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Abstract 

FACIAL IDENTIFICATION FOR DIGITAL FORENSIC 

Hiba Mohammed Al-Kawaz 

Forensic facial recognition has become an essential requirement in criminal 

investigations as a result of the emergence of electronic devices, such as mobile 

phones and computers, and the huge volume of existing content. Forensic facial 

recognition goes beyond facial recognition in that it deals with facial images under 

unconstrained and non-ideal conditions, such as low image resolution, varying 

facial orientation, poor illumination, a wide range of facial expressions, and the 

presence of accessories. In addition, digital forensic challenges do not only 

concern identifying an individual but also include understanding the context, 

acknowledging the relationships between individuals, tracking, and numbers of 

advanced questions that help reduce the cognitive load placed on the 

investigator. 

This thesis proposes a multi-algorithmic fusion approach by using multiple 

commercial facial recognition systems to overcome particular weaknesses in 

singular approaches to obtain improved facial identification accuracy. The 

advantage of focusing on commercial systems is that they release the forensic 

team from developing and managing their own solutions and, subsequently, also 

benefit from state-of-the-art updates in underlying recognition performance. A set 

of experiments was conducted to evaluate these commercial facial recognition 

systems (Neurotechnology, Microsoft, and Amazon Rekognition) to determine 

their individual performance using facial images with varied conditions and to 

determine the benefits of fusion. Two challenging facial datasets were identified 

for the evaluation; they represent a challenging yet realistic set of digital forensics 

scenarios collected from publicly available photographs. The experimental results 

have proven that using the developed fusion approach achieves a better facial 
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identification rate as the best evaluated commercial system has achieved an 

accuracy of 67.23% while the multi-algorithmic fusion system has achieved an 

accuracy of 71.6%. 

 

Building on these results, a novel architecture is proposed to support the forensic 

investigation concerning the automatic facial recognition called Facial-Forensic 

Analysis System (F-FAS). The F-FAS is an efficient design that analyses the 

content of photo evidence to identify a criminal individual. Further, the F-FAS 

architecture provides a wide range of capabilities that will allow investigators to 

perform in-depth analysis that can lead to a case solution. Also, it allows 

investigators to find answers about different questions, such as individual 

identification, and identify associations between artefacts (facial social network) 

and presents them in a usable and visual form (geolocation) to draw a wider 

picture of a crime. This tool has also been designed based on a case 

management concept that helps to manage the overall system and provide robust 

authentication, authorisation, and chain of custody. 

Several experts in the forensic area evaluated the contributions of theses and a 

novel approach idea and it was unanimously agreed that the selected research 

problem was one of great validity. In addition, all experts have demonstrated 

support for experiments’ results and they were impressed by the suggested F-

FAS based on the context of its functions.  
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1 Introduction 

1.1 Overview  

Facial recognition has come to play an important role in criminal investigations 

with the advent of electronic devices, such as the Closed-Circuit Television 

(CCTV), digital cameras, mobile phones, and computers. By using facial 

recognition, valuable information used in the detection of culprits can be extracted 

from images and/or videos that are found at crime scenes. According to IHS 

Markit Technology, approximately 245 million video surveillance systems were 

installed around the world in 2014 (Jenkins, 2015). However, this number has 

increased daily because of an increase in installed CCTV in public buildings such 

as hospitals, hotels, and schools and for personal use inside and outside homes, 

especially in capital cities where the crime rate is high. These CCTV will provide 

billions of hours’ footage weekly, offering an enormous amount of information that 

can be used to track down suspects potentially when crimes occur (Jain et al., 

2012). Regarding other resources, photos and videos are released daily by 

internet users and this rate has increased significantly since they started using 

social media, such as Facebook, Instagram, WhatsApp, Snapchat, and YouTube. 

For example, an activity usually done on social networking sites rose to 64% in 

2013 from 53% in 2011. According to the UK national survey, the online image 

posting rate rose from 53% in 2011 to 64% in 2013 and it became the most viewed 

online entertainment, and surpassing listening to music (Daton et al., 2013). 

A survey published by the Pew Research Center’s Internet Project found that 54% 

of internet users upload or share photos or videos on social media applications 

(Duggan, 2013). These visual data have helped investigators to extract evidence 
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to solve ambiguity regarding criminals’ identities or their relationship with other 

suspects.    

During a digital forensic investigation, all available evidence is collected and later 

analysed. The analysis process will categorise files into different types then an 

investigator can view and examine these files. The use of photo and video files in 

an investigation helps investigators track suspects faces, their locations, the time, 

who appeared with them, and their activities (Carrier, 2003).  However, this 

investigation type faces some drawbacks. Here are some examples:  

 on April 15, 2013, two bombs exploded near the finishing line of the 

Boston Marathon, killing three people and injuring 264 others (Klontz and 

Jain, 2013). The FBI collected all CCTV videos around the location 

showing people who attended. Specialists then reviewed evidence. 

Despite the huge amount of video footage collected by the FBI around the 

crime scene and the fact that their photos had been saved on a USA 

government database, an automated face-matching system could not 

identify the perpetrators (Klontz and Jain, 2013). The FBI had to depend 

on traditional methods of identifying suspects, i.e., by asking the public for 

assistance or information (Gallagher, 2013). After three days of 

examination, two images of the suspects were released, as shown in 

Figure 1-1. The images were of two brothers: the elder one, Tamerlan 

Tsarnaev, was wearing a black hat and glasses while his brother, 

Dzhokhar Tsarnaev was in a white hat. These accessories were one of 

are as potential issues may hinder automated face recognition software 

from performing well. Furthermore, low-quality photos of faces and an 

uncooperative subject can produce images with the face in a variety of 
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orientations, including being occluded by other objects, which all seek to 

increase the matching complexity.    

 

Figure 1-1: suspect 1, Tamerlan Tsarnaev. Suspect 2, Dzhokhar 

Tsarnaev (Klontz and Jain, 2013). 

 In Belgium's Zaventem Airport attack on 22 March 2016, the police 

released photos of three suspects as shown in Figure 1-2. Two of them 

were brothers and were reported dead from the attack while the third 

member, who was wearing a hat, got away (Shoichet et al., 2016). The 

investigators tried to discover the third man’s identity by tracking his hat 

and coat on all surveillance videos. In doing so, they determined several 

locations where the suspect might have been. However, some issues 

made investigators job more complex. These issues were either related 

to the long distance between the camera and the person, which resulted 

in a low-resolution photo and illumination change or the use of 

accessories (glasses and hat). Furthermore, expression changes and 

different facial poses can cause a failure in matching facial recognition. 
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Figure 1-2: Three suspects in Belgium's Zaventem Airport attack in 2016 

(Shoichet et al., 2016). 

 There was an outbreak of rioting in London between the 6th and 10th of 

August 2011. Subsequently, the Metropolitan Police released hundreds 

of photographs of people, collected either from news crews, private 

mobile phones from people with recordings of the violence that unfolded, 

and CCTV cameras (Klontz and Jain, 2013). A few arrests come from 

personal footage shared on Facebook and other social media. Other 

arrests were dependent on witnesses to reach rioters’ identities. While 

automatic facial recognition was used to identify suspects, few rioters’ 

identities were discovered for a number of reasons (Hill, 2011): 

1. The low quality of photos (unclear faces);  

2. Most of the culprits were disguised using hats, glasses, masks, 

and scarves;  

3. The bad lighting; and  

4. Facial poses and expressions varied. All these reasons caused 

unsuccessful facial recognition using technology.   

 According to the National Centre for Missing and Exploited Children 

(NCMEC), approximately 800,000 children are reported as missing every 

year in the United States alone (abcNews, 2013). The time factor is 

considered critical in missing children cases because children’s facial 
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appearances and body sizes can change quickly; hence, as time elapses, 

the probability of a missing child being found decreases. An example of a 

missing child case is Madeleine McCann’s—a 4-year-old from Leicester, 

UK. She disappeared from her bedroom in 2007 while on holiday in 

Portugal with her family (BBCHome, 2007). Police released images of 

what they think she looks like by using age progression software. Figure 

1-3 is shown a new image for Madeleine (Telegraph, 2016). Despite this 

new image, the case remains unsolved. 

