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Abstract 10 

Recent earthquakes involving complex multi-fault rupture have increased our appreciation of the 11 

variety of rupture geometries and fault interactions that occur within the short duration of coseismic 12 

slip. Geometrical complexities are intrinsically linked with spatially heterogeneous slip and stress 13 

drop distributions, and hence need incorporating into seismic hazard analysis. Studies of exhumed 14 

ancient fault zones facilitate investigation of rupture processes in the context of lithology and 15 

structure at seismogenic depths. In the Gairloch Shear Zone, NW Scotland, foliated amphibolites 16 

host pseudotachylytes that record rupture geometries of ancient low-magnitude (≤ MW 3) seismicity.  17 

Pseudotachylyte faults are commonly foliation parallel, indicating exploitation of foliation planes as 18 

weak interfaces for seismic rupture. Discordance and complexity are introduced by fault 19 

segmentation, stepovers, branching and brecciated dilational volumes. Pseudotachylyte geometries 20 

indicate that slip nucleation initiated simultaneously across several parallel foliation planes with 21 

millimetre and centimetre separations, leading to progressive interaction and ultimately linkage of 22 

adjacent segments and branches within a single earthquake. Interacting with this structural control, 23 

a lithological influence of abundant low disequilibrium melting-point amphibole facilitated coseismic 24 

melting, with relatively high coseismic melt pressure encouraging transient dilational sites. These 25 

faults elucidate controls and processes that may upscale to large active fault zones hosting major 26 

earthquake activity.  27 
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Supplementary material: Supplementary Figures 1 and 2, unannotated versions of field photographs 28 

displayed in Figures 4a and 5 respectively, are available at 29 

 30 
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Seismic hazard mapping depends heavily on understanding the geometry of fault planes and 32 

earthquake rupture, which are best understood from examination of surface ruptures and analogous 33 

exhumed fault zones. Recent earthquakes have widened understanding of the possible complexities 34 

of rupture, allowing the creation of many alternative models to a simple single planar fault, for 35 

example the multi-segment 2016 MW 7.8 Kaikōura earthquake (Hamling et al. 2017), the 2018 MW 36 

7.9 offshore Kodiak earthquake (Ruppert et al. 2018) and the 2010 MW 7.2 El-Mayor-Cucapah 37 

earthquake (Fletcher et al. 2016). The potential for multi-segment rupture is, however, not typically 38 

accounted for in seismic hazard modelling (Nissen et al. 2016). Supporting this new understanding is 39 

a body of research characterising the geometry and development of exhumed fault zones, which 40 

reveal greater complexity at scales typically less than the resolution of seismological records (e.g. 41 

Sibson 1975, Swanson, 1988, Allen et al., 2002, Di Toro & Pennacchioni 2005, Rowe et al., 2018). 42 

Significantly, exhumed faults reveal geometries and deformation mechanisms of faults at 43 

seismogenic depths (e.g. Sibson 1975; Swanson 1988; Allen et al. 2002; Di Toro and Pennacchioni 44 

2005; Ujiie et al. 2007; Griffith et al. 2010; Rowe et al. 2011, 2018; Kirkpatrick et al. 2012; Ferrand et 45 

al. 2018).  46 

Pseudotachylyte, a melt-derived fault rock produced during coseismic frictional heating (Sibson 47 

1975), remains one of the best recognised markers of ancient seismicity (Cowan 1999; Rowe & 48 

Griffith 2015). It has been extensively utilised to study seismic source parameters and rupture 49 

geometries from exhumed fault zones worldwide and across a range of depths (e.g. Sibson 1975; 50 

Swanson 1988; Allen et al. 2002; Di Toro and Pennacchioni 2005; Ujiie et al. 2007; Griffith et al. 51 

2010; Rowe et al. 2011, 2018; Kirkpatrick et al. 2012; Ferrand et al. 2018). Pseudotachylyte–bearing 52 

faults illustrate a variety of fault plane and damage zone geometries, including the melt-generating 53 

fault planes, tensile off-fault injection veins, chaotic networks of off-fault veining, and dilational sites 54 

often hosting breccias, all of which may illustrate the heterogeneous and dynamic environment of 55 

coseismic rupture (Sibson 1975, 1985; Swanson 2005; Kirkpatrick & Shipton 2009; Ngo et al. 2012; 56 

Griffith & Prakash 2015; Rowe et al. 2018). 57 
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In the context of successive frictional failure, pseudotachylytes are frequently inferred to weld fault 58 

planes once they have cooled, such that later brittle slip events rarely reactivate unaltered 59 

pseudotachylyte-bearing faults (Mitchell et al. 2016, Phillips et al., 2019). Consequentially, a suite of 60 

pseudotachylyte faults may preserve snapshots of seismic rupture evolution that have evaded 61 

reactivation and/or destruction by later slip events along the same fault plane, although they may be 62 

subject to subsequent recrystallization, viscous deformation and mineralogical alteration (Kirkpatrick 63 

& Rowe 2013, Phillips et al., 2019). In the Gairloch Shear Zone (GSZ), NW Scotland, well-preserved 64 

1019-910 Ma pseudotachylytes potentially record brittle Renlandian deformation (950-940 Ma) that 65 

exploited the fabric of pre-existing Laxfordian (1800-1500 Ma) ductile shear zones, although work 66 

pre-dating the recognition of the Renlandian event in northwest Scotland (Bird et al., 2018) tends to 67 

infer earlier Grenvillian (~1100 Ma) related deformation for brittle GSZ faults (Lei & Park 1993; 68 

Sherlock et al. 2008). The pseudotachylytes record foliation-parallel seismic rupture in a variety of 69 

fault plane and damage zone geometries including stepping fault segments, dilational pull-aparts, 70 

branching faults and breccias (e.g. Park 1961). However, the context of the ancient seismicity that 71 

they record has not so far been comprehensively investigated. 72 

In this contribution, we detail the record of propagating multi-segment and branching seismic 73 

ruptures and the related formation of dilational sites which are captured in these pseudotachylytes. 74 

In addition, we estimate source parameters for the seismicity recorded in these rocks.  75 

Seismic slip in the Gairloch Shear Zone 76 

Development of the Gairloch Shear Zone 77 

The Gairloch Shear Zone (GSZ) in NW Scotland (Fig. 1a) consists of a series of Laxfordian high strain 78 

zones recording amphibolite to greenschist facies ductile deformation (Droop et al. 1999; Park 2010) 79 

and subsequent greenschist facies brittle deformation (Lei & Park 1993). The high strain zones are 80 

typically localised along lithological boundaries within the Loch Maree Group (LMG), a belt of 81 

Paleoproterozoic oceanic meta-basalts, meta-sedimentary rocks and meta-granodiorite (Fig. 1a) 82 
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interpreted as a 2.0-2.2 Ga island arc and accretionary complex from the Nagssugtoqidian–Lapland–83 

Kola collisional belt (Whitehouse et al. 1997; Park et al. 2001). The LMG is incorporated into the 84 

Gairloch Terrane and ‘southern region’ of the Lewisian Complex (Kinny et al. 2005).  85 

Lithologies affected by the high strain zones and brittle deformation include (Park et al. 2001): (a) a 86 

layered suite of metasedimentary rocks, predominantly consisting of quartz-biotite semipelites with 87 

minor contributions of calc-silicate-, quarzitic-, amphibolitic-, chloritic- and graphitic- schists; (b) 88 

hornblende-plagioclase amphibolites, of which the larger bodies are meta-volcanics and the smaller 89 

bodies metamorphosed Scourie Dykes; (c) Archean quartzo-feldspathic orthogneisses from the 90 

basement of the LMG; (d) Paleoproterozoic quartzo-feldspathic orthogneiss, locally with variable 91 

mafic composition. The amphibolites, which form the host rock to the faults discussed in this current 92 

contribution, are typically dominated by hornblende with andesine-oligoclase plagioclase plus minor 93 

and variable quartz, epidote, garnet, biotite and calcite (Park 1966). 94 

Polyphase development of the viscous shear zones in the GSZ is thought to have occurred between 95 

1800-1500 Ma (Moorbath & Park 1972, Lei & Park 1993; Park et al. 2001). The major phases of this 96 

Laxfordian shear zone formation involved coeval amphibolite facies metamorphism, NW-SE 97 

elongation, dextral and sinistral shear on complementary structures and a progressive steepening 98 

and/or folding of structures (Lei & Park 1993). The subsequent late- and post-Laxfordian brittle 99 

deformation was predominantly sinistral (Lei & Park 1993; Beacom et al. 2001), and included the 100 

coseismic generation of pseudotachylytes (Park 1961; Sherlock et al. 2008). Late greenschist facies 101 

retrogression is thought to have preceded the onset of brittle deformation (Lei & Park 1993). 102 

Particularly intense bands of brittle fracturing and faulting were initially termed ‘crush zones’ (Peach 103 

et al. 1907) and generally follow the NW-SE foliation of the shear zones, mapped as the Leth-104 

Chreige, Creag Bhan, Flowerdale, Tor an Easain, and Ialltaig - Mill na Claise belts (Lei & Park 1993). 105 

Brittle faulting preceded the deposition of the Stoer Group sediments, and 40Ar-39Ar dating of the 106 
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pseudotachylytes in the Leth-Chreige crust belt date the seismicity there as 910 ± 19 to 1019 ± 19 107 

Ma (Sherlock et al. 2008). 108 

Pseudotachylytes within the brittle faults (Figs. 1b,c) were first identified by Park (1961), who 109 

confirmed their origin in frictional melting along brittle faults from observations of quench 110 

crystallization textures including spherulites and microlites. These observations pre-dated the 111 

understanding that pseudotachylytes were specifically generated by seismic slip (Sibson 1975; 112 

Cowan 1999; Rowe & Griffith 2015). Observations of pseudotachylytes within the GSZ have generally 113 

been confined to the crush belts along the boundaries between lithological units but also in isolated, 114 

heavily fractured regions within the gneisses and metapelites (Park 1961). Although the crush belts 115 

exploit boundaries with amphibolites, pseudotachylytes have so far only been described from within 116 

the gneisses and the metasedimentary rocks, with Park (1961) interpreting the amphibolites to have 117 

deformed via creep along the foliation. However, Beacom et al. (2001) characterise widespread 118 

foliation-parallel fracturing and cataclasites within the amphibolites, suggesting that frictional failure 119 

was accommodated within all lithologies.  120 

Significance of pseudotachylytes in the Gairloch Shear Zone amphibolites 121 

Contrary to previous studies of pseudotachylyte bearing faults in the Gairloch Shear Zone (Park 122 

1961; Sherlock et al. 2008), we have focussed on the pseudotachylyte-bearing faults hosted in the 123 

foliated amphibolites of the Loch Maree Group. Amphibolite-hosted pseudotachylytes in the GSZ 124 

offer insights into the effects of pre-existing foliation on rupture geometry, as well as revealing the 125 

influence of an amphibole-dominated lithology. In contrast to many well studied pseudotachylyte-126 

bearing exhumed fault zones hosted within felsic to intermediate plutonic rocks and weak-to-127 

moderately foliated quartzo-feldspathic gneisses, for example the Gole Larghe Fault Zone (Di Toro et 128 

al. 2005a), Outer Hebrides Fault Zone (Sibson 1975), Mt. Abbot quadrangle, Sierra Nevada, (Griffith 129 

et al. 2008), Wenchuan Fault Zone (Wang et al. 2015), and the active Nojima Fault Zone (Otsuki et al. 130 

2003), the amphibolite lithology and foliation-dominant microstructure make the study of the 131 
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seismic faults hosted within them novel. The amphibolite lithology hosting these GSZ 132 

pseudotachylytes is not common in reported pseudotachylyte-bearing exhumed fault zones, 133 

although amphibole-bearing metabasics are present in the pseudotachylyte-bearing Ivrea-Verbano 134 

