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Abstract

Brain-computer interfaces (BCIs) aim to establish a communication medium that is indepen-
dent of muscle control. This project investigates how BCIs can be harnessed for musical
applications. The impact of such systems is twofold — (i) it offers a novel mechanism
of control for musicians during performance and (ii) it is beneficial for patients who are
suffering from motor disabilities. Several challenges are encountered when attempting to
move these technologies from laboratories to real-world scenarios. Additionally, BCIs are
significantly different from conventional computer interfaces and realise low communication
rates. This project considers these challenges and uses a dry and wireless electroencephalo-
gram (EEG) headset to detect neural activity. It adopts a paradigm called steady state visually
evoked potential (SSVEP) to provide the user with control. It aims to encapsulate all brain-
computer music interface (BCMI)-based operations into a stand-alone application, which
would improve the portability of BCMIs.

This projects addresses various engineering problems that are faced while developing a
stand-alone BCMI. In order to efficiently present the visual stimulus for SSVEP, it requires
hardware-accelerated rendering. EEG data is received from the headset through Bluetooth
and thus, a dedicated thread is designed to receive signals. As this thesis is not using
medical-grade equipment to detect EEG, signal processing techniques need to be examined
to improve the signal to noise ratio (SNR) of brain waves. This projects adopts canonical
correlation analysis (CCA), which is multi-variate statistical technique and explores filtering
algorithms to improve communication rates of BCMIs.

Furthermore, this project delves into optimising biomedical engineering-based parameters,
such as placement of the EEG headset and size of the visual stimulus. After implementing
the optimisations, for a time window of 4s and 2s, the mean accuracies of the BCMI are
97.92±2.22% and 88.02±9.30% respectively. The obtained information transfer rate (ITR)
is 36.56± 9.17 bits min-1, which surpasses communication rates of earlier BCMIs. This
thesis concludes by building a system which encompasses a novel control flow, which allows
the user to play a musical instrument by gazing at it.
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Chapter 1

Introduction

1.1 Motivation

It was on the 1st of February 2017, when I had first stepped into the Interdisciplinary Centre
for Computer Music Research (ICCMR) lab. I was pursuing a Bachelor of Technology
(B.Tech.) degree at SASTRA University, Thanjavur, India and had come to University
of Plymouth, UK as a semester-exchange student. I remember feeling overwhelmed with
the thought of beginning my journey in computer music, a field that elegantly combines
music and engineering. I specialised in information and communication technology (ICT)
during my B.Tech. degree. The field is a combination of computer science and electronics,
which serves as a strong foundation for computer music. During the exchange programme,
I developed my B.Tech. project under the supervision of Prof. Eduardo Miranda and Dr.
Edward Braund. The project focused on contributing to ICCMR’s cutting-edge research in
biocomputing for music. It was a tremendous learning experience, which motivated me to
pursue a master’s degree in computer music. My passion for music has persisted since my
childhood. It is this emotion that drives me to contribute to this vast discipline.

ICCMR carries a valuable history pertaining to interdisciplinary research at the cross-
roads of neuroscience and music technology (Miranda, 2014). The lab has developed musical
systems by harnessing elements of affective science and brain-computer interfaces (BCIs).
In addition to computer music and neuroscience, these projects encompass other disciplines
— digital signal processing, computer graphics, and biomedical engineering. Therefore,
research in such an area would significantly expand the technical skill-set of the researcher,
which sounds tempting to an engineer. Initially, I was confused between two projects for
my research master’s degree — biocomputing for music or brain-computer music interfaces
(BCMIs). The former is an upcoming field that encloses massive scope for creative research.
I chose the latter because it is an area that I have not explored before and I was excited about

1



1.1 Motivation

the wide spectrum of technical challenges that are accompanied by it, which would enable
me to learn new technologies. It would greatly test and expand my knowledge of signal
processing and computer graphics and introduce me to biomedical engineering.

During my exchange-programme, I understood the significance of impact while pursuing
research. In the beginning, I enjoyed computer music solely because it intensely exercised
my creativity. Later on, I noticed the power of adding another dimension to the process.
BCMIs aim to establish a direct communication medium between the brain and the computer.
Therefore, it offers a novel mechanism of control, which is beneficial for patients suffering
from locked-in syndrome. This health condition is the loss of all or most motor abilities.
Initially, BCIs enabled such individuals to use wheelchairs, prosthetics, and basic communi-
cation devices like spellers (Palaniappan, 2014). Later on, this technology was extended to
computer music, which enabled these patients to enrich their lives through music technology.
These factors provide a strong motivation for my research project, which simultaneously
allows me to delve into my cherished field and improve the lives of some individuals.

The most recent development in BCMIs within the ICCMR lab was during the PhD
project by Eaton (2016), which offered the user different types of control — passive, active,
and hybrid. The objective of my master’s thesis is to capitalise on this highly innovative
project and think of ways to improve it. I believe that neurotechnology is an extremely
dynamic field. Inventions and discoveries within this domain are subject to continuous
revision. This gives me the opportunity to incorporate these developments into computer
music. Furthermore, there are several technical challenges that would arise while trying to
perform these modifications. Considering my dual background of engineering and music, I
find myself well-suited for such a project. I am inspired by the legacy of this area and strive
to make an original contribution to it.

Vialatte et al. (2010) regarded BCIs as a challenging study because it involves engineering
as well as biological aspects. Over the years, there has been greater attention drawn towards
interdisciplinary research. The act of merging 2 different domains allows them to contribute
to each other, which leads to momentous progress and development in both. I am enthusiastic
about being introduced to biomedical engineering. It would help understand the underlying
behaviour of the nervous system. In the future, I am interested to explore affective science,
psychology, and physiology with respect to music and this project would be a significant
stepping stone towards achieving my long-term goal. I would like to begin my thesis by
quoting an equation from Chatterjee (2012), a book that is inspired by the Bhagavad Gita.

Evolution = Discipline+Freedom

2



1.2 Research Questions

1.2 Research Questions

This project conducts research at the intersection of three different disciplines — neuro-
science, biomedical engineering, and music technology. Neuroscience comprises physical,
functional, and morphological studies of the central nervous system (Shulman, 2013). It
helps us understand the underlying aspects of brain waves. In this thesis, biomedical engi-
neering expounds how information can be obtained from the brain through methods like
electroencephalography (EEG). The eventual outcome of the project is to build an application
that allows the user to control a musical interface. Conventionally, in order to play a musical
instrument, we require muscular power in some form or the other. For example, we play the
piano with our hands and control its pedals by using our feet. As mentioned earlier, BCIs
aim to directly interface the brain with a computer. Therefore, this project aims to develop a
musical system that is independent of, or demands minimum muscular control.

Detection of neural activity requires sophisticated sensors, which are often confined to
the boundaries of laboratories. This project aims to adopt methods of detection that support
portability. In comparison to conventional computer interfaces, BCIs face several limitations.
They realise considerably lower communication rates. In terms of patterns observed in brain
waves, there is notable scope for new discoveries. These newly observed phenomena can
be incorporated in order to improve communication between the user and the BCMI. They
would provide better information regarding what the user wants to convey to the BCMI. Thus,
the objectives of this project are condensed into two research questions as follows.

RQ1 How can we make BCMI technologies more usable for practical deployment in real-
world scenarios?
There are several laboratories all over the world that specifically conduct research in BCIs.
With the passage of time, developments within this field have demonstrated its potential
as a communication medium. Within the BCI community, there is rigorous research being
conducted to unfold this technology from laboratories to real-world scenarios. Invasive
and non-invasive methods are two ways of detecting brain waves. The invasive method, as
the name suggests implants electrodes directly into the head. This is suitable for clinical
diagnosis, but not for regular use in BCIs because it is prone to problems such as infection.
Non-invasive sensors have grown in popularity due to their convenience. However, this
advantage is accompanied by a loss of signal quality, which hinders the performance of
BCIs. Although non-invasive sensors improve portability when compared to invasive ones,
it does not mean that they can be easily adopted in real-world situations. There are various
other factors like set-up time and the use of substances like gel to improve signal quality.

3



1.3 Research Methodology

This thesis aims to address these challenges to make BCMIs more usable for real-world
applications.

This project also examines the platforms used to deploy BCMIs. Within the world’s
technological sphere, most individuals expect a smart-phone, tablet, or a computer version
of every application. BCI systems generally use bespoke hardware to accurately render
operations. This project explores the prospects of deploying BCMIs in commercial platforms
such as the three mentioned above. It aims to exploit their ubiquity to increase the outreach of
neuroscience. However, this objective comes along with many technical challenges because
these platforms are not real-time operating systems (Cecotti et al., 2010). Therefore, many
considerations need to be taken into account in order to achieve this goal.

RQ2 How can we improve the communication rates of BCMI systems?
As mentioned earlier, BCMIs are significantly different from conventional interfaces. For
example, in order to adjust volume in a conventional musical interface, you would simply
turn a knob until it produces the desired output. However, performing the same function
in a BCI is more complicated. Sophisticated interface objects like knobs have not been
implemented. Instead, we are at a stage where we can choose from an array of binary buttons
on the interface! Hence, the speed at which the user can convey information is a key problem
faced by these systems.

Non-invasive methods of detecting neural activity lead to a compromise in signal quality.
As this project aims to improve the portability of BCMIs, it is crucial to consider its effect
on the system’s performance. The output produced by the BCMI is a function of the
subject’s brain waves. Thus, poor signal quality leads to incorrect information detected by
the system. Hence, accuracy is an important issue tackled by BCI researchers. Developments
in neuroscience have found ways of improving signal-to-noise ratio (SNR) of brain waves.
Techniques such as filtering, statistical signal processing, optimal positioning of sensors,
detection from multiple regions of the head, and so on have proven to make these systems
more robust. Therefore, this project aims to incorporate these principles into BCMIs that use
portable sensors, which would be a novel contribution to this interdisciplinary field.

1.3 Research Methodology

This section presents an overview of the research methodologies adopted by the project. It
discusses about methods used to detect brain waves, programming language to develop the
BCMI, and research tools to analyse neural activity.

4



1.3 Research Methodology

1.3.1 Wireless and dry EEG Headsets

Broadly, there are two ways of performing non-invasive EEG — wet and dry. The former
uses gel to improve the contact between the scalp and the sensor. This is the most popular
method of detection in BCI experiments because it provides reasonable signal quality. The
latter is more convenient and requires less set-up time, but suffers from poorer signal quality.
A more detailed explanation on wet and dry EEG is given in section 3.2. This thesis adopts
dry EEG as the method for detecting neural activity, which is the first step taken towards
answering RQ1. In order to obtain reliable performance, most BCMI systems in the past
have adopted medical-grade EEG headsets (Eaton, 2016). These are bulky, comprise wiring,
etc., which make them less usable. Earlier projects in ICCMR have attempted to use portable
headsets, but realised poor communication rates. This thesis adopts a customised EEG
headset manufactured by Cognionics, Inc., which is dry and wireless. All experiments
conducted within this project are restricted to using this hardware framework in order to
realise bespoke optimisations. Over the years, there have been several developments in BCI
paradigms, such as improvements in signal processing techniques, which can be incorporated
into BCMI systems. Therefore, this would provide a more rigorous evaluation on the
feasibility of using wireless and dry systems for BCIs. As BCMIs are bound to be deployed
in scenarios like musical performances, it is advantageous to have a wireless and dry EEG
sensor.

1.3.2 Cross-platform Development

In order to build a stronger foundation to answer RQ1, this project examines the platforms
used to deploy BCMIs. As sub-operations carried out by BCMIs are computationally
expensive, researchers have used separate processors to perform them independently (Wang
et al., 2011). Due to the complex nature of these functions, they are normally implemented
in high-level programming languages like Python and MATLAB. These systems provide an
excellent framework for data analysis and to understand the underlying principles of brain
waves, but are computationally less efficient. Furthermore, they impose restrictions while
deploying on alternative platforms like tablets and mobile-phones. Hence, this thesis explores
the development of a stand-alone BCMI by using a lower-level programming language like
C++. This demands the implementation of a programme to receive data from the EEG
headset, signal processing algorithms that encompass complex mathematical operations, and
functionality for music such as audio output. Furthermore, BCMIs that are based on visual
stimuli require instructions to be passed directly to the graphical processing unit (GPU),
in order to exploit the complete computational potential of the hardware framework. The

5



1.4 Thesis Structure

above operations need to be encapsulated into one module that is independent of external
processors and applications.

1.3.3 EEG Analysis

Adolf Beck, one of the early pioneers in EEG observed two-pattern rhythmic activity in brain
waves of dogs (Coenen et al., 2014). Subsequently, Hans Berger discovered alpha rhythms in
the 1920s and coined the term electroencephalogram (Millett, 2001). Since then, there has
been attention drawn towards the frequency-based characteristics of brain waves, commonly
referred to as EEG rhythms. Many signal processing principles overlap in neuroscience and
computer music. In order to analyse frequency-domain features, power spectral density-based
analysis (PSDA) has been a popularly used method in both domains. As mentioned earlier,
non-invasive detection provides lower signal quality. Therefore, researchers have explored
the prospects of multi-channel EEG, where signals are detected from multiple regions of
the head. Alongside this change in method of detection, there needs to be modifications in
signal processing techniques to analyse the data. Scientists have proposed statistical signal
processing that adopts multivariate analysis instead of PSDA (which is univariate) (Lin
et al., 2007). This thesis aims to incorporate these developments into BCMI systems and
thus, which would focus on answering RQ2. However, it is important to note that all these
sophisticated procedures need to be implemented in a lower-level programming language
(this project uses C++). Hence, certain considerations need to be made while designing
algorithms. Additional factors like filtering EEG data and optimal sensor location, to name
but two, have proven to improve the communication rates of BCIs (Chen et al., 2015a; Wang
et al., 2006). This project explores these parameters to improve communication rates of
BCMI systems. MATLAB has been used to conduct an offline analysis of EEG in order to
design an optimal algorithm. Later on, these procedures are implemented in C++.

1.4 Thesis Structure

Including the current chapter, this thesis consists of 5 chapters. The subsequent chapters are
described in the following.

Chapter 2: This chapter conducts a survey on different types of BCMI systems — passive,
motor imagery, P300, and steady state visually evoked potential (SSVEP). The framework
used to compare these systems is based on the two research questions of the project. The
first criterion within the framework evaluates the usability of the BCMI, which emphasises
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on RQ1. The second criterion analyses the communication between the user and system,
which addresses RQ2. After an in-depth qualitative and quantitative analysis, the chapter
chooses SSVEP as the optimal paradigm, which is investigated in the remainder of the thesis.
Furthermore, the chapter explores how EEG can be harnessed to build a portable system and
examines trends in neurotechnology to strengthen the communication between the user and
system.

Chapter 3: There are 4 sub-operations that are carried out by SSVEP-based BCMIs —
providing the visual stimulus, detect EEG, analyse EEG, and output. In this chapter, a
system is designed to harness SSVEP for active control and 2 of the above sub-operations are
implemented within the C++ framework. Thus, it partially answers RQ1. It delves into the
technical aspects involved in exploiting the GPU for hardware-accelerated rendering and the
development of an additional thread to receive data from the EEG headset. In recent years,
there have been developments in mathematical functions that define the visual stimulus,
which have been integrated into this system. Experiments are conducted on 8 different
subjects to test the reliability of the headset for SSVEP. An offline analysis of the EEG data is
conducted in MATLAB. The chapter designs a novel filter and incorporates statistical signal
processing to improve communication rates of the system. Considering the fact that it adopts
dry and wireless EEG, it realises high values of speed and accuracy.

Chapter 4: After developing a BCMI system in chapter 3, which partially answers both
research questions, this chapter explores different parameters of optimisation to improve com-
munication rates. The BCI literature is sparse with regards optimising systems for portable
and dry EEG headsets. After applying these optimisations, there was a significant increase in
the speed and accuracy of the BCMI. Therefore, this chapter provides a notable contribution
to answering RQ2. Furthermore, the remaining 2 sub-operations are implemented within
the C++ framework. All the 4 operations are encapsulated into one stand-alone application
and thus, completely answering RQ1. Finally, a BCMI system with a bespoke control is
developed. The user is allowed to control a musical interface solely by gazing at different
regions.

