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ABSTRACT 

Name: Sarah Hannah Ellwood 

Title: Testing the gliocentric hypothesis of brain pathology. 

Ischaemic stroke is a leading cause of death and disability worldwide, causing 

cell death and tissue damage. All cell types are affected by ischaemia, however 

until recently, the impact of acute ischaemia has been studied from a neuronal 

point of view. Currently, there is a greater interest in glial cells such as 

astrocytes and oligodendrocytes as they are essential for the correct working of 

the central nervous system (CNS). This thesis aimed to investigate the regional 

sensitivity of the glial cells and the mechanisms behind any regional differences. 

Three mechanistic areas were chosen to be examined; the role of glycogen 

stores, cytotoxic ion influx through glutamate receptors and the involvement of 

sodium and cell swelling. 

Investigation into glial sensitivity was carried out via live imaging of brain slice 

and optic nerve preparations from transgenic mice which specifically expressed 

GFP in either astrocytes or oligodendrocytes. Ischaemia was modelled using 

oxygen glucose deprivation (OGD). It was determined that astrocytes display 

regional differences in sensitivity to ischaemic insult. The most sensitive region 

was the dentate gyrus (DG), and corpus callosum (CC) was the least sensitive. 

Mature oligodendrocyte somas were found to be tolerant to acute ischaemia.  

Mechanistic investigation revealed that the presence and access to glycogen 

prevented and attenuated OGD induced cell death in CC. It was found that 

astrocyte injury may be mediated by AMPA receptors. OGD induced astrocyte 

cell death was found to be sodium dependent in DG but not in CC. The findings 

strongly indicate that astrocyte regional sensitivity to ischaemia exists and that 

there are different OGD induced cell death mechanisms depending upon the 

physical location of the astrocyte population. This provides further information 

about the effect of ischaemia on glial cells and provides targets to be further 

investigated to assist with the recovery of tissue after ischaemic insult. 
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1 INTRODUCTION 

1.1 GLIA 

Historically, brain anatomy and neurological disease have been studied 

from the neuronal point of view. Neurons have had more appeal since they are 

the active output cell of the central nervous system (CNS). However, over the 

last 25 years the important role of glial cells has been recognised and research 

into this area has increased. The CNS contains different glial cell types which 

can be broadly divided into macroglia and microglia. Of the macroglial cells, the 

following work is concerned with astrocytes and oligodendrocytes. When first 

described, these cells were thought to exist only to give shape to the CNS and 

structural support to neuronal cells. This myth has since been dispelled and we 

now know that these cells are essential partners for neurons and are intimately 

involved in all the cellular functions of the CNS. 

1.1.1 Astrocytes overview 

Discovered in 1858 by Rudolf Virchow, astrocytes are known to be the 

most abundant cell type in the CNS. It was not until the 20th century that these 

glial cells became of greater interest and became a more prominent focus of 

research. Astrocytes are a heterogeneous cell population which are classically 

divided into two groups; fibrous and protoplasmic (figure 2.1). Fibrous 

astrocytes are found in white matter (WM), they have a smaller soma and have 

long, branched processes. Protoplasmic astrocytes reside in the grey matter 

(GM) and have shorter processes which are arranged around a larger cell body. 

The protoplasmic astrocyte processes are highly branched with ramified 

morphology. These cells occupy their own non-overlapping micro-domains 

which they monitor and modulate (Halassa et al., 2007; Ogata & Kosaka, 2002). 
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Protoplasmic astrocytes have the capability of partially wrapping synapses with 

their processes, giving rise to the tripartite synapse (Araque et al., 1999). This 

allows protoplasmic astrocytes to interact and respond to synapses. Fibrous 

astrocytes directly contact and interact with neurons at axonal nodes of Ranvier 

(Butt, Duncan & Berry, 1994; Serwanski, Jukkola & Nishiyama, 2017). It has 

been suggested that this may allow astrocytes to monitor axonal function (Butt 

et al., 1999). Nodes of Ranvier and perinodal processes contain a high 

concentration of sodium channels (Butt, Duncan & Berry, 1994), the clustering 

of which are thought to be encouraged by astrocytes (Black et al., 1989). 

1.1.2 Astrocyte development 

The exact process of astrogenesis and development is unclear, although 

it has been suggested that in rodents astrocytes arise from neural stem cells 

(NSC) in the subventricular zone (SVZ) (Levison & Goldman, 1993). First these 

cells undergo asymmetric division to increase the pool of NSCs within the 

ventricular zone (VZ) (Molofsky & Deneen, 2015). These stem cells gain the 

ability to generate into glial cell precursors during the late gestation and 

perinatal period. At this time there is a molecular switch which causes the NSCs 

to become astrogenic, this occurs around embryonic day 16-18 in the cortex 

(Ge et al., 2012; Hirabayashi & Gotoh, 2005). The regulation and stimulation of 

astrogenesis has been found to involve Sox9. Sox9 can modulate Nuclear 

Factor I-A, which has also been found to be involved in astrogenesis (Deneen et 

al., 2006; Kang et al., 2012). 

The astrogenic NSCs leave the SVZ and migrate throughout the 

developing brain. The migration of astrocytes from their origin can occur along 

the processes of specialized radial glia, which act as a physical guide 

(Jacobsen & Miller, 2003; Zerlin, Levison & Goldman, 1995). Radial glia retain 
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the potential to differentiate into astrocytes, once neurogenesis is complete 

(Levison, de Vellis & Goldman, 2005). Astrocyte precursors can be identified 

through their expression of GLAST (glutamate aspartate transporter) (Shibata et 

al., 1997). It has been shown that astrocytes display subtype patterning and are 

spatially connected to their origin (Tsai et al., 2012). When situated in their final 

position, astrocyte proliferation occurs to populate CNS regions. The majority of 

the increase in cells occurs in the second and third postnatal weeks (Bandeira, 

Lent & Herculano-Houzel, 2009). A proportion of the astrocyte population is due 

to migratory cells, however the majority of cells are generated locally (Ge et al., 

2012). Intermediate astrocytes can then develop into mature fibrous and 

protoplasmic astrocytes dependent upon their final location. In mice structures 

such as the cortex, are only fully developed at the third or fourth week after birth 

(Rusnakova et al., 2013). 

1.1.3 Role of astrocytes in the CNS 

Astrocytes occupy a complex niche within the brain, they are essential for 

the correct working of the CNS and are involved in almost every functional 

aspect of the CNS. They have structural, homeostatic, biochemical, signalling, 

maintenance and protective roles and are involved in CNS development. These 

multiple responsibilities illustrate the importance of astrocytes, how they support 

neurons and how they maintain the cellular environment. The various roles of 

astrocytes are discussed below. 

1.1.3.1  Structural role of astrocytes 

The compact ramified morphology of protoplasmic astrocytes and the 

non-overlapping nature of these cells (Bushong et al., 2002; Ogata & Kosaka, 

2002) creates micro-domains which are controlled by the individual astrocytes. 

This produces the effect of tiling the GM, which gives structure and organisation 
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to the brain (Halassa et al., 2007). Perivascular astrocytes are a population of 

astrocytes which have close associations with blood vessels. These cells are 

involved in forming the structure of the blood brain barrier (BBB). The process 

endfeet contact and wrap around the blood vessels, covering their surface 

(Kacem et al., 1998; Simard et al., 2003). Tight junctions between perivascular 

astrocytes and endothelial cells (Janzer & Raff, 1987), as well as astrocyte 

interactions with pericytes help to form this physical barrier. The presence of 

astrocytes at the BBB and around blood vessels allows them to modulate blood 

flow and the permeability of the BBB through the secretion of vasodilators 

(Gordon, Mulligan & MacVicar, 2007). 

1.1.3.2  Astrocyte control of homoeostasis 

One of the major and perhaps most important functions of astrocytes is 

their role as homeostatic regulators of the extracellular space (ECS). The 

extracellular homeostasis of water, neurotransmitters, ion concentrations (figure 

1.1) and pH is the responsibility of astrocytes. The micro-domains created by 

the arrangement of protoplasmic astrocytes allow the environment surrounding 

an astrocyte to be tightly controlled and monitored (Bushong et al., 2002). 

Astrocytes express aquaporin channels through which the homeostasis 

of water is achieved. Aquaporin 4 is highly expressed on the astrocyte endfeet 

that contact blood vessels (Engelhardt, Patkar & Ogunshola, 2014; Nielsen et 

al., 1997). Through the regulation of water entry and exit from the blood flow, 

astrocytes maintain the volume of the ECS (Yao et al., 2008) and are able to 

regulate synaptic interstitial fluid (Iliff et al., 2012).  

Neurotransmitter homeostasis, clearance and recycling is largely carried 

out by astrocytes, for example glutamate. This occurs via the uptake of 
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neurotransmitter from synapses by high affinity sodium dependent transporters 

and glutamate transporters such as EAAT1 and EAAT2 (Rothstein et al., 1996). 

Glutamate is taken into astrocytes where it is converted into glutamine 

(glutamate precursor) (Deitmer, Bröer & Bröer, 2003), which is released for 

uptake by neurons where it is transformed into active neurotransmitter. 

Astrocytes also have the ability to synthesize glutamine, de novo, which 

neurons are unable to do (Schousboe et al., 2014), thereby supplying neurons 

with neurotransmitter precursor when required. Astrocytes also express 

glutamate receptors, such as NMDA and AMPA glutamate receptors (Bowman 

& Kimelberg, 1984; Burnashev et al., 1992; Seifert & Steinhauser, 2001). The 

binding of glutamate to the receptor causes the receptor pore to open and allow 

ion influx to occur (Clark & Barbour, 1997; Matsui, Jahr & Rubio, 2005). 

However, it is well known that in the case of NMDA receptors the receptor pore 

contains a magnesium ion block which prevents the opening of the pore. The 

magnesium block is voltage sensitive and so is removed when the cell 

depolarizes (Papadia & Hardingham, 2007; Schipke et al., 2001). Neurons 

depolarize more frequently than astrocytes and so it may be that a different 

subunit arrangement is present in astrocyte expressed NMDA receptors 

(Burnashev, 1996; Seifert et al., 1997) which makes the magnesium block more 

easily removed. There is evidence that astrocyte expressed NMDA receptors 

may be magnesium insensitive and lack a magnesium block (Lalo et al., 2006).  

The regulation of extracellular pH and maintenance of ion concentrations 

largely falls to astrocytes (Deitmer & Rose, 1996). This is achieved through a 

variety of exchangers and transporters (figure 1.1), some are active (Deitmer & 

Rose, 1996) whilst others are driven by ionic gradients, such as sodium as there 

is a maintained sodium gradient entering astrocytes. The main transporters 
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involved in this process include; the sodium-hydrogen exchanger (NHE) which 

allows the entry of sodium in exchange for hydrogen (Deitmer & Rose, 1996; 

Kintner et al., 2004). The sodium/calcium exchanger (NCX) can move sodium 

out and calcium into the cell (Kirischuk, Kettenmann & Verkhratsky, 1997; 

Minelli et al., 2007). This is a reversible transporter which will change direction 

depending on ion concentration and membrane potential. The voltage-

insensitive sodium channels (NX) (Rose & Verkhratsky, 2016) allow for sodium 

entry into astrocytes. The sodium-bicarbonate co-transporter (NBC) facilitates 

the entry of sodium and bicarbonate into the cell (Soleimani & Burnham, 2001). 

The sodium-potassium-chloride co-transporter (NKCC1) simultaneously 

transports a sodium ion, a potassium ion and two chloride ions into cells (Plotkin 

et al., 1997). Sodium independent and sodium dependent bicarbonate/chloride 

exchanger (BCX) (Mellergard, Ouyang & Siesjo, 1994), which allow chloride 

entry and bicarbonate efflux. The sodium/potassium ATPase (NKA) is 

predominantly responsible for sodium extrusion (Rose & Verkhratsky, 2016; 

Watts et al., 1991). Ion concentrations are also maintained through the action of 

cation chloride co-transporters such as NKCC1 and the potassium-chloride co-

transporter. The pH is also maintained through proton buffering and 

sequestration (Deitmer & Rose, 1996). 

Astrocytes are important for ECS potassium clearance (Djukic et al., 

2007), via a process known as spatial buffering (Orkand, Nicholls & Kuffler, 

1966). It was determined in salamander retinal Müller cells that extracellular 

potassium increases cause potassium to enter Müller cells (Newman, Frambach 

& Odette, 1984). Newman et al. (1984) discovered the excess potassium almost 

immediately leaves cells via endfoot processes, creating a syphoning effect. 

They suggested that this may be carried out by astrocytes due to the interaction 
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of their process endfeet with blood vessels, thereby syphoning excess 

potassium into cerebrospinal fluid and the blood stream. 

Figure 1.1: Key routes of astrocyte ion movement. Summary of key astrocyte 

ion transporters and channels, the ions transported and direction of transport. 

NCX – Sodium/Calcium exchanger, KCC – Potassium-chloride co-transporter, Nx 

– sodium channel, GluR – glutamate receptor, NBC – sodium/bicarbonate co-

transporter, Na/K ATPase – sodium/potassium ATPase, NHE- sodium/proton 

exchanger, BCX – bicarbonate/chloride co-transporter, NKCC1 – sodium-

potassium-chloride co-transporter. 

1.1.3.3  Astrocyte involvement in axon growth and synaptogenesis 

Astrocytes, their precursors and radial glia are involved in the stimulation 

and direction of neurite outgrowth (Liesi & Silver, 1988; Rakic, 1971). This 

guidance of growing axons occurs through the secretion of factors which either 

promote or inhibit neurite extension (Powell & Geller, 1999) or via cell-cell 
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interactions. Axonal growth can also be directed and inhibited through the 

formation of boundaries by immature astrocytes and radial glia (Laywell & 

Steindler, 1991).  

The major role of astrocytes in synaptogenesis was illustrated by Pfrieger 

et al. (1997), who found that when cultured, neurons had sevenfold fewer 

synapses when grown in the absence of glia (Pfrieger & Barres, 1997). Synapse 

formation occurs through the involvement of astrocytes and the secretion of 

thrombospondins (Christopherson et al., 2005). These were discovered in the 

media of cultured astrocytes and are known to have a role in cell adhesion. 

Hevin, an extracellular matrix protein, is another astrocyte derived factor which 

encourages the formation of excitatory synapses (Kucukdereli et al., 2011). Both 

of these factors promote the structural formation of the synapse. Synapses only 

become mature and active with the release of glypicans from astrocytes (Allen 

et al., 2012). The formation of synapses can also be activated by physical 

contact between astrocytes and neurons and is directed through integrin 

receptors (Hama et al., 2004), which leads to synapse maturation. 

Synaptic morphology is not static and is constantly changing depending 

on need and use. Synapses can be created, altered and eliminated via the 

actions of astrocytes (Slezak, Pfrieger & Soltys, 2006). The plasticity of 

synapses is achieved through the secretion of proteins by astrocytes. For 

example the function of glutamate receptors (GluRs) is affected by SPARC 

(secreted protein acidic and rich in cysteine), which alters the stability of GluRs 

(Jones et al., 2011). 

Synaptic function is also monitored and modulated by astrocytes. Within 

their individual territory it is possible for one astrocyte to contact several 

synapses, in the hippocampus this can be up to 140,000 synapses (Bushong et 
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al., 2002). The interaction of astrocytes with the pre- and post-synaptic terminals 

has been termed the tripartite synapse (Araque et al., 1999). This position 

allows astrocytes to directly respond to synaptic activity and enables the 

clearance of excess neurotransmitter. Synaptic efficacy is modulated by 

astrocytes releasing gliotransmitters, such as ATP (James & Butt, 2002) which 

is secreted via calcium dependent exocytosis (Pangrsic et al., 2007). In the 

adult CNS a proportion of hippocampal astrocytes retain their ability to trigger 

neurogenesis in the developed brain and are responsible for the regulation of 

neurogenesis in the adult CNS (Song, Stevens & Gage, 2002).  

1.1.3.4  Astrocyte involvement in metabolism 

Due to their ensheathment of blood vessels and involvement in the BBB, 

metabolites such as glucose have to pass through astrocytes to get from the 

blood stream to neurons. Glucose can be retained by astrocytes, where it is 

converted into glycogen and can be stored. Astrocytes are known to be the 

major glycogen store in the brain (Wender et al., 2000) and so have an 

important role to play in CNS metabolism. 

It has been proposed that in times of hypoglycaemia or elevated neuronal 

activity these glycogen stores are utilized to preserve the function of neurons 

(Brown, Tekkok & Ransom, 2003). It has been suggested that the metabolites 

produced from glycogenolysis can be transported to neurons via the astrocyte-

neuron lactate shuttle hypothesis (ANLS) (Pellerin et al., 1998). This hypothesis 

suggests the export of lactate from astrocytes followed by its movement into 

axons where it is converted into pyruvate and can enter the Krebs cycle (Brown 

& Ransom, 2007; Pellerin et al., 1998). First astrocytic glycogen is converted to 

lactate and exits the cell via monocarboxylate transporters (MCTs), both MCT1 

and MCT4 are expressed by astrocytes (Bergersen et al., 2001; Pierre et al., 
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2000). The lactate is taken up by neuronal MCT2 (monocarboxylate transporter 

2) into axons where it is converted to pyruvate by lactate dehydrogenase 

(Brown, Tekkok & Ransom, 2003). The existence of a lactate gradient between 

astrocytes and neurons further supports the ANLS hypothesis and suggests an 

important role for lactate in the CNS (Machler et al., 2016). The lactate 

produced by astrocytes is not exclusively used by neurons, it has been 

discovered that lactate can be utilized as a metabolite by cultured 

oligodendrocytes, as well as for lipid synthesis (Sanchez-Abarca, Tabernero & 

Medina, 2001). The astrocytic MCTs may not only play a role in releasing 

lactate for neuronal use, but also to release lactate as a signalling molecule 

(Lauritzen et al., 2014). 

1.1.3.5  Astrocyte signalling 

Astrocyte communication with neurons and other astrocytes occurs 

through the use of molecules such as nucleotides and amino acids, collectively 

termed gliotransmitters (Innocenti, Parpura & Haydon, 2000; Wang, Haydon & 

Yeung, 2000). Adenosine triphosphate (ATP) is a major substrate for glial 

communication (Butt, 2011) and causes increases in intracellular levels of 

calcium. Gliotransmitters are used by astrocytes to communicate with other 

astrocytes and cell types. When a signal is detected, astrocytes are able to tailor 

their response, thereby responding in a non-linear manner to stimuli (Perea, Sur 

& Araque, 2014).  

Throughout the CNS astrocytes are coupled creating networks known as 

syncytia. Astrocytes couple via gap junctions which are formed at contact points 

between the fine processes of neighbouring cells, which express hemi-channels 

(Dermietzel et al., 1991). Gap junctions are formed from connexins which create 

pores in the cell membrane; the predominant connexin expressed by astrocytes 
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is connexin 43 (Dermietzel et al., 1991). The coupling of hemi-channels from 

different cells forms the gap junction, allowing the transport of ions and 

molecules to occur between cells. These pores allow the movement of 

signalling molecules between astrocytes (Ye et al., 2003), allowing astrocyte 

communication across regions of the CNS through interconnected cells.  

Instead of electrical excitability astrocytes are excited by changes in 

intracellular calcium concentration (Charles et al., 1991). Calcium signalling 

occurs via waves (Cornell-Bell et al., 1990; Dani, Chernjavsky & Smith, 1992; 

Innocenti, Parpura & Haydon, 2000) which utilize the astrocyte syncytium for 

transmission to neighbouring cells. Gap junctions are not just formed between 

astrocytes but are also formed between astrocytes and oligodendrocytes (Tress 

et al., 2012). This allows communication to occur for axon maintenance and the 

transfer of metabolites. 

Recently it has been discovered that astrocytes can use lactate as a 

signalling molecule as well as a metabolite. Lactate can be released in 

response to synaptic activity and glucose utilization due to energy consumption 

of the synapse (Pellerin & Magistretti, 1994). It is known that the release of 

lactate can cause cerebral vasodilation, thereby increasing blood flow. 

Excitatory synapses have been found to express the G-protein coupled receptor 

81(GPR81), which binds lactate, suggesting that lactate can also act as an 

intercellular signalling molecule (Lauritzen et al., 2014). The binding of lactate to 

GPR81 has been found to cause a decrease in cyclic adenosine 

monophosphate (cAMP) which reduces glycolysis (Lauritzen et al., 2014). 
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1.1.4 Astrocyte Response to disease 

When the CNS is injured or diseased, astrocytes respond by undergoing 

a process known as reactive gliosis (Sofroniew, 2009). This is a complex 

process which has not been clearly defined. However, four key features of 

reactive astrocytes have been suggested, 1) reactive gliosis is a spectrum of 

functional and expression changes, 2) these changes vary with the amount of 

damage from the insult, 3) any changes that occur relate to context, 4) during 

reactive gliosis astrocytes can undergo gain and loss of function which can be 

beneficial and damaging to the CNS (Sofroniew, 2009).  

During reactive gliosis there is an up-regulation of GFAP expression 

(Eddleston & Mucke, 1993) which accompanies cell body and process 

hypertrophy (Wilhelmsson et al., 2006). Whilst reactive, astrocytes retain their 

homeostatic functions to protect CNS tissue from further damage. They can 

take up any excess a glutamate (Rothstein et al., 1996), thereby reducing 

excitotoxicity. They produce glutathione which prevents oxidative stress that can 

be caused by free radicals, reactive oxygen species (ROS) and nitric oxide 

(Chen et al., 2001; Shih et al., 2003). Astrocytes can protect neurons from 

ammonia induced cell death, which has been demonstrated in a co-culture 

model (Rao et al., 2005). BBB damage can be repaired though the involvement 

of astrocytes as they form part of its structure, ablation of reactive astrocytes in 

this location resulted in failure of BBB repair (Bush et al., 1999). Reactive 

astrocytes can regain ion balance and reduce oedema due to AQP4 expression 

(Manley et al., 2000). Reactive astrocytes also regulate CNS inflammation 

during insults via the release of pro or anti-inflammatory cytokines (Eddleston & 

Mucke, 1993). 
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1.1.5 Oligodendrocytes overview 

Oligodendrocytes are another type of macroglia and they are 

predominantly responsible for the myelination of axons in the CNS. These 

specialized cells are also responsible for the maintenance and survival of axons 

(Morrison, Lee & Rothstein, 2013). This role as a support cell is still being 

determined, but investigation has found that oligodendrocytes may have a 

significant part to play in metabolite transport and supply for axons (Saab, 

Tzvetanova & Nave, 2013). If oligodendrocytes are damaged or injured this can 

negatively affect axons and lead to neuronal injury (Morrison, Lee & Rothstein, 

2013). Oligodendrocytes form networks by coupling to other oligodendrocytes 

and can form gap junction connections with astrocytes. This produces a network 

of glial cells in the WM, similar to the astrocyte syncytia found in the GM (see 

above) (Tress et al., 2012). 

1.1.6 Oligodendrocyte development 

After neurogenesis, neural precursor cells are affected by a molecular 

switch which triggers the next phase of development, the gliogenic phase. 

Oligodendrocytes arise from oligodendrocyte precursor cells (OPC), this occurs 

in three waves. In mice, the first wave begins at around embryonic day  12.5 (E 

12.5) and completely populates the cortex by E18 (Kessaris et al., 2006). The 

second wave joins the existing cells, all of these OPCs are of ventral origin. 

After E18 the third wave arises from within the postnatal cortex and there is a 

reduction in the cells of ventral origin (Kessaris et al., 2006). Migration of OPCs 

from their origin to their destined region is directed by growth factors and 

chemokines. When in their final position most OPCs differentiate into 

oligodendrocytes, whilst a subset remain as OPCs (Bradl & Lassmann, 2010). 
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1.1.7 Role of oligodendrocytes 

Initially it was thought that oligodendrocytes were only responsible for the 

myelination of axons. However, it is becoming apparent that these cells play a 

greater role in the CNS by being involved in the maintenance and support of 

axons. 

1.1.7.1  Myelination 

Prior to myelination, oligodendrocytes must be correctly situated as 

mature cells are unable to move once differentiated. Myelination is the process 

of oligodendrocyte processes wrapping and insulating axon fibres. First the 

axon is contacted and the initial ensheathment of the axon occurs. This is 

followed by the wrapping of the axon fibre and the compaction of the membrane 

(Remahl & Hildebrand, 1982). One oligodendrocyte cell will contact and 

myelinate relatively few axons, approximately 20 – 60 (Chong et al., 2012). The 

myelination of axons does not occur by chance and the axons to be myelinated 

are carefully selected by oligodendrocytes. These cells find axons that have a 

diameter greater than 0.2µm (Bradl & Lassmann, 2010), the desired axonal size 

is enough for myelination to begin. Larger diameter axons are myelinated prior 

to smaller diameter axons (Lee et al., 2012a). Once myelination has been 

triggered it takes relatively few hours to produce the compacted myelin sheath 

(Simons & Nave, 2015).  

Myelination can be triggered by the amount of neuronal differentiation 

which has occurred around the oligodendrocyte (Brinkmann et al., 2008). It has 

also been established in a co-culture model that myelination can occur in a 

neuronal activity independent and dependent manner. The type of myelination 

is modulated by neuroregulin which can stimulate myelination through the action 

of NMDA receptors on oligodendrocyte precursors, which triggers the cells to 
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differentiate into myelinating oligodendrocytes (Lundgaard et al., 2013). The 

effect of neuronal activity has been further investigated in brain slices and has 

found that the pattern of activity can elicit different responses from OPCs and 

can effect proliferation and differentiation of these cells (Nagy et al., 2017). 

1.1.7.2  Metabolism 

Recently it has been discovered that oligodendrocytes have a wider role to 

play in the CNS than just the myelination of axons. Evidence has been found 

that suggests they are involved in axonal metabolism. Due to their close position 

with neuronal axons, oligodendrocytes are able to communicate with axons and 

can respond to axonal signals. Axons project far away from their cell body and 

those which are myelinated are insulated from contact with the extracellular 

space by their myelin sheath (Simons & Nave, 2015). Therefore, 

oligodendrocytes are in a more beneficial position to respond to axonal needs 

than the cell body itself and are able to transport metabolites directly to the 

axon. It is possible that oligodendrocytes may provide an extra step in the ANLS 

hypothesis since they express MCT1 which is able to export lactate (Lee et al., 

2012b). It has been suggested that lactate is shuttled from astrocytes to 

oligodendrocytes before it reaches its final destination in neurons, or that lactate 

may be directly transported from oligodendrocytes to neurons, in response to 

neuronal signals (Lee et al., 2012b). 
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1.2 ISCHAEMIC STROKE 

Stroke is the second leading cause of death in the world and causes 6.7 

million deaths per year, accounting for approximately 12% of deaths worldwide 

(WHO, 2014). Strokes are most likely to occur during the perinatal period and in 

the elderly (Fernandez-Lopez et al., 2014). Perinatal stroke has an incidence of 

approximately 1 in 4000 (Lynch & Nelson, 2001). Over the age of 75, one in five 

men and one in six women will have had a stroke, which is responsible for 1 

in14 deaths (Stroke.org.uk, 2016). The main risk factor for ischaemic stroke is 

age and the chance of suffering a stroke doubles every decade after the age of 

55 (Stroke.org.uk, 2016). There are many other well-known contributing factors 

that can increase the risk of stroke such as high blood pressure, diabetes, atrial 

fibrillation, high cholesterol, smoking and excessive alcohol consumption. 

Ischaemic stroke usually occurs in the GM but insults can occur in WM, 

which result in lacunae infarcts (Fern, Matute & Stys, 2014). Infarcts that arise 

from GM insults are not restricted to this region and have the propensity to 

affect WM tracts as well. Therefore it is important to examine how all areas of 

the brain and all cell types are affected by ischaemic stoke. Cerebral ischaemic 

insults can occur in a global or focal manner. Global cerebral ischaemia is 

caused when the whole brain is starved of glucose and oxygen which is usually 

caused by other events such as cardiac arrest. Focal ischaemia occurs when 

cerebral blood supply is locally reduced to tissues and is usually caused by the 

obstruction of blood vessels by a clot or embolism (figure 1.1). Focal insults 

account for the majority of ischaemic stroke, which is approximately 85% of all 

strokes (Parpura et al., 2017). The remaining 15% include haemorrhagic stroke 

and transient ischaemic attacks. 
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Figure 1.2 Schematic illustration of ischaemic infarct. The obstruction of the 

blood vessel prevents adequate blood flow causing the ischaemic lesion, which 

is formed of an ischaemic core where there is no blood flow and the penumbra 

where collateral blood flow may be retained. The glial scar forms around the 

ischaemic core to prevent damage to the penumbra. 

The primary effect of cerebral ischaemic stroke is the withdrawal of the 

blood supply from a region of the brain due to a blood vessel occlusion. This 

deprives the affected area of oxygen and glucose, which are necessary for 

tissue to survive, causing the development of an ischaemic lesion (figure 1.2). 

The absence of the blood supply causes major disruption of homeostatic 

mechanisms, which in turn cause secondary insults such as oedema. Primary 

and secondary insults both contribute to the cell death and necrosis of tissues 

which is responsible for the injury seen in stroke patients. Different regions of 

the brain will be affected depending upon the location of the occluded blood 

vessel.  

Astrocytes in the ischaemic core and a proportion in the penumbra 

succumb to cell death as opposed to reactive gliosis. Prior to soma loss 
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astrocytes undergo clasmatodendrosis, which is the shedding of their processes 

(Hulse et al., 2001; Salter & Fern, 2008) and indicates that astrocytes are 

entering the cell death phase. Astrocyte cell death triggered by ischaemia 

occurs via apoptosis or necrosis, these pathways can occur simultaneously as a 

result of this injury (Cao et al., 2010). Apoptosis occurs at the beginning of the 

insult but it is an energy intensive process and so ceases when the energy 

supply is depleted (Cao et al., 2010). At this point necrosis becomes the 

predominant astrocyte cell death pathway. Necrosis is a spontaneous, un-

programmed event which is ATP independent and thought to be mediated by 

calpains (Liu, Van Vleet & Schnellmann, 2004). Astrocyte cell death also occurs 

through cell swelling, an early response to ischaemic insult which is caused by 

the disruption of ion homeostasis (Gurer et al., 2009). Cells which are severely 

swollen can lose membrane integrity and rupture thus dying due to bursting 

(Gurer et al., 2009). There is evidence to suggest that as a result of ischaemic 

insult astrocyte cell death precedes neuronal death (Liu et al., 1999). If astrocyte 

cell death can be understood and prevented, then neuronal cell death may be 

attenuated. 

A great amount of damage is initially caused by the insult and 

subsequent development of the ischaemic lesion. Further damage is caused by 

reperfusion, when oxygenated blood returns to the area affected by stroke. The 

re-introduction of oxygen causes the production of free radicals and reactive 

oxygen species (ROS) (Lee et al., 2000). These provide mechanisms of 

secondary injury which increase the amount of damage, by expanding the size 

of the initial infarct into previously uninjured tissue (Minnerup et al., 2012). 

Regardless of age, the hallmarks and potential results of ischaemia 

remain the same. There is the formation of an ischaemic lesion, consisting of an 
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ischemic core with a surrounding penumbra (Verkhratsky & Parpura, 2015). In 

the ischaemic core cell death is very high, as there is complete depletion of 

oxygen and glucose here. In the penumbra a proportion of cells are able to 

survive as this area is not completely deprived of blood flow by the insult and 

may be served by collateral vessels. The widespread tissue damage that occurs 

from ischaemic stroke can result in motor and memory deficits in patients and 

may even cause the development of some forms of dementia (Stroke.org.uk, 

2016). Focal cerebral stroke can result in a variety of disabilities, many of which 

will have a major effect on patient life. When a hypoxic-ischaemic event occurs 

at birth, this can result in white matter injury which causes hemiplegic cerebral 

palsy, behavioural changes and many other conditions (Stroke.org.uk, 2016). 

1.2.1 Current treatment strategies for ischaemic stroke 

The available treatments administered for ischaemic stroke are few and 

have changed very little since the discovery of thrombolytic agents. Current 

treatments for stroke are limited, as the cause cannot be readily accessed. 

Preventative or prophylactic treatments would be difficult to administer as it 

cannot be predicted when a stroke will occur. Thrombolysis is the major 

treatment used to break down the clot and is achieved through the 

administration of tissue-plasminogen activator (tPA) (National Institute of 

Neurological & Stroke rt, 1995), the thrombus may also be surgically removed. 

The tPAs are serine proteases that cleave plasminogen to produce its active 

plasmin form, which then break down fibrin (Christophe et al., 2017) thus 

destroying the clot. Thrombolytic treatment, in the form of tPA, can only be 

administered up to 4.5 hours after stroke onset. However, the quicker treatment 

can be received, the faster the blood supply can be re-established which 

provides a better outcome for the patient (Stroke.org.uk, 2016). In some cases 
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thrombolytic agents and surgery can be used in tandem to improve patient 

outcome (Berkhemer et al., 2015). 

After the initial treatment to remove the occlusion patients are then 

administered a variety of drug therapies to combat the resulting symptoms of 

ischaemic insult. For example, reducing pressure caused by oedema resulting 

from ischaemia. In some cases external cerebrospinal fluid (CSF) drainage is 

required to reduce the intracranial pressure (Kahle et al., 2009). In severe 

cases, partial skull removal may be carried out in order to reduce overall 

cerebral pressure. 

Recently, the reduction of cerebral temperature in improving outcome 

after ischaemic injury has been investigated. The use of hypothermia has been 

introduced and has been found to reduce damage from hypoxic brain injury 

caused by cardiac arrest (Hypothermia after Cardiac Arrest Study, 2002; Wu & 

Grotta, 2013). There are different cooling techniques that can be employed such 

as surface cooling or endovascular cooling (Vaity, Al-Subaie & Cecconi, 2015). 

There was a promising study carried out in rats where reducing brain 

temperature to 33°C caused a decrease in glutamate release (Busto et al., 

1989). Excess glutamate release and over-activation of GluRs is an important 

mechanism of neuronal cell death due to ischaemia, via a process termed 

excitotoxicity (Lucas & Newhouse, 1957; Pulsinelli, Sarokin & Buchan, 1993). 

Evidence from a number of studies suggests that endovascular cooling is the 

most effective method of achieving hypothermia and is most successful when 

combined with shivering suppression, shivering is a side effect of the reduced 

body temperature. This treatment has the potential to reduce damage in all cell 

types affected by ischaemia. 
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1.2.2 Future therapeutic strategies 

The current treatments for stroke are few and have their limits in respect 

of the neurological functional outcome and time restrictions on administration. 

Thus, research is being carried out into areas beyond thrombolytic drugs. The 

main interests of current investigation include neuroprotection and reducing the 

size of infarct, in order to rescue more neurons. However, neurons are not the 

only cell type in the brain to be affected by ischaemia. Ischaemic insults affect 

all cell types including glial cells, which have many important roles in the CNS. 