Zone (Techmer et al. 1992) and Alpine Fault Zone (Toy et al. 2011). The GSZ therefore provides a 135 

rare opportunity to study the geological record of seismic faulting within a lithology which may be 136 

analogous to metamorphosed oceanic crust and subducting slabs (Rowe et al. 2005, Phillips et al. 137 

2019). Additionally, because amphiboles melt under disequilibrium conditions at significantly lower 138 

temperatures than quartz and plagioclase (Spray 2010), we consider whether this influences the 139 

coseismic evolution of the slipping fault plane. Pseudotachylyte-fault zones hosted in anisotropic 140 

rocks of varying lithologies are not uncommon worldwide, and the geometry of GSZ pseudotachylyte 141 

faults show some similarity to those observed in mylonites in the Norumbega shear zone (Swanson 142 

1988; Price et al. 2012) and the Ikertôq Shear Zone (Grocott 1981), and in foliated quartz-biotite 143 

gneisses in the Homestake Shear Zone (Allen 2005) in that the pseudotachylyte-bearing faults in the 144 

GSZ are often near-parallel to the foliation. However, initial observations of common 145 

pseudotachylyte fault geometries in the GSZ (Fig. 2) suggest that branching and linkage of fault 146 

planes typically create some discordance across the foliation. These processes are therefore 147 

significant in exploring how earthquake ruptures propagate in anisotropic rock.  148 

Observations 149 

In this study we look in detail at field and microstructural observations of pseudotachylyte faults 150 

from the GSZ to examine how examples of the different fault geometries initially identified in Fig. 2 151 

may represent different processes influencing rupture complexity. 152 

Host amphibolites and identification of pseudotachylytes 153 

The sub-vertical NE-SE dipping amphibolite facies fabric is defined primarily by the shape preferred 154 

orientation of prismatic hornblende, whilst quartz and plagioclase tend to be more equant in shape.  155 

Hornblende is typically the most abundant phase, frequently comprising 50-75 % by area, and is also 156 
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the coarsest phase, with variable grain sizes between 50-1000 µm. In the samples studied here, 157 

quartz and plagioclase are the next most abundant phases. Accessory phases include ilmenite, 158 

apatite, rutile, and titanite, and retrogressive reaction products include epidote, chlorite, biotite and 159 

calcite.  160 

 Pseudotachylytes hosted in amphibolites are reported here from several localities, all close (within 161 

80 m) to lithological boundaries and/or reported crush zones (Fig, 1a). Within the amphibolites, the 162 

pseudotachylytes share similar characteristics, typically displaying a pale yellow, grey or orange 163 

weathering surface in the field (Fig. 1b), but on fresh surfaces unaltered samples are often pale grey 164 

(Fig. 1c). 165 

Pseudotachylytes are identified in thin section by the presence of melt-derived crystalline 166 

microstructures, or by altered assemblages of these features (see Maddock 1983; Kirkpatrick and 167 

Rowe 2013). The crystalline mineralogy of pseudotachylyte matrix – all phases that crystallized form 168 

the melt - hosted within the GSZ amphibolites is predominantly composed of hornblende and 169 

plagioclase with occasional augite. As reported by Park (1961), some GSZ pseudotachylytes have 170 

completely recrystallized to fine-grained biotite and therefore have lost the morphological 171 

characteristics of melt-derived crystallization. In thin section, the pseudotachylyte matrix is typically 172 

dark brown and optically opaque (Figs. 3a,b). Many of the GSZ pseudotachylytes analysed in this 173 

study preserve quench crystallization (or alternatively, devitrification from an initial quenched glass) 174 

crystal morphologies such as dendritic amphibole and plagioclase, radiating crystals of plagioclase 175 

and amphibole nucleating on unmelted survivor clasts (Figs. 3c) or forming spherical radiating 176 

microlites (Figs. 3d). These microlites are formed of the largest crystals in the vein matrix, up to 50 177 

µm in length, but the finer-grained crystalline fraction may be as fine as 2-3 µm. The finer-grained 178 

phases are typically granular or lath-like (Figs. 3c,d). The grain size and morphology of the crystalline 179 

matrix can vary with distance from the vein margin, creating a banded texture (Figs. 3b). 180 
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Unmelted survivor clasts occur throughout the veins and are usually rounded (Figs. 3a-c). Often 181 

these are monocrystalline and are dominated by quartz, plagioclase (oligoclase), and additionally 182 

apatite and titanite if these are present as accessory minerals in the host amphibolite. Polycrystalline 183 

clasts may also preserve hornblende and biotite (Figs. 3a). In selected examples, clasts of hornblende 184 

appear viscously deformed within a pseudotachylyte matrix that has no obvious solid-state viscous 185 

shear overprint (Figs. 3e), and ductile drag of hornblende is also seen locally adjacent to vein 186 

intersections (Figs. 3f). Within pseudotachylyte fault veins, the ratio of unmelted clasts to the 187 

crystalline melt-derived matrix has a mean value of 0.11 ± 0.08 (2 s.d.). Higher proportions of clasts 188 

seem to be associated with pseudotachylyte veins which are lighter brown in plane light, whereas 189 

low fractions occur in darker coloured matrices.  190 

Macroscale geometry of pseudotachylyte veins 191 

The simplest fault geometry observed in GSZ pseudotachylyte veins is a pseudotachylyte vein along 192 

an isolated planar fault which may display off-fault intrusions known as injection veins (Fig. 2a). 193 

These occur with a variety of aspect ratios and may curve (Fig. 1b), but they are defined by tensile 194 

fracture opening, in contrast to the shear fracture mode of the fault vein. Many GSZ pseudotachylyte 195 

faults, however, diverge from this basic configuration.   196 

Segmented veins and overstepping 197 

In places, pseudotachylyte fault veins parallel or sub-parallel to the amphibolite foliation form short 198 

sections which are linked by a step across foliation planes over separations of up to 2 cm 199 

centimetres (Figs. 2b,c, 4a). Not all of these pseudotachylyte fault veins are fully linked over the step, 200 

and instead are preserved as separate fault segments (Fig. 4b,c). In the example illustrated in Fig. 4, 201 

parallel fault vein segments overlap by ~ 1cm and show a pronounced curve at the tips inward 202 

towards the adjacent segment. Fig. 4c indicates narrow band of cataclased amphibolite has been 203 

partially overprinted by the central fault vein segment, which does not follow the band completely 204 

but instead curves up towards the adjacent fault vein segment. Micron-scale shear zones continue 205 
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beyond the curved vein tips, propagating onwards towards the adjacent vein in the form of a ductile 206 

fault-tip process zone (Fig. 4c-e). At other stepover sites within the same fault, the faults have linked 207 

and a through-going step in the vein is preserved (Fig. 4a,c). These linked steps often leave an 208 

abandoned segment tip, where only one fault segment completes the linkage across the step and 209 

the other is left as a straight overstep (Fig. 4c). The stepovers linked by a single tip are therefore 210 

typically narrower than the one in the upper half of Fig. 4c, where both segment tips have curved 211 

towards the adjacent segment. In a differing overstep-related geometry, rhombohedral pull-apart 212 

structures (Fig. 2c) have formed between overlapping pseudotachylyte fault segments, and may 213 

contain some centimetre-scale rounded clasts of the amphibolite (Fig. 5a).  214 

Linkage of two parallel pseudotachylyte fault planes may be a systematic process along longer fault 215 

lengths, as in Fig. 2d.  At the locality in Fig. 5b, pale pseudotachylyte occurs in planar veins in two 216 

dominant orientations, one parallel to the foliation and the other discordant. Both are restricted to 217 

an elongate tabular region around 10 cm wide with oblique foliation, bounded by planar 218 

discontinuities that locally also contain pseudotachylyte (‘boundary faults’, Fig. 5b). The oblique 219 

foliation and shear band structure in the amphibolite can be more clearly seen in the top left of Fig. 220 

5c, in a locality where only a small volume of pseudotachylyte has formed. Internal veins within the 221 

shear band and discordant to the shear band foliation (Fig. 5b) appear to be minor faults with 222 

extensional sense of slip, based on the dilational accumulation of pseudotachylyte above the 223 

hanging wall of an internal fault. It is unclear if the internal foliation-parallel veins have any shear 224 

displacement across them. The discordant internal pseudotachylyte faults typically form an angle of 225 

~ 55° from the boundary faults. In Fig. 5b, the pseudotachylyte is locally continuous across the two 226 

internal vein orientations and across into the boundary faults, but there is also a cross-cutting 227 

boundary between an extensional fault vein and a foliation parallel vein, suggesting that both sets of 228 

internal faults and the pseudotachylyte along them were created synchronously with slip along the 229 

boundary faults during an episode of seismic rupture. In Fig. 5b, a breccia is locally developed in the 230 

internal zone and rotation of the breccia clasts is apparent.  Similarly, in the top right of Fig. 5c, 231 
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variable volumes of pseudotachylyte within the shear band create complex vein networks and 232 

brecciated domains. The lower shear band in Fig. 5c is here completely brecciated, with rounded, 233 

rotated clasts apparently supported by pseudotachylyte matrix.   234 

Branching Faults 235 

Branching faults (Fig. 2e) introduce discordant fault orientations and can be associated with complex 236 

pseudotachylyte vein networks (Figs. 5d-e). Branching faults in the GSZ often display intersections 237 

with an acute angle of 10-30° between the main fault and the secondary fault branch (Figs. 5d-f). 238 

The branch may split the main pseudotachylyte fault so that one fault vein has a thicker layer of 239 

pseudotachylyte than the other branch. The thicker branch may be either concordant or discordant 240 

to the foliation. At the branching tip of the fault in Figs. 5d, a network of small pseudotachylyte veins 241 

lie around the branching fault, forming a wider apparent damage zone than is usually observed 242 

around pseudotachylyte fault veins in the GSZ. In the fault branch in Fig. 5e, injection veins are 243 

developed in the intersection between the two branches, causing flame-like protrusions from the 244 

thicker fault branch. Closely-spaced fault branches may also be linked by brecciated domains (Fig. 245 

5f).  246 

Microscale geometry of pseudotachylyte veins  247 

Vein margins 248 

Whilst pseudotachylyte vein margins are generally planar, millimetre-scale stepping of the margins is 249 

common (Figs. 6a,b) which may be associated with sites of fracture and/or cataclasis in the wall-250 

rock, or injection veins and smaller-scale roughness (Figs. 6a,b). This is distinct from later faulting 251 

which has also offset some of the pseudotachylyte veins, creating a similar stepped appearance. 252 

Preferential melting of the hornblende relative to plagioclase and quartz creates grain scale 253 

roughness and is observed at vein margins and also within polycrystalline clasts, where hornblende 254 

has melted but is surrounded by apparently intact quartz and plagioclase (Figs. 6c,d). Large 255 
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polycrystalline clasts may be removed from the margin by sidewall shortcut veins, which isolate 256 

blocks from the new vein margin and progressively smooth steps and curves out of the fault walls 257 

(Figs. 3a, 6e). These large clasts are initially little removed from their point of origin, but may be 258 

significantly rotated and exhibit internal faulting and injection of pseudotachylyte, resulting in 259 

progressive size reduction (Fig. 6e). 260 

Injection veins 261 

Small injection veins of pseudotachylyte away from the generation plane vary in geometry at the 262 

microscopic scale. Some stubby varieties appear to follow grain boundaries and may represent the 263 

exploitation of low melting point minerals, whilst others terminate with thin branches (Fig. 6f,g).  264 