Chapter 5: This chapter concludes the thesis. It summarises how the research process has
provided answers to both research questions. Additionally, other conclusions that are not
directly answering the research questions have been discussed. The chapter also presents a
foundation for future work. It provides an in sight into the pathways for future research in
BCMI systems.
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Chapter 2

Music Technology Crossing Paths with
Neuroscience and Biomedical
Engineering

2.1 Overview

Brain-computer interfaces (BCIs) aim to establish a direct medium of communication be-
tween the brain and the system, which is independent of muscular control. Such an interface
is advantageous to patients who are suffering from motor disabilities and individuals who
want to delve into this novel pathway of control. This chapter presents a survey on 4 cat-
egories of BCIs for music technology — passive, motor imagery, P300, and steady state
visually evoked potential (SSVEP). Based on the challenges faced by neuroscience and
biomedical engineering, it compares these paradigms based on two criteria — (i) usability
of the brain-computer music interface (BCMIs) and (ii) communication between the user
and system. It primarily focuses on BCIs based on electroencephalogram (EEG), which is
a non-invasive method to detect brain waves. The framework investigates important issues
prevalent in BCI research, such as method of detection, user-centric and environmental
conditions, speed, and accuracy, to name but few. Each technique has exclusive advantages
over the other and hence, an in-depth analysis into choosing an appropriate technique is
conducted. The chapter concludes by reviewing the most appropriate category of BCIs for
musical interfaces and examines the prospects of harnessing it to develop portable and robust
BCMI systems.
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2.2 Introduction

Research in the field of neuroscience and biomedical engineering has persistently re-evaluated
the need for muscular control to express oneself. Electroencephalography, which is a
method of recording neural activity has contributed to several external disciplines — building
emotional models in affective science (Kumar and Kumar, 2015), studying dreams and sleep
in oneirology (Rome, 1981), diagnosing epilepsy in neurology (Smith, 2005), and developing
control systems in BCIs (Ramadan and Vasilakos, 2017), to name but few. These studies
aim to establish a direct medium of communication between the brain and the external
environment. Therefore, it opens up opportunities to create systems that are based on
electroencephalogram (EEG) data. For example, Stikic et al. (2014) built an EEG-based
classifier for positive and negative emotional responses of users to comedy and tragedy-based
video clips. Such a system employs neural activity to obtain feedback from the user instead
of relying on a manually-entered description.

By developing BCIs, biomedical engineering has explored the prospects of providing
control to the user. Primarily, they can be classified into 2 categories — active and passive
control. On one hand, active control is the process of allowing the user to make discrete
choices. For instance, in the field of intelligent transportation, Fan et al. (2015) proposed a
vehicle-driver interface that allowed the user to select the destination of travel. On the other
hand, passive BCIs enable the user to indirectly influence the output of the system. Blankertz
et al. (2010) proposed a BCI that measured the mental workload of a user, which is used to
evaluate products (lower the workload means better the product) for safety purposes (George
and Lécuyer, 2014).

As BCIs aim to achieve a communication medium that is independent of muscle control,
they are beneficial for patients who are suffering from locked-in syndrome, which is the loss
of all or most motor abilities. Locked-in syndrome can be caused due to diseases like stroke,
spinal cord injury, or amyotrophic lateral sclerosis (ALS). Initially, active control advocated
the development of BCI-based wheelchairs, prosthetic limbs, and basic communication tools
such as spellers (Palaniappan, 2014; Rezeika et al., 2018). Over the years, the applications of
BCI have been extended to controlling mouse cursors (McFarland et al., 2008), virtual reality
(Lécuyer et al., 2008), music technology (Miranda and Brouse, 2005), environmental control
(turn on/off lights) (Gao et al., 2003), and so on. Such technologies are not only helpful for
patients, but provide alternative mechanisms for healthy individuals to operate systems.

Computer music has been incorporating methodologies from neuroscience to develop
BCMI systems (Miranda and Brouse, 2005). A classic example of the early works in this
interdisciplinary field is Alvin Lucier’s Music for a Solo Performer in 1965, which was
based on the sonification of EEG (Lucier, 1976). This inspired several computer musicians
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to explore this novel dimension of control. Teitelbaum (1976) controlled parameters of
electronic sound synthesisers and opened up pathways for biofeedback music, which focused
on harnessing passive control for composition. Hinterberger et al. (2004) implemented
a thought-translation device (TTD), which enabled the user to give auditory feedback.
Hinterberger and Baier (2005) presented parametric orchestral sonification of EEG in real
time (POSER), in which multiple frequency bands are mapped to different instruments of a
musical instrument digital interface (MIDI) device. Grierson (2008) explored the prospects
of active control for musical instruments. Grierson and Kiefer (2014) extended its application
to creating a scale player and algorithmic improviser.

Progressive developments in BCI technologies have expanded the spectrum of music
technology applications. However, there are several challenges that are faced while adopting
a BCI. In order to achieve good signal to noise ratio (SNR) of EEG, it requires the use
of sophisticated EEG headsets. Such headsets are appropriate for medical scenarios and
clinical use, but impose hindrances in terms of portability, wiring, ease of use, and set-up
time. Considering the nature of musical performances, it reduces the flexibility for musicians
to incorporate such technologies in their practices. Scientists have focused on improving the
usability of these headsets. However, this is accompanied by a compromise on the quality of
EEG signals (Hairston et al., 2014). Another crucial problem faced by the BCI community
is the communication rates of these systems. Communication rate, as the name suggests,
refers to the rate at which the user can convey information. The design of conventional
musical interfaces are considerably different from BCMIs. The former generally comprises
knobs, faders, keys, and triggers, to name but few. For BCMIs, this level of sophistication
in interface-design is impractical. This project aims to improve the usability of BCMIs
in practical scenarios. It also aspires to increase communication rates of existing systems.
Therefore, this chapter studies the different types of BCIs that have been tailored for musical
systems. It evaluates each system based on two criteria — (i) usability of the BCMI and (ii)
communication between user and system. An explanation of these criteria is given in the
following section. Four different BCI paradigms — passive, motor imagery, P300, and steady
state visually evoked potential (SSVEP) are evaluated for musical applications. The literature
is sparse with regards to harnessing motor imagery for musical control. However, the other
three techniques have been widely explored by computer musicians. It is also important to
note that this list of 4 paradigms is not exhaustive. For instance, techniques like using EEG
signatures of emotion have not been analysed in this chapter. The survey has been limited to
these 4 paradigms because they seem to be the most popular ones. This chapter is directed
towards choosing an appropriate BCI for musical applications and reviews some technical
specifications of the chosen paradigm.
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2.3 Criteria of Comparison

This section expounds the framework adopted by the survey to compare different BCMI
systems. It also aims to delineate the link between the framework and research questions of
the project.

2.3.1 Usability of the BCMI

Firstly, this criterion considers the method that is adopted to detect brain waves. It can be
categorised into invasive and non-invasive. The former is to implant electrodes (conductive
devices to detect electrical activity) directly into the brain. It provides very high quality
of signals (Anupama et al., 2012). The latter records EEG waves through devices that are
mounted on the subject’s head. It provides poorer signal quality, but is more convenient,
safer, and has less chances of infection (Palaniappan, 2014). Different BCI systems detect
EEG signals from different regions of the head. Therefore, the sophistication of designing
the headset is analysed. Secondly, this criterion assesses the environmental conditions that
are imposed by the system. For example, BCIs based on gaze-control may not perform well
in bright environments. External light might be an unavoidable artefact during live musical
performance and therefore, this is a crucial factor while deploying BCMIs in real-world
scenarios. Thirdly, it observes the conditions imposed on the user while using the system.
For instance, some BCIs require user-training, which might not be suitable for all subjects.

2.3.2 Communication Between User and System

The output of a BCMI can be visualised as a function of neural oscillations observed in the
user. As passive BCMIs encompass an indirect association with the output, it is often difficult
to make differences noticeable to the user. Hence, sufficient control over the BCMI might not
be realised. This issue is negligible in active BCIs and therefore, accuracy becomes a crucial
factor. Accuracy in one of the key problems that have been tackled by neuroscientists. Over
the years, several signal processing techniques have been proposed to improve the SNR of
EEG (Lin et al., 2007; Rezeika et al., 2018; Wang et al., 2006). However, a trade-off between
speed and accuracy is common in BCIs (Chen et al., 2014). When the time taken to detect
the user’s response is increased, the accuracy simultaneously improves. A common metric
called information transfer rate (ITR) is adopted to quantify the two parameters. A detailed
explanation on ITR is given in section 3.6.

Furthermore, this criterion studies the relationship between the activity performed and
the actual application. As mentioned earlier, BCMIs are notably different from conventional
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interfaces. For example, consider a pianist who is comfortable with playing a piano with
weighted keys. This comfort might be slightly reduced while using a keyboard with light
keys. It will be further reduced while playing a virtual keyboard on a computer-screen with a
mouse. Moreover, the significance of this factor maybe magnified when considering the case
of patients with motor disabilities. They might visualise the BCMI as a substitute for their
hands while using a musical interface. Therefore, this relationship between the activity and
application plays an important role in evaluating the communication between the user and
the BCMI.

2.4 BCMI Systems

2.4.1 Passive

Interdisciplinary research at the crossroads of computer music and another field often spawns
from an experiment of sonification. Early BCMI systems were governed by this principle
(Lucier, 1976; Rosenboom, 1990; Teitelbaum, 1976). Sonification is the process of mapping
data to sound. It can be used for a variety of purposes. In medicine, Baier et al. (2007)
translated EEG rhythms of well-known epileptic disorders into sound samples for online
monitoring. Hermann et al. (2002) proposed techniques to sonify EEG data obtained from
psycholinguistic experiments. BCMIs for sonification have also adopted slow cortical poten-
tials (SCPs) to serve as input data (Hinterberger and Baier, 2005). They detect increased and
decreased neuronal activities, which are attributed to negative and positive SCPs respectively
(Birbaumer et al., 1990; Nicolas-Alonso and Gomez-Gil, 2012). The user’s physiological
data serves as binary control signals for the system (Palaniappan, 2014).

Passive BCMIs normally use non-invasive techniques to record EEG. Spectral analysis
of EEG commonly serves as input data. Audification, which can be considered as a special
case of sonification (Hermann, 2008) is the direct translation of neural oscillations into audio
frequencies. Range of frequencies observed in brain waves is very different from audio
signals. These BCMIs normally consider neural frequencies in the range of 0.1Hz to 35Hz
(Hermann et al., 2002; Straebel and Thoben, 2014). Hence, they are useful to identify pitches
and rhythms in EEG. Musification is the translation of brain waves into musical parameters
or higher-level structures such phrases, melodies, songs, and so on. Computer musicians have
avidly used this technique to achieve passive control for composition and live performance
(Miranda and Brouse, 2005; Rosenboom, 1990). Conditions imposed on the environment
and the user in passive BCMIs are minimal. They tend to focus more on mapping procedures
as opposed to obtaining high-quality signals. Therefore, their usability is high. However,
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if the system is based on SCP, user-training is required. Factors like psychological state,
motivation, and physical well-being of the user need to be considered. Furthermore, the
relationship between the user and the trainer plays a crucial role (Hinterberger et al., 2003;
Nicolas-Alonso and Gomez-Gil, 2012).

Walker and Nees (2011) stated that sonification aims to exploit human auditory perception
to make data relationships comprehensible. Frequency ranges of brain waves and audio
signals are greatly different. Neural activity is measured in microvolts and hence, it must be
amplified by a large factor (Rowan and Tolunsky, 2003). Transposition within the frequency
domain and the amplification of signals act as potential sources of noise. Hinterberger and
Baier (2005) developed (POSER), which extracted parameters from EEG and mapped it to a
MIDI device. It was based on the thought translation device (TTD) created by Hinterberger
et al. (2003), which used SCP. Generally, the technique has been adopted by BCMIs for
passive instead of active control due to low communication rates. Miranda and Brouse (2005)
devised a BCMI-piano that aimed to predict what might be going on inside the subject’s mind.
It assumed the association between mental activities and physiological information (Petsche,
1990). However, establishing a distinct rationale behind the output to the user is a challenge
faced by these systems. Alternatively, biofeedback has been investigated to improve the
user-participation (Miranda et al., 2003; Rosenboom, 1977; Teitelbaum, 1976). MoodMixer
developed by Leslie and Mullen (2011) incorporated elements of affective science in BCMIs.
In this installation, different sound tracks corresponded to different mental states of the user
and therefore, there existed a stronger relation between the activity being performed and
the application. A similar relation can also be observed while using SCPs. High and low
energy sound tracks can be associated to negative and positive SCPs respectively. However,
solely relying on these attributes limits our choice set and is a relatively slow process. Hence,
subsequent sections analyse BCMI systems that harness active control.

2.4.2 Motor Imagery

Motor imagery, as the name suggests, realises active control by allowing the user to imagine
a specific motor activity. It aims to consciously access a motor representation, which is
generally a non-conscious mechanism (Jeannerod, 1995). For instance, the subject visualises
a movement of the left or right hand, which corresponds to a particular function (Pfurtscheller
and Neuper, 1997). These BCIs are based on a specific type of neural activity called
sensorimotor rhythms (SMRs), which are detected over the sensorimotor cortex of the brain
(Yuan and He, 2014). SMRs produce two types of amplitude modulations — event-related
synchronisation (ERS) and event-related desynchronisation (ERD), which are analysed to
calculate the user’s response.
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Invasive as well as non-invasive methods have been used for motor imagery. Felton et al.
(2007) harnessed electrocorticography (ECoG) to control a computer interface. Anupama
et al. (2012) described ECoG as a partially invasive technique because electrodes are placed
inside the skull, but outside the grey matter of the brain. Studies have regarded ECoG as
a balance between signal quality and invasiveness (Huggins et al., 2003). However, EEG
has prevailed in the literature for motor imagery. Electrodes are normally placed in the
central and parietal region1 of the head, which enclose the motor cortex (Kübler et al., 2005;
Pfurtscheller et al., 2006; Pfurtscheller and Neuper, 2001). External conditions or stimuli like
light and sound do not directly affect the performance of the system because the output is a
consequence of the user’s imagination. However, these conditions might serve as distractions
to the subject. User-training is an important process in motor imagery. Scientists have
persistently worked towards delineating the physiology of the technique (Beisteiner et al.,
1995). Users get confused between mental images and actual movements (Nicolas-Alonso
and Gomez-Gil, 2012). Neuper et al. (2005) demonstrated the importance of kinesthetic
aspects as opposed to visual imagination of actions during user-training. Frølich et al. (2015)
investigated the types of artefacts in motor imagery. Muscular movement was identified as
the most prominent interference with EEG. Furthermore, electrooculographic activity such
as eye movements and blinks also act as potential impediments to these systems (McFarland
et al., 1997, 2005). Therefore, users should aim to minimise these artefacts while using motor
imagery-based BCIs.

Pfurtscheller and Neuper (2001) created a binary classifier (or two-class system) with
an accuracy of nearly 100%. Blankertz et al. (2008) tested a BCI on novices without user-
training and realised an accuracy of greater than 84% for the majority of subjects. Studies
have focused on increasing the number of control signals for motor imagery, which is usually
accompanied by a decrease in classification-accuracy. Taylor et al. (2002) developed and
tested neuroprosthetic devices for humans and monkeys. The study scanned cortical neurons
through invasive electrodes and allowed the user to control an artificial limb within a three-
dimensional (3D) space. This demonstrated multi-dimensional control in BCIs through
motor imagery. The advantage of multi-dimensional communication is that it enables the
user to control multiple parameters like pitch and rhythm simultaneously. Alternatively, by
using non-invasive EEG, Wolpaw and McFarland (2004) achieved two-dimensional (2D)
movement of a mouse cursor. In order to evaluate communication in BCIs, Yuan and He
(2014) considered a parameter called degree of freedom (DOF), which was the number
of independent control signals derived from neural activity. Miller et al. (2007) realised

1Refer to Luck (2014); Oostenveld and Praamstra (2001); Rowan and Tolunsky (2003) for more information
about placement of scalp electrodes
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high DOF by examining sets of five movement modalities, for example — shoulder, foot,
hip, hand, and tongue. Schalk et al. (2008) incorporated these modalities and achieved
a success rate of 53− 73%. Djemal et al. (2016) presented a three-class system with an
accuracy of 86− 93% and an ITR of up to 21 bits min-1, which is a high value for motor
imagery. Considering the current limitations of BCIs, motor imagery offers high relation to
the actual activity being performed. Examples of motor imagery tasks such as movement of
limbs can be related to rhythmic actions. This is an interesting aspect to explore for musical
applications.

2.4.3 P300

P300 falls under a class of BCIs that are based on event-related potentials (ERPs). ERP is
an electrical potential observed in EEG as a response to specific events or stimuli. It can be
elicited by sensory, cognitive, and motor2 events (Blackwood and Muir, 1990; Luck, 2014).
P300 (also known as P3) is a contraction of the terms ’positive’ and ’300 milliseconds’.
The P3 wave is a positive deflection that occurs approximately 300 milliseconds after the
onset of an event. Essentially, it is based on the odd-ball paradigm, which presents an
infrequent target alongside a frequent stimulus. Auditory, visual, and somatosensory stimuli
are common ways to realise the paradigm. For instance, if the probability of two discrete
sounds at 1000Hz and 500Hz is 0.8 and 0.2 respectively, the user discriminates the infrequent
sound by exhibiting a P300 response on its occurrence (Polich, 2012). The technique has
been adopted to build musical interfaces that offer active control. Grierson and Kiefer (2014)
discussed the development of a P300 scale player, composer, and algorithmic improviser.
The P3 wave has also lead to other interesting studies like George and Coch (2011), which
investigated the working memory in musicians and non-musicians during musical training.

