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Restricted Orientation Dubins Path
with Application to Sailboats

Ulysse Vautier1, Christophe Viel1, Jian Wan1, Luc Jaulin2, Robert Hone1, and Ming Dai1

Abstract—This paper develops a geometrical construction of
the shortest Dubins path in a discontinuous orientation-restricted
environment. The method proposed here builds the shortest path
from one pose to the other while avoiding a no-go zone in terms of
orientation, and being constrained to move forward. Finally, an
application to autonomous sailboats is then provided to validate
the feasibility of the planned shortest path in a position keeping
scenario.

Index Terms—Motion and Path Planning, Nonholonomic Mo-
tion Planning, Motion Control, Marine Robotics

I. INTRODUCTION

DUBINS showed that the shortest path between two poses
for a Dubins vehicle consists of a subset of turns of

maximum curvature and straight lines. The Dubins vehicle is
a model of a vehicle capable of only moving forward at a
constant velocity and turning with a constraint in curvature.
The shortest path was proven to be of type CSC or CCC,
representing the combination of turns (C) and straight lines
(S) [1]. It was proven to be the shortest using Maximum
Pontryagin’s principle [2] and additional information for the
synthesis of the path was given later [3]. The Dubins path
is used in multiple variations for different platforms such
as Aerial Unmanned Vehicles (AUVs) [4], wheeled vehicles
[5] or general 2D and 3D path-planning methods [6], [7].
These studies sometimes differ from the classic Dubins vehicle
model, by varying the rate of turn or the velocity of the vehicle.
Other extensions to the Dubins path planning problem have
also been studied such as the Reed-Sheps curves for Dubins
vehicles capable of moving backward [8].

Compared to other studies of the Dubins path, this paper
focuses on a classic Dubins vehicle model but adds a simple
restriction on orientations at which the vehicle cannot be.
This study is initialized from the problem of controlling
autonomous sailboats. The Dubins vehicle matches the sailboat
in short-length path-planning since it cannot brake and it
is always moving forward. Furthermore, the Dubins path
considered here has additional restriction since sailboats are
constrained by the wind direction, and they cannot go upwind.
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While this work has been studied for sailboats, the results
can be generalized to other types of vehicles with the need
to avoid certain ranges of orientations such as AUVs in
case of emergencies or land-yachts where a certain range of
orientation cannot be attained.

The Dubins’ vehicles with constrained orientations have
been studied. Primary work comes from [9], where the boat
studied has a constrained rate of turning. The shortest path
therein was proven to be of the type, or a subset of CSCSC
in an anisotropic medium, or more specifically with a convex
polar speed diagram. A method to find the shortest path
was also proposed therein. Similarly to the CSCSC path,
[10], [11] have worked on the three-points dubins path, to
solve the Dubins Traveling Salesman Problem (DTSP), with
or without restriction on orientation on the last two points.
These work have demonstrated a method to build the shortest
path, for a Dubins vehicle, between a starting pose and a
final point by passing through a medium point. Other work,
such as [12], [13], studied the Dubins paths in heterogeneous
environments, and [14], which concerned the Dubins Interval
Problem (DIP), studied paths where the start and end headings
were constrained to be an interval. These work show the
research done on Dubins path when the vehicle has a variable
rate of turn or velocities but does not consider when the
velocity of the vehicle is discontinuous.

The problem considered here is similar to [9], but the
velocity considered here is binary rather than continuous: the
velocity will be null in the range of the restricted orientation
and full speed otherwise. While [9] gives a more generic and
complete solution to constructing a Dubins path for all vehicles
with a continuous convex speed polar plot, this paper proposes
a simple geometric algorithm for a more specific Dubins car
with a non-continuous binary speed and a constant turning
radius. By restricting the domains of orientation, different
problems arise such as the feasibility of the path, which are to
be discussed here. This paper still uses the properties of the
CSCSC path and develops a method to build this set of paths.
One could also see similarities with [10], [11] but differs in
that the second turn in the CSCSC path is already known.
The goal of this paper is to find each of the turns to have the
shortest path. The method proposed here allows integration
in any embedded systems with small resources and real-time
constraints. And as it will be demonstrated, working on this
simple model can easily be scaled up to other complex models
such as sailboats. The method of this paper is applied to station
keeping for sailboats which has only a few published studies
while being an important application to ocean survey [15].
Finally, this paper provides a proof of the shortest path for
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Fig. 1. Examples of classic Dubins paths in LSL, LSR and RLR
configurations with a rate of turn r = 5. The starting pose is represented
by the green arrow and the final pose by the red arrow. It is the shortest path
for a Dubins vehicle from the start pose to the end pose.

intersecting tangent lines to two circles. This proof is used for
this problem but could also be used extended to other cases.