These cells also need to be protected in the event of injury. 

Many neuroprotective agents have provided positive results in a laboratory 

setting, both in cultured cells and in animal models. However, these compounds 

have failed to translate beneficial outcomes when it comes to patients in clinical 

trials (O'Collins et al., 2006), in some cases they were found to be detrimental to 

stroke recovery. Ischaemia triggers a large biochemical cascade, which 

provides many options to potentially target. If these can be targeted as well as 

the initial insult then extensive cell death may be prevented. 
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1.3 ROLE OF GLIA IN ISCHAEMIA 

It was previously mentioned that the majority of work investigating the 

cellular effects of ischaemia has focussed on neuronal response to injury and 

neuronal death. The important roles that glial cells have suggests that damage 

to these supporting cells will have an effect on neuronal response and sensitivity 

to ischaemia. Thereby linking neuronal survival to the surrounding astrocytes 

and oligodendrocytes. 

1.3.1 Astrocyte response to ischaemic insult 

During ischaemic insults one of the main cell types to respond are 

astrocytes, which become reactive and proliferate, a process termed 

astrogliosis. This complex process produces reactive astrocytes which arise 

from the existing population, these form a glial scar around the injury site 

(Faulkner et al., 2004). This is a physical and biochemical barrier that prevents 

the migration of inflammatory and potentially infectious cells and factors from 

the infarct area to healthy tissue (Faulkner et al., 2004; Voskuhl et al., 2009). 

The formation of the scar also restricts the size of the infarct, containing the 

damaged tissue (Barreto et al., 2011; Hayakawa et al., 2010). The astrocytes 

which become reactive are from the surviving penumbral astrocytes, by doing 

so they enable the protection of unaffected tissue and promote tissue 

regeneration after damage (Takano et al., 2009). The hallmarks of glial 

activation are the upregulation of glial fibrillary acidic protein (GFAP), 

hypertrophy of cells and cell proliferation (Wilhelmsson et al., 2006).  

Whilst astrocytes are reactive they release molecules to try to prevent 

damage and repair the CNS, including neuroprotective factors and those which 

control blood flow (Barres, 2008). However, the phenomenon of reactive gliosis 

has the potential to harm the CNS as much as it protects it. A number of the 
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factors released by reactive astrocytes have harmful effects on the CNS, such 

as chondroitin sulphate proteoglycans (CSPGs). CSPGs are inhibitory to axon 

extension and so can prevent axonal growth and regeneration after neuronal 

damage (Liu & Chopp, 2015). The downregulation of glutamate transporters as 

a result of injury contributes to the damage of surviving neurons (Allaman, 

Belanger & Magistretti, 2011). The lack of transporters allows extracellular 

glutamate to accumulate and so excitotoxicity can develop, which causes 

cytotoxic influx of calcium ions into neurons (Pulsinelli, Sarokin & Buchan, 

1993). 

The effects of ischaemic insult can cause irreversible cellular damage 

which leads to cell death (summarised in figure 1.3). Ischaemia induced 

astrocyte cell death occurs firstly via apoptosis which is the process of 

programmed cell death. During ischaemia the mitochondria intracellular calcium 

concentration can increase which causes membrane depolarisation and the 

release of cytochrome C (Sekerdag, Solaroglu & Gursoy-Ozdemir, 2018). This 

release causes the activation of caspases which leads to cell death. ER stress 

or the release of pro-apoptotic protein into the cytosol triggers the caspase 

cascade, which initiates apoptosis (Aoyama et al., 2005). This mechanism of 

cell death also occurs in penumbral astrocytes where collateral blood supply 

remains (Astrup, Siesjö & Symon, 1981). 

The lack of glucose and oxygen delivery to cells causes a switch in cell 

death programme as no energy can be produced to sustain apoptosis. Astrocyte 

cell death then occurs via necrosis (Gurer et al., 2009; Lukaszevicz et al., 2002), 

which accounts for the majority of astrocyte death, especially within the 

ischaemic infarct core. Necrosis can be triggered via many pathways. The 

prominent triggers of necrotic cell death include cell swelling, cytotoxic ion 
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influx, acidosis due to pH change and possibly an inability to utilize glycogen 

stores. 

Necrotic cell death can be characterised by the loss of cell membrane 

integrity, cytoplasm vacuolation, loss of cell contents, and inflammation (Edinger 

& Thompson, 2004). In some cases the involvement of calpains are required for 

necrotic cell death to occur (Liu, Van Vleet & Schnellmann, 2004). Ischaemia 

induced astrocyte death can involve cytotoxic ion influx, leading to cell death. 

Cell swelling causes cell death by increasing osmotic pressure within the cell 

which strains cell membranes, resulting in rupture (Gurer et al., 2009). 

The mechanism of cell death also depends on the location of cells in 

relation to the injury. Those cells within the infarct core undergo necrotic cell 

death due to the drastic reduction in ATP production. However, those in the 

penumbral region still have a moderate energy supply and so apoptosis may be 

more common in this area. 
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Figure 1.3: Astrocyte cell death mechanisms. Withdrawal of blood flow causes 

two cell death pathways to be triggered, either apoptosis or necrosis. Apoptosis 

occurs predominantly due to cellular distress, mitochondrial dysfunction and 

nitric oxide. Necrotic cell death results from the initial insults and subsequent 

effects of ischaemia such as cytotoxic ion influx, acidosis, lack of access to 

glycogen stores and increased water entry causing cell swelling.  
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1.3.2 Oligodendrocytes and ischaemic insult 

Oligodendrocytes are naturally vulnerable to injury and insult due to the 

amount of membrane that they support and the metabolic demand they are 

under. They are particularly targeted in ischaemic stroke and periventricular 

leukomalacia, as WM can be just as much affected by ischaemia as GM is 

(Dewar, Underhill & Goldberg, 2003). Damage to oligodendrocytes can cause 

demyelination of neurons though loss or injury to myelin, which alters the ability 

of axons to function and may trigger degeneration. In mice without proteolipid 

protein, which is important for myelin formation, it was found that axonal 

swelling and degeneration occurred (Griffiths et al., 1998). This shows that 

disruption to myelin is detrimental to neurons by causing structural changes to 

axons which will affect conduction of action potentials and the survival of 

neurons.  

Oligodendrocytes are accepted as been very vulnerable to ischaemic 

insult. The main mechanism of oligodendrocyte injury and death is excitotoxicity 

(Matute et al., 2002), a susceptibility they share with neurons. Excitotoxicity 

occurs via the over activation of glutamate receptors and the subsequent 

cytotoxic influx of calcium (Matute, Domercq & Sánchez-Gómez, 2006). 

Oligodendrocytes can be severely injured by oxidative stress and mitochondrial 

disruption (Mifsud et al., 2014). These cells are also affected by ATP mediated 

toxicity (Domercq et al., 2010), ischaemia triggers the release of ATP from other 

cells, such as astrocytes, causing the over-activation of purine receptors which 

contributes to cytotoxic calcium influx. Both oligodendrocyte processes and 

somas are vulnerable to ischaemic insult (Salter & Fern, 2005). Damage may 

occur to myelin processes, whilst the cell soma remains intact, however process 

loss usually occurs prior to cell death (McIver et al., 2010), similar to astrocytes. 
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1.4 AIMS AND OBJECTIVES OF THIS THESIS 

The aims and objectives of this body of work are: 1) determine whether 

regional sensitivity to acute ischaemic insult exists in adult astrocytes in situ. 

The hypothesis being that regional differences in ischaemia induced astrocyte 

cell death exist. 2) Investigate the mechanistic reasons behind any observed 

differences in astrocyte sensitivity to ischaemia. The second objective is split 

into three aims guided by previous work and evidence from the literature. These 

are; the role of astrocytic glycogen during ischaemia, the involvement of 

glutamate receptors in cytotoxic ion influx and sodium mediated astrocyte cell 

death via cell swelling (All mechanisms will be discussed further in relevant 

chapters). 

1.4.1 Glycogen in OGD induced glial cell death (chapter 4) 

Glycogen is utilized for many different processes throughout the CNS. 

Astrocytes are the major glycogen store in the brain and as such may be able to 

access this store in times of injury or insult to enable survival. The presence of 

glycogen stores has been determined to confer tolerance of ischaemic insult to 

astrocytes in optic nerve (Fern, 2015). The breakdown of glycogen results in 

lactate which can be exported and used as a metabolite by other cells such as 

neurons (Pellerin et al., 1998). It has been found that lactate is critical for 

neuronal energy and for axonal function (Lee et al., 2012b). We hypothesize 

that the presence of glycogen is required for astrocyte survival during ischaemic 

conditions. 

1.4.2 Glutamate receptors and glial ischaemic injury (chapter 5) 

The over-activation of glutamate receptors resulting in cytotoxic calcium 

influx is caused by ischaemia and is the predominant mechanism of neuronal 
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cell death (Coyle et al., 1981; Lucas & Newhouse, 1957; Pulsinelli, Sarokin & 

Buchan, 1993). It is well known that astrocytes are resistant to excitotoxicity and 

so another mechanism is responsible for astrocyte ischaemic death. Astrocytes 

do express glutamate receptors, which have been found to be permeable to a 

variety of cations including sodium and potassium (Burnashev et al., 1992; 

Matthias et al., 2003). Therefore it is possible that adult astrocyte cell death 

occurs through the cytotoxic influx of a different ion. We hypothesize that 

glutamate receptors are involved in ischaemia induced astrocyte cell death. 

1.4.3 Role of sodium influx on astrocyte swelling and death (chapter 

6) 

Ischaemic insults disrupt the ionic gradients which exist between the 

ECS and astrocytes. This dysregulation can result in ion influx followed by 

water, causing cell swelling. The increase in astrocyte volume strains the cell 

membrane leading to membrane rupture and cell death (Gurer et al., 2009). Cell 

swelling and subsequent bursting is a major mechanism of ischaemic astrocyte 

cell death. It has been suggested that astrocyte cell swelling is mediated by 

sodium influx (Thomas et al., 2004). Many transporters have been implicated in 

this mechanism of cell death, most notably the sodium-potassium-chloride co-

transporter 1 (NKCC1) (Chen & Sun, 2005; Thomas et al., 2004). Here we 

hypothesize that cytotoxic sodium influx plays a significant role in ischaemia 

induced astrocyte cell death. 

Ischaemic injury is a complex event which causes a variety of effects on all 

CNS cell types. The mechanisms responsible astrocyte cell death are not fully 

understood and may depend on the physical location of astrocyte populations. 

Investigation into these mechanisms will provide further information about the 

effects of ischaemia on astrocytes and the sensitivity of astrocytes to insult. The 
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elucidation of these mechanisms may provide a suitable candidate which can 

be used to develop therapies to rescue surviving cells after stroke or even 

prevent the initial death of cells. 
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CHAPTER 2 
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2 MATERIALS AND METHODS  

2.1 TRANSGENIC MOUSE MODELS 

Throughout this work two transgenic mouse lines were maintained and 

used for experimentation these were GFAP-GFP mice for the study of 

astrocytes and PLP-GFP which were for the study of oligodendrocytes. Below is 

further information about these mice and how the two colonies were maintained. 

 

2.1.1 GFAP-GFP mice 

All astrocyte work was carried out using FVB/N-Tg(GFAPGFP) 14Mes/J 

transgenic mice. These mice have the hGFP-S65T form of EGFP, the 

expression of which is controlled by the human astrocyte specific, glial fibrillary 

acidic protein (GFAP) promoter (Zhuo et al., 1997). This enables the expression 

of GFP to be achieved in astrocytes to allow easy detection and visualisation of 

this cell type. GFAP is an essential intermediate filament protein found in 

astrocytes, which has an important role in the cytoskeleton and maintaining cell 

structure (Middeldorp & Hol, 2011). The fluorescent cells can be seen when the 

GFP is excited at 470nm, with emission detected at 535nm. 

2.1.2 PLP-GFP mice 

Through the work on astrocytes, it became apparent that glial cells may 

be more affected by ischaemic insult than previously realised. Therefore, the 

sensitivity of oligodendrocytes to ischaemic insult was also investigated. For this 

work a different transgenic mouse line was used; PLP-GFP. In this model EGFP 

is ligated to the myelin proteolipid protein (PLP) promoter regulatory elements 

and the 3’ untranslated region (UTR) of the PLP gene (Mallon et al., 2002). This 

allows for the specific expression of fluorescent protein in oligodendrocytes. 
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PLP is a protein unique to oligodendrocytes and is the most abundant protein 

found in myelin (Mobius et al., 2008). It has been found that PLP promoter 

activity is restricted to mature oligodendrocytes by P28 in the CNS (Michalski et 

al., 2011), during development this promoter is active in many cell types, 

including some which are outside of the oligodendrocyte lineage. The excitation 

and emission was the same as for astrocyte GFP. 
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2.1.3 PCR Genotyping and agarose gel electrophoresis 

Both mouse lines were maintained as heterozygous for the presence of 

the GFP gene and so for breeding purposes genotyping was required. This was 

achieved via polymerase chain reaction (PCR) in conjunction with agarose gel 

electrophoresis. The DNA to be tested was extracted from ear notch samples 

which were acquired exclusively for the purposes of genotyping.  

PCR is the method of amplifying a region of DNA containing a gene of 

interest to see whether the gene is present within a chosen sample. Through 

cycles of heating and cooling the DNA strands separate allowing access by 

primers, re-annealing can then occur allowing the copying of the target region. 

Many cycles of this results in the target region being amplified which is then 

present in the PCR product. The PCR products are separated out from other 

DNA fragments via size with agarose gel electrophoresis.  

2.1.3.1  Experimental Protocol 

DNA extraction was carried out using the hotSHOT method which is 

outlined below (Truett et al., 2000). This method uses two solutions for the DNA 

extraction which are: an alkaline lysis reagent containing NaOH 25mM, 

disodium EDTA (dissolved in H2O) 0.2mM and a neutralising reagent Tris-HCL 

40mM. 

Single ear notches were placed in 0.5ml eppendorf tubes and 75µl 

alkaline lysis reagent was added. The samples were then heated at 95°C for 1.5 

hours in a thermal cycler (MJ research PTC-100). These were then cooled to 

4°C and 75µl of neutralising reagent was added and gently mixed. 

The PCR master mix was then made for the required number of samples. 

PCR mix for one sample contained: 18.9µl ddH20, 2.5µL Dream Taq buffer 
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(Thermo Scientific), 0.15µl dNTP (Invitrogen), 0.15µl forward primer, 0.15µl 

reverse primer (primer sequence 5’-GCGGATCTTGAAGTTCACCTTGATGCC, 

both primers Sigma Aldrich) and 0.15µl Dream Taq polymerase (Thermo 

Scientific). For each sample 3µl of extracted DNA was added to 22µl of PCR 

mix added to give a total volume of 25µl. The samples were then mixed, 

centrifuged and where placed in the PCR machine and the cycle was started 

(BIORAD IQ PCR machine). 

After completion of the PCR cycles, 4.2µl of 6x loading dye (Thermo 

Scientific) was added to each sample. Next, 12.5µl of the sample was taken to 

run on a 1% agarose gel in 1xTBE buffer (10 x TBE Invitrogen, Tris 1M, Boric 

Acid 0.9M, EDTA 0.01M). The agarose gel contained 2µl of gel red (Biotium) per 

50ml gel, this was used instead of ethidium bromide, so that the DNA bands can 

be visualised. The gel was run for one hour at 130v and then imaged using a UV 

gel imager.   
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2.2 LIVE IMAGING OF OPTIC NERVES AND BRAIN SLICES  

To assess the regional sensitivity to ischaemia, a live imaging technique 

has been developed by the lab. This technique allows acute cell death caused 

by ischaemic conditions to be observed and recorded in real time, in live tissue 

preparations, either brain slices or optic nerve. Throughout this thesis the model 

of ischemia used is oxygen-glucose deprivation (OGD), during which glucose 

containing aCSF and oxygen are switched simultaneously and are replaced by 

sucrose containing aCSF and nitrogen, respectively. 

2.2.1 Artificial cerebrospinal fluids (aCSF) and cutting solution 

Below are all solutions used throughout this work for predominantly the 

live imaging. All chemicals used were obtained from Sigma Aldrich unless 

otherwise stated. 

All aCSFs and cutting solutions were checked to ensure they had an 

osmolarity between 300 and 310 mOsm using a Wescor vapour pressure 

osmometer and were adjusted if required. The control solutions and cutting 

solutions were bubbled with 95% O2/5% CO2 for one hour prior to use and 

continued to be bubbled throughout experiments. The OGD solutions were 

bubbled in the same manner but with 95% N2/5% CO2.  

aCSF and glucose free aCSF (OGD aCSF) 

aCSF was made up to one litre with deionised water and then was split to 

form the normal and OGD solutions. The following was present at these 

concentrations; NaCl 126mM; KCl 4mM; MgSO4 2mM; Ca2+(gluconate) 2mM; 

NaHCO3 25mM; NaH2PO4 2mM; Na+ cyclamate 2mM. At this point solutions 

were split, one had 10mM glucose added, the other for OGD had 10mM sucrose 

added.  
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Zero sodium aCSF  

This aCSF was used as a non-selective method to prevent the function of 

sodium transporters. The following was present at these concentrations; NMDG 

chloride 128mM; KCl 2mM; MgSO4 2mM; Ca2+ (gluconate) 2mM; Choline-HCO3 

25mM; KH2PO4 and either 10 mM glucose or sucrose. 

Zero calcium aCSF 

Zero calcium aCSF was used to assess calcium dependent and 

independent astrocyte cell death. The following was present at these 

concentrations; NaCl 126mM; KCl 4mM; MgSO4 2mM; EGTA 0.05 mM, 

NaHCO3 25mM; NaH2PO4 2mM; Na+ cyclamate 2mM and glucose or sucrose at 

10mM. 

Modified HEPES cutting/holding aCSF 

This cutting solution was used for preparation of brain slices and for 

holding them in a brain slice keeper. For one litre of solution the following was 

present at these concentrations; NaCl 92mM; KCl 2.5mM; NaH2PO4 1.2mM, 

NaHCO3 30mM; HEPES 20mM; Glucose 25mM; sodium ascorbate 5mM, 

thiourea 2mM, sodium pyruvate 3mM, MgSO4.7H2O 2mM and CaCl2.2H2O 2mM 

(Ting et al., 2014). Made up to one litre with deionised water and pH adjusted to 

7.3-7.4.  

2.2.2 Optic nerve and brain slice tissue preparations 

All animal procedures adhered to local ethical guidelines and were in 

accordance with British Home Office regulations, I obtained a HO personal 

licence in order to comply with regulations for the use of transgenic animals. For 

work on adult glial cells, mice of age P30 and over were used. For neonatal 

experiments (P10) mice of age P8-P12 were used. Adult mice were sacrificed 
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by schedule 1 via exposure to a rising concentration of carbon dioxide followed 

by exsanguination. Neonatal mice were sacrificed via cervical dislocation 

followed by decapitation. 

Optic Nerves 

The optic nerves (ON) were isolated from the head by first severing the 

nerve behind the eye ball and then removing the brain from the top of the skull 

with the nerves still attached. Brains were placed into cold oxygenated aCSF on 

ice and the ON were then removed at the optic chiasm and placed in ice cold 

oxygenated aCSF. The nerves were then separated by cutting the optic chiasm 

and were returned to ice cold oxygenated aCSF 

Vibratome sectioning hemi-brains  

For all live brain slices, the mice were sacrificed and the brain was 

dissected out as above and placed into oxygenated ice cold cutting/holding 

solution. After one minute, when cool, the brain was then hemi-sected using a 

scalpel and hemi-brains were placed in a mould and embedded in 0.5% low 

melting point agarose and was left to set on ice. The embedded hemi-brains 

were blocked; then the specimen and a support block (made of 4% agarose) 

were super glued to the cutting stage (figure 2.1) using cyanoacrylate glue 

(Loctite). 
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Figure 2.1: Schematic showing vibratome cutting chamber.  

 

Coronal slices of hemi-brains were cut using a Leica VT1200 S vibratome 

with ordinary razor blades (Wilkinson Sword), in ice cold oxygenated 

cutting/holding aCSF, the temperature was maintained using ice around the 

cutting chamber. Slices were transferred to petri-dishes containing cold 

cutting/holding aCSF on ice, using a cut-off pipette. The cutting angle of the 

blade was set at 15°, which cut at a speed of 0.2 mm/s and 0.95mm amplitude, 

the slices obtained were between 160µm and 200µm thick. This depended on 

the region, as some regions were more delicate than others and so a thicker 

slice was required to keep the region of interest intact. Slicing was carried out 

for a maximum of 20 minutes to ensure the health of the slices obtained. 

After cutting, slices were transferred to a brain slice keeper (BSK, 

Scientific Systems Design Inc.) containing oxygenated cutting/holding aCSF at 

37°C for 30 minutes, temperature was maintained using a water bath. After this 

30 minute recovery period (Ting et al., 2014) the BSK was left to cool to room 

temperature and slices were constantly oxygenated throughout, which 

maintained the slices for approximately five hours. Slices were then prepared 

for recording. 
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2.2.3 Live Imaging 

ON 

For live ON recording the nerve was mounted to the bottom of a plexi-

glass perfusion chamber (Warner instruments), secured at each end with 

cyanoacrylate glue (Loctite) (figure 2.2). The perfusion chamber was sealed to a 

22mm x 40mm glass cover slip with vacuum grease (Dow Corning). 

Brain Slices 

For live brain slices, recording occurred in the same chamber as for ON. 

A single brain slice was transferred from the keeper to the perfusion chamber 

using a cut-off Pasteur pipette and was kept in place using a slice anchor 

(Warner instruments).  

 

Figure 2.2: Schematic illustration of the recording chamber 

 

In the chamber slices or nerves were continually perfused with aCSF 

heated to 37°C and were oxygenated, aCSF was removed via a vacuum line. 

The time-lapse recording of live tissue preparations was carried out as follows: 

recording lasted a total of 100 minutes. 0-10 minutes was the control period, 

with sections constantly perfused with aCSF at 1.5 - 2ml/min at 37°C and 
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95%O2/5%CO2 at approximately 0.1LPM. At 10-70 minutes was the OGD 

period, with glucose free aCSF perfusion and 95%N2/5%CO2. 70-100 minutes 

was the reperfusion period where control conditions were restored. When 

changing conditions, the solution and gas were switched simultaneously. The 

recording chamber temperature was maintained at 37°C through the use of 

objective mounted heater. 

Confocal and wide-field images were obtained using Nikon Eclipse 

TE2000-U inverted microscope with x40 oil immersion objective and spinning 

disc confocal unit (X-LIGHT, Crest Optics). The confocal unit was set to a 70µm 

aperture and the excitation of the GFP was achieved with 470nm LED and 

535nm detection. MetaMorph software (version 7.8.9 Molecular Devices LLC, 

Cairn Research) was used to acquire images and run time-lapse image 

acquisition. Images were obtained every 60 seconds with a 2 second exposure. 

Images of 10 second exposure were also acquired for time 0 and time 100. For 

tissue preparations from PLP-GFP mice, the GFP expressed by the 

oligodendrocytes was much brighter than in astrocytes in GFAP-GFP mice and 

so shorter exposures of 50 milliseconds were used along with a lower intensity 

of light to avoid image saturation.  

Mechanism of sensitivity 

To investigate injury mechanisms during OGD, chemical inhibitors were 

added to the aCSFs during the standard experimental protocol. The possible 

mechanisms investigated in this work were cell death due to due to cytotoxic 

sodium influx, the role of astrocyte glycogen stores and the involvement of 

ionotropic glutamate receptors. The chemical inhibitors used were added to 

target particular aspects of the proposed mechanisms, such as transporters and 
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receptors (see table 1) and were applied either throughout the experiment or 

during OGD only. 

Table 1: Drugs employed during OGD experiments 

2.2.4 Analysis of cell death 

The images and time-lapse recordings were analysed off-line using 

Image J software, where cells and cell death events were counted manually. 

During the experiment the tissue can swell and distort, thereby altering the focal 

plane, only cells that were clearly visible throughout the experiment were 

counted. Astrocyte cell death was determined by the visual loss of fluorescence 

due to cell lysis which arises from membrane rupture and the release of 

fluorescent protein (Gurer et al., 2009; Shannon, Salter & Fern, 2007). This 

same criteria was used to judge cell death of oligodendrocytes. Data from 

manual counts was processed and analysed using GraphPad Prism 6. To 

investigate the rates of cell death throughout this work, the time (t) at which cell 

death was half of the maximum was determined. 

2.2.5 Statistical analysis 

Throughout this work to compare the means of two groups the unpaired 

two-tailed T-test was used. This test is used when the populations follow normal 

distribution and it is assumed that the variance is the same for the two 

populations. If the variances differ then the Welch’s T-test is used which 

Drug Source Target Concentrat ion Solvent Added

Bumetanide Sigma-Aldrich NKCC transporter 50µM Ethanol Throughout

Furosemide Sigma-Aldrich CCC transporters 5mM DMSO Throughout

DIOA Abcam KCC transporter 50µM DMSO Throughout

MK801 Tocris NMDA glutamate receptors 10µM DMSO Throughout

NBQX Tocris non-NMDA, AMPA and 

Kainate receptors 20µM DMSO Throughout

Sodium 

Iodoacetate

Sigma-Aldrich Glyceraldehyde-3-phosphate 

dehydrogenase 2mM H2O OGD only

2 deoxy-glucose Sigma-Aldrich Block glycogenolysis 10µM H2O OGD only
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accounts for unequal variances and does not assume that the two populations 

have the same standard deviation (Motulsky, 2019).  

For multiple comparisons one way ANOVA was used, which compares 

the means of three or more groups. This statistical test was used in conjunction 

with Tukey’s multiple comparison follow up test, which compares every mean 

with every other mean. This test allows for any unequal sample sizes and 

accounts for the scatter of groups (Motulsky, 2019). In all cases a confidence 

interval of 95% was used and significance was set at p<0.05. All graphs show 

standard error of the mean (SEM). 
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2.3 FIXING AND IMMUNO-STAINING OPTIC NERVE AND BRAIN SECTIONS  

Tissue fixation was carried out using 4% paraformaldehyde (PFA) in 

PBS.10x PBS was made up with deionised water and then diluted for use, one 

litre contained 80g NaCl, 2g KCl, 26.8g Na2HPO4 and 2.4g KH2PO4. The pH 

was checked and adjusted to 7.4. For 4% PFA, 20g PFA was added to 450ml 

PBS and heated to 60°C whilst stirring until dissolved, the volume was then 

corrected to 500ml. When cool, the pH was checked and adjusted to 7.4. The 

PFA was then divided into 50ml and 15ml aliquots and stored at -20°. PFA was 

thoroughly defrosted before use. 

2.3.1 ON Fixation 

ON were dissected out into cold aCSF on ice before being transferred to 

4% PFA in PBS for 30 minutes at room temperature. The fixed nerves were first 

rinsed in PBS before been placed in 30% sucrose PBS, which cryoprotected the 

tissue. This was carried out at room temperature until the nerves sank. The 

nerves were then embedded in OCT embedding medium (Thermo scientific) 

and frozen at -80°C.  

2.3.2 Brain fixation 

Brains were dissected out into cold aCSF on ice, and were then 

hemisected (as previously). The hemi-brains were placed in 4% PFA in PBS 

overnight at 4°C. Brain halves were then rinsed in PBS and cryoprotected in 

30% sucrose PBS at 4°C until sinking. The halves were then dried off and 

embedded in OCT embedding medium (Thermo Scientific) and frozen at -80°C. 

2.3.3 Cryosectioning and staining 

The tissue block to be sectioned was removed from - 80°C and was left 

to warm to -20°C for one hour to allow the specimen to acclimatize to the 
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temperature in the cryostat. Optic nerves and brain halves were cryosectioned 

using a Leica CM1860 UV Cryostat at a temperature of around -22°C. Coronal 

sections of 20µm thickness were obtained and were mounted on Superfrost plus 

slides (Thermo Fisher). The sections were outlined using a hydrophobic pen 

(Sigma Aldrich) and washed in PBS for five minutes. The sections were then 

permeabilised and blocked in PBS containing 10% goat serum and 0.5% Triton-

X-100 (PBGST) for two hours at room temperature. The primary antibody was 

diluted in PBGST and was added to the sections until they were well covered 

and incubated overnight at 4°C. After incubation, sections were washed three 

times with PBGST, each wash was for five minutes. The secondary antibody 

was diluted in PBGST and was applied to the sections as for the primary 

antibody. This incubation was for one hour at room temperature. Sections were 

then washed three times with PBGST for five minutes each time, followed by 

four PBS washes for five minutes each. Coverslips were then mounted using 

Citifluor (glycerol PBS Thermo Scientific) or Fluoromount (aqueous mounting 

medium, Sigma).   

2.3.4 Double staining 

For double staining the same protocol was carried out as for single 

staining until the washes after the first primary antibody. After the three, five 

minute washes the second primary antibody, diluted in PBGST, was applied as 

previously and left to incubate for two hours room temperature. The incubation 

was then followed by six, five minute washes with PBGST. Both secondary 

antibodies were diluted in PBGST and were incubated together with the 

sections for one hour at room temperature. The sections then underwent two, 

five minute washes with PBGST followed by four, five minute washes with PBS. 
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Coverslips were then mounted using Citifluor (glycerol PBS solution Thermo 

scientific) or Fluoromount (aqueous mounting medium, Sigma). 

2.3.5 Antibodies 

Other than for glycogen staining described below, the antibodies and the 

concentrations used were; rabbit anti-GFAP (Abcam) 1:500, Rabbit anti-Aldh1l1 

(Abcam) 1:1000, Mouse anti-GFP (Abcam) 1:500. Secondary antibodies used at 

1:1000: Goat anti-rabbit Alexa Fluor 568 (Life Technologies) and goat anti-

mouse Alexa Fluor 488 (Life Technologies). 

2.3.6 Image acquisition and processing 

All immunofluorescence images were obtained using a Leica DM6000 

inverted laser scanning confocal microscope and Leica LAS X software. Images 

were processed using Leica LAS X offline software and Image J software.  
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2.4 GLYCOGEN STAINING 

2.4.1 Periodic Acid Schiff stain and protocol 

The periodic acid Schiff (PAS) stain allows for the detection of glycogen 

by creating a pink colouration and involves a three step process. The first step 

oxidises any glycogen in the tissue to form aldehyde groups. The second step 

blocks the aldehyde groups which are not attached to glycogen molecules. 

Finally the third step is the reaction with the Schiff’s reagent that reacts with the 

exposed aldehyde groups creating a pink stain showing the presence of 

glycogen in the tissue.  

Following the absence of the blood supply, brain glycogen is quickly 

depleted and so the usual method of tissue fixation could not be used. Instead 

mice were sacrificed via Schedule 1 cervical dislocation and and then 

decapitated heads were immediately placed in liquid nitrogen. When frozen, the 

heads were removed and quickly embedded in OCT and were frozen again at -

80°C. The embedded heads were placed in a -20°C freezer for one hour prior to 

cryosectioning to allow the heads to acclimatize to the temperature in the 

cryostat. Whole heads were then sectioned and 20µm thick coronal sections 

were obtained. The sections were mounted onto Superfrost plus slides (Thermo 

Fisher) and then were fixed with 4% PFA in PBS, 10mM glucose and 0.5% 

periodic acid for one hour at 4°C. After fixing the sections were rinsed with PBS 

and then were used for PAS stain. Fixing was carried out under these conditions 

to try and prevent any loss of glycogen from the fresh frozen sections prior to 

fixing. 

Sections were incubated in 0.5% periodic acid for 10 minutes at room 

temperature which oxidises the sections (Newman, Korol & Gold, 2011). The 
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sections were rinsed in distilled water before been placed in a saturated solution 

of dimedone in distilled water for 30 minutes at 60°C (Gurer et al., 2009). The 

sections were rinsed in distilled water and then were reacted with Schiff’s 

reagent for 30 minutes at room temperature. The slides were then rinsed 

thoroughly in distilled water and further rinsed in tap water. Coverslips were 

mounted using Fluoromount (aqueous mounting medium, Sigma).  

2.4.2 GFAP PAS co-stain 

For co-staining, sections were fixed as described above for PAS staining 

and rinsed in PBS. Sections were then permeabilised and blocked in PBGST for 

two hours at room temperature. The PBGST was removed and sections were 

incubated with mouse anti-GFAP-CY3 conjugated monoclonal antibody 

(Sigma). The antibody was used at 1:400 dilution in PBGST and was incubated 

with sections overnight at 4°C. Sections were then washed in PBGST three 

times for five minutes and then in PBS three times for five minutes. PAS staining 

then proceeded as above. Sections were coverslipped and imaged the same 

day. 

2.4.3 Imaging  

Images were acquired using Nikon eclipse 80i microscope with colour 

and fluorescence cameras and x20 or x40 air objectives. The Cy3 conjugated 

antibody was excited using a TRITC filter set which provides a wavelength 

around 532nm. Corel PHOTO-PAINT X7 was used to process and overlay jpeg 

images obtained. 
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2.5 GLYCOGEN IMMUNOFLUORESCENCE  

Due to limitations with the PAS stain an alternative method of visualising 

glycogen stores was pursued. Currently, there are no commercially available 

anti-glycogen antibodies and so we were kindly given an aliquot of an anti-

glycogen IgM antibody, developed by Professor Hitoshi Ashida’s group in 

Japan. The IgM antibody ESG1A9 has a high specificity (Nakamura-Tsuruta et 

al., 2012) and has been shown to preferentially bind to higher molecular weight 

natural granules of glycogen (Oe et al., 2016). The binding nature of this 

antibody means that is a useful tool for the quantification of glycogen stores 

within a region of interest (Nakamura-Tsuruta et al., 2012). This IgM antibody 

was used to stain for glycogen in brain slices that had undergone the live 

imaging protocol in control, OGD and 2DOG (2-deoxy glucose) conditions. 

2.5.1 Experimental Protocol 

The live brain slices used for glycogen immunofluorescence (IF) were 

obtained as previously, however for IF 100µM thick slices were used. After 

cutting the slices underwent the 30 minute recovery step (as previously for live 

imaging slice preparation) and then were mounted in the recording chamber, 

although no images were obtained during the following protocol. The recovery 

step was important to replenish astrocyte glycogen stores that may have been 

depleted during dissection. Control slices were put on the rig for the length of 

the live imaging protocol (100 minutes) and were oxygenated and constantly 

perfused with aCSF. After this time period, slices were removed from the 

recording chamber and immediately placed in ice cold 4% PFA PBS for one 

hour at 4°C. For ischaemic conditions and OGD with 2DOG treatment slices 

underwent the live imaging protocol without the reperfusion period, as this may 

allow any surviving cells to replenish their glycogen stores. After 10 minutes of 
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control conditions and 60 minutes of OGD slices were removed from the 

recording chamber and treated as the control slices.  