Injections also propagate into clasts as well as into the margins and contribute to progressive 265 

fragmentation of the clasts (Fig. 6e). Some injection veins have rough margins, suggesting 266 

modification of the injection walls via melting.  267 

 268 

Discussion 269 

Seismic slip in the amphibolites of the Gairloch Shear Zone 270 

The pseudotachylytes of the GSZ record frictional melting during seismic slip along faults in the 271 

amphibolites. Source parameters such as displacement, magnitude, and coseismic temperature, 272 

along with the depth of earthquake activity have not previously been attributed for these faults, so 273 

here we discuss what constraints may be placed on the nature of earthquake slip within the GSZ.  274 

Relationship of seismic rupture with foliation and lithology 275 

Within the GSZ, amphibolite-hosted pseudotachylyte-bearing faults are localised close to the 276 

lithological boundaries, but are not recorded along the actual boundary interfaces; indeed, they 277 

occur at distances up to 80 m laterally away from them. Exploitation of these boundary zones is also 278 

seen in pseudotachylyte faults occurring in the other lithologies that host the GSZ (Park 1961).  279 
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Spacing and orientation of fracturing has been observed to vary between the lithologies of the GSZ, 280 

with amphibolites hosting typically foliation-parallel brittle deformation with a high factor of 281 

clustering (Beacom et al. 2001). Such foliation-parallel fracture pattern is replicated in the 282 

pseudotachylyte-bearing faults and is compatible with the understanding that strong anisotropy 283 

tends to guide shear failure orientation, even if it is somewhat misorientated relative to the principal 284 

stress directions (Donath 1961).  285 

The amphibolite host rock presents a contrast in the thermal properties of its constituent minerals - 286 

hornblende has a single-crystal melting temperature of 750 °C, whilst quartz and An30-50 plagioclase 287 

will melt at ~1550° (if melting occurs before the high temperature phase change to β-christabolite) 288 

and ~1350° respectively (Petzold & Hinz 1976; Spray 2010). Under disequilibrium frictional melting, 289 

this leads to preferential melting of the amphibole, which is clearly illustrated by the clast in Figs. 6 290 

c-d. In the wall of the fault, melting of amphibole between preserved quartz and plagioclase has led 291 

to increased roughness of the fault surface on the grain scale (e.g. Fig. 6b), contrary to mechanical 292 

wear processes that tend to smooth the fault walls with progressive slip (Brodsky et al. 2011), 293 

examples of which may also be observed in these pseudotachylytes in the formation of sidewall 294 

shortcuts (Figs. 3a, 6e). Preferential melting of amphibole is also observed in the walls of some 295 

injection veins, indicating that the melt temperature in these off-fault tensile fractures also  296 

remained above 750°C (Spray 2010) and hence was still molten at the tip of the vein, requiring 297 

quenching to be slower than the fracture propagation (Rowe et al. 2012).  298 

The volumetric ratio of survivor clasts relative to melt-derived matrix within any individual 299 

pseudotachylyte fault vein is an indication of the thermodynamic balance between melting and 300 

mechanical wear processes (O’Hara 2001). In the GSZ pseudotachylytes, the mean 2D clast to matrix 301 

(representing the melt, includes microlites plus the finer-grained crystalline matrix) area ratio is 0.11, 302 

at the lower boundary of the 0.1-0.7 range which has been previously reported for pseudotachylytes 303 

from a collection of different fault zones (O’Hara 2001), indicating that an increased proportion of 304 
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melt was generated relative to products created purely by mechanical wear during slip. The 305 

breakdown of rock via mechanical wear and melting is influenced by the mineral yield strengths and 306 

thermal energy needed for melting, respectively. Although the ratio of these properties is fairly 307 

constant for many common minerals, amphiboles, particularly hornblende, have slightly lower 308 

melting points relative to their strength (O’Hara 2001; Spray 2010). Therefore, frictional melting of a 309 

hornblende-rich rock might be expected to generate an increased volume of melt along the fault 310 

relative to the volume of unmelted clasts, in comparison to a quartzo-feldspathic lithology. 311 

Additionally, even low coseismic temperature rises, associated with small increments of seismic slip, 312 

may still allow for widespread melting of the amphiboles. This relative ease of coseismic melt 313 

production may have implications for fault structure, with high melt pressures (i.e. fluid pressure) 314 

potentially contributing to opening tensile off-fault cracks (Swanson 1992) alongside dynamic 315 

rupture-tip stress fields (Di Toro et al. 2005b; Griffith et al. 2009; Ngo et al. 2012) and exploitation of 316 

pre-existing fractures. Interaction of locally high fluid pressure along the fault plane with the opening 317 

of dilational sites controlled by fault geometry will drive high fluid pressure gradients and 318 

consequential rapid flow of melt towards the dilational zone, potentially causing brecciation (Sibson 319 

1975; Bjørnerud & Magloughlin 2004), all within the duration of coseismic slip. Hence, the 320 

interaction of the lithological control on melting and the foliation control on fault geometry has 321 

implications for the relative contributions of coseismic fault plane processes to the seismic energy 322 

budget and structural development of the fault zone.  323 

Depth and temperature conditions of seismic faulting in the GSZ 324 

The depth of brittle faulting and seismicity in the GSZ is not well constrained but occurred within 325 

lower greenschist facies temperatures (Park et al. 1987; Beacom et al. 2001) giving a likely ambient 326 

rock temperature between 250-350°. The geothermal gradient has been estimated for the GSZ as 327 

°C km-1 during Laxfordian ductile deformation phases (Droop et al. 1999). Whether this was still 328 

the case for the later brittle phase is not clear, but as Droop et al. (1999) regard this as a moderate 329 
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estimate for stable Precambrian crust, and considering the errors and the time-gap, we use an 330 

approximation of 25°C km-1 as the geothermal gradient in calculations. This gives a depth range of 9-331 

13 km for the ambient temperature range 250-350°C.  332 

Coseismic fault temperature, displacement, magnitude and slip direction 333 

Pseudotachylyte-bearing faults in the GSZ capture individual episodes of seismic slip, thus capturing 334 

elements of the source parameters of the individual earthquakes. The energy budget required to 335 

melt a given volume of the host rock allows the coseismic heat rise in particular to be estimated, and 336 

is related to the seismic displacement, which scales with the seismic magnitude. Direct 337 

measurement of displacement in the field is not routinely possible in the GSZ, because there are few 338 

markers within the amphibolite that may be cut and offset across the faults. Calculating the 339 

necessary displacement required to produce a certain volume of pseudotachylyte melt is therefore a 340 

useful estimate on the magnitude of earthquake displacement recorded on these faults. The volume 341 

of coseismic melt is approximated by the average thickness of a pseudotachylyte fault vein (Di Toro 342 

et al. 2005a). Thickness measurements are best undertaken across fault veins with constant 343 

thickness and limited melt loss into sites such as injection veins and breccia. Although such 344 

geometrically simple veins are not common in the GSZ, a typical thickness of the pseudotachylyte 345 

along linear faults is around 5 mm (e.g. Fig. 4a). The relationship between the thickness of melt, the 346 

displacement and the thermal properties of the rock is 347 

  (1) 348 

where d is the displacement, ρ the density, w the width of the vein, τ is the shear stress on the fault, 349 

φ is the area of clasts in the vein as a fraction of the total vein, H is latent heat of melting, cp is the 350 

specific heat and ΔT is the difference between the coseismic melt temperature and the ambient 351 

temperature before and after the earthquake, Tmelt - Tambient (Di Toro et al. 2005a). Values used for 352 

these parameters are given in Table 1. Values for the shear stress resolved along the fault are 353 
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estimated from the lithostatic stress state by equating the lithostatic stress (Pc = ρ.g.h, where g is 354 

gravitational acceleration, and h is depth) with the mean stress of a strike-slip stress field. Assuming 355 

a Poisson’s ratio of 0.25 (Jaeger & Cook 1979) and an angle of 30° between the maximum principal 356 

stress and the fault plane, this places the expected range of resolved shear stress at 107-155 MPa for 357 

the estimated depth range of 9 to 13 km (Fig. 7a). Constraining ΔT relies on estimating the maximum 358 

temperature reached by the coseismic melt (Tmelt), which in many pseudotachylytes is reported 359 

within the range ~1000-1500°C (O’Hara 2001; Di Toro & Pennacchioni 2004; Caggianelli et al. 2005; 360 

Nestola et al. 2010) from a combination of thermal and thermodynamic modelling, matrix indicator 361 

phases and melting temperatures of surviving clasts relative to melted phases. For the GSZ 362 

pseudotachylytes we use the latter method, which places upper and lower bounds on the melt 363 

temperature. The lower bound for the melt temperature is 750°C, the melting temperature of 364 

hornblende. Plagioclase is partially preserved as unmelted survivor clasts, placing a reasonable 365 

upper bound for coseismic fault plane temperature at the An30-50 melting temperature of 1350°C 366 

(Spray 2010). Using these parameters in equation 1, the resulting mean values of coseismic 367 

displacement equivalent to a pseudotachylyte thickness of 5 mm range from d = 123 ± 40 mm at 9 368 

km depth to d = 76 ± 28 mm at 13 km depth (Fig. 7b), scaling inversely with depth-dependent shear 369 

stress. 370 

Earthquake magnitude for these events may be loosely constrained based on this displacement 371 

range. The seismic moment, M0, is related to the displacement (d), rupture area (A) and the shear 372 

modulus (G) as M0 = d.A.G. The typical rupture size on pseudotachylyte faults in the GSZ is 373 

somewhat uncertain, because the pseudotachylyte extent may represent only part of a larger fault 374 

plane that is not always fully exposed or easily traced (Kirkpatrick et al. 2012), especially if faults are 375 

foliation parallel and/or segmented. Rupture area is calculated from fault length based on the 376 

assumption of a circular fault with diameter equivalent to the fault length, a simplification of the 377 

elliptical geometry solution demonstrated by Eshelby (1957). A reasonable range of GSZ fault lengths 378 

(i.e. a maximum rupture length) would be between 1m and 100m, in which case the range of 379 
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moment magnitudes (Mw) converted from the seismic moment would be between 0.1 and 3.1 Mw 380 

based on the empirical relationship  (Kanamori & Brodsky 2004). The 381 

uncertainties arising from the unknown fault length are clearly large (Fig. 7b), but nonetheless 382 

illustrate that the many of the pseudotachylytes in the GSZ were generated by a series of relatively 383 

small magnitude earthquakes. 384 

The slip direction of the brittle faults in the GSZ is typically thought to have been sinistral (Park et al. 385 

1987; Beacom et al. 2001; Sherlock et al. 2008). The sense of slip on the pseudotachylyte faults 386 

presented here is frequently difficult to determine, but where evidence for slip direction exists there 387 

are also dextral examples (e.g. Fig. 5a), indicating that seismicity likely occurred with both apparent 388 

dextral and sinistral kinematics. This is not incompatible with a dominantly sinistral tectonic regime, 389 

because small ruptures that occur as aftershocks or which occur in the damage zone or even further 390 

away from the major fault planes are often observed to have varying slip senses in observations of 391 

present day seismicity (Cheng et al. 2018; Cooke & Beyer 2018).  392 

Rupture geometry and dilational zones 393 

Segmentation and branching 394 

A common feature along GSZ pseudotachylyte-bearing faults is a stepover between parallel but 395 

laterally offset segments of the fault (e.g. Fig. 4, Fig. 5a, Fig. 8a-b). These macroscopically stepped 396 

faults represent linkage of several fault segments, which, in the examples seen, tend to lie parallel to 397 

the amphibolite foliation. There appears to be two mechanisms of linkage between fault segments 398 

containing pseudotachylytes in the GSZ. Firstly, there is linkage driven by curvature of the segment 399 

tips once they overlap with an adjacent segment (Fig. 8a). The best example of this process is 400 

illustrated in Fig. 4. This fault has a number of steps along strike, most of which have a completed 401 

through-going linkage linked and so evidence of the linkage mechanism is obscured. However, in the 402 

stepover detailed in Figs. 4b-e, linkage is not quite complete, and ductile shear zones are preserved 403 

ahead of the fault tips, representing the process zone that precedes a propagating shear fracture 404 
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(Misra et al. 2015). Both the overlapping tips display this process zone (Figs. 4d,e), indicating that 405 

both fault segments were propagating towards the other, in opposing directions (Fig. 8a). The 406 

presence of pseudotachylyte in the fault segments indicates that this propagation occurred during 407 

earthquake rupture, i.e. at least parts of these fault segments were newly formed during the 408 

earthquake which produced the pseudotachylyte, and the interaction of the segment tips indicates 409 

that all the segments must have been actively slipping during the same episode of coseismic rupture. 410 

