred to as the SS-Con and MS-Con models, re-
spectively), one additional compression parameter λ for the source
criteria is estimated. The maximum likelihood parameter estimates of
these models are shown in Table 3.

The effect of converging criteria for the relationship of priming and
source memory is striking. Compared to the models with linear decision
bounds, both the SS-Con-EV and MS-Con-EV models made gains of on
average 70 points by AIC and BIC for each individual’s fit. The SS-Con-
EV model is now able to predict the association of priming and source
memory, such that identification RTs decrease as source confidence
increases for both correct and incorrect source decisions (Fig. 3, SS-Con-

Fig. 5. Percentage of participants best fit by SS compared to MS models for the –Lin-EV models, -Con-EV models, and –Con-UV models according to AIC. SS= single-
system model, MS=multiple-systems model, -Lin= linear decision bounds, -Con= converging criteria, -EV= equal variance, -UV=unequal variance.
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EV, left-hand-side). Additionally, the SS-Con-EV model still captures the
decrease in identification RTs with increasing recognition confidence
(Fig. 4, SS-Con-EV). The MS-Con-EV model still incorrectly predicts that
identifications RTs do not vary with source confidence (Fig. 3, MS-Con-
EV) or recognition confidence (Fig. 4, MS-Con-EV). This may make the
quantitative gains in fit surprising for the MS-Con-EV relative to the
MS-Lin-EV model. These gains are primarily due to the better fit of the
association of recognition and source memory compared to the MS-Lin-
EV model (Fig. 7). We will briefly discuss that aspect of the data later.

Comparing SS-Con-EV and MS-Con-EV models replicates the overall
pattern shown in the comparison of the SS-Lin-EV and MS-Lin-EV
models. The SS-Con-EV model is clearly preferred over the MS-Con-EV
model in Experiments 1 and 2, while the reverse is the case in
Experiment 3A, both when considering summed log-likelihoods
(Table 5, middle rows) and percentage of participants best fit by each of
the models (Fig. 5, -Con-EV panel). For Experiment 3B, both models
perform equally well when examining the summed log-likelihoods but a
greater percentage of participants is best fit by the MS-Con-EV model,
with differences between models marginal even on an individual basis.
As with the previous models, examination of predicted patterns of data
compared to observed ones (see the Supplemental Material for a direct
contrast) suggests that the relationship of priming and source is rea-
sonably well described in Experiments 3A and 3B while the relationship
with recognition is not, leading to the misfits of the SS-Con-EV model
overall for these experiments.

SS and MS models with converging source criteria and unequal variance
assumption (SS-Con-UV, MS-Con-UV)

While implementing converging criteria significantly improved the
SS model’s fit to the data, we modified a final aspect of the model to
bring it further in line with current signal detection models of re-
cognition and source memory. The models implemented above and in
Berry et al. (2012) assume that the variance of f is the same for old and
new items. Models of recognition typically allow for unequal variance

in the old and new item evidence distributions (Hautus et al., 2008;
Ratcliff, Sheu, & Gronlund, 1992; Starns et al., 2014; Yonelinas, 1994).
In the unequal variance signal detection model, for example, the new
item distribution is set as the reference distribution with mean strength
0 and variance 1; the mean strength and variance of the old item dis-
tribution is free to vary. Thus, in this final modification of the SS (and
MS model), we assumed converging criteria and separate σf for old and
new item distributions, such that for new items σf|new= σr = 1/√2,
while for old items σr = 1/√2, with σf|old allowed to vary. Thus, in the
SS and MS models with converging source criteria and unequal old-new
item strength variance (henceforth referred to as the SS-Con-UV and
MS-con-uv models, respectively), one additional parameter (σf|old) is
estimated for the standard deviation of the old item strength distribu-
tion. The parameter estimates are shown in Table 4. Fig. 8 shows a
graphical representation of the SS-Con-UV model for all three pairwise
relationships (priming – source memory, priming – recognition
memory, recognition memory – source memory) based on parameter
estimates from the model fitted to Experiment 2.