As P300 adopts EEG, it uses non-invasive headsets to detect brain waves. The literature
does not provide a unanimous interpretation about the neural and cognitive processes behind
the P3 wave (Luck, 2014). Barrett et al. (1987); Naumann et al. (1992) discovered that
the scalp topography of the wave differed from one stimulus modality to the other (visual,
auditory, or touch). However, Picton (1992) suggested that P3 measurements are typically
taken from the Cz or Pz location, but a greater electrode density provides higher accuracy.
Environmental conditions of the BCI depend on the type of stimulus being used. An auditory
stimulus might not be appropriate for musical systems because of interference from the
output, that is the user will have to be isolated from the performance. Kaufmann et al. (2013)
demonstrated that P300 systems based on tactility were more accurate than vision or sound

2In this context, ERP is a response to motor activity, which is different from motor imagery
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for up to 4 choices. Musical interfaces generally require a greater degree of flexibility. In
this context, a visual-based system is more appropriate because it allows greater number of
options. For instance, Nijboer et al. (2008) presented a 49-choice speller that was tested on
ALS patients. A bright environment is not be suitable for visual-based P300 because it will
interfere with the stimulus. While using the system, the subject is expected to gaze at the
target choice. In addition to muscle noise and cardiac signals, eye artefacts are a significant
impediment in P300 research (Jung et al., 2000). Therefore, the user is expected to avoid
blinks and saccades while using the system.

As mentioned earlier, the number of choices available through visual-based P300 systems
is fairly high. A matrix grid like 6×6 or 7×7 is a popular design for such BCIs. For several
years, the row/column paradigm (RCP) proposed by Farwell and Donchin (1988) was widely
adopted to grant the user active control. Townsend et al. (2010) proposed a novel stimulation
technique called the checkerboard paradigm (CBP) and compared the two techniques. CBP
and RCP achieved an ITR of 23 bits min-1 and 17 bits min-1 respectively. The experiment
also presented a 8×9 grid, which corresponded to 72 choices. Besides spelling, P300 has
been adopted in several applications like brain painting, virtual reality, and gaming (Fazel-
Rezai et al., 2012). There are notable differences between using a musical instrument through
gaze-control and other conventional means. The technique serves as a novel paradigm for
communicating with the interface, but restrictions in muscular movement and fixing the
user’s vision to the interface during musical performance might be disengaging (Eaton, 2016).
Furthermore, this technique permits only unidimensional communication. Hence, the user
will not be able to control multiple aspects like pitch and rhythm simultaneously. However,
features like visual and audio feedback to denote the choice made by the user improves
user-participation. As these systems are often developed by using general purpose computers,
graphical objects and animations may serve as a compensation.

2.4.4 SSVEP

Steady state visually evoked potential (SSVEP) belongs to a category called sensory evoked
potentials (SEPs). SEPs are created when nervous tissues respond to a stimulation such as
clicks, electrical pulses, and flashes for auditory, somatosensory, and visual stimuli respec-
tively (Misulis and Head, 2003). Unlike ERPs, SEPs are locked in phase with the stimulus,
which can be enhanced through signal averaging and performing multiple trials (Başar, 1980;
Başar et al., 1999; Vialatte et al., 2010). SEPs that are evoked by using visual stimuli are
coined as visually evoked potentials (VEPs). One of the early VEP-based BCIs was devel-
oped by Sutter (1992), which adopted transient VEP (TVEP). TVEPs are obtained at low
stimulus rates where average responses are locked in time with the triggering stimulus (Regan,
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1989; Tobimatsu, 2002). While TVEP interprets time-domain characteristics, SSVEP occurs
at higher rates and exploits frequency-domain features. The user is provided with active
control by presenting multiple regions flashing at unique frequencies. The corresponding
frequency is induced in EEG, which can be detected through spectral analysis. Miranda et al.
(2011) adopted SSVEP to enable the user to make choices from an array of musical notes.

SSVEP-based systems have predominantly used non-invasive electrodes. The signal
strength of SSVEP is highest in the occipital region, which encloses the visual cortex (Wang
et al., 2010). Some studies have also realised high SNRs in the parieto-occipital region (Chen
et al., 2015b). Wang et al. (2008) stated that these BCIs could either use 2 electrodes (O1
and O2 location) or higher densities of 4 to 12 electrodes. Evidently, they follow the pattern
of more electrodes leading to more reliable signals. Vialatte et al. (2010) reported that the
size of and distance from the stimulus might affect the performance of SSVEP. Bright and
noisy environments are potential causes for decrease in communication rates (Wang et al.,
2006). The user is required to avoid eye blinks and muscular movements. Using the system
over prolonged duration leads to mental load and visual fatigue, which causes a decrease in
SSVEP amplitude (Xie et al., 2016). While using the system, subjects might be unable to
adapt to the flashing lights and have to sit in a fixed posture, which causes physical discomfort
(Hasan et al., 2013). The above factors account for imperative restrictions imposed on the
user and environment while adopting this technique.

There has been a perpetual growth in communication rates for SSVEP. In the first
international meeting devoted to the BCI research, systems realised ITRs between 5−
25 bits min-1 (Wolpaw et al., 2000). Over the years, there have been several improvements in
mathematical functions that define visual stimuli and signal processing techniques to analyse
EEG. The method has been widely adopted for applications in computer games (Lalor et al.,
2005), robotics (Bell et al., 2008), and three-dimensional (3D) navigation (Wang et al., 2018),
to name but few. Chen et al. (2015b) achieved an ITR of 319.2 bits min-1, which is the highest
recorded communication rate for both invasive and non-invasive BCIs. The system presented
a 40-target speller which allowed the user to enter one character per second. SSVEP suffers
from a thin relation between the application and the actual activity being performed. Similar
to P300, SSVEP is method of unidimensional communication. However, visual feedback
through graphical animations can be incorporated to improve user-engagement in the system.

2.5 Comparison of BCMIs

This section presents an in-depth discussion on the 4 types of BCMI systems based on the
proposed framework of comparison. All categories recognise EEG as a feasible and optimal
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way of detecting brain waves. This makes them convenient because it is a non-invasive
technique. Topography of electrode placement is specific to the type of system and BCIs
improve performance by increasing electrode density. However, the cost of manufacturing
EEG headsets generally depends on the number of electrodes and not their orientation.
Passive systems and motor imagery do not require specific environmental conditions because
they are endogenous in nature. P300 and SSVEP need to be placed in environments that
are dimly or moderately lit because they are based on visual stimuli. This might hinder
the deployment in live musical scenarios. Considering subject-centric conditions, motor
imagery inevitably requires training. If the passive BCMI adopts SCP, user-training is
necessary. Training sessions for motor imagery span from few days and weeks to even
months (Birbaumer et al., 2003; Mulder, 2007; Pascual-Leone et al., 1995; Wolpaw and
McFarland, 2004). User-training improves performance in SSVEP and P300, but it is not
essential. Moreover, optimisations in signal processing techniques have been proposed to
achieve high communication rates through unsupervised classification algorithms (Islam
et al., 2017; Nakanishi et al., 2014a). The visual-based systems induce visual fatigue and
tiredness, which reduce their usability over prolonged durations. Table 2.1 summarises the
above points based on the three parameters — convenience of detection, environmental
conditions, and user-centric conditions.

BCMI Method of Detection Environmental conditions User-centric conditions
Passive Good Good Good

Motor Imagery Good Good Satisfactory
P300 Good Satisfactory Satisfactory

SSVEP Good Satisfactory Satisfactory
Table 2.1 Comparison of BCMIs based on method of detection, environmental conditions,
and user-centric conditions.

There is a remarkable difference of ITRs observed in SSVEP when compared to the rest
of the paradigms. Taking note of the above discussions, SSVEP-based systems can be up to
10 times faster than other BCIs. Vialatte et al. (2010) argued that the performance of SSVEP
highly depends on experimental design. Minor differences in unnoticed or uncontrolled
parameters lead to variations in performance. However, several laboratories report ITRs
between 130 − 170 bits min-1 (Chen et al., 2015a; Erkan and Akbaba, 2018; Nakanishi et al.,
2014b), which is at least 5 times higher than other techniques. ITR is an amalgamation of
accuracy, number of available choice, and speed of detection. If you observe, the ITR in P300
and motor imagery is almost equal. The former offers a huge number of choices to the user.
It is commonly higher than SSVEP as well. The latter provides up to 5 choices, but 3 with
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reliable accuracy. The speed of detection is higher in motor imagery when compared to P300
and thus, they have similar ITRs. Having only 3 different choices can impose limitations
for a musical interface. A passive system struggles to delineate a clear relation between the
user’s response and the output. P300 and SSVEP are visual-based systems that operate based
on the user’s gaze-control. The subject will have to avoid eye blinks and minimise muscular
movements, which might prevent them engaging with the music. However, visual and
auditory feedback may compensate for this issue. Motor imagery has the minor advantage
of it being endogenous and thus, does not depend on the external environment. Table 2.2
depicts the comparison of BCMIs based on communication.

BCMI Communication rate Relation
Passive Low Low

Motor Imagery Medium High
P300 Medium Medium

SSVEP Very high Medium
Table 2.2 Comparison of BCMIs based on communication. Relation in table stands for
relation between the activity and the actual application.

Figure 2.1 illustrates an evaluation of all 4 BCMIs based on usability of the BCMI
and communication between the user and system. Both motor imagery and SSVEP serve
as potential paradigms for BCMIs. The former strikes a reasonable balance between the
two criteria and the latter realises very high ITR. Let us consider few examples of musical
interfaces in order to conduct a deeper analysis. Piano serves as a popular test case for
computer music studies. In order to cover all the notes within an octave, it requires 13
choices. This is achievable through SSVEP, but not motor imagery. Moreover, SSVEP would
facilitate the expansion to multiple octaves. Contrarily, the sound of percussion instruments
like Drum kit, Tabla, Taiko, Tambourine, etc. can be condensed and approximated to few
choices of 2 to 4 and still maintain their characteristic sounds. As mentioned earlier, motor
movements can be associated to percussion-like activity and therefore, motor imagery is
more suitable for such an application. Let us take examples of musical tools that are not
for performance. In order to develop a BCI-based software that allows a user to create a
composition, it would be convenient to have different options for pitch, loudness, duration,
and rhythm. In order to achieve this through motor imagery, the user will have to navigate
between huge number of screens with binary choices, which would be time-consuming.
Making musical selections like arpeggios, melodies, and songs would require high degree of
flexibility during interface design. Hence, based on current trends in BCI technologies, this
chapter concludes SSVEP as the most suitable technique to develop BCMI applications.
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Fig. 2.1 Comparison of BCMIs based on usability of BCMI and communication between
user and system. Note that this graph is based on qualitative analysis.

2.6 Paradigms in SSVEP

The visual stimulus for SSVEP can be based on three different principles — (i) time mod-
ulated VEP (T-VEP), (ii) frequency modulated VEP (F-VEP), and (iii) code modulated
VEP (C-VEP). In T-VEP, each region flashes at an on or off state. Flickering sequences are
designed such that regions are mutually independent (Lee et al., 2006). These are locked in
time and phase with the onset of the stimulus (Bin et al., 2009a). As the on and off states for
every region are mutually exclusive, they are required to have low stimulus rates. Moreover,
accurate detection requires averaging over multiple trials. Thus, the ITR obtained through
T-VEP is about 30 bits min-1, which is considerably less than the other two techniques (Bin
et al., 2009a).

For F-VEP, each region flashes at a unique frequency and evokes the same frequency in
the subject’s EEG. It can be realised through two platforms — light emitting diodes (LEDs)
or a monitor screen. LEDs are controlled by micro-controllers or dedicated circuitry that
give them the advantage of accurately flashing at the required frequency. LCD screens, on
the other hand, are restricted by the monitor refresh rate because the refresh rate needs to
be divisible by the stimulation frequency. For example, in a LCD screen of refresh rate
60Hz, the possible stimulus frequencies are 30, 15, 12, 10, 8.57, 7.5Hz, and so on. However,
interfaces are highly customisable with general purpose computers when compared to LEDs.
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Alternatively, another useful parameter that is often encoded in the visual stimulus is phase.
As mentioned earlier, F-VEPs are phase-locked and time-locked with the stimulus. For
instance, by using 15Hz, 4 regions can be presented different with phases of 0, π/2, π , and
3π/2 (Jia et al., 2011). This is commonly referred to as mixed frequency and phase coding.
Nakanishi et al. (2014b) adopted this technique to develop a 32-target BCI-speller, which
achieved an ITR of 166.91 bits min-1. Frequency resolution is an important factor while
designing the visual stimulus. As frequencies are placed closer to each other, they are less
distinguishable, but offer greater number of choices to the user.

The on and off states in C-VEPs are based on pseudorandom sequences. Maximum
length sequence (m-sequence) is a popularly used technique to generate pseudorandom
binary sequences, where 1 and 0 stand for on and off respectively. There is a unique pattern
of binary digits assigned to every region. In this type of system, user-training is required. Bin
et al. (2011) developed a 32-target BCI speller and achieved an ITR of 108 bits min-1. During
the training phase, the user is expected to gaze at a particular region and EEG template
signals are recorded. In the online version of the system, the user’s choice is detected by
calculating correlation values between the user’s signals and template signals.

For a brief period in BCI research, C-VEPs realised the highest ITRs. However, devel-
opments in F-VEP have enabled it to obtain higher communication rates. Manyakov et al.
(2013) proposed the use of sinusoidal stimulation as opposed to the conventional on / off
technique. This study gained popularity as it evoked a more stable phase response in EEG.
Chen et al. (2015b) utilised this paradigm to develop a novel stimulation technique, joint
frequency-phase modulation (JFPM) and obtained an ITR of 319.2 bits min-1. The study
attributed this multi-fold increase in performance to the stimulation technique. Therefore,
this chapter deduces JFPM as the most suitable stimulation technique for SSVEP-based
BCMIs.

2.7 Concluding Discussions

This chapter surveyed the different types of BCIs that can be incorporated into computer
music. It explored the prospects developing musical interfaces by using an appropriate
paradigm. It investigated each category based on two criteria — usability of the BCMI and
the communication between user and the system. The first criterion consisted of method
of detection of EEG, environmental conditions, and user-centric conditions. The second
criterion encompassed communication rate (ITR) and the relation between the activity and the
actual application. Each kind BCI possessed exclusive advantages over the other. A passive
system realised high usability, P300 provided huge number of choices to the user, motor
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imagery established a strong relationship between the activity and application, and SSVEP
attained very high ITR. However, this thesis aims make BCMIs more usable for practical
deployment and improve communication rates. Therefore, framework of comparison was
targeted towards finding an appropriate BCI technique that would achieve this objective.

The discussions acknowledged motor imagery and SSVEP as potential approaches for
BCMIs. As shown in figure 2.1, the former achieved a good balance between the two criteria
of comparison and the latter realised an extremely high ITR. Motor imagery was applicable
to musical contexts that required 3 to 5 options. This is practical for applications that
control percussion instruments. Contrarily, SSVEP has provided 32 to 40 targets in several
studies. This can be useful to build musical systems such as piano interfaces, DJ systems,
and composition tools. Considering the current challenges faced by the BCI community
and requirements of musical applications, the chapter prioritised ITR over other factors and
concluded SSVEP as the most suitable technique.

The chapter also reviewed paradigms in SSVEP. It acknowledged the rapid nature of
neurotechnology. It discussed how LEDs were initially used to flicker at the correct frequency
and later changed to sinusoidal stimulation through the computer screen. Such advancements
open up the opportunity to incorporate these new techniques into computer music. For
instance, within the Interdisciplinary Centre for computer music Research (ICCMR), Eaton
(2016) created a BCMI by using LEDs and presented 4 choices to the user. Such a system
can be modified and deployed on a laptop or tablet. Moreover, on / off stimulation can be
changed to JFPM to realise greater communication rates. Improvements in usability will be
advantageous to patients who are suffering from motor disabilities. For such individuals to
use these systems, specialists and engineers are normally required to set-up the system. If
there is an improvement in portability and ease of use, the system can be assembled by carers
and nurses, who are not experienced with neurotechnology.
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Chapter 3

Investigating Methods for Stand-alone
Brain-computer Music Interfaces

3.1 Overview

This chapter explores methods to develop stand-alone brain-computer interfaces (BCMIs)
based on steady state visually evoked potential (SSVEP). It adopts a dry and wireless
electroencephalogram (EEG) headset to improve the portability of BCMI systems. The
visual stimulus was created and presented on a laptop by using JUCE, which is a C++ audio
application framework. The chapter discusses technical aspects involved in creating the
stimulus and a dedicated thread to receive data from the headset. Over the years, there have
been several developments in visual stimulation techniques and EEG analysis paradigms for
brain-computer interfaces (BCIs), which have been incorporated in this chapter. The system
was tested on 8 different subjects. A novel and customised filter was designed to increase
the signal to noise (SNR) of brainwaves. For a time window of 4s and 2.25s, the mean
accuracy of the BCMI was 91.67±8.87% and 79.17±13.75% respectively. In comparison
to earlier BCMIs, this chapter presents a system that is more portable, increases number of
user-available choices to 6, and improves communication rates.