Where linkage of the segments has occurred at other steps along the fault, the pseudotachylyte is 411 

continuous across the step, indicating that complete linkage of the segments also occurred during 412 

the same earthquake. A further implication is that nucleation of slip occurred at several sites on 413 

adjacent foliation planes, each growing into a short slip segment before a through-going slip plane 414 

was established. This fault therefore records the various stages of centimetre-scale  growth, 415 

interaction and linkage of fault segments that can occur within a single earthquake, the duration of 416 

which is typically < 0.2 s for events < MW 3 (Kanamori & Brodsky 2004). The growth of the through-417 

going fault in this manner is very similar to the model of fault growth from segments which exploit 418 

pre-existing weaknesses (Segall & Pollard 1983), but in the case of the GSZ the initial weakness plane 419 

is probably the amphibolite foliation, although the apparent overprint of a cataclastic zone by the 420 

pseudotachylyte segment in Fig. 4c may indicate that pre-existing faults were partially exploited by 421 

the later rupture event recorded in the pseudotachylyte. The vein margins are frequently stepped at 422 

smaller scales of ~1 mm vein–normal separations (Figs. 6a,b) which suggests that segmentation of 423 

slip may be applicable at several scales, and that on rupture initiation slip may have nucleated 424 

simultaneously across a diffuse suite of foliation planes spaced only a few grains apart. Coalescence 425 

of these would have occurred forming the larger segments typically spaced ~1 cm apart (e.g. Fig. 4). 426 

After segment linkage or branching, the fault wall geometry would be liable to be progressively 427 

modified by processes such as the creation of sidewall-shortcuts (Figs. 3a, 6e) which act to smooth 428 

out steps in the vein by by-passing protruding asperities to create a more planar fault margin (Fig. 429 

6e).  This rip-out process has been linked specifically to strike-slip faulting along planes of anisotropy 430 
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(Swanson 1989) but in the GSZ appears to predominantly straighten curved or stepped faults rather 431 

than creating lensoid ramps into the fault walls from an initially planar fault, as in the model of 432 

Swanson (1989), likely due to the segmentation control on the initial fault geometry.  433 

 The curvature of overlapping segment tips (Fig. 4c) is an expression of the modification of the local 434 

fault tip stress field due to interaction between two closely-spaced overlapping cracks (Pollard et al. 435 

1982; Pollard & Aydin 1984; Nicholson & Pollard 1985) which causes the propagation path to curve. 436 

This style of linkage is well-documented in dilatant crack systems including veins and dykes (Pollard 437 

et al. 1982; Nicholson & Pollard 1985), in contrast to shear planes which more typically form sets of 438 

secondary fractures and/or folds in the overstep region (Fig. 8b), rather than propagate the primary 439 

crack tips towards each other in this way. The pull-apart in Fig. 5a is an example of a typical 440 

extensional stepover between shear cracks (e.g. Sibson 1986) and is an example of the second 441 

mechanism of fault segment linkage demonstrated in the GSZ pseudotachylytes. In Fig. 5a, the fault 442 

is right-stepping and has an apparent dextral sense of slip, creating an extensional overstep which is 443 

now filled with a pseudotachylyte rhombocasm. These pull-apart stepovers are well documented 444 

between strike-slip fault segments and on releasing bends at all fault scales, from millimetre-width 445 

(Peacock & Sanderson 1995) to hundreds of kilometres (Mann et al. 1983), and are also well-446 

described for pseudotachylyte-bearing faults (e.g. Sibson 1975). Unlike the crack-tip linkage (Fig. 8a), 447 

the multiple parallel slip segments do not necessarily need to exist pre-linkage because transfer of 448 

the rupture across to potential adjacent slip planes (the foliation, in the GSZ amphibolites) may 449 

occur via the formation of secondary faults in the future overstep (Sibson 1986; Harris et al. 1991; 450 

Melosh et al. 2014). Because this form of linkage is so common, it is interesting that the first 451 

mechanism via propagating crack tips also occurs across these faults, especially when it is more 452 

typical of dilatant mode I cracks (Pollard et al. 1982; Pollard & Aydin 1984). Some numerical models 453 

show that this curved propagation of crack tips can also occur on mode II shear fractures (Du & 454 

Aydin 1993; Ando et al. 2004). Alternatively, dilation of the fault segments could be introduced via 455 

local high fluid pressure driven by voluminous coseismic melt generation, leading the propagating 456 
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rupture to behave as hybrid extensional–shear fractures. High coseismic fluid pressure has several 457 

implications for dynamic fault strength, potentially including transient loss of shear strength if the 458 

fluid/melt pressure becomes equal to or greater than the normal stress on the fault. However, 459 

evidence for high melt pressure is typically only locally seen in pseudotachylytes, for example in the 460 

dynamic creation of pseudotachylyte injection veins at the fault tip (Rowe et al. 2012; Sawyer & 461 

Resor 2017) and in breccias where extreme rotation of the clasts suggests fluid-supported implosion 462 

(Bjørnerud & Magloughlin 2004). Along relatively simple fault geometries such as that shown in Fig. 463 

4, where off-fault melt escape routes are not apparent, the melt has instead have been trapped 464 

along the fault plane, forming a continuous film and influencing dilatant-crack geometries across the 465 

propagating fault segments. Whichever the mechanism of segment linkage, the resultant stepped 466 

fault geometry is also observed in kilometre scale active fault zones and in earthquake surface 467 

rupture patterns (Tchalenko & Berberian 1975; Bilham & Williams 1985), indicating that some of the 468 

processes of fault linkage observed in the GSZ pseudotachylytes could be potentially up-scaled. 469 

However, the influence and interaction of coseismic melt-pressure and closely-spaced rupture tip 470 

stress fields are perhaps not so easy to simply scale up across larger spatial distances. 471 

Branching faults are common in the GSZ (Figs. 5d,e) and represent synchronous seismic slip on both 472 

branches where the pseudotachylyte is continuous across the branch intersection (Rowe et al. 473 

2018). Such branching is a recognised feature of kilometre-scale fault zones and can also be linked 474 

on that scale to single earthquake ruptures (Poliakov et al. 2002; Fliss et al. 2005). Without good 475 

evidence for sense of displacement across the GSZ faults it is difficult to interpret the kinematics of 476 

these branches, as numerical models suggest that branching in both forward and backwards 477 

directions relative to the direction of rupture propagation is possible (Fliss et al. 2005). As noted by 478 

Rowe et al. (2018), intersecting branches that slip in the same rupture must also experience 479 

different slip vectors and magnitudes of slip, so that the geometry has a direct influence on the 480 

spatial heterogeneity of rupture source properties. In the observations of Rowe et al. (2018), two 481 

thin fault branches coalesce into the wider main fault plane. We observe some additional detail by 482 
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noting that one fault branch is typically wider than the other (Figs. 5d,e), which may signify that 483 

relative differences in seismic slip speed or magnitude, and hence melt production, are common 484 

between coalescing branches. In the case of the branch in Fig. 5e, the discordant branch has a 485 

thicker pseudotachylyte vein and also appears to be longer than the other fault branch which forms 486 

an extension to the main fault vein and remains parallel to the foliation. Ruptures exploiting a pre-487 

existing fault branch can sometimes terminate rupture on the main fault branch if the secondary 488 

branch has significant length and is inclined at a shallow angle to the main fault (Bhat et al., 2007), as 489 

in Fig 5e. Typically, this termination of rupture on the main fault occurs when the branch is situated 490 

in the extensional field of the propagating rupture tip (Bhat et al., 2007). This branch configuration 491 

might also encourage the development of tensile veining (Fig. 5e) and dilational brecciation (Fig. 5f) 492 

in the intersection of the fault branches, given accommodating slip on the secondary branch.  In the 493 

cited models of branching faults (Fliss et al., 2005, Bhat et al., 2007) the secondary fault branches 494 

must exist as a pre-existing structure before the rupture in question is generated along the fault. 495 

Similarly, in cases such as Fig. 5e, where the secondary fault branch is discordant to the foliation, we 496 

suggest that some pre-existing heterogeneity within the amphibolite fabric may be necessary to 497 

divert the rupture down the secondary fault branch and away from the dominant plane of weakness 498 

formed by the foliation. In Fig. 5f, and also in Figs. 5b-c, branching faults within the confines of a 499 

paired fault zone are observed, in the sense that slip on the ‘internal’ faults is coeval and continuous 500 

with slip on the boundary faults, as indicated by brecciation in the branch intersection (Fig. 5f). 501 

However, in these cases the length of the secondary fault branch (the internal fault) is limited by the 502 

width of the controlling structure (the shear band), and so branching of the rupture along these 503 

small faults is unlikely to inhibit the continuing rupture along the main boundary fault, whatever the 504 

configuration of the secondary branch faults with respect to the main fault and stress field (Bhat et 505 

al., 2007).  506 

Brecciation sites 507 
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Within the GSZ pseudotachylytes, there are several examples of localised dilation associated with 508 

coseismic slip and pseudotachylytes. These dilational sites are controlled by the fault geometry. 509 

Under the classification scheme of (Rowe et al. 2018), these can be described as angular breccias 510 

(Fig. 5f), pull-aparts/rhombocasms (Fig. 5a), and tabular breccias (Fig. 5c). The pseudotachylyte faults 511 

in the GSZ show progressive stages of breccia development, which illustrate how these features 512 

evolve (Fig. 8).  513 

 Angular breccias are associated with dilational sites within the intersections of branching faults (Fig. 514 

5f),   although they may potentially also form between oblique adjacent fault segments. In both 515 

cases, they signify coeval seismic slip on the bounding structures. Pull-aparts filled with 516 

pseudotachylyte may contain breccia clasts (Fig. 5a) and in the case of rhombochasms are typically 517 

formed by dilation at extensional stepovers between fault segments. These rhombohedral pull-518 

aparts form via secondary tensile and shear fractures which form the through-going link between 519 

overlapping faults (Fig. 8b), and do not necessarily require fluid (including melt) to fragment the rock 520 

in the overlap (Sibson 1986; Melosh et al. 2014) although high fluid pressures may assist this process 521 

(Sibson 1975; Bjørnerud & Magloughlin 2004). A similar final geometry is formed via the crack-tip 522 

propagation mechanism of segment linkage, where the isolation of a ‘bridge’ between curving, 523 

overlapping fault tips and the resultant influx of melt might induce tensile fragmentation of the 524 

bridge (Fig. 8a) once it is surrounded by melt and confinement is lost (Nicholson & Pollard 1985). The 525 

resulting breccia geometry would be defined by the curvature of the fault segments, likely producing 526 

a more rectangular stepover breccia than the rhombohedral pull-aparts (Figs. 8a,b).  527 

The tabular pseudotachylyte breccias in the GSZ portray clearly how these structures progressively 528 

form within a single earthquake (Fig. 8c). A pre-existing shear band has been reactivated by 529 

concurrent slip on both boundaries, with exploitation of the internal oblique foliation for 530 

pseudotachylyte injection and/or potential shearing (Fig. 5b). The geometry of this stage is very 531 

similar to the ‘strike-slip duplexes’  observed in the Ikertôq Shear Zone, Greenland (Grocott 1981) 532 
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and the Norumbega Shear Zone, US (Swanson 1988) where internal Riedel shear sets are a product 533 

of interaction between the paired boundary faults and also may contain pseudotachylyte, as in the 534 