The unequal variance modification affected the fit of the SS model
to the priming and recognition relationship as well as the one between
priming and source memory, with only minimal changes in the fit of the
relationship of recognition and source memory (Fig. 7, -Con-UV pa-
nels). As Fig. 3 (SS-Con-UV, left-hand-side) shows, the decrease of
identification RTs with source confidence is steeper for correct than
incorrect source decisions, while Fig. 4 (SS-Con-UV) shows that iden-
tification RTs decrease more steeply with increasing recognition con-
fidence for old items than new items. As with the previous instantia-
tions of the MS model, the MS-Con-UV model predicts that
identification RTs do not vary with source or recognition confidence
(Figs. 3 and 4, MS-Con-UV), but as with the SS-Con-UV model, the fit of
the association of recognition and source memory improves. Quanti-
tatively, the SS-Con-UV model outperforms the MS-Con-UV model in
Experiments 1 and 2 (Table 5, bottom rows). In Experiments 3A, the
MS-Con-UV model outperforms the SS-Con-UV model overall and by

Table 3
Means and Standard Deviations (in parentheses) of the Parameter Values of the Converging Criteria SS and MS models Across Participants in Experiments 1, 2 and
3A, and 3B.

SS-Con-EV MS-Con-EV

Parameter Exp 1
N=25

Exp 2
N=30

Exp 3A
N=25

Exp 3B
N=24

Exp 1
N=25

Exp 2
N=30

Exp 3A
N=25

Exp 3B
N=24

μr 0.99 (0.58) 1.30 (0.66) 0.87 (0.49) 0.73 (0.36) 0.99 (0.54) 1.31 (0.68) 0.85 (0.51) 0.70 (0.36)
μp =μr =μr =μr =μr 0.99 (0.65) 1.46 (0.57) 1.80 (1.09) 1.42 (1.00)
μs =μr =μr =μr =μr =μr =μr =μr =μr
wpr =1 =1 =1 =1 =0 =0 =0 =0
wps =1 =1 =1 =1 =0 =0 =0 =0
wrs =1 =1 =1 =1 =1 =1 =1 =1
b 2178 (480) 2215 (462) 2070 (422) 2193 (488) 2178 (483) 2229 (455) 2163 (442) 2246 (519)
s 205

(115)
200
(80)

209
(100)

194
(112)

=SS =SS =SS =SS

σf|new =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2
σf|old =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2
σr =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2
σp 554 (124) 562 (126) 545 (129) 496 (162) 553 (123) 561 (125) 530 (127) 486 (156)
σs 2.75 (1.60) 2.14 (0.74) 1.37 (0.71) 3.02 (1.67) 2.71 (1.06) 2.34 (1.20) 1.40 (0.95) 3.99 (3.56)
Cr1 −1.02 (0.59) −0.43 (0.61) −1.54 (1.42) −1.60 (1.14) −1.01 (0.58) −0.43 (0.62) −1.59 (1.53) −1.62 (1.14)
Cr2 −0.20 (0.50) 0.20 (0.51) −0.51 (0.88) −0.71 (0.70) −0.19 (0.50) 0.21 (0.52) −0.52 (0.90) −0.72 (0.69)
Cr3 0.24 (0.35) 0.56 (0.44) −0.08 (0.51) −0.01 (0.59) 0.24 (0.34) 0.57 (0.44) −0.10 (0.53) −0.03 (0.58)
Cr4 0.64

(0.39)
0.89 (0.43) 0.22 (0.45) 0.55 (0.51) 0.65 (0.38) 0.90 (0.43) 0.21 (0.47) 0.54 (0.51)

Cr5 1.27 (0.42) 1.36 (0.42) 0.81 (0.63) 1.20 (0.62) 1.28 (0.42) 1.37 (0.42) 0.80 (0.64) 1.17 (0.62)
Cs1 −2.18 (1.73) −1.64 (1.00) −1.49 (1.94) −2.77 (1.80) −2.38 (1.95) −1.76 (1.22) −1.55 (1.97) −3.72 (3.43)
Cs2 −0.76 (0.98) −0.58 (0.49) −0.44 (0.61) −1.00 (0.86) −0.75 (0.94) −0.65 (0.61) −0.49 (0.81) −1.29 (1.43)
Cs3 0.19 (0.22) 0.15 (0.32) 0.05 (0.14) 0.15 (0.68) 0.24 (0.29) 0.13 (0.35) 0.05 (0.13) 0.17 (0.72)
Cs4 1.27 (1.02) 0.94 (0.62) 0.59 (0.58) 1.11 (1.36) 1.37 (1.19) 1.00 (0.64) 0.61 (0.65) 1.38 (1.80)
Cs5 2.96 (1.99) 2.00 (1.09) 1.65 (1.33) 2.69 (1.98) 3.16 (2.35) 2.12 (1.28) 1.71 (1.55) 3.43 (3.24)
λ 0.55 (0.25) 0.43 (0.23) 0.53 (0.36) 0.60 (0.38) 0.55 (0.26) 0.43 (0.25) 0.52 (0.35) 0.61 (0.40)