The paper is organized as follows. First, the problem to
be studied and the corresponding notations are described in
Section II. The conditions for the Dubins path’s attainability
are discussed in Section III. The method to build the shortest
route with constrained orientations is detailed in Section IV
and the corresponding proof is provided in Appendix A.
The application to station keeping control of sailboats using
the planned shortest path is provided in Section V. Some
conclusions are given in Section VI.

II. PROBLEM STATEMENT

The model of Dubins vehicle is adjusted to be as follows:
ẋ = cos(θ)

ẏ = sin(θ)

θ̇ = u
r

cos(φ− θ) ≤ cos(δ)

(1)

where (x, y) ∈ R2 is the vehicle’s position, θ ∈ [0, 2π] is
the vehicle orientation, u ∈ [−1, 1] is the control input with
r ∈ R+ the turn radius, φ is the restricted angle and finally
δ ∈ [0, π] is the range of unacceptable orientations around φ.
The Dubins vehicle has a velocity v > 0. In this case, a unit
velocity v = 1 is chosen as it does not impact the problem.
The last condition has been added from the original Dubins
model for our specific problem. This condition indicates that
the vehicle can only move if the orientation θ is out of the
restricted range of orientation [φ− δ, φ+ δ].

The Dubins path is the shortest path from one pose to the
other. The shortest path is a CSC or CCC set. The latter
being a special case when the distance between the two poses
is shorter than twice the radius of the vehicle’s maximum
rate of turn. The path is built using the turn circles around
the starting and finishing poses and the bitangents connecting
those circles. The shortest path is then constructed from the
starting pose, following a turn until it leaves it by a straight
line along the bitangent and finally turning to attain the final
pose. In this paper, we call this Dubins path, the classic Dubins
path to differentiate with the restricted path that is to be built
here. Examples of the classic Dubins path in CSC and CCC
configurations are given in Figure 1 with a rate of turn r = 5.

Bitangents, in this case, are the tangent lines between two
circles. There are at most 4 bitangents to two circles. They
are represented in Figure 2 in grey segments joining the red
(inner tangents) and blue (outer tangents) circles. They are

Fig. 2. Figure showing several notations used. In this specific configuration,
no classic Dubins path works regarding the restricted angles.

expressed later in Eq.(2). In the Dubins path, only those
that are possible, considering the directions of turn and the
orientation of the vehicle, are considered. It is worth noting
that when the first turn and the following one are the same,
then only an outer bitangent is possible and when they are in
the opposite direction, it is an inner bitangent.

The goal of this paper is to find the shortest path when the
Dubins’ vehicle is constrained by orientation. The vehicle is
not allowed at any time to face a range of orientation. The
modified model in Eq.(1) is to be be used to build the path.
The polar speed diagram of this vehicle is convex given the
restrictions on the orientation. As such, the work that was done
in [9] can be used, which means that the shortest path will be
of the type, or the subset of, CSCSC. Similarly to [16], the
Dubins’ path is built upon the bitangents between the first
and final turn of the path. To solve this problem, a study of
the available domain of the orientations of the vehicle will be
shown. Consequently, the best orientations will be chosen in
that domain for which the path becomes the shortest.

The system is established in an Euclidean plane (x, y) ∈ R2.
Every angle discussed in this paper is in the trigonometrical
range of T = [0, 2π], expressed in the Euclidean space, relative
to the X-axis. The vehicle pose z(t) = (x(t), y(t), θ(t)) ∈
R2 × T is expressed for t ∈ [ti, tf ] where ti is the initial
time and tf the final time. For the examples shown in this
paper, since the problem is of cylindrical symmetry, we will
take z(ts) = (0, 0, 0) for the sake of simplicity. The defined
variables and constants are shown in Figure 2.
• Let the times tmi,tmf be the medium time at which the

path leaves the first turn and the medium time at which
the path lands on the final turn.

• Let C be a turn and also represent the curvature’s circle
of the turn. It can either be a left (L) or right turn (R).

• Let Cn be the turn or the curvature’s circle of the turn
in an ordered configuration. As such, in a configuration
C1SC2SC3, C1 is the first turn of the path.

• Let λC1C2
be the angle of inclination, relative to the X-

axis, of the line passing through the center of circles C1

and C2.
• Let dC1C2 be the distance between the center of circles
C1 and C2.