 

 

Figure 1-3: Age-progression image of missing child, Madeleine McCann 

(a) original image at age 4, and (b) the progression version 

Identification of offenders or terrorists from a criminal watch list after the 

passage of time is another forensic facial recognition application that 

involves the factor of ageing. Criminals might commit a crime twenty years 

ago and, often, a database is not updated during the intervening years (Li 

and Jain, 2011). If such cases remain unsolved, facial ageing techniques 

can play a powerful role in helping police to find missing people after some 

time has passed. 

 On March 4, 2018, the previous Russian spy Sergey Skripal and his 

daughter Yulia were poisoned by the nerve agent Novichok in Salisbury. 

The Metropolitan Police began its investigation by watching thousands of 

(b) (a) 
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hours of CCTV footage (Medeiros, 2018). Therefore, they used a 

specialist team (super-recogniser) who have super talent in recognising 

people when they’ve only seen them once. This team has the ability to 

recognise people even from partial captures of the face and the back side 

of the head (Barry, 2018). The team started the investigation by looking 

through CCTV footage and they depended on victims’ movements. After 

a few days, Prime Minister Theresa May announced the investigation 

found evidence that the attack was by two agents of the Russian military 

intelligence service (Medeiros, 2018). Despite the current good facial 

recognition algorithms, the Metropolitan Police preferred to use the super-

recognisers in their investigation. 

As demonstrated by the aforementioned examples, visual evidence and facial 

recognition, in particular, are valuable investigative tools. Nevertheless, despite 

a large amount of academic and commercial research effort, automatic facial 

recognition still suffers from several major drawbacks in achieving accuracy, a 

delay in tracking suspects, and the failure to identify suspects. These reasons can 

be mainly categorised in two types: external or internal factors. External 

challenges can be found in the imaging system, such as illumination (e.g., poor 

lighting conditions), the facial pose for the camera (i.e., faces are not necessarily 

frontal to the camera), and poor sensor quality. Meanwhile, internal variations, 

such as facial aging, expression, and cosmetic changes (e.g. hat, glasses, 

makeup, etc.), are more related to individuals (Li and Jain, 2011). In addition, the 

huge volume of visual/image evidence that are required to be analysed can be 

another factor in prolonging investigation times (Jain et al., 2012). Despite that 

the current facial recognition tools provide identification decisions, they do not 
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allow an investigator to ask more complex questions of the data or visualise the 

data in a more meaningful way to reduce the cognitive burden on the investigator.  

Therefore, a sustained and collaborative effort is needed to enhance the 

performance of facial recognition in the field of forensic investigation. This project 

will attempt to contribute to helping and supporting law enforcement in their 

investigation and to identify culprits in a short period and with high levels of 

accuracy.   

1.2 The Research Aim 

The aim of this research is to contribute to developing techniques to aid automatic 

facial recognition and analysis of persons in the context of a forensic 

investigation. The research will include the following objectives: 

 Perform a comprehensive literature review in the forensic facial recognition 

domain. 

 Select and evaluate a number of current facial recognition algorithms. 

 Investigate and analyse fusion-based approaches seeking to improve 

recognition performance.  

 Propose a novel facial forensic analysis tool to enable the ability to 

examine and analyse multimedia files in a forensically sound and effective 

manner.  

 Design a prototype that could reflect the system architecture in reality. 

 Evaluate the proposed framework.  

1.3 Thesis Structure   

The thesis is structured into eight chapters as follows: 
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Chapter 2 provides the background information and knowledge on biometric 

systems in terms of their techniques, performance measuring, multibiometric 

fusion aspects, and using biometrics in the enforcement investigation. 

Chapter 3 presents a comprehensive presentation of digital forensics in terms of 

the baseline concept, common processes, and some of the forensic tools. In 

addition, it seeks to identify forensic facial recognition issues. 

Chapter 4 demonstrates the current state of the art with respect to forensic facial 

recognition. This chapter seeks to establish knowledge of the limitations and 

discusses current challenges. 

Chapter 5 presents a series of experiments that conduct a number of facial 

recognition systems based on two facial databases by describing the 

methodology for experiments and further presents, analyses, and discusses the 

results.    

Chapter 6 presents the novel system architecture, including a novel framework 

for facial forensic analysis followed by a detailed explanation of the proposed 

design and suggested system implementation.    

Chapter 7 provides an expert-based evaluation. Experts, including academics 

and practitioners, are interviewed to explore another area for the development of 

the proposed system, as well as to identify the strengths and weaknesses of the 

system. 

Chapter 8 summarises the findings arising from the research, highlighting major 

achievements and constraints. 
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2 Biometric System 

2.1 Introduction  

The case studies of the previous chapter have shown the field of facial recognition 

in law enforcement is still considered an open area and needs more effort to 

cover. The field of facial recognition fits within the wider area of biometrics. As 

such, it is prudent to explore the fundamental knowledge within this domain to 

understand the core function and operation of such systems.  

A biometric system is technology that uses attributes of humans to identify 

individuals. This technology has appeared sequentially based on evolution and 

scientific discoveries. It could be classified into physical biometrics, such as 

fingerprints, face, iris, and ear, chemical biometrics such as blood and DNA, and 

behavioural attributes such as keystroke, gait, and voice (Flynn et al., 2008). 

Figure 2-1 illustrates a number of biometric examples.  

 

Figure 2-1: Biometric trait examples (Jain and Ross, 2015) 

Most biometric traits share a number of general requirements (Jain et al., 2007): 

 Universality: each person should have at least one biometric sample that 

appears in Figure 2-1 to use in the biometric identification system.  
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 Distinctiveness: a chosen biometric trait needs to have some level of 

unique characteristics so it can be used to discriminate users. For 

example, a fingerprint is unique while hair colour is not. 

 Permanence: the ability for the biometric trait to be invariant over time.  

 Collectability: how easily a sample of the biometric trait can be collected.  

In addition, other characteristics include system performance, accuracy, and 

acceptability by users (e.g., some users may prefer fingerprints over iris scans 

because they believe scanning one’s iris may be harmful). As a result, biometric 

traits have to meet some degree of the previously mentioned characteristics in 

order for them to be used in a biometric system. 

The biometric system is operated in two main phases: enrolment and recognition. 

The enrolment phase generates the digital representation of an individual’s 

biometric attributes and then stores it in the system database. The recognition 

phase typically is worked in two categories (Jain et al., 2008): 

 Identification: aims to recognise the subject’s identity by comparing a 

sample with all the subjects in the database (one to many). 

 Verification: depends on verifying a subject’s identity by comparing it with 

a single template belonging to the claimed identity (one to one). 

Therefore, the identification scheme tries to determine to whom the biometric 

sample belongs, answering the “Who is this person?” question. In the verification 

scheme, it checks whether a biometric sample belongs to the person to whom it 

is claimed to belong. The question here is “Is this person X?” In general, 

identification is harder than verification because the former system performs a 

large number of comparisons in comparing with the latter. Figure 2-2 illustrates 

the difference between two types while user enrolment is applied in two tasks. 
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Figure 2-2: Biometric system task (Enrollment, Verification, and Identification) 

(Jain et al., 2004) 

2.2 Performance Measuring 

To evaluate a biometric system, several methods are commonly used. For 

verification-based biometric systems, the output is measured as either a match 

or non-match. Whereas biometric systems operate in the identification mode, the 

output is presented in an order list that contains results from the best to worst 

matching (DeCann and Ross, 2013). The performance metrics for the verification 

mode are defined as: 

 False Acceptance Rate (FAR): The extent to which the system accepts 

impostors  

 False Rejection Rate (FRR):  The extent to which the system rejects 

legitimate users. 