Note. A value preceded by an equal sign indicates that the value was fixed.
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percentage of participants best fit by each model, while in Experiment
3B both models perform equally well overall, while the SS-Con-UV
model edges past the MS-Con-UV model in the percentage of partici-
pants’ best fit by the model. As mentioned previously, this better per-
formance of the MS-Con-UV model in Experiments 3A and 3B likely
reflects the weaker association between recognition and priming in this
experiment. Thus, while the SS-Con-UV model better accounts for the
relationship of priming and source memory observed throughout all
experiments, the MS-Con-UV model makes gains for those experiments
where the association of priming and recognition memory was atte-
nuated (i.e., Experiments 3A and 3B).

Comparing the AIC and BIC of all the models in each experiment, for

Experiments 1 and 2, the SS-Con-UV model provides the best fit overall,
and by a substantial margin. For Experiment 3A, the MS-Con-EV model
provides the best fit overall. For Experiment 3B, the MS-Con-EV pro-
vides a marginally better fit than the SS-Con-EV model, by a fraction of
a point, with the unequal variance assumption not improving the fit.
Comparing the SS models by AIC for percentage of participants best fit
(Fig. 6) shows that the SS-Con-UV model fits the data in Experiments 1,
2 and 3A better than the simpler models, while in Experiment 3B, the
majority of participants are better described by the SS-Con-EV model.
The pattern of results is similar for comparison by BIC though wea-
kened, with SS-Con-EV and SS-Con-UV equally preferred in Experi-
ments 1 and 3A.

Table 4
Means and Standard Deviations (in parentheses) of the Parameter Values of the Unequal Variance Converging Criteria SS and MS Models Across Participants in
Experiments 1, 2, 3A, and 3B.

SS-Con-UV MS-Con-UV
Parameter Exp 1

N=25
Exp 2
N=30

Exp 3A
N=25

Exp 3B
N=24

Exp 1
N=25

Exp 2
N=30

Exp 3A
N=25

Exp 3B
N=24

μr 1.30 (1.03) 1.97 (1.45) 1.13 (0.98) 0.81 (0.41) 1.32 (0.96) 1.93 (1.37) 1.16 (1.03) 0.75 (0.39)
μp =μr =μr =μr =μr 1.47 (1.23) 2.43 (1.43) 2.28 (1.51) 1.53 (0.85)
μs =μr =μr =μr =μr =μr =μr =μr =μr
wpr =1 =1 =1 =1 =0 =0 =0 =0
wps =1 =1 =1 =1 =0 =0 =0 =0
wrs =1 =1 =1 =1 =1 =1 =1 =1
b 2168 (481) 2205 (467) 2062 (424) 2188 (484) 2178 (481) 2228 (454) 2169 (441) 2245 (518)
s 169

(124)
138
(72)

234
(196)

174
(121)

=SS =SS =SS =SS

σf|new =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2
σf|old 1.17 (0.43) 1.47 (0.59) 0.97 (0.63) 0.87 (0.34) 1.18 (0.37) 1.45 (0.50) 1.01 (0.61) 0.81 (0.32)
σr =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2 =1/√2
σp 557

(122)
565
(125)

540
(134)

496
(164)

553
(121)

563
(124)

518
(145)

489
(159)