• Let uC ∈ {−1, 1} be a unit of direction following the
counter-clockwise (CCW) convention. Where uL = 1 and
uR = −1. This is used to simplify the equations and
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consider the direction of turns.
• Let ρC1C2 and µC1C2 be respectively the angles, in the

Euclidean frame, of the outer and inner bitangent between
C1 and C2. Let µ∗C1C3

be the bitangent angle in the
special C1C2C3 configuration. Let ηC1C2

be the general
notation for bitangent angles.

• Let ∆ = [φ− δ, φ+ δ] be the no-go zone boundaries in
the Euclidean frame. With ∆ its minimal boundary and
∆ its maximal boundary. Let ∆C express the smallest re-
stricted angle depending on the turn and ∆C the highest.
As such ∆C = φ− uCδ and ∆C = φ+ uCδ.

The method described in this paper uses the properties of
the bitangents. Their values can be found using geometrical
analysis, in the specific case where all circles are of the same
radius: 

ρC1C2
= λC1C2

ρC2C1 = ρC1C2 + π

µC1C2 = λC1C2 + uC1 arccos( 2r
dC1C2

)

µC2C1 = µC1C2 + π

(2)

In the special case when dC1C2
< 4r, the classic Dubins

path is in a CCC configuration. In this configuration, the turns
are ordered as such: C1C2C3. The bitangent angles, in this
case, can easily be found using the properties of the isosceles
triangle, considering that the middle turn is at a distance of
2r from the center of each starting and final turn:{

µ∗C1C3
= λC1C3

+ uC1
arccos(

dC1C3

4r )

µ∗C3C1
= µ∗C1C3

− uC1
π

The first problem is to know when a classic Dubins path
is not allowed considering the restriction on the orientations.
This is done by using the properties of the bitangents and
establishing the simple conditions in which the Dubins path
orientates the vehicle towards the forbidden angles. When the
classic Dubins path is not possible, another shortest path that
never faces the range of unacceptable angles is built by adding
a turn, as proven in [9]. The following two sections will
explain the multiple conditions and the method to build the
new CSCSC path.

III. CONDITIONS FOR EXISTENCE OF THE RESTRICTED
ORIENTATION DUBINS PATH

The restriction on orientations given to the Dubins vehicle
model in Eq.(1) forces to consider in which cases any path
from one pose to the other can fail. The strong restriction gives
the initial conditions of this model. First of all, the initial and
final poses cannot be in the no-go zone:{

cos(φ− θ(ti)) < cos(δ)

cos(φ− θ(tf )) < cos(δ)
(3)

Secondly, the range of restricted orientations should not stop
the vehicle from ever being able to approach the goal:


[
θ(ti),∆C1

]
∩
[
λC1C2

− π
2 , λC1C2

+ π
2

]
6= ∅

OR[
∆C2

, θ(tf )
]
∩
[
λC2C1

− π
2 , λC2C1

+ π
2

]
6= ∅

(4)

Now that the primary conditions are set, the conditions in
which the Dubins path fails can be found. The classic Dubins
path uses the bitangents to go from one turn to the other. As
such, the Dubins path is not possible if the bitangent angle
cannot be reached. This can be checked by looking at the
intersection between the domain of the turns with the no-go
zone: {

∆ ∩
[
θ(ti), ηC1C2

]
6= ∅

∆ ∩
[
ηC2C1

, θ(tf )
]
6= ∅

(5)

To test these conditions in a system, the directed arclength
is used to have a programmatically correct implementation.
The directed arclength is defined for a turn C, between an
initial angle θi and a final angle θf , as such:

Â (θi, θf )C = sawtooth
(
uC
(
sawtooth(θf )−sawtooth(θi)

))
Where the sawtooth function is the sawtooth wave with a

period 2π defined as sawtooth(t) = t(mod 2π) − π. Using
Eq.(5) and the above directed arclength, a method to check
whether the Dubins path is possible can be implemented.

In the case where one of these conditions fails, a new path
of type CSCSC must be built. The next section will explain
where to add the new turn to have the shortest path.

IV. BUILDING THE SHORTEST PATH WHEN ADDING A
TURN

The path built here is of type C1SC2SC3. Where C1 is the
starting turn and C3 the final turn. A C2 turn is added to be
able to arrive at the final pose while avoiding the unacceptable
range of orientations. The bitangents and the direction of the
turns are of importance when building the path. A Dubins path
will be built between C1 and C2, and also between C2 and
C3. This means that the arriving and leaving angles on C2

are bitangents angles. Figure 3 shows a CSCSC path, in the
specific case where the turn directions C1 = C3 = L, with
different C2 turns. The domain restrictions on the pair (θ1, θ3),
the angle on the first turn and the angle on the last turn, will
be exposed here.