3.2 Introduction

Brain-computer music interfaces (BCMIs) provide a form of musical control that requires
no or minimum muscular power. It is beneficial for patients who are suffering from locked-
in syndrome, which is the loss of all or most motor abilities, because it offers them a
way to experience the realm of music technology. It also allows creative practitioners
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to communicate with musical applications through a novel mechanism of control. Brain-
computer interfaces (BCIs) are generally tested in laboratories with controlled environments.
There are many factors that determine the performance of the system. The evaluation
framework presented in section 2.3 stressed on the importance of considering environmental
and user-centric restrictions while deploying BCIs. This chapter focuses on making SSVEP-
based BCMIs more robust and applicable for real-world scenarios. Equipment that is
used to detect electroencephalogram (EEG) is normally expensive and bulky. Traditional
headsets use multiple layers of wiring, which force them to be attached to the analysing
unit (Lin et al., 2008). This causes inconvenience and reduces mobility. Headsets with high
electrode densities provide reliable signals, but concurrently increase the manufacturing cost.
Additionally, they require greater set-up time. Fundamentally, there are two types of EEG
electrodes — wet and dry. The former strengthens contact between the electrode and scalp
with the help of gel, which acts as an electrolyte. This is the most popular type of electrode
in BCI experiments. It provides excellent quality for non-invasive signals and is ideal for
biomedical and physiological research (Searle and Kirkup, 2000). On the other hand, dry
electrodes are more convenient because they directly sit on the head without any additional
substances. They suffer from lower signal quality and are vulnerable to higher impedances
between the electrode and skin. Moreover, LEDs accurately present the visual stimulus, but
are not suitable for customisation and larger number of targets. As trends transformed from
LED matrices to LCDs, scientists generally presented the stimulus on 21 to 23.6 inch monitor
screens (Wang et al., 2017, 2012). Despite them being a more usable alternative to LEDs,
these monitors are less portable. For instance, attaching this bulky monitor to a wheelchair
would be difficult.

Neuroscientists have pursued the different challenges that are encountered while unfold-
ing this technology. Over the years, various companies have invested in building wireless
systems for EEG detection (Hairston et al., 2014). They are generally governed by a propri-
etary wireless protocol or Bluetooth. The 10-20 International system was originally proposed
by Jasper (1958), allowed 21 possible locations on the head. Researchers acknowledged
the necessity for higher electrode densities and devised alternative methods like modified
combinatorial nomenclature (MCN) and the 10-5 system (Klem et al., 1999; Oostenveld and
Praamstra, 2001). For practical deployment of SSVEP, recording signals from all these loca-
tions is unnecessary. Instead, highest SNR is achieved in the occipital and parieto-occipital
region. For instance, Wang et al. (2008) developed a SSVEP-based BCI that detected EEG
from 2 locations — O1 and O2. Therefore, customised EEG headsets can considerably
minimise cost. Despite the excellent signal quality from wet electrodes, using them for
practical purposes like wheelchairs, prosthesis, computer and musical interfaces, etc. can
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be time-consuming. In the case of carers who look after locked-in syndrome patients, ap-
plying the head is a sophisticated hands-on task and notably increases set-up time of the
BCI, especially when there is a higher number of electrodes. Searle and Kirkup (2000)
reported the rare occurrences of dermatological responses due to toxicological properties
of electrolytic gels. Moreover, the subject’s head needs to be cleaned after use. Therefore,
studies have been directed towards improving contact between skin and gel-free electrodes.
Typically, impedance values are in the range of 150−200kΩ and 5−10kΩ without and with
gel respectively (Lopez-Gordo et al., 2014). The performance of dry SSVEP-based systems
can be improved by increasing number of electrodes (Lin et al., 2007) and optimising visual
stimulation and signal processing techniques (Chen et al., 2015b). This project aims to
develop a BCMI that adopts a wireless and dry EEG headset manufactured by Cognionics,
Inc. In order to realise bespoke optimisations, all experimental paradigms have solely used
this headset and not alternative sensors.

Wang et al. (2011) explored the prospects of exploiting the ubiquity of cell-phones for
BCIs. The phone performed the operations of receiving and analysing EEG and auditory
feedback. However, the visual stimulus was presented on a 21 inch monitor. Wang et al.
(2013) extended the study to develop a stand-alone phone-dialling application which encapsu-
lated all BCI operations into a laptop, tablet, or mobile. The chapter enhanced the prospects
of building truly portable BCIs. SSVEP-based BCMIs can be realised in several ways —
generate musical phrases, produce audio output of instruments, or a composition tool that
remembers previously made choices. However, the operations of BCMIs are often carried
out by separate processors. For instance, Eaton (2016) used 2 different laptops to present
the visual stimulus and run the musical engine, which is due to the fact that audio processes
require dedicated threads, which make them computationally demanding to run alongside
BCI operations. This thesis aims to develop a SSVEP-based stand-alone BCMI that realises
audio output. It proposes the idea of building these systems by using JUCE, which is a
C++ application framework used to develop mobile and desktop software. JUCE allows
cross-platform development, which would enable the deployment of BCMIs in Windows,
Android, Linux, iOS, and macOS. It aims to exploit the ubiquity of these platforms to expand
the reach of neurotechnologies. This chapter delves into the technical aspects involved
in developing the visual stimulus by using open graphics library (OpenGL) and a driver
to receive signals from the EEG headset. It provides the user with 6 choices and adopts
joint-frequency phase modulation (JFPM) as the visual stimulation technique. It tests the
system on 8 subjects and evaluates the performance based on an offline analysis. Signal
processing and filtering techniques have been analysed and a framework for developing an
online BCMI has been proposed.
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3.3 System Design

As shown in figure 3.1, the operations carried out by BCMIs can be categorised into 4 sub-
operations — providing the visual stimulus, receiving EEG signals, analysing the obtained
data, and producing audio / musical output. This chapter discusses the details of the first
three sub-operations. The specifications of the laptop in this project is 17.3 inch, HP ProBook
470 G4, Windows 10, 8GB RAM, Intel i7 2.7GHz, NVIDIA graphics GeForce 930MX, and
Integrated HD graphics 620.

3.3.1 Visual Stimulus

This subsection is divided into 2 portions — (i) technical specifications of implementing the
visual stimulus (ii) Properties of the stimulus.

Fig. 3.1 Overview of BCMI system. The symbols in the visual stimulus stand for MIDI
notes.

3.3.1.1 Technical Specifications

Fundamentally, there are two possible ways of rendering a graphical user interface (GUI)
— central processing unit (CPU) and the graphical processing unit (GPU). On one hand,
business applications display objects on the screen by mainly using the CPU. On the other
hand, modern computer games utilise the power of the CPU and GPU working in tandem
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to provide the user with a mesmerising 3D experience. The laptop used in this project has
a refresh rate of 60Hz. Therefore, the most straightforward way to implement the visual
stimulus is to set a timer thread at 16.67ms and print the visual stimulus by using the CPU.
This is not efficient as it can lead to problems like screen tearing (which is a visual artefact).
Moreover, Windows 10 is a general purpose operating system and not a real-time operating
system (RTOS), which leads to unreliable timing operations (Cecotti et al., 2010; Stankovic
and Rajkumar, 2004). SSVEP-based BCIs that present the stimulus on computer screens
often take advantage of hardware accelerated rendering, in which the computational load
is shared between the CPU and GPU. This project harnesses JUCE’s support for OpenGL,
which is an application programming interface (API) to integrate the GPU (Segal and Akeley,
2018). On systems like mobile phones and tablets, hardware accelerated rendering is obtained
through OpenGL ES, which is cross-platform API that comprises most functions of OpenGL.

For SSVEP-based BCIs, it is crucial to obtain vertical synchronisation (VSync). VSync
is the process of synchronising the display refresh rate and the frame rate of the application,
which has been enabled in the system. It prevents the software from sending more number of
frames than the monitor can render. This project adopts sinusoidal stimulation for SSVEP,
which was proposed by Manyakov et al. (2013). The flashing stimulus is presented by
varying the luminance of the screen, which varies between 0 and 1. The luminance of the
target is defined by equation 3.1.

s =
1
2
{1+ sin(2π f 0t)} (3.1)

where s is the luminance of the region, f0 is the stimulation frequency, and t is the time. In
the programme, t is updated every 1ms. Rhodes (2010) explains the importance of frame-rate
independence during game development, where the physics of the game is independent of
the refresh rate. This programme realises frame-rate independence. Altering the stimulus
between colours of white and black is a popular technique that is used by many studies (Chen
et al., 2015a; Nakanishi et al., 2014b; Wang et al., 2017). In other words, luminance value of
1 stands for white and 0 stands for black. In OpenGL, colour is defined with 4 attributes —
red, green, blue, and alpha (RGBA). Therefore, based on equation 3.1, the colour output of a
specific region can be defined as {s,s,s,1.0}.

In computer graphics, instructions to the GPU are passed with the help of a shader
programme, which is written in a shading language. The language used by OpenGL is
OpenGL shading language (GLSL). In this project, a shader programme has been developed
to present the visual stimulus. It is divided into two components — vertex shader and
fragment shader. The former specifies the coordinates of the stimulus and the latter denotes
the colour.
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3.3.1.2 Properties of the Stimulus

SSVEP stimulus frequencies can be categorised into 3 bandwidths — low (4 − 12Hz),
medium (12−30Hz), and high (> 30Hz) (Bin et al., 2009a; Regan, 1989; Sözer and Fidan,
2018; Zhu et al., 2010). The spectral peak observed in EEG is the highest for low stimulation
frequencies (Chen et al., 2014). The EEG headset in this project uses only 4 dry electrodes
and thus, it is essential to choose stimulation frequencies that elicit high SSVEP amplitude.
There are two possible ways of choosing stimulation frequencies. One way is to analyse
the subject’s response to different stimulation frequencies and prepare a set of appropriate
frequencies. This method was adopted by Eaton (2016), where the best frequencies were
found to be 7, 7.5, 8, and 12.5Hz for 4 different choices. It has the advantage of choosing
the most optimal set of frequencies. However, the drawback is that it restricts the expansion
of choices. The set of optimal frequencies need to be re-calculated for a change in the
number of choices. Alternatively, in the second method, regions can be arranged in a fixed
interval, such as 7, 7.5, 8, 8.5, 9.0Hz, and so on. By using this technique, Chen et al. (2015b)
developed a 40-target speller in the frequency range [8,15.8Hz] with a frequency resolution
of 0.2Hz. Considering the headset adopted by this project, such a low resolution may not
be feasible. Therefore, this project implements a 6-target interface with the frequencies
in the range [6.0, 9.0Hz] and a resolution of 0.6Hz. This increases the number of choices
when compared the previous system within ICCMR (which is 4, Eaton (2016)). Based on
the system’s performance with 6 targets, more number of options can be explored in future
research.

In JFPM, each target has a unique frequency along with a unique phase. Each region
becomes more discriminable because it encompasses two unique attributes instead of one.
Hence, equation 3.1 can be modified to include phase features and can be defined as follows.

s =
1
2
{1+ sin(2π f 0t)+φ 0} (3.2)

where φ 0 is the phase.
Duszyk et al. (2014) conducted a study towards optimising stimulus parameters for

SSVEP. There was a strong linear relationship between the size of the stimulus and magnitude
of SSVEP, that is bigger the size, greater the spectral peak (Mouli and Palaniappan, 2016).
The experiment also revealed that there was no significant relationship with inter-stimulus
distance. This chapter considers these factors presents the visual stimulus as shown in figure
3.2. High priority has been given to presenting a large stimulus size and less priority has
been given to inter-stimulus distance. Each flashing region is a square of side 3 inches (384
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pixels). The horizontal and vertical distances between stimuli are 1.51 inches (192 pixels)
and 0.85 inches (108 pixels) respectively.

Fig. 3.2 A screenshot of the visual stimulus while the regions are flashing. Note that the text
in red colour is only for reference and is not a part of the stimulus. Frequency and phase
values of each region are mentioned (frequency is above and phase is below).

3.3.2 Receive EEG

As shown in figure 3.3, the project employs a customised version of the Quick-20 EEG
headset manufactured by Cognionics, Inc, which has a sampling rate of 500Hz. It detects
brain waves from four different locations — Cz, Pz, O1, and O2. The headset uses the
left earlobe or A1 position as the reference electrode. The ground electrodes are located at
the forehead. The technology developed by Cognionics detects EEG through two different
sensors — flex and dry pad sensors (Cognionics Wiki, 2017). Flex sensors are used for
regions that contain hair. These are designed to touch the scalp through the hair and obtain
acceptable impedance values. Cz, Pz, O1, and O2 are generally hair bearing areas. Dry
pad sensors are specifically designed for regions with little or no hair. They attain very low
impedances as there is no interference from hair.

The headset transmits data through Bluetooth, which is a wireless protocol. Cognionics
provides a data acquisition software to receive EEG signals. However, this project aims
to create a stand-alone application, which is independent of third party software. Hence,
a dedicated thread to receive signals has been written. Each headset is hard-paired with a
Bluetooth dongle (shown in figure 3.3b), which can be connected to the USB port of the
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(a) The 4 different electrode positions of
the EEG headset.

(b) Bluetooth dongle

(c) Components of the headset

Fig. 3.3 EEG headset adopted by this project
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laptop. The dongle uses a chipset manufactured by Future Technology Devices International
Ltd (FTDI). In the system, connection between the dongle and application was established
by using the API provided by FTDI.

3.3.2.1 Network Packet

Data recorded by the EEG headset is transmitted through a network packet, which is data
packaged into one unit. Cognionics Wiki (2014) explains that each network packet contains
data recorded by all electrodes at an instant of time. The network follows a serial protocol
and each packet contains 27 bytes as shown in table 3.1.

Sl. no. Byte
1 Packet header
2 Packet counter
3 Cz — MSB
4 Cz — LSB2
5 Cz — LSB1
6 Pz — MSB
7 Pz — LSB2
8 Pz — LSB1
9 O1 — MSB

10 O1 — LSB2
11 O1 — LSB1
12 O2 — MSB
13 O2 — LSB2
14 O2 — LSB1

Sl. no. Byte
15 Acc. X — MSB
16 Acc. X — LSB2
17 Acc. X — LSB1
18 Acc. Y — MSB
19 Acc. Y — LSB2
20 Acc. Y — LSB1
21 Acc. Z — MSB
22 Acc. Z — LSB2
23 Acc. Z — LSB1
24 Impedance check
25 Battery voltage
26 Trigger — MSB
27 Trigger — LSB

Table 3.1 Data arrangement within each packet.

Every packet has a packet header, which is 0xFF. The headset is designed such that no
other byte can contain this value. The second byte is a packet counter, which runs from
0x00 to 0x7F. It allows the detection of missing packets during transmission. The size of a
sample recorded by each electrode is 24bits or 3bytes. In order to sequentially transmit data,
the reading is split into most significant bit (MSB), least significant bit 2 (LSB2), and least
significant bit 1 (LSB1). There are three accelerometers (abbreviated as Acc.) for X, Y, and
Z coordinates, which are not considered by the system.

3.3.2.2 Contact between Electrode and Skin

In laboratories, SSVEP experiments are generally performed with electrode impedances
under 10kΩ (Bin et al., 2009b; Chen et al., 2015a; Wang et al., 2017). This is easily achievable

31



3.4 Experiment

through wet electrodes. However, the flex sensors adopted by this project offer impedances
in the range of 100− 2000kΩ (Cognionics, 2018), which is at least 10 times higher than
commonly used values. Therefore, there would be a sharp decline in SNR of obtained EEG
signals. Contact between the electrode and skin is calculated with the help of a carrier wave.
A higher carrier amplitude corresponds to greater impedance and vice versa. Mathematical
formulae to calculate the impedance values from the carrier can be found in Cognionics Wiki
(2014). The frequency of the carrier is 125Hz.

As the project adopts dry electrodes, it is relatively straightforward to apply the headset
on the subject. Some suggestions (which were empirically observed) for improved signals
are stated as follows. The electrodes need to be gently moved around and pressed against
the head until an impedance of less than 1000kΩ is attained. The advantage of using these
sensors is that their impedances with the skin reduces with the time. Therefore, at regular
intervals of time (approximately every minute), the electrodes are lightly pressed against the
head (without moving it or changing the position). In all circumstances (for all subjects with
varying hair lengths), for all 4 electrodes, a contact of less than 250kΩ was achievable within
10 minutes. The headset provides the option of either disabling or enabling the carrier wave.
After obtaining a contact of under 250kΩ, the carrier wave was disabled. This would allow
full bandwidth of EEG signals with no interference from the carrier.