σs 2.99 (1.52) 2.71 (1.13) 1.50 (0.80) 3.17 (1.69) 3.27 (1.42) 3.26 (1.85) 1.54 (0.89) 3.46 (2.61)
Cr1 −1.11 (0.61) −0.48 (0.65) −1.74 (1.79) −1.78 (1.45) −1.10 (0.61) −0.48 (0.65) −1.85 (1.93) −1.68 (1.17)
Cr2 −0.22 (0.51) 0.23 (0.62) −0.62 (1.29) −0.75 (0.72) −0.22 (0.52) 0.23 (0.59) −0.62 (1.29) −0.75 (0.71)
Cr3 0.25 (0.51) 0.65 (0.57) −0.08 (0.60) −0.02 (0.62) 0.25 (0.37) 0.64 (0.52) −0.08 (0.58) −0.04 (0.62)
Cr4 0.70 (0.44) 1.08 (0.62) 0.26 (0.55) 0.58 (0.54) 0.72 (0.43) 1.06 (0.57) 0.27 (0.55) 0.56 (0.54)
Cr5 1.47 (0.57) 1.75 (0.74) 0.94 (0.83) 1.27 (0.67) 1.50 (0.55) 1.72 (0.63) 0.99 (0.90) 1.23 (0.67)
Cs1 −2.42 (1.61) −2.31 (1.25) −1.48 (1.44) −2.90 (1.96) −2.90 (2.47) −2.77 (2.04) −1.75 (2.15) −3.27 (2.77)
Cs2 −0.83 (0.94) −0.83 (0.74) −0.40 (0.46) −1.05 (1.00) −0.96 (1.25) −1.01 (1.03) −0.50 (0.70) −1.19 (1.21)
Cs3 0.25 (0.28) 0.20 (0.45) 0.06 (0.14) 0.17 (0.56) 0.30 (0.32) 0.18 (0.52) 0.06 (0.13) 0.13 (0.56)
Cs4 1.50 (1.15) 1.33 (0.81) 0.58 (0.46) 1.24 (1.36) 1.72 (1.57) 1.49 (1.06) 0.66 (0.57) 1.27 (1.41)
Cs5 3.47 (2.26) 2.83 (1.37) 1.80 (1.59) 2.90 (2.21) 4.01 (3.19) 3.21 (1.97) 2.05 (2.34) 3.09 (2.44)
λ 0.53 (0.25) 0.38 (0.19) 0.52 (0.35) 0.59 (0.36) 0.53 (0.24) 0.39 (0.24) 0.50 (0.33) 0.60 (0.39)

Note. A value preceded by an equal sign indicates that the value was fixed.

Fig. 6. Percentage of participants best fit by the single-system models in Experiments 1-3A/B according to the AIC and BIC. SS= single-system model,
MS=multiple-systems model, -Lin= linear decision bounds, -Con= converging criteria, -EV= equal variance, -UV=unequal variance.
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General discussion

In this article we provided an initial attempt at linking priming,
recognition and source memory within a single experimental and

modeling framework, by extending the work of Berry et al. (2012). In
four experiments, we replicated the associations between priming and
recognition reported by Berry et al. (2012, Experiment 2) and, more-
over, found that the magnitude of the priming effect is also linked to

Fig. 7. Source d′ across recognition confidence for the observed data (bars) and data predicted by the models (points) for the -Lin-EV, -Con-EV and -Con-UV models
for Experiment 1 (A), Experiment 2 (B), Experiment 3A (C), and Experiment 3B (D). The model predictions were generated by using each participant’s maximum
likelihood parameter estimates to simulate 25,000 old and 25,000 new items. SS= single-system model, MS=multiple-systems model, -Lin= linear decision
bounds, -Con= converging criteria, -EV= equal variance, -UV=unequal variance.
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source memory decisions. Specifically, in all experiments, the magni-
tude of the priming effect was reliably greater for items with correct
source decisions than those with incorrect source decisions; priming
was also linked to confidence in the source decision in that identifica-
tion RTs tended to be faster as confidence in the source decision in-
creased, regardless of whether the source decision was correct or in-
correct. The association between priming and source decisions was
present even when priming was measured in a distinct phase to re-
cognition and source ratings (Experiments 3A and 3B), and so is not an
artefact of measuring priming, recognition and source decisions con-
currently. The association also persisted despite variations in (1) overall
source discriminability (i.e., Experiment 1 vs. Experiment 2), and (2)
the strength of the association between priming and recognition across
experiments (i.e., Experiments 1 and 2 vs. Experiments 3A and 3B), and
so does not appear to be driven by this association. This is consistent
with priming and source memory being driven by a single signal rather
than multiple distinct memory signals.

However, it is possible that other processes contributed to the as-
sociation of priming and source memory we observed. For one, it may
be the case that some words were simply more memorable than others
with specific orthographic or lexical characteristics. We did not model
item effects directly, so cannot rule out that such item effects

contributed to the association we observed here. However, Sheldon and
Moscovitch (2010) showed that the association they observed between
recollection and priming (using remember-know and lexical decision
tasks respectively) could not be attributed to item effects. This suggests
that the association here between priming and source memory is also
unlikely to arise from item effects alone.