The relation between these two rates is shown in Figure 2-3: as one rate 

increases the other decreases. If the threshold setting is tight (i.e., requires a high 
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security level), it might reject more authorised users from logging into the system 

(i.e., high FRR) but increase the system protection. On the contrary, if the 

threshold setting is slack (i.e., requires low-level security), it might allow more 

unauthorised users to log into the system (i.e., high FAR) with high user 

convenience but low system security. A third metric is the equal error rate (EER), 

representing the meeting point for FAR and FRR rates (i.e., at this point, FAR an 

FRR are equal), and is usually used as a performance metric for comparing 

different biometric techniques. Furthermore, the lower EER value indicates better 

system performance. The verification system uses a Receiver Operating 

Characteristic (ROC) curve to represent the performance metrics FAR and FRR, 

where a plot of the rate of FAR (i.e., accepted unauthorised users) on the x-axis 

against the corresponding rate of FRR (i.e., rejected authorised users) on the y-

axis is plotted. An illustration of a ROC curve is presented in Figure 2-4 (El-Abed 

and Charrier, 2012). 

 

Figure 2-3: Biometric metrics factors (Clarke, 2011) 
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Figure 2-4: Example of a ROC curve (El-Abed and Charrier, 2012) 

Biometric identification systems determine a suspect’s identity as either closed-

set or open-set identification (Poh et al., 2011). In closed-set identification, it is 

assumed that a suspect’s biometric sample is stored in the database while for 

open-set identification needs to identify if the biometric sample is in the database 

or not. Generally, the real world applications operate on open-set principle. For 

example, typically, law enforcement matches the suspect’s facial image with a 

passport database. Normally, in the identification technique, the input features 

are compared with all samples in the database to determine the top match. The 

top match indicates the largest similarity score from all matching results. The 

identification rate is represented by the probability of the suspect’s face being 

mapped to an identity. Furthermore, the rank-k indicates the rates of the correct 

identity among the top k matches that determine as match score (Flynn et al., 

2008). The performance metric for the identification technique is the Cumulative 

Match Characteristic (CMC), which depends on identification rate at rank-k. 

Figure 2-5 represents an example of the CMC where the identification rate 

achieved 80% at rank-1 and close to 100% at rank 80.  
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Figure 2-5: Cumulative Match Characteristic (zvetcobiometric, 2012) 

In addition, there are other metrics that could be used in the evaluation of the 

biometric system, such as speed, number of templates, and cost. The time 

consumed by any biometric system to identify an individual is critical. The 

competitive criteria are looking for an identification system that computes with a 

short time and high accuracy. Moreover, the number of templates is considered 

in any biometric system and the limitation in memory can add another complexity 

in the performance of a biometric system.     

2.3 Multibiometrics 

A multibiometric system seeks to overcome some of the issues surrounding the 

use of single modalities. For example, if the poor person's fingerprint quality 

prevents him from enrolling in the system, then the use of other biometric 

attributes, such as the face, would help in the recognition task. Furthermore, 

multibiometric systems increased the security for some systems by making it 

difficult for unauthorised persons to spoof multiple biometric traits. These barriers 

can be solved by fusing and consolidating the resulting information from multiple 

biometric sources into a system referred to as a multibiometric system (de 

Oliveira et al., 2010). Numerous researchers have demonstrated that 
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multibiometric systems outperform single biometric systems in performance 

matching, globalisation, and resistance in front of unauthorised attacks (Ross et 

al., 2006, Jain et al., 2005), so the overall system accuracy is improved.  

There are different approaches of multibiometric systems which combination of 

two or more biometric techniques or attributes. These approaches that are 

possible in a multimodal biometric system include (Ross et al., 2006): 

 Multi-modal: using more than one biometric trait (e.g., face, fingerprint, and 

iris). 

 Multi-sensor: employing more than one sensor to capture a single 

biometric trait (e.g., optical and capacitive fingerprint sensors). 

 Multi-instance: using more than one subtype of the same biometric trait 

(e.g., the left index finger and the right index finger). 

 Multiple sample: using more than one sample of the same biometric trait 

(e.g., multiple face pictures of a person acquired under different 

pose/illumination conditions) 

 Multiple algorithmic: using more than one matcher algorithm in the 

classification process (e.g., multiple fingerprint matches based on minutiae 

or filtering) 

2.4 Multibiometric Fusion Techniques 

This diversity of multibiometric approaches seeks to improve the recognition 

decision in the verification and identification tasks. The combination process is 

called fusion. In general, the fusion process could occur at different levels, as 

follows (Ross et al., 2008). 

 Sensor fusion level: Initial biometric data is collected before extracting the 

feature. This data is captured by multiple sensors or a single sensor 
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obtaining multiple samples. For example, fusing different face images from 

one or different cameras. 

 Feature fusion level: After collecting multiple samples from one or different 

biometric traits, the feature vector is extracted from each sample by using 

different algorithms. Then these vectors are combined for use in the next 

matching phase. For example, fusing facial and fingerprint features. 

 Matching score fusion level: The output results from each biometric 

classifier are combined at this level to generate a new matching score 

result to be used then for the decision process. It is believed to be the most 

accurate type of fusion and is, therefore, most commonly used (Ross et 

al., 2006). 

 Decision fusion level: This type of fusion occurs when each individual 

biometric system presents its own decision to enable the final decision of 

the recognition system. 

2.5 Biometrics in Law Environment  

Biometrics are mainly used in three areas, commercial, such as e-commerce 

(bank logins), computer network logins, and medical records management; 

governmental, such as ID cards, driver’s licences, passport control, and social 

security; and forensics or law enforcement, such as parenthood determination, 

criminal investigation, and terrorist identification (Prabhakar et al., 2003). Each 

area could use a biometric system either in verification or identification schemes 

depending on need.  

The correlation between biometrics science and forensics is based on the 

identification of people individuals. Biometric evidence is important in digital 

forensics to provide valuable information to identify people (Jain and Ross, 2015). 

The identity could be determined by using personal characteristics found in some 
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traces on the crime scene such as fingerprints, ear prints, or any digital data 

recorded,  such as the face and voice (Anthony Ho and Li, 2015). Law 

enforcement could use and analyse biometric traces in different tasks, such as 

proving the existence of the crime, investigating an offence, and identifying a 

perpetrator’s identity (Arbab-Zavar et al., 2015). 

Biometrics now play an important role in the investigation process, especially as 

CCTV cameras, mobile phones, digital cameras, and many social media 

applications are now in worldwide use (Perner, 2014). Therefore, biometrics can 

be easily produced every day and shared through the social network. One of the 

first conferences in biometrics and forensics was held in 2013 by IEEE/IAPR 

International Workshop on Biometrics and Forensics (IWBF) and was supported 

by the EU-sponsored ICT COST Action IC1106 on Integrating Biometrics and 

Forensics for the Digital Age. This and other workshops confirm the emergence 

of new topics for research, which is biometric science (i.e., face, voice, and 

behavioural) within the forensic field (Anthony Ho and Li, 2015).  

However, biometric data may suffer from alteration attacks from malicious 

individuals who try to change or hide the biometric appearance, such as using 

masks, glasses, hats, makeup for facial recognition, changing the voice for voice 

verification, and wearing contact lens for iris recognition (Prabhakar et al., 2003). 

These issues could lead to limiting the use of biometrics in the investigation 

process. For example, some illegal immigrants get across international borders 

by faking their faces or fingers (i.e., based on which biometric is required). 

Therefore, one of the current solutions for this issue is using multimodal 

biometrics to overcome the limitation of using a single biometric trait (Saini and 

Kapoor, 2016). For example, several countries, such as Hong Kong, USA, Japan, 
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and Australia, will use a multimodal biometric border control system that includes 

airline check in and check out.   

2.6 Conclusion  

Biometrics offer a huge opportunity for law enforcement across a range of 

modalities. However, there are several issues that exist to limit their use in 

practice. Given the huge increase in photography-based content, biometric trait 

recognition is likely to play an important role in the law enforcement investigation 

and this importance is increased if the limitations can be overcome. 

 

This chapter provides an overview of critical knowledge about biometric systems. 