Once fixed, the free floating slices were washed thoroughly in PBS and 

then were incubated with the anti-glycogen IgM antibody. The antibody was 

diluted, 1:50, in PBS containing 0.1% Triton X-100 and was incubated with the 

slices for 24 hours at 4°C with gentle shaking (Oe et al., 2016). A long 

incubation period was necessary for this antibody due to its nature as an IgM 

and because of the thickness of the sections. 

The slices were then washed in PBS three times for five minutes and 

incubated with goat anti-mouse IgM Alexa-fluor 568 secondary antibody (Life 

Technologies). This was diluted 1:1000 in Triton PBS and was incubated with 

slices for one hour at room temperature, whilst shaking.  

After the incubation slices were washed thoroughly in PBS, then mounted on 

slides and coverslipped using Permafluor mounting medium (Thermo Scientific). 

2.5.2 Imaging and analysis 

Z stack images of the slices were taken using a Leica DM6000 inverted 

laser scanning confocal microscope and Leica LAS X software using x40 oil 

immersion objective. The Z stacks averaged around 30µm with a step size of 

either 0.5µm or 1µm. 

To quantify the presence and location of glycogen, Z stack images were 

analysed using ImageJ software. Stacks were loaded and the colour channels 

(green – GFP in astrocytes, red – glycogen labelled with Alexa-fluor 568 

secondary) were merged and overlaid. The resulting stacks were put through 

the “RG2B localization plugin” (Christopher Philip Mauer 2004) via ImageJ. This 

software tool detects co-localised red and green pixels and converts them to 
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blue, saving the data in the blue channel and allowing the visualisation and 

quantification of glycogen present in astrocytes. 

By drawing regions of interest around whole cells (soma and processes), 

the average pixel intensity (measured from 0 to 255) of the blue co-localisation 

was obtained. Figure 2.3 illustrates the process from the merged image and the 

conversion of the overlapping pixels to blue. The final panel shows a zoomed in 

image of the square depicted in the previous image and shows how the region 

of interest was drawn. Cells that were present in multiple planes were assessed 

for each plane they were present in. Background levels were obtained by taking 

co-localisation readings from planes beyond the cells. These values were then 

subtracted from those taken for glycogen levels to give a final value of co-

localisation intensity. Statistical analysis was carried out as previously 

mentioned. 
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Figure 2.3: Measuring co-localisation. Merge - overlaid image green GFP, red 

glycogen. RGB co-localisation – image treated with ImageJ tool, co-localised 

pixels shown in blue. Blue pixels – image generated by the RG2B co-localisation 

tool showing the co-localised pixels. Outline – yellow line drawn around cell 

soma and processes to measure co-localisation intensity. Scale bar = 20µm 
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2.6 COBALT STAIN 

Ionotropic glutamate receptors (iGluRs) are expressed by many cells in 

the CNS including glia (Seifert & Steinhauser, 2001). They are involved in the 

widely accepted mechanism of excitotoxicity that occurs in response to 

ischaemia, which results in cytotoxic calcium influx into neurons and neuronal 

death (Choi, 1987; Lucas & Newhouse, 1957; Pulsinelli, Sarokin & Buchan, 

1993). 

The cobalt stain allows for the visualisation of cells expressing receptors 

that are permeable to cations, such as calcium and sodium. Inhibition of 

glutamate receptors has been found to increase neuronal survival after OGD 

(Nishizawa, 2001). There is also the possibility that glutamate receptors may 

have a role to play in astrocyte response to ischaemic insult. Thus, it was 

necessary to determine whether they were being expressed by cells in our 

tissue preparations.  

This cobalt stain involves stimulating the receptors of interest with an 

agonist (L-glutamate or kainic acid) in the presence of extracellular cobalt which 

then enters the cells through activated receptor pores. This is achieved by 

placing live tissue slices in a series of oxygenated solutions, after which they are 

fixed and treated to enhance the cobalt precipitate. 

2.6.1 Experimental Protocol  

The main solution used was the assay buffer which contained the 

following at these concentrations; NaCl 57.5mM; KCl 5mM, NaHCO3 20mM, 

glucose 12mM; sucrose 139mM; CaCl2 0.75mM and MgCl2 2mM. The assay 

buffer was adjusted to pH 7.4. This buffer was then used as a base to form the 

following staining solutions; the cobalt solution contained 5mM CoCl2 and 
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agonist (L-glutamate) at 100mM; the ammonium sulphide solution contained 

1.2% (NH4)2S and the EDTA solution contained 2mM EDTA and was adjusted 

to pH 7.4. 

For this procedure I used the protocol devised by Aurousseau et al 

(2012) as a guide. Mice were sacrificed and 250µm thick vibratome slices were 

obtained in ice cold cobalt cutting solution. The cutting solution used for the 

cobalt staining was slightly different to that used for the live imaging slices and 

contained the following at these concentrations; NaCl 125mM; KCl 2.5mM; 

NaH2PO4 1.25mM; NaHCO3 28mM; glucose 7mM, sucrose 223mM; sodium 

ascorbate; 0.88mM; sodium pyruvate 3mM; CaCl2 0.3mM and MgCl2 7mM. The 

slices were then allowed to recover in oxygenated cobalt cutting solution in the 

brain slice keeper for 30 minutes at room temperature. For the staining 

procedure all solutions needed to be freshly made (Albuquerque et al., 2001) 

and constantly bubbled with (95%O2/5%CO2) (Aurousseau, Osswald & Bowie, 

2012).  

First the slices were incubated in assay buffer with cobalt chloride and 

agonist (100mM L-glutamate) for 30 minutes. This activated glutamate 

receptors and allowed cobalt entry into cells. The slices were then incubated 

with EDTA assay buffer for five minutes, this step chelated any remaining cobalt 

that had not entered cells. This was followed by a five minute wash in assay 

buffer only. The slices were then transferred to ammonium sulphide assay 

buffer for 10 minutes. This step precipitates the cobalt that has entered cells. 

The slices were then washed in assay buffer twice, for five minutes each time. 

For staining with the use of glutamate antagonists the tissue specimens 

were incubated in assay buffer containing NBQX (20µM) and MK801 (10µM) for 

30 minutes prior to the staining procedure. When investigating the effect of OGD 
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on cobalt uptake into cells, all solutions had glucose removed and were bubbled 

with nitrogen. Glutamate as an agonist was also excluded as during glucose 

deprivation exogenous glutamate can be used as a metabolite by astrocytes 

(Schousboe et al., 2014). The staining procedure for OGD conditions was 

carried out at 37°C as room temperature is protective and cell death would not 

occur. 

For all conditions the cobalt stained slices were then fixed in 4% PFA 

PBS for three hours at 4°C and cryoprotected in 30% sucrose PBS overnight. 

ON were also stained, these were dissected out as for live imaging and were 

allowed to recover for 30 minutes also. The same staining and fixing procedure 

was followed as for the brain slices. 

2.6.2 Sectioning and silver enhancement 

After cryoprotection the slices or nerves were embedded in OCT and 

frozen at -80°C. The tissue was left to thaw to -20°C and then 20µm thick 

cryosections of the slices and nerves were obtained and left to air dry. Silver 

enhancement of the cobalt precipitate then followed, this step develops the stain 

and fixes it so it can be viewed. A sliver enhancer kit was used (Sigma Aldrich), 

which contained solution A (silver nitrate), solution B (12-wolframosilicic acid) 

and sodium thiosulphate. The following protocol was supplied as a technical 

bulletin with the silver enhancer kit. First, immediately before use solutions A 

and B were mixed 1:1, 20µL of this mixture was then added to each section for 

27 minutes. The slides were washed for five minutes in distilled water and then 

were placed in 2.5% sodium thiosulphate solution (3.9g sodium thiosulphate 

pentahydrate in 100ml distilled water) for three minutes to fix the enhanced 

precipitate. The slides were then thoroughly washed before mounting coverslips 
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using 10% glycerol PBS; coverslips were secured in place with clear nail 

varnish. 

2.6.3 Imaging and analysis 

The stained and enhanced sections were imaged using a Nikon eclipse 

80i microscope. The acquired images were processed using ImageJ, where 

cobalt positive cells were manually counted. A minimum of 10 regions of interest 

were counted per tissue region from three animals for each condition. For 

statistical analysis GraphPad Prism 6 was used to carry out one way ANOVA. 

. 
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3 GLIAL SENSITIVITY TO ISCHAEMIA 

3.1 INTRODUCTION 

The recent change in focus of ischaemic research from neurons to glia has 

followed the discovery of the vital role that astrocytes play in the maintenance 

and functioning of the CNS. During times of injury and insult, astrocytes are 

pivotal to rescuing CNS function and for recovery. If astrocytes themselves are 

damaged this will have a detrimental effect on the CNS. The impact of astrocyte 

dysfunction on neurons and on the wider CNS is now beginning to be 

investigated. Studies carried out on ischaemic neurons in vitro have found that 

neuronal sensitivity to OGD is increased in the absence of astrocytes (Tanaka 

et al., 1999), suggesting that astrocytes are vital for neuronal survival. 

Astrocyte-neuron calcium signalling is preserved in the penumbra, despite 

ischaemic insult (Choudhury & Ding, 2015), showing the importance of 

astrocyte interaction with neurons post injury.  

3.1.1 Neuronal regional sensitivity 

For many years it has been known that brain regions have different 

sensitivities to ischaemic insult as well as neuronal populations within regions 

showing varying regional vulnerability to ischaemia (Kirino, 1982). It is widely 

accepted that GM is very sensitive to ischaemia and that WM is more resistant 

(Marcoux et al., 1982; Pantoni, Garcia & Gutierrez, 1996). Pulsinelli et al. (1982) 

found specific brain regions in which neurons were very sensitive to injury. They 

determined that the most sensitive neurons were those in the hippocampus, 

cortical neurons were the next sensitive followed by striatal neurons (Pulsinelli, 

Brierley & Plum, 1982). Orders of sensitivity also exist within these regions and 

differences were found between neurons within different cortical layers and 
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hippocampal regions. The model used by Pulsinelli et al. (1982) was global 

ischaemia, achieved via four vessel occlusion, during which the carotid arteries 

were transiently occluded and vertebral arteries were permanently blocked. It 

was found that only 20 minutes of ischaemia was required to observe neuronal 

damage in all of these regions (Pulsinelli, Brierley & Plum, 1982). This suggests 

that only a relatively short period of ischaemia is necessary to cause irreversible 

damage to neurons.  

3.1.2 Astrocyte heterogeneity 

Since the discovery of astrocytes, it has been accepted that there are two 

general groups: fibrous, which are found in the WM, and protoplasmic found in 

GM. The clear morphological differences seen between these two astrocyte 

populations relate to their specialized functions (figure 2.1 and 2.2). WM fibrous 

astrocytes have a smaller cell body and long reaching branched processes. 

Fibrous astrocytes have been found to have minimal branching, with a 

branching frequency of two to three in ON (Butt et al., 1994), and not all 

processes branch at all. The processes of these astrocytes interact with nodes 

of Ranvier by partially encircling the nodes with other processes (Butt, Duncan 

& Berry, 1994; Serwanski, Jukkola & Nishiyama, 2017). They also contact blood 

vessels and project out to the pia where they terminate in the glial limitans. GM 

protoplasmic astrocytes have a central cell soma from which project highly 

branched and ramified processes. These processes are involved in neuronal 

synapses and enable protoplasmic astrocytes to maintain and modulate the 

area immediately surrounding them (Nedergaard, Ransom & Goldman, 2003), 

thus dividing the GM into individual microdomains. 

However, it is has been found that within these groups there may be 

many different subtypes of astrocyte which vary depending upon their location 



65 
 

and individual function. Each region of the brain has its own microenvironment 

and so the cells within these regions are unique to that region and will be 

specialized through protein and receptor expression (Thoren et al., 2005).  

Astrocytes are a very heterogeneous population. This heterogeneity 

exists for different cellular aspects such as in morphology, density, expression 

profiles and strength of gap junction coupling. These are discussed below. 

Investigation into astrocyte morphological heterogeneity found that 

differences existed between regions and these differences appeared to define 

structures of the brain (Emsley & Macklis, 2006). The regions that were defined 

corresponded to those seen when structures are determined by neuronal cell 

type. It has also been found that morphological heterogeneity also exists 

between astrocytes within the same brain region (Zhang & Barres, 2010). 

Astrocytes do not only show regional variation in morphology but also in 

cell number. Differences in cell densities have been observed between many 

brain regions and a cell density map of the adult CNS has been produced by 

Emsley and Macklis (2006). They determined that astrocyte density varies 

across CNS regions and sub-regions. The astrocyte density recorded also 

depended upon the labelling method used either GFAP positive cells, GFP 

expressing cells under GFAP promoter or S100β (astrocyte marker). GFAP and 

S100β are not universal astrocyte markers, they both only detect subsets of the 

larger astrocyte population. In some regions the number of cells was similar 

regardless of the labelling method used such as in the substantia nigra pars 

compacta which contained approximately 80 positive cells mm-2 (Emsley & 

Macklis, 2006). Whereas, in regions such as the preoptic nucleus of the 

hypothalamus the density varied from 3-5 positive cells mm-2 with GFAP 



66 
 

labelling and GFP, to 15-20 positive cells mm-2 with S100β labelling (Emsley & 

Macklis, 2006). 

The expression profile of specific astrocyte proteins varies between 

astrocytes across the CNS, which was discovered through the analysis of 

microarray data (Bachoo et al., 2004). The variation in expression levels of 

intracellular proteins, membrane receptors and other factors will results in 

subpopulations of astrocytes having functions specialized to region in which 

they are situated and for their specific role. 

A surprising way that astrocytes show heterogeneity is through the 

strength of gap junction connections. The astrocyte syncytium is a major feature 

of the CNS, but this has been found to show variation between subtypes of 

astrocytes. Lee et al. (1994) measured the strength of gap junction coupling via 

the diffusion of Lucifer yellow dye and found that the strength of coupling 

depended on region. The spinal cord showed weak coupling, whereas regions 

such as optic nerve and hippocampus showed strong gap junction interactions 

(Lee et al., 1994). Variation in the strength of gap junctions may affect the ability 

or speed of astrocyte signalling.  

Due to this diversity, distinct populations may also show different 

tolerances to disease and insults such as ischaemia. It is well known that 

neurons have different sensitivities to ischaemia depending upon the region that 

they occupy (Pulsinelli, Brierley & Plum, 1982) and it would be logical to suggest 

that this is also the case for other CNS cell types. 

3.1.3 Astrocyte sensitivity to ischaemia 

Ischaemic insults affect all CNS cell types including astrocytes and 

astrocyte sensitivity to ischaemia has been debated. Any injury to astrocytes will 
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cause structural and functional deterioration to the affected CNS region. The 

majority of which occurs in the ischaemic core (Lukaszevicz et al., 2002), where 

there is a high amount of necrosis. Ischaemia induced structural changes that 

have been observed include the breakdown of the BBB, widespread astrocyte 

cell death, astrocyte swelling and separation of myelin sheets (Pantoni, Garcia 

& Gutierrez, 1996). Breakdown of the BBB is caused through the death and 

swelling of astrocyte endfeet as well as an increase in permeability (Takata et 

al., 2011). The swelling of endfeet causes changes to the basement membrane 

integrity (Kwon et al., 2009), causing BBB disruption. Fragmented DNA in dead 

or dying glial cells was also identified (Petito et al., 1998), showing the effect of 

ischaemia on glia.  

Much of what is known about astrocyte sensitivity has been discovered 

through the study of astrocytes in culture. Although, it has been realised that in 

vitro astrocytes may behave and respond differently to those in vivo (Shannon, 

Salter & Fern, 2007). The in vitro studies that have been carried out do not 

account for the individual environments that are found in different brain regions. 

The physical position of these cells, the surrounding microenvironment and the 

presence of other cells such as neurons, oligodendrocytes and microglia will 

affect how astrocytes react to insults.  

For some time it was believed that astrocytes were very resistant to 

ischaemia and long periods of OGD were required to cause cell death. 

However, it has subsequently been found that astrocytes and neurons vary little 

in their vulnerability to insult (Shannon, Salter & Fern, 2007). It has been 

discovered that in many cases astrocyte cell death may precede neuronal death 

(Liu et al., 1999) and this glial cell death may also impact neuronal survival. 

Work carried out by Xu et al. (2001) used cells from neonatal animals for 
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primary cultures and allowed the cells to mature. They found that after 4 to 6 

hours of OGD, astrocytes from the striatum were the most sensitive to 

ischaemia followed by hippocampal astrocytes and then cortical astrocytes (Xu, 

Sapolsky & Giffard, 2001). They did not examine WM regions and concentrated 

on astrocytes from GM regions. Another study found that hippocampal 

astrocytes cultured from embryos were very sensitive to OGD (Zhao & Flavin, 

2000). Zhao and Flavin (2000), also suggested that astrocyte sensitivity to 

ischaemia may be coupled to neuronal sensitivity, whereby injury or damage to 

one directly affects the other. 

Middle cerebral artery occlusion (MCAO) is one model, which gives a 

better representation of focal ischaemia and a truer depiction of astrocyte 

sensitivity as the cells are in situ. A limitation of this is that not all astrocytes 

experience the same amount of ischaemia as the technique aims to replicate an 

ischaemic lesion and so not all regions are affected. This model has been used 

to try to determine differences in astrocyte sensitivity to ischaemia. Lukaszevicz 

et al. (2002) used MCAO to investigate astrocyte sensitivity in GM and WM 

regions. In this study it is was found that cortical protoplasmic astrocytes were 

remarkably sensitive to ischaemia, with swelling and detrimental changes to 

cells seen within the first hour of ischaemia (Lukaszevicz et al., 2002). 

An earlier group using MCAO in adult rats found visible astrocyte 

swelling in WM after just 30 minutes of ischaemia (Pantoni, Garcia & Gutierrez, 

1996). Astrocyte damage increased as the period of ischaemia increased, after 

six hours of ischaemic conditions, some astrocyte processes had swollen to 

approximately 10µm diameter. This is a severe effect caused by the extended 

period of ischaemia and shows the kind of injury that can be sustained by 

astrocytes. Swelling will impair astrocyte function and if all cell types swell then 
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this will cause physical changes to the tissue. Pantoni et al (1996) found 

alterations in the oligodendrocyte population and concluded that WM is very 

sensitive to ischaemic insult. Here it was also observed that cells may die prior 

to any observation of physical evidence of damage. Changes were also 

observed in the nerve fibres themselves, which could inhibit the transmission of 

action potentials, thus causing further CNS dysfunction (Pantoni, Garcia & 

Gutierrez, 1996). 

A preliminary study carried out by Shannon et al (2007) investigated 

regional differences in astrocyte sensitivity to OGD. For this work neonatal 

animals (postnatal day (P) 10) were used and the regions examined were optic 

nerve and hippocampal brain slices. At this age, it was found that ON astrocytes 

were more sensitive to OGD than the GM astrocytes. The model of ischaemia 

used here ensured that all regions were exposed to the same levels of OGD. 

This gave a more accurate reading of astrocyte sensitivity to ischaemia. The 

study of astrocytes in situ allows different CNS regions to be compared under 

the same conditions. We hypothesize that regional differences in astrocyte 

sensitivity to acute ischaemia exist. Astrocytes are not the only glial cell type 

that are affected by ischaemic insult. Oligodendrocytes also play an important 

role as the myelinating cell of the CNS.  

3.1.4 Oligodendrocyte sensitivity to ischaemia 

It is widely accepted and documented that oligodendrocytes experience 

high sensitivity to ischaemic insult. The literature shows that most 

oligodendrocyte cell death appears to occur during the reperfusion period, 

within three hours of the initial insult (Pantoni, Garcia & Gutierrez, 1996), with 

changes to oligodendrocytes occurring after just 30 minutes of MCAO. Physical 

damage to oligodendrocytes worsened as the length of MCAO was increased, 
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eventually leading to vacuolation of myelin. Widespread oligodendrocyte cell 

death has been achieved within nine hours after a relatively short period of 

ischaemia of just 30 minutes (Mifsud et al., 2014). In most studies, samples of 

oligodendrocyte health are not obtained until many hours after the insult and 

establishment of reperfusion. This would suggest that the vulnerability seen is a 

result of secondary injury sustained during reperfusion of the tissue rather than 

the initial ischaemic insult. 

It is not known whether oligodendrocytes exhibit regional sensitivities to 

ischaemia. However, from the description of oligodendrocytes by Del Rio-

Hortega in 1921 we know that these cells are not homogeneous. He described 

interfascicular cells that are predominantly found in the WM and perineuronal 

cells that can be clearly seen in GM (Bunge, 1968). The perineuronal subtype of 

oligodendroglia are not explicitly connected to a myelin sheath (Ludwin, 1997). 

Ludwin (1997) proposed that these cells may assist with regulation of the 

neuronal microenvironment. The interfascicular oligodendrocytes are the cells 

which are closely associated with the myelin sheath. The appearance of these 

cells is that of a “string of pearls” and it is these cells which are responsible for 

the myelination of WM axons. Through the sequencing of RNA expression of 

ten brain regions, 13 different populations of oligodendrocytes have been 

described (Marques et al., 2016). The heterogeneity that has been found 

suggests that these subpopulations of oligodendrocytes may have different 

roles in the CNS depending upon their location. 

Petito et al. (1998) suggested oligodendrocytes may display regional 

susceptibility to ischaemic insult. They determined that GM oligodendrocytes 

were more sensitive to ischaemic injury than neurons. Although not as diverse 

as astrocytes, oligodendrocytes are a heterogeneous population that have 
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classically been divided into four subtypes (Butt et al., 1994). They have been 

grouped according to their branching pattern and the number of myelin sheaths 

that they support (Butt et al., 1994). This may have some bearing on their 

susceptibility to ischaemic insult. Those cells with more myelin sheaths have a 

greater amount of membrane to support. Thereby increasing the metabolic 

demands upon the cell and making then more susceptible to injury. 

It was decided to investigate oligodendrocytes in the same manner as 

astrocytes to see the effect that our OGD protocol would have on 

oligodendrocyte cell death and to determine whether there would be regional 

sensitivity to ischaemia or whether this is just a phenomenon observed in 

astrocytes. In addition, to explore whether it was acute ischaemic injury which 

caused the observed widespread sensitivity of these cells.  
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3.2 RESULTS: PCR GENOTYPING 

To maintain the health of both transgenic mouse colonies (GFAP-GFP 

and PLP-GFP) mice were genotyped to determine new breeding pairs. The 

DNA used was extracted from ear notch samples, obtained exclusively for 

genotyping. Figure 3.1 shows the typical result obtained for genotyping, the 

bright bands show the presence of the GFP transgene in the sample (black 

arrows) and thus the expression of GFP in the cells of interest. For both lines 

wild-type mice were crossed with heterozygous mice, meaning only half of the 

offspring would have the transgene present. 

There are bands present in all lanes, however it was established that the 

brighter bands were indicative of animals which were positively expressing the 

GFP gene. 

 

Figure 3.1: Representative image of agarose gel. Black arrows show animals 

positive for GFP. Gene ladder used was 1kb plus (Thermo Scientific). 

  



73 
 

3.3 RESULTS: GREEN FLUORESCENT PROTEIN (GFP) EXPRESSION IN 

ASTROCYTES 

The transgenic mice used for the following work specifically express GFP 

in astrocytes, under the GFAP promoter. Astrocytes expressing GFP are visible 

during live imaging and in fixed tissue (figure 3.2). Astrocytes seen during live 

imaging are marked with white arrows in the confocal images (figures 3.1A and 

B). The images in the first column are from the corpus callosum (CC), whilst 

those in the second column are from the dentate gyrus (DG)  

First, it was determined whether the observed GFP was expressed in the 

correct cell type. Immunofluorescence staining was carried out on fixed frozen 

brain sections from adult mice (P30 and over) using an antibody against 

aldehyde dehydrogenase (ALDH1L1), which is an alternative marker for 

astrocytes. GFP (green) was observed in cells that morphologically had the 

appearance of astrocytes (figure 3.2C and D). ALDH1L1 (red) was detected in 

astrocyte cell bodies and processes (figure 3.2E and F). GFP expression in 

astrocytes was confirmed with the co-localisation of red and green signals, 

producing an orange colour (yellow arrows figure 3.2G-J). 

Not all of the GFP expressing astrocytes present are positive for 

ALDH1L1; this is as ALDH1L1 is not a universal astrocyte marker and is only 

present in a subset of the astrocyte population. The expressed GFP is present 

in cells which display astrocyte morphology and characteristics such as long 

branched processes. These images also show the difference in the number of 

astrocytes seen in these two regions (CC and DG). In WM there are many more 

astrocytes than in GM, showing the heterogeneous nature of astrocytes that 

exists between regions (figures 3.2 and 3.3).  
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Figure 3.2: GFP expression in astrocytes. A + B: GFP expressed under the 

GFAP promoter in astrocytes as seen during live imaging. White arrows show 

representative astrocytes. A, C, E, G + I: CC, B, D, F, H + J: DG. C – J: are 

confocal maximum projections of Z stacks of fixed tissue sections. C + D: GFP 

in green. E + F: ALDH1L1 in red. G + H: merged image, yellow arrows show co-

localisation of the green and red signals. I and J: show the area within boxes in 

images G and H respectively. Scale bars = 20µm.  
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3.4 RESULTS: GLIAL MORPHOLOGY 

Investigation of glial cell sensitivity to acute ischaemic insult and the 

mechanisms behind ischaemic sensitivity were carried out using two transgenic 

mouse lines. These allowed astrocyte and oligodendrocyte cells to be visualised 

through the expression of green fluorescent protein (GFP), which was under the 

control of cell-type specific promoters (see below). Astrocyte and 

oligodendrocyte morphology in white matter (corpus callosum, CC) and grey 

matter (dentate gyrus, DG) in these two transgenic lines can be clearly seen in 

confocal images (figure 3.3 and 3.4) There is a clear difference between the 

long branched processes of the astrocytes and the more organised directed 

processes of the oligodendrocytes. The cell somas of these glial cell types also 

display differences; the oligodendrocyte cell bodies have a more regular shape 

when compared to astrocyte cell bodies and exist closer together often in lines. 

From figure 3.3 and 3.4 it can be seen that there are differences between glial 

cell types located in different regions. For example, astrocytes in the CC are 

arranged differently to those in the DG. The DG cells are further apart and are 

not overlapping as much as those in the CC. A major difference between the 

regions is the cell density. It is apparent that there are many more 

oligodendrocytes in the CC than the DG. The difference in density is similar for 

astrocytes. 
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Figure 3.3: Astrocyte and oligodendrocyte morphology. Images show 

differences in cellular morphology between astrocytes and oligodendrocytes. 

Upper panel corpus callosum, lower panel dentate gyrus. The images are Z 

projections of confocal images taken from fixed brain slices (100µm thick). 

Scale bars = 20µm. 
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Figure 3.4: Glial morphological differences: Zoomed in confocal images of fixed 

brain slices, both are cells in CC. The white arrows depict examples of 

processes. The astrocyte process are far reaching and branched. 

Oligodendrocyte processes are more organised, less branched and show the 

direction of axons. Yellow arrows show cell bodies and how they are differently 

arranged in WM. The astrocyte cell bodies have irregular placement, whilst 

oligodendrocytes have regular placement and are close together. Scale bars = 

20µm. 
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3.5 RESULTS: ASTROCYTE SENSITIVITY TO ISCHAEMIA 

Next, it was determined which populations of astrocytes were most 

sensitive to OGD. Experiments lasted 100 minutes (figure 3.5A), the first 10 

minutes were under control conditions with oxygen and aCSF perfusion. This 

period was followed by 60 minutes of OGD aCSF perfusion with nitrogen and 

the final 30 minutes was reperfusion, where aCSF and oxygen were re-

introduced. The regions selected to be investigated were; corpus callosum 

(CC); optic nerve (ON); external capsule (EC); striatum (STR); hippocampal 

regions CA1 and dentate gyrus (DG); cortex, motor area (CTX (M)) and cortex, 

auditory/sensory (CTX (A/S)) (figure 3.5B). These regions were selected to give 

a variety of white and grey matter regions and to include those with known 

neuronal vulnerability. All regions showed no evidence of cell death under 

control conditions with aCSF perfusion only and oxygen. 
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Figure 3.5: Experimental design and brain regions examined. A: Time points of 

live imaging protocol, 10 minutes of aCSF with oxygen, followed by 60 minutes 

of OGD with nitrogen and 30 minutes of reperfusion (aCSF with oxygen). 

Experiments lasted 100 minutes in total. B: Illustration of brain regions 

examined for astrocyte sensitivity to ischaemia (adapted from the Allen adult 

mouse reference brain atlas 2011). 
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3.5.1 Astrocyte cell death in response to OGD 

Live confocal images of each region examined were obtained every 

minute in control and OGD conditions, shown at 0 minutes, 50 minutes and 100 

minutes (end of the reperfusion period, figures 3.6 to 3.15). For all images, the 

white arrows illustrate the cells, which survive throughout the experiment. The 

yellow arrows depict the cells which died during the experiment due to OGD and 

reperfusion of the tissue. 

3.5.1.1  White matter regional sensitivity 

The ON astrocyte population showed tolerance to OGD with 33.54 ± 

13.11% cell death by the end of the protocol (figure 3.6C). The majority of 

astrocytes that are present at the beginning of the experiment are therefore still 

present at 100 minutes (figure 3.6A). In these confocal images, the nerves are 

positioned across the field of view in both aCSF and OGD conditions.  

The corpus callosum (CC) astrocytes were also resistant to OGD with 

cell death only reaching 31.95 ± 9.33% by the end of the protocol (figure 3.7C). 

It was observed that many astrocytes survived OGD and the reperfusion period 

(figure 3.7A) and that most astrocytes in this region do not lose membrane 

integrity during OGD. The cell death observed in these white matter tracts 

suggests that WM fibrous astrocytes are tolerant of acute ischaemic insult. The 

cell death profiles of the ON and CC showed that the t for half maximal cell 

death were similar, 68.36 ± 6.82 mins and 62.00 ± 2.32 mins respectively which 

suggests that these astrocyte populations behave in a similar manner (figures 

3.6C and 3.7C).  

The final WM tract investigated was the external capsule (EC, figure 3.8). 

This region produced a high degree of cell death, 75.11 ± 3.36% (figure 3.5C), 
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which was significantly higher compared to the other two WM regions (p=0.031). 

It is known that this region is often affected during haemorrhagic stroke (Chung 

et al., 2000). This susceptibility may also predispose the region to be vulnerable 

to ischaemic stroke. The value for t for this region (figure 3.8C) was 57.83 ± 

3.61mins showing the EC behaved more similarly to hippocampal and striatal 

astrocytes than the WM astrocytes. 
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Figure 3.6: Astrocyte sensitivity to OGD in optic nerve (ON). A: Confocal images 

taken at 0, 50 and 100 minutes. Upper panel is control conditions with aCSF 

only, lower panel during experimental conditions with OGD. White arrows show 

cells present throughout experiments, yellow arrows show cells that died during 

OGD treatment. Scale bars = 20µM. B + C: Cell death over time with these 

treatments, B: aCSF n=35/2, C: OGD n=275/6 (n numbers = number of 

cells/number of nerves). Error bars = SEM. 
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Figure 3.7: Astrocyte sensitivity to OGD in corpus callosum (CC). A: Confocal 

images taken at 0, 50 and 100 minutes. Upper panel is control conditions with 

aCSF only, lower panel during experimental conditions with OGD. White arrows 

show cells present throughout experiments, yellow arrows show cells that died 

during OGD treatment. Scale bars = 20µM. B + C: Cell death over time with 

these treatments, B: aCSF n=75/2, C: OGD n=193/6 (n numbers = number of 

cells/number of slices). Error bars = SEM. 
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Figure 3.8: Astrocyte sensitivity to OGD in external capsule (EC). A: Confocal 

images taken at 0, 50 and 100 minutes. Upper panel is control conditions with 

aCSF only, lower panel during experimental conditions with OGD. White arrows 

show cells present throughout experiments, yellow arrows show cells that died 

during OGD treatment. Scale bars = 20µM. B + C: Cell death over time with 

these treatments, B: aCSF n=26/2, C: OGD n=184/6 (n numbers = number of 

cells/number of slices). Error bars = SEM. 
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3.5.1.2  Grey matter regional sensitivity 

In the GM regions examined, it was generally observed that there were 

higher levels of astrocyte cell death. In the cortex (motor area) (CTX (M)), cell 

death reached 63.17 ± 6.59% (figure 3.9C). In the confocal images, the upper 

edge of the cortex is visible; this is the edge of the brain slice (figure 3.9A). On 

the pial surface are astrocytes, which are located on the edge of the cortex and 

project their processes down into the cortex.  

To see whether this amount of cell death was unique to this region of the 

cortex, another cortical region was also examined, the auditory/sensory area 

(CTX (A/S)) (figure 3.10). In both aCSF and OGD images, the edge of the slice 

can be seen (figure 3.10A). In the OGD images cell death was observed, the 

yellow arrows depict cells which have died. The cell pointed out by the arrow in 

the upper right corner shows this well. This region showed high cell death in 

response to OGD of 81.33 ± 13.36% (figure 3.10C), which illustrates that 

cortical astrocyte populations are sensitive to acute ischaemic insult. The t half 

maxima for CTX (M) was 70.25 ± 2.98 mins and CTX (A/S) was 66.58 ± 

3.77mins (figure 3.9C and 3.10C). These results suggest that astrocytes located 

in cortical regions have a comparable response to ischaemic insult. 

The pial astrocytes would appear to be a subtype, if not a separate 

population of astrocytes. Their morphology is quite different from other 

protoplasmic astrocytes; their processes are not highly branched and they 

project down into the cortex and across the pial surface (figures 3.9A and 

3.10A). Work carried out by the group has found that these pial astrocytes may 

be particularly vulnerable to ischaemia (unpublished). The relationship between 

cell distance from the cortex surface and time of cell death was therefore 

investigated (figure 3.11). A proportion of pial astrocytes died at 20 to 35 
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minutes ODG. There were pial astrocytes, which survived OGD and reperfusion 

(figures 3.9A and 3.10A). Most cortical astrocytes die towards the end of OGD 

and into the reperfusion period regardless of the distance from the surface 

(figure 3.11).  

The astrocytes in different cortical layers were examined more closely, to 

see if astrocytes from the same layers died at a similar time point (figure 3.12). 

The number of cells to die at each time point was plotted for whole cortex 

(pooled results of the two cortical regions examined, figure 3.12A). Here, it 

shows that initial cell death occurs early after a short period of OGD. However, 

most cell death occurs after 30 to 40 minutes of OGD.  