The first domain is the possible angles of the first and final
turn considering the first and final pose and the restriction:

TC1C3 = {(θ1, θ3) ∈ T × T |
θ1 ∈ [θ(ti),∆C1

],

θ3 ∈ [∆C3 , θ(tf )]
} (6)

Conditions of intersection must be set for the different
angles on C1 and C3. The added turn can only exist if C2

is attainable considering the directed tangent lines from the
starting and finishing turn. The parametric equations of the
tangent lines will be used to define their intersections. We
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Fig. 3. (Left) Examples of LSC2SL paths without any restriction in
orientation. (Right) Domains restriction process in a particular LSRSL
configuration. TC1C3 is in green stripes, PC1C3 is in green dots, IC1C3

is the overlaying solid green color.

define OC as the center of circle C. This equation expresses
the distance to the intersection of the directed lines, tangent
to the turns C1 and C3:

IC1C3 = {(θ1, θ3) ∈ T × T | ∃t, t′ ≥ 0,

Oθ1C1
+ t

[
cos(θ1 + uC1

π
2 )

sin(θ1 + uC1

π
2 )

]
= Oθ3C3

+ t′
[
cos(θ3 + uC3

π
2 )

sin(θ3 + uC3

π
2 )

]}
(7)

with:

OθkCn
= OCn

+ r

[
cos(θk)
sin(θk)

]
The arriving and leaving angles are bitangents, the angles

on C1 and C3 govern the angles on C2. As such, the domain
on C2 must be checked to know whether they intersect with
the no-go zone. Transformed to the pair (θC1 , θC3), it gives:

PC1C3
= {(θ1, θ3) ∈ T × T | ∆ ∩ [θms, θmf ] 6= ∅} (8)

where θms and θmf are the bitangent angles on C2 respec-
tively between C1 and C2 and between C2 and C3. π is added
whether the angles on C2 are inner or outer bitangents.{

θms = θ1 +
1−uC1

uC2

2 π

θmf = θ3 +
1−uC3

uC2

2 π

The domain of orientation of the vehicle is now set, with
the domain of the bitangents on C2 being restricted by the
domains defined above Eq.(6), Eq.(7) and Eq.(8), shown in
Figure 3:

{
FC1C3

= TC1C3
∩ IC1C3

∩ PC1C3

(θ([ti, tmi]), θ([tmf , tf ])) ∈ FC1C3

(9)
Now that the domain of angles on the first and last turn

is established, the angle at which the vehicle must leave the
first turn and arrive on the last turn must be found. Or to put
it differently, where to position the center of C2 turn in the
domain specified. The angles can be found by minimizing the
length of the whole path. Another method is exposed here.

It is known that the bitangents are the shortest path possible
between two circles. The hypothesis made in this paper is that
the longer the distance of the middle turn is from the bitangent

lines, the longer the path becomes. This statement might be
obvious but the proposition is necessary to fully understand
the problem. The proposition is available in the Appendix. It
demonstrates that when either the difference between the angle
of the first or the final turn and the corresponding bitangent
angle increases, the paths length increases. This means that to
get the shortest path, θC1

and θC3
must simply be the closest

to the bitangent, as much as the domains in Eq.(9) allows.
The values for the leaving and landing angles, respectively

on C1 and C3, are then:

θ(tmi) = min
(
|θC1
− ηC1C3

|, θC1
∈ FC1C3

)
θ(tmf ) = min

(
|θC3
− ηC3C1

|, θC3
∈ FC1C3

) (10)

The singularities explained at the end of Appendix A can
easily be taken care of by evolving the angles θ(tmi) and
θ(tmf ) from Eq. (10) in opposite ways, while staying in
the available domain, until the middle turn is as close to an
equidistant line.

All the information to build the path has been established
so far. The leaving angle from the first turn and the arriving
angle on the last turn are given. In effect, the angles on C2

using Eq. (10) is given. Finally, to finish the path, straight lines
going from C1 to C2 and from C2 to C3 and arcs on C1, C3

and C2 are constructed.

V. APPLICATION

To apply the method in an embedded system, the workflow
is shown in Algorithm 1.