The approach is referred to as measuring the unique physical and behavioural 

attributes of people. This approach is used either for authentication and to access 

system security or for identifying individuals or people. For example, fingerprint 

attributes are considered a unique characteristic for each person. The same 

theory can be applied to extract other unique features from the face, iris, or ear. 

In addition, this chapter highlights measurement metrics for calculating the 

performance of biometric systems and to look for multibiometric techniques and 

the number of fusion methods to improve the accuracy of the entire system. This 

previous description led to seeking how to use the biometric system in the field of 

law. Accordingly, the important biometric objective in digital forensics is the 

identification of people. One of these biometric components is facial recognition, 

which helps identify criminals. Therefore, the next chapter will present the 

definition of digital forensics terms and explain the process and some of the 

current tools used in the investigative process. Moreover, it will go through 

identifying facial recognition issues in digital forensics investigations.  
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3 Digital Forensics and Facial Recognition 

3.1 Introduction 

This chapter presents a comprehensive analysis of digital forensics and facial 

recognition. The process and components will be described. This chapter also 

explains the relationship between a forensic investigator’s job and facial 

recognition. In addition, it focuses on different types of forensic facial recognition 

challenges. These challenges are considered from several viewpoints, including 

the system, environment, and user.     

3.2 Digital Forensic Science 

In the past, forensic science mainly involved the analysis of fingerprints and DNA 

from the physical crime scene and the questioning of witnesses in order to solve 

a case. In the last century, owing to the digital information revolution, computer 

systems have been widely adopted for forensic investigations. A new branch of 

forensic science, digital forensics arose that specialises in examining digital 

evidence. Digital forensics dates back to 1984 when the American Federal 

Bureau of Investigation (FBI) established the Computer Analysis and Response 

Team (CART) to investigate criminal cases that included digital evidence. In 

1990, CART began to co-operate with the Department of Defence Computer 

Forensics Laboratory (DCFL) for the purpose of training and researching in the 

digital forensic domain and the DCFL became a base for much of the early 

curriculum in digital forensics (Nelson et al., 2015).  

At the first Digital Forensic Research Workshop (DFRWS), held in Utica, New 

York, in 2001,  digital forensics was defined as “The use of scientifically derived 

and proven methods toward the preservation, collection, validation, identification, 

analysis, interpretation, documentation and presentation of digital evidence 
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derived from digital sources for the purpose of facilitating or furthering the 

reconstruction of events found to be criminal, or helping to anticipate 

unauthorised actions shown to be disruptive to planned operations” (Palmer, 

2001). This definition can be used to include all types of digital sources, such as 

computing systems, CCTV, mobile phones, and any digital technology that may 

be discovered in the future. Despite the development of technology in the digital 

investigation field, the DFRWS’ definition has been widely accepted since its 

formation. 

Digital evidence requires specialised investigators who know how to deal with 

digital materials, such as video, text, picture, voice, and email as digital data can 

easily be modified and/or destroyed. Therefore, the integrity of digital data needs 

to be fully protected in order to be able to use them as legal evidence in a reliable 

and trustworthy manner (Yadav, 2011).  

3.2.1 The Digital Forensics Lifecycle 

Digital forensics includes a multi-stage investigative process starting from the 

identification of digital media on a crime scene to a stage where digital media is 

presented as evidence in the court. Since 1984, numerous investigative 

methodologies have been proposed to illustrate the digital forensics process or 

lifecycle. Some models are more generic while others are more detailed. 

Therefore, the investigation’s stages may vary in terms of the number of phases 

according to its author’s priorities (Yusoff et al., 2011). For instance, the first 

model that was proposed in 1984 includes four stages: acquisition, identification, 

evaluation, and admissibility as evidence (Pollitt, 2007). The DFRWS 

investigation model consists of seven phases: preservation, collection, validation, 

identification, analysis, interpretation, documentation, and presentation. Carrier 

and Spafford (2004) proposed the Integrated Digital Investigation Process (IDIP) 
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model, which consists of five main phases and each has a number of sub-phases. 

The five phases are: 

 Readiness: includes two phases: operation and infrastructural 

readiness, which prepare the appropriate people and tools for 

investigative processes. 

 Deployment: also includes two sub-phases: detection and notification 

and confirmation and authorisation. This phase gives alerts to the 

investigator that the incident has been detected and authorises him/her 

to conduct the analysis.   

 Physical crime scene investigation: collects physical objects on the 

crime scene and analyses them. If digital evidence is found, the digital 

investigation will start.  

 Digital crime scene investigation: examines the digital data for evidence.  

 Review: presents the results. 

All proposed models aimed to draw an investigatory map to resolve the 

ambiguities of the crime. This process should be flexible to be applied to any 

criminal cases. Figure 3-1 shows the main steps of the digital forensic lifecycle or 

process and its closeness to the DFRWS’ model. These six steps are as follows: 

 

Figure 3-1: The main lifecycle steps of digital forensics 

Preservation Collection Identification 

 Examination  Presentation  Analysis 
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1. Identification: this is the first stage and involves the identification of any 

evidence at the crime’s location. In digital investigation, this includes the 

identification of digital devices and physical objects, such as computer 

systems, hard disks, USBs, external storage, mobiles, smart watches, 

sticker notes, and manuals (Raghavan, 2013).   

2. Preservation: in this phase, all digital and physical evidence is preserved 

by disconnection from any usage or electrical power. In addition, the digital 

information inside these sources has to be imaged and isolated (Reith et 

al., 2002). Moreover, it is essential to protect the evidence’s integrity by 

using a hash function.  

3. Collection: the content of the digital evidence is acquired from the 

suspect’s device. Also, multiple copies of the original evidence are created 

to avoid any tampering of the evidence throughout the investigation 

(Raghavan, 2013). A copy of them is given to the examiner for examination 

and analysis (Reith et al., 2002).   

4. Examination: this includes a filtering process for evidence and it is 

classified into types: 1) the discovery of hidden data and 2) using forensic 

tools to reduce the amount of obtained data relating to the suspects. Casey 

(2011) defined this phase as the process that extracts information from 

digital evidence and prepares it for the analysis phase.  

5. Analysis: this phase involves rebuilding fragments of data and using 

statistical and analytical methods to contribute to the result. Relations 

between the forms of evidence will be sought to build knowledge 

contributing to the identification of the subject. Moreover, this phase should 

have had the answer to questions such as who, what, where, when, how, 

and why. Furthermore, evidence among multiple sources should be 

correlated (Kent et al., 2006). The analysis can either be dead analysis or 
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live analysis (Yen et al., 2009). Dead analysis is conducted when a system 

is in shutdown mode whereas, in the live analysis, data is examined while 

the system is running.   

6. Presentation: in this phase, a final report will be created by converting the 

result into a form that is comprehensible to investigators, who will then 

make an interpretation of what the evidence shows 

3.2.2 Digital Forensics Tools 

Digital forensics is an important field to solve crimes that include digital evidence 

such as computers, mobile, and digital information shared through the internet 

and social networks, such as images, voice recordings, emails, and documents. 

Therefore, digital forensics tools have appeared to deal with these types of 

evidence. The first generation of digital forensic analysis tools was developed in 

the 1990s and was used in an attempt to acquire and analyse digital evidence 

(Ayers, 2009). Among a number of the first-generation tools were EnCase 

(Guidance Software) and Forensic ToolKit (FTK) (AccessData Corp), which have 

become standard tools for the digital investigation of computers in the acquisition 

and analysis of evidence. The first-generation tool can be considered as a 

standard industry tool that enhanced the digital investigation by allowing read-

only access to files’ content, browse files, keyword searches, and use a range of 

analysis techniques by using user interfaces based on the Graphical User 

Interface (GUI) (Ayers, 2009). Although these are abilities of the first-generation 

tools, some limitations have appeared, including: 

 Processing speed: most of the first-generation tools of digital forensics are 

delayed for many hours or days when analysing the average volume of 

evidence (Ayers, 2009). 
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 Evidence-oriented design: the current tools are designed to help 

investigators find specific pieces of evidence in terabytes of data but it is 

difficult to reconstruct deep analysis of data that unify time events, 

correlated between the offender’s actions. Instead, examiners perform 

some of these tasks manually (Garfinkel, 2010).  