The cell death was examined for the individual cortical layers. The cell 

death of pial astrocytes on the surface almost depicts two populations (figure 

3.12B). Those that are vulnerable to OGD and those that die towards the end of 

OGD and during reperfusion. This population behaves like other cortical 

astrocytes and show some tolerance. Astrocytes in layer 1 were located 

between 0 and 100µm from the surface (figure 3.12C). This layer contains no 

neuronal cell bodies and OGD induced cell death of astrocytes in this layer 

occurred in the late OGD period and during reperfusion. The astrocytes in layer 

2, located over 100µm from the surface, responded to OGD in a similar manner 

as layer 1 (figure 3.12D). In these layers, most astrocyte death occurred after 30 

to 40 minutes of OGD. There were significant differences between the total 

amounts of cell death seen in each layer (figure 3.12E). The lowest cell death 

was seen in layer 1, 14.51 ± 3.57%, cell death of pial astrocytes was higher at 

18.56 ± 3.46% (not significant). The highest amount of cell death was in layer 2 

and over which achieved 37.74 ± 4.76 % cell death. This was significantly 

higher than pial astrocyte cell death (p=0.0047) and layer 1 cell death 
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(p=0.0006). Overall, these findings suggest that for cortical astrocytes the 

distance from the surface does not affect the time at which OGD induced cell 

death occurs and that the majority of cell death occurs further from the surface 

of the cortex. 

  



88 
 

 

Figure 3.9: Astrocyte sensitivity to OGD in cortex, motor area (CTX (M). A: 

Confocal images taken at 0, 50 and 100 minutes. Upper panel is control 

conditions with aCSF only, lower panel during experimental conditions with 

OGD. In both panels the edge of the cortex can be seen. White arrows show 

cells present throughout experiments, yellow arrows show cells that died during 

OGD treatment. Scale bars = 20µM. B + C: Cell death over time with these 

treatments, B: aCSF n=23/2, C: OGD n=150/6 (n numbers = number of 

cells/number of slices). Error bars = SEM. 
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Figure 3.10: Astrocyte sensitivity to OGD in cortex, auditory/sensory area (CTX 

(A/S). A: Confocal images taken at 0, 50 and 100 minutes. Upper panel is 

control conditions with aCSF only, lower panel during experimental conditions 

with OGD. In both panels the edge of the cortex can be seen. White arrows 

show cells present throughout experiments, yellow arrows show cells that died 

during OGD treatment. Scale bars = 20µM. B + C: Cell death over time with 

these treatments, B: aCSF n=29/2, C: OGD n=195/6 (n numbers = number of 

cells/number of slices). Error bars = SEM. 
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Figure 3.11: Effect of distance from cortex surface on OGD induced astrocyte 

cell death. Astrocytes from both cortex regions examined, CTX (M) n = 150/6, 

CTX (A/S) n = 195/6. Each point is one cell death event  
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Figure 3.12: OGD induced astrocyte cell death in different cortical layers. A: Cell 

death events in each 5 minute period throughout cortex (pooled data). B: cell 

death events for pial astrocytes on cortex surface. C: cell death events for layer 

1 astrocytes (within100µm from cortex surface). D: cell death events for layer 2 

astrocytes and those situated over 100µm from the cortex surface. E: total 

astrocyte cell death in each layer. Error bars = SEM 

  



92 
 

The hippocampal astrocytes in the CA1 region and the dentate gyrus 

(DG) behaved in a similar manner to those in the cortex in response to OGD. 

The cell death recorded in these regions was approximately 94.04 ± 1.81% 

(figure 3.13C) for CA1 and 97.30 ± 1.24% for DG (figure 3.14C). In the OGD 

images for both regions clouds of GFP can be seen, this occurs after the cellular 

contents is released when cells rupture due to a loss of membrane integrity 

(figures 3.13A and 3.14A). In the aCSF confocal images, the edge of the 

dentate gyrus is running across the lower right corner of the images (figure 

3.14A). The t half maxima achieved for these regions was 49.17 ± 4.99 mins for 

CA1 and 54.64 ± 3.3 mins for DG. These were the lowest values obtained for t 

which illustrates that cell death occurred rapidly in these regions. 

Cell death caused by OGD in the striatum (STR) was similar to other GM 

regions and reached around 97.37 ± 1.19% (figure 3.15C). The structure 

present in the OGD panel of the confocal images is a blood vessel (figure 

3.15A). The astrocytes that are wrapping the blood vessel are periventricular 

astrocytes. These periventricular astrocytes appear brighter than other astrocyte 

populations; it is unknown why this phenomenon occurs. The cell death rate in 

STR is similar to that for the hippocampal astrocytes (figure 3.15C). From these 

results, it would seem that striatal astrocytes have more in common with the 

populations that are found in CA1 and DG. 
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Figure 3.13: Astrocyte sensitivity to OGD in CA1 region of hippocampus (CA1). 

A: Confocal images taken at 0, 50 and 100 minutes. Upper panel is control 

conditions with aCSF only, lower panel during experimental conditions with 

OGD. White arrows show cells present throughout experiments, yellow arrows 

show cells that died during OGD treatment. Scale bars = 20µM. B + C: Cell 

death over time with these treatments, B: aCSF n=25/2, C: OGD n=222/6 (n 

numbers = number of cells/number of slices). Error bars = SEM. 
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Figure 3.14: Astrocyte sensitivity to OGD in dentate gyrus of hippocampus 

(DG). A: Confocal images taken at 0, 50 and 100 minutes. Upper panel is 

control conditions with aCSF only, lower panel during experimental conditions 

with OGD. White arrows show cells present throughout experiments, yellow 

arrows show cells that died during OGD treatment. Scale bars = 20µM. B + C: 

Cell death over time with these treatments, B: aCSF n=85/2, C: OGD n=210/6 

(n numbers = number of cells/number of slices). Error bars = SEM. 
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Figure 3.15: Astrocyte sensitivity to OGD in striatum (STR). A: Confocal images 

taken at 0, 50 and 100 minutes. Upper panel is control conditions with aCSF 

only, lower panel during experimental conditions with OGD. White arrows show 

cells present throughout experiments, yellow arrows show cells that died during 

OGD treatment. Scale bars = 20µM. B + C: Cell death over time with these 

treatments, B: aCSF n=28/2, C: OGD n=189/6 (n numbers = number of 

cells/number of slices). Error bars = SEM. 
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3.5.1.3  Comparison of regional sensitivity 

To find which regions were most sensitive to OGD, the cell death for 

each region investigated was compared using one way ANOVA. First, OGD 

induced cell death for each region was compared to control conditions (aCSF 

only, figure 3.16A). This comparison confirmed that cell death was the result of 

OGD, as no cell death occurred during aCSF only conditions. Next, the amount 

of cell death was compared at the end of OGD to the end of reperfusion, for 

each region (figure 3.16B). It was seen that for most regions, the majority of cell 

death occurs during OGD and less occurs during reperfusion. The only 

exception is in the striatum where there was a significant increase in cell death 

from the end of OGD to the end of the reperfusion period (figure 3.16B, 

p=0.0141). This suggests that the high amount of astrocyte cell death in this 

region is due to reperfusion injury as well as the initial ischaemic insult. 

These findings show that there were differences in the amount of 

astrocyte cell death, depending upon astrocyte location. The OGD induced cell 

death was then compared between regions, after OGD (figure 3.16C) and after 

the reperfusion period (3.16D). The main differences in amounts of cell death 

were between WM and GM astrocytes. The greatest difference at the end of 

OGD was between ON and CA1, ON and DG (p=<0.0001). There were 

significant differences between CC and both the hippocampal regions (CA1 and 

DG, p=<0.0001).These significant differences in the regions remained after the 

reperfusion period. 

Differences in cell death were also observed between WM regions; 

significantly increased cell death is seen in EC when compared to ON and CC 

at the end of OGD (p=0.0310) and the end of reperfusion (p=0.0180). After OGD 

(figure 3.16C), significant differences in amounts of cell death were seen 



97 
 

between different GM regions, between the CTX (M) and the CA1 (p=0.0012) 

and the CTX (M) and DG (p=0.0047). Although these did not remain after the 

reperfusion period, the comparisons found that cell death in different GM 

regions was not significantly different.  
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Figure 3.16: Astrocyte sensitivity to OGD varies between regions. A: total 

astrocyte cell death for each region in control (aCSF only) and OGD conditions. 

OGD compared to aCSF for that region only. N numbers = number of 

cells/number of slices. B: astrocyte cell death for each region after 60 minutes 

OGD (black bars) and at the end of reperfusion (green bars). Comparison made 

between these two time points for each region only. C: shows cell death after 60 

minutes OGD. D: total astrocyte cell death after 60 minutes OGD and 30 

minutes reperfusion. C + D: Each region compared to every other region, 

comparisons without bars not significant. Error bars = SEM. For p values, 

*=<0.05, **=<0.01, ***=0,001 and ****=<0.0001. A, C + D Black bars are white 

matter regions, green bars are grey matter. 
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The rate of cell death also shows some variance between WM and GM 

(figure 3.17). In all regions little cell death occurs before 30 minutes OGD, the 

highest observed was 23.01 ± 12.65% in CA1. The majority of astrocyte cell 

death occurred in the latter half of the OGD period, less cell death occurred 

during the reperfusion period (70-100 minutes). The WM regions exhibit similar 

rates of cell death, where t ranges from 62.00 ± 2.32 to 68.36 ± 6.82 mins, 

excluding the EC which had a slightly lower t of 57.50 ± 3.61 mins. The cortical 

regions had a steady progression of cell death throughout the experiment; this 

pattern was also observed in STR. Although, in this region the cell death was 

faster and greater. In CA1 and DG most cell death occurred after 30 minutes 

OGD, with less cell death occurring during the reperfusion period. The EC cell 

death profile was more similar to that of hippocampal astrocytes than the WM 

astrocytes, as mentioned previously. 

Taken together these findings strongly suggest that astrocyte sensitivity 

to ischaemic insult depends upon the physical location of astrocyte populations 

within the CNS. It was determined that the CC was the region where astrocytes 

were most resistant to OGD, whereas DG contained astrocytes, which were 

most sensitive to ischaemia. These regions were taken forward to investigate 

the mechanisms behind the differences discovered in regional astrocyte 

sensitivity to OGD. 
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Figure 3.17: Astrocyte cell death region comparison. Graphs for each region 

showing the percentage of cell death after 30 minutes OGD, 60 minutes OGD 

and after reperfusion. Error bars = SEM. 
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3.5.2 Neonate astrocyte sensitivity to OGD 

After establishing the presence of astrocyte regional sensitivity to OGD in 

adult brain slices, astrocyte sensitivity in neonatal (P10) brain slices was 

investigated. This was to see if neonates exhibited the same pattern of astrocyte 

sensitivity to ischaemia as was seen in adults. Previously, it had been found that 

neonatal GM astrocytes were more resistant to OGD than neonatal WM 

astrocytes (Shannon, Salter & Fern, 2007). Earlier work by the group found the 

amount of astrocyte cell death in neonate ON was 59.5% ± 5.2% (Fern, 1998). 

There are a greater density of GFP expressing cells present in neonatal 

CC and DG than in the same regions in adults (figure 3.18A), only those 

showing clear astrocyte morphology were counted. The cell death profiles for 

each neonatal region (CC and DG) differ to those obtained for the same regions 

in adults (figures 3.18B and C). The t value for each region was higher than the 

same adult region. For CC t increased from 62.00 ± 2.32 for adult cells to 78.30 

± 5.33 mins in the neonate (p=0.0029) and for DG t was increased from 54.64 ± 

3.30 mins to 68.50 ± 3.13 mins for the neonate (p=0.0033). This suggests that 

neonatal astrocytes display resistance to insult. The total amount of cell death in 

neonatal regions was significantly lower than that observed in adult regions 

(p=0.0112 for CC and p=0.0088 for DG, figure 3.18D). The neonate CC 

astrocyte cell death was 10.86 ± 3.10% and neonate DG cell death was 67.38 ± 

12.21%. This suggests that neonatal astrocytes are much more resistant to 

ischaemic injury than adult astrocytes from the same region. The total cell death 

seen in neonate DG is significantly higher than that in the neonate CC 

(p=<0.0001, figure 3.18D), following the same pattern of sensitivity as the adult 

astrocytes in these regions.  
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Figure 3.18: Neonatal astrocytes are more resistant to OGD than adult 

astrocytes: A: Confocal images of corpus callosum and dentate gyrus astrocytes 

taken at 0, 50 and 100 minutes. Scale bar = 20µm. B + C: neonate (green bars) 

and adult (black bars) astrocyte cell death over time in corpus callosum and 

dentate gyrus respectively. D: Comparison of total astrocyte cell death in 

neonate and adult brain regions after 60 minutes OGD and 30 minutes 

reperfusion. Error bars = SEM.  
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3.6 RESULTS: OLIGODENDROCYTE SENSITIVITY TO ISCHAEMIA 

Astrocytes are not the only type of glial cell to interact with neurons and 

have a role in neuronal support (as previously discussed). Oligodendrocytes are 

also important for the correct function of neurons. The process of myelination 

puts oligodendrocytes in close proximity to neurons, allowing them to receive 

and respond to neuronal signals and provide metabolic support.  

Due to the specific role that oligodendrocytes have, it was important to 

establish whether these cells were sensitive to acute ischaemic injury. Any 

injury to oligodendrocytes would be damaging to neurons and may impact 

neuronal survival during and after insult. 

3.6.1 Oligodendrocytes are tolerant of OGD 

To investigate oligodendrocyte sensitivity to ischaemia, oligodendrocytes 

in ON, CC and DG were observed. The same experimental protocol was 

followed as for investigation into astrocyte sensitivity. However, for 

oligodendrocyte experiments PLP-GFP transgenic mice were used. In these 

mice, oligodendrocytes express GFP under the promoter for proteolipid protein 

(Mallon et al., 2002), which is specific to oligodendrocytes. There are numerous 

oligodendrocytes found in ON, these are interfascicular oligodendrocytes. In the 

confocal images the nerve is running across the field of view (figure 3.19A). In 

aCSF conditions, there was no cell death (figure 3.19B). Interestingly there was 

no OGD induced oligodendrocyte cell death in this region (figure 3.19C).  

A similar pattern was seen in CC where it was found that there was very 

low OGD induced oligodendrocyte cell death (figure 3.20). The confocal images 

show the high density of oligodendrocytes in CC (figure 3.20A), due to white 

matter tracts containing myelinated axons. In the OGD 100 minutes image, it 
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appears as though there has been cell death. However, this is due to a change 

in the focal plane as the tissue preparation swells, distorting and moving the 

view of the cells. Only cells that were clearly visible throughout the experiment 

and not altered by the swelling of tissue were counted.  

In the DG there are fewer oligodendrocytes present than in the WM 

(figure 3.21A) these are perineuronal oligodendrocytes. Again, in the OGD 100 

minutes image it looks as though there has been death of oligodendrocytes, 

however this is due to the swelling of the surrounding tissue which alters the 

focus of the cells in view. In cases where cells could not be followed for the 

entirety of the experiment, they were disregarded and were not counted. The 

cell death profiles are given for control (aCSF, figure 3.21B) and OGD 

conditions (figure 3.21C). Even with OGD treatment GM oligodendrocytes still 

showed tolerance to insult as there was low cell death. All of the regions 

examined showed that oligodendrocytes are very tolerant to ischaemic insult. 

The low cell death achieved with ischaemic insult was not significantly different 

from control conditions (figure 3.22). When oligodendrocyte cell death was 

compared between regions, no significant differences were found. Taken 

together these findings suggest that oligodendrocytes in both GM and WM are 

very tolerant of acute ischaemic injury. This finding is in contrast with reports 

from the literature, where it is accepted that oligodendrocytes are extremely 

vulnerable to OGD. 
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Figure 3.19: Oligodendrocyte sensitivity to OGD in optic nerve (ON). A: 

Confocal images of ON taken at time 0, 50 and 100 minutes. Scale bars = 20µm 

B: oligodendrocyte cell death over time control and C: OGD.  

 

  



106 
 

 

Figure 3.20: Oligodendrocyte sensitivity to OGD in corpus callosum (CC) A: 

Confocal images of CC taken at time 0, 50 and 100 minutes. Scale bars = 20µm 

B: oligodendrocyte cell death over time control and C: OGD. 
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Figure 3.21: Oligodendrocyte sensitivity to OGD in dentate gyrus (DG) A: 

Confocal images of DG taken at time 0, 50 and 100 minutes. Scale bars = 20µm 

B: oligodendrocyte cell death over time control and C: OGD. 
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Figure 3.20: Oligodendrocytes are resistant to OGD. Graph of total 

oligodendrocyte cell death at 100 minutes. N numbers = number of cells/number 

of slices. Error bars = SEM. 
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3.7 COMPARISON OF GLIAL SENSITIVITY TO OGD  

To see the differences in glial sensitivity to OGD the data from astrocytes 

and oligodendrocytes was compared for CC (figure 3.23 A and B), DG (figure 

3.23 C and D) and ON regions (figure 3.23 E and F). For all regions examined, 

the cell death over time was very different between the two cell types, with 

astrocyte death generally increasing over time, whereas oligodendrocyte death 

remained low (figures 3.23A, C and E). When oligodendrocyte cell death did 

occur, it happened later during the OGD period than astrocytes cell death. In CC 

the OGD induced cell death that did occur was during reperfusion. There was a 

vast difference in the total amounts of cell death observed in each region 

between the two cell types (figures 3.23B, D and F). In CC and DG (figure 3.23B 

and D), there was the most dramatic difference in OGD induced cell death, with 

greater astrocyte cell death in both regions (p=<0.0001). In ON (figure 3.23F), 

astrocyte cell death in OGD conditions was higher when compared to 

oligodendrocyte death, however the significance was lower (p=0.0231). These 

results show that astrocytes are more sensitive to ischaemic injury than 

oligodendrocytes, even though it is accepted that oligodendrocytes are the 

population, which are more sensitive to ischaemic insult.  
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Figure 3.23: Astrocytes are more sensitive to OGD than oligodendrocytes. A, C 

+ E: Astrocyte (black bars) and oligodendrocyte (green bars) cell death over 

time. B, D + F: total cell death at time 100 minutes for CC (A+B), DG (C+D) and 

ON (E+F). Error bars = SEM. 
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3.8 DISCUSSION: GLIAL SENSITIVITY TO OGD 

Astrocytes and oligodendrocytes are both essential for the correct working 

of the CNS. Astrocytes are support cells to neurons and are responsible for the 

homeostatic regulation of the ECS as well as many other roles. 

Oligodendrocytes enable fast conduction of action potentials through the 

myelination of axons and have been implicated in axonal metabolic support. 

Due to the important roles these cells have, if either are damaged then this will 

have a detrimental effect on neuronal and CNS function. During ischaemic 

insult, all cell types within the ischaemic core and surrounding penumbra are 

affected. However, it is unknown how much the anatomical location of glial cells 

may determine their sensitivity to ischaemic insult. This work has established 

that regional sensitivity of astrocytes to OGD exists and it has been discovered 

that oligodendrocytes are resistant to acute ischaemic insult in the mature brain.  

3.8.1 Astrocytes show regional sensitivity to OGD 

First, the expression of GFP in astrocytes under the GFAP promoter was 

successfully confirmed through co-localisation with the astrocyte marker 

ALDH1L1 (figure 3.2). Not all astrocytes that were expressing GFP were 

positive for ALDH1L1, as ALDH1L1 does not detect all astrocyte populations 

and only identifies a certain subpopulation. The confocal images illustrate that 

the cells expressing GFP have definite astrocyte morphology, which also 

confirms that GFP was expressed in the correct cell type (figure 3.2). 

This work has found that astrocyte sensitivity to OGD varies depending 

upon the physical location of the astrocyte population. Generally, astrocytes 

found in WM tracts were more resistant to ischaemic insult than cells found in 

GM matter regions (figure 3.16). The GM astrocyte populations were found to 

be very sensitive to OGD. The GM sensitivity to OGD found here is in 
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agreement with the literature where sensitive GM regions have been identified 

as cortex, hippocampus and striatum (Xu, Sapolsky & Giffard, 2001) Within GM 

regions, cell death began at slightly different time points and occurred at 

different rates (figure 3.16 and 3.17). However, when the total amount of OGD 

induced cell death was compared between GM regions, the variance was 

minimal. Investigation into cell death in different cortical layers found that there 

was not relationship between distance from the pial surface and time of 

astrocyte cell death event. However, it was noticed that layers that contained 

high neuronal density also showed astrocyte sensitivity to ischaemia. This 

suggests that astrocyte and neuronal survival are interlinked, which was 

previously posed by Zhao and Flavin (2000). 

In the WM of the CC and ON, astrocytes behaved in a very similar 

manner and both displayed tolerance to acute ischaemic insult. Pantoni et al. 

(1996) found that WM astrocytes are physically affected after just 30 minutes of 

OGD, however there has been little further investigation into WM astrocyte 

sensitivity. Unlike the GM regions, the WM astrocyte population did show 

variance in the amount of OGD induced cell death achieved at the end of the 

experimental protocol. The EC was much more sensitive to OGD than the other 

WM regions investigated (figures 3.8 and 3.16). During ischaemia, the EC 

behaved more like a GM region such as CA1 or DG. This may be due the 

physical location of the EC, which is a relatively thin WM tract surrounded by 

large GM areas. It is known that this area is particularly susceptible to 

spontaneous intracerebral haemorrhage (Chung et al., 2000), and so it may also 

be vulnerable to ischaemic stroke. 

We have found that there are also differences in the sensitivities of 

neonatal (P10) astrocytes; those in CC (WM) are more resistant to ischaemic 
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insult than those in DG (GM) (figure 3.18). This follows the same pattern as for 

the adult astrocytes, but is contrary to the findings of Shannon et al. (2007) who 

found WM astrocyte more sensitive than GM. This may be as different WM 

tracts were used, Shannon et al. (2007) studied ON astrocytes, whereas for the 

current work CC was used. It is possible that astrocytes in different WM tracts 

behave differently in neonates and so this requires further investigation. When 

the total OGD induced astrocyte cell death from neonates and adults was 

compared, it was found that the neonatal astrocytes were much more tolerant 

than adult cells to ischaemia. During birth and development, the young 

developing brain may undergo periods of ischaemia or suffer ischaemia like 

conditions. Therefore it is important that developing and immature astrocytes 

survive these stressful periods so as the cells can mature and take up their role 

in the CNS. When these periods of ischaemia are more severe and longer 

lasting, they often result in conditions such as cerebral palsy.  

3.8.2 Oligodendrocytes show resistance to OGD 

Unlike astrocytes, when oligodendrocytes were exposed to OGD it was 

found that they were very resistant to acute ischaemic insult. All regions showed 

less than 5% cell death (figure 3.22) which was significantly lower than the total 

astrocyte cell death seen in the same regions (figure 3.23). In the literature, the 

majority of studies demonstrate that oligodendrocytes are very sensitive to 

ischaemic insult. It has been found that neonatal oligodendrocyte cultures are 

particularly sensitive to OGD, with many cells dying after a short exposure. It 

was reported that the majority of immature oligodendrocytes died within 30 

minutes of OGD and after 60 minutes of OGD most of the cells present had died 

(Fern & Moller, 2000). This study also showed that mature cultured 

oligodendrocytes were very tolerant to OGD, 55 minutes of OGD resulted in 
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43.4 ± 5.3% cell death. The tolerance to insult has also been observed in whole 

mount ON preparations. P10 mouse ON oligodendrocytes were found to survive 

after 60 minutes of OGD, where only 30% cell death was seen at this time point 

(Salter & Fern, 2005). Oligodendrocyte resistance to OGD has been seen in CC 

slices where a minimum of one hour reperfusion was required for significant cell 

death to occur (Tekkok & Goldberg, 2001). 

The resistance of oligodendrocytes to ischaemia has been demonstrated 

here. The majority of investigations which showed oligodendrocyte sensitivity, 

relatively short periods of ischaemia (10-30 minutes) were combined with longer 

periods of reperfusion (minimum of one hour). For this work interest lies in the 

acute injury of ischaemia and the initial effects of the insult. This evidence 

suggests that mature oligodendrocyte somas show resistance to ischaemic 

insult but are more sensitive to reperfusion. McIver et al. (2010) found that 24 

hours after transient MCAO (60 minutes) there was not a significant loss of 

oligodendrocytes when compared to sham controls. Significant oligodendrocyte 

cell death was only observed 48 hours after insult (McIver et al., 2010). This 

evidence confirms that mature oligodendrocyte cells are extremely tolerant to 

acute ischaemic insult and are more resistant than astrocytes. However, 

oligodendrocyte cell death was measured in the same manner as astrocyte cell 

death and so may not be representative of any oligodendrocyte injury that has 

occurred as a result of acute ischaemia. The in situ studies that have reported 

oligodendrocyte cell death have done so after long periods of reperfusion and 

not at the time of acute injury. 

Oligodendrocyte cell somas express resistance to injury, however their 

processes and myelin are vulnerable to insult. Many studies have reported early 

defects and changes in oligodendrocyte processes after short periods of OGD, 
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such as Pantoni et al. 1996, who observed vacuolation and swollen processes 

after 30 minutes of MCAO. After six hours of MCAO, the myelin sheath had 

detached from the axolemma. Oligodendrocyte process loss has also been 

seen prior to cell soma loss (McIver et al., 2010), here disintegration of proximal 

and distal processes was determined after 24 hours of reperfusion after 60 

minutes ischaemia. The pathology observed in animal models has also been 

found in patients. In post-mortem samples, oligodendrocytes within the 

ischaemic infarct and in the penumbra displayed severe damage of distal 

processes and destruction of myelin (Aboul-Enein et al., 2003).  

The data in this chapter has demonstrated that astrocyte tolerance to 

modelled ischaemia varied significantly depending upon their physical location 

within the CNS. It has been determined that oligodendrocytes in brain slices and 

ON preparations are tolerant to acute ischaemic insult. Glial cells play such a 

pivotal role in the CNS that any damage or insult that occurs to them will not 

only be detrimental these cells but also to neurons and other cells in the CNS. 

By looking at how astrocytes and oligodendrocytes cope and respond to 

ischaemia will allow us to investigate the mechanisms of glial cell death. This 

will improve our understanding of the effect of ischaemic insults on the CNS and 

may provide possible therapeutic targets.  

The CC was the least sensitive region to OGD (31.95 ± 9.33% cell 

death), whilst the most sensitive was DG (97.30 ± 1.24% cell death), as such 

these two regions were used to investigate the mechanisms behind the 

observed difference. There are many possible reasons as to why different 

astrocyte populations have varying sensitivities to OGD. The general astrocyte 

population is known to be heterogeneous; therefore, the differences that 

specialise them to a particular location may also determine their sensitivity to 
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ischaemia. From the literature and the previous work carried out by the group, it 

became apparent that there were three main areas, which may affect sensitivity 

to OGD. These were the role of glycogen stores, the role of glutamate receptors 

and sodium mediated cell swelling. Each of these have been investigated and 

discussed in the subsequent chapters. 
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4 THE ROLE OF GLYCOGEN IN ISCHAEMIC INJURY OF 

GLIA 

4.1 INTRODUCTION 

Many processes carried out by astrocytes require energy, demand for 

which cannot always be satisfied by glucose from the circulation alone. The 

shortfall can be accounted for via the breakdown of astrocyte glycogen stores. 

Astrocytes are the major glycogen store in the brain and glycogenolysis can 

occur quickly to yield ATP during periods of high demand (Sickmann et al., 

2009), making it a useful energy reserve. A major product of glycogenolysis is 

lactate, which can be used by axons as an energy source, to survive and 

function during aglycaemia (Brown et al., 2005; Fern, 2015; Ransom & Fern, 

1997; Tekkok et al., 2005; Wender et al., 2000). Tekkok et al., (2005) found that 

lactate was transported via monocarboxylate transporters (MCTs) from 

astrocytes to axons in mouse optic nerve (ON). It has been shown in vitro that 

lactate from glia is metabolized by axons (Funfschilling et al., 2012), allowing 

axons to continue to function for a few minutes, when there is a lack of glucose.  

Early studies into glial supply of metabolites were carried out in the 

honeybee drone retina. This preparation contains only two cell populations, 

photoreceptors (neuronal cells) and outer pigment cells (glial cells) (Coles & 

Tsacopoulos, 1981), making it ideal for the investigation of metabolite supply. 

The drone retina is highly compartmentalised, with glycolysis occurring in the 

glial cells only, whilst photoreceptors are the major site of oxygen consumption 

(Tsacopoulos et al., 1988). The photoreceptors rely upon the glial cells, much 

like neurons rely upon astrocytes, for ionic homeostasis and buffering. In this 

model the glial cells are also responsible for metabolite supply to the 

photoreceptors and contain high levels of glycogen (Coles & Tsacopoulos, 
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1981). In these glial cells glucose and glycogen are converted into alanine 

which is released for use by the photoreceptors, where it is transaminated into 

pyruvate for use in the TCA cycle (Tsacopoulos et al., 1994). 

During ischaemia, it is thought that astrocytes in the penumbra may 

breakdown glycogen stores to produce lactate, which is released into the ECS 

for uptake by neurons. However, it is unknown if this energy store is used by 

astrocytes to maintain their own function during ischemia. A small glycogen 

store has been found in neurons, the cells examined were cultured from 

neocortex and hippocampus (Saez et al., 2014). The glycogen levels 

determined were very low, just a fraction of the amount that is found in 

astrocytes. Saez et al. (2014) suggested that this store could be used during 

ischaemic insults to fuel neurons. 

4.1.1 Astrocytes, glycogen and metabolism 

The role of astrocytic glycogen has been found to be essential to the 

CNS. The lactate generated from glycogen breakdown can be used as a 

metabolic substrate, but is also utilized as a signalling molecule (Lauritzen et al., 

2014). During aglycaemic conditions, astrocytic glycogen is required for the 

survival of neurons in culture (Swanson & Choi, 1993). Involvement of glycogen 

in higher brain functions has been discovered and extends to processes such as 

memory consolidation, learning and the sleep/wake cycle (Gibbs, Anderson & 

Hertz, 2006; Naylor et al., 2012; Suzuki et al., 2011).  

Initial work on lactate signalling was carried out in a neonatal chick 

learning model, where it was found that glycogenolysis was required for memory 

consolidation (Gibbs, Anderson & Hertz, 2006). The inhibition of glycogenolysis 

inhibited long term memory and was required for short term memory and recall 
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(Gibbs, Anderson & Hertz, 2006). The discovery of the expression of the lactate 

receptor GPR81 supported the role of lactate as a signalling molecule 

(Lauritzen et al., 2014). This G-protein coupled receptor has been found to be 

expressed in cortex and hippocampus, particularly on synaptic membranes 

(Lauritzen et al., 2014), which are regions of high neuronal activity. This 

receptor can exert an effect on numerous neurons by acting as a volume 

transmitter. Lactate signalling can respond to neuronal activity, via the inhibition 

of adenylyl cyclase (Lauritzen et al., 2014). Lactate signalling has been shown 

to alter cerebral blood flow (Gordon et al., 2008) and may be involved in other 

homeostatic processes such as osmoregulation, ventilation, glucose and 

sodium sensing (Magistretti & Allaman, 2018). Glycogen is utilized in the uptake 

and processing of glutamate (Sickmann et al., 2009), which is further discussed 

below. 

Glycogen is used for the active uptake of ions which is important for the 

maintenance of ionic gradients and for homeostasis. In particular, 

glycogenolysis is used to power the sodium/potassium ATPase (NKA) (Xu et al., 

2013). This transporter extrudes sodium whilst importing excess extracellular 

potassium, which can then be distributed throughout the astrocyte network to 

lower the extracellular concentration (Xu et al., 2013). The NKA is activated by 

increases in extracellular potassium concentration, even small increases will 

stimulate the transporter and glycogenolysis (Hof, Pascale & Magistretti, 1988). 

These extracellular increases were seen by Xu et al (2013), who found they 

were required for glycogenolysis to occur. The levels of potassium in the 

extracellular space increase with neuronal activity (Xu et al., 2013).  

The utilization of glycogen under normal physiological conditions is 

associated with an increase in extracellular potassium concentration which 
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causes an increase in free intracellular calcium (Sotelo-Hitschfeld et al., 2015). 

This triggers phosphorylase kinase, which phosphorylates and thereby activates 

the enzyme glycogen phosphorylase. Glycogen granules are broken down via 

glycogen phosphorylase and glycogen debranching enzyme, resulting in 

pyruvate which can be converted to lactate. Brain slice studies have found that 

depolarization and calcium influx can stimulate glycogen phosphorylase and 

trigger glycogenolysis (Ververken et al., 1982). During times of high energy 

demand glucose can be trafficked between astrocytes through gap junctions, 

which has been observed in hippocampal astrocytes (Rouach et al., 2008). 

These prior findings show that astrocytic glycogen is essential to the CNS and 

has a definite role during physiological conditions and times of low glucose. 

4.1.1.1 Lactate as a neuronal metabolic substrate 

It was discovered that astrocytes release lactate (Walz & Mukerji, 1988), 

however the reasons behind this release are unknown. It has been suggested 

that the lactate released is used as a metabolic substrate by neurons. This 

phenomenon has been summarised by the astrocyte-neuron lactate shuttle 

hypothesis (ANLS) as described by the Magistretti group (1994). There is 

evidence that neurons will use alternative metabolites in the absence of glucose 

and it has also been shown that neurons will use lactate to sustain excitability 

(Wyss et al., 2011). The lactate that supports neuronal function was found to be 

derived from glycogen (Brown et al., 2005). During aglycaemia, neuronal 

survival and function was enhanced by increasing astrocyte glycogen levels. 

The ANLS hypothesis proposes that when required, astrocytes break 

down glycogen and convert it to lactate which is then transported to neurons 

(Pellerin & Magistretti, 1994). This is likely to occur during times of increased 

neuronal activity when glucose demand is high or under conditions of reduced 
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glucose delivery. There is some controversy about the ANLS hypothesis, even 

though there is evidence in the literature to support the movement of lactate 

from astrocytes to neurons the theory has not been directly proven. Astrocytes 

express monocarboxylate transporters (MCTS), specifically MCT1 and 4 and 

neurons express MCT2 (Bergersen, Rafiki & Ottersen, 2002; Pierre et al., 

2000). The location and affinities of these MCTs supports the release of lactate 

from astrocytes and the uptake by neurons. MCT2 expression has also been 

found on axons (Funfschilling et al., 2012), as axons are covered in a myelin 

sheath then it would imply that metabolites may also be released by 

oligodendrocytes (Krasnow & Attwell, 2016). These metabolites are the result of 

oligodendrocyte glycolysis (Funfschilling et al., 2012; Lee et al., 2012b). It has 

been suggested that this occurs through a NMDA receptor dependent 

mechanism, which causes an increase in GLUT1 trafficking (Saab et al., 2016), 

thereby increasing glucose transport into oligodendrocytes. This process of 

metabolite movement through oligodendrocytes shares similarities with the 

ANLS hypothesis (Krasnow & Attwell, 2016). 