Data: z(ti), z(tf ), φ, δ
Result: Path Configuration and associated angles
if Eq.(3) and Eq.(4) are satisfied then

foreach Pairs of initial and final turn (C1,C3) do
if Eq.(5) is satisfied then

// Classic Dubins
Configuration Queue.add(C1SC3);

else
// Build a C1SC2SC3 path
foreach C2 = {L,R} do

Compute the domain FC1C3
, Eq.(9);

Compute θ(tmi) and θ(tmf ), Eq.(10);
CSCSC Queue.add(C1SC2SC3);

end
Configuration Queue.add(min(CSCSC Queue));

CSCSC Queue.clear();
end

end
Configuration = min(Configuration Queue);

end
Algorithm 1: Simplified workflow to find the best path
configuration. The path can then be built using the config-
uration’s information. Source code is available at [17].

The algorithm checks if the classic Dubins path is possible
for each combination of starting and finishing turns. If not, a
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new CSCSC path is built. Finally, the shortest path is chosen
from all the different possible paths.

Multiple ways can be used to compute Eq.(9) and Eq.(10) in
an embedded system. Set computation can be used if available
or looping through the discretized set to compute the minimum
from an array of values, while computationally expensive, can
also be used.

The application here is applied to a station keeping problem.
Since a sailboat cannot turn as willingly as is the case with
other vehicles, a path-following control is proposed. This
method will show the best path for a position keeping problem
for a Dubins vehicle with restricted orientation as proven in
Appendix A.

A path-following control using a well-established sailboat
model inspired by [18] will be simulated. This model takes
into account the wind and water current which apply forces to
the sailboat at all time. As this method makes more sense in
restricted path lengths, an application to station keeping will
be exposed. The model of the sailboat is as followed:

ẋ = v cos(θ) + p1atw cos(ψtw)

ẏ = v sin(θ) + p1atw sin(ψtw)

θ̇ = w

v̇ = gs sin(δs)−grp11 sin(δr)−p2v2
p9

ẇ = gs(p6−p7 cos(δs))−grp8 cos(δr)−p3wv
p10

(11)

with: {
gs = p4aaw sin(δs − ψaw)

gr = p5v
2 sin(δr)

The values of the parameters for the simulation were taken
from [18], Section 2.7, Table 2.2.
δs and δr are the angles of the sail and rudder respectively,

that are used to control the sailboat. a is the speed of the
wind and ψ its angle. tw refers to the true wind and aw to
the apparent wind.

MATLAB is used to compute the simulation. The Dubins
path algorithm is based upon [16]’s work, and the source code
is available online [17]. The sets from Eq.(9) were discretized
and used as matrices to find the minimum in Eq.(10). In
terms of computational speed, on the same machine, finding
the shortest path is of the same order as the classic Dubins
path. Computing the shortest path and plotting it averages at
0.15s for a path with 1000 points while the classic one takes
approximately 0.1s. Considering the speed and efficiency of
such an algorithm, it is possible to imagine launching the
algorithm in a loop to face sudden changes in wind direction.
In the same wind condition, the algorithm would not change
the previous path, it would simply create the same optimal
sub-path SCSC if computed after the first turn.

For this application, a particular situation is taken where
the classic Dubins path does not work. The path is then tested
to see if it is plausible for a path-following algorithm. This
method is applied for station keeping, or also called position
keeping. In this case, the start pose and the end pose are
the same.A small offset was added to the end pose for it to
work, or else it would consider the optimal path to be attained

Fig. 4. Path built for a position keeping scenario where the start pose and the
end pose are the same at z(ti) = z(tf ) = (0, 0, π

4
). On the right, simulation

of the path-following control on the classic Dubins path (in blue) and on
the restricted Dubins path (in red). The boat’s path and the restricted path
completely overlap while the classic Dubins path is not feasible - the boat
had no control and was pushed away by the wind.

without moving. The start pose [0, 0, π4 ] is considered, the
inaccessible angle φ = π, opposite to the wind taken, ψ = 0
(since the sailboat cannot go against the wind) and the range
around that angle δ = π

4 .
For the rate of turn, the minimum rate of turn is roughly

calculated from the model Eq.(11) and empirically established
at ρ = 14.48m.

The produced path is a LSRSL path with a turn rate of
ρ = 14.48m as shown in Figure 4. The overall length is of
194.86m. The only other available path was a RSLSR path
with an overall length of 194.92m. Since the start pose and the
end pose are the same, the vehicle can start at any point in the
path. This makes it useful when restricted in space, such is the
case for station keeping. No classic Dubins path was available
because of the restriction of angle. However, for comparison
purpose, the same path-following control was simulated on the
classic Dubins path with the same radius. The classic Dubins
path is a single full turn, marked by the circle in black outline
on the bottom of the right figure in Figure 4.