Second, participants were informed prior to the test phase that half
the words they would be asked to identify had been studied while half
would be new. This means that they could rely on their memory to
reduce the number of candidate answers to complete the identification
task. We believe this is unlikely. Ward, Berry, and Shanks (2013)
showed that even under circumstances that would be optimal for re-
lying on memory (participants were informed before each trial if the
upcoming item had been studied), identification performance was un-
affected. This suggests that the observed associations are not due to
strategic uses of memory during identification.

Analysis of the behavioral data thus suggests that a single memory
signal could be driving responding in the priming and source memory
task, as well as the recognition task and formal modeling supports this
conclusion to a degree. An extended version of the SS model in Berry
et al. (2012) correctly predicted that the priming effect would be
greater for items with correct versus incorrect source decisions, and also

Fig. 8. Graphical representation of the SS-Con-UV model, based on mean parameter estimates from Experiment 2 (Table 4) for the relationship of RT and source
memory (Js, RT), RT and recognition memory (Jr, RT) and recognition memory and source memory (Jr, Js). Gray lines indicate recognition and source criteria. The
RT, Js panel shows the joint distribution of RT and Js, conditional on ‘sure old’ recognition judgments. The ellipses represent contours of equal probability in a
bivariate normal distribution.

Table 5
Goodness-of-Fit for the Models in Experiments 1, 2, 3A, and 3B, Summed Across Participants.

Experiment 1 (N=25)* Experiment 2 (N=30)* Experiment 3A (N=25)* Experiment 3B (N=24)*

Model p ln(L) AIC BIC ln(L) AIC BIC ln(L) AIC BIC ln(L) AIC BIC

SS-Lin-EV 15 87,510 175,771 178,400 105,642 212,185 215,429 64,538 129,826 132,352 26,837 54,393 56,498
MS-Lin-EV 15 87,647 176,043 178,672 105,779 212,458 215,703 64,498 129,747 132,274 26,833 54,385 56,490
SS-Con-EV 16 86,135 173,071 175,875 104,601 210,161 213,622 63,668 128,136 130,832 26,420 53,608 55,853
MS-Con-EV 16 86,249 173,297 176,102 104,720 210,400 213,861 63,631 128,061 130,757 26,420 53,607 55,853
SS-Con-UV 17 86,007 172,863 175,843 104,343 209,706 213,383 63,565 127,980 130,843 26,406 53,628 56,013
MS-Con-UV 17 86,137 173,124 176,103 104,497 210,014 213,691 63,527 127,903 130,767 26,406 53,627 56,013

Note. The Akaike information criterion (AIC) is calculated as AIC=−2ln(L)+ 2P, where P= p×N is the total number of free parameters for each fit, where p is the
number of free parameters for each model, and N is the number of participants modeled in each experiment. The Bayesian information criterion (BIC) is calculated as
BIC=−2ln(L)+ P, where P= p× ln(d) is the total number of free parameters for each model, where p is the number of free parameters for each model and d is the
number of trials modeled across participants. A smaller ln(L), AIC or BIC value indicates a relatively better model fit. The average number of fitted trials per
participant was in Experiment 1: n=328 (SD=13) for n total= 8196; Experiment 2: n=333 (SD=8) for n total= 9996; Experiment 3A: n=249 (SD=9) for n
total= 6237; Experiment 3B: n=107 (SD=4) for n total= 2557. SS= single system, MS=multiple system, -Lin= linear criteria bounds, -Con= converging
criteria, -EV= equal variance, -UV=unequal variance.
* Participants were excluded for whom model fits resulted in extreme parameter estimates for at least one of the models. The exclusions did not affect the pattern

of results; see the Supplemental Material for the table including all participants and tables excluding participants for pairs of models and SS models only.
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that identification RTs would decrease with increasing source con-
fidence. However, this model incorrectly predicted that the identifica-
tion RTs of items with incorrect source decisions would be slower as
confidence in the source decision increased. In this model, the decision
criteria used for source decisions were assumed to be invariant across
recognition ratings (e.g. as in DeCarlo, 2003), which gave rise to this
incorrect prediction. In order to bring the model more into line with
current signal detection modeling of recognition and source ratings
(Hautus et al., 2008; Onyper et al., 2010; Starns et al., 2013, 2014), we
modified it to allow the source decision criteria to converge as re-
cognition confidence increases (i.e., in the SS-Con-EV model). This
drastically improved the fit of the model, which then correctly pre-
dicted that identification RTs decrease as source confidence increases
for both correct and incorrect source decisions.