GSZ examples. The offset on these internal faults implies that they are not a product of dynamic 535 

tensile fracture as in the brecciation model of Melosh et al. (2014).  In the GSZ the internal faults are 536 

extensional and orientated at a moderately high angle to the boundary faults, suggesting that they 537 

could be X-type Riedel shears which tend to indicate layer-parallel extension (Swanson 1988). This 538 

condition is considered ideal for the progressive formation of breccias from paired fault zones 539 

(Swanson 1988), which requires a combination of increasing internal fault formation combined with 540 

increasing volumes of melt in the internal zone until catastrophic fragmentation brecciates domains 541 

of the rock  (Fig. 8c).  In order for the paired fault zones to form, an anisotropic rock is thought to be 542 

necessary, with Swanson (1988) suggesting that these may mainly form in mylonites near the base 543 

of the seismogenic zone. However, the foliation in the Gairloch amphibolites, primarily defined by 544 

parallel orientation of prismatic amphiboles, also provides an appropriate fabric, especially where 545 

reinforced by pre-existing structural heterogeneities such as shear bands. Paired fault zones may 546 

therefore be a feature, at least at this centimetre to metre scale, of any level in the brittle crust 547 

where systematic anisotropy is present.   548 

The presence of foliation also favours the progression to fragmentation and breccia formation due 549 

to preferential utilisation of the foliation planes for fracturing (Melosh et al. 2014) and in the GSZ 550 

this is supported by the injection of pseudotachylyte along the internal foliation planes (e.g. Fig. 5b).  551 

It is not clear, however, whether this rupture geometry would be a feature of large tectonic scale 552 

earthquakes. Riedel shears may form part of large ruptures (e.g. MW 7.8 Kunlun earthquake, Lin and 553 

Nishikawa 2011), and strike slip duplex geometries with paired boundary fault zones are observed at 554 

5-10 km scales (Cembrano et al. 2005). However, the synchronous propagation of rupture both 555 

along parallel segments (i.e. the paired boundary faults) has so far not been identified in active 556 

earthquakes (Rowe et al. 2018). The mechanisms allowing the paired faults to propagate past each 557 

other, rather than form linked stepovers similar to Fig. 8a, is therefore of interest,  although once 558 
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the paired slip planes are in motion the process of forming the internal dilational pull-apart is 559 

probably much the same (Sibson 1975; Cembrano et al. 2005). Such rupture geometries may 560 

therefore be closely controlled by the spacing between the two faults (Harris et al. 1991; Ando et al. 561 

2004) along with the favourability of the initial slip planes (Donath 1961). The aspect ratio of these 562 

elongate structures is such that even if scaled up to tens of kilometres, the separation between the 563 

boundary faults might be unresolvable at the spatial resolution of seismological observations or 564 

from geodetic observations of surface deformation.  565 

Context of seismicity recorded by pseudotachylytes in the GSZ 566 

The GSZ records ~1 Ga seismicity hosted within foliated amphibolites and other lithologies. In the 567 

amphibolites, the pseudotachylytes were formed by small magnitude (≤ MW 3) earthquake ruptures 568 

that frequently exploited the foliation within the host rock, but which have locally also branched, 569 

stepped and brecciated volumes of the rock. These faults are scattered close to the lithological 570 

boundaries which were thought to localise most of the brittle deformation (Lei & Park 1993), but no 571 

pseudotachylytes in this study have been found to lie in the core of the crush belts along the actual 572 

lithological interface itself, instead typically forming small fault clusters within ~100 m of the 573 

boundary. It is expected that earthquakes would also rupture along the major heterogeneity of the 574 

lithological boundaries, especially where the intensely fragmented ‘crush zones’ are observed (Fig. 575 

1a), but repeated slip episodes combined with potential fault-focussed fluid influx and subsequent 576 

alteration would likely fragment and overprint any pseudotachylyte produced there, making them 577 

unrecognisable (Kirkpatrick & Rowe 2013). Many of these pseudotachylytes record a single episode 578 

of slip, with only a couple of examples showing that an older pseudotachylyte has been cut through 579 

by a later pseudotachylyte-bearing fault, or that a pseudotachylyte overprints cataclasite (e.g. Fig. 580 

4c).  This suggests that each new earthquake preferentially ruptured along a new fault plane, likely 581 

because solidified pseudotachylytes tend to strengthen the fault planes they occur on within the 582 

upper crust (Mitchell et al. 2016; Hayward & Cox 2017) if they avoid wholescale hydration and 583 
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alteration to phylosillicate-rich assemblages (Phillips et al., 2019). A possible model for these small 584 

pseudotachylyte faults observed here would be scattered seismic slip occurring in the damage zone 585 

of the principal slip plane along the lithological boundaries, much as has been suggested for 586 

pseudotachylytes in exhumed sections of the Alpine Fault, New Zealand (Toy et al. 2011). 587 

These pseudotachylytes record seismicity along brittle faults that occurred between 1019 and 910 588 

Ma (Sherlock et al., 2008). Previous discussion of these dates found that there was not enough 589 

resolution to distinguish whether the seismicity was a feature of late-Grenvillian or of post-590 

Grenvillian deformation (Sherlock et al., 2008). However, more recent recognition of the Valhalla 591 

orogeny (1030-710 Ma) in the North Atlantic and, more specifically, its 980-910 Renlandian phase 592 

(Cawood et al., 2010) provide a better fit to the pseudotachylyte ages of the GSZ. The metamorphic 593 

signature of the Renlandian has recently been reported from Neoproterozoic Morar Group 594 

metasedimentary rocks in NW Scotland (Bird et al., 2018), although prior to their Caledonian 595 

transport in the hanging wall of the Moine Thrust (435-420 Ma, Streule et al., 2010) these 596 

metasediments may have lain an additional ~80 km or more away from the GSZ (Elliot and Johnston, 597 

1980). Meanwhile, Neoproterozoic Torridon group sediments unconformably deposited around 598 

1080-980 Ma (Turnbull at el., 1996, Rainbird et al., 2001) onto the GSZ and the Loch Maree Group 599 

(Fig. 1) are not metamorphosed. This would imply that, if the GSZ pseudotachylytes do represent 600 

Renlandian deformation, that seismicity took place not much deeper than around 6 km, the 601 

maximum known depositional thickness of the Torridon Group (Stewart, 2002) and the maximum 602 

identified depth of burial of basal Torridon Group paleosols prior to the initiation of Caledonian 603 

thrusting (Williams, 2015). This is shallower than the 9-13 km depth range for pseudotachylyte 604 

generation estimated earlier in the discussion, although this estimation carried large uncertainty. 605 

Another issue is that no pseudotachylytes or related faults are observed in the overlying Torridon 606 

Group, requiring the basement and cover to have been completely uncoupled. This observation 607 

previously led workers to infer that the pseudotachylytes pre-dated sediment deposition, but the 608 

Applecross formation of the Torridon Group, also present in the GSZ area, is observed to have a low 609 
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elastic modulus (which would have been still lower prior to sediment consolidation) which could 610 

make it resistant to brittle failure (Ellis et al., 2012). Hence, they may not record obvious indicators 611 

of propagation of the seismic failure from the underlying GSZ, especially if, as is implied here, the 612 

seismicity was characterised by small-length scale, small magnitude earthquake ruptures. However, 613 

further uncertainty as to the relative timing and context of seismic, pseudotachylyte-generating 614 

faulting on the GSZ is presented by observations that the pseudotachylytes are cut by late normal 615 

faults (Sherlock et al., 2008) that are thought to be associated with extension related to the 616 

deposition of the Torridonian sediments (Beacom et al., 1999). More detailed field characterization 617 

of fault and fracture age relationships is needed in order to clarify this remaining uncertainty in 618 

timing and regional context of the seismicity. 619 

Despite their age and small length scales, the pseudotachylytes in the amphibolites of the GSZ are 620 

well preserved and capture complex geometries and interactions of earthquake ruptures within 621 

anisotropic rock. It is important to recognise the controls on how these rupture geometries might 622 

have formed at all scales, because they display the conditions under which seismic rupture can 623 

propagate, or alternatively be arrested by, regions of geometrical complexity and separation along 624 

faults (Sibson 1985; Harris et al. 1991). Additionally, there has been increased recognition of 625 

complex ruptures with synchronous slip on multiple fault strands occurring in large recent 626 

earthquakes (e.g. Fletcher et al. 2016; Hamling et al. 2017; Ruppert et al. 2018). Understanding the 627 

controls on such ruptures can be enhanced by studying the geological record of seismicity in 628 

exhumed fault zones such as the GSZ.  629 

Conclusions 630 

The geometry of small-scale pseudotachylyte-bearing faults in the Gairloch Shear Zone record 631 

rupture geometries that are comparable with those of kilometre-scale large magnitude earthquakes. 632 

This geometry is influenced by the anisotropy of the foliation within the hosting amphibolites, and 633 

potentially also by the high coseismic fluid pressures that might result from voluminous frictional 634 
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melting of a lithology dominated by low melting point amphibole. A homogeneously distributed 635 

foliation led to multiple points of slip nucleation and a segmented fault structure during early 636 

rupture, followed by the interaction and linkage of adjacent segments as slip progressed. The 637 

interplay with high coseismic melt pressures may be evident in the dilational crack style of segment 638 

linkage and frequent occurrences of brecciated domains, creating a record of a variety of rupture 639 

geometries.  640 

641 



28 
 

Acknowledgements 642 

LC gratefully acknowledges funding from NERC (Studentship 1228272) and a National Museums 643 

Scotland CASE award which facilitated this work. We are grateful for constructive reviews from Eddie 644 

Dempsey and Joe Allen, which greatly improved the manuscript.  645 

References  646 

Allen, J.L. 2005. A multi-kilometer pseudotachylyte system as an exhumed record of earthquake 647 
rupture geometry at hypocentral depths (Colorado, USA). Tectonophysics, 402, 37–54, 648 
https://doi.org/10.1016/j.tecto.2004.10.017. 649 

Allen, J.L., O’Hara, K.D. & Moecher, D.P. 2002. Structural geometry and thermal history of 650 
pseudotachylyte from the Homestake shear zone, Sawatch Range, Colorado. Field Guides , 3, 651 
17–32, https://doi.org/10.1130/0-8137-0003-5.17. 652 

Ando, R., Tada, T. & Yamashita, T. 2004. Dynamic evolution of a fault system through interactions 653 
between fault segments. Journal of Geophysical Research: Solid Earth, 109, 654 
https://doi.org/10.1029/2003JB002665. 655 

Beacom, L.E., Anderson, T.B. & Holdsworth, R.E. 1999. Using basement-hosted clastic dykes as syn-656 
rifting palaeostress indicators: an example from the basal Stoer Group, northwest Scotland. 657 
Geological Magazine, 136, S0016756899002605, 658 
https://doi.org/10.1017/S0016756899002605. 659 

Beacom, L.E., Holdsworth, R.E., McCaffrey, K.J.W. & Anderson, T.B. 2001. A quantitative study of the 660 
influence of pre-existing compositional and fabric heterogeneities upon fracture-zone 661 
development during basement reactivation. In: Holdsworth, R. E., Strachan, R. A., Magloughlin, 662 
J. F. & Knipe, R. J. (eds) Nature and Tectonic Significance of Fault Zone Weakening. Bath, 663 
Geological Soc Publishing House, 195–211., https://doi.org/10.1144/gsl.sp.2001.186.01.12. 664 