3.4 Experiment

This section presents an account of experimental procedures and tests conducted with the
system. All methods were approved by the ethics committee of University of Plymouth, UK
(the details can be found in appendix A). By using MATLAB, the chapter aims to perform an
offline analysis over the data collected from experiments.

3.4.1 Set-up

8 subjects (6 males and 2 females) in the age range of [23,55] years participated in the
experiments. The experiment was conducted in a dark room. Subjects were asked to perform
the experiment bare feet, minimise body movements, and keep electronic gadgets away.
During the experiment, subjects were requested to avoid eye blinks. However, there were no
methods adopted to detect unintentional eye movements.

6 targets were present on the screen as shown in figure 3.2. A green colour visual cue
indicated which target the subject is supposed to look at, which is chosen randomly by the
computer. The cue appears for 0.7s and the users are expected to immediately shift their gaze
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to the corresponding region. Subsequently, only the borders of the 6 regions are visible for
0.3s. After 1s, all regions flash at their respective frequencies for 4s. Each test case consisted
of 12 appearances (or 12 trials) of visual cues (that is, 2 for each target). After a test case,
subjects were asked to close their eyes and rest for few minutes. Totally, six test cases were
acquired from each user.

3.4.2 Data Analysis

SSVEP exploits frequency-domain characteristics and thus, power spectral density analysis
(PSDA) is the most straightforward method of interpreting EEG. A discrete Fourier transform
(DFT) can be performed on the signal obtained from any of the occipital or parieto-occipital
electrodes. However, non-invasive dry EEG is highly prone to noise. Solely detecting the
SSVEP frequency does not lead to reliable performance. Müller-Putz et al. (2005) discovered
the presence of harmonic frequencies in SSVEP. For instance, if the subject is gazing at
6.6Hz, then 13.2, 19.8, and 26.4Hz can be observed in the signals. Hence, detecting harmonic
frequencies improves the SNR of SSVEPs. Figure 3.4 shows the user’s SSVEP response for
6.6Hz. The fundamental frequency and the second harmonic are clearly visible in the graph.

Fig. 3.4 SSVEP recorded from O2 electrode for stimulation of 6.6Hz. Fundamental frequency
and second harmonic are marked in the graph.

Alternative signal processing techniques have gained popularity due to improved com-
munication rates. These methods take advantage of recording EEG from multiple channels.
Bipolar lead uses an active channel A as well as a reference channel R. The intended signal
is A−R. In the active channel, the SSVEP amplitude is required to be high and the reference
channel needs to have a lower amplitude. It is advantageous if they are placed close to each
other because they carry similar noise content (Wang et al., 2004). Therefore, bipolar lead
minimises noise in EEG. Lin et al. (2007) proposed the idea of using canonical correlation
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3.4 Experiment

analysis (CCA), which is based on statistical signal processing. The chapter demonstrated
CCA to be more efficient than bipolar lead. CCA is a multi-variate statistical technique
that quantifies the relation between 2 sets of variables (Härdle and Simar, 2003). Therefore,
unlike bipolar lead, more than two EEG channels can be used for EEG analysis. Let X be a
matrix comprising N samples recorded by the EEG headset as shown in equation 3.3.

X =


Cz[1] Pz[1] O1[1] O2[1]
Cz[2] Pz[2] O1[2] O2[2]

...
...

...
...

Cz[N] Pz[N] O1[N] O2[N]


N×4

(3.3)

Each region in the visual stimulus corresponds to a matrix of reference signals, which
consists of the fundamental frequency f 0 and harmonics as shown in equation 3.4.

Y =



sin[2π( f 0).1
f s

] cos[2π( f 0).1
f s

] . . . sin[2π(h f 0).1
f s

] cos[2π(h f 0).1
f s

] . . . sin[2π(Nh f 0).1
f s

] cos[2π(Nh f 0).1
f s

]
...

...
...

...
...

...

sin[2π( f 0).n
f s

] cos[2π( f 0).n
f s

] . . . sin[2π(h f 0).n
f s

] cos[2π(h f 0).n
f s

] . . . sin[2π(Nh f 0).n
f s

] cos[2π(Nh f 0).n
f s

]
...

...
...

...
...

...

sin[2π( f 0).N
f s

] cos[2π( f 0).N
f s

] . . . sin[2π(h f 0).N
f s

] cos[2π(h f 0).N
f s

] . . . sin[2π(Nh f 0).N
f s

] cos[2π(Nh f 0).N
f s

]


N×2Nh

(3.4)

where f 0 is the stimulation frequency, N is the number of samples recorded from the headset,
Nh is the number of harmonics, n indicates sample index, and h stands for harmonic index.
CCA finds two weight vectors W X and W Y such that the correlation between XW X and YW Y

is maximised. The dimensions of W X and W Y are 4×1 and 2Nh×1 respectively. Correlation
is defined by the following equation.

rAB =
∑

N
i=1(an − ā)(bn − b̄)

(N −1)sasb
(3.5)

where A = XW X, and B = YW Y, rA B is the correlation between A and B, an belongs to A, bn

belongs to B, N is the number of samples, ā is the mean of A, b̄ is the mean of B, sa is the
standard deviation of a, and sb is the standard deviation of b. There are two ways in which
CCA can be used for BCIs — supervised and unsupervised. In the former, weight vectors
are calculated over multiple trials and then averaged. In unsupervised detection, solely the
correlation value and weight vectors for that specific trial are used. The target with the highest
correlation value is considered to be the choice of the user. This chapter uses unsupervised
CCA and hence, would avoid time-consuming procedures like user-training. MATLAB’s
canoncorr function was used to calculate CCA. Furthermore, phase is not detected during
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3.4 Experiment

analysis. However, having a unique phase makes the flashing regions more discriminable
while the user is gazing at them.

The amount of data required to accurately analyse EEG depends on numerous factors
— frequency resolution, quality of EEG signals, number of electrodes, etc. According to
communication theory, for a resolution of ∆ f , a data length of 1/∆ f is required to meet
orthogonality condition (Chen et al., 2015b; Rappaport, 2001). There are two aspects in
SSVEP-based BCIs that make them disagree with this principle — (i) if there is more noise
content in EEG, then more time is required, (ii) detection of harmonic frequencies increases
speed (because 1/2∆ f is less than 1/∆ f ). Therefore, this chapter records SSVEPs for 4s,
which is long enough to meet orthogonality between stimulation regions. Moreover, in visual-
based systems, a visual latency of 7 to 15ms is generally observed (Fransson, 1966). During
analysis, this study discarded the first 20ms of EEG data after the onset of the stimulus.

3.4.3 Filtering

Figure 3.5 shows EEG signals recorded from the O2 electrode. As you can observe, the
global maximum of the graph is under 1Hz. In this system, frequencies below 6Hz are
sources of noise in SSVEPs. Moreover, a peak at 50Hz was detected, which can be attributed
to the electric hum. Considering the fact that the headset is wireless, this is an uncommon
issue. However, this noise was observed in most EEG recordings. In earlier research, Chen
et al. (2015a) proposed the use of filter banks (which is an array of band-pass filters) to
improve communication rates of BCIs. However, the design of the band-pass filter involves
a high-pass and low-pass filter in cascade. In order to achieve a steep roll-off in the low-
pass filter, it generally requires a very high filter order, which is computationally expensive.
Therefore, this chapter uses two filters in cascade — high-pass and notch filter. It predicts
that the effect of a low-pass filter for SSVEP is not noticeable.

Finite impulse response (FIR) filters have linear phase, but in order to achieve a sharp
magnitude response, it requires a high Q-factor (Taylor, 1983). This increases the computa-
tional cost, which might not be suitable for a stand-alone BCMI. Contrarily, infinite impulse
response (IIR) filters are computationally inexpensive to implement, but have non-linear
phase. Phase distortion might hinder the performance of the BCI because phase is encoded
in the flashing regions. Therefore, this project adopts zero phase filtering, where the signal
is filtered forward and then backward, resulting in no phase distortion (Gustafsson, 1996).
MATLAB’s filtfilt function was used for this operation. In order to obtain a steep roll-off in
the frequency response, Chebyshev and elliptic filters are have been used in BCI literature
(Chen et al., 2015a; Duszyk et al., 2014). However, this is done at the cost of pass-band
ripple in the output, which might be counterproductive in dry EEG (due to low SNR). Thus,
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Fig. 3.5 EEG recorded from O2 electrode for a stimulation frequency of 6.6Hz without
filtering.

this thesis incorporates Butterworth filters. The high-pass and notch filters were set at 4Hz
and 50Hz respectively. Their filter orders are 6 and 2 respectively. Figure 3.6a shows the
combined response of the filters and figure 3.6b reproduces figure 3.5 after filtering.

3.5 Results

3.5.1 Feedback from subjects

8 subjects referred to as S1 to S8 participated in the experiments. S1 and S4 were experienced
with SSVEP-based BCIs and the rest were BCI novices. S2, S7, and S8 stated that that
the flashing regions were very closely placed. It was difficult to independently gaze at the
required target due to interference from other flashing regions. Remaining 5 subjects said
that the visual stimulus design was comfortable. S1 and S6 experienced physical pressure
from the Cz electrode. This is due to the fact that the weight of the entire headset rests on
that electrode. It caused minor discomfort to the subjects, but it was viable for the duration
of the experiment.

3.5.2 Harmonics and Filtering

As mentioned earlier, harmonic components improve the performance of BCI systems. In
order to find the optimal number of harmonics (Nh), accuracy vs time graphs were plotted
for Nh = [1,10]. The accuracies of test cases obtained from all the subjects were collectively
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(a) Magnitude vs frequency plot of the filter applied to EEG signals.

(b) SSVEP response for 6.6Hz after filtering.

Fig. 3.6 Filtering in BCMI system.
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averaged. Figures 3.7 and 3.8 illustrates the performance of the system without and with
filtering respectively.

(a) Accuracy vs time for Nh = [1,5] without filtering.

(b) Accuracy vs time for Nh = [5,10] without filtering. Nh = 5 performs better than higher harmonic
values due to the absence of the notch filter.

Fig. 3.7 Averaged performance of BCMI system without filtering.

For both with and without filtering, Nh = 5 appears to be the optimal value. There is a
noticeable increase in performance from Nh values of 1 to 3. For Nh values of 3 to 5, there is
a slight increase in performance. However, as you can observe in figures 3.7b and 3.8b, there
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(a) Accuracy vs time for Nh = [1,5] with filtering.

(b) Accuracy vs time for Nh = [5,10] with filtering.

Fig. 3.8 Averaged performance of BCMI system with filtering.
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is no noticeable difference in performance for Nh values greater than 5. Therefore, this thesis
deduces 5 as the optimal value for Nh.

As you can observe in figures 3.7 and 3.8, filtering considerably improves the performance
of the system. For a data length of 2.5s, the accuracies are 72.05% and 80.21% for without
and with filtering respectively. For a data length of 4.0s, the accuracies are 79.86% and
91.67% for without and with filtering respectively. Hence, an improvement of about 10%
was observed with the application of the filter.

3.5.3 Individual Performance

This subsection analyses the individual performances of subjects for filtered EEG and Nh = 5.
Figures 3.9 and 3.10 illustrate accuracy vs time graphs for all subjects. As you can observe,
there is an increase in accuracy with data length. For 4s time window, all subjects excluding
S6 and S8 attained an accuracy of greater than 90%. S6 and S8 realised an accuracy of 87.5%
and 70.83% respectively. Table 3.2 tabulates the accuracy values for time window of 4s. It is
important to note that S8’s accuracy is considerably lower than the other subjects. The next
chapter aims to minimise inter-subject variation in performance.

Fig. 3.9 Accuracies of subjects 1 to 4. Values were calculated in steps of 0.25s.

40



3.6 Information Transfer Rate

Fig. 3.10 Accuracies of subjects 5 to 8. Values were calculated in steps of 0.25s.

Subject Accuracy (%)
S1 98.61
S2 90.28
S3 100
S4 94.44
S5 98.61
S6 87.5
S7 93.06
S8 70.83

Mean 91.67±8.87
Table 3.2 Accuracy of all 8 subjects for time window of 4s.

3.6 Information Transfer Rate

Information transfer rate (ITR) is a widely adopted metric that is used to evaluate the
performance of BCIs. It is a contraction of accuracy, speed, and number of targets, which
enables us to choose an optimal time window for the system. It has been defined in Wolpaw
et al. (2002, 1998) by the following mathematical formula (Chen et al., 2014; Yuan et al.,
2013).

IT R =
60
T

[
log2N + plog2 p+(1− p)log2

( 1− p
N −1

)]
(3.6)
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where T is the trial time in seconds, N is the number of flashing regions, and p is the accuracy
divided by 100.

While calculating ITR, it is important to consider the relax time between successive trials.
In this system, a test case consisted of 12 trials and a relax time of 1s was given between
each trial. During the relax time, the user shifts the gaze from one target to another. For
instance, after the user gazes at the target for 4s, the regions stops flashing for 1s, during
which the user shifts the gaze. ITRs for all subjects were averaged and plotted in figure 3.11.
The graph reveals that 2.25s is the optimal window for the BCMI. Table 3.3 tabulates the ITR
and accuracy values of all subjects for a time window of 2.25s. 2 subjects realised accuracies
of around 95%, 3 were between 80−90%, and 3 were below 70%. This reveals that that
2.25s is not an optimal window for all subjects. Instead, subject-specific time windows will
be more suitable for this system.

Fig. 3.11 Average ITRs of all subjects for different time windows.

3.7 Discussion

The previous SSVEP-based BCMI system developed within the Interdisciplinary Centre for
Computer Music Research (ICCMR) had 4 choices provided to the user (Eaton, 2016). By
using research grade Sahara g.tec headsets, the system realised an accuracy of 90.91−96.36%
and an average response time of 3.88s. However, when the project explored the use of a
commercial and wireless headset (which is the Emotiv epoc EEG wireless headset), it
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Subject ITR Accuracy
(bits min-1) (%)

S1 42.93 95.83
S2 28.58 83.34
S3 39.62 94.44
S4 26.27 80.56
S5 31.04 86.11
S6 16.48 66.67
S7 18.23 69.44
S8 11.06 56.94

Mean 26.78±11.17 79.17±13.75
Table 3.3 Accuracy of all 8 subjects for time window of 2.25s.

realised an accuracy of 60%. This is probably be due to detecting EEG with only one
electrode. Moreover, harmonic components of SSVEP were not considered for analysis. The
previous section of this chapter demonstrates the reliability of the Cognionics EEG headset
for SSVEP-based experiments. The communication rates obtained by this chapter surpasses
the performance of previous BCMIs with medical grade EEG headsets. This improvement of
performance is due to the following reasons — (i) increase in number of choices to 6, (ii)
Employing JFPM as the visual stimulation technique, (iii) Using CCA to analyse EEG, and
(iv) application of filters. Therefore, this chapter contributes to answering RQ2.

For data lengths of 4s and 2.25s, the standard deviations are 8.87 and 13.75 respectively.
This implies that a common time window for all subjects might not be favourable. Therefore,
user-specific optimisations might contribute to improved communication rates. The variation
in inter-subject performance can be due to three reasons — (i) different physiological
responses of subjects to SSVEP (Guger et al., 2012), (ii) inexperience of using the BCMI,
and (iii) experimental set-up of the BCMI. The first factor is beyond the scope of this thesis.
The second reason can be addressed by arranging user-training sessions with the BCMI.
The third factor opens up interesting possibilities to optimise the system. S2, S7, and S8
felt that the flashing regions were very close to each other. Perhaps, their performance
can be improved by reducing the size of the flashing regions and increasing the distance
between them. The configuration of the Cognionics headset might not be suitable for all head
sizes. For instance, O1 and O2 electrodes might not be reaching the occipital regions of the
respective subjects.

ITR might not be the best method to evaluate musical applications. For instance, a BCMI
that triggers piano samples based on the user’s choice might require a small time window.
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Contrarily, if the system is outputting musical phrases (which is a series of notes), it will be
advantageous to have a bigger time window.

3.8 Conclusion

This chapter investigated methods to develop stand-alone BCMIs and supported answers
to RQ1 and RQ2. It proposed the use of an audio application framework called JUCE to
develop these systems on platforms like laptops, tablets, cell phones, etc. The ubiquity
of these platforms can be exploited to widen the outreach of neurotechnologies. Out of
the 4 different operations carried out by BCMIs, 2 operations were encapsulated into a
multi-threaded programme — providing visual stimulus and detecting EEG. Collectively,
by implementing these functions, the chapter contributes to answering RQ1, which aims to
make BCMIs more usable for real-world scenarios. The visual stimulus was developed with
the help of OpenGL alongside vertical synchronisation. It adopted sinusoidal stimulation
which was controlled by a dedicated timer thread. OpenGL shader programmes were written
to harness the computational power of the GPU. The system adopted a dry and wireless EEG
headset manufactured by Cognionics, Inc., which detected brainwaves from four regions
— Cz, Pz, O1, and O2. Few methods to obtain optimal signal quality were discussed. A
bespoke thread was created to receive data from the headset.