The control implemented to follow the path is a simple
feedback control inspired by the line following algorithm [19].
This algorithm makes the path attractive to the sailboat. The
algebraic distance is calculated to the closest point to the path:

e = det(
cL
‖cL‖

, p− c) (12)

Where c is the closest point to the path, θc the angle of
the tangent vector to the closest point on the path and p the
position of the boat. It is to note that θc is given by the
algorithm as it gives the pose at each point of the path. This
error is then used in the heading control:

θ∗ = θc − 2
γ∞
π
atan(

e

r
) (13)

where γ∞ = π
4 is the incidence angle of the sailboat and r

the cutoff distance, the distance at which the boat should not
go over. This proportional gain can be improved to counter
stronger currents in water and errors in motion by adding an
integral component. The following controls are applied to the
rudder angle δr and sail angle δs, using their maximum values,
respectively, δr max and δs max:
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Fig. 5. Simulated path between a tacking strategy (in red) and the restricted
Dubins path following control (in blue) on the left. The corridor of the tacking
strategy is taken as 40m, adding more turn and slowing down the boat. In this
particular scenario, the restricted Dubins path following control is faster than
the tacking strategy, which is not generally the case. Measured velocity and
acceleration of the corresponding simulation on the right. The acceleration is
less stable in the tacking strategy case.

δr =

{
δr max sin(θ − θ∗), if cos(θ − θ∗) > 0

δr maxsign(sin(θ − θ∗)), else

δs = δs max
cos(ψtw−θ∗)+1

2
(14)

The resulting simulation is shown in Figure 4. The boat
was capable of following the restricted path built, the red
path shows the boat’s path and in black the Dubins path
built (classic and restricted). The path-following control on
the classic Dubins path, which is a single full turn, could
not be finished because of the wind pushing back the boat.
If the wind was lower, the boat would have been able to
finish the trajectory by using its inertia. Nonetheless, when the
boat is against the wind, control is lost and the boat becomes
uncontrollable at a lower velocity.

Further tests were done to compare this strategy to a tacking
strategy, referred to as beating (zig-zagging to go upwind).
Figure 5 shows the difference between the tacking strategy
and the restricted Dubins path. The tacking strategy is almost
always faster than the restricted Dubins path following control.
But when comparing the acceleration of the boat, since the
restricted Dubins path gives a smoother path, the boat seems
to suffer less in mechanical disturbance and control. Also, in
the tacking strategy, the boat will always face the wind at each
tack, putting the sail in a flag position, which could hurt it and
rip it in high winds.

To conclude on real-life application, considering errors in
measurements, the path-following algorithm here could be
improved to also work on more hostile environments such
as high-wind and high water currents by adding integral and
derivative gains to the feedback control.

VI. CONCLUSION

In this paper, a way of building a Dubins path when
restricted to a range of orientation at all time was shown. Using
bitangents of circles, the shortest path was built from one pose
to another by adding a middle turn, making a CSCSC path.
It was proven that, for a Dubins path with an added middle
turn, whenever the difference between the bitangent angle and
the angle leaving the first turn or the angle landing on the

final turn increases, the whole path length increases. By using
this property, the shortest path was built by choosing angles
that are closest to the bitangents, in the available domain of
angles constrained by the restriction in orientation, and thus
placing the middle turn correctly to have an overall shortest
path. An application to a path-following algorithm using a
sailboat model has shown the feasibility and the use of such
a path in a position keeping scenario.

This method allows sailboats, and other vehicles, to navigate
in restricted environments as efficiently as possible, distance-
wise. The proof given can also be used for obstacle avoidance.
Indeed, it is now known that whatever the angle is chosen on
the first and final turn, the closer it is to the bitangent angle,
the shorter the path will become. A vehicle could avoid an
obstacle while staying as close as possible to the bitangent
as possible. Different sailboat path-following controls could
be used to answer to different requirements. For a normal
vehicle, knowing the configurations, a control on turns and
not a path-following method could be used. Future work can
be done using this path in path-planning methods such as the
Dubins Traveling Salesman Problem (DTSP) when restricted
to certain orientations. Also merging this algorithm to the one
proposed in [9] using displaced vectors could be considered
to work in vehicles with both continuous and discontinuous
speed.