 Data abstraction: current forensic tools have limited types of data 

abstraction that are used in a forensic perspective, such as disk image, 

packet capture files (format to capture network traffic), files (recognise 

documents and images), file signatures (output of SHA1), and extracted 

named entities (classifies as ASCII text files or Unicode files) (Garfinkel, 

2010). 

 Auditability: some first-generation forensic tools have limitations to allow 

analysts to look inside the tools’ working or how evidence has been 

interpreted and analysed.   

 Software error: one concern in forensic tools is errors in the software, such 

as unexplained crashes. This could lead to disruption or loss of work. 

Some causes of this software error are errors in the tool, which failed to 

interpret evidential data or use unsafe programming languages, such as C 

and C++ where programming errors result in crashes.    

In addition, there are two families of forensic tools available: open-source or 

commercial. While open-source forensic tools are free, their functionalities are 

somewhat limited; they are also less user-friendly, as many of them are either 

command line based or Linux based. In comparison, commercial tools are costly: 

ranging from several hundred to a few thousand pounds. However, they are more 

thoroughly tested and users get better support. More importantly, these forensic 

tools must be accepted by courts when presenting evidence and reports. 
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Therefore, to enhance the first-generation tools, Ayers (2009) tried to specify 

performance criteria that have to be achieved by second-generation digital 

forensics tools, such as speed (time for data processing and analysis), parallel 

processing, accuracy, reliability, audibility, and repeatability. For instance, 

AccessData has developed FTK to support multiple processing nodes.  

Multimedia file (such as image, audio, and video) analysis is important in any 

criminal case (Perner, 2014). The investigator needs to identify objects, events, 

and human beings (e.g., face, ear, and fingerprint) from the digital multimedia 

evidence or analysis of these files. However, there are questions regarding the 

authenticity of multimedia files (e.g., the history of these files). For example, it has 

become easy to modify and destroy files, especially by using photo-editing 

software, such as Photoshop. Therefore, it is necessary firstly to check the 

authenticity of evidence files. However, most existing forensic tools suffer from 

including multimedia analysis tasks within their analysis. Therefore, one of the 

objectives of the FBI’s program (FBI, 2015) is to include forensic facial recognition 

in the next generation of digital forensics tools. Because biometric identification 

is a reliable approach, it is necessary to develop the available digital forensics 

tools to determine a suspect’s identity from surveillance imagery by including 

automated biometric recognition technology and attempt to progress it (Jain et 

al., 2011).  

3.3 Forensic Facial Recognition Systems 

The history of facial recognition in law enforcement dates back to 1871. At that 

time, the use of facial identification by means of comparison between two 

photographs (a daguerreotype and an albumen print) was accepted for the first 

time by a British court (Porter and Doran, 2000). In 1880, the French criminologist 

Alphonse Bertillon suggested the classification application and people 
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photograph search techniques. In 1890, he created a standard form of forensic 

photography, classifying head descriptions into three categories: nose, forehead, 

and ear (Arbab-Zavar et al., 2015).  

Research then turned towards the use of computers for developing facial 

recognition techniques. In 1965, Chan and Bledsoe proposed the first semi-

automated facial recognition system, depending on humans to extract features 

from the face (Lohiya and Shah, 2015). In 1973, Takeo Kanade suggested the 

first fully automated facial recognition system in his PhD thesis (Li and Jain, 

2011). In the years that followed, researchers in this field focused on several 

areas, including the challenges posed by non-cooperative and uncontrolled 

aspects of facial recognition. This increased interest in the face compared with 

other human biometric traits for different reasons (Anthony Ho and Li, 2015): 

 Biological nature: The face is an easy and convenient biometric feature 

utilise by humans to identify people. For instance, in access control, it is 

easy for administrators to track and check an authorised person from any 

identification card while fingerprints need an expert person with 

professional skills to check the authorised. 

  Non-intrusive: Unlike fingerprints and the iris, facial images can easily be 

obtained from a distance without physical contact. People feel more 

comfortable using the face as an introduction to everyday life. The 

collection of biometric data in the facial recognition system can be done in 

a user-friendly way. 

 Less cooperation: facial recognition needs few requirements of user 

cooperation. For example, in surveillance applications, a facial recognition 

system can easily identify a person without the need for the active 

participation of people. 



27 
 

In addition, forensic facial recognition systems have received a great deal of 

attention as a result of a number of characteristics (Arbab-Zavar et al., 2015):  

 Increasing the database capacity of photos in government agencies and 

private organisations, such as passport offices, police stations, personal 

identification documents, bank accounts, and prisoners’ records.  

 The rapid spread of digital image-capturing devices (e.g., CCTV, 

smartphones, and digital cameras) allows photos to be easily shared and 

used between people, especially on social media. 

All previous reasons explain why using the face is the first priority in criminal 

investigations to determine a suspect’s identity when most of the evidence is 

digital.  

The technique used by forensic experts was to compare two facial images, one 

of a suspect, often a “mug shot”, and the other from a photographic database. 

The expert then decided which of the two images was closest in terms of shapes 

and features. The matching technique in facial recognition was based on four 

approaches (Ali et al., 2012): 

 Holistic comparison: the whole face is considered, using facial comparison 

methods.  

 Morphological analysis: the forensic expert analyses facial features, such 

as the nose, mouth, eyes, and other “soft” facial features, such as moles 

and wrinkles. After that, the expert will view the similarities and differences 

between the two sets of features. 

 Photo-anthropometry: the comparison process in this category depends 

on the quantification measurements of facial landmarks (distance and 

angles). The condition is that all measurements need to be taken from the 
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same direction and angle, placing significant limitations on this approach, 

especially with regard to uncontrolled facial image captures.   

 Superimposition: the condition of this approach is that the two images 

captured have to be from the same angle. This method may, therefore, 

necessitate facial pre-processing (of pose or orientation) before a 

comparison is made. 

The image fed into the forensic system will determine which approach will be 

chosen. Some cases require using more than one approach to achieve the 

recognition aim. Furthermore, the comparison process may vary according to the 

preferences of the expert involved.  

3.4 Facial Recognition Processing 

There are four main processes for any digital system that applies facial 

recognition to identify people, and these processes are shown in Figure 3-2. 

 

Figure 3-2: The main steps in face recognition process 

 Face detection: this is the first step in a facial recognition system. It 

extracts the facial region from the background photo image. In a video file, 

faces can be tracked and extracted from individual frames. In order to 

distinguish faces from other objects, such as houses, trees, and cars, a 
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pattern space that uses different cues (such as facial shape, skin colour, 

and eigenfaces) to detect the facial area can be applied (Jain and Li, 2005). 

 Face normalisation: the aim of this step is to locate a facial component or 

to discern accurately the position of facial landmarks such as mouth, eyes, 

and nose. The normalisation process is based on geometrical properties 

(e.g., size and pose) and photometrical properties (e.g., illumination and 

grey scale) (Li and Jain, 2011). However, variances in pose and 

illumination in the captured image make the facial recognition process 

more complex. Figure 3-3 illustrates the facial detection and normalisation 

techniques. 

 

Figure 3-3: The image on the right is facial detection; on the left is facial 

normalisation (Li and Jain, 2011) 

 Feature extraction: this step is regarded as the main process in a facial 

recognition system because significant features will determine the 

accuracy of the recognition. Therefore, the feature extraction approach is 

based on face shape, texture, colour, size, or face component details. In 

addition, there are local facial features or silent areas in the facial skin, 

such as scars, moles, and freckles, and they have contributed to increased 

recognition accuracy in recent years (Park and Jain, 2010). 

 Feature matching: the matching process is based on two schemes of 

recognition, verification (one to one) and identification (one to many). In 

the first case, the output will be either yes or no while, in the second case, 



30 
 

the output will give similarity rate for all faces in the database (Li and Jain, 

2011). 