Mächler et al. (2015) have established the existence of a lactate gradient 

from astrocytes to neurons. This was determined through the investigation of 

MCT expression and the fact that neurons have lower levels of lactate but their 

MCTs have a higher affinity for the metabolite (Machler et al., 2016), an analysis 

that supports the ANLS hypothesis. Astrocyte derived lactate has been shown 

to fuel ON axons, there is evidence to suggest that hippocampal neurons can 

metabolize lactate (Matsui et al., 2017) and WM axons may also utilize this 

metabolite. Investigation into the role of lactate in mouse ON has also been 

carried out. Tekkok et al. (2005) first showed that during 60 minutes of 

aglycaemia lactate was utilized by ON and sustained compound action potential 
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(CAP) for 30 minutes. They found that CAP function was partially rescued by 

the administration of lactate. They also determined that lactate has a role in 

CAP function during physiological conditions, the absence of lactate increased 

the speed of nerve deterioration. This evidence suggests that exogenous lactate 

can support axonal function and is an additional energy substrate to glucose 

(Tekkok et al., 2005). 

Recently it was discovered that astrocytes contain a cytosolic lactate pool 

as well as glycogen stores (Sotelo-Hitschfeld et al., 2015). This lactate pool can 

be quickly released when required, allowing time for glycogenolysis to occur to 

produce more lactate. This reservoir can be released against the lactate 

gradient and once released can be used by other cells. An increase in the 

extracellular potassium concentration causes the release of the lactate pool 

(Sotelo-Hitschfeld et al., 2015). MCTs are not responsible for this lactate 

release, but it occurs through a novel and as yet unidentified anion channel 

which is permeable to lactate and chloride. The study also suggested that this 

astrocyte lactate pool may be utilized as a signalling molecule as well as a 

metabolite. The lactate receptor GPR81 is a G-protein coupled receptor which 

has been found to be expressed in synaptic regions, perivascular positions and 

on glia (Lauritzen et al., 2014), this is consistent with the use of lactate as a 

signalling molecule. Lactate as a signalling molecule has been shown to reduce 

spontaneous activity in cultured cortical neurons (Bozzo, Puyal & Chatton, 

2013), whilst in other regions it has caused neuronal excitement.  

4.1.2 Glycogen and glutamate  

Glycogen is frequently mobilised for the de novo synthesis of glutamine 

and is used throughout the glutamate-glutamine cycle. It has been shown that 
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glycogen is necessary for glutamatergic neurotransmission to occur (Sickmann 

et al., 2009).  

Glutamate cannot enter the brain from the circulation and so its formation 

has to occur in situ. Astrocytes are the only cells which are able to synthesize 

de novo glutamate. Pyruvate, resulting from glycogenolysis is a precursor for 

glutamate formation and is converted to α-ketoglutarate prior to glutamate and 

then glutamine (Gibbs et al., 2007; Hertz & Rothman, 2017). Glutamine is 

produced by astrocytes for export to neurons, where it is converted into 

glutamate four use in neurotransmission. During times of high neuronal activity 

such as learning, glutamate levels are increased due to stimulation of glutamine 

synthesis (Gibbs et al., 2007; Hertz et al., 2003). Glutamate released by 

synapses is taken up by astrocytes. A proportion of this glutamate is lost to 

oxidative degradation (McKenna, 2013) as glutamate is converted into the TCA 

cycle intermediate α-ketoglutarate. This loss occurs for approximately 20% of 

glutamate that enters astrocytes (Hertz et al., 2015). Glutamate is also recycled 

by astrocytes, the uptake of which requires glycogenolysis (Sickmann et al., 

2009). Once converted from glutamate to glutamine it is released from 

astrocytes for use by neurons.  

The GM contains regions of high neuronal activity, where glycogen turn-

over is high during neuronal stimulation (Dienel & Cruz, 2003; Swanson, 1992). 

Glycogen is the preferred substrate for the formation of glutamine (Gibbs et al., 

2007) and so within GM astrocytes there is a constant turnover as glycogen 

stores are used to fuel neurotransmission and are replenished. An essential role 

for glycogen has been discovered during learning and the breakdown of 

glycogen is responsible for the increase in glutamate seen during learning 

activities (Gibbs et al., 2007).  
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Many signalling molecules and neurotransmitters can stimulate 

glycogenolysis such as ATP, serotonin, noradrenaline, and adenosine (Hertz et 

al., 2015). These all act to increase the intracellular calcium concentration which 

can activate glycogen phosphorylase and thus trigger glycogenolysis.  

4.1.3 Oligodendrocytes and metabolism 

Recently, a new role for oligodendrocytes in axonal metabolic support 

has been found. Close proximity to axons puts oligodendrocytes in the ideal 

position to assist with axon fuelling. It may not be feasible that neuronal cell 

somas can energetically supply axons, due to the distance that axons extend 

from the somata. The nature of the myelin sheath means it acts as a physical 

barrier around the axon preventing the uptake of metabolites from the 

extracellular space. Thus, axons must obtain metabolites from alternative 

sources. This new role for oligodendrocytes has been discovered along with 

their expression of MCT1 (Rinholm et al., 2011) which can be used to export 

lactate from cells, corresponding with the neuronal expression of MCT2 for 

lactate import (Pierre et al., 2000). Oligodendrocytes have been found to supply 

lactate to neurons via glycolysis (Funfschilling et al., 2012). It has previously 

been mentioned that axons can be sustained by lactate when glucose is not 

available (Tekkok et al., 2005). WM has particularly high glycolytic activity 

(Morland et al., 2007), which will produce excess lactate in glial cells, which may 

be released for use by other cells.  

The expression of MCT1 has been found in oligodendrocytes, specifically 

on the myelin processes that wrap axons (Rinholm et al., 2011). MCT1 is 

essential for axon maintenance, knock out of the transporter causes axonal 

injury and neuronal loss (Lee et al., 2012b). Oligodendrocytes form coupled 

networks with astrocytes, providing another route through which metabolites 
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can be distributed ultimately for use by axons. These two types of glial cells are 

coupled through gap junctions created from connexins (Orthmann-Murphy et al., 

2007). Oligodendrocytes express the connexins Cx47 and Cx32 which couple 

with the astrocyte connexins Cx43 and Cx30. It is thought that metabolites can 

pass through these mixed glia networks as they can in the astrocyte syncytium. 

A recent study carried out on axonal metabolite preferences, found that 

CC axons preferentially use glucose delivered by oligodendrocytes (Meyer et 

al., 2018). However, during aglycaemia lactate was found to partially recover 

axon compound action potentials (CAP). Full CAP recovery was only achieved 

with glucose administration. Meyer et al (2018) also determined that the 

metabolites used by axons are transferred from oligodendrocytes to neurons. 

CAP rescue was only seen when metabolites were directly loaded into 

oligodendrocytes but not astrocytes. This evidence suggests that only ON axons 

may exclusively use lactate as an alternative fuel. For this functional rescue of 

CC axons to occur, both GLUT1 and MCTs were required (Meyer et al., 2018), 

which indicates that lactate has a role in axonal function but is not the sole 

substrate used in physiological conditions. Thus indicating that normally a 

mixture of glucose and lactate are used for ATP generation. However, when 

glucose is not available, lactate is able to partly sustain axon function for a short 

period of time. Many previous studies have found that in both WM and GM, 

lactate does have a role in supporting axonal function in the absence of glucose 

in the cortex, corpus callosum, optic nerve and hippocampus (Brown et al., 

2005; Lauritzen et al., 2014). 

Oligodendrocytes provide a link between glucose uptake, axonal activity 

and metabolic demand (Saab et al., 2016). Neuronal activity is detected through 

the expression of glutamate N-methyl-D-aspartate receptors (NMDARs) on 
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oligodendrocyte processes (Saab et al., 2016), facing the periaxonal space 

(Micu et al., 2016). Activation of NMDARs recruits GLUT1 (glucose transporter 

1) to the membrane to increase glucose transport into oligodendrocytes (Saab 

et al., 2016). This has been described as a “power switch” through which the 

flow of metabolic substrates to neurons via oligodendrocytes can be controlled 

(Krasnow & Attwell, 2016). 

4.1.4 Astrocyte metabolism during ischaemia 

The core of the lesion caused by ischaemia suffers complete loss of 

blood supply, in the penumbra the blood supply is only reduced. In this region 

there is a degree of astrocyte survival as glucose and oxygen delivery is 

decreased, cells resort to other ways to produce energy. Penumbral astrocytes 

may be served by collateral vessels which are not affected by the occlusion. 

Here astrocytes can continue to function to maintain the working of the CNS and 

limit the damage caused by insult. The higher the tolerance of astrocytes to 

ischemia the more viable astrocytes to assist with regaining metabolic 

equilibrium and to ensure neuron survival after insult (Goss et al., 1998; Li et al., 

2008).  

During ischaemic insult all ion and metabolite concentration gradients are 

disrupted which in turn affects normal cellular processes. The disruption of the 

lactate gradient (Machler et al., 2016) may contribute to neuronal cell death as 

neurons are unable to take up lactate, either due to injury or changes in the 

concentration gradients. The homeostatic disruption that occurs during 

ischaemia means that there is increased extracellular potassium, which causes 

release of lactate under physiological conditions (Sotelo-Hitschfeld et al., 2015). 

The lactate that is released may be taken up by neurons if possible or may 
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function as a signalling molecule which can feedback to astrocytes to release 

more lactate. 

It is possible that the lactate and glycogen produced by astrocytes may 

be used by astrocytes in the penumbra to increase their chances of survival 

during ischaemic insult. It has been found that during ischaemia astrocytic gap 

junctions are able to operate (Cotrina et al., 1998), thus allowing the transfer of 

metabolites throughout the astrocyte network (Rouach et al., 2008).  

The therapeutic potential of lactate has been investigated and has been 

found to attenuate neuronal death when administered post insult (Berthet et al., 

2009). In cultured cells, increasing astrocyte glycogen content provided 

protection from hypoxic cell death (Hossain, Roulston & Stapleton, 2014). This 

would suggest that, at least in low oxygen conditions, astrocytes are able to 

utilize glycogen to promote their own and neuronal survival. 

The evidence from the literature suggests that the location of neurons 

determines their metabolic preferences, which can be supplied by both 

astrocytes and oligodendrocytes (Meyer et al., 2018; Rouach et al., 2008) It is 

possible that the ANLS relates to the astrocyte support of neuronal cell bodies 

and to synapses whilst oligodendrocytes are responsible for the maintenance of 

axons. 

In this chapter the role of astrocytic glycogen during acute ischaemia was 

investigated. Previous work by the group has found that the presence of 

glycogen stores conferred ischaemic tolerance in pre-myelinated white matter 

(Fern, 2015). In the following work the role of glycogen in preventing ischaemic 

astrocyte cell death was investigated in adult brain slices, to see if the findings 

would correspond with those for neonatal animals. By preventing the use of 
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astrocyte glycogen stores during OGD it can be determined whether the 

presence of these stores enables astrocytes to survive for longer during an 

ischaemic insult. Our hypothesis was that the presence of glycogen is required 

for astrocyte survival during ischaemic conditions. Glycogenolysis was 

prevented in two ways, firstly with the addition of sodium iodoacetate and 

secondly with 2-deoxy-glucose treatment. 
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4.2 RESULTS: SODIUM IODOACETATE INHIBITION OF GLYCOGEN STORES 

During times of high energy demand astrocytes utilize their glycogen 

stores to ensure a supply of metabolic substrate (Sickmann et al., 2009). 

Astrocytes can be prevented from utilizing their glycogen stores through 

treatment with sodium iodoacetate (IA) (figure 4.1). IA blocks the active site of 

glyceraldehyde-3-phosphate dehydrogenase, by binding to cysteine residues 

and stopping the function of the enzyme. Ultimately this prevents the production 

of pyruvate from glycogen sources and so the store cannot be used to fuel the 

cell. Under physiological conditions, IA would interrupt the utilization of glucose 

supplied to the cell. However, in the absence of external glucose, IA will 

selectively prevent access to the glycogen store. 

 

Figure 4.1: Action of sodium iodoacetate (IA). Sodium iodoacetate prevents the 

production of pyruvate in the TCA cycle by blocking the enzyme glyceraldehyde-

3-phosphate dehydrogenase. Under OGD this prevents the utilisation of the 

glycogen store. 

 

4.2.1 IA affected OGD induced astrocyte cell death in CC and DG 

The addition of IA had an effect on OGD induced astrocyte cell death in 

CC (figure 4.1). In the OGD with IA images the majority of astrocytes have died 

and at 100 minutes no cell bodies can be seen in the images (figure 4.2A), 
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which contrasts to OGD only conditions, where the majority of cells survive. In 

the OGD images a GFP “cloud” is often apparent after cells have lysed, this is a 

result of GFP release from astrocytes when the cells die. Treatment with IA had 

a highly significant effect in CC, where the t  value  was significantly decreased 

from 62.00 ± 2.32 to 42.25 ± 3.17 mins with IA, (p=0.0007, figure 4.2B). This 

suggests that cell death occurs more quickly as the time to reach half of the 

maximal cell death is reduced. The addition of IA caused cell death to increase 

from 40.17 ± 6.45% in OGD only conditions to 98.61 ± 1.39% (p=0.001,figure 

4.2C).  

IA treatment also increased the rate of OGD induced astrocyte cell death 

in DG (figure 4.3), the confocal images illustrate similar amounts of cell death in 

both conditions (figure 4.3A).  The rate of cell death in DG was significantly 

decreased by the addition of IA. The t for DG was 54.64 ± 3.30 mins, this was 

reduced to 38.13 ± 4.89 mins with IA (p=0.018, figure 4.3B). The total amount of 

cell death in DG was only slightly increased from 97.61 ± 1.01% to 100 ± 0% 

(not significant), with the addition of IA (figure 4.3C). Comparison of the DG cell 

death profile with that for CC, found that IA treatment made both regions behave 

in the same manner as there was a similar increase in the rate of cell death. 

These findings suggest that glycogen has an important role to play in ischaemic 

insult tolerance in astrocytes. 

Astrocyte cell death at different time points throughout the experiment 

were compared for each region (figure 4.4). From this it can be seen that for CC 

astrocytes the amount of cell death is consistently higher at each time point with 

IA treatment (figure 4.4A). After 30 minutes, OGD induced cell death was 

increased from 0 ± 0% to 38.21 ± 11.51% (p=0.0025). At the end of OGD, 

astrocyte death with IA treatment was increased from 23.11 ± 7.12% to 
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98.61±1.39% (p=<0.0001). This significant increase was present at the end of 

the reperfusion period (p=<0.0001). For DG astrocytes cell death with IA 

treatment was only significantly higher after 30 minutes OGD, where astrocyte 

death was increased from 14.04 ± 7.77% to 55.85 ± 16.09% (p=0.0009). Taken 

together the findings show an increase in the rate of cell death in both fibrous 

and protoplasmic astrocytes. 
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Figure 4.2: Sodium Iodoacetate (IA) treatment (2mM) increased OGD induced 

astrocyte cell death in corpus callosum (CC). A: Confocal images during OGD 

(upper panel) and OGD with IA treatment (lower panel). Images taken at 0 and 

100 minutes. Scale bar =20 µm. B: Astrocyte cell death over time. C: total cell 

death at time 100 minutes, OGD only (black bar) and OGD with IA (green bar). 

Error bars = SEM. N numbers = number of cells/number of slices. IA added 

during OGD (10-70 mins). 
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Figure 4.3: Sodium Iodoacetate (IA) treatment (2mM) affected the rate of OGD 

induced astrocyte cell death in dentate gyrus (DG). A: Confocal images during 

OGD (upper panel) and OGD with IA treatment (lower panel. Images taken at 0 

and 100 minutes. Scale bar =20 µm. B: Astrocyte cell death over time. C: total 

cell death at time 100 minutes, OGD only (black bar) and OGD with IA (green 

bar). Error bars = SEM. N numbers = numbers of cells/number of slices. IA 

added during OGD (10-70 mins). 

  



136 
 

 

Figure 4.4: Effect of IA on OGD induced cell death at defined time points in CC 

and DG. Astrocyte cell death after 30 and 60 minutes OGD and at the end of 

reperfusion with OGD only (black bars) and OGD with IA treatment (green bars). 

A: corpus callosum. B: dentate gyrus. Error bars = SEM. 
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4.3 RESULTS: 2-DEOXY-GLUCOSE TREATMENT OF ASTROCYTES AND 

OLIGODENDROCYTES 

2-deoxy-glucose (2DOG) is a glucose analogue and once inside the cell is 

phosphorylated by glucose hexokinase which normally phosphorylates glucose. 

This yields 2-deoxy-glucose-6-phosphate, the phosphorylation prevents the 

molecule from leaving the cell (SOLS & CRANE, 1954). The presence of 

phosphorylated 2DOG is mistaken by cells for a supply of glucose and so the 

glycogen stores are preserved and not used (figure 4.5). 

  

Figure 4.5: Action of 2-deoxy-glucose (2DOG). 2-deoxy-glucose is a glucose 

mimic and is phosphorylated by the same hexokinase that phosphorylates 

glucose, preserving glycogen stores.  

 

4.3.1 2DOG affects OGD induced astrocyte cell death in CC and DG 

but not in the ON 

The presence of 2DOG increased astrocyte death in CC (figure 4.6). 

Fewer astrocytes were visible at the end of the reperfusion period in the 

presence of 2DOG than in OGD alone (figure 4.6A). Treatment with 2DOG also 

altered the cell death profile (figure 4.6B). The t value was reduced from 62.00 ± 

2.32 mins to 47.33 ± 5.74 mins (p=0.029), showing the addition of 2DOG 
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increased the rate of cell death. Total astrocyte cell death in CC was 

significantly higher at the end of the perfusion period with 2DOG treatment, 

77.71 ± 8 .73%, than OGD alone, 40.17 ± 6.45% (p=0.0035, figure 4.6C). 

In DG, the images obtained with 2DOG treatment (figure 4.7A lower 

panel) are similar to those for OGD (figure 4.7A upper panel). The addition of 

2DOG did not significantly alter the t value, which for DG was 54.64 ± 3.30 mins 

and with 2DOG was 45.42 ± 3.92 mins (figure 4.7B). The presence of 2DOG 

increased total cell death from 97.61 ± 1.01% to 99.12 ± 0.88% (not significant, 

figure 4.7C). 

ON OGD induced astrocyte cell death was examined in the presence of 

2DOG, as another WM tract, to compare to the results obtained for CC (figure 

4.8). ON astrocytes remain tolerant of the ischaemic insult with 2DOG treatment 

(figure 4.8A). The rate of cell death was similar for both conditions, the t values 

obtained were similar under both conditions (figure 4.8B). The t for ON was 

68.36 ± 6.82 mins and with 2DOG was 63.42 ± 6.03 mins (not significant). The 

total amount of astrocyte cell death was increased with 2DOG treatment, from 

39.42 ± 11.03% to 56.67 ± 9.49% (not significant, figure 4.8C). These findings 

indicate that astrocyte glycogen stores may have a different role in the ON than 

in other regions.  

By comparing the cell death at different time points, it can be seen at 

which phase astrocyte cell death is most affected. 2DOG treatment significantly 

increased OGD induced cell death at each time point in CC (figure 4.9A). After 

30 minutes OGD, 2DOG treatment increased cell death from 0% to 32.38 ± 

15.35% (p=0.019). At the end of OGD, cell death was significantly increased 

from 23.11 ± 7.12% to 64.38 ± 10.38% with 2DOG treatment (p=0.0091). This 

accounts for the majority of cell death in this region in the presence of 2DOG. 
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For DG the 2DOG treatment caused significantly increased cell death during 

early OGD (figure 4.9B). After 30 minutes OGD, 2DOG increased cell death 

from 11.01 ± 4.03% to 32.67 ± 11.40% (p=0.396). In ON, OGD induced 

astrocyte cell death was not significantly altered by 2DOG treatment (figure 

4.9C). These results suggest that the presence of 2DOG increases astrocyte 

sensitivity to OGD in both CC and DG. 
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Figure 4.6: 2-deoxy-glucose (2DOG) treatment (10µM) increased astrocyte cell 

death in corpus callosum (CC). A: Confocal images of during OGD (upper 

panel) and OGD with 2DOG treatment (lower panel). Images taken at 0 and 100 

minutes. Scale bar =20 µm. B: astrocyte cell death over time. C: total cell death 

at time 100 minutes, OGD only (black bar) and OGD with 2DOG (green bar). 

Error bars = SEM. N numbers = number of cells/number of slices. 2DOG added 

during OGD (10-70 mins) 
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Figure 4.7: 2-deoxy-glucose (2DOG) treatment (10µM) had no effect on 

astrocyte cell death in dentate gyrus (DG). A: Confocal images of during OGD 

(upper panel) and OGD with 2DOG treatment (lower panel). Images taken at 0 

and 100 minutes. Scale bar =20 µm. B: astrocyte cell death over time. C: total 

cell death at time 100 minutes, OGD only (black bar) and OGD with 2DOG 

(green bar). Error bars = SEM. N numbers = number of cells/number of slices. 

2DOG added during OGD (10 -70 mins) 
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Figure 4.8: 2-deoxy-glucose (2DOG) treatment (10µM) had little effect on OGD 

induced astrocyte cell death in optic nerve (ON). A: Confocal images of during 

OGD (upper panel) and OGD with 2DOG treatment (lower panel). Images taken 

at 0 and 100 minutes. Scale bar =20 µm. B: astrocyte cell death over time. C: 

total cell death at time 100 minutes, OGD only (black bar) and OGD with 2DOG 

(green bar). Error bars = SEM. N numbers = number of cells/number of slices. 

2DOG added during OGD (10-70 mins) 
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Figure 4.9: Effect of 2DOG on OGD induced astrocyte cell death at defined time 

points in CC, DG and ON. Astrocyte cell death after 30 and 60 minutes OGD 

and at the end of reperfusion, with OGD only (black bars) and OGD with 2DOG 

(green bars) treatment. A: corpus callosum. B: dentate gyrus. C: optic nerve. 

Error bars = SEM 
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4.3.2 2DOG treatment had no effect on OGD induced 

oligodendrocyte cell death 

Astrocytes are not the only glial cells which are affected by ischaemic 

insult; oligodendrocytes are also susceptible to injury. It was investigated 

whether preventing the breakdown of astrocyte glycogen stores impacted 

oligodendrocyte cell death during OGD.  

The presence of 2DOG did not alter oligodendrocyte cell death in CC 

(figure 4.10). Oligodendrocytes survived the length of the experiment under both 

conditions, OGD and OGD with 2DOG (figure 4.10A). The cell death profile with 

2DOG treatment is very similar to that for OGD only conditions (figure 4.10B). 

The addition of 2DOG did not increase OGD induced oligodendrocyte cell death 

(figure 4.10C). Total cell death with was decreased from 1.31 ± 0.71% to 0% 

with 2DOG treatment (not significant). 

In DG, the resilience of oligodendrocytes to acute ischaemia remained 

even with 2DOG treatment (figure 4.11). Most oligodendrocytes survive OGD 

and OGD with the addition of 2DOG (figure 4.11A). Again, in these images (as 

previously mentioned) some cells in the OGD panel appear that they have died, 

however they have gone out of the focal plane due to the swelling of the tissue. 

The addition of 2DOG has only slightly altered the cell death profile in this 

region (figure 4.11B). Total oligodendrocyte cell death was increased from 1.83 

± 1.83% to 3.70 ± 3.70% (not significant, figure 4.11C).  

2DOG treatment during OGD had no effect on OGD induced 

oligodendrocyte cell death in ON (figure 4.12). All oligodendrocytes monitored 

survived for the duration of the experiment, with the focal plane altering slightly 

(figure 4.12A). The cell death profile is unchanged with the administration of 
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2DOG (figure 4.12B). The presence of 2DOG did not cause significant 

oligodendrocyte cell death to occur (figure 4.12C). The total cell death achieved 

was 1.06 ± 0.67% in OGD conditions and 0% with 2DOG treatment. Taking 

these findings into consideration it can be seen that 2DOG treatment, 

preventing the utilization of glycogen stores, has no effect on OGD induced 

oligodendrocyte cell death. 
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Figure 4.10: 2-deoxy-glucose (2DOG) treatment (10µM) had no effect on OGD 

induced oligodendrocyte cell death in corpus callosum (CC). A: Confocal 

images during OGD (upper panel) and OGD with 2DOG treatment (lower 

panel). Images taken at 0 and 100 minutes. Scale bar =20 µm. B: 

oligodendrocyte cell death over time. C: total cell death at time 100 minutes, 

OGD only (black bar) and OGD with 2DOG. Error bars = SEM. N numbers = 

number of cells/number of slices. 2DOG added during OGD (10-70 mins)  
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Figure 4.11: 2-deoxy-glucose (2DOG) treatment (10µM) had no effect on OGD 

induced oligodendrocyte cell death in dentate gyrus (DG). A: Confocal images 

during OGD (upper panel) and OGD with 2DOG treatment (lower panel). 

Images taken at 0 and 100 minutes. Scale bar =20 µm. B: oligodendrocyte cell 

death over time. C: total cell death at time 100 minutes, OGD only (black bar) 

and OGD with 2DOG (green bar). Error bars = SEM. N numbers = number of 

cells/number of slices. 2DOG added during OGD (10-70 mins) 
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Figure 4.12: 2-deoxy-glucose (2DOG) treatment (10µM) had no effect on OGD 

induced oligodendrocyte cell death optic nerve (ON). A: Confocal images during 

OGD (upper panel) and OGD with 2DOG treatment (lower panel). Images taken 

at 0 and 100 minutes. Scale bar =20 µm. B: oligodendrocyte cell death over 

time. C: total cell death at time 100 minutes, OGD only (black bar) and OGD 

with 2DOG. Error bars = SEM. N numbers = number of cells/number of slices. 

2DOG added during OGD (10-70 mins) 
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Figure 4.13: 2DOG treatment had no effect on OGD induced oligodendrocyte 

cell death at defined time points in CC, DG and ON. Oligodendrocyte cell death 

after 30 and 60 minutes OGD and at the end of reperfusion with OGD only 

(black) and OGD with 2DOG treatment (green). A: corpus callosum. B: dentate 

gyrus. C: optic nerve Error bars = SEM.  
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4.3.3 Results: Comparison of 2DOG treatment on glial cells 

Oligodendrocyte cell death at defined time points was compared to see 

the effects of 2DOG treatment (figure 4.13). Comparisons were carried out for 

each region and found that the presence of 2DOG during OGD did not 

significantly alter oligodendrocyte cell death, in any region (CC figure 4.13A, DG 

figure 4.13B and ON figure 4.13C). 

When comparing the effects of 2DOG treatment on each glial cell type, it 

was found that 2DOG had a greater effect on astrocyte cell death (figure 4.14). 

For each region the total astrocyte cell death was significantly higher than the 

total oligodendrocyte cell death. In CC, the difference in total cell death was 

from 77.71 ± 8.73% in astrocytes to 0% in oligodendrocytes, (p=<0.0001, figure 

4.14A and B). In DG, astrocyte cell death was 99.12 ± 0.88%, whilst 

oligodendrocyte cell death was only 3.70 ± 3.70%, (p=<0.0001, figure 4.14C 

and D). In ON, the astrocyte cell death with 2DOG treatment was 56.67 ± 

9.49%, whereas oligodendrocyte death was 0%, (p=0.0001, figure 4.14E and 

F). These findings show that blocking glycogenolysis had a much greater effect 

on OGD induced astrocyte cell death than on oligodendrocyte cell death. 
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Figure 4.14: 2-deoxy-glucose (2DOG) treatment (10µM) increased OGD 

induced astrocyte cell death only. A: corpus callosum, OGD induced cell death 

over time. B: corpus callosum, total OGD induced cell death. C: dentate gyrus, 

OGD induced cell death over time. D: dentate gyrus, total OGD induced cell 

death. E: optic nerve, OGD induced cell death over time. F: optic nerve, total 

OGD induced cell death. Error bars = SEM. Astrocytes (black), 

oligodendrocytes (green)  
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4.4 RESULTS: GLYCOGEN STAINING – PERIODIC ACID SCHIFF STAIN 

At first this method of staining seemed quite promising, however it soon 

became apparent that the white matter was heavily stained, whereas the grey 

matter was not stained to the same extent. The pink staining was also found to 

be widespread throughout the region (WM) and did not appear to be restricted 

to astrocytes (figure 4.15). It would have been expected that the staining would 

be confined to astrocytes as they are the major glycogen store of the brain. 

From this and reports in the literature it was clear that this is not a reliable 

method to visualise glycogen stores in astrocytes. Recently is has been 

proposed that the PAS stain may in fact stain for glycoproteins as well as 

cellular glycogen, therefore resulting in widespread staining. 

Due to the limitations that were discovered using this stain an alternative 

method needed to be found. There are no commercially available glycogen 

antibodies. However, we were able to obtain an aliquot of an anti-glycogen IgM 

courtesy of Professor Hitoshi Ashida’s group in Japan. This antibody has been 

found to bind to larger molecular weight glycogen granules. 
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Figure 4.15: Example of PAS stain and co-staining with GFAP. Upper panel 

images taken with x20 objective. Lower panel taken using x40 objective. Both 

panels show images of the corpus callosum. Pink colouration is the product of 

the PAS stain, green is GFAP, merge shows overlay of the two images. Grey 

matter regions were very weakly stained. Scale bars = 20µM. 
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4.5 RESULTS: GLYCOGEN STAINING – ANTI-GLYCOGEN ANTIBODY 

After observing the effects of IA and 2DOG on astrocyte cell death during 

OGD, astrocyte glycogen levels were examined in each region (CC and DG) 

during OGD, OGD with glycogenolysis block and aCSF only conditions. This 

was achieved using fixed brain slices which were incubated with an anti-

glycogen IgM antibody. The slices were fixed after undergoing OGD, OGD with 

2DOG or aCSF only.  

The confocal images of CC stained for glycogen are Z projections of fixed 

sections (figure 4.16A). The upper panel shows control slices (aCSF), the 

central panel shows OGD slices and the lower panel shows OGD slices treated 

with 2DOG. In the first column GFP expressed by astrocytes is green, glycogen 

granules are shown in red in the second column and the third column is the 

merged image (GFP and glycogen). In the final column images have undergone 

“RG2B co-localization” in which co-localised red and green pixels are displayed 

as blue. Quantification of co-localised pixels was carried out by measuring the 

intensity of co-localised pixels, given in arbitrary units (AU) (figure 4.16B).  

In CC, after OGD the amount of astrocytic glycogen is significantly 

reduced in surviving cells from 7.08 ± 0.25 AU in control (aCSF) to 5.49 ± 0.28 

AU after OGD, (p=0.0014, figure 4.16B). The presence of 2DOG preserves the 

astrocyte glycogen stores, which is visible in those cells which have survived 

OGD. 2DOG treatment maintained glycogen levels which were 7.06 ± 0.47 AU 

after OGD. This was significantly higher than levels seen after OGD (p=0.0139) 

and was not significantly different from control levels. These findings show the 

presence of viable astrocytes after OGD and suggests that in CC, 2DOG is 

effective at preventing glycogenolysis which maintains the glycogen stores in 

viable cells. 
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Confocal images of DG astrocyte glycogen levels were obtained as for CC 

astrocytes (figure 4.17A arranged as for figure 4.17A). Quantification of 

astrocyte glycogen was carried out and was as co-localised pixel intensity 

(figure 4.17B). After OGD, astrocyte glycogen levels in DG astrocytes were 

reduced from 10.32 ± 0.39 AU in control (aCSF) to 9.34 ± 0.73 AU (not 

significant) in surviving cells. The addition of 2DOG caused DG astrocyte 

glycogen levels to be significantly reduced when compared to control 

(p=0.0077). Here, astrocyte glycogen dropped to 7.83 ± 0.85 AU. This region 

had fewer viable astrocytes after OGD and after OGD with 2DOG treatment and 

so measurements were limited to the surviving cells. 

The amount of astrocyte glycogen co-localisation was compared for the 

two regions (figure 4.18). It was found that the DG contained significantly more 

astrocyte located glycogen than the CC (p=<0.0001). The levels seen in CC 

were 7.08 ± 0.25 AU, whereas in DG levels were higher at 10.32 ± 0.39 AU. 

These findings suggest that DG astrocytes naturally have larger glycogen stores 

than CC astrocytes. The evidence shows that for both regions glycogen stores 

are depleted after one hour of OGD in surviving astrocytes. However, it would 

seem that 2DOG is more successful at inhibiting glycogenolysis in CC than in 

DG. 
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Figure 4.16: Changes in astrocyte glycogen levels in different conditions in 

corpus callosum (CC). A: confocal images of Z projections from fixed frozen 

sections showing glycogen staining. Green is GFP, red is glycogen, “RG2B co-

localization” shows co-localised pixels in blue. Scale bars = 20µm. B: 

quantification of glycogen staining in whole cells. Error bars = SEM. N numbers 

= number of cells/number of regions of interest.  
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Figure 4.17: Changes in astrocyte glycogen levels in different conditions in 

dentate gyrus (DG). A: confocal images of Z projections showing glycogen 

staining. Green is GFP, red is glycogen, “RG2B co-localization” shows co-

localised pixels in blue. Scale bars = 20µm. B: quantification of glycogen 

staining in whole cells. Error bars = SEM. N numbers = number of cells/number 

of regions of interest.  
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Figure 4.18: Higher levels of glycogen are found in DG. Comparison of glycogen 

co-localisation in CC (black bar) and DG (green bar) found significantly more 

astrocytic glycogen in DG. Error bars = SEM. 
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4.6 DISCUSSION: ROLE OF ASTROCYTIC GLYCOGEN IN ISCHAEMIA 

In this chapter the role of astrocytic glycogen stores during acute 

ischaemic insult was examined. I also investigated whether these stores 

affected glial survival during and after injury. The presence of astrocytic 

glycogen is known to promote neuronal survival (Swanson & Choi, 1993), 

however the role that glycogen may play in glial response to insult has not been 

widely investigated in adult models. Fern (2015) found in neonatal WM that the 

presence of glycogen increased tolerance to ischaemic injury. It is possible that 

astrocytes use glycogen to extend their own survival for a limited time, during 

ischaemia. 

4.6.1 Glycogen stores contribute to astrocyte survival. 

The inhibition of glycogenolysis with IA or 2DOG significantly increased 

OGD induced astrocyte cell death (p=0.0001) in CC (figures 4.2 and 4.6). 