APPENDIX
PROPOSITION OF THE SHORTEST PATH FOR A CSCSC PATH

This section will analyse the behaviour of the CSCSC
path’s length by analysing the distance between tangent lines
of two circles. This study will show that for a CSCSC path,
whenever the difference in angles between the first or the
final turn and the corresponding bitangent angle increases, the
whole paths length increases. This appendix does not take into
account the restriction of angles since this study is on the more
global problem of the length of a CSCSC path. Singularities
exist near the bitangent angles which will be explained at the
end of this study.

The notation will be simplified and modelled as in Figure
6. Since this work focuses on the first and last turn, the con-
figuration order is considered as C1SCmSC2. Configuration
C1SCmSC2 is simplified as C1C2. Let θ1 be the angle on the
first circle C1 and θ2 the angle on the last circle C2 of the
tangents. C1 is on the right side of C2 on the figures. This
was chosen arbitrarily, but it is of no concern for the proof.

The poses are placed so that the bitangents between C1 and
C2 overlap the x-axis. Meaning that for a LL configuration,
circles are placed at the same height so that the bitangent is
at θ1 = θ2 = π

2 , and in a LR configuration, the bitangent
is placed at θ1 = π

2 and θ2 = 3π
2 as shown in Figure 6.

Because of the symmetric relations between the configurations,
the rest of the configurations can be obtained by flipping those
configurations. The radius of the turning rate is taken as a unit
radius r = 1 and the distance on the x-axis between C1 and
C2 are taken at 5 arbitrarily. While these last two parameters
affect the results, it will be shown that the conclusion of the
proposition is not affected.
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Fig. 6. Figure modelling the problem for the proof, in the specific configura-
tion LR. Angles θ1 and θ2 measure the angle on the circle of the tangents.

The gradient of the length of the whole CSCSC path is
studied. Since the Interval Analysis tool will be used to analyse
the results, an expression of the distance easily derivable must
be found. As such, the parametric expressions of the tangent
lines are used. The distance at which the two lines intersect
must be studied. As they are algebraic, conditions are set to
have the proper distance when they are positive. According to
Eq.(7), t and t′ must be found so that:


Oθ1C1

+ t

[
cos(θ̃1)

sin(θ̃1)

]
= Oθ2C2

+ t′

[
cos(θ̃2)

sin(θ̃2)

]
t ≥ 0

t′ ≥ 0

(15)

where:

θ̃i = θi + uCi

π

2

This gives us multiple combinations of expressions. They
are all accounted for the interval analysis study, one of which,
for instance, becomes:



t = sin(θ̃1)dx−cos(θ̃1)dy
sin(θ̃2−θ̃1)

t′ = cos(θ̃2)t+dx

cos(θ̃1)

cos(θ̃1) > 0

dx = (OC2 −OC1).~i

dy = (OC2
−OC1

).~j

(16)

Since a unit velocity is considered, the distance, or the time,
at which the lines intersect is found using Eq.(16). The arc
length of the added turn Cm, noted aCm , and the part of the
trajectory added/removed from the intersecting lines L (shown
in Figure 6) are added. The first and final arcs aC1

and aC2
are

also added. This sum gives the whole distance of the CSCSC
path:

D(θ1, θ2) = t+ t′ + τ2L+ aCm + aC1 + aC2 (17)

where τ corresponds to the sign at which L is either added
or removed from the trajectory:



L = r|tan( θ2−θ12 )|
aCm = r|θ1 − θ2|
aC1

= r|θ1|
aC3

= r|θ2|

τ =

{
1 if |θ2 − θ1| < π

−1 else

d1 is notated as the first component of the gradient of
D(θ1, θ2) and d2 the second component:

~∇D(θ1, θ2) =

[
d1
d2

]
=

[
dD(θ1,θ2)

dθ1
dD(θ1,θ2)

dθ2

]
To calculate the derivative of the added path L and aC2 ,

it is important to note that they are of opposite sign: when
L increases, aC2

decreases. The absolute values are modified
using the properties of the turns and the bitangents, replacing
them with units of directions uC . As such:



dL
dθ1

= uC1uC2r
1
2 (1 + tan2( θ2−θ12 ))

dL
dθ2

= −uC1uC2r
1
2 (1 + tan2( θ2−θ12 ))

daCm

dθ1
= −uC1

uC2
τr

daCm

dθ2
= uC1

uC2
τr

d(aC1
+aC2

)

dθ1
= uC1r

d(aC1
+aC2

)

dθ2
= uC2

r

For simplicity, the added path L and aCm
will be neglected

and discussed later. We call D(θ1, θ2) the distance without
the added L and aCm

path, with the corresponding gradient
elements d1 and d2:

D(θ1, θ2) = t+ t′ + aC1
+ aC2

(18)

If only t + t′ was taken into account, one could see that
the shortest path is not at the bitangent angle and that r might
take over the distance dC1C2

and modify the overall gradient
of D(θ1, θ2) and most importantly its sign. The added arcs
counteract the parameter r by nulling its behaviour, making
r and dC1C2 negligible towards the gradient’s sign. As such
arbitrarily chosen poses and parameters do not affect the
conclusion of this proof.