Generally, these steps will support the two schemes of biometric system 

verification or identification. After that, the system will evaluate by using some 

performance metrics that are explained in the previous chapter.  

3.5 Forensic Facial Recognition System Barriers 

Despite the rapid increase in the use of computers in automated facial recognition 

by forensic departments, there are still problems to be overcome. Klontz and Jain 

(2013)  studied the Boston Marathon bombings of 2013 and analysed the reasons 

the automated facial recognition system failed to identify the suspected persons 

at the time (as mentioned in Chapter One). They concluded that forensic facial 

recognition is in need of further research, especially when it operates under the 

unconstrained conditions of people in the presence of digital cameras. The 

efficiency of facial recognition is affected either by external factors that are 

unrelated to the user, such as illumination, camera quality or resolution, or more 

than one person in the same location, which could obscure the subject’s face. A 

second type is internal factors, such as pose variation (uncooperative people), 

facial expression, and faces occluded by accessories (Jain and Li, 2005). Facial 

ageing is another issue in the facial recognition system—for example, comparing 

a recent photo of a subject against a passport photo that is almost 10 years old. 

This issue is exacerbated with children.  

Figure 3-4 illustrates some forensic facial recognition challenges. User 

cooperation can be divided into two types: (i) cooperative users who present their 

faces in the right position in front of the camera. For example, passport 

applications that check and scan faces and authentication systems that require 

close face access; and. The other type is (ii) the non-cooperative user. In this 
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scenario the user will be unware of the location of the camera. Also, the distance 

between the face and the camera in this type can be inconsistent comparing with 

the first type and therefore the complexity will be increased (Li and Jain, 2011). 

Some of these issues are highlighted below: 

 

Figure 3-4: Some forensic facial recognition problems (Li and Jain, 2011) 

 Illumination Issues: changes in light are related to environmental changes and 

indoor and outdoor environments, and these factors cause a major change in 

facial appearance (Jain and Li, 2005). The last two images on the right on the 

top row in Figure 3-4 demonstrate this. In addition, the use of near-infrared 

(NIR) in some cases has an effect on facial appearance, producing variation in 

the illumination factor (Jain et al., 2011). However, the direction of the light 

falling on the face could cause differences in the shading and shadows on the 

face. These variations in facial appearance could increase the complexity of 

automatic face recognition, especially if accompanied by another problem, 

such as facial pose or expression (Zou et al., 2007). 

 Low quality issues: one of the problems in the field of forensic face detection 

is the quality of the digital image or video evidence that is acquired. 

Historically, the surveillance camera video considers low resolution because 

of the absence of control of distance and environment. In addition, the image 

captured by these surveillance cameras may suffer from noise, such as poor 
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lighting and poor camera sensors (Xu et al., 2014). Some researchers have 

focused on variation in image quality caused by external effects, such as 

camera sensor quality, illumination conditions, and background noise (Chen 

and Li, 2011). Another type of low-quality image is a blurred image caused by 

weather conditions, motion, interruption of image acquisition or image/video 

zooming (Ghazali et al., 2012).  

 Aging Issues: recently, researchers have been confronting one major 

challenge to facial recognition, that of ageing. Geng et al. (2007) identified 

three characteristics of ageing (1) it is uncontrolled, as no power on earth 

could halt it; (2) it is personalised: the pattern of ageing is not uniform for all 

people since it is affected by standards of living, such as diet, lifestyle, and 

weather; (3) temporal data: the effects of ageing are more apparent in older 

faces than in younger ones. These characteristics of facial ageing have 

increased the complexity of the recognition problem. Although the number of 

studies on solving the ageing issue have increased since 2002, they are still 

limited in terms of quality and quantity (Juefei-Xu et al., 2011). An important 

challenge posed by the ageing factor in forensic systems is the difference 

between the sample in the database sample and recent images of the 

suspect. Figure 3-5 shows various images of the appearance of the same 

person over a period of time, ranging from 2 to 40 years. Ageing plays an 

important role in face recognition cases such as those involving missing 

children, and in determining the suspect’s identity from a database in law 
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enforcement. Where the face samples have been captured over a potentially 

long period of time. (Jain et al., 2011).  

 

Figure 3-5: Face aging appearance (Jain et al., 2011). 

The facial problem can be illustrated in two facial characteristics: shape and 

texture. Most facial shape changes, i.e., facial growth, happen below the age 

of 18 years; whereas face texture changes (e.g., wrinkles) are more apparent 

at ages above 18 years. Therefore, there is a need to distinguish between the 

two types in order to obtain better results (Li and Jain, 2011). The process of 

dealing with facial ageing factors in a facial recognition system can be either a 

generative scheme or a discriminative scheme (Pal and Gautam, 2015). The 

process in the generative approach is based on transforming the facial shape 

and texture from that of the current age to that of the targeted age. In the 

discriminative method, the technique consists of extracting the descriptors and 

discriminative features from the face to reduce the age gap. Jain et al. (2011) 

described the two methods (see Figure 3-6). 
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Figure 3-6: The two face-ageing schemes (Jain et al., 2011) 

 Face Pose: another important challenge in facial recognition systems is how 

to handle varying face poses in unconstrained facial capture. In most cases, 

the forensic facial recognition system depends on CCTV cameras or digital 

cameras to detect a suspect who is considered as non-cooperative in front of 

the camera. Most facial images stored by police forces or passport offices are 

frontal poses. There are different degrees of facial poses, such as ±0◦, ±15◦, 

±30◦, ±45◦, ±60◦, and ±90◦. The complexity of the facial recognition algorithm 

raises when the pose degree increases (Zhang and Gao, 2009).  

 Occluded Face: facial occlusion is a common problem that occurs in the facial 

recognition system. The face may be obscured by sunglasses, a scarf, or hat 

and the face may be partially hidden by any object. These are examples of 

common categories of occlusion in facial recognition systems and are 

described as dense occlusion (Min and Dugelay, 2012). Min and Dugelay 

studied another type of occlusion called sparse occlusion, examples of which 

are facial painting, dirt on the face, and faces behind a fence. Figure 3-7 shows 

the two types. For the most part, automatic facial recognition fails to identify 
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suspects’ faces in riots, disturbances, and terrorist acts in the street as a result 

of the increased occlusion of faces in addition to other facial recognition 

problems (e.g., pose, illumination, and expression) (Klontz and Jain, 2013). 

The results of law enforcement applications in these cases are negatively 

affected by poor automatic facial recognition. 

 

Figure 3-7: Two categories of occlusion: (a) dense occlusion faces, (b) sparse 

occlusion faces (Min and Dugelay, 2012). 

 Expression Issues: facial expression consists of outlines of the mouth, eyes, 

and eyebrows. These contours contribute to categorising facial expressions as 

happy, sad, disgusted, angry, and surprised (Garg and Choudhary, 2012). 

Most people can identify the expressions of other people from their faces. 

However, facial expression variance affects the performance of facial 

recognition systems when the facial images in the database are without 

expression.  

 Sketches: as mentioned before, law enforcement employs biometric 

technology, such as DNA and fingerprint matches, to determine the identity of 

criminals. However, there are cases where none of the biometric tools 

mentioned above can be used in the investigation process but only 
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eyewitnesses are available. The investigator, therefore, employs a forensic 

artist to draw a sketch of the suspect’s face. Then the forensic sketch will be 

compared with photos in the database to determine the suspect’s identity. 

There are two types of facial sketches: one drawn from a person’s photograph 

is called a viewed sketch. A second type depends on witnesses who give 

descriptions of the suspect from which a sketch is drawn. This type is known 

as a forensic sketch (Klare et al., 2011). There are issues when using forensic 

sketches in matching. Klare et al. (2011) highlighted these problems as follows: 

(1) matching across image modalities and (2) performing facial recognition 

despite possibly inaccurate depictions of the face. Figure 3-8 illustrates the 

sketch types and matching results. 