Bhat, H.S., Olives, M., Dmowska, R. & Rice, J.R. 2007. Role of fault branches in earthquake rupture 665 
dynamics. Journal of Geophysical Research: Solid Earth, 112, 666 
https://doi.org/10.1029/2007JB005027. 667 

Bilham, R. & Williams, P. 1985. Sawtooth segmentation and deformation processes on the southern 668 
San Andreas Fault, California. Geophysical Research Letters, 12, 557–560, 669 
https://doi.org/10.1029/GL012i009p00557. 670 

Bird, A., Cutts, K., Strachan, R., Thirlwall, M. F., & Hand, M. (2018). First evidence of Renlandian (c. 671 
950–940 Ma) orogeny in mainland Scotland: Implications for the status of the Moine 672 
Supergroup and circum-North Atlantic correlations. Precambrian Research, 305, 283–294. 673 
https://doi.org/https://doi.org/10.1016/j.precamres.2017.12.019 674 

Bjørnerud, M. & Magloughlin, J.F. 2004. Pressure-related feedback processes in the generation of 675 
pseudotachylytes. Journal of Structural Geology, 26, 2317–2323, 676 
https://doi.org/http://dx.doi.org/10.1016/j.jsg.2002.08.001. 677 

Brodsky, E.E., Gilchrist, J.J., Sagy, A. & Collettini, C. 2011. Faults smooth gradually as a function of 678 
slip. Earth and Planetary Science Letters, 302, 185–193, 679 
https://doi.org/10.1016/j.epsl.2010.12.010. 680 

Caggianelli, A., de Lorenzo, S. & Prosser, G. 2005. Modelling the heat pulses generated on a fault 681 
plane during coseismic slip: Inferences from the pseudotachylites of the Copanello cliffs 682 

https://doi.org/10.1029/2003JB002665
https://doi.org/10.1144/gsl.sp.2001.186.01.12
https://doi.org/10.1029/GL012i009p00557


29 
 

(Calabria, Italy). Tectonophysics, 405, 99–119, 683 
https://doi.org/http://dx.doi.org/10.1016/j.tecto.2005.05.017. 684 

Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V. & Herrera, V. 2005. Fault zone 685 
development and strain partitioning in an extensional strike-slip duplex: A case study from the 686 
Mesozoic Atacama fault system, Northern Chile. Tectonophysics, 400, 105–125, 687 
https://doi.org/https://doi.org/10.1016/j.tecto.2005.02.012. 688 

Cheng, Y., Ross, Z.E. & Ben-Zion, Y. 2018. Diverse Volumetric Faulting Patterns in the San Jacinto 689 
Fault Zone. Journal of Geophysical Research: Solid Earth, 123, 5068–5081, 690 
https://doi.org/10.1029/2017JB015408. 691 

Cooke, M.L. & Beyer, J.L. 2018. Off-Fault Focal Mechanisms Not Representative of Interseismic Fault 692 
Loading Suggest Deep Creep on the Northern San Jacinto Fault. Geophysical Research Letters, 693 
45, 8976–8984, https://doi.org/10.1029/2018GL078932. 694 

Cowan, D.S. 1999. Do faults preserve a record of seismic slip? A field geologist’s opinion. Journal of 695 
Structural Geology, 21, 995–1001, https://doi.org/10.1016/S0191-8141(99)00046-2. 696 

Di Toro, G. & Pennacchioni, G. 2004. Superheated friction-induced melts in zoned pseudotachylytes 697 
within the Adamello tonalites (Italian Southern Alps). Journal of Structural Geology, 26, 1783–698 
1801, https://doi.org/10.1016/j.jsg.2004.03.001. 699 

Di Toro, G. & Pennacchioni, G. 2005. Fault plane processes and mesoscopic structure of a strong-700 
type seismogenic fault in tonalites (Adamello batholith, Southern Alps). Tectonophysics, 402, 701 
55–80, https://doi.org/http://dx.doi.org/10.1016/j.tecto.2004.12.036. 702 

Di Toro, G., Pennacchioni, G. & Teza, G. 2005a. Can pseudotachylytes be used to infer earthquake 703 
source parameters? An example of limitations in the study of exhumed faults. Tectonophysics, 704 
402, 3–20, https://doi.org/10.1016/j.tecto.2004.10.014. 705 

Di Toro, G., Nielsen, S. & Pennacchioni, G. 2005b. Earthquake rupture dynamics frozen in exhumed 706 
ancient faults. Nature, 436, 1009–1012, 707 
https://doi.org/http://www.nature.com/nature/journal/v436/n7053/suppinfo/nature03910_S708 
1.html. 709 

Donath, F.A. 1961. Experimental study of shear failure in anisotropic rocks. Geological Society of 710 
America Bulletin, 72, 985–989, https://doi.org/10.1130/0016-711 
7606(1961)72[985:ESOSFI]2.0.CO;2. 712 

Droop, G.T.R., Fernandes, L.A.D. & Shaw, S. 1999. Laxfordian metamorphic conditions of the 713 
Palaeoproterozoic Loch Maree Group, Lewisian Complex, NW Scotland. Scottish Journal of 714 
Geology, 35, 31–50, https://doi.org/10.1144/sjg35010031. 715 

Du, Y. & Aydin, A. 1993. The maximum distortional strain energy density criterion for shear fracture 716 
propagation With applications to the growth paths of En Échelon faults. Geophysical Research 717 
Letters, 20, 1091–1094, https://doi.org/10.1029/93GL01238. 718 

Elliott, D., & Johnson, M. R. W. (1980). Structural evolution in the northern part of the Moine thrust 719 
belt, NW Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 71(2), 69–96. 720 
https://doi.org/DOI: 10.1017/S0263593300013523 721 

Ellis, M. A., Laubach, S. E., Eichhubl, P., Olson, J. E., & Hargrove, P. (2012). Fracture development and 722 
diagenesis of Torridon Group Applecross Formation, near An Teallach, NW Scotland: millennia 723 
of brittle deformation resilience? Journal of the Geological Society, 169(3), 297 LP – 310. 724 
https://doi.org/10.1144/0016-76492011-086 725 

https://doi.org/10.1029/93GL01238
https://doi.org/10.1144/0016-76492011-086


30 
 

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related 726 
problems. Proceedings of the Royal Society of London A: Mathematical, Physical and 727 
Engineering Sciences 241, 376–396.  728 

Ferrand, T.P., Labrousse, L., Eloy, G., Fabbri, O., Hilairet, N. & Schubnel, A. 2018. Energy Balance 729 
From a Mantle Pseudotachylyte, Balmuccia, Italy. Journal of Geophysical Research: Solid Earth, 730 
123, 3943–3967, https://doi.org/10.1002/2017JB014795. 731 

Fletcher, J.M., Oskin, M.E. & Teran, O.J. 2016. The role of a keystone fault in triggering the complex 732 
El Mayor–Cucapah earthquake rupture. Nature Geoscience, 9, 303. 733 

Fliss, S., Bhat, H.S., Dmowska, R. & Rice, J.R. 2005. Fault branching and rupture directivity. Journal of 734 
Geophysical Research: Solid Earth, 110, https://doi.org/10.1029/2004JB003368. 735 

Griffith, W.A. & Prakash, V. 2015. Integrating field observations and fracture mechanics models to 736 
constrain seismic source parameters for ancient earthquakes. Geology , 43, 763–766, 737 
https://doi.org/10.1130/G36773.1. 738 

Griffith, W.A., Di Toro, G., Pennacchioni, G. & Pollard, D.D. 2008. Thin pseudotachylytes in faults of 739 
the Mt. Abbot quadrangle, Sierra Nevada: Physical constraints for small seismic slip events. 740 
Journal of Structural Geology, 30, 1086–1094, 741 
https://doi.org/http://dx.doi.org/10.1016/j.jsg.2008.05.003. 742 

Griffith, W.A., Rosakis, A., Pollard, D.D. & Ko, C.W. 2009. Dynamic rupture experiments elucidate 743 
tensile crack development during propagating earthquake ruptures. Geology , 37, 795–798, 744 
https://doi.org/10.1130/G30064A.1. 745 

Griffith, W.A., Nielsen, S., Di Toro, G. & Smith, S.A.F. 2010. Rough faults, distributed weakening, and 746 
off-fault deformation. Journal of Geophysical Research: Solid Earth, 115, B08409, 747 
https://doi.org/10.1029/2009jb006925. 748 

Grocott, J. 1981. Fracture geometry of pseudotachylyte generation zones: a study of shear fractures 749 
formed during seismic events. Journal of Structural Geology, 3, 169–178, 750 
https://doi.org/10.1016/0191-8141(81)90012-2. 751 

Hacker, B.R., Abers, G.A. & Peacock, S.M. 2003. Subduction factory 1. Theoretical mineralogy, 752 
densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research: Solid 753 
Earth, 108, https://doi.org/10.1029/2001JB001127. 754 

Hamling, I.J., Hreinsdóttir, S., et al. 2017. Complex multifault rupture during the 2016 755 
&lt;em&gt;M&lt;/em&gt;&lt;sub&gt;w&lt;/sub&gt; 7.8 Kaikōura earthquake, New Zealand. 756 
Science, 356. 757 

Harris, R.A., Archuleta, R.J. & Day, S.M. 1991. Fault steps and the dynamic rupture process: 2-D 758 
numerical simulations of a spontaneously propagating shear fracture. Geophysical Research 759 
Letters, 18, 893–896, https://doi.org/10.1029/91GL01061. 760 

Hayward, K.S. & Cox, S.F. 2017. Melt Welding and Its Role in Fault Reactivation and Localization of 761 
Fracture Damage in Seismically Active Faults. Journal of Geophysical Research: Solid Earth, 122, 762 
9689–9713, https://doi.org/10.1002/2017JB014903. 763 

Holland, T.J.B. & Powell, R. 2004. An internally consistent thermodynamic data set for phases of 764 
petrological interest. Journal of Metamorphic Geology, 16, 309–343, 765 
https://doi.org/10.1111/j.1525-1314.1998.00140.x. 766 

Jaeger, J.C. & Cook, N.G.W. 1979. Fundamentals of Rock Mechanics, 3rd ed. London, Chapman & 767 
Hall. 768 



31 
 

Kanamori, H. & Brodsky, E. 2004. The physics of earthquakes. Reports on Progress in Physics, 67, 769 
1429. 770 

Kinny, P.D., Friend, C.R.L. & Love, G.J. 2005. Proposal for a terrane-based nomenclature for the 771 
Lewisian Gneiss Complex of NW Scotland. Journal of the Geological Society, 162, 175–186, 772 
https://doi.org/10.1144/0016-764903-149. 773 

Kirkpatrick, J.D. & Rowe, C.D. 2013. Disappearing ink: How pseudotachylytes are lost from the rock 774 
record. Journal of Structural Geology, 52, 183–198, 775 
https://doi.org/http://dx.doi.org/10.1016/j.jsg.2013.03.003. 776 

Kirkpatrick, J.D. & Shipton, Z.K. 2009. Geologic evidence for multiple slip weakening mechanisms 777 
during seismic slip in crystalline rock. J. Geophys. Res., 114, B12401, 778 
https://doi.org/10.1029/2008jb006037. 779 

Kirkpatrick, J.D., Dobson, K.J., Mark, D.F., Shipton, Z.K., Brodsky, E.E. & Stuart, F.M. 2012. The depth 780 
of pseudotachylyte formation from detailed thermochronology and constraints on coseismic 781 
stress drop variability. J. Geophys. Res., 117, B06406, https://doi.org/10.1029/2011jb008846. 782 

Lei, S. & Park, R.G. 1993. Reversals of movement sense in Lewisian brittle-ductile shear zones at 783 
Gairloch, NW Scotland, in the context of Laxfordian kinematic history. Scottish Journal of 784 
Geology, 29, 9–19, https://doi.org/10.1144/sjg29010009. 785 