The experiments in the chapter confirmed that a small screen like the 17.3 inch laptop and
a dry EEG headset is suitable for SSVEP-based BCIs. An offline analysis was performed in
MATLAB. The chapter incorporated canonical correlation analysis (CCA), which has proven
to be more robust than bipolar lead (Lin et al., 2007). It focused on unsupervised analysis of
EEG, which allowed the system to operate without user-training. The experiments revealed
that the optimal number of harmonics (Nh) is 5. This agreed with findings in Chen et al.
(2015a). This chapter also devised a customised filter that eliminated noisy low frequencies
and the 50Hz hum. It was demonstrated that filtering greatly improved the performance of the
BCMI. Considering the fact that the system used dry EEG, it realised high communication
rates (mean ITR of 26.78± 11.17 bits min-1) and thus, answering RQ2. In addition to
filtering, this improvement was credited to using joint frequency-phase modulation (JFPM)
as the visual stimulation technique and CCA as the analysis paradigm.

The dataset attained a low standard deviation for a time window of 4s, but a higher
deviation for 2.25s. This established that the optimal time window might not be common for
all subjects. User-specific improvements might increase communication rates, which would
make the BCMI more universal. These facts call for the need of evaluating the experimental
set-up of the BCMI. They embody the foundation for the next chapter in thesis, which would
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focus on optimising biomedical engineering-based parameters. It may explore different
visual stimulus sizes, which might minimise the inconveniences caused to some subjects.
Furthermore, 2 more operations — analysis of EEG and producing audio output need to be
incorporated within the JUCE application. After doing so, an online BCMI system which is
independent of any third party applications would be created.
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Chapter 4

Building Musical Systems By Using
Optimal Parameters

4.1 Overview

The focus of this chapter is twofold — improving the communication rates of the steady state
visually evoked potential (SSVEP)-based system proposed in chapter 3 and developing a
stand-alone brain-computer music interface (BCMI). The former is achieved by considering
two parameters of optimisation — placement of the electroencephalogram (EEG) headset
and size of the visual stimulus. This chapter finds the most suitable configuration of these
parameters and demonstrates their impact on the performance of the system. It analyses
user-specific factors in order to make the BCMI more universal and usable to a wider range
of subjects. In comparison to the system in the previous chapter, the performance of the
BCMI has been greatly improved. For a time window of 4s and 2s, the mean accuracies
of the BCMI are 97.92±2.22% and 88.02±9.30% respectively. The ITR obtained in this
chapter is 36.56±9.17 bits min-1, which is considerably higher than the results in chapter 3.

The second objective of this chapter is achieved by encapsulating all BCMI-related oper-
ations into one application. Procedures to analyse EEG include sophisticated mathematical
operations, which have been developed within the C++ application framework. JUCE offers
dedicated classes for audio playback, which have been used for the system’s output. The
chapter creates a multi-screen BCMI that encompasses a novel control flow. Music-related
icons have been displayed to improve the interactivity of the system. The user is allowed to
choose between different musical libraries and trigger different sounds.
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4.2 Introduction

Steady state visually evoked potential (SSVEP) is a popularly used technique to develop
brain-computer interfaces (BCIs) that are based on gaze-control. Scientists have stated
that the method is easy to use and realises high communication rates. (Wang et al., 2011).
Physiological characteristics of SSVEP have shown inter-subject variation with respect to
amplitudes and stimulation frequencies, to name but two (Bin et al., 2009b). Therefore,
this opens up opportunities to optimise subject-specific parameters while deploying BCIs,
which would improve the universality of this technology. Wang et al. (2006) implemented
user-specific optimisations with respect to three parameters — (i) electrode location, (ii)
stimulus frequency, and (iii) speed of selection. Wang et al. (2008) used subject-specific
electrode placement to achieve high SNR and thus, highlighted the first parameter. Eaton
(2016) utilised optimal stimulation frequencies to develop a SSVEP-based brain computer
music interface (BCMI). The previous chapter of this thesis clearly demonstrated the im-
portance of considering the third parameter. In this project, we adopt a dry and wireless
electroencephalogram (EEG) headset manufactured by Cognionics, Inc to capture brainwaves
and a laptop to present the visual stimulus. It detects brainwaves from 4 different regions
of the scalp. Due to the fixed construction of the headset, it restricts options for customised
electrode placement. Moreover, the BCI literature is sparse with respect to optimising pa-
rameters for dry and wireless headsets. Therefore, the focus of the current chapter lies on
enhancing the hardware framework of this project and analyse inter-subject variation to
improve performance. Section 3.5.1 discussed the feedback obtained from subjects during
experiments. Some users observed interference from neighbouring flashing regions due
to peripheral vision. This problem can be addressed by increasing inter-stimulus distance.
However, the psychological observations made by subjects might not be in tandem with
the physiological properties of SSVEP. Thus, this chapter studies performance of different
subjects for varying stimulus sizes.

The next part of this chapter develops an online BCMI after optimising experimental
parameters. In chapter 3, two operations in the BCMI were implemented within the JUCE
framework — providing visual stimulus and receiving EEG. This chapter develops the re-
maining two operations — analysing EEG and audio output. Section 3.5.2 demonstrated
that filtering improves the performance of the BCMI. In order to prevent phase-distortion,
zero-phase filtering was implemented in MATLAB. Moreover, canonical correlation analysis
(CCA) involves complex mathematical calculations like inverse square roots and eigende-
compositions of matrices. These sophisticated signal processing algorithms are generally
implemented on high-level programming languages like Python and MATLAB. As this
project uses a C++ application framework, it requires an in-depth explanation on how these
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algorithms are implemented. Audio output has been realised with the help of dedicated
classes provided by JUCE. After encapsulating all BCMI-based operations into one mod-
ule, this chapter proposes a novel musical system, which encompasses a bespoke control
flow. The advantage of using audio is that it purely depends on sound samples. Therefore,
different musical tones, soundscapes, timbres, instruments, arpeggios, etc. can be explored.
The chapter concludes by discussing on how BCIs can be creatively harnessed to develop
applications for music technology.

4.3 Parameters for Optimisation

There are two different parameters that are explored for optimisation — placement of headset
and size of the flashing regions, which are explained as follows.

4.3.1 Headset Placement

Highest signal to noise ratio (SNR) for SSVEP is generally obtained from the occipital and
parieto-occipital regions (Chen et al., 2015b; Wang et al., 2008). In the 10-20 international
system, it is important to identify the distance between the nasion and inion. Let us consider
this distance to be D. The occipital region is located at 10% of D above the inion (Rowan and
Tolunsky, 2003). The headset adopted by this project detects EEG from two electrodes in the
occipital region and one electrode in the parietal area. Every subject who uses the headset is
expected to have a unique head size. The electrodes might not reach the required locations
on the head. Hence, using the same headset for all users might lead to a compromise in
performance.

Exploring different headsets is beyond the scope of this thesis. Instead, this chapter
aims to delineate a favourable headset placement for users. Cognionics Wiki (2017) does
not address this factor. Many images and video demonstrations suggest that the ground
dry pad sensors are to be placed at the middle region of the forehead. Let us consider this
configuration to be placement I as shown in figure 4.1a. In placement II, the ground dry pad
sensors are placed as high as possible on the forehead, but making sure that the sensors are
not placed on hair (as shown in figure 4.1b). The chapter predicts that for placement I, the
electrodes might not reach the occipital regions of the user’s head as shown in figure 4.2a.
Therefore, placement II has been proposed. The subsequent section conducts tests to analyse
the BCI performance under different headset placements.
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(a) EEG headset deployed on subjects according to placement I.

(b) EEG headset deployed on subjects according to placement II.

Fig. 4.1 Two different headset placements on subjects.

(a) Electrode positions for placement I. (b) Electrode positions for placement II.

Fig. 4.2 Rear view of a subject wearing the headset for different placements.
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4.3.2 Stimulus Size

Duszyk et al. (2014) demonstrated that there is a linear relationship between the size of the
stimulus and SSVEP amplitude. The previous chapter incorporated this finding and presented
flashing regions that are as large as possible within the laptop screen (that is, squares of
side 3 inches). S2, S7, and S8 felt that the neighbouring flashing regions were interfering
with their central vision and thus, preventing them from being able to gaze at the target
region. However, the user’s psychological observation may or may not be concurrent with
their physiological responses. Moreover, Ng et al. (2012) conducted experiments to study
the stimulus specificity of SSVEP-based systems. Contrary to the findings in Duszyk et al.
(2014), the study observed a relationship between inter-stimulus distance and classification
accuracy. Inter-stimulus distance was quantified with the help of visual angle. For small
visual angles, it is defined in Baird (1970); McCready (1985) by the following equation.

V = tan-1
( S

D

)
(4.1)

where V is the visual angle, S is the size of the object, and D is the distance between the eye
and the object. Ng et al. (2012) concluded that the optimal separation between stimuli was
between 5° and 7°. The article also reported poor performance of the BCI for a distance
between 2° and 3°. In these experiments, the laptop screen was placed approximately 70cm
from the user. Thus, in chapter 3, the system observed a horizontal and vertical gap of 3.13°
and 1.76° respectively between stimuli. This chapter re-designs the interface to have equal
horizontal and vertical distances, which is equal to 2.75 inches (350 pixels) and therefore,
subtending an angle of 5.70° with the eye. Each flashing region was reduced in size to
a square of side 1.81 inches (230 pixels) and it subtends an angle of 3.75° with the eye.
However, the new stimulus design may or may not be favourable for subjects. Therefore, this
chapter conducts tests on different users to evaluate the 2 stimulus designs.

4.4 Experiment

4.4.1 Set-up

The experimental set-up is identical to the methods followed in section 3.4.1. S6 was
unavailable for this experiment and a new subject S9 participated in the experiment. The
focus of this chapter is to study the effect of headset placement and size of the visual stimulus.
Hence, the system is tested with 4 different configurations — (i) placement I and big stimulus
(ii) placement I and small stimulus (iii) placement II and big stimulus, and (iv) placement II
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and small stimulus. There are two test cases1 conducted for each configuration. 6 subjects
(S1, S2, S4, S5, S8, and S9) have participated in testing all four configurations. After finding
an optimal configuration, the system is tested on S3 and S7.

4.4.2 SNR

In order to compare the 4 different configurations of the system, SNR is employed as one
of the methods. The procedure to calculate SNR has been adapted from Chen et al. (2014);
Wang et al. (2012). Let k = [1,6] correspond to the six flashing regions. After applying the
filter in section 3.4.3, fast Fourier transform (FFT) is performed. The signal is zero-padded to
obtain a frequency-resolution of 0.2Hz. Let P(k) be the power at the fundamental frequency
of the flashing region. SNR of a specific flashing region r is the ratio of the power at r and
the power at the remaining regions, as shown in the following equation.

SNR(r) =
5×P(r)

[∑6
k=1 P(k)]−P(r)

(4.2)

Data is collected from all subjects and SNR values are averaged across all four electrodes.
SNR vs stimulation frequency graphs are plotted in section 4.5.2.

4.4.3 Accuracy

EEG data is recorded from subjects for 4 seconds. The previous chapter demonstrated that the
accuracy of the system generally improved with an increase in data length. Hence, accuracy
vs time graphs are plotted in section 4.5.3 in order to study the performance of different
configurations.

4.5 Results

4.5.1 Feedback from Subjects

S5 stated that the bigger stimulus was more convenient because it was easier to focus. 5
subjects (S2, S3, S7, S8, and S9) felt that the smaller stimulus was more comfortable because
there was less interference from the neighbouring flashing regions. S1 and S4 were neutral
towards the size of the stimulus, but agreed to the notion that bigger stimuli can cause more
visual fatigue with the passing of time. S2, S4 and S9 reported discomfort because of the

1Each test case consists of 12 appearances of visual cues, which corresponds to 2 appearances for each
flashing region. Refer to section 3.4.1 for more details.
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Cz electrode. Moreover, S2 and S4 did not notice the Cz electrode in experiments of the
previous chapter. This suggests that the headset can be deployed such that the inconvenience
from the Cz electrode is avoided.

4.5.2 SNR

Figure 4.3 plots SNR vs stimulation graphs for all 4 configurations. Configurations I and
II clearly have lower SNRs when compared to configurations III and IV. This reveals that
placement II provides improved signal quality for SSVEP when compared to placement
I. Furthermore, the graphs illustrate similar SNR values for different stimulus sizes. This
discloses that stimulus size does not have obvious effect on SNR. The SNRs for all stimulation
frequencies are averaged and the values for the 4 different configurations are 3.60, 4.25, 5.02,
and 5.31 respectively. The smaller stimulus size seems to realise a higher SNR, but not by a
great margin.

In order to analyse the individual performance of subjects for different configurations, the
mean SNR is tabulated in table 4.1. The table reveals that for all subjects, placement II either
performs better than placement I or there is no noticeable difference. Hence, placement
II can be universally used for all subjects. This demonstrates the effect of head size on
SSVEP. Furthermore, it is interesting to note that S8’s head size is larger than the remaining
subjects, which might be the reason for comparatively low SNRs. The size of the stimulus
was dependent on the subject. Different sizes performed better for different subjects. In the
previous chapter, S2 and S8 had reported that the stimuli were placed too close to each other.
The small stimulus performed better for S8, but there was no difference for S2. Hence, the
psychological opinion of subjects might not always reflect in their physiological responses in
SSVEP.

Mean SNR
Subject Config. I Config. II Config. III Config. IV

S1 4.36 6.08 5.07 6.03
S2 3.33 3.64 3.98 3.56
S4 2.54 3.08 3.43 3.85
S5 3.38 3.49 5.80 5.33
S8 1.42 1.71 1.38 2.01
S9 6.56 7.50 10.47 11.09

Mean 3.60 4.25 5.02 5.31
Table 4.1 SNRs averaged over all EEG channels and stimulation frequencies for each
configuration (config.).
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(a) Configuration I (placement I and big Stimulus) (b) Configuration II (placement I and small Stimulus)

(c) Configuration III (placement II and big Stimulus) (d) Configuration IV (placement II and small Stimulus)

Fig. 4.3 SNRs for different configurations. The values from obtained from all four electrodes
have been averaged. The error bars represent standard error of means (SEM).
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4.5.3 Accuracy

Accuracy values of all subjects were averaged and plotted in figure 4.4 for all 4 configura-
tions. The information conveyed by the graph is similar to that conveyed through SNR in
the previous section. There is a distinct improvement in accuracy for placement II when
compared to placement I. However, there is not much difference in accuracies obtained from
configurations III and IV.

Fig. 4.4 Accuracy vs time graphs for all 4 configurations.

4.6 Discussion on Optimisation

This chapter proposed two parameters for optimisation — headset placement and stimulus
size. The first parameter was based on the prediction that the electrodes might not be
reaching the occipital region of the subject’s head. The second parameter was directed
towards increasing inter-stimulus distance, which might improve the classification accuracy
of the flashing regions. Section 4.5 denoted that placement II is the optimal method to deploy
the headset on the subject’s head. As there is no clear distinction between the performances of
configurations III and IV, let us consider additional factors — (i) One of the objectives of this
thesis is to increase the number of user-available choices in BCMIs. This project presented 6
choices. In order to increase the number of choices in future research, configuration III is
not suitable because most of the computer screen has been occupied by the flashing regions.
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(ii) 5 out of 6 subjects favoured configuration IV because of smaller size of flashing regions.
The system caused less visual fatigue and psychologically, there was less interference from
neighbouring stimuli.

This thesis reports an interesting observation regarding the relationship between stimulus
size and stimulation frequency. In figures 4.3c and 4.3d, SNR for the big stimulus is greater
than the small stimulus for the first three stimulation frequencies, but it is lower for the next
three stimulation frequencies. This conveys that bigger stimuli are more favourable for lower
frequencies and vice versa. This novel observation can be verified with the graph presented
in Duszyk et al. (2014) in figure 2. Stimulus size of 170 pixels performed better than 255
pixels for a stimulation of 30Hz, but performed worse for lower frequencies. However, the
chapter does not speak about this phenomenon. Therefore, this chapter suggests the use
of varying stimulus sizes for SSVEP-based systems in future research. Figure 4.5 plots
SNR values for big stimulus, small stimulus, and their mean. In order to draw a linear
relationship, SNR has been calculated with respect to magnitude instead of power (that is,
the magnitude has not been squared). The mean curve resembles a sigmoidal function, which
is a commonly used function in statistics and machine learning. The mean values have been
fit into a sigmoidal curve by the using the sigm_fit2 function in MATLAB and depicted in
figure 4.6. The stimulus sizes can be calculated by the following equation.