Blocking access to glycogen stores caused astrocytes in this WM region to 

behave like GM astrocytes and experience extensive cell death. The use of IA 

achieved a more dramatic effect in CC than in DG (figure 4.2B and C), while 

2DOG had no significant effect upon DG astrocyte death (figure 4.7C). This may 

be due to fact that the maximum amount of cell death in DG is already achieved 

with OGD, thus limiting any effect of the metabolic block upon cell death. In 

support of this interpretation, block of glycogen utilization in the DG resulted in 

cell death beginning significantly earlier time point (figure 4.3 and 4.7) in the 

presence of IA or 2DOG. In ON, the addition of 2DOG treatment increased OGD 

induced cell death, although this was not significant and was not to the same 

extent in the CC. This suggests a lesser role for glycogen in ON and that the 

tolerance of these cells to ischaemia may be due to other mechanisms. The lack 

of astrocyte cell death in the presence of 2DOG illustrates the heterogeneous 
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nature of the astrocyte population. The ON was examined as previous work had 

been carried out on pre-myelinated ON (P0-P2), which found that glycogen was 

necessary for axonal function during ischaemic conditions (Fern, 2015).  

The evidence here shows that the glycogenolysis and the utilization of 

the resulting metabolites is required for CC astrocyte survival during acute 

ischaemic insult. In DG, the presence of glycogen stores delays OGD induced 

cell death, however even with functioning glycogenolysis these cells remain 

very sensitive to ischaemic injury. In the adult ON, glycogen does not appear to 

be significant for astrocyte survival in ischemic conditions. 

4.6.2 Glycogen levels vary between regions and conditions  

Immunofluorescence staining of brain sections allowed the levels of 

astrocyte glycogen in CC and DG to be visualised and quantified. The effect of 

OGD and OGD with 2DOG on astrocyte glycogen levels in these regions was 

investigated in the surviving cells. 

When the co-localised glycogen levels were compared in CC and DG, it 

was found that DG contained significantly more (p=<0.0001) astrocytic glycogen 

than CC (figure 4.18). This finding corresponds with the literature, where it has 

been found that the highest amounts of glycogen are in the hippocampus (Oe et 

al., 2016). The DG is a region of high energy demand which will need to utilize 

these larger glycogen stores for synthesis of glutamine, during which pyruvate 

derived from glycogen is preferred (Gibbs et al., 2007). Glycogenolysis is also 

utilized for glutamate uptake through the fuelling of the NKA (Xu et al., 2013) for 

sodium extrusion which is the driving force for glutamate uptake. The discovery 

that glycogen is involved in memory and learning (Gibbs, Anderson & Hertz, 

2006) also explains the high levels that are seen in the hippocampus. However, 
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it is interesting that higher levels of glycogen seen here in the DG does not 

correspond to ischaemic protection, even though preventing access to glycogen 

stores increased cell death in CC. This suggests the presence of glycogen does 

not equate to cell survival during ischaemia.  

In CC there was significant decrease (p=0.0014) in astrocyte glycogen 

levels after one hour OGD (figure 4.16). Glycogen was present in viable 

astrocytes at the end of OGD, these cells had retained their morphology and 

had not lost their cytoplasmic GFP despite the ischaemic insult. This would 

suggest that not only are CC astrocytes tolerant to insult but that there is a role 

for glycogen during ischaemic insult. When 2DOG was administered in CC, the 

glycogen stores were effectively protected in surviving astrocytes, showing that 

glycogenolysis was successfully inhibited during OGD (figure 4.16B). It is 

possible that surviving astrocytes are able to utilize stores before cell death due 

to the resilience of cells and glycolytic nature of astrocytes (Supplie et al., 2017).  

The changes in DG astrocyte glycogen levels after OGD and OGD with 

2DOG differed to those seen in CC. In DG, astrocyte glycogen levels were 

reduced in surviving astrocytes after OGD, however this was not significant 

when compared to control conditions (figure 4.17B). This suggests that DG 

astrocyte glycogen stores are not accessed to the same extent as CC astrocyte 

glycogen stores, which may be due to the sensitivity of DG astrocytes to 

ischaemia. The significant reduction in the surviving astrocyte glycogen levels 

seen in the presence of 2DOG may be due to the catastrophic cell death that 

occurs under these conditions. The lack of viable cells after injury results in a 

loss of astrocyte glycogen in the region, even if glycogenolysis was successfully 

inhibited. The addition of 2DOG seemed to stress DG astrocytes and greatly 
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increased the sensitivity of these cells to ischaemia. This caused widespread 

cell death, which resulted in few surviving cells.  

The evidence obtained suggests that glycogen is used  to aid astrocyte 

survival during and after ischaemic insult in the CC.. The finding of higher 

glycogen levels in the DG is consistent with the high metabolic demand that 

exists in this region as glycogen is required for glutamatergic transmission 

(Sickmann et al., 2009). The higher levels of glycogen in DG astrocytes did not 

prevent ischaemic induced cell death. This would suggest that there are 

differences in cell death mechanisms between regions. Also the glycogen in this 

region must have a specific role, such as neurotransmitter synthesis. 

4.6.3 Glycogen stores are not utilized by oligodendrocytes 

The discovery that oligodendrocytes   show tolerance to acute ischaemic 

insult has raised questions as to how they are able to survive acute ischaemic 

injury. Thus, the role of glycogen in oligodendrocyte survival was investigated. 

When astrocytic glycogen stores were inhibited, the lack of access to lactate 

had no effect on oligodendrocyte ischaemic cell death (figures 4.10-4.13). This 

suggests that metabolic products from glycogenolysis are not used by 

oligodendrocytes during ischaemic insults and their tolerance to ischaemic 

injury is due to a different mechanism. When investigating the role of glycogen 

store inhibition on oligodendrocytes only 2DOG was used as this fully prevented 

the breakdown of glycogen stores. Whilst IA prevents the utilization of the stores 

after their breakdown, via the inhibition of the enzyme responsible for the sixth 

step of glycolysis.  
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5 GLIA AND GLUTAMATE RECEPTORS 

5.1 INTRODUCTION 

It has been shown that astrocytes and oligodendrocytes can express both 

NMDA and AMPA/kainate ionotropic glutamate receptors (GluRs) (Burnashev, 

1996; Conti et al., 1996). Binding of glutamate to the GluRs produces opening of 

the receptor pore, allowing the influx of cations and triggering intracellular 

increases in ion concentrations and depolarization. The influx of ions through 

NMDA GluRs may be prevented through endogenous magnesium block, which 

occludes the pore opening, this block is voltage dependent (Mayer, Westbrook 

& Guthrie, 1984; Nowak et al., 1984). Regional variability in astrocyte GluR 

expression levels has been suggested (Dzamba et al., 2015), which would 

result in location dependent amounts of GluR mediated ion influx. 

The subunit arrangement of GluRs affects the permeability of receptor 

pore to various ions (Dzamba, Honsa & Anderova, 2013). Investigation of these 

subunits determined that the GluRs expressed by glial cells are more 

permeable to calcium ions that other GluRs (Burnashev, 1996), and those 

expressed by astrocytes have low calcium permeability (Kirischuk, Parpura & 

Verkhratsky, 2012; Palygin et al., 2010). GluRs are also permeable to cations 

such as sodium and potassium (Dzamba, Honsa & Anderova, 2013). Sodium 

influx into astrocytes is involved in physiological and cytotoxic cell swelling 

which precedes ischaemic cell death and will be further discussed in the next 

chapter. 

5.1.1 Astrocytes and glutamate receptors 

Astrocytes express both NMDA and AMPA/kainate receptors 

(Burnashev, 1996; Conti et al., 1996). This has triggered further investigation 
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into the role of glial GluRs. The known involvement of GluRs in ischaemia 

induced neuronal cell death via excitotoxicity (Coyle et al., 1981; Lucas & 

Newhouse, 1957; Pulsinelli, Sarokin & Buchan, 1993), identified GluRs as a 

suitable target to examine for a role ischaemic astrocyte cell death. 

Both NMDA and AMPA/kainate receptors are permeable to calcium and 

other ions. Under physiological conditions this contributes to the astrocyte 

homeostatic maintenance of the extracellular space (ECS). For AMPA/kainate 

receptors, the amount of GluR2 subunits incorporation into the receptor 

determines the receptor permeability to calcium, a lower level of expression 

results in increased permeability (Hollmann, Hartley & Heinemann, 1991; Jonas 

& Burnashev, 1995). The AMPA/kainate receptor channels are also permeable 

to sodium and potassium ions allowing more of these ions to pass through when 

the receptor is activated (Citri & Malenka, 2008). 

The presence of GluRs on astrocytes suggests they have a physiological 

role to play. The important role that has been discovered for GluRs is 

involvement in neuron to glia signalling. There are two possible routes that two-

way communication can occur, through the ectopic release of neurotransmitters 

(Araque, Carmignoto & Haydon, 2001) or via gap junction connections (Alvarez-

Maubecin et al., 2000). 

The activation of AMPA/kainate and NMDA receptors triggers an 

increase astrocyte intracellular calcium concentration (Kim, Rioult & Cornell-

Bell, 1994; Müller et al., 1993). In astrocytes this calcium increase can be 

transmitted to other astrocytes via gap junctions, producing calcium waves 

across the astrocyte syncytium (Charles et al., 1991; Cornell-Bell et al., 1990; 

Dani, Chernjavsky & Smith, 1992). This will then inform and direct astrocyte 

responses to neuronal communication. Cortical NMDA receptors have been 
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found to be more sensitive to glutamate than AMPA receptors (Lalo et al., 

2006). Lalo et al. (2006) determined the glutamate EC50 for each receptor in 

cortical astrocytes, for NMDA receptors the EC50 was 1.9 ± 0.5µM and for 

AMPA receptors the EC50 was 52.1 ± 14.06µM. This suggests that astrocytes 

can detect different concentrations of extracellular glutamate, also that different 

concentrations of glutamate may elicit diverse responses from astrocytes. 

Glutamate can be utilized as a metabolite, when converted into α-ketoglutarate 

which can then enter the TCA cycle to generate ATP (McKenna, 2007). 

Approximately 20% of glutamate taken up by astrocytes is converted and lost to 

the TCA cycle (Hertz et al., 2015; McKenna, 2013). 

It is widely accepted that astrocytes are resistant to excitotoxicity. 

However, it has been found that over activation of AMPA receptors can be 

severely damaging to neocortical astrocytes (David et al., 1996), showing that 

immature astrocytes have an increased sensitivity to higher glutamate levels 

than mature cells, which are resistant to excitotoxicity. It has been reported that 

a transient increase in glutamate concentration can cause astrocyte cell 

swelling and longer exposures caused oxidative stress in cells, which goes on to 

trigger cell death (Chen, Liao & Kuo, 2000). 

5.1.2 Oligodendrocytes and glutamate receptors 

Oligodendrocytes were initially thought to only express AMPA/kainate 

receptors (Gallo et al., 1994; Patneau et al., 1994). These receptors are 

involved in CNS development and in pathological oligodendrocyte damage. It 

has now been shown that NMDA receptor expression is normal for WM 

oligodendrocytes (Karadottir et al., 2005). The receptors found on 

oligodendrocytes have a specific subunit composition, containing mainly NR1, 

NR2C and NR3 subunits (Karadottir et al., 2005). The binding of glutamate to 
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oligodendrocyte located GluRs causes intracellular increase of calcium, either 

by influx of calcium across the cell membrane (Willard & Koochekpour, 2013) or 

release from internal calcium stores (Micu et al., 2016). Further investigation 

found that NMDA receptors are predominantly localised to oligodendrocyte 

processes and are involved in ischaemic injury via calcium influx and 

accumulation, triggered by excitotoxicity (Micu et al., 2006; Salter & Fern, 2005). 

Recently, the group has established that axonal vesicular glutamate release is 

the source of glutamate responsible for excitotoxic myelin damage (Doyle et al., 

2018). It was also determined that injury was mediated by NMDA receptors 

containing GluN2C/D subunits. 

In oligodendrocytes, GluRs are used for neuron to glia signalling and 

myelin located receptors are in a perfect position to respond to axonal glutamate 

release. During development axons use glutamate to signal to oligodendrocyte 

precursor cells via AMPA/kainate receptors (Kukley, Capetillo-Zarate & Dietrich, 

2007), which may allow the identification of axons. Glutamate activation of 

NMDA receptors on precursor cells initiates their differentiation into myelinating 

oligodendrocytes via the (Lundgaard et al., 2013). Recently it has been 

discovered that signalling occurs between neuronal axons and the covering 

myelin sheath (Micu et al., 2016). This kind of axonal signalling has been 

implicated in communicating axonal metabolic demand to glial cells 

(Funfschilling et al., 2012).  

5.1.3 Glutamate receptors involvement in ischaemic glial injury 

The main mechanism of acute ischaemic neuronal cell death is 

excitotoxicity, whereby increased concentrations of glutamate over-activate 

GluRs causing a cytotoxic influx of calcium (Coyle et al., 1981; Lucas & 

Newhouse, 1957; Pulsinelli, Sarokin & Buchan, 1993). The increase in 



169 
 

intracellular calcium also causes accumulation of calcium within mitochondria. 

This increase depolarizes the mitochondrial membrane triggering the release of 

apoptotic factors (Matute, 2006). This cell death mechanism is also responsible 

for oligodendrocyte cell death after ischaemic insult. Initially, oligodendrocyte 

excitotoxicity was thought to be caused by AMPA/kainate receptors (Matute et 

al., 2002). However, with the discovery of oligodendrocyte NMDA receptor 

expression, it has now been suggested that the different kinds of receptors may 

be responsible for different kinds of injury. 

Salter and Fern (2005) found that over-activation of NMDA receptors 

caused process loss in P10 ON oligodendrocytes and suggested that there may 

be differential expression of GluRs (Salter & Fern, 2005). They also suggested 

that NMDA receptors are responsible for injury to processes after insult, whilst 

AMPA/kainate receptors may be responsible for cytotoxicity (Salter & Fern, 

2005). Excitoxicity is not only responsible for process loss and cell death but 

also causes damage and vacuolation to myelin (Pantoni, Garcia & Gutierrez, 

1996). The excessive activation of particularly AMPA/kainate receptors was 

found to cause widespread death of cultured cortical astrocytes (David et al., 

1996). Increased levels of glutamate can cause astrocyte cell swelling and 

prolonged exposure caused cell death, most likely via oxidative stress (Chen, 

Liao & Kuo, 2000).  

Previous work has found that in P2 mice, astrocyte cell death was due to 

cytotoxic influx of calcium (Fern, 1998). However, the mechanism of ischaemic 

astrocyte cell death changes with age of the animal and the point of 

development. In P10 mice it was found that cell death was the result of sodium 

influx, which was suggested to occur via the sodium-potassium-chloride co-

transporter 1 (NKCC1) (Salter & Fern, 2008; Thomas et al., 2004). In this 
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chapter the involvement of calcium and GluRs were investigated to see their 

effect on glial cell death and to determine whether the mechanism for adult 

ischaemic cell death is different to that for P10 animals. Here the hypothesis 

being that glutamate receptors are involved in ischaemia induced astrocyte cell 

death. 
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5.2 RESULTS: ZERO CALCIUM CONDITIONS INCREASED OGD INDUCED 

ASTROCYTE CELL DEATH 

Studies investigating ischaemia induced neuronal death have established 

that it is a calcium dependent process. First, it was examined whether calcium 

was required for OGD induced astrocyte cell death. Slices that underwent OGD 

did so with either normal calcium or calcium-free OGD aCSF. Calcium-free 

OGD aCSF contained a calcium chelator (EGTA 0.05mM), thereby lowering 

extracellular calcium during the OGD period and reduces calcium influx into 

cells. 

Contrary to the effect seen on neuronal cell death previously reported, 

zero calcium conditions increased OGD induced astrocyte cell death in CC 

(figure 5.1). Few astrocytes survive in the confocal images of OGD with zero 

calcium (figure 5.1A). The use of calcium-free aCSF caused a significant 

reduction in the t value from 62.00 ± 2.32 mins to 48.58 ± 2.81 mins (p=0.0034, 

figure 5.1B). This suggests a lack of external calcium increased the rate of OGD 

induced cell death. The total amount of cell death was significantly higher with 

OGD and zero calcium conditions, cell death was increased to 97.17 ± 1.91% 

from 40.17 ± 6.45 (p=<0.0001, figure 5.1C).  

In DG cell death was already high at 97.61 ± 1.01%, with zero calcium this 

was increased to 99.28 ± 0.73% (not significant, figure 5.2C). The removal of 

calcium from the aCSF caused a decrease in t value from 54.64 ± 3.30 mins to 

40.83 ± 3.12 mins (p=0.012, figure 5.2B). The DG confocal images show little 

difference between astrocytes that underwent OGD only and those that 

experienced OGD without calcium, widespread cell death is seen under both 

conditions (figure 5.2A). 
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The OGD induced astrocyte cell death was compared between the two 

conditions for each region at defined time points throughout the experiment 

(figure 5.3). For CC the removal of calcium from the aCSF caused OGD induced 

cell death to be significantly increased at each time point (figure 5.3A). After 30 

minutes OGD cell death was increased from 0 ± 0% to 22.54 ± 8.74% without 

calcium (p=0.0476). The significance of increased cell death was greater as the 

experiment progressed. At 60 minutes OGD cell death increased from 22.11 ± 

7.12% to 93.06 ± 4.10%, (p=<0.0001) whereas at the end of reperfusion cell 

death had increase from 40.17 ± 6.45% to 97.17 ± 1.91% (p=<0.0001). This 

suggests that a lack of calcium increased CC astrocyte sensitivity to OGD.  

For DG, only one time point was significantly increased, this was after 30 

minutes OGD (figure 5.3B). Here, cell death was increased from 14.04 ± 4.77% 

to 49.59 ± 10.89% (p=0.0006). Zero calcium conditions caused DG astrocytes 

to become very sensitive to the initial ischaemic insult. Taken together these 

results suggest that ischaemia induced CC and DG astrocyte cell death occurs 

in an external calcium independent manner. The removal of calcium did not 

provide protection to astrocytes and worsened OGD induced cell death.  
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Figure 5.1: Zero Calcium conditions increased OGD induced astrocyte cell 

death in corpus callosum (CC). A: Confocal images of during OGD (upper 

panel) and OGD with 0 Ca (lower panel). Images taken at 0 and 100 minutes. 

Scale bar = 20 µm. B: Astrocyte cell death over time. C: Total cell death at time 

100 minutes, OGD only (black bar) and OGD with 0Ca2+ (green bar). Error bars 

= SEM. N numbers = number of cells/number of slices. 
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Figure 5.2: Zero Calcium conditions increased the rate of OGD induced 

astrocyte cell death in dentate gyrus (DG). A: Confocal images of during OGD 

(upper panel) and OGD with 0 Ca (lower panel). Images taken at 0 and 100 

minutes. Scale bar = 20 µm. B: Astrocyte cell death over time. C: Total cell 

death at time 100 minutes, OGD only (black bar) and OGD with 0Ca2+ (green 

bar). Error bars = SEM. N numbers = number of cells/number of slices. 
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Figure 5.3: Zero calcium conditions altered cell death at defined time points. A: 

corpus callosum, B: dentate gyrus. Cell death at 30 and 60 minutes OGD the 

end of reperfusion, with (black bars) and without calcium (green bars). Error 

bars = SEM. 
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5.3 RESULTS: EFFECT OF GLUTAMATE RECEPTOR INHIBITORS ON GLIAL 

CELL DEATH 

Glutamate receptor antagonists have been found to increase neuronal 

survival during ischaemic insults (Pulsinelli, Sarokin & Buchan, 1993). 

Astrocytes and oligodendrocytes also express GluRs and so it was investigated 

whether inhibiting these receptors would have an effect on OGD induced glial 

cell death. The inhibitors used were NBQX (2,3-dioxo-6-nitro-1,2,3.4-

tetrahydrobenzo[ƒ]quinoxaline-7-sulfonamide) which blocks AMPA receptors 

and MK801 ((5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-

5,10-imine maleate) which blocks NMDA receptors. Brain slices were incubated 

with these inhibitors for 20 minutes prior to OGD exposure, to allow the 

inhibitors to penetrate the slices.  

5.3.1 Results: Glutamate receptor inhibitors NBQX and MK801 

increased OGD induced astrocyte cell death in CC 

Inhibiting AMPA and NMDA GluRs increased OGD induced astrocyte cell 

death in CC (figure 5.4). In the confocal images, the effect of the addition of 

NBQX and MK801 shows there are fewer surviving astrocytes (figure 5.4A). The 

presence of the antagonists had no effect on the rate of cell death, as the t 

values for both conditions were similar (figure 5.4B). For CC the t value was 

62.00 ± 2.32 mins, whilst with antagonists the value was 55.42 ± 2.63 mins (not 

significant) The total amount of cell death was significantly increased from 40.17 

± 6.45% to 67.93 ± 4.86% with the addition of antagonists, p=0.0093 (figure 

5.4C).  

In DG treatment with GluR inhibitors caused no significant change in 

OGD induced astrocyte cell death (figure 5.5). The addition of NBQX and 
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MK801 increased the resistance of some astrocytes to OGD, illustrated by the 

confocal images (figure 5.5A). The t value with the addition of inhibitors was 

found to be similar to that for OGD only, 55.38 ± 6.60 mins and 54.64 ± 3.30 

mins respectively (figure 5.5B). The total cell death achieved with the use of 

GluRIs was lower than that for OGD alone, 92.49 ± 3.44% and 97.61 ± 0.01% 

respectively (not  significant, figure 5.5C). The addition of NBQX and MK801 

caused a rise in OGD induced cell death to occur in CC, whereas in DG, OGD 

induced cell death was reduced. 
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Figure 5.4: Glutamate receptor inhibitors NBQX (20µM) and MK801 (10µM) 

increased OGD induced astrocyte cell death in corpus callosum (CC). A: 

Confocal images during OGD (upper panel) and OGD with NBQX and MK801 

(lower panel). Images taken at 0 and 100 minutes. Scale bar = 20 µm. B: 

Astrocyte cell death over time. C: Total cell death at time 100 minutes, OGD 

only (black bar) and OGD with NBQX and MK801 (green bar). Error bars = 

SEM. N numbers = number of cells/number of slices 
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Figure 5.5: Glutamate receptor inhibitors NBQX (20µM) and MK801 (10µM) had 

no effect on OGD induced astrocyte cell death in dentate gyrus (DG). A: 

Confocal images during OGD (upper panel) and OGD with NBQX and MK801 

(lower panel). Images taken at 0 and 100 minutes. Scale bar = 20 µm. B: 

Astrocyte cell death over time. C: Total cell death at time 100 minutes, OGD 

only (black bar) and OGD with NBQX and MK801 (green bar). Error bars = 

SEM. N numbers = number of cells/number of slices. 
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5.3.2 Results: MK801 alone increased OGD induced astrocyte cell 

death in CC 

To determine whether the cause of this increase cell death during OGD 

in the CC was due to NMDA or AMPA receptors, slices were treated with 

MK801 alone. MK801 selectively inhibits NMDA receptors, leaving AMPA GluR 

free to be activated. Previous work investigating oligodendrocytes has 

determined that AMPA receptors may be responsible for cytotoxic injury (Matute 

et al., 1997; Micu et al., 2006; Salter & Fern, 2005). The addition of MK801 

increased OGD induced astrocyte loss in CC, which can be seen in the confocal 

images (figure 5.6A). NMDA GluR inhibition caused a significant reduction in t 

value from 62.00 ± 2.32 mins to 50.67 ± 2.02 mins (p=0.004, figure 5.6B). The 

total amount of cell death obtained by using MK801 was significantly increased 

from 40.17 ± 6.45% to 94.49 ± 2.61% (p=<0.0001, figure 5.6C).  

In the DG, the presence of MK801 during OGD resulted in widespread 

astrocyte death as seen in the confocal images (figure 5.7A). By inhibiting 

NMDA GluRs the cell death profile was shifted and there was a significant 

reduction in t value. For DG, this was 54.64 ± 3.30 mins and with MK801 this 

was decreased to 39.75 ± 3.53 mins (p=0.0105, figure 5.7B). The total amount 

of cell death achieved with MK801 was increased from 97.61 ± 1.01% with OGD 

and 100 ± 0% with MK801 (not significant, figure 5.7C).Taken together these 

findings suggest that NMDA GluRs may have a protective role in cytotoxic 

astrocyte cell death, as increased cell death was observed when NMDA 

receptors were inhibited, with the greatest effect seen in WM. 
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Figure 5.6: MK801 treatment increased OGD induced astrocyte cell death in 

corpus callosum (CC). A: Confocal images during OGD (upper panel) and with 

MK801 (lower panel) Images taken at 0 and 100 minutes. Scale bars = 20µm. B: 

Astrocyte cell death over time. C: Total cell death at 100 minutes, OGD only 

(black bar) and OGD with MK801 (green bar). Error bars = SEM. N numbers = 

number of cells/number of slices 
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Figure 5.7: MK801 treatment had no effect on OGD induced astrocyte cell death 

in dentate gyrus (DG). A: Confocal images during OGD (upper panel) and with 

MK801 (lower panel) Images taken at 0 and 100 minutes. Scale bars = 20µm. B: 

Astrocyte cell death over time. C: total cell death at 100 minutes, OGD only 

(black bar) and OGD with MK801 (green bar). Error bars = SEM. N numbers = 

number of cells/number of slices. 
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5.3.3 Results: Comparison of glutamate receptor inhibitor 

combinations 

The effect of the combinations of GluR antagonists used was compared 

to determine the potential role of AMPA receptors in astrocyte cell death (figure 

5.8). In CC, inhibiting NMDA receptors caused cell death to occur at a similar 

rate to the inhibition of both receptors, the t values been 55.42 ± 2.63 mins and 

50.67 ± 2.02 mins (not significant, figure 5.8A). The use of MK801 alone 

resulted in significantly increased cell death in CC of 94.49 ± 2.61%, when 

compared with that achieved with both inhibitors 67.93 ± 4.86% (p=0.0007, 

figure 5.8C). The comparison of different time points found that in CC, there 

were no significant differences in cell death after 30 minutes OGD (figure 5.8E). 

However, after 60 minutes OGD the use of both inhibitors significantly increased 

astrocyte death when compared to OGD from 23.11 ± 7.12% to 51.21 ± 6.46% 

(p=0.0092, figure 5.8E) and using MK801 further increased this to 88.72 ± 

2.35%.(p=<0.0001, figure 5.8E). At the end of reperfusion (100 minutes) the use 

of inhibitors caused significantly higher cell death when compared to OGD 

alone, p=0.0075 with NBQX and MK801 and p=<0.0001 with MK801 only (figure 

5.8E).  

In DG the cell death profiles were found to be similar (figure 5.8B), 

although MK801 treatment caused cell death to begin earlier at 20 minutes 

rather than 35 minutes with NBQX and MK801. The t value obtained from 

MK801 only treatment was significantly lower than that for both inhibitors, 39.75 

± 3.53 mins and 55.38 ± 6.60 mins respectively (p=0.021). The total cell death 

achieved using MK801 was significantly higher than when both inhibitors were 

used (p=0.0246, figure 5.8D). The comparison of cell death at defined time 

points revealed that at 30 minutes, OGD with MK801 resulted in significantly 
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higher cell death when compared to values for OGD only, 52.46 ± 11.43% with 

MK801 and 14.64 ± 4.77% with OGD, (p=0.0334, figure 5.8F). The only other 

significant difference seen was at the end of reperfusion where MK801 

treatment resulted in greater cell death than the presence of both inhibitors, 100 

± 0% and 92.49 ± 3.44% respectively, (p=0.0156, figure 5.8F). These findings 

would suggest that there is a role for AMPA receptors in OGD induced astrocyte 

cell death, as the inhibition of NMDA receptors caused increased cell death in 

WM and GM.  
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Figure 5.8: Blocking only NMDA receptors increased OGD induced astrocyte 

cell death. A + B: Astrocyte cell death over time with glutamate receptor 

inhibitors, NBQX and MK801 (black) and MK801 only (green), C + D: astrocyte 

cell death at time 100 minutes, OGD with NBQX and MK801 (black bar) OGD 

with MK801 only (green) and E + F: astrocyte cell death at defined time points, 

OGD only black bars, OGD with NBQX and MK801 (green bars) and OGD with 

MK801 only (blue bars). A, C + E: corpus callosum, B, D + F: dentate gyrus. 

Error bars = SEM  
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5.3.4 Results: Glutamate receptor inhibitors did not affect OGD 

induced oligodendrocyte cell death. 

Astrocytes are not the only glial cells to express GluRs, they are also 

found on oligodendrocytes. GluRs are involved in ischaemic cell death via 

excitotoxicity, which oligodendrocytes are sensitive to (Karadottir et al., 2005; 

Matute et al., 2002; Matute, Domercq & Sánchez-Gómez, 2006). Here it was 

investigated whether using GluR inhibitors would confer the same effect on 

oligodendrocyte cell death as for astrocytes, or whether the inhibitors would 

prevent cell death. It was found that the presence of NBQX and MK801 did not 

affect OGD induced oligodendrocyte cell death in CC (figure 5.9). The confocal 

images illustrate that after OGD and OGD in the presence of the antagonists 

there was very little change and few cells were lost (figure 5.9A). The cell death 

profiles for both conditions are very similar and were unaffected by the presence 

of GluRIs (figure 5.9B). The total OGD induced oligodendrocyte cell death 

achieved with GluRIs was reduced from 1.31 ± 0.71% with OGD alone to 0.89 ± 

0.89% (not significant, figure 5.9C).  

The presence of NBQX and MK801 had no significant effect on DG 

oligodendrocytes (figure 5.10A). The treatment with GluRIs had little effect on 

the cell death profile (figure 5.10B). The addition of GluRIs did reduce OGD 

induced DG oligodendrocyte cell death. Total cell death with OGD only 

conditions was 1.85 ± 1.85%, the addition of NBQX and MK801 cell death was 0 

± 0% (figure 5.10C). These findings suggest that GluRIs may prevent OGD 

induced oligodendrocyte cell death. However, oligodendrocyte cell death was 

very low after 60 minutes OGD and 30 minutes reperfusion and so any 

prevention of cell death was not statistically significant.  
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Figure 5.9: Glutamate receptor inhibitors NBQX (20µM) and MK801 (10µM) had 

no effect on OGD induced oligodendrocyte cell death in corpus callosum (CC). 

A: Confocal images during OGD (upper panel) and glutamate receptor inhibitors 

(lower panel). Images taken at 0 and 100 minutes. Scale bars = 20µM. B: 

Oligodendrocyte cell death over time. C: total cell death at 100 minutes, OGD 

only (black bar) and OGD with NBQX and MK801 (green bar). Error bars = 

SEM. N numbers = number of cells/number of slices. 
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Figure 5.10: Glutamate receptor inhibitors NBQX (20µM) and MK801 (10µM) 

had no effect on OGD induced oligodendrocyte cell death in dentate gyrus 

(DG). A: Confocal images during OGD (upper panel) and glutamate receptor 

inhibitors (lower panel). Images taken at 0 and 100 minutes. Scale bars = 20µM. 

B: Oligodendrocyte cell death over time. C: total cell death at 100 minutes, OGD 

only (black bar) and OGD with NBQX and MK801. Error bars = SEM. N 

numbers = number of cells/number of slices. 
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5.4 RESULTS: COBALT STAIN VISUALISATION OF DIVALENT CATION ENTRY 

INTO CELLS 

During ischaemia ionic gradients are disrupted and cytotoxic influx of ions 

can occur. One route for ions to enter cells is through activated GluRs, which 

are permeable to divalent cations such as calcium. Calcium is required for 

neuronal and oligodendrocyte ischaemic cell death, however we have found 

that removal of extracellular calcium increases OGD induced astrocyte cell 

death (figures 5.1 and 5.2), indicating that calcium may also be beneficial to cell 

viability. 

Cobalt is a divalent cation which is able to enter neural cells through 

activated GluR pores (Albuquerque et al., 2001; Aurousseau, Osswald & Bowie, 

2012; Pruss et al., 1991). Cobalt staining thus allows the visualisation of cation 

entry into all cells in live tissue preparations and reveals the presence of 

activated GluRs. Cobalt staining of live tissue was carried out for three regions 

(ON, CC and DG) under different conditions which were, aCSF with agonist 

(first panel), aCSF with GluR inhibitor and agonist (central panel) and OGD 

(final panel, figure 5.11A). The GluR agonist used throughout the cobalt staining 

was L-glutamate to ensure activation of GluRs. However, the agonist was not 

added during OGD since I am looking at receptor gating by ischaemic glutamate 

release. Also glutamate can be converted into the TCA cycle intermediate α-

ketoglutarate which may act as an energy source (McKenna, 2007). The 

evidence of cobalt entry is shown through the presence of a black precipitate in 

cells and can be seen in neurons, astrocytes and oligodendrocytes. The 

treatment of tissue preparations with GluRIs prevented the entry of cobalt into 

cells, illustrating that cobalt entered cells via activated GluRs. Under OGD 

conditions, cobalt staining will be limited to those cells which survived OGD. The 
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cells which experienced cobalt entry under OGD show that this is due to 

activated GluRs on OGD tolerant cells. Quantification of the cobalt positive cells 

in the tissue regions of interest was carried out (figure 5.11B). Under 

physiological conditions the most cobalt positive cells were seen in DG, in this 

brain region there are a high number of neuronal cell bodies which account for 

this. Fewer positive cells were seen in the WM tracts, as these contain only 

axons, oligodendrocytes and astrocytes. The use of GluRIs significantly 

reduced the cobalt entry into cells in all regions (p=<0.0001), thus also reducing 

the cation entry into cells. The number of cobalt positive cells in all regions was 

significantly reduced under OGD conditions (p=<0.0001). Under these 

conditions some cells do survive and can be seen (figure 5.11A final panel, ON 

and CC). It is likely that the cells that do survive are glial cells as they display 

tolerance to ischaemic insult. These findings show that cation entry occurs 

through GluRs as cobalt entry is prevented in the presence of GluR antagonists.  
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Figure 5.11: Cobalt staining of divalent cation entry into cells in different 

conditions. A: Representative images of cobalt positive cells in optic nerve (ON), 

corpus callosum (CC) and dentate gyrus (DG). In physiological conditions 

(aCSF), use of glutamate receptor inhibitors (GluRI) and oxygen glucose 

deprivation (OGD). Scale bars = 50µm. B: Quantification of number of cobalt 
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positive cells in each region (ON black, CC green and DG blue) and condition. 