Lin, A. & Nishikawa, M. 2011. Riedel shear structures in the co-seismic surface rupture zone 786 
produced by the 2001 Mw 7.8 Kunlun earthquake, northern Tibetan Plateau. Journal of 787 
Structural Geology, 33, 1302–1311,   788 
https://doi.org/http://dx.doi.org/10.1016/j.jsg.2011.07.003. 789 

Maddock, R.H. 1983. Melt origin of fault-generated pseudotachylytes demonstrated by textures. 790 
Geology, 11, 105–108, https://doi.org/10.1130/0091-7613(1983)11<105:moofpd>2.0.co;2. 791 

Mann, P., Hempton, M.R., Bradley, D.C. & Burke, K. 1983. Development of Pull-Apart Basins. The 792 
Journal of Geology, 91, 529–554, https://doi.org/10.1086/628803. 793 

Melosh, B.L., Rowe, C.D., Smit, L., Groenewald, C., Lambert, C.W. & Macey, P. 2014. Snap, Crackle, 794 
Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition. Earth and 795 
Planetary Science Letters, 403, 432–445, 796 
https://doi.org/http://dx.doi.org/10.1016/j.epsl.2014.07.002. 797 

Misra, S., Ellis, S. & Mandal, N. 2015. Fault damage zones in mechanically layered rocks: The effects 798 
of planar anisotropy. Journal of Geophysical Research: Solid Earth, 120, 5432–5452, 799 
https://doi.org/10.1002/2014JB011780. 800 

Mitchell, T.M., Toy, V., Di Toro, G., Renner, J. & Sibson, R.H. 2016. Fault welding by pseudotachylyte 801 
formation. Geology , https://doi.org/10.1130/G38373.1. 802 

Moorbath, S. & Park, R.G. 1972. The Lewisian chronology of the southern region of the Scottish 803 
mainland. Scottish Journal of Geology, 8, 51 LP – 74, https://doi.org/10.1144/sjg08010051. 804 

Nestola, F., Mittempergher, S., Toro, G.D., Zorzi, F. & Pedron, D. 2010. Evidence of dmisteinbergite 805 
(hexagonal form of CaAl2Si 2O8) in pseudotachylyte: A tool to constrain the thermal history of 806 
a seismic event. American Mineralogist, 95, 405–409. 807 

Ngo, D., Huang, Y., Rosakis, A., Griffith, W.A. & Pollard, D. 2012. Off-fault tensile cracks: A link 808 
between geological fault observations, lab experiments, and dynamic rupture models. Journal 809 
of Geophysical Research: Solid Earth, 117, B01307, https://doi.org/10.1029/2011jb008577. 810 

https://doi.org/10.1130/G38373.1


32 
 

Nicholson, R. & Pollard, D.D. 1985. Dilation and linkage of echelon cracks. Journal of Structural 811 
Geology, 7, 583–590, https://doi.org/https://doi.org/10.1016/0191-8141(85)90030-6. 812 

Nissen, E., Elliott, J.R., et al. 2016. Limitations of rupture forecasting exposed by instantaneously 813 
triggered earthquake doublet. Nature Geosci, 9, 330–336. 814 

O’Hara, K.D. 2001. A pseudotachylyte geothermometer. Journal of Structural Geology, 23, 1345–815 
1357. 816 

Ohno, I. 1995. Temperature Variation of Elastic Properties of α-Quartz up to the α-β Transition. 817 
Journal of Physics of the Earth, 43, 157–169, https://doi.org/10.4294/jpe1952.43.157. 818 

Otsuki, K., Monzawa, N. & Nagase, T. 2003. Fluidization and melting of fault gouge during seismic 819 
slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms. 820 
Journal of Geophysical Research: Solid Earth, 108, 2192, 821 
https://doi.org/10.1029/2001jb001711. 822 

Park, R.G. 1961. The pseudotachylite of the Gairloch District, Ross-shire, Scotland. American Journal 823 
of Science, 259, 542–550, https://doi.org/10.2475/ajs.259.7.542. 824 

Park, R.G. 1966. Nature and origin of Lewisian basic rocks of Gairloch, Ross-shire. Scottish Journal of 825 
Geology, 2, 179 LP-199. 826 

Park, R.G. 2010. Structure and evolution of the Lewisian Gairloch shear zone: variable movement 827 
directions in a strike-slip regime. Scottish Journal of Geology, 46, 31–44, 828 
https://doi.org/10.1144/0036-9276/01-405. 829 

Park, R.G., Crane, A. & Niamatullah, M. 1987. Early Proterozoic structure and kinematic evolution of 830 
the southern mainland Lewisian. Geological Society, London, Special Publications, 27, 139–151, 831 
https://doi.org/10.1144/gsl.sp.1987.027.01.12. 832 

Park, R.G., Tarney, J. & Connelly, J.N. 2001. The Loch Maree Group: Palaeoproterozoic subduction-833 
accretion complex in the Lewisian of NW Scotland. Precambrian Research, 105, 205–226, 834 
https://doi.org/10.1016/s0301-9268(00)00112-1. 835 

Peach, B.N., Horne, J., Gunn, W., Clough, C.T. & Teall, J.J.H. 1907. The Geological Structure of the 836 
North-West Highlands of Scotland. Glasgow, HM Stationary Office. 837 

Peacock, D.C.P. & Sanderson, D.J. 1995. Pull-aparts, shear fractures and pressure solution. 838 
Tectonophysics, 241, 1–13, https://doi.org/https://doi.org/10.1016/0040-1951(94)00184-B. 839 

Petzold, A. & Hinz, W. 1976. Silikatchemie. Leipzig, VEB. 840 

Poliakov, A.N.B., Dmowska, R. & Rice, J.R. 2002. Dynamic shear rupture interactions with fault bends 841 
and off-axis secondary faulting. Journal of Geophysical Research: Solid Earth, 107, 2295, 842 
https://doi.org/10.1029/2001JB000572. 843 

Pollard, D.D. & Aydin, A. 1984. Propagation and linkage of oceanic ridge segments. Journal of 844 
Geophysical Research: Solid Earth, 89, 10017–10028, 845 
https://doi.org/10.1029/JB089iB12p10017. 846 

Pollard, D.D., Segall, P. & Delaney, P.T. 1982. Formation and interpretation of dilatant echelon 847 
cracks. Geological Society of America Bulletin, 93, 1291–1303, https://doi.org/10.1130/0016-848 
7606(1982)93<1291:FAIODE>2.0.CO;2. 849 

Price, N.A., Johnson, S.E., Gerbi, C.C. & West, D.P. 2012. Identifying deformed pseudotachylyte and 850 
its influence on the strength and evolution of a crustal shear zone at the base of the 851 
seismogenic zone. Tectonophysics, 518–521, 63–83, 852 



33 
 

https://doi.org/10.1016/j.tecto.2011.11.011. 853 

Rainbird, R. H., Hamilton, M. A., & Young, G. M. (2001). Detrital zircon geochronology and 854 
provenance of the Torridonian, NW Scotland. Journal of the Geological Society, 158(1), 15–27. 855 
https://doi.org/10.1144/jgs.158.1.15 856 

Robie, R.A., Hemingway, B.S. & Fisher, J.R. 1979. Thermodynamic Properties of Minerals and Related 857 
Substances at 298.15 K and 1 Bar ( 105 Pascals) Pressure and at Higher Temperatures. 858 
Washington. 859 

Rowe, C.D. & Griffith, W.A. 2015. Do faults preserve a record of seismic slip: A second opinion. 860 
Journal of Structural Geology, 78, 1–26, 861 
https://doi.org/http://dx.doi.org/10.1016/j.jsg.2015.06.006. 862 

Rowe, C.D., Moore, J.C., Meneghini, F. & McKeirnan, A.W. 2005. Large-scale pseudotachylytes and 863 
fluidized cataclasites from an ancient subduction thrust fault. Geology, 33, 937–940, 864 
https://doi.org/10.1130/g21856.1. 865 

Rowe, C.D., Meneghini, F. & Moore, J.C. 2011. Textural record of the seismic cycle: strain-rate 866 
variation in an ancient subduction thrust. Geological Society, London, Special Publications, 359, 867 
77–95, https://doi.org/10.1144/sp359.5. 868 

Rowe, C.D., Kirkpatrick, J.D. & Brodsky, E.E. 2012. Fault rock injections record paleo-earthquakes. 869 
Earth and Planetary Science Letters, 335–336, 154–166, 870 
https://doi.org/10.1016/j.epsl.2012.04.015. 871 

Rowe, C.D., Ross, C., et al. 2018. Geometric Complexity of Earthquake Rupture Surfaces Preserved in 872 
Pseudotachylyte Networks. Journal of Geophysical Research: Solid Earth, 123, 7998–8015, 873 
https://doi.org/10.1029/2018JB016192. 874 

Ruppert, N.A., Rollins, C., Zhang, A., Meng, L., Holtkamp, S.G., West, M.E. & Freymueller, J.T. 2018. 875 
Complex Faulting and Triggered Rupture During the 2018 MW 7.9 Offshore Kodiak, Alaska, 876 
Earthquake. Geophysical Research Letters, 45, 7533–7541, 877 
https://doi.org/10.1029/2018GL078931. 878 

Sawyer, W.J. & Resor, P.G. 2017. Modeling frictional melt injection to constrain coseismic physical 879 
conditions. Earth and Planetary Science Letters, 469, 53–63, 880 
https://doi.org/https://doi.org/10.1016/j.epsl.2017.04.012. 881 

Segall, P. & Pollard, D.D. 1983. Nucleation and growth of strike slip faults in granite. Journal of 882 
Geophysical Research: Solid Earth, 88, 555–568, https://doi.org/10.1029/JB088iB01p00555. 883 

Sherlock, S.C., Jones, K.A. & Park, R.G. 2008. Grenville-age pseudotachylite in the Lewisian: 884 
laserprobe 40Ar/39Ar ages from the Gairloch region of Scotland (UK). Journal of the Geological 885 
Society, 165, 73–83, https://doi.org/10.1144/0016-76492006-134. 886 

Sibson, R. 1986. Brecciation processes in fault zones: Inferences from earthquake rupturing. Pure 887 
and Applied Geophysics, 124, 159–175, https://doi.org/10.1007/bf00875724. 888 

Sibson, R.H. 1975. Generation of peseudotachylyte by ancient seismic faulting. Geophysical Journal 889 
of the Royal Astronomical Society, 43, 775, https://doi.org/10.1111/j.1365-890 
246X.1975.tb06195.x. 891 

Sibson, R.H. 1985. Stopping of earthquake ruptures at dilational fault jogs. Nature, 316, 248. 892 

Spray, J.G. 2010. Frictional Melting Processes in Planetary Materials: From Hypervelocity Impact to 893 
Earthquakes Jeanloz, R. & Freeman, K. H. (eds). Annual Review of Earth and Planetary Sciences, 894 

https://doi.org/10.1016/j.tecto.2011.11.011


34 
 

38, 221–254, https://doi.org/10.1146/annurev.earth.031208.100045. 895 

Stewart, A. D. (2002). The later Proterozoic Torridonian rocks of Scotland; their sedimentology, 896 
geochemistry and origin. Bath: Geological Society of London. 897 

Streule, M. J., Strachan, R. A., Searle, M. P., & Law, R. D. (2010). Comparing Tibet-Himalayan and 898 
Caledonian crustal architecture, evolution and mountain building processes. Geological Society, 899 
London, Special Publications, 335(1), 207–232. https://doi.org/10.1144/sp335.10 900 

Swanson, M.T. 1988. Pseudotachylyte-bearing strike-slip duplex structures in the Fort Foster Brittle 901 
Zone, S. Maine. Journal of Structural Geology, 10, 813–828, 902 
https://doi.org/http://dx.doi.org/10.1016/0191-8141(88)90097-1. 903 