Sk = Smax − (Smax −Smin)Fsigm(k∆ f ) (4.3)

where k is the stimulus number (k = [1,6]), Smax is the size of big stimulus (3.02 inches), Smin

is the size of the small stimulus (1.21 inches), and ∆ f is the difference between consecutive
stimulation frequencies (∆ f = 0.6Hz). The sizes of the flashing regions calculated from
equation 4.3 are 2.96, 2.84, 2.52, 1.99, 1.53, and 1.32 inches. However, this particular design
of the visual stimulus is a hypothesis and has not been verified with experiments. These
experiments are beyond the scope of this thesis and are relevant for future work. This chapter
deduces that configuration IV is the optimal one for SSVEP-based BCMIs.

4.7 Proposed BCMI System

4.7.1 Performance

This section compares the performance of BCMI systems presented in the current and
previous chapter. Apart the 6 subjects who have tried configuration IV, the system is tested on
S3 and S7. For different time windows, information transfer rates (ITRs) of the new system

2sigm_fit function : https://uk.mathworks.com/matlabcentral/fileexchange/42641-sigm_fit.
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Fig. 4.5 SNR values of the big stimulus, small stimulus, and their mean.

Fig. 4.6 Mean values from figure 4.5 are fit into a sigmoidal curve.
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are plotted in figure 4.7. The optimal window is found to be 2s and the corresponding ITR is
35.56 bits min-1. In comparison to the previous system, this is an increase of 8.78 bits min-1.
Table 4.2 tabulates the accuracies and ITRs of all subjects for 2s and 4s. For a data length of
4s, there has been an increase in accuracy and a reduction in standard deviation (from 8.87 to
2.22). Furthermore, all subjects attained an accuracy of greater than 95%. This demonstrates
that the optimisations have made the system more universal and robust. For a time window
of 2s, the mean accuracy is 88.02%, but the standard deviation is 9.30%. This denotes that
the optimal time window is not common for all subjects.

Fig. 4.7 Average ITRs of optimal BCMI for different time windows.

Accuracy (%) ITR (bits min-1)
Subject 2s 4s 2s 4s

S1 83.33 95.83 30.95 26.86
S2 95.83 100.00 44.77 31.02
S3 91.67 95.83 39.55 26.86
S4 95.83 100.00 39.55 26.86
S5 95.83 100.00 44.77 31.02
S7 79.17 95.83 27.26 26.86
S8 70.83 95.83 20.74 26.86
S9 95.83 100.00 44.77 31.02

Mean 88.02±9.30 97.92±2.22 36.56±9.17 28.94±2.22
Table 4.2 Accuracy and ITR values of all 8 subjects for time windows of 2s and 4s.
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Considering the above observations, this chapter proposes the use of subject-specific
time windows for the BCMI system. Empirically, it was noticed that subjects performed
differently on different days. Therefore, the optimal time window might not be constant.
This might be due to physiological reasons, subject’s mental state, and experimental set-up
(minor variations in headset placement and contact between electrode and skin). Hence, it
will be effective to run 2 test cases with the subject before using the online BCMI system.
The time taken for each test case is 60s (4s of flashing stimuli and 1s of relax time, which
appear 12 times). After doing so, the subject can choose an optimal time window for the
BCMI.

4.7.2 Stand-alone BCMI

The previous chapter analysed EEG by using MATLAB. This section discusses the imple-
mentation of EEG analysis and audio output within the C++ application framework. In the
online system, the computer does not instruct the user to gaze at a specific region. Instead, it
detects the choice of the user. The user is expected to gaze at flashing regions for the optimal
time window (2 , 2.25, 4s, etc.) and the system produces the output during the relax time. For
the sake of convenience, let the duration for which the regions flash be called analysis time.
Alongside audio output, a visual animation indicates the choice made by the user. During the
relax time, the user can shift the gaze to another target in order to make the next choice.

4.7.2.1 Analyse EEG

There are 2 important processes to be implemented for EEG analysis — filtering and audio
output. MATLAB’s filtfilt function implements zero-phase filtering by matching initial
conditions (MathWorks, 2018). It extrapolates the signal to match starting and ending
transients by using algorithms adapted from Gustafsson (1996). This thesis uses MATLAB’s
code generator3 to translate the filtering code to C++. However, MATLAB’s code generator
currently does not support canoncorr. CCA involves complex mathematical calculations like
inverse square roots and eigendecompositions of matrices. This has been developed with the
support of Eigen, which is C++ template library for linear algebra (Eigen, 2018). In order to
implement CCA, Härdle and Simar (2003) was referred to for an in-depth explanation on the
procedure.

3MATLAB’s code generator: https://uk.mathworks.com/products/matlab-coder.html
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4.7.2.2 Audio Output

JUCE is an application framework that is used by many companies like Cycling ’74, KORG,
M-Audio, Image Line, Akai, etc. to develop commercial audio software. Thus, it provides
robust support for music technology applications. In the literature, BCMIs have generally
used MIDI to produce output. These MIDI signals are passed to an external instrument
to produce audio. BCMIs have also generated musical scores, which are played by an
external musician (Eaton, 2016). As audio processes are computationally expensive, EEG
analysis and audio output are carried out by separate processors. This trend was observed in
earlier BCMIs developed within the ICCMR lab. The current project aims to encapsulate
all BCMI-based operations into one stand-alone application, which would make them more
usable for practical deployment in real-world scenarios.

This project aims to output audio files instead of generating MIDI data or musical scores.
These sound samples were composed in collaboration with Prof. Eduardo Miranda. Apart
from improving portability, the use of samples would provide more flexibility to the system.
By this method, the system only requires sound samples of what the user would like to play.
As mentioned earlier, it can be used to trigger different musical instruments, soundscapes,
timbres, and so on. Waveform Audio File Format (WAVE or commonly known as WAV) is a
popular audio file format used for storing audio (Microsoft, 2018). JUCE supports playback
for WAV files and all sounds in this project were stored in this format.

4.7.2.3 Icons

This thesis aims to present a stand-alone framework to build a variety of musical applications.
In order to improve the interactivity of the musical application, the use of graphical icons
have been explored. These icons are royalty-free images obtained from Flaticon4. If these
icons are overlapping with the flashing regions, there might be a decline in the performance
of SSVEP. Hence, the icons are visible during the relax time of the system. Considering the
computational load of the visual stimulus, EEG analysis, and audio playback, rendering 6
different images through the CPU may lead to performance issues. Therefore, these icons are
rendered by using OpenGL textures, which harnesses hardware-accelerated rendering. All
the icons are loaded from a single image and the texture coordinates are mapped accordingly.
Figure 4.8 is a snapshot of the interface which allows the user to choose from six different
categories of sound samples.

4Flaticon: https://www.flaticon.com/
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Fig. 4.8 Snapshot of the BCMI during the relax time. It allows the user to choose from 6
different classes of sound samples.

4.7.2.4 Relax Time

In BCI literature, the main function of the relax time is to allow user to shift the gaze from
one choice to the other. However, in BCI-based musical systems, there other crucial aspects
that are related to relax time. Firstly, this project adopts a bespoke control flow, in which the
6 choices offered to the user is not constant. The choices vary from screen-to-screen (the
control flow is explained in detail in the next section). Thus, the relax time needs to be long
enough for the user to view all options. Secondly, the duration of the sound sample effects
the relax time. The following equation needs to be satisfied by the BCMI.

Duration o f sound sample ≤ Analysis time+Relax time. (4.4)

If the sound sample is shorter than the relax time, the output is played only during the relax
time. If the sound sample is longer than the relax time, the previous output is played when
the user is making the next choice. This shortens the delay between the consecutive choices
made by the user. If the sound sample is greater than the sum of the relax time and analysis
time, the previous output would be interrupted by the next output, which is not favourable.
However, exploring polyphonic sounds in BCMIs is beyond the scope of this thesis.
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4.7.3 Control Flow

This thesis offers the user 6 different choices presented in the screen. The number of
applications that can be developed with 6 static and binary choices is limited. Therefore, this
chapter explores the development of a multi-screen BCMI. This way, the options presented
on the next screen would be based on the choice made by the user in the previous screen. The
proposed BCMI system has been divided into two programmes — BCMI set-up and musical
system. The former programme is used to find the optimal analysis time and relax time,
which is specific to the individual. Figure 4.9 depicts the control flow of the programme.
Each step in the control flow presents a separate screen with exclusive choices. The set-up
programme has an analysis time of 4s and a relax time of 10s. This would allow the user to
enter choices with high accuracy and provide reasonable time to view the different options
present on the screen. The first screen allows the user to either run tests to find an optimal
window or directly enter it. If the subject chooses to run tests, then in one separate screen the
subject’s accuracy vs time results are displayed. In the next screen, the user is allowed to
choose from six analysis times: 1.5, 2, 2.5, 3, 3.5, and 4s. Intermediate values are omitted
limit the number of options to 6. Based on the analysis time and the longest sound sample,
the systems finds a minimum relax time Rmin. The user is offered with 6 different relax times
— Rmin, Rmin +2s, Rmin +4s, Rmin +6s, Rmin +8s, and Rmin +10s. If the user has no prior
experience with the musical system, a long relax time would be appropriate and vice versa.
It is important to note that the screen is blank (with only the border of the regions visible) for
0.3s before the transition from relax time to analysis time. By adding this transition, the user
would expect the regions to start flashing instead of an unforeseen onset.

The musical system programme has two screens that provide different set of choices —
sound libraries and sound samples. In the first screen, the user can choose between 6 different
sound libraries — drum kit, piano, rock, vibraphone, guitar, and ambience. In the second
screen, the user can trigger 5 different sound samples from the respective library and the 6th

option is to return to the first screen. Figure 4.10 illustrates the control flow of the musical
system.

4.8 Concluding Discussions

This chapter investigated methods to improve the communication rates of BCMIs. There
were two parameters analysed for optimisation — placement of headset and size of the
visual stimulus. The former predicted that occipital electrodes might not be reaching the
occipital region of the subject’s head and the latter considered that an increase in visual angle
might improve classification accuracy. The different combinations of these two parameters
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Fig. 4.9 Flowchart of representing the BCMI setup.

Fig. 4.10 Flow chart representing the musical system.
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gave rise to four possibilities of configurations. The chapter deduced that placement II is
more appropriate for SSVEP-based BCIs. It realised improved SNR and accuracy values.
This is due to the phenomenon that placement II detects higher SSVEP amplitudes when
compared to placement I. The size of the stimulus did not reveal a clear-cut result with
respect to SNR and accuracy. However, it was deduced that smaller stimulus size allows
future expansion in the number of choices and caused less visual fatigue. Therefore, this
chapter reckoned configuration IV (that is, placement II and small stimulus size) as the most
favourable arrangement for the system. The new system surpassed ITRs of previous BCMIs
and the system discussed in the previous chapter. These factors contribute to answering RQ2.
Moreover, this project adopted wireless and dry EEG headsets. For a data length of 4s and
2s, it realised an accuracy of 97.92% and 88.02%. Apart from an increase in accuracy, there
was a considerable reduction in standard deviation, which made the system more universal.
It was noted that the optimal time window is not the same for all subjects. Therefore, the
chapter stressed on the importance of user-specific time windows. Furthermore, this chapter
observed a relationship between the stimulus frequency and size — smaller sizes are more
suitable for higher frequencies and vice versa. However, this proposition was not utilised by
this thesis and it formed the foundation for future work. SSVEP-based BCIs that incorporate
varying stimulus sizes is an interesting possibility to explore. Figure 4.3 illustrated that 7.8,
8.4, and 9.0 Hz had higher SNR than 6, 6.6, and 7.2Hz. This is contrary to the assumption
made in section 3.3.1.2, which states — lower frequencies elicit greater SSVEP amplitudes
(Chen et al., 2014). Therefore, using a slightly higher frequency range for SSVEP might lead
to an improvement in communication rates.

A stand-alone BCI for musical applications was presented in this chapter. It used
MATLAB’s code generator to translate the filter designed in section 3.4.3 into C++ code.
CCA was implemented with the support of Eigen, which enabled complex mathematical
operations to be easily performed. Audio files were used as the medium of output for the
BCMI, which enabled the user to choose from a variety of sound samples. OpenGL textures
were adopted to make the interface more interactive. Collectively, these developments have
answered RQ1 and improved the usability and portability of BCMIs. This thesis proposed
a novel control flow for BCMIs. It considered the limited number of choices offered by
the BCMI and hence, explored the use of a multi-screen BCMI, in which one screen leads
to the next. There were two sub-programmes developed by this project — BCMI set-up
and musical system. The former allowed the user to independently find an optimal time
window without the need for an external individual. This would be helpful for patients who
are suffering from motor disabilities. The second programme allowed the subject to choose a
sound library as well as trigger sound samples.
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This chapter concluded that the optimal time window is not common for all subjects.
Most BCI research chapters that adopt CCA as the analysis paradigm, use a common time
window for all subjects (Bin et al., 2009b; Chen et al., 2014; Nakanishi et al., 2014b). As
these experiments use wet EEG detectors, the inter-subject variation might be less noticeable.
Therefore, this thesis harnessed time windows that were specific to subjects. Initially, in
order to avoid long training sessions for subjects, this project focused solely on unsupervised
CCA. However, after obtaining results from experiments, it suggested that tests must be
conducted to optimise time windows. Since the user’s data is anyway being collected during
this phase, it would be advantageous to explore machine learning paradigms. The user’s data
can be more extensively used to optimise analysis techniques and improve the speed and
accuracy of BCMIs.
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Chapter 5

Conclusion and Future Work

5.1 Overview

In this project, a stand-alone BCI system was developed for musical applications. It is
advantageous for musicians who want to explore a novel dimension of control and beneficial
for patients who are suffering from motor disabilities. This chapter summarises the various
conclusions that have been drawn from the research process. On one hand, it has made
BCMIs more usable for practical deployment in real-world scenarios and on the other hand,
it has improved the communication rates of these systems. Apart from the research questions,
there were some additional inferences deduced by the project, which have been discussed.
This chapter also offers pathways for future work, which can be adopted for research in this
interdisciplinary field.

5.2 Reflection on Research Questions

This section discusses about how this project has answered the 2 research questions.

RQ1 How can we make BCMI technologies more usable for practical deployment in real-
world scenarios?
The second chapter conducted a survey on 4 different BCMI systems — passive, motor
imagery, P300, and SSVEP. Among the 2 criteria used for comparing these systems, the
first one focused on the usability of the BCMI. Among all systems, passive BCMI was
evaluated as the most usable system. However, considering the other criterion of comparison,
which focused on the communication between the user and the system, SSVEP was the most
suitable approach for this project. The chapter also presented a brief introduction to the
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paradigms for SSVEP. It conceived as SSVEP as a promising technique to make BCMIs
more usable for practical deployment in real-world scenarios.

Contribution 1.1 — Using dry and wireless headsets
All experiments in this project were conducted by using a dry and wireless EEG headset
manufactured by Cognionics, Inc. The headset detected EEG signals from 4 different regions
of the head — Cz, Pz, O1, and O2. As additional substances like gel are not required for the
headset, the set-up time for the experiment was small. Electrode impedances of under 250kΩ

was achievable within a time of 10 minutes. The headset was powered by Bluetooth and data
was received by a dedicated thread within the BCMI application. The results presented in
chapter 3 and 4 proved the reliability of the headset for SSVEP-based BCMIs.

Contribution 1.2 — LEDs or big monitor screens are not necessary to present the visual
stimulus.
Initially, LEDs were preferred over LCDs because of the limitation imposed by the monitor’s
refresh rate. For instance, Eaton (2016) adopted LED panels to present the visual stimulus.
This project employed sinusoidal stimulation (Manyakov et al., 2013), in which the refresh
rate need not be divisible by the stimulation frequency. Moreover, this project was developed
and tested on a 17.3 inch laptop. Generally, BCI systems have used external monitors of sizes
21 to 23.6 inches (Wang et al., 2017, 2012). This restricts portability because monitors are
normally bulky. Using a more compact platform such as a laptop would improve the usability
of BCMIs. The visual stimulus was realised with the help of OpenGL. Shader programmes
were developed to allow the GPU to perform hardware-accelerated rendering. VSync
was enabled to synchronise the display rate of the LCD and frame rate of the application.
Therefore, this thesis demonstrated the robustness of the laptop for SSVEP-based BCMIs.