Error bars = SEM.   
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5.5 DISCUSSION: ROLE OF CALCIUM AND GLUTAMATE RECEPTORS IN GLIAL 

ISCHAEMIC INJURY 

The over-activation of GluRs in response to an ischaemic challenge is, 

termed excitotoxicity and results in cytotoxic calcium influx in neurons, 

oligodendrocytes and immature astrocytes (Coyle et al., 1981; David et al., 

1996; Lucas & Newhouse, 1957; Pantoni, Garcia & Gutierrez, 1996; Salter & 

Fern, 2005). This has a detrimental effect on cells and leads to the triggering of 

cell death mechanisms (Matute, 2006). This chapter aimed to investigate 

whether calcium influx and GluRs have a role to play in ischaemic cell death of 

adult mature glia in situ. 

5.5.1 OGD induced astrocyte cell death is not mediated by calcium 

influx 

Cytotoxic calcium influx and excitotoxicity have a role to play in neuronal 

ischaemic cell death (Coyle et al., 1981; Lucas & Newhouse, 1957; Pulsinelli, 

Sarokin & Buchan, 1993). Previous work has found that in P0-P2 mice, calcium 

influx is responsible for astrocyte cell death (Fern, 1998), however this was not 

so for P10 mice (Salter & Fern, 2008; Thomas et al., 2004). This work has found 

that in adult mice, ischaemic astrocyte cell death occurs independently of 

external calcium influx. Interestingly, removing calcium caused earlier and 

significantly increased cell death in CC (p=<0.0001) and earlier, more rapid cell 

death in DG (figures 5.1 and 5.2). In DG, cell death was increased but not 

significantly, due to the high levels of cell death that exist in this region during 

OGD. The effect observed under calcium free conditions would suggest that 

calcium may have a role in protecting astrocytes during OGD and that cytotoxic 

calcium influx is not responsible for adult astrocytic cell death (Thomas et al., 

2004).  
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The ion concentrations surrounding astrocytes can affect cell survival 

(Bondarenko & Chesler, 2001). The phenomenon of zero calcium conditions 

increasing cell death was previously observed by Thomas et al (2004) and 

Salter and Fern (2008). There is evidence that zero calcium conditions are also 

detrimental to neurons (Goldberg & Choi, 1993). Calcium is required by 

astrocytes for volume regulation (O'Connor & Kimelberg, 1993).The absence of 

calcium may cause cell death as astrocytes are not able to combat the effect of 

ischaemia induced swelling. Calcium is used by astrocytes for glial 

communication via waves which transmit across astrocytes and the syncytium 

(Cornell-Bell et al., 1990). A reduction in the calcium may result in the disruption 

of glial signalling and astrocyte communication with neurons, thus disrupting 

any potential survival signal. There is evidence to suggest that calcium is 

involved in cell survival as this ion is required for the regulation of several 

cellular processes (Chiesa et al., 1998). A lack of calcium can cause changes in 

astrocyte function, a reduction in calcium can itself act as an apoptotic signal 

(Chiesa et al., 1998). In a model of traumatic brain injury, zero extracellular 

calcium also caused increased astrocyte cell death (Rzigalinski et al., 1997), 

suggesting the reduction of calcium can trigger apoptosis. The increase in cell 

death shows how the mechanism of astrocyte cell death changes as the cells 

mature and corresponds with the findings of Thomas et al (2004).  

5.5.2 Glial glutamate receptor inhibition and OGD induced cell death 

Inhibition of GluRs has been found to provide to protection to neurons 

that experience ischaemic insult (Pulsinelli, Sarokin & Buchan, 1993), thus the 

effect of the inhibitors, NBQX and MK801, on astrocyte cell death was 

investigated. The only significant change in OGD induced astrocyte cell death 

produced by GluR block was seen in CC (p=0.0093), where cell death was 
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increased (figure 5.4). Whilst a decrease in DG astrocyte cell death was seen, it 

was not significant (figure 5.5). The results show that simultaneous block of both 

NMDA and AMPA GluRs tends to potentiate injury in adult WM astrocytes and 

would indicate that astrocytes in different regions may have different 

mechanisms of cell death in response to ischaemic injury.  

The selective NMDA receptor blocker MK801 caused a significant 

increase in CC astrocyte death during OGD (p=<0.0001, figure 5.6) when 

applied alone. In DG, MK801 treatment caused ischaemic cell death to occur 

earlier and increased the amount of cell death, although not significantly (figure 

5.7). These findings suggest that ionotropic GluR generally and NMDA 

receptors specifically are protective against ischaemic cell death in mature 

astrocytes. The inhibition of NMDA receptors may affect astrocytes by 

preventing NMDA receptor initiated cell survival signals. There is evidence in 

the literature which suggests that NMDA receptors trigger the activation of 

transcription factors and anti-apoptotic factors which encourage cell survival and 

neuroprotection (Papadia et al., 2005; Soriano & Hardingham, 2007). This pro-

survival signalling can cause post-translational modification of proteins and 

initiate gene expression (Papadia et al., 2005; Soriano & Hardingham, 2007). A 

study carried out in neurons has found that NMDA receptor inhibition results in 

increased cell death during injury, due to the prevention of survival signals 

(Ikonomidou, Stefovska & Turski, 2000; Tashiro et al., 2006). The process of 

pre-conditioning cells to develop resistance to ischaemic insult is thought to 

occur via NMDA receptor signalling (Mabuchi et al., 2001). The exact role for 

astrocyte NMDA receptors is unknown and so it is possible that their presence 

on astrocytes is for pro-survival signalling. If astrocyte NMDA receptors have a 

role in cell survival, then the inhibition with MK801 will lead to an increased 
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amount of cell death due to the lack of survival signals. The inhibition of 

neuronal NMDA receptors may also prevent the communication of cell survival 

signals from neurons to astrocytes. 

There are previous studies which have reported that over activation of 

glutamate receptors can damage astrocytes (Matute et al., 2002). It is known 

that AMPA receptors are more permeable to sodium ions (Citri & Malenka, 

2008), which have been found to contribute to ischaemic cell death in P10 mice 

(Thomas et al., 2004). The over excitation of AMPA receptors may cause influx 

of sodium ions and result in sodium dependent cell death. The role of sodium is 

further discussed and investigated in the next chapter. It would appear that 

there is a role for GluRs in astrocyte ischaemic cell death, via influx of other ions 

apart from calcium and further investigation is required.  

Inhibition of GluRs had no effect on OGD induced oligodendrocyte cell 

death (figures 5.9 and 5.10). In OGD conditions, oligodendrocyte cell death was 

already very low and so any protective effect may not be detectable. 

Excitotoxicity is thought to be a major mechanism of ischaemic oligodendrocyte 

cell death (Leuchtmann et al., 2003), thus it would be expected that inhibition of 

GluRs would prevent cell death. It is possible that the use of GluRIs does 

protect oligodendrocytes, however it has been found that cell death is not seen 

until at least one hour after insult (Pantoni, Garcia & Gutierrez, 1996) and 

widespread oligodendrocyte cell death has been documented nine hours after 

insult (Tekkok & Goldberg, 2001). Also the observable effect of GluR inhibition 

may be limited due to the low amount of OGD induced oligodendrocyte cell 

death that occurs. This work is concerned with the acute ischaemic injury and 

so pathological oligodendrocyte cell death has not yet occurred. 
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5.5.3 Cobalt staining of cation entry 

Activated GluRs are permeable to divalent and monovalent cations such 

as calcium, sodium and potassium. Cobalt is a divalent cation, which is able to 

enter cells via GluR channels. The cobalt staining method used here has shown 

that cobalt permeable GluRs are present in ON, CC and DG (figure 5.11). When 

tissue preparations were treated with GluRIs, cobalt was prevented from 

entering which confirmed that NMDA and AMPA GluRs are the major route of 

calcium entry in the presence of the agonist (L-glutamate). Under OGD 

conditions cobalt was able to enter some cells but not to the same extent as 

under normoxic conditions in the presence of the agonist. The cells that did 

show staining after OGD had survived the insult and displayed glial morphology. 

The data confirm that the influx of calcium during OGD, together with the 

findings from the calcium removal experiments highlights the differing protection 

that this event confers. The calcium influx via GluR under ischaemic conditions 

in astrocytes is therefore a form of glutamate excito-protection, contrasting to 

the well-established excitotoxicity found in neurons and oligodendrocytes. 

This chapter has shown that external calcium influx is not responsible for 

OGD induced astrocyte cell death in either CC or DG, however cell death could 

result from calcium release from internal stores and further work is required to 

establish whether this source of calcium is a possible ischaemia induced cell 

death mechanism. This supports previous findings that showed sodium influx 

and not calcium was responsible for astrocyte cell death in P10 mice (Thomas 

et al., 2004). AMPA receptors may be responsible for astrocyte cell death as 

inhibition of NMDA receptors caused widespread astrocyte death, possibly due 

to sodium influx which causes cytotoxic cell swelling. The role of sodium in 

ischaemic astrocyte cell death is investigated in the next chapter.  



198 
 

  



199 
 

CHAPTER 6 
  



200 
 

  



201 
 

6 ROLE OF SODIUM AND ASTROCYTE SWELLING 

6.1 INTRODUCTION 

Sodium has an important role in the CNS, where it is utilized for several 

processes, including signalling and the maintenance of ionic gradients. 

Transmembrane sodium movement generally obeys the established ionic 

concentration gradient and occurs through a variety of transporters and ion 

channels, which include sodium–hydrogen exchanger (NHE), sodium-calcium 

exchanger (NCX), sodium-bicarbonate co-transporter (NBC) and voltage-

insensitive sodium channels (Nx). Astrocytes express voltage gated sodium 

channels (Verkhratsky & Steinhäuser, 2000), although expression levels are 

generally lower than in neurons or some populations of oligodendroglia 

(Káradóttir et al., 2008). The expression of these channels by astrocytes in vivo  

is still being discussed (Rose & Verkhratsky, 2016), however it has been shown 

in spinal cord that in the event of sodium channel blockade they can serve as 

pathway for sodium entry (Rose, Ransom & Waxman, 1997). Sodium can also 

enter astrocytes through receptor pores such as ionotropic glutamate receptors 

(iGluRs), which are permeable to ions when activated. iGluR ion permeability is 

determined by their subunit expression (discussed in the previous chapter). 

Another route for sodium entry is via cation chloride co-transporters (CCC), 

which includes the sodium-potassium-chloride co-transporter 1 (NKCC1). This 

transporter has been implicated in astrocytic cell swelling. A major route for 

sodium extrusion occurs via the action of the sodium/potassium ATPase. During 

times of CNS injury or insult ionic gradients are disrupted and homeostatic 

maintenance breaks down, altering cell function and leading to changes in cell 

volume that can be fatal to the cell. 
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6.1.1 Sodium homeostasis 

Under normal physiological conditions, astrocytes regulate the ECS 

sodium concentration and contribute to the maintenance of the large inwardly 

directed sodium gradient. The energy contained within this sodium gradient is 

harnessed to transport other ions and molecules across the cell membrane, via 

expression of several sodium-dependent transporters. There is also a natural 

flow of sodium into cells, as some channels such as neurotransmitter receptor 

pores generate sodium currents (Lalo et al., 2011). These pores are permeable 

to cations and so sodium is the major cation which enters cells (Kirischuk, 

Parpura & Verkhratsky, 2012; Lalo et al., 2011). 

High extracellular sodium concentration or increases in sodium 

concentration, will trigger sodium uptake by astrocytes. This increases astrocyte 

intracellular sodium levels which can dissipate throughout the astrocyte 

syncytium via gap junctions, which lowers the intracellular sodium concentration 

(Rose & Ransom, 1997; Rouach et al., 2008). It has been determined that the 

conduction of gap junctions is not uniform and alterations to conductance 

change how sodium is distributed throughout the syncytium (Rouach et al., 

2008). The homeostatic control of sodium is not an independent process and is 

tightly linked to potassium homeostasis and pH regulation.  

6.1.2 Sodium transporters 

A variety of channels and transporters are involved in sodium influx and 

efflux (figure 6.1). Below are brief descriptions of the roles of the main sodium 

transporters expressed in astrocytes with particular interest shown for CCCs, of 

these the NKCC1 and KCC (potassium-chloride co-transporter) were 

specifically examined. Most of these channels are driven by the inward sodium 
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gradient that is generated between the extracellular space and the intracellular 

space, which involves the sodium/potassium pump. 

Figure 6.1: Key sodium transporters expressed by astrocytes. Sodium 

transporters and the direction of movement. NCX – sodium/calcium exchanger, 

KCC – potassium-chloride co-transporter, Nx – sodium channel, NBC – sodium-

bicarbonate co-transporter, Na/K ATPase – sodium/potassium ATPase, NHE – 

sodium/hydrogen exchanger. NKCC1 – sodium-potassium-chloride co-

transporter. 

There is a concentration of sodium transporters and iGluRs on astrocyte 

perisynaptic processes (Kirischuk, Parpura & Verkhratsky, 2012). The 

interaction of these processes with synapses allows astrocytes to respond to 

neuronal activity. The transporters in this location include NCX and glutamate 

transporters (Minelli et al., 2007). The NCX can function in both forward and 



204 
 

reverse modes, the working direction of the exchanger is determined by both 

the intracellular and extracellular sodium and calcium concentrations, as well as 

the membrane potential (Kirischuk, Parpura & Verkhratsky, 2012). The NCX 

reversal potential is close to the membrane resting potential (Kirischuk, 

Kettenmann & Verkhratsky, 1997) and so changes in the membrane potential 

will alter the direction of the exchanger. Therefore the NCX fluctuates between 

forward and reverse directions as activity levels change (Rojas, Ramos & 

Dipolo, 2004).  

Under physiological conditions, the sodium/potassium ATPase (NKA) 

extrudes sodium from cells in exchange for potassium and is the main exporter 

of sodium and a major energy consumer (Erecińska & Silver, 1994). The NKA 

accounts for approximately 50% of cellular ATP hydrolysis (Astrup, Sørensen & 

Sørensen, 1981) and the high energy usage links the process of homeostasis to 

cellular metabolism (Silver & Erecińska, 1997). Any loss of function of this 

transporter can cause neurological disorder symptoms, such as aspects of 

parkinsonism and Alzheimer’s disease (Moseley et al., 2007). The NKA is 

sensitive to changes in both sodium and potassium concentration (Walz & 

Hertz, 1982), and even small rises in extracellular potassium concentration 

trigger activation of the transporter (Dinuzzo et al., 2012). The presence of NKA 

on perisynaptic processes associates it with synaptic activity and it has been 

established that glutamate uptake and accompanying sodium influx triggers 

NKA activity (Pellerin & Magistretti, 1997). Co-assembly of aquaporin 4 (AQP4) 

and NKA has been found on astrocyte process endfeet, implicating NKA activity 

with water movement (Illarionova et al., 2010). 

Astrocyte Nx channels are sensitive to extracellular increases in sodium 

concentration, but are insensitive to changes in voltage (Noda & Hiyama, 2005). 
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Activation of Nx causes intracellular increase in sodium, which activates NKA to 

extrude the accumulated sodium. The Nx mediated stimulation of NKA causes 

glycolysis and subsequent lactate release, linking extracellular sodium 

increases with metabolite export (Rose & Verkhratsky, 2016). 

The sodium-potassium-chloride co-transporter 1 (NKCC1) is widely 

expressed in astrocytes and has been confirmed in cortex, corpus callosum, 

hippocampus, cerebellum and optic nerve (MacVicar et al., 2002; Yan, 

Dempsey & Sun, 2001a). During physiological conditions this transporter directs 

the movement of sodium, potassium and chloride ions into the cell, by utilizing 

the inwardly directed sodium gradient (Jayakumar & Norenberg, 2010). NKCC1 

can be activated by an increase in the extracellular potassium concentration (Su 

et al., 2002). The movement of chloride ions into astrocytes by NKCC1 can lead 

to the intracellular accumulation of chloride, triggering the influx of water which 

causes an increase in cell volume and swelling (Su et al., 2002). Normal 

increases in cell volume can be corrected via regulated volume decrease. The 

genetic ablation of NKCC1 reduced cell swelling, which indicates a role for 

NKCC1 in volume regulation (Su et al., 2002). NKCC1 may also contribute to 

pathology and has been implicated in cytotoxic cell swelling (Chen & Sun, 2005; 

Jayakumar & Norenberg, 2010).  

The regulation of pH is partly achieved with the activation of the sodium-

bicarbonate co-transporter (NBC) which is sensitive to increases in the 

extracellular potassium concentration, arising from neuronal activity (Rose & 

Verkhratsky, 2016). NBC activation can stimulate the glycolysis regulatory 

enzyme phosphofructokinase, which triggers glycolysis (Ruminot et al., 2011) 

and links neuronal activity to astrocyte metabolism. Sodium-hydrogen 

exchangers (NHE) work in conjunction with NBCs to achieve pH regulation, 
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through sodium export and proton import. This transporter is also important for 

sodium extrusion. The absence of NHE increased astrocyte tolerance to OGD 

(Kintner et al., 2004), suggesting a role in ischaemic injury. 

The uptake of neurotransmitters and precursors utilizes the sodium 

gradient. Therefore glutamate or γ-aminobutyric acid (GABA) movement by 

excitatory amino acid transporters 1 and 2 (EAAT1 and 2), is accompanied by 

sodium ions (Schousboe, 2003). This results in transient increases in 

intracellular sodium concentration mainly within astrocyte processes, however 

more general cell wide increases can occur (Chatton, Marquet & Magistretti, 

2000). 

6.1.3 Role of astrocytic sodium in the CNS 

Sodium transporter, receptors and channels have been found to be 

concentrated on astrocyte perisynaptic processes (Kirischuk, Parpura & 

Verkhratsky, 2012). These processes are in a unique location to interact with 

synapses. From this position astrocytes can detect the size and duration of 

neuronal activity and respond accordingly. Fluctuations in sodium levels allow 

astrocytes to regulate many physiological processes and link sodium 

concentration with homeostasis and metabolism. The resting concentration of 

astrocyte intracellular sodium concentration is approximately 15mM (Rose & 

Verkhratsky, 2016) which is in part maintained through passive sodium entry 

into cells, during resting conditions (Rose & Ransom, 1996). 

Calcium is the predominant astrocyte signalling molecule, however it has 

been found that astrocytes are also sensitive to changes in sodium 

concentrations and produce sodium fluctuations (Verkhratsky et al., 2013). 

Astrocyte calcium responses induced by synaptic activity are short acting, 
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whereas astrocyte sodium transients are more prolonged and can outlast 

synaptic transmission (Kirischuk, Kettenmann & Verkhratsky, 2007; Verkhratsky 

et al., 2013). This indicates that astrocytes have the capability to produce 

different responses to neuronal stimuli through the use of different signalling 

molecules. Astrocyte sodium signals are proportional to synaptic activation and 

can differ in both time course and amplitude (Rose & Verkhratsky, 2016). The 

sodium transients generated in perisynaptic processes can spread throughout 

the astrocyte and trigger propagating waves that spread throughout the 

astrocyte network (Bernardinelli, Magistretti & Chatton, 2004). The sodium 

waves transmit across the astrocyte syncytia in a similar manner to calcium 

waves, predominantly through hemi-channels that form gap junctions with 

neighbouring cells (Langer et al., 2012).  

Sodium signalling can trigger a variety of homeostatic responses based 

upon the levels of neuronal activity (Kirischuk, Parpura & Verkhratsky, 2012). 

Sodium signals can function independently, direct calcium signals or work in 

conjunction with calcium signals. For example, increases in sodium 

concentration can cause rapid transient calcium increases within astrocyte 

microdomains (Kirischuk, Parpura & Verkhratsky, 2012), which occur due to the 

reversal of the NCX. There are many signalling functions of sodium, which 

require further investigation. 

The neurotransmitter shuttles for glutamine/glutamate and 

glutamate/GABA are modulated by sodium, via direct regulation of glutamine 

synthetase (Benjamin, 1987). Sodium increases can dictate the speed and 

direction of GABA and calcium transport (Kirischuk, Parpura & Verkhratsky, 

2012) which occurs via sodium dependent GABA transporters (GATs). GABA 

release can be triggered by changes in intracellular sodium concentration 
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(Kirmse & Kirischuk, 2006), which also regulate glutamate uptake (Chatton, 

Marquet & Magistretti, 2000). 

The homeostatic regulation of potassium is a complex process involving 

sodium, in which many systems and transporters cooperate. Sodium increases 

trigger activation of the NKA and NKCC1, both of which allow entry of potassium 

into the astrocytes thereby lowering the extracellular concentration (Kirischuk, 

Parpura & Verkhratsky, 2012). Inwardly rectifying potassium channels, which 

are involved in lowering the extracellular potassium concentration, can be 

inhibited by increases in intracellular sodium concentration (Rose & 

Verkhratsky, 2016), thereby disrupting potassium homeostasis. The sodium 

concentration is used to modulate transporters involved in intra and extracellular 

pH homeostasis (Deitmer & Rose, 2010). The main transporters involved to 

achieve this are the NHE and NBC, thus regulating the movement of protons, 

hydroxide and bicarbonate ions to maintain the pH. The transmembrane sodium 

gradient is also utilized for the scavenging of reactive oxygen species (ROS) by 

ascorbic acid (Rose & Verkhratsky, 2016). 

Sodium has an impact on metabolic regulation, activation of the NKA can 

stimulate glycolysis which produces lactate, possibly for the ANLS hypothesis 

(Pellerin & Magistretti, 1994). Intracellular sodium increases stimulate glucose 

uptake in astrocyte process endfeet (Voutsinos-Porche et al., 2003), which 

partly provides substrate for the increase in glycolysis. Mitochondria can also 

respond to sodium signals through increases in intra-mitochondrial sodium 

concentration (Bernardinelli, Azarias & Chatton, 2006). This regulates astrocyte 

mitochondrial metabolism and can result in further lactate production by 

stimulating glycolysis (Azarias et al., 2011). 
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Cell swelling occurs in response to extracellular increases in sodium and 

potassium concentration and is thought to be predominantly mediated by 

several transporters including NKCC1, NBC and KCC (Florence, Baillie & 

Mulligan, 2012; Payne et al., 2003). The KCC is part of the same solute carrier 

family as NKCC1 (Mercado, Mount & Gamba, 2004) and is able to function bi-

directionally (Dunham & Ellory, 1981). The sodium dependent transmembrane 

movement of ions generates an osmotic gradient, which triggers the movement 

of water (Brookes, 2005) into astrocytes via aquaporin channels, (Brookes, 

2005; Nielsen et al., 1997; Payne et al., 2003), water efflux can also occur 

through these pores. Under physiological conditions, increases in cell volume 

are corrected via active volume regulation. The KCC can be stimulated to 

reduce cell volume (Brookes, 2005) through the export of potassium and 

chloride ions. Astrocyte cell volume is also regulated by the NHE which works 

alongside anion exchangers to maintain the correct volume of the cell (Brookes, 

2005).  

In some cell populations sodium can act as a regulator of protein activity 

by physically binding to the protein channel. Some of the channels that have 

been found to be regulated in this manner are NMDA receptors (Yu & Salter, 

1998), voltage gated calcium channels, G-protein gated potassium channels 

(Blumenstein et al., 2004) and sodium dependent potassium channels 

(Bhattacharjee & Kaczmarek, 2005).  

6.1.4 Sodium influx, transporters and ischaemia 

The maintenance of ionic gradients and ion homeostasis is an energy 

intensive process. During ischaemia, the reduced energy and oxygen supply 

disrupts ionic gradients causing cellular dysfunction. A major mechanism of 

ischaemia induced astrocyte cell death is via cytotoxic cell swelling. Astrocytes 
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are susceptible to cell swelling due to their role in glutamate uptake and 

potassium clearance, both of which utilize the sodium gradient (Boscia et al., 

2016). The disruption of ions during ischaemia and over-activation of 

transporters and receptors allows the influx of sodium, potassium and chloride 

into astrocytes. Movement of water into cells follows this influx due to osmotic 

overload, this increases cell volume and results in astrocyte swelling (Su et al., 

2002; Su, Kintner & Sun, 2002). Cell swelling can occur to such an extent that it 

becomes cytotoxic, cell membranes lose integrity and burst (Gurer et al., 2009). 

Under physiological conditions any swelling can be corrected via regulated 

volume decrease. This process requires energy and cannot occur during 

ischaemia as ATP is unavailable and so astrocytes succumb to injury. 

Previous work by the group has established that in P10 ON, ischaemic 

injury is sodium dependent (Thomas et al., 2004). This study suggested that 

ischaemic injury was mediated by NKCC1. Further evidence from the literature 

suggests that NKCC1 has a role in ischaemic injury, due to its role in ion 

movement. Pharmacological inhibition of NKCC1 has been found to protect 

neurons from ischaemic injury (Yan, Dempsey & Sun, 2001b), possibly by 

preventing the swelling induced release of glutamate and reducing 

excitotoxicity, the main mechanism of ischaemic neuronal death. The inhibition 

of NKCC1 has also been found to reduce oedema and the size of ischaemic 

infarct (O'Donnell et al., 2004; Yan, Dempsey & Sun, 2001b).  

Ischaemia causes an increase in extracellular potassium, which can 

stimulate NKCC1 activity and induce astrocyte swelling, increasing cell size by 

approximately 20% (Su et al., 2002; Su, Kintner & Sun, 2002). This swelling was 

prevented through the inhibition of NKCC1 or the absence of chloride or sodium 

(Su, Kintner & Sun, 2002). Su et al (2002) determined that astrocyte NKCC1 
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remains active during cell swelling, implying that during ischaemia the 

transporter may remain open, thereby exacerbating injury. It has been 

suggested that there may be a feed forward effect, whereby NKCC1 is further 

stimulated by cell swelling (Mongin et al., 1994). During ischaemia volume 

regulation mechanisms are inhibited, which is detrimental to the cell (Mongin & 

Kimelberg, 2005). 

Reperfusion after ischaemic insult has been found to reactivate NKCC1 

which may be responsible for a proportion of reperfusion injury (Kintner et al., 

2007; Kintner et al., 2004; Lenart et al., 2004). The reintroduction of blood flow 

can also activate the NHE, causing sodium entry (Kintner et al., 2004). It has 

been found that NKCC1 can also be activated via phosphorylation of the 

transporter (Flemmer et al., 2002; Lenart et al., 2004). Once stimulated NKCC1 

has the ability to activate the reverse mode of NCX, due to the increase in 

intracellular sodium. In this chapter the role of sodium and CCCs in astrocyte 

ischaemic injury has been investigated. In order to study the potential 

involvement of these transporters inhibitors were used to block the transporter 

of interest. Here bumetanide was used to specifically inhibit NKCC1, DIOA was 

used to selectively inhibit KCC and furosemide was used as a non-specific CCC 

inhibitor (figure 6.2). In this chapter we investigated the hypothesis that cytotoxic 

sodium influx plays a significant role in ischaemia induced astrocyte cell death. 
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Figure 6.2: Action of CCC inhibitors. Furosemide inhibits all CCCs, Bumetanide 

specifically inhibits NKCC1 and DIOA inhibits KCC. 
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6.2 RESULTS: SODIUM DEPENDENT ASTROCYTE CELL DEATH IN DENTATE 

GYRUS. 

Sodium influx has been implicated in ischaemic astrocyte swelling and 

death in P10 rat optic nerve (Thomas et al., 2004). To investigate the role of 

sodium in ischaemic injury, sodium was removed from the aCSF during OGD 

and was replaced with NMDG chloride (128mM). This was to determine whether 

ischaemic injury of adult astrocytes was sodium dependent in the CC and the 

DG.  

In CC, the confocal images show that many astrocytes survive the period 

of OGD in both the presence and absence of sodium (figure 6.3A). The lack of 

sodium caused a significant increase in t value from 62.00 ± 2.32 mins to 71.25 

± 3.52 mins (p=0.0455, figure 6.1B), which suggests a slower rate of cell death. 

When sodium was removed from the aCSF, the total cell death was decreased 

from 40.17 ± 6.45% to 31.79 ± 8.41% (not significant, figure 6.3C).  

In DG, the removal of sodium had a profound effect upon OGD induced 

cell death (figure 6.4). The confocal images show that in the absence of sodium, 

GM astrocytes can survive the ischaemic insult and reperfusion (figure 6.4A, 

lower panel). The t values were not significantly different between the two 

conditions, for DG this was 54.64 ± 3.30 mins and without sodium was 64.92 ± 

3.48 mins (figure 6.4B). By removing sodium GM astrocytes behaved in a 

similar manner to those in WM. The overall cell death achieved without sodium 

was decreased from 97.61 ± 1.01% to 37.70 ± 9.80% (p=<0.0001, figure 6.4C). 

These results suggest that sodium influx during OGD accounts for the higher 

injury sensitivity of DG astrocytes compared to CC cells.  
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Figure 6.3: Zero Sodium conditions had no effect on OGD induced astrocyte cell 

death in corpus callosum (CC). A: Confocal images during OGD (upper panel) 

and OGD with 0 Na (lower panel). Images taken at 0 and 100 minutes. Scale 

bar = 20 µm. B: Astrocyte cell death over time. C: total cell death at time 100 

minutes, OGD only (black bar) and OGD with 0Na+ (green bar). Error bars = 

SEM. N numbers = number of cells/number of slices. 
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Figure 6.4: Zero Sodium conditions decreased OGD induced astrocyte cell 

death in dentate gyrus (DG). A: Confocal images during OGD (upper panel) and 

OGD with 0 Na (lower panel). Images taken at 0 and 100 minutes. Scale bar = 

20 µm. B: Astrocyte cell death over time. C: total cell death at time 100 minutes, 

OGD only (black bar) and OGD with 0Na+ (green bar). Error bars = SEM. N 

numbers = number of cells/number of slices. 
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6.3 RESULTS: ROLE OF NKCC1 IN ISCHAEMIC ASTROCYTE CELL DEATH 

The NKCC1 is known to play a role in astrocyte cell swelling (Su, Kintner & 

Sun, 2002), which contributes to OGD induced cell death. The involvement of 

this transporter in ischaemic astrocyte cell death was examined by inhibiting the 

NKCC1 with bumetanide. Bumetanide is a well-known and widely used distal 

loop diuretic and is a specific inhibitor of the NKCC1 at the concentration used 

(50µM). 

6.3.1 Results: Effect of NKCC1 inhibition on OGD induced astrocyte 

death in adult slices 

The inhibition of NKCC1 increased OGD induced astrocyte cell death in 

CC (figure 6.3). The confocal images illustrate the difference in cell death 

between OGD only and OGD in the presence of bumetanide (figure 6.5A). The 

addition of bumetanide did not cause a significant change in t value, which was 

62.00 ± 2.32 mins for CC and 58.92 ± 2.39 mins for CC with NKCC1 inhibition 

(figure 6.5B). The total amount of cell death achieved with OGD and 

bumetanide was significantly higher than that seen in OGD only conditions 

(figure 6.5C). The inhibition of NKCC1 caused cell death to increase from 40.17 

± 6.45% to 92.65 ± 2.64 % (p=<0.0001), which is similar to the amount of OGD 

induced cell death seen in GM astrocytes. 

In DG, the presence of bumetanide did not affect OGD induced astrocyte 

cell death (figure 6.6). Exposure to OGD either in the presence or absence of 

the drug caused the majority of astrocyte to die as seen in the confocal images 

(figure 6.6A). The t value was not significantly altered by the addition of 

bumetanide, the t for DG was 54.64 ± 3.30 mins and with inhibitor was 52.58 ± 

2.63 mins, suggesting that the presence of bumetanide had very little effect 
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(figure 6.6B). The inhibition of NKCC1 did not alter the total amount of OGD 

induced astrocyte death, 97.61 ± 1.01% with OGD and 97.69 ± 1.73% with 

OGD and bumetanide (not significant, figure 6.6C). Taken together these results 

suggest that NKCC1 has different roles in CC and DG during ischaemic insult. 

The inhibition of the transporter had a greater effect in CC showing that there is 

a potential role for the NKCC1 in astrocyte survival. 
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Figure 6.5: NKCC1 inhibitor bumetanide (50µM) increased OGD induced 

astrocyte cell death in corpus callosum (CC). A: Confocal images during OGD 

(upper panel) and OGD with bumetanide treatment (lower panel). Images taken 

at 0 and 100 minutes. Scale bar = 20 µm. B: Astrocyte cell death over time. C: 

total cell death at time 100 minutes, OGD only (black bar) and OGD with 

bumetanide (green bar). Error bars = SEM. N numbers = number of 

cells/number of slices. 
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Figure 6.6: NKCC1 inhibitor bumetanide (50µM) has no effect on OGD induced 

astrocyte cell death in dentate gyrus (DG). A: Confocal images during OGD 

(upper panel) and OGD with bumetanide treatment (lower panel). Images taken 

at 0 and 100 minutes. Scale bar = 20 µm. B: Astrocyte cell death over time. C: 

total cell death at time 100 minutes OGD only (black bar) and OGD with 

bumetanide (green bar). Error bars = SEM. N numbers = number of 

cells/number of slices.  
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6.3.2 Results: NKCC1 inhibition and the effect on OGD induced cell 

death in neonatal astrocytes 

It was previously established that mechanisms of ischaemic astrocyte 

death change with age, from a calcium dependent mechanism in P2 ON to 

sodium dependent in P10 ON (Fern, 1998; Thomas et al., 2004). The previous 

section investigated NKCC1 inhibition in adult brain slices. Here the effect of 

bumetanide on neonatal astrocytes (P10) was examined to see if there were 

any differences in the mechanism of cell death at this age. In CC, the presence 

of bumetanide significantly increased astrocyte cell death from 10.86 ± 3.10% to 

38.69 ± 4.80%, p=0.0007 (figure 6.7C). The confocal images illustrate the 

increased astrocyte sensitivity to OGD that occurs with the addition of 

bumetanide (figure 6.7A). However, inhibition of NKCC1 did not cause a 

significant change in t value, which for neonate CC was 78.30 ± 5.33 mins and 

75.75 ± 5.13 mins with bumetanide (figure 6.5B).  

The neonatal DG astrocytes behaved differently to neonatal CC 

astrocytes. Inhibiting NKCC1 in DG significantly reduced astrocyte cell death 

from 67.38 ± 12.79% to 34.09 ± 4.36%, (p=0.0335, figure 6.8 C). The confocal 

images depict the tolerance of DG astrocytes in the presence of bumetanide 

compared with OGD only, where cell breakdown and death can be seen (figure 

6.8A). NKCC1 inhibition did not cause a significant change in t value, for 

neonate DG this was 68.50 ± 3.13 mins and with bumetanide was 73.42 ± 1.91 

mins (figure 6.8B). The addition of bumetanide had differing effects in each 

region investigated, suggesting that the mechanism of ischaemic cell death 

depends upon the region in which astrocytes are located. The results for the 

neonatal CC astrocytes were similar to those for the adult CC astrocytes, where 

NKCC1 inhibition increased sensitivity to OGD. However, for neonate DG 
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astrocytes, bumetanide treatment was protective and increased tolerance to 

ischaemic insult. 
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Figure 6.7: Bumetanide treatment (50µM) increased OGD induced astrocyte cell 

death in neonatal corpus callosum (CC). A: Confocal images taken during OGD 

(upper panel) and during OGD with bumetanide treatment (lower panel). Images 

taken at 0 and 100 minutes. Scale bars = 20µM. B: Astrocyte cell death over 

time. C: cell death at time 100 minutes, OGD only (black bar) and OGD with 

bumetanide (green bar). Error bar = SEM. N numbers = number of cells/number 

of slices. 
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Figure 6.8: Bumetanide treatment (50µM) decreased OGD induced astrocyte 

cell death in neonatal dentate gyrus (DG). A: Confocal images taken during 

OGD (upper panel) and during OGD with bumetanide treatment (lower panel). 