 

Figure 3-8: The sketch types: (a) viewed sketches and their corresponding 

photographs, (b) forensic sketches and the corresponding photograph with poor 

quality, and (c) forensic sketches and the corresponding photograph with poor 

quality  (Klare et al., 2011) 

Another challenge is when the system presents a number of candidates for 

recognition and a final decision has to be made by an expert who decides whether 

the system has failed or succeeded. This stage requires an expert person that 

studies all facial images returned by the automated facial recognition system and 

makes the decision. Finally, the judicial system requires a degree of support for 
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the decision by an expert person, which could be stated as no support, limited 

support, or strong support (Ali et al., 2012). 

3.6 Conclusion  

Facial recognition techniques have been successfully used in identifying 

suspects within the forensic domain for many years. With the development of 

digital forensics tools and the availability of mass images (such as online sharing, 

CCTV, and personal capturing), it is envisaged that the facial recognition 

technique can be used to assist investigators even better. However, the limited 

capabilities of existing digital forensic tools in processing multimedia files and the 

poor quality of some of the images (e.g., the environment night or day, the sensor 

quality, and the distance of the subject from the camera) present a significant 

obstacle that prevents facial recognition systems from obtaining a reliable 

outcome. To improve the accuracy of forensic facial recognition, these barriers 

should be thoroughly investigated.  
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4 The Current State of Art 

4.1 Introduction 

This chapter presents the existing studies on forensic facial recognition. Firstly, 

the research methodology used to select studies will be explained. Then, a 

thorough review of the current studies in facial recognition, which start with facial 

ageing, external issues (lighting and quality), and internal issues (face pose, 

expression, and occluded) will be presented. It will also describe soft biometrics 

and how some studies have enhanced the recognition accuracy then will present 

some commercial systems that give good accuracy in matching. As a result, this 

chapter focuses on the analysis of each significant issue of facial recognition. 

Finally, the discussion section will give an analysis of all studies and identify the 

gaps in forensic facial recognition. 

4.2 Research Methodology 

To review the current state of the art related to facial recognition challenges in 

digital investigations, a number of research methodologies have contributed to 

the formation of the literature review relating to forensic facial recognition barriers. 

Research has been on many digital libraries and databases. The initial search 

was started in October 2014. The focus was solely on facial recognition issues in 

digital forensics.  The research methodology used a range of keywords relating 

to facial recognition challenges and its effect on digital forensics investigations. 

The literature review methodology was searched for in related publications from 

various academic databases, such as IEEE, Google Scholar, Science Direct, 

Springer link, and ACM. Because of huge numbers of the search publication 

results, the keyword “forensic” was used to filter these results for a more specific 

set of outcomes. In addition, another strategy was used by following the citations 

of current significant studies to see where they have been used or which new 
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ones have been developed. However, the first relevant studies were identified 

using the search thread and the examination was conducted on the title and 

abstract of papers.  

4.3 Facial Ageing 

One of the facial recognition issues is facial ageing and it has added more 

complexity to the facial recognition process. Pal and Gautam (2015) divided facial 

recognition into two categories based on age features: generative and 

discriminative. Generative facial recognition is the prediction of one’s facial image 

according to the age variant while the discriminative category uses various facial 

feature descriptors to narrow the search environment in the database 

independent of one’s age. 

Depending on one’s background (e.g., gender, ethnicity, and age), the shape and 

texture of the face can be affected by the facial ageing process in different 

variations. For example, young people’s facial changes will be affected more by 

shape (e.g., skull and head size) than texture while, for mature people, the texture 

properties (e.g., wrinkles and skin texture) have more influence on their facial 

changes than the shape does (Jain and Li, 2011).  

Park et al. (2010) proposed an ageing simulation model for age-invariant facial 

recognition. Their experiment employed several databases, such as FG-NET, 

MORPH, and BROWNS. A 3D ageing model was used to correct face orientation 

and ageing in a model by selecting images from the aforementioned 2D face-

ageing databases to build a 3D domain. The team tested and compared three 

variant models: shape only, separate shape and texture, and combined shape 

together with texture schemes (e.g., utilising the second level of Principle 

Component Analysis (PCA) to delete any correlation between shape and texture 

after the combined process). In addition, they used a commercial face matcher 
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(i.e., FaceVACS) to evaluate their ageing model. Moreover, the FG-NET 

database was used as the ageing model and three databases, FG-NET, MORPH-

Album1, and BROWNS, were used for the evaluation. In total, 81 facial features 

were used in the 3D morphable model, where 68 features represented salient 

features and the other 13 were forehead area lines. Their experimental results 

are presented in Table 4-1. Although matching results were successful in 

matching most images and it was a good attempt to build a 3D  ageing model 

from the 2D database, there were some matching attempts that failed because of 

the large effect of the capture condition of images, such as pose variation in wide 

angles, or the effect of poor illumination. Further, their work was evaluated by 

using a single matcher method and the evaluation could be more reliable if other 

matcher techniques were applied. 

Database 
Rank-1 Identification Accuracy 

Original image (%) After aging (%) 

FG-NET (82 probe, 82 gallery) 26.4 37.4 

MORPH-Album1 (612 probe, 612 gallery) 57.8 66.4 

BROWNS (4 probe, 100 gallery) 15.6 28.1 

Table 4-1: Identification accuracy (Park et al., 2010). 

Mahalingam and Kambhamettu (2010) proposed a method of age-invariant facial 

recognition using graph features of the face in the matching. The graph included 

the appearance and geometry of facial features. The experiment utilised the FG-

NET database (containing 1,002 images from 82 subjects with age less than one 

year to 69 years) and divided it into two equal sets for both training and testing. 

First, they extracted 68 feature points from images in the FG-NET database and 

used a generic model to calculate the facial pose and apply the Active 

Appearance Model (AAM) technique to correct the non-frontal face images. Then, 

the Local Feature Analysis (LFA) method was performed to extract 150 feature 
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points for each image. After the identification of the vertex of those feature points, 

important facial feature descriptions, such as nose, mouth, eye, and face curve, 

were extracted by using the Local Binary Pattern (LBP) method. Then these face 

vertices were converted to graph form based on the length of the edges between 

the vertices and the surrounding points. In addition,  ageing models were 

designed using a graph model of training images and applying the Gaussian 

Mixture Model (GMM), which involved both changes of shape and texture 

(Mahalingam and Kambhamettu, 2010). The facial identification was performed 

in two stages. First, the age model was used to compute posterior solutions to 

effectively narrow down the environment search and the potential individual was 

determined for the second stage. In the second stage, the matching was 

performed using the spatial similarity between the graphs. Two experiments were 

conducted: the first focused on ages from 18 to 69 years and built the training set 

by including all images with younger faces while the testing images set contained 

the older faces. The experiment’s performance was evaluated using the CMC 

curve and the accuracy recognition approximately ranged between 70% and 80% 

from rank 10 to 20. In the second experiment, the training set included ages from 

0 (less than one year) to 30 years and the remainder was grouped in the testing 

set. The maximum cumulative accuracy achieved approximately 69% in rank 10. 

The results indicated the large shape variation affects the performance of the 

second experiments because it considered images of young faces. This is 

considered an issue in any facial recognition system over age. In addition, this 

study only employed one dataset for the evaluation while a more robust set of 

results can be obtained if more datasets are used. 

There have been several studies involving face regions that can be exploited to 

improve facial recognition performance across ageing. One of these attempts 



42 
 

was conducted by (Juefei-Xu et al., 2011), who studied the periocular area of the 

face, such as eyebrows, eyelids, and eyeballs as they found that eyes are less 

affected by ageing changes compared to other areas of the face. The FG-NET 

database was used in their work. Initially, the AAM method and the parallelised 

anisotropic diffusion model (by running on GPUs programmed with nVidia’s 

CUDA framework) were utilised to correct and normalise images with pose 

variations and illumination effects, respectively. Then, Walsh-Hadamard 

transformed encoded Local Binary Patterns (WLBP) were used on the periocular 

region to obtain different local features. Finally, these features were used to build 

subspaces by using unsupervised discriminative projection for matching 

techniques that considered both local and non-local information. Figure 4-1 

shows all steps in this study. Their results have demonstrated an identification 

rate of close to 100% at rank-1 and a 98% verification rate at 0.1% False Accept 

Rate (FAR). They compared their results with Li et al. (2011) and there was an 

improvement of about 52.2% on the same database (FG-NET). These regional 

features are mostly static across ages for the same people. The identification rate 

of Juefei-Xu et al. (2011) was better than other results of full facial recognition. 