Allowing source criteria to converge with increasing recognition
confidence is one way of representing a dependency between recogni-
tion and source ratings. Specifically, items receiving high confidence
old recognition ratings will also tend to receive high confidence source
decisions. With this modification, a source rating made with high
confidence, even if incorrect, is relatively likely to be preceded by a
high confidence recognition rating, which in turn is likely to have a
relatively fast identification RT. This gives rise to the trend for identi-
fication RTs to decrease as source confidence increases for incorrect
source decisions, and suggests that this trend critically depends upon
the association between recognition and source ratings. The single-
system model predictions and fit were improved even further by al-
lowing the variance of the strength signal for old items to differ from
that of new items (i.e., in the SS-Con-UV model), which again brings the
single-system model more in line with existing signal detection ac-
counts of recognition (e.g. Ratcliff et al., 1992; Rotello, 2017; Wixted,
2007).

As a baseline to compare the single-system models against, we im-
plemented “multiple-systems” versions of these models in which the
signal driving priming is independent of the one driving recognition
and source decisions, implementing a theory in the literature that im-
plicit and explicit memory operate with stochastic and functional in-
dependence (Squire & Dede, 2015; Tulving et al., 1982). These models
could not reproduce the aforementioned associations between priming
and source decisions; the quantitative fit of these models to the data
also tended to be inferior to that of the SS-Con-EV and SS-Con-UV
models. Of course, this does not rule out a multiple-systems account
altogether. Distinct memory systems or signals may drive recognition,
priming and source, but our results suggest that if this is the case then
these signals are highly interrelated, not independent, in contrast to
assumptions of stochastically and functionally independent implicit and
explicit memory systems (e.g., Squire & Dede, 2015). This would be in
line with dual-process models that do not implement stochastic in-
dependence (e.g., the MS2 model in Berry et al., 2012; DPSD models in
Moran & Goshen-Gottstein, 2015; Pratte & Rouder, 2011). In order to
implement a multiple-systems model with highly interrelated systems,
we could implement a model in which the signals driving priming,
recognition, and source (i.e., fp, fr, and fs) can all be correlated to
various degrees (i.e., by allowing wpr, wps, wrs to all be free to vary).
This model would be a more general case of the single-system model (in
which fp= fr = fs and wpr=wps=wrs = 1) and the multiple-systems
models (in which wpr=wps= 0). A problem with this model is that it is
not at all clear that it would be falsifiable—it would not make firm
predictions in advance because it can mimic the single-system and
multiple-systems models, producing any result that these models can.
The MS2 model in Berry et al. (2012) fit the data well by closely mi-
micking the single-system model, and its greater flexibility meant that,
although it could fit the data more closely, it appears to achieve this by
overfitting (Shanks & Berry, 2012). Thus, although our findings could
also be explained by a multiple-systems model with highly interrelated
systems, for the sake of parsimony, we think a single-system inter-
pretation of our findings should be preferred compared to such an

interrelated, multiple-systems model. This has implications for, for ex-
ample, the debate concerning the origin of the FN400 (e.g. Strozak
et al., 2016; Voss & Federmeier, 2011). This debate concerns whether
that waveform reflect repetition priming or familiarity. The results here
and in Berry et al. (2012) suggest that this debate is based on a false
dichotomy.

While we clearly favour the single-system model to account for the
data, such a model would need to fit not only the priming and source
memory relationship but also account for the other bivariate relation-
ships. While the single-system model we presented here did well in
accommodating the association of priming and source memory for all
experiments, it fared less well relative to the multiple-systems model in
terms of its quantitative fit to the data when applied to Experiments 3A
and 3B. Those experiments show an attenuated association of priming
and recognition memory, due to the changes in experimental design.
While the association persists overall, the multiple systems model we
implemented here was relatively better able to accommodate the
overall pattern of data in those experiments than in Experiment 1 and 2.
A model of performance in these three memory tasks needs to be able to
account for these variations in data but neither the SS or the MS model
was able to do that for all patterns of data.

Association of recognition and source memory

Although our focus has been on the link between priming and
source memory, and to a lesser degree priming and recognition
memory, our empirical and modeling results also have relevance for the
ongoing discourse concerning how recognition and source memory
should be modeled (for a review, see Rotello, 2017). The single-system
and multiple-systems models we tested do not make distinct predictions
for this relationship. In both models, we assumed the same memory
signal to underlie recognition and source memory. Thus, both types of
models predict that source memory should be higher for recognized
than unrecognized items, and source memory should monotonically
increase with increasing recognition confidence.