Contribution 1.3 — Development of a stand-alone BCMI system.
The third chapter contributed to RQ1 by investigating methods to develop stand-alone BCMI
systems. Out of the 4 operations of BCMIs, 2 were implemented within this chapter —
presenting the visual stimulus and receiving EEG. An offline analysis was carried out in
MATLAB and an optimal signal processing algorithm was designed. In the fourth chapter,
MATLAB’s code generator was used to realise the filtering algorithm and the Eigen library
was incorporated to implement CCA. The project harnessed audio classes supported by JUCE
to produce output. All sounds were stored in the format of WAV files. The 4 BCMI-based
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operations were encapsulated into one module with the help of multi-threading, which allows
them to be executed simultaneously.

Contribution 1.4 — Development of BCMI with a novel control flow.
In the fourth chapter of the thesis, a fully usable BCMI system was presented. It considered
the fact that only 6 choices are offered to the user at an instance of time. Therefore, the chapter
explored the use of a multi-screen BCMI, in which the user’s choice in the previous screen
influences the options offered in the next screen. Within this thesis, two different online
programmes were created — BCMI set-up and musical system. The former allowed the
user to independently configure the BCMI without the requirement of an external individual.
This is helpful for patients suffering from motor disabilities because they can set the analysis
time and relax time by themselves. In the musical system, the user was allowed to choose a
musical instrument in the first screen and the play the instrument in the second screen. In
order to make the system more interactive, graphical icons were displayed during the relax
time. OpenGL textures were used to render the images on the screen by using the GPU.

RQ2 How can we improve the communication rates of BCMI systems?
Among passive, motor imagery, P300, and SSVEP systems, SSVEP offers the highest rate
at which the user can communicate with the interface. Therefore, this project focused on
developing a SSVEP-based BCMI and improving its communication rates. In comparison
to earlier BCMI systems, this project attained a notable improvement in communication
rates. This is due adopting joint frequency phase modulation (JFPM, Chen et al. (2015b)) as
the stimulation technique, analysing harmonic frequency components, filtering EEG data,
and employing an optimal headset placement. The following summarises the contributions
towards answering RQ2.

Contribution 2.1 — Analysing harmonic frequencies
Müller-Putz et al. (2005) observed the presence of harmonic frequencies in SSVEP. Since
then, several chapters incorporated harmonic components in their EEG-analysis to improve
the performance of BCIs (Bin et al., 2009b; Chen et al., 2014; Lin et al., 2007). However,
these experiments used medical-grade EEG headsets to detect brain waves, which offer
comparatively high SNR. In order to understand the impact of harmonic frequencies in dry
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EEG recordings, this thesis conducted an offline analysis. An improvement in communication
rates was observed until 5 harmonics. However, beyond 5, there was no noticeable difference.

Contribution 2.2 — Filtering improved the performance of the system.
Chen et al. (2015a) proposed a technique called filter bank canonical correlation analysis
(FBCCA) for SSVEP-based BCIs. The chapter explored the use of a filter bank, which is
an array of band-pass filters. It was proven that FBCCA improves the communication rates
of BCIs. The design of each band-pass filter for this paradigm involves a high-pass and
low-pass filter in cascade. In order to obtain a steep roll-off in the low-pass filter, it generally
requires a very high filter order. Furthermore, zero-phase filtering is performed. These two
factors considerably increase the computational cost. This thesis designed a bespoke filter
for the BCMI. It comprised a high-pass and notch filter placed in cascade. The experiments
demonstrated that filtering improves the accuracy of BCMI systems. Therefore, there is a
possibility for low-pass filters to be eliminated during FBCCA and still achieve the same
performance. In future work, for FBCCA, an array of high-pass filters can be incorporated
instead of band-pass filters.

Contribution 2.3 — It is optimal to use subject-specific time windows.
In chapters 3 and 4, the optimal time windows based on averaged performance of subjects
are 2.25s and 2s respectively. In comparison to the third chapter, the fourth chapter realised
a distinct improvement in communication rates. Furthermore, there was a decrease in
standard deviation, which showed that the system was applicable to a wider range of subjects.
However, despite optimising parameters, a common analysis time was not suitable for all
subjects. Therefore, section 4.7.2 designed two different online BCMIs, where the first
programme allowed the user to configure the analysis time of the system. Contrarily, in BCI
experiments that adopt CCA, a common time window is obtained. As this project adopts a
dry and wireless EEG headset, the inter-subject variation may be more noticeable.

Contribution 2.4 — Configuration IV, that is smaller stimulus size and placement II (refer
to section 4.3 for more details) is most favourable for SSVEP-based systems.
In this thesis, four different configurations were tested to optimise parameters for SSVEP-
based BCMIs. They are (i) big stimulus and placement I, (ii) small stimulus and placement I,
(iii) big stimulus and placement II (iv) small stimulus and placement II. Experiments showed
that the placement of the headset evidently influenced the performance of the system. The
SNR for placement II was greater than the SNR for placement I. This is due to the fact that
placement II recorded EEG signals from regions that comprised higher SSVEP amplitudes.
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On the other hand, stimulus size did not show a clear-cut effect on the performance of the
system. Few subjects felt that neighbouring flashing regions were interfering while using the
system. However, psychological observations need not be in coherence with physiological
responses. Moreover, most subjects agreed to the fact that the smaller stimulus caused less
visual fatigue and was easier to look at. Hence, the smaller stimulus size was more favourable
for SSVEP-based BCMIs.

5.3 Other Concluding Discussions

In addition to answering the research questions, this thesis presented other conclusions that
were not directly related to the research questions.

Contribution 3.1 — Lower stimulation frequencies need not elicit higher SSVEP amplitudes.
This thesis developed a BCMI system that incorporated a dry EEG headset that detects signals
from four electrodes. It was assumed that lower frequencies elicit higher SSVEP amplitudes
(Chen et al., 2014). In order to compensate for the comparatively poor SNR of dry EEG, the
lowest possible stimulation frequencies were chosen. However, in section 4.4.2 it was found
that 7.8, 8.4, and 9.0Hz realised higher SNR than 6.0, 6.6, and 7.2Hz. This concludes that
the project has not chosen the optimal set of stimulation frequencies for SSVEP. Therefore,
revising the set of frequencies could improve the performance of BCMIs.

Contribution 3.2 — Greater stimulus sizes are more suitable for lower frequencies and
smaller stimulus sizes are more suitable for higher frequencies.
This was an interesting observation made in section 4.6, which indicated a relationship
between stimulus size and stimulation frequency. On one hand, lower frequencies worked
better with bigger flashing regions and on the other hand, higher frequencies worked better
with smaller flashing regions. Equation 4.3 delineated this relationship with the help of a
sigmoidal curve, where the stimulus size could be optimised with respect to the stimulus
frequency. SSVEP-based BCIs could be redesigned to adopt a visual stimulus with varying
stimulus sizes. However, this is a hypothesis and it needs to be confirmed with tests.

5.4 Future Work

This project combined elements of neuroscience, biomedical engineering, and computer
music. Interdisciplinary research at the intersection of these three fields offers bright potential
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for future research. The following are possible pathways that can be adopted for future
research.

Pathway 1 — Re-designing the headset used to detect EEG
The quick-20 headset used by this project detects EEG from 4 different regions — Cz, Pz,
O1, O2. The highest SSVEP amplitude is generally observed in the occipital and parieto-
occipital regions (Chen et al., 2014; Wang et al., 2008). Although Cz and Pz may not
realise a significant SSVEP amplitude, they pick up similar noise signals. Thus, they assist
in improving SNR. Furthermore, this project incorporated CCA as the analysis paradigm,
which implies — greater the number of EEG channels, better the SNR. However, generally
in BCI-research, headsets with high electrode-densities in occipital and parieto-occipital
regions are used (Bin et al., 2009b; Chen et al., 2015b). Hence, an alternative design such
as POz, Oz, O1, and O2 may be more appropriate for SSVEP-based systems. During the
experiments, few subjects complained about pressure being exerted from the Cz electrode.
Special considerations can be taken to minimise inconveniences caused to the subjects.
Furthermore, this project adopted EEG because it is a non-invasive and cost-effective method.
Depending on future developments in biomedical engineering, alternative brain-scanning
methods like functional magnetic resonance imaging (fMRI, Weiskopf et al. (2004)) and fast
optical signals (Proulx et al., 2018) may become more viable options.

Pathway 2 — Finding an optimal set of frequencies.
Many researchers have proposed an optimal range of stimulation frequencies for SSVEP.
For instance, Nakanishi et al. (2014b) used 8 to 15Hz, Chen et al. (2015b) used 8 to 15.8Hz,
and Demir et al. (2016) used 6 to 10Hz. As these research articles use medical-grade and
wet EEG sensors, a separate comprehensive study needs to be conducted in order to find
an optimal range of stimulation frequencies for dry EEG. In section 4.4.2, the lower 3
frequencies realised lower SNRs than the higher 3 frequencies. Therefore, in future research,
a higher set of frequencies can be used to design the visual stimulus.

Pathway 3 — Optimising signal processing techniques by incorporating phase features.
This project adopted JFPM as the stimulation technique. Alongside unique frequencies, the
flashing regions are encoded with a unique phase. Unique phases make the flashing regions
more discriminable. However, in this thesis unsupervised CCA was used, in which there is no
training data from the user. Hence, phase features were not considered while analysing EEG.
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In future research, phase can be included in the analysis paradigm to improve communication
rates of the system.

Pathway 4 — Explore machine learning to improve communication rates.
One of the objectives of this thesis is to reduce inter-subject variation in performance. By
using user-specific time windows, appropriate stimulus size, and optimal headset placement,
the BCMI system was applicable to a wider range of subjects. This thesis developed a
BCMI system that does not require training data. However, in order to obtain an optimal
time window, user’s data needs to be collected. Therefore, this data can be harnessed to
improve the performance of the BCMI. Furthermore, researchers have explored machine
learning paradigms for BCIs. Manyakov et al. (2013) generated class-feature pairs based on
a fuzzy system (Rutkowski, 2008) to study phase characteristics. Nakanishi et al. (2014b)
used signal averaging and template-matching to improve the speed and accuracy of SSVEP.
Thus, in future research, these machine learning paradigms could be explored for dry EEG.
Simultaneously, the number of flashing regions on the screen could be increased to offer
the user more number of choices. This would increase communication rates and offer more
flexibility while designing the control flow of the BCMI.

Pathway 5 — Investigating the size of the stimulus with respect to the stimulation frequency.
This thesis demonstrated a relationship between the size of the stimulus and the stimulation
frequency. However, in order to test this hypothesis, it requires a comprehensive set of
experiments to be conducted. Currently, it is predicted that the size of the stimulus is
governed by a sigmoidal curve. Alternatively, it is possible that a linear or exponential
relationship may lead to better performance. Studying this phenomenon may also lead to an
increase in the range of stimulation frequencies used for SSVEP.

Pathway 6 — Exploring alternative stimulation paradigms for BCMIs.
This project adopted SSVEP as the paradigm for providing the user with active control.
One drawback of SSVEP is the continuous exposure of the user to flashing stimuli. Using
such a system over a long period of time may not be practical. This reduces the usability
of the system for long-term use and musical scenarios. Alternative stimulation techniques
such as steady state motion visual evoked potential (SSMVEP) have been proposed by Guo
et al. (2008); Yan et al. (2017). In this paradigm, movement of graphical objects elicit
frequencies in EEG. As this project has already developed a strong foundation for integrating
computer graphics with BCIs, implementing new stimulation techniques would be relatively
straightforward. This project harnesses SSVEP for musical applications and perhaps, the
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stimulation technique could include musical or audio parameters. For instance, visual and
auditory stimulation can be combined to improve interactivity the of the BCMI. Rhythmic
nature of music can be explored with respect to the rhythmic nature of EEG.

5.4.1 Suggested Research Questions

The above pathways are condensed into the following research questions.

• What are the design-considerations to develop a dry and portable EEG headset that is
appropriate for SSVEP?

• How can we optimise the set of stimulation frequencies that are used for SSVEP in dry
EEG?

• How can we creatively incorporate phase features while analysing brain waves by
using statistical processing techniques?

• How can machine learning paradigms improve the communication rates of BCMIs?

• Does a visual stimulus that presents varying stimulus sizes offer better speed and
accuracy?

• What are the stimulation techniques that are specifically advantageous to BCMIs as
opposed to general BCIs?
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Appendix A

Ethical Declaration

The information sheet given to the subjects who participated in the experiments is as follows.

A.1 Information Sheet

Project: Investigation into Stand-alone Brain-computer Interfaces for Musical Applications
Email of researcher: satvik.venkatesh@students.plymouth.ac.uk
Name of supervisor: Prof. Eduardo Miranda
Email of supervisor: eduardo.miranda@plymouth.ac.uk

What is this project about?

This project explores the development of brain-computer interfaces (BCIs) for musical
instruments. It aims to develop a piano that can be played solely by gazing at flashing icons
on a computer screen. These systems are beneficial for patients who are suffering from
motor disabilities. However, please note that at this stage of my project I am not working
with patients of any kind. All tests, for which I am seeking this ethical approval are to
be conducted with my colleagues and students in the ICCMR lab — who have normal or
corrected-to-normal vision.

The system presents a computer screen with multiple icons flashing at different frequen-
cies. It enables the user to make choices from the screen by gazing at individual icons. It
uses a wireless headset manufactured by Cognionics, Inc. to detect electroencephalogram
(EEG) signals. This headset is worn by the subject while performing tests. The objective
behind performing these tests on different subjects is to ascertain how quickly and accurately
users can select icons displayed on the screen.
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A.1 Information Sheet

What will you have to do if you agree to take part?

The experiment comprises a computer monitor screen with multiple flashing icons. The
subject is required to gaze at a specific region that is indicated by a visual cue within
the screen. Brain waves are detected with the help of an electroencephalogram (EEG)
headset manufactured by Cognionics, Inc. The headset is to be worn by the subject during
participation. EEG data will be recorded from 10 individuals and anonymously stored. The
experiment is accompanied by an optional questionnaire that would ask for their gender and
age. Again, this would be anonymously collected from the subjects.

Day 1
The screen contains different icons that are emitting white light. There will be 13 or fewer
icons on the screen. Subjects will be asked to gaze at each icon for 6 seconds no more than 6
times. Subjects will be informed of which icon to gaze at by a visual cue that appears on the
screen.

Each subject will be asked to avoid blinking while performing tests. Rest of few minutes
will be given at regular intervals (after 1 or 2 cycles of tests). The expected duration for
each subject to gaze at the monitor for the entire experiment is less than 8 minutes. The data
collected from day 1 will be used to improve the system’s speed for tests on day 2.

Day 2
Day 2 tests are split into two parts. Firstly, similar tests as day 1 will be conducted. However,
subjects will be asked to gaze at each icon for 2 seconds 17 times. Once again, there will be
rests of 10 seconds every time the system has cycled through each icon once.

The second part consists of users playing a melody by gazing at flashing icons that are
arranged on the screen to mimic a keyboard. This test will take approximately 2 minutes.
The expected duration to gaze at the monitor is less than 10 minutes.

Informed consent

The subject’s participation is voluntary and the recorded data would be kept anonymous.

Openness and honesty

All methods and experimental procedures have been explained in detail and there is no
undisclosed information.
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A.1 Information Sheet

Right to withdraw

The subject can withdraw during the experiment and 3 days after completion. The data would
be anonymised after 3 days. His or he consent will be taken before analysing the data. The
subject can choose to delete his or her data until this time.

Protection from harm

Experimental procedures used in the project are safe, non-invasive, and widely incorporated
in the field of brain-computer interfaces. Performing these tests over a prolonged period
of time can cause visual fatigue. Experiments in other laboratories last approximately 15
minutes. However, the tests conducted within this project span less than 10 minutes to avoid
minimise the chance of visual fatigue.

What are the advantages or disadvantages of taking part?

The subject’s participation will be contribution to the field of brain-computer interfaces (BCI).
He or she will have the opportunity to play a musical instrument through unconventional
means.

The subject will have to perform experiments without blinking. Performing these tests
over a prolonged period of time can cause visual fatigue. Hence, rest for several minutes will
be given between blocks of tests.

Debriefing

These tests are conducted to estimate speed and accuracy of the brain-computer music
interface system developed in the project. The subject may obtain information on my
progress and request copies of outputs at any time by contacting the researcher through the
above contact details.

Confidentiality

The recorded data would be kept anonymous. Generalised information like number of
subjects and age-range of all subjects would be revealed. Statistics like speed and accuracy
would be anonymously stated.
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A.1 Information Sheet

Planned outputs

The results of the study will be documented in the Research Masters thesis of Satvik
Venkatesh. These tests were conducted to estimate the accuracy and speed of the sys-
tem. All future publications for conferences and journals based on these tests would present
statistical information like speed and accuracy. It would also include generalised information
for example, "10 subjects (6 males and 4 females) participated in these experiments." Any
other information would not be presented. All participants are invitied to contact Satvik
Venkatesh after the tests for updated information on resulting outputs.

Feedback

Please feel free to contact Satvik Venkatesh at any time if you have questions regarding this
research study.
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