Swanson, M.T. 1989. Sidewall ripouts in strike-slip faults. Journal of Structural Geology, 11, 933–948, 904 
https://doi.org/https://doi.org/10.1016/0191-8141(89)90045-X. 905 

Swanson, M.T. 1992. Fault structure, wear mechanisms and rupture processes in pseudotachylyte 906 
generation. Tectonophysics, 204, 223–242, https://doi.org/10.1016/0040-1951(92)90309-T. 907 

Swanson, M.T. 2005. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones. 908 
Journal of Structural Geology, 27, 871–887, https://doi.org/10.1016/j.jsg.2004.11.009. 909 

Tchalenko, J.S. & Berberian, M. 1975. Dasht-e Baȳaz Fault, Iran: Earthquake and Earlier Related 910 
Structures in Bed Rock. GSA Bulletin, 86, 703–709. 911 

Techmer, K.S., Ahrendt, H. & Weber, K. 1992. The development of pseudotachylyte in the Ivrea—912 
Verbano Zone of the Italian Alps. Tectonophysics, 204, 307–322, 913 
https://doi.org/https://doi.org/10.1016/0040-1951(92)90314-V. 914 

Toy, V.G., Ritchie, S. & Sibson, R.H. 2011. Diverse habitats of pseudotachylytes in the Alpine Fault 915 
Zone and relationships to current seismicity Fagereng, A., Toy, V. G. & Rowland, J. V (eds). 916 
Geological Society, London, Special Publications, 359, 115–133, 917 
https://doi.org/10.1144/sp359.7. 918 

Turnbull, M. J. M., Whitehouse, M. J., & Moorbath, S. (1996). New isotopic age determinations for 919 
the Torridonian, NW Scotland. Journal of the Geological Society, 153(6), 955–964. 920 

Ujiie, K., Yamaguchi, H., Sakaguchi, A. & Toh, S. 2007. Pseudotachylytes in an ancient accretionary 921 
complex and implications for melt lubrication during subduction zone earthquakes. Journal of 922 
Structural Geology, 29, 599–613, https://doi.org/http://dx.doi.org/10.1016/j.jsg.2006.10.012. 923 

Wang, H., Li, H., Janssen, C., Sun, Z. & Si, J. 2015. Multiple generations of pseudotachylyte in the 924 
Wenchuan fault zone and their implications for coseismic weakening. Journal of Structural 925 
Geology, 74, 159–171, https://doi.org/http://dx.doi.org/10.1016/j.jsg.2015.03.007. 926 

Whitehouse, M.J., Bridgwater, D. & Park, R.G. 1997. Detrital zircon ages from the Loch Maree Group, 927 
Lewisian Complex, NW Scotland: confirmation of a Palaeoproterozoic Laurentia—Fennoscandia 928 
connection. Terra Nova, 9, 260–263, https://doi.org/10.1111/j.1365-3121.1997.tb00025.x. 929 

 930 

931 

https://doi.org/10.1146/annurev.earth.031208.100045
https://doi.org/10.1144/sp359.7


35 
 

Tables 932 

  Parameter Description Value Source 

ρ density 2809 kg m-3 [a] 

w pseudotachylyte width 0.005 m 
 τ shear stress on fault 107-155 MPa See Fig. 7a 

φ ratio of clasts to crystalline matrix 0.11   

H latent heat of melting 135213 J kg-1 [a] 

cP specific heat 1017 J kg-1 K-1 [a] 

Tmelt coseismic melt temperature 1023 - 1623 K [b] 

Tambient ambient host rock temperature 518-618 K [c] 

G shear modulus 49 GPa [d] 

Table 1: Thermal and mechanical properties attributed to the GSZ amphibolite and the 933 

pseudotachylyte faults within them. Obtained from [a] values for tremolite, anorthite and quartz in 934 

Robie et al. (1979); [b] melting temperatures for hornblende and oligoclase in Spray (2010); [c] 935 

geothermal gradient of 25°C km-1, modified from Droop et al. (1999); [d] values for hornblende, 936 

anorthite and quartz presented in Hacker et al. (2003) and originally sourced from Ohno (1995) and 937 

Holland & Powell (2004). 938 

 939 

Figure captions 940 

Figure 1. Pseudotachylyte in the Gairloch Shear Zone: (a) Location of the Gairloch Shear Zone and 941 

simplified lithological map (modified from Lei & Park 1993) showing localities where 942 

pseudotachylytes are found within amphibolites; (b) typical yellow-grey weathered pseudotachylyte 943 

within foliated amphibolite -  the pseudotachylyte veins here includes the generating fault vein 944 

(indicated by white arrowheads) plus injection veins protruding at a high angle from the fault 945 

[57.7122°N 05.6240°W]; (c) typical grey fresh surface of pseudotachylyte, two overlapping 946 

pseudotachylyte veins within darker amphibolite [57.7066°N 05.6173°W]. 947 

Figure 2. Idealised types of pseudotachylyte (PST) fault vein geometries observed in the Gairloch 948 

Shear Zone amphibolites: (a) idealised single linear pseudotachylyte (PST) fault vein with typical 949 

geometry of injection veins protruding into the host rock; (b) Segmented fault composed of several 950 

parallel pseudotachylyte fault veins that may be linked across the stepover section, either by one 951 

segment tip or by the tips of both segments. The pseudotachylyte vein is continuous across the 952 
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linkage; (c) Segmented fault composed of several parallel pseudotachylyte fault veins, with 953 

extensional rhombocasm pull-aparts identifiable in the stepover. The pseudotachylyte vein is 954 

continuous across the stepover; (d) Parallel and closely-spaced pseudotachylyte fault veins bounding 955 

a region with internal vein networks – at least some of which are fault veins – and possibly 956 

brecciation, in which case a tabular breccia is formed; (e) Pseudotachylyte fault vein which splits into 957 

two branches, which may display different vein thicknesses. Both branches should have 958 

accommodated shear displacement and PST injection veins or brecciation may be associated with 959 

the branches. 960 

Figure 3.  Typical microscopic features of GSZ pseudotachylytes: (a) optical micrograph of branching 961 

pseudotachylyte vein with high angle injection and side-wall shortcut removing curve in the vein 962 

(plane polarised light) sampled from [57.7008°N 05.6308°W]; (b) optical micrograph of 963 

pseudotachylyte matrix illustrating banded variation in crystal morphology (plane polarised light) 964 

sampled from [57.7066°N 05.6173°W]; (c) back scattered electron image of pseudotachylyte 965 

crystalline matrix capturing heterogeneous hornblende nucleation around a plagioclase clast, 966 

sampled from [57.7066°N 05.6173°W]; (d) back scattered electron image of pseudotachylyte matrix 967 

with radiating dendritic and microlitic hornblende, sampled from [57.7066°N 05.6173°W]; (e) optical 968 

micrograph of deformed hornblende clasts in pseudotachylyte (plane polarised light), sampled from 969 

[57.7008°N 05.6308°W]; (f) optical micrograph of deformed hornblende in intersection of injection 970 

and fault veins (plane polarised light), sampled from [57.7008°N 05.6308°W].  971 

Figure 4. Stepped pseudotachylyte fault vein following amphibolite foliation [57.6959°N 05.6161°W]; 972 

(a) In the field, the fault vein (emphasised by orange shading) shows lateral steps (one indicated by 973 

arrowhead). The pseudotachylyte thickness along the fault varies from 3 - 15 mm, hammer length is 974 

30 cm. Image shows a horizontal surface. An unannotated version of this image is available as 975 

Supplementary Figure 1; (b) fresh cut surface of grey pseudotachylyte fault veins with chilled 976 

margins sampled from the locality shown in Fig. 4a. White box shows location of Fig. 4c; (c) optical 977 
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micrograph of a stepover section with one overstep linked by only one segment (far right) and one 978 

preserved in the process of linkage involving both fault segment tips (centre) which curve towards 979 

the adjacent segment. A band of cataclasite, indicated by white arrowheads, is parallel to and 980 

partially overprinted by a pseudotachylyte segment (plane polarised light); (d) and (e) micrographs 981 

showing detail of ductile shear zones propagating in front of fault tips forming a process zone (plane 982 

polarised light). 983 

Figure 5. Field-scale geometries of pseudotachylyte (PST) faults in GSZ amphibolites. All photos have 984 

PST traced in orange – unannotated versions are available in supplementary figure 2: (a) pull-apart 985 

rhombochasm forms dilational stepover within pseudotachylyte fault cutting quartz vein in 986 

amphibolite (pencil length 15 cm) [57.7007°N 05.6173°W]; (b) reactivation of pre-existing shear 987 

band, with pseudotachylyte lining boundary (white lines) and internal (blue lines) faults as well as 988 

injecting into foliation and locally developing into pseudotachylyte breccias. Horizontal plane of 989 

exposure [57.7121°N 05.6228°W]; (c) reactivation of shear bands by brittle, pseudotachylyte-bearing 990 

faults, with breccia extensively developed in the underlying band. Horizontal plane of exposure 991 

[57.7668°N 05.6168°W]; (d) large pseudotachylyte fault branching at its tip. Vertical plane of 992 

exposure [57.7007°N 05.6304°W]; (e) branching pseudotachylyte fault with injection veins 993 

developed off the thicker branch. Horizontal plane of exposure [57.6904°N 05.6066°W]; (f) angular, 994 

wedge-shaped breccia developed between two non-parallel faults, potentially part of a paired fault 995 

zone. Horizontal plane of exposure [57.7070°N 05.6219°W].  996 

Figure 6. Microscale geometries of pseudotachylyte veins in optical micrographs: (a) millimetre scale 997 

steps in pseudotachylyte vein margin (plane polarised light) sampled from [57.7695°N 05.6132°W]; 998 

(b) millimetre scale steps in vein margin with additional grain-scale roughness indicated by 999 

arrowheads (plane polarised light) sampled from [57.7066°N 05.6173°W]; (c) ragged edge of 1000 

polycrystalline clast indicates partial melting (plane polarised light) sampled from [57.7695°N 1001 

05.6132°W]; (d) partially melted polycrystalline clast with amphibole replaced by pseudotachylyte 1002 
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and quartz and plagioclase preserved (cross polarised light) sampled from [57.7066°N 05.6173°W]; 1003 

(e) short and blunt-ended injection veins (cross-polarised light) sampled from [57.7007°N 1004 

05.6304°W]; (f) blunt-ended injection vein with thin extensions (plane polarised light) sampled from 1005 

[57.7008°N 05.6308°W]; (g) margin of pseudotachylyte vein where sidewall shortcut feature has 1006 

straightened margin by removing a step. New clasts are already rounded and rotated (plane 1007 

polarised light), sampled from [57.7066°N 05.6173°W].  1008 

Figure 7. Estimation of shear stress and coseismic temperature change on GSZ seismic faults; (a) 1009 

Mohr circle construction for lithostatic stress state and strike-slip fault regime; (b) range of minimum 1010 

seismic displacement necessary to produce thickness of 5 mm pseudotachylyte along a fault slipping 1011 

at different depths in the crust. Equivalent moment magnitudes (MW) are indicated for faults with 1012 

the maximum and minimum estimated lengths of 100 m and 1 m respectively.  1013 

Figure 8. Models of formation of stepping ruptures and dilational sites through a single episode of 1014 

seismic slip; (a) linkage of pseudotachylyte-bearing  rupture segments in the ‘dilational crack’ style; 1015 

(b) linkage of rupture segments via secondary faults forming dilatational pull-aparts in extensional 1016 

stepovers; (c) Formation of elongate tabular breccias via paired ruptures and internal faults, here 1017 

exploiting a shear band structure.    1018 
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