Nevertheless, we want to briefly relate the pattern of the observed
association of recognition and source memory to the model predictions.
As already reported, in all four experiments, source memory was higher
for recognized than unrecognized items. However, the shape of the
association is not closely predicted by the models (see Fig. 7 and a more
detailed analysis in the Supplemental Materials). First, source memory
only clearly exceeded chance for items recognized with high con-
fidence. Second, the models frequently predicted sub-chance source
performance for items with lower recognition ratings (see Fig. 7), but
this trend was not found in any of the experiments.

The lack of graded source memory with increasing recognition is
well known (e.g. Slotnick & Dodson, 2005). Although this could be
argued to indicate threshold rather than continuous processes, con-
tinuous models can account for this pattern of data (e.g. Slotnick &
Dodson, 2005; Rotello, 2017).

The curious prediction of sub-chance performance, that is, partici-
pants reliably respond source-A for source-B items for low recognition
confidence ratings (evident in Fig. 7), has similarly been discussed
previously (e.g. Hautus et al., 2008; Starns et al., 2008). This prediction
follows from the distributional assumptions of the signal detection
models. Since participants typically need to provide source ratings even
after making “sure-new” responses, that pattern is theoretically ob-
servable. However, realistically these data points are likely noisy due to
participants guessing or responding with random, not memory-driven,
responses. Some of this noise can be reduced experimentally by pro-
viding participants with an option for ‘guessing’ as the mid-point on a
scale with an uneven number of rating categories (e.g. Onyper et al.,
2010; Slotnick & Dodson, 2005). Even so, subchance source perfor-
mance for unrecognized items is not observed reliably (Malejka &
Bröder, 2015; Starns et al., 2008). Formal models of recognition and
source memory performance are therefore frequently modified to avoid
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this prediction by implementing source guessing for unrecognized items
(Hautus et al., 2008, Model 2) or bounded distributions that avoid
crossover of correlated distributions and the following predictions of
sub-chance performance (Starns et al., 2014). In our experimental set-
up and models, we made no such assumptions, given that the re-
lationship of recognition and source memory was not the focus of our
theoretical interest. Under a modified model, with formal im-
plementation of source guessing for unrecognized items, we would
expect chance source performance for items given ‘new’ responses, with
graded, increasing source memory with increasing confidence in ‘old’
responses. This modification would likely provide a closer fit of the
model to the association of recognition and source memory than the
current model implementation does.

Limitations and future research

One potential limitation of our investigation concerns the way in
which identification RTs were modeled. For computational simplicity,
we assumed all variables in the models, including identification RTs,
are normally distributed. Although identification RTs were generally
normally distributed in the experiments in Berry et al. (2012), this was
only the case for a minority (< 20%) of participants in the experiments
in the present paper. This leaves the possibility that the observed as-
sociations and resulting modeling results are an artefact of this dis-
tributional analysis. We addressed this in two ways. We repeated the
statistical analyses twice: First, we replaced per-participant mean
identification RTs with mean log-transformed identification RTs and
also per-participant mean identification RTs with median identification
RTs (see the Supplemental Materials). The pattern of results and sub-
stance of the effects in those analyses was comparable to the ones we
reported in the paper. Second, we also fitted the SS-Con-UV and MS-
Con-UV model to all experiments using log-transformed identification
RTs to replace identification RTs in ms. The results broadly followed the
same pattern as the model fits for the data with untransformed iden-
tification RTs (see the Supplemental Materials). This demonstrates that
our main conclusions hold, even though the identification RTs in our
CID-RS task are not normally distributed.

The modeling framework we presented here is very much based in
multi-dimensional signal-detection theory models of recognition and
source memory (e.g. DeCarlo, 2003; Hautus et al., 2008; Slotnick &
Dodson, 2005; Starns et al., 2013). While some of our choices in the
implementation (e.g. relative judgments for source decisions, conver-
ging criteria) have not been explicitly implemented in the same way in
those models, the modeling framework here is in its essence as much of
an extension of those multi-dimensional recognition and source models
to priming as it is of the priming and recognition model in Berry et al.
(2012) to source memory. This is not to say that this is the only way to
model these data. Recently, signal-detection and discrete-state models
have been extended to model reaction times of recognition and source
decisions using diffusion processes (e.g. Dube, Starns, Rotello, &
Ratcliff, 2012; Kellen, Singmann, Vogt, & Klauer, 2015; Starns, 2014).
While, to our knowledge, RT distributions have not been used as the
basis for the simultaneous modeling of recognition and source deci-
sions, one can easily imagine a model that incorporates response times
for all three tasks (priming, recognition memory, source memory).