Four different combinations of Eq.(16) are used and are de-
rived to analyse the behaviour of CSCSC path. The gradient
of the expression D(θ1, θ2) from Eq.(18) is analysed using
SIVIA with θ1 ∈ [0, 2π] and θ2 ∈ [0, 2π]. The sets considered
are: 

S1 = {t < 0} ∪ {t′ < 0}
S2 = {d1 > 0} ∩ {d2 > 0} ∩ S1
S3 = {d1 < 0} ∩ {d2 < 0} ∩ S1
S4 = {d1 > 0} ∩ {d2 < 0} ∩ S1
S5 = {d1 < 0} ∩ {d2 > 0} ∩ S1
S6 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5

(19)

For the results, the vehicle poses were arbitrarily taken as
such to have the bitangents between C1 and C3 as simple as
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Fig. 7. The gradient of D(θ1, θ2) in the LR configuration using SIVIA
algorithm. In green, S1. In pink, S4. In light blue, S5. In yellow, S6 i.e.
uncertainties. On the left, r = 5 and on the right r = 1 .

possible. The distance between the poses and the radius are
also taken arbitrarily. While these parameters affect the results,
it doesn’t affect the conclusion, as it will be shown later. The
result for configuration LR is shown in Figure 7 for a distance
between the poses of 10 and a radius of 5 with θ1 in the x-
axis and θ2 in the y-axis. A comparison is shown in the same
figure with a distance of 10 and a radius of 1.

In green, the set S1, when the directed lines don’t intersect.
In pink, the set S4. In light blue, the set S5. Other conditions
such as S2 (in red) and S3 (in dark blue) were calculated but
returned empty with D(θ1, θ2). Finally, in yellow, the set S6
i.e. the uncertainties.

In the configuration LR, the bitangent is at θ1 = π
2 and

θ2 = 3π
2 which corresponds to the top left side of the result

in Figure 6 which the colour changes from pink to light blue,
or from set S3 to S4. Lines of uncertainties can be seen when
θ1 = θ2 or with θ1 = θ2 ± π

2 which represent when the two
lines are parallel.

The set S4 shows that whenever θ1 increases, the whole
path’ length increases while increasing θ2 diminishes the path’
length. In the particular domain of the set S4 in the LR
configuration, increasing θ1 gets it further from the bitangent
angle, and increasing θ2 gets it closer to the bitangent angle.
The same observation can be made for the set S5.

What this result shows, is that when the difference between
θ1 and θ2 to the bitangent angle increases, D(θ1, θ2) increases.
This means that the global minimum is set at the bitangent.
This shows that to have the shortest path, θ1 and θ2 must be
as close to the bitangent angle as possible. Similar results can
be derived from the configuration RL. Configuration LL are
shown in Figure 8.

When adding L and aCm
to the path and analyzing

D(θ1, θ2) from Eq.(17), singularities can be seen, shown in
Figure 8. Whenever θ1 or θ2 is close to the bitangent, the place
at which the middle turn has to be put should be as close to
the median line between the two origins as possible to shorten
the path length. This is due to the fact that the radius of the
circle takes dominance over the path length. As such, these
singularities happen when the intersecting lines intersect with
one of the turn circles. These singularities don’t disprove the
proposition that when the path is further from the bitangent
angles, the longer it is. It adds another information where the
middle turn should be closer to the equipotential line between
the two poses if possible.

The following propositions conclude this appendix:
Proposition 1: Whenever the difference between θ1 or θ2

to the corresponding bitangent angle increases in a CSCSC
path, the whole path length increases.

Fig. 8. Gradient of D(θ1, θ2) in the LL configuration with radius r = 1 on
the left. Gradient of the whole path length D(θ1, θ2) in configurations LL
with radius r = 1. Singularities appear near the bitangent angles.

Proposition 2: When either θ1 or θ2 is close to the bitangent
angle and when the tangent lines of the circles intersect with
one of the circles, placing the middle turn closer to the median
line between the two origins of the circle shortens the whole
path length.
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