Images taken at 0 and 100 minutes. Scale bars = 20µM. B: Astrocyte cell death 

over time. C: cell death at time 100 minutes, OGD only (black bar) and OGD 

with bumetanide (green bar). Error bar = SEM. N numbers = number of 

cells/number of slices. 
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6.4 RESULTS: ROLE OF KCC IN ISCHAEMIC ASTROCYTE CELL DEATH 

The NKCC is not the only CCC expressed by astrocytes, the KCC was 

selected for investigation due to its transportation of chloride ions and 

involvement in astrocyte cell swelling (Ringel & Plesnila, 2008). Ringel and 

Plesnila (2008) found that the inhibition of KCC increased cell volume, 

suggesting dysfunction of this transporter may contribute to ischaemic astrocyte 

death. The KCC was selectively inhibited by the addition of 50µM DIOA (2-[[(2S-

2-butyl-6,7-dichloro-2-cyclopentyl-1-oxo-3H-inden-5-yl]oxy]acetic acid).  

In CC, the selective KCC inhibitor caused a significant increase in 

astrocyte OGD induced cell death from 40.17 ± 6.45% to 61.93 ± 4.87% 

(p=0.0332, figure 6.9C). The confocal images illustrate the loss of astrocytes 

due to OGD in the presence of DIOA (figure 6.9A). KCC inhibition caused a 

change in the rate of cell death as the t values were significantly different. The 

CC t value was 62.00 ± 2.32 mins and with the addition of DIOA was 48.08 ± 

2.19 mins (p=0.0012, figure 6.9B). 

The presence of DIOA decreased OGD induced astrocyte death in DG 

from 97.61 ± 1.01% to 88.19 ± 10.25% (not significant, figure 6.10C). The total 

cell death for slices treated with DIOA had more variability and so the reduction 

in cell death was not significant. The confocal images depict extensive cell 

death in both conditions (6.10A). The inhibition of KCC caused little change to 

the cell death profile and the t values were not significantly different, for DG this 

was 54.64 ± 3.30 mins and with DIOA was 49.08 ± 2.58 mins (figure 6.10B). 

The inhibition of the KCC neither protected nor caused widespread cell death, 

which would suggest that this transporter has a less prominent role in OGD 

induced astrocyte cell death. 
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Figure 6.9: DIOA treatment (50µM) increased OGD induced astrocyte cell death 

in corpus callosum (CC). A: Confocal images during OGD (upper panel) and 

OGD with DIOA treatment (lower panel). Images taken at 0 and 100 minutes. 

Scale bar =20 µm. B: Astrocyte cell death over time. C: total cell death at time 

100 minutes, OGD only (black bar) and OGD with DIOA (green bar). Error bars 

= SEM. N numbers = number of cells/number of slices. 
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Figure 6.10: DIOA treatment (50µM) had no effect on OGD induced astrocyte 

cell death in dentate gyrus (DG). A: Confocal images during OGD (upper panel) 

and OGD with DIOA treatment (lower panel). Images taken at 0 and 100 

minutes. Scale bar =20 µm. B: Astrocyte cell death over time. C: total cell death 

at time 100 minutes, OGD only (black bar) and OGD with DIOA (green bar). 

Error bars = SEM. N numbers = number of cells/number of slices. 
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6.5 RESULTS: BROAD-SPECTRUM INHIBITION OF CCCS REDUCED GM 

ASTROCYTE CELL DEATH 

The selective inhibition of NKCC1 and KCC had varying impacts on OGD 

induced astrocyte cell death in WM and GM. To investigate the role of all CCCs 

slices were then treated with furosemide, another widely used distal loop 

diuretic which at 5mM concentration will non-selectively inhibit the majority of 

CCCs.  

In CC, the addition of furosemide did not affect OGD induced astrocyte cell 

death when compared to OGD only conditions (figure 6.11). The confocal 

images illustrate that CC astrocytes were tolerant to OGD under both conditions 

(figure 6.11A). The inhibition of CCCs with furosemide slowed the rate of cell 

death and resulted in an increase in t value, however this was not significant 

(figure 6.11B). The t values for CC with and without furosemide were 70.25 ± 

5.60 mins and 62.00 ± 2.32 mins respectively. The presence of furosemide did 

not affect the total amount of OGD induced cell death (figure 6.11C). The 

astrocyte death in the presence of furosemide was 39.07 ± 6.78% and was 

40.17 ± 6.45% with OGD only (not significant). 

In DG, the presence of furosemide slightly increased astrocyte tolerance to 

ischaemia (figure 6.12). The confocal images show that inhibition of CCCs 

provided protection and resulted in astrocytes that survive OGD (figure 6.12A). 

Furosemide did not alter the rate of cell death as shown by the t value, which 

was 54.64 ± 3.30 mins for DG only and 62.00 ± 2.04 mins with inhibitor (figure 

6.12B). Inhibition of CCCs caused cell death to significantly decrease from 

97.61 ± 1.01% to 89.89 ± 2.75% (p=0.0073, figure 6.12C). The addition of 

furosemide had a greater effect on GM astrocytes, suggesting that CCCs have 

a greater role in OGD induced astrocyte death in DG than in CC.  
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Figure 6.11: Furosemide treatment (5mM) had no effect on OGD induced 

astrocyte cell death in corpus callosum (CC). A: Confocal images taken during 

OGD (upper panel) and OGD with furosemide treatment (lower panel). Images 

taken at 0 and 100 minutes. Scale bar =20 µm. B: CC astrocyte cell death over 

time. C: total cell death at time 100 minutes, OGD only (black bar) and OGD 

with furosemide (green bar). Error bars = SEM. N numbers = number of 

cells/number of slices. 
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Figure 6.12: Furosemide treatment (5mM) decreased OGD induced astrocyte 

cell death in dentate gyrus (DG). A: Confocal images taken during OGD (upper 

panel) and OGD with furosemide treatment (lower panel). Images taken at 0 

and 100 minutes. Scale bar =20 µm. B: CC astrocyte cell death over time. C: 

total cell death at time 100 minutes, OGD only (black bar) and OGD with 

furosemide (green bar). Error bars = SEM. N numbers = number of cells/number 

of slices.  
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6.6 RESULTS: COMPARISON OF CCC INHIBITORS 

To determine the effect of inhibiting CCCs on OGD induced astrocyte cell 

death, the regions were compared for each condition, (CC figures 6.13A, C, E 

and G, DG figures 6.13B, D, F and H) over time (figures 6.11A and B) and at 

selected time points (figures 6.13C-H). In CC, the results demonstrate that 

inhibition of NKCC1 with bumetanide had the greatest effect on OGD induced 

astrocyte cell death (figure 6.13A). The presence of bumetanide significantly 

increased CC cell death after 60 minutes OGD from 23.11 ± 7.12% to 73.35 ± 

5.60% (p=<0.0001, figure 6.13 E). Throughout the reperfusion period cell death 

was increased, this increase remained at the end of the experiment (figure 

6.13G). The addition of DIOA, to inhibit KCC, increased OGD induced cell death 

but to a lesser extent than in the presence of bumetanide. After 30 minutes of 

OGD, astrocyte death was increased from 0% to 10.91 ± 2.16% (p=<0.0001) 

and after 60 minutes OGD, DIOA increased cell death from 23.11 ± 7.12% to 

55.08 ± 4.67%, (p=0.0044, figures 6.13C and E). These results suggest that the 

inhibition of KCC increased sensitivity to ischaemic insult in CC astrocytes. The 

other inhibitors used did not significantly affect OGD induced astrocyte cell 

death. The data indicate that NKCC1 acts as an important protector of 

astrocytes in adult WM, which largely accounts for the ischaemia tolerance of 

these cells. 

The inhibition of NKCC1 did not affect OGD induced cell death in DG, 

where astrocytes behaved in a similar manner to those under OGD only 

conditions (figure 6.13B). In this region the most significant decrease in OGD 

induced cell death was seen in sodium free conditions, this reduced DG 

astrocyte sensitivity to OGD. After 60 minutes of insult, cell death dropped from 

81.61 ± 7.66% to 19.02 ± 4.17% with the absence of sodium (p=<0.0001, figure 
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6.13F). The reduction in cell death was maintained throughout the reperfusion 

period (p=<0.0001, figure 6.13H). The only other inhibitor which delayed cell 

death was furosemide (figure 6.13B). The CCC inhibitor did reduce cell death at 

each time point, however, this was not significant (figure 6.13D, F and H). The 

DG is very sensitive to OGD and widespread cell death is seen in this region, 

which limits the detection of increased sensitivity to OGD induced injury. The 

absence of any significant effect of drugs upon the rate of astrocyte cell death 

during OGD argue against a role for any of the CCC in the reduction of injury in 

this cell population. 

Sodium free conditions applied during OGD had a highly protective effect 

on DG astrocytes suggesting ischaemic cell death in GM is sodium dependent, 

whereas in CC sodium removal had little effect. The findings highlight the 

significant cellular injury pathways that operate in these two populations of 

astrocytes. 
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Figure 6.13: Comparison of sodium transporter inhibition. A + B: Cell death over 

time with OGD only and for each inhibitor. C + D: Astrocyte cell death after 30 

minutes OGD for each inhibitor. E + F: Astrocyte cell death after 60 minutes 

OGD for each inhibitor, G + H: Total astrocyte cell death after reperfusion 

period. A, C, E + G: CC, B, D, F + H: DG. Error bars = SEM. Comparison via 

ANOVA, inhibitors compared to OGD.  
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6.7 DISCUSSION: SODIUM AND CCCS IN OGD INDUCED ASTROCYTE CELL 

DEATH 

Previously, it was established that ischaemic insult causes cytotoxic cell 

swelling and astrocyte death, which is thought to be mediated by CCCs such as 

NKCC1, and that ischaemic injury is sodium dependent (Thomas et al., 2004). 

My data shows that this picture is too simplistic and that cellular mechanism of 

acute ischaemic injury differ significantly between astrocyte populations. During 

ischaemia, intracellular accumulation of sodium ions is accompanied by chloride 

and potassium ion influx, triggering water uptake and increase in cell volume 

(Su et al., 2002; Su, Kintner & Sun, 2002). Under normal, physiological 

conditions this would be rectified via ion redistribution or regulated volume 

decrease. Ischaemia induced cell swelling cannot be corrected due to reduced 

energy availability and the disruption of ion gradients, thus active volume 

regulation is not an option. The increased astrocyte volume strains the cell 

membrane, leading to the eventual loss of membrane integrity and cell rupture 

(Gurer et al., 2009). My data shows that acute injury is not prevented by 

removing extracellular calcium indicating that this is not a form of the calcium-

mediated injury that underlies neuron and oligodendrocyte cell death. Prior work 

has shown that zero-calcium conditions can exacerbate cytotoxic cell swelling in 

astrocytes (Thomas et al., 2004), which is consistent with my findings.  

6.7.1 DG OGD induced astrocyte cell death is sodium dependent 

The data in this chapter show that in the DG, OGD induced astrocyte cell 

death is sodium dependent, confirming the findings of Thomas et al. (2004) in 

the neonatal optic nerve. In the DG, the replacement of sodium was highly 

protective and the resulting OGD tolerance of cells was similar to that of WM 

astrocytes (figure 6.4). Astrocyte cell death in DG was reduced with the non-
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specific inhibition of CCCs with furosemide (figure 6.12) but the selective 

inhibition of NKCC1 and KCC did not affect DG astrocyte cell death. The data 

suggest that cytotoxic sodium influx during OGD occurs via a different route. It is 

possible that an alternative pathway for sodium influx is via activated glutamate 

receptors, which are known to be permeable to a variety of ions including 

sodium (Dzamba, Honsa & Anderova, 2013; Lalo et al., 2011).  

The hippocampus is a region of high neuronal activity and so the majority 

of hippocampal astrocytes will have processes that interact with synapses. 

These perisynaptic processes are rich in ionotropic glutamate receptors, CCCs 

and other sodium transporters. The presence of a variety of different channels 

on astrocyte perisynaptic processes provides sodium with many routes of entry, 

all of which may contribute to ischaemic cell death. The data suggest a 

furosemide sensitive but bumetanide and DIOA insensitive transporter, such as 

an anion exchanger may be important for DG astrocyte injury. This would 

indicate that the sodium and furosemide sensitive injury occur via parallel 

pathways. 

6.7.2 NKCC1 and KCC are required for CC astrocyte survival 

In CC, ischaemia induced cell death was not prevented by the absence 

of sodium, indicating a fundamentally different mode of injury to that in DG cells. 

The selective and general inhibition of CCCs gave differing results for each 

region investigated. Indicating that the roles of particular transporters depend 

upon the location of astrocytes and the levels of expression. This work has 

determined that in CC, NKCC1 and KCC are important for protecting astrocytes 

from ischaemic injury. The inhibition of these transporters caused significantly 

higher cell death in WM (figures 6.5 and 6.9). This finding is contrary to previous 

work where bumetanide provided protection to neonatal (P10) optic nerve 
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astrocytes during OGD (Salter & Fern, 2008; Thomas et al., 2004). This 

suggests that in the adult brain there may be different cell death mechanisms 

that are both region and development specific. The inhibition of KCC with DIOA 

increased CC astrocyte cell death but not to the extent seen with bumetanide 

treatment. It has been found that the inhibition of KCC increased cell swelling 

under physiological conditions (Ringel & Plesnila, 2008).  

The ischaemia induced sodium influx does not affect CC astrocytes to 

the same extent as DG astrocytes, showing regional differences in the cell 

death mechanism. The transporter inhibition did not prevent or reduce OGD 

induced astrocyte death in CC, whereas DG astrocyte death was reduced with 

the removal of sodium and in the presence of furosemide. The tolerance to 

OGD seen in CC astrocytes may result from the partial extrusion of any sodium 

influx. Alternatively, the OGD induced cell death that is observed may arise from 

the influx of another ion such as potassium. Potassium is also dysregulated 

during ischaemia and has been found to trigger cell swelling (Su, Kintner & Sun, 

2002). 

6.7.3 Sodium, CCCs and OGD induced astrocyte cell death 

The ischaemia induced sodium influx has been found to be detrimental to 

DG astrocytes but not CC astrocytes. Suggesting that different mechanisms of 

cell death exist for different astrocyte populations. The role of sodium 

transporters such as CCCs has also been found to differ depending upon 

region. The specific inhibition of CCCs was harmful to CC astrocytes, whereas 

CCC inhibition in DG astrocytes was protective. This conflicting effect 

demonstrates the difference in cell death mechanisms between regions and 

suggests that cytotoxic sodium influx is a significant cell death mechanism in 

GM. Here the levels of cell death have been manipulated to behave like those in 
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alternative locations (WM), through the removal of sodium and CCC inhibition. 

The difference seen in the involvement of CCCs may be due to differing 

expression levels of these transporters between regions. There is widespread 

expression of KCCs and NKCC1. Generally, the astrocyte expression of NKCC1 

peaks at approximately P21 and the level is constant throughout adulthood, this 

is so for regions including cortex, corpus callosum and hippocampus (Yan, 

Dempsey & Sun, 2001a). However, the authors suggested that there may be 

lower expression levels in the hippocampus compared to other regions. There is 

evidence to indicate that during ischaemia CCCs remain active and there is an 

increased expression of NKCC1 (Yan, Dempsey & Sun, 2001b). Therefore in 

cells with a higher tolerance to ischaemia the transporters will function to regain 

ionic balance and so the inhibition of the transporters will result in detrimental 

injury to cells.   

The use of sodium free aCSF does not only prevent the action of CCCs 

but inhibits other sodium transporters such as NHE, NCX and NKA. These 

transporters have also been implicated in ischaemic injury. In NHE null mice, 

astrocytes showed increased tolerance to ischaemic injury (Kintner et al., 2004). 

The inhibition of NCX reverse activity was found to attenuate ischaemic 

astrocyte injury (Matsuda et al., 2001). Even though there is astrocyte 

expression of NKA, during ischaemia it is unable to function (Pimentel et al., 

2013). The NHE and NCX are involved in the dysregulation of ion homeostasis 

during ischaemic insult (Boscia et al., 2016). It is possible that one of these 

transporters has a greater effect on astrocyte cell death, however further 

investigation into this is required. Alternatively, cytotoxic influx may occur 

through different, as yet unknown channels and may occur through the entry of 

a different ion entirely. Sodium is not the only ion which has been implicated in 
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cell swelling. Increases in extracellular potassium have been found to trigger 

cell swelling, most likely via NKCC1 but also other transporters (Su et al., 2002; 

Su, Kintner & Sun, 2002). 

Overall this chapter has determined that in DG, astrocyte ischaemic cell 

death is caused by cytotoxic influx of sodium. Whereas in CC, CCCs appear to 

have a beneficial role during ischaemia and cell death is not the result of 

cytotoxic sodium influx but by another mechanism. Further investigation is 

required into the role of cytotoxic ion influx in CC astrocyte ischaemic cell death.  
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7 DISCUSSION 

Ischaemic stroke is a leading cause of death and disability worldwide 

(WHO, 2014). There has been little change in therapeutic strategy since the 

development of tissue plasminogen activator (tPA) and other thrombolytic 

treatments (Christophe et al., 2017; National Institute of Neurological & Stroke 

rt, 1995). The nature of ischaemic injury means that prophylactic treatments 

would be difficult to administer and so the emphasis is on enabling fast recovery 

and the repair of damaged tissue.  

For many years ischaemia research has focussed on the effect that the 

injury has on neurons, even though all CNS cell types are affected by ischaemic 

insult. Recently, the effect of ischaemia on glial cells has been investigated, this 

has been triggered by the discovery of the important role that glial cells have in 

the CNS. Oligodendrocytes are required to myelinate neuronal axons, allowing 

fast signal conduction to occur, and to metabolically support axons (Morrison, 

Lee & Rothstein, 2013; Saab, Tzvetanova & Nave, 2013). Astrocytes have a 

large and varied role within the CNS, providing support both directly and 

indirectly to neurons. One major function of astrocytes is the homeostatic 

maintenance of the ECS and ionic gradients (Bushong et al., 2002; Deitmer & 

Rose, 1996; Rothstein et al., 1996; Yao et al., 2008), both of which are severely 

disrupted during ischaemic insult. 

This thesis aimed to determine whether astrocyte tolerance to acute 

ischaemia varied between astrocyte populations located in different regions in 

the mature CNS. Once the existence of regional astrocyte sensitivity to OGD 

was established, the mechanism behind the differences in tolerance was 

investigated. The mechanisms examined were based upon previous work by the 
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group and included the role of glycogen, the involvement of GluRs and sodium 

influx, the results of which are discussed below. 

Regional sensitivity to ischaemic injury has been previously established in 

neuronal populations (Pulsinelli, Brierley & Plum, 1982). This shows the 

existence of CNS regional differences to injury and so would suggest that 

astrocyte populations may also display regional differences to injury. This thesis 

has shown that astrocyte populations also have different sensitivities to 

ischaemia depending on their physical location (figure 3.16). It was determined 

that WM astrocytes were generally more tolerant to OGD than GM astrocytes, 

which confirms and agrees with findings in the literature (Lukaszevicz et al., 

2002; Xu, Sapolsky & Giffard, 2001). Variation in sensitivity to ischaemia was 

observed between WM astrocyte populations. The DG was found to contain the 

most sensitive astrocytes whereas the most tolerant were in the CC (figures 

3.16 and 3.17). Investigation into the sensitivity of neonatal (P10) astrocytes 

found that they expressed a similar pattern of tolerance to the adult cells. This 

indicates that neonatal astrocytes also show regional sensitivity to OGD and this 

phenomenon is not restricted to adult cells. 

Previous studies have found that immature oligodendroglia are very 

sensitive to ischaemic injury (Salter & Fern, 2005; Salter & Fern, 2008). 

However, in this work it has been determined that mature oligodendrocytes cell 

bodies in the adult CNS are very tolerant to acute ischaemic injury (figure 3.22), 

which is contrary to the view taken in the literature. Studies that have reported 

oligodendrocyte sensitivity examine cell death after OGD and long periods of 

reperfusion. Cell death occurs after the re-introduction of physiological 

conditions, widespread oligodendrocyte cell death has been reported nine hours 

after ischaemic insult (Mifsud et al., 2014). The evidence in the literature 
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suggests that the majority of ischaemic oligodendrocyte cell death may be due 

to sensitivity to reperfusion injury and the production of ROS and subsequent 

oxidative stress (Juurlink & Sweeney, 1997). These findings also illustrate that 

astrocytes are much more sensitive to insult than oligodendrocytes (figure 3.23). 

During this work the criteria used to determine oligodendrocyte cell death was 

the same as for astrocytes. Using this method cell death was not seen, however 

this did not account for any damage that may have occurred to oligodendrocyte 

processes. The effect of ischaemia and other diseases on oligodendrocyte 

processes and myelin is currently being investigated by the group and others 

such as the Stys group. 

The mechanisms behind the observed regional differences in astrocyte 

sensitivity to ischaemia were then investigated, beginning with the role of 

glycogen. Astrocytes contain the major glycogen stores in the brain and these 

stores can be utilized during times of decreased energy supply or high neuronal 

activity. Glycogen has been found to be involved in many processes including 

memory consolidation (Gibbs, Anderson & Hertz, 2006). The breakdown of 

glycogen results in the production of lactate which may be exported as a 

possible metabolite source for neurons (Pellerin et al., 1998). Previous work has 

found that intact glycogen stores conferred tolerance to astrocytes during 

ischaemic insult in neonatal (P0-2) optic nerves (Fern, 2015), suggesting that 

these stores may have a prominent role in protecting astrocytes during insult. 

This work has confirmed that the presence of large molecule glycogen 

stores provides astrocyte resistance to OGD (chapter 4). The inhibition of 

glycogen stores increased astrocyte cell death in CC. The lack of access to 

glycogen stores caused CC astrocytes to become more sensitive to ischaemic 

injury as cell death was increased during the OGD period. This suggests that 
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during ischaemia CC astrocytes are able to metabolise glycogen for a limited 

time before the cells are affected by OGD. 

Investigation into glycogen content found that DG astrocytes contained 

higher levels of glycogen than CC astrocytes (figure 4.18).This finding agrees 

with the literature, where higher levels of glycogen in the DG have been found 

by Oe et al (2016) and suggests that glycogen stores are important and 

necessary to this region. Although the DG contained higher levels of glycogen 

this did not confer resistance or protection from ischaemic injury. This may be 

due to an inability to utilize the glycogen stores before cell death occurs as 

astrocytes in this regions are very sensitive to insult. The hippocampus is a 

region of high neuronal activity that requires vast amounts of energy, a 

proportion of this demand is met by the utilization of glycogen stores. It has also 

been discovered that there are times when glycogen is the preferred substrate, 

such as the synthesis of glutamate precursors (Gibbs et al., 2007).  

The inhibition of glycogen stores had no effect on oligodendrocyte cell 

death, which suggests that astrocyte glycogen does not have a role in 

oligodendrocyte tolerance to ischaemia. The death of astrocytes does not 

appear to affect oligodendrocytes, showing that astrocyte sensitivity to 

ischaemia does not affect oligodendrocytes. This also indicates that there are 

different mechanisms of cell death for astrocytes and oligodendrocytes. 

Next the role of glutamate receptors as a potential mechanism of astrocyte 

cell death was investigated. Glutamate and glutamate receptors (GluRs) are 

responsible for ischaemia induced neuronal cell death via the process of 

excitotoxicity (Coyle et al., 1981; Lucas & Newhouse, 1957; Pulsinelli, Sarokin & 

Buchan, 1993). It is widely accepted that astrocytes are resistant to 

excitotoxicity and so ischaemic astrocyte cell death must be caused via a 



245 
 

separate mechanism. However, oligodendrocytes are susceptible to 

excitotoxicity, which triggers cytotoxic calcium influx. It has been determined 

that different glutamate receptors may mediate injury for processes and cell 

soma (Salter & Fern, 2005). NMDA receptors were found to contribute to 

oligodendrocyte process damage, whereas AMPA receptors were found to be 

expressed on cell somas and have been implicated in cell body injury (Salter & 

Fern, 2005). This work partly informed the investigation into the role of 

glutamate receptors in OGD induced astrocyte cell death. 

Here it has been established that ischaemia induced cell death in adult 

astrocytes occurs in a calcium independent manner. When external calcium 

was removed, the amount OGD induced cell death was increased in CC and the 

rate of cell death was increased in both regions (figures 5.1 and 5.2). Thus, 

suggesting that calcium influx, as a result of excitotoxicity, does not cause 

ischaemic astrocyte cell death. Although we have shown that external calcium is 

not required for OGD induced astrocyte death, it cannot be dismissed that 

calcium release from internal stores may have a role in ischaemic astrocyte 

death. The increase in astrocyte death caused by calcium removal may also 

have been due to the fact that reduced calcium conditions are detrimental to 

cells. This has been previously reported by Thomas et al (2004) and Salter and 

Fern (2008). 

Investigation into the role of GluRs revealed that inhibition of NMDA 

receptors caused increased cell death, suggesting a role for activated AMPA 

receptors in astrocyte cell death (figure 5.8).It has been suggested that NMDA 

receptors are involved in cell survival signalling (Ikonomidou, Stefovska & 

Turski, 2000; Papadia et al., 2005; Soriano & Hardingham, 2007; Tashiro et al., 

2006) and so inhibition of these receptors may prevent these signals, thereby 
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increasing astrocyte death. The inhibition of GluRs in conjunction with cobalt 

staining illustrated that cations are able to enter cells via activated GluRs and 

that this provides a route for cytotoxic ion influx (figure 5.11). Ischaemia induced 

cell death may occur via cytotoxic influx of ions, just not by the influx of external 

calcium. GluR pores are permeable to different ions and those expressed by 

glia have been found to have low permeability to calcium and have been found 

to be permeable to other ions such as sodium (Palygin et al., 2010). 

The final mechanism of ischaemia induced astrocyte cell death to be 

investigated was the role of sodium. Under physiological conditions increases in 

intracellular sodium cause astrocyte swelling. These normal increases in cell 

volume can be corrected via regulated volume decrease (Brookes, 2005). 

During ischaemia, cytotoxic cell swelling is a prominent event, leading to 

extensive astrocyte cell death. Previous work had suggested that during 

ischaemia, astrocyte injury was mediated by sodium influx in P10 ON (Thomas 

et al., 2004). Here we have shown that sodium free conditions were protective 

for DG astrocytes but were not beneficial for the CC population (figures 6.3 and 

6.4). These results indicate that for GM astrocyte sodium mediated cell death is 

an important mechanism. 

Investigation into the role of the CCCs, specifically NKCC1 and KCC found 

that the roles for these transporters varied between the CC and DG. Individually, 

it would appear that these transporters have a somewhat protective role for CC 

astrocytes, as their inhibition increased cell death. However, this finding is 

contrary to what has previously been shown, although in other work the focus 

was reducing the size of infarct and not cell death such as Su et al (2002a). 

Thomas et al (2004) did investigate astrocyte death, however this was only in 

neonatal optic nerve. The only protective effect on DG astrocytes was seen 



247 
 

when all CCCs were inhibited, which decreased cell death (figure 6.13). These 

results suggest that whilst there is a role for CCCs in DG astrocyte cell death, 

that NKCC1 and KCC may not be the only transporters involved. Their inhibition 

did not prevent cell death to the same extent as sodium free conditions, 

indicating that other sodium channels and transporters could contribute to 

sodium influx. The difference seen between the regions may be due to variation 

in expression levels across regions. Yan et al (2001 a and b) suggested there is 

lower NKCC1 expression in the hippocampus. Cytotoxic sodium influx may also 

occur via over-activated GluRs which show permeability to a variety of ions. 

Injury in the CC may be due to increases in a different ion such as 

potassium or that other transporters are involved in cytotoxic ion influx such as 

NHE and NCX both of which can also function in a reverse mode. It is possible 

that ischaemia induced astrocyte cell death occurs as the result of a different 

mechanism such as acidification. Astrocyte acidosis is thought to arise from 

accumulation of lactate production from the anaerobic glycolysis of glycogen 

(Verkhratsky & Parpura, 2015). 

7.1 FINAL CONCLUSIONS 

Overall this work has shown that different mature astrocyte populations 

display different sensitivities to ischaemic insult depending on their physical 

location. It was determined that GM astrocytes are more sensitive to injury than 

WM astrocytes. Significant variation was also observed within the WM astrocyte 

populations. The evidence gathered regarding astrocyte sensitivity to ischaemia 

agrees with what has been shown in the literature. Here it has also been 

established that mature oligodendrocytes are tolerant to acute ischaemic insult, 

although their processes may show more sensitivity to injury. Ischaemic infarcts 
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involve all cell types and often affect multiple regions and so by understanding 

how these cells react to injury may allow the development of new therapeutic 

strategies. 

Investigation into three possible cell death mechanisms has found 

significant differences between regions. The presence of glycogen had a 

greater protective effect in CC astrocytes compared to DG cells. In both regions 

OGD induced astrocyte cell death occurs independently of calcium. Astrocytes 

in both regions displayed sensitivity to cytotoxic ion influx via AMPA receptors. 

Astrocyte cell death in the DG is mediated by sodium influx, however it is 

unknown through which transporters sodium influx occurs. Although it has been 

confirmed that cation entry can occur through activated glutamate receptors. 

Sodium does not mediate ischaemic astrocyte death in CC and cell death in this 

region may be the result of cytotoxic influx of a different ion, however CCCs 

were found to have a beneficial role during ischaemia.  

The investigation into the role of glycogen stores has found that glycogen 

has an important role in the protection of CC astrocytes from ischaemic insult, 

however the increased levels of glycogen seen in DG did not confer protection 

to DG astrocytes. The regional variations in glycogen levels seen here agree 

with findings from Oe et al (2016). It is possible that CC astrocytes are able to 

metabolise glycogen for a limited time before the consequences of OGD fully 

take effect. The potential use of glycogen by astrocytes during insult requires 

further investigation to understand how glycogen attenuates injury and 

ultimately protects cells. 

Currently the field is analysing transcriptomes and proteomes to determine 

differences in expression between physiological and ischaemic states. Changes 

in protein expression may provide clues for the mechanism of cell death or 
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highlight targets for developing treatments against ischaemic cell death. A 

recent study by Rakers et al (2019) has found an increase in STAT3 during 

ischaemia, which is involved in triggering apoptosis. The absence of STAT3 

caused a reduction in stroke volume and prevented apoptosis (Rakers et al., 

2019). This study is also part of the work being carried out into the prevention of 

astrocyte programmed cell death, with a focus on death signalling pathways 

during ischaemia. Other pathways that are being investigated are the NF-κB 

signalling pathway (Zhang et al., 2018), p38-MAPK signalling (Zhang et al., 

2019) and phospholipase C pathway (Roque, Mendes-Oliveira & Baltazar, 

2019), by preventing these pathways cell death was reduced  The inhibition of 

AQP4 and connexin hemi-channels has been shown to attenuate cell death 

(Zheng et al., 2019) and protect against reperfusion injury (Chen et al., 2018), 

the research focus being ion and water movement. Similar to the work in this 

thesis on CCCs, recently a role for transient receptor potential (TRP) channels 

in stroke has emerged. These channels are non-specific cation channels which 

have permeability to calcium and sodium (Gees, Colsoul & Nilius, 2010). TRP 

channels have been found to be involved in apoptosis (Chen et al., 2017) and 

can determine the size of ischaemic infarct (Miyanohara et al., 2015). 

This work has indicated that CC astrocytes benefit from having access to 

glycogen stores, functioning NMDA receptors and CCCs. These conditions 

enable CC astrocytes to show tolerance to ischaemia. Whereas, DG astrocytes 

show tolerance to insult in the absence of sodium and access to large glycogen 

stores did not enable cells to survive ischaemia. Investigation into the role of 

glutamate receptors in astrocyte injury has found that ischaemia induced 

astrocyte death may be in part mediated by AMPA receptors, providing insight 

into ischaemic cell death. This mechanism of cell death may be similar to the 



250 
 

oligodendrocyte soma injury mechanism suggested by Salter and Fern (2005). 

These findings contribute to our knowledge of potential necrotic astrocyte death 

mechanisms induced by ischaemia. The discovery of how ischaemic cell death 

occurs may help to develop treatments which can then prevent cell death, which 

is also being investigated via cell death signalling pathways. 

7.2 FUTURE WORK 

In regards to the work into astrocyte sensitivity it would be interesting to 

expand this into other adult brain regions and build a map of astrocyte sensitivity 

to acute ischaemic insult. Further investigation into neonate regional astrocyte 

sensitivity would reveal whether the pattern of sensitivity is the same as for the 

adult astrocytes. Differences in sensitivity may show the presence of alternative 

cell death mechanisms and age-related changes to astrocytes. To ensure 

astrocyte cell death is occurring immunofluorescence staining for the presence 

of cell death factors such as caspases could also be carried out.  

To confirm findings of adult astrocyte sensitivity, the experiment could be 

transferred to an in vivo model. The use of a focal model of ischaemia would 

also allow investigation into the effect of ischaemia on penumbral astrocytes. 

This could be used to observe any potential regional differences between this 

population of astrocytes. The effect of astrocyte cell death on neuronal function 

and survival  

The role of glycogen during acute ischaemia could also be expanded by 

investigating more regions. It would also be interesting to establish whether 

glycogen store block effects neonatal astrocytes to the same extent as in adult 

astrocytes. During this work IA (sodium iodoacetate) was only used to prevent 

access to glycogen stores in astrocytes, it would be useful to repeat this but see 
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if there is an effect on oligodendrocytes. The ability to access glycogen stores 

effects astrocyte survival, it would be useful to determine whether these stores 

also have an effect on neuronal survival. 

Further work is required to fully establish the role of cytotoxic ion influx in 

acute ischaemic injury. This could be achieved by developing a co-staining 

method to determine the role and location of AMPA receptors. The potential role 

of other sodium transporters needs to be determined such as NHE and NBC; as 

well as the possible role of other ions in cytotoxic influx such as potassium. 

Recently TRP channels have been implicated in ischaemia and have been 

found to be expressed by glial cells. Using our model of ischaemia it would be 

interesting to inhibit these channels and observe the effect on ischaemic 

astrocyte cell death. 
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