One outstanding question is whether a major dual-process model of
recognition and source (Yonelinas, 1994, 1999, 2002) could be ex-
tended to priming, and how it would explain our experimental findings;
a related issue is whether recollection and familiarity make in-
dependent contributions to the recognition of an item. Berry et al.
(2012) extended the dual-process model of recognition (Yonelinas,
1994) to priming in the form of the DPSD1 model. The DPSD1 model
assumes that the same memory strength signal (i.e., familiarity, or f in
the single-system model) drives priming and recognition performance,
but that an independent threshold recollection process also contributes
to recognition. This model provided a good account of the relation

between priming and recognition confidence ratings (Berry et al., 2012,
Experiment 2), but not the relation between priming and remember-
know judgments (see Berry et al., 2012, Experiment 3). Rather than
predicting that the magnitude of the priming effect would be greater for
remember responses than know responses, as was observed empirically,
the DPSD1 model incorrectly predicted the opposite pattern—namely
that the priming effect for remember responses would be smaller than
that of know responses. It made this incorrect prediction because, ac-
cording to the model, remember judgments are driven by recollection,
and whether an item is recollected or not is independent of an item’s
familiarity (i.e., because stochastic independence between recollection
and familiarity was assumed; Yonelinas, 2002). A recollected old item
will therefore not necessarily have a relatively fast identification RT in
the DPSD1 model. If source decisions are being driven solely by re-
collection, as in early applications of the dual-process theory model
(Yonelinas, 1999), such a model would similarly fail to predict the
faster identification RTs for correct source decisions we observed in the
experiments here and predicted with a single system model.

More recent applications, however, allow for a greater contribution
of familiarity to source memory decisions (e.g. Diana, Yonelinas, &
Ranganath, 2008). If priming and familiarity-based responding are as-
sumed to depend upon the same memory strength variable, and if
source decisions in our Experiments 1–3A/3B were driven by famil-
iarity, rather than recollection, then a dual-process account of our
findings would be equivalent to that of the single-system model and
would be able to predict the association of priming and source memory
we observed. Yet, source memory for spatial location is typically as-
sociated with hippocampal activation (Ekstrom and Bookheimer, 2007;
Slotnick & Thakral, 2013), which is in turn associated with recollection
(e.g., Brown & Aggleton, 2001; Diana, Yonelinas, & Ranganath, 2007;
Diana et al., 2010; Eichenbaum, Yonelinas, & Ranganath, 2007),
leaving little room to explain the association of priming and source
memory as familiarity-based in a dual-process context (though see
Taylor & Henson, 2012).

A direct test of the predictions of the single-system model compared
to an extended, multivariate dual-process instantiation would be to use
source memory tasks that are thought to differ in the extent to which
they rely upon the familiarity and recollection processes. Recent work
within the dual-process framework suggests that familiarity contributes
more to source performance if item and source information are encoded
as a single unit (i.e. are unitized), compared to when they are not
unitized, where conversely source memory is argued to be based on
recollection to a greater degree (e.g., Bastin et al., 2013; Diana et al.,
2008; Diana, Van den Boom, Yonelinas, & Ranganath, 2011). The
single-system model we propose here, where we assume a single
memory signal drives performance, would predict the same pattern of
association between priming and source memory for both unitized and
non-unitized stimuli. A dual-process, multivariate extension of the
single system model (following Starns et al., 2014) would instead pre-
dict an association for priming and source memory only for unitized
stimuli, where source memory would arguably rely on the same
memory signal as priming. We aim to test these predictions in future
investigations.

Conclusion

We found that priming is linked to source memory for spatial lo-
cation. This extends previous work that established a link between
priming and recognition, which we also replicated here (Berry et al.,
2012). A single-system signal detection model that allows for con-
vergence in source criteria with increasing recognition confidence ex-
plains these associations well, and tended to outperform a “multiple-
systems” version of the model in which the signals driving priming and
source memory are independent. While neither the single-system or the
multiple-systems models we tested are able to account for all aspects of
the data we presented here, our work provides a new basis to explore
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the relationship between priming, recognition memory and source
memory.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jml.2019.104039.
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