There are, however, some limitations, as the periocular region is more affected 

by facial expression and disappears when the subject is wearing glasses or 

makeup.  
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Figure 4-1: (a) full-face image, (b) periocular region normalisation, (c) illumination 

correction, (d) feature extraction, (e) pose correction for full face, (f) periocular 

region normalisation, (g) illumination correction, (h) feature extraction 

A major issue in criminal cases is time lapses. In most criminal cases that involve 

children, this is more challenging because the face shape in childhood changes 

more quickly than in older ages and this makes the search more difficult.  

Kemelmacher-Shlizerman et al. (2014) suggested an automatic age-progression 

application. Their contribution achieved fully automated age progression (i.e., 

images from the wild) and novel illumination-aware age progression by correcting 

surface shading without reconstructing the 3D model. The age progression model 

was based on the original work of (Burt and Perrett, 1995), which dealt with face 

shape and texture changes in the ageing process. The team collected 40,000 

photos from Google search images (i.e., without strong constraints on 

illumination, pose, and expression changes) to evaluate the system that produces 

ages between 1 and 80 years. The face age progress process converts the input 

child face to an old face by applying texture difference computation (shown in 

Figure 4-2). This study depended on humans’ decision to evaluate the age-

progression results. The results indicate that people have the ability to recognise 

adults across age progress while poor at recognising age progress for children. 
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This technique for adult face ageing could be enhanced by adding other textural 

changes, such as wrinkles or different hair colours.  

 

Figure 4-2: Process of illumination-aware age progression (Kemelmacher-

Shlizerman et al., 2014) 

Ling et al. (2010) proposed a study that adopted a discriminative approach to 

solving the ageing issue. It aimed to recognise people in terms of estimated age 

and gender classifications and discriminated between faces by using landmarks 

or soft biometric traits at a different age. The discriminative approach reduces or 

filters the search space too. Ling et al. attempted to study face verification for two 

images at different ages by using discriminative approaches in man ageing this 

issue without generating a new image to close the gap in time. Firstly, a Gradient 

Orientation Pyramid (GOP) method was applied for feature extraction because 

they believed it responded robustly to illumination. A Support Vector Machine 

(SVM) method was used to classify the framework. Three datasets were used: 

the FG-NET database (e.g., 82 subjects, and 1,002 images), which is widely used 

in face ageing analysis. Furthermore, there were two scanned passport 
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databases (e.g., totally more than 1,800 subjects), which are generally frontal 

poses with small pose variation. Passport I included 452 intrapersonal images 

pairs while Passport II contained 1,824 intrapersonal images pairs. The 

experiments on real passport datasets showed that the EER of the SVM+GO 

method for Passport I and Passport II was 8.9% and 11.2%, respectively. The 

EER on the FGNET database was 24.1%. The age average considered in the two 

experiments was >= 18 years. Ling and his team analyzed their experiments and 

found that the high error rate was because of the poor quality of years-old images 

or scanned images compared with those of high quality. There was an issue with 

images that included spectacles and facial hair, which included a moustache and 

a beard. In addition, their study found that the error rate increased if the age gap 

was more than four years. A second experiment was on facial verification across 

ageing in children, which evaluated the FGNET dataset for age (8-18) called 

FGnet-18 and (0-8) called FGnet-8. The EERs were 30.5% and 38.6% for FGnet-

18 and FGnet-8, respectively. This experiment explained how the verification 

system for children faces is more complex than for adult faces. Further, the error 

rate increased for ages from 0 to 8. These results appeared because of the larger 

face shape variation before age 18.  

Attempts have been made to narrow the difference between database facial 

images and probe facial images in facial recognition applications over time, 

particularly in the time between childhood and adulthood. Li et al. (2011) 

depended on the discrimination of faces by local features at different ages rather 

than generating methods. They designed a new feature descriptor method called 

Multi-Feature Discriminant Analysis (MFDA), which combines two local features 

descriptors, Scale Invariant Feature Transform (SIFT) and Multi-Scale Local 

Binary Pattern (MLBP). Li et al. (2011) believed the discriminative model was 
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more characterised than the generative model because the eye coordinate area 

was less affected by ageing. Li et al. observed that the results demonstrated 

improvements in matching accuracy for generative models (Park et al., 2010) 

from 79% to 83.9% at rank-1 on the MORPH album 2 database while there was 

poor accuracy on FG-NET at 47.50%. Similarly, Sungatullina et al. (2013) 

exploited local facial feature information to discriminate these faces at different 

years using three descriptor methods for local features: SIF T, Local Binary 

Pattern (LBP), and GOP. The local features could be extracted by dividing facial 

images into several patches and applying three descriptive methods on each 

patch to obtain three vectors of feature information. They then used PCA to 

convert these vectors from high-dimensional to low-dimensional vectors. 

Sungatullina et al. suggested the development of a discriminative algorithm called 

Multi-view Discriminative Learning (MDL). The objective of MDL is to make a 

concatenation between different feature vectors to produce a new vector that has 

the feature correlations for the same face then perform a discriminative learning 

algorithm. Figure 4-3 shows the process aspect of the MDL method with other 

approaches. The top row illustrates the face samples in the SIFT, LBP, and GOP 

feature space while the bottom row illustrates the latent space or correlation 

features by the CCA, MDL, and the ideal approach.  FG-NET and MORPH (e.g., 

78,000 facial images; 13000 subjects) databases were used to test this study. 

This study selected images with few changes in expression, pose, and 

illumination. The experimental results demonstrated that MDL achieved accuracy 

in recognition at rank-1 in the first dataset of 91.8% while, in the second dataset, 

the accuracy was 65.2%. The significant point in this study is how to use the local 

features that considered robust to age variation. In addition, the correlation 

technique, which adds more discriminative information, could be used to improve 

the performance of facial recognition systems. 
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Figure 4-3: The idea of MDL (Sungatullina et al., 2013) 

Pal and Gautam (2015) developed the previous work of Li et al. (2011) by 

correcting facial pose changes, using the Active Appearance Model (AAM), 

extracting local facial features by applying SIFT and LBP, then verifying the test 

image utilising a multiclass Support Vector Machine (SVM). This technique 

depends on the discriminative approach to obtain age-invariant facial recognition. 

Pal and Gautam used an FG-NET database and achieved 76.6% facial 

recognition accuracy at rank 1. This approach is limited to subjects aged under 

18 because it depends on texture rather than shape change. Further pose 

correction results were poor when compared to other approaches. 

Han et al. (2013) designed hierarchical approaches for automatic age estimation. 

Their proposed approach consists of four steps: i) image pre-processing 

(converting colour images to grayscale), ii) facial localisation (localise individual 

facial components such as forehead, eyebrows, eyes, nose, and mouth), iii) 

feature extraction, and iv) hierarchical age estimation by classifying each facial 

component in one of four disjointed age groups using a binary decision tree based 

on SVM (SVM-BDT). Further, they compared the performance of this approach 
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with human perception to estimate the age by using the results of crowd-sourced 

(the Amazon Mechanical Turk service (AMT)) on the FG-NET database and a 

part of the PCSO database. The training of automatic age estimation was applied 

on FG-NET, MORPH Album2, and PCSO databases and the results showed that 

Mean Absolute Error (MAE) was 4.6% for FG-NET, 4.2% for MORPH2, and 5.1% 

for PCSO. Han and his team observed in their experiments that eyes and noses 

are more useful in age estimation than other facial parts. The limitation of this 

study is that it depends on the front of the face and does not pay attention to 

illumination changes. In 2015, (Han et al.) tried to develop their previous work 

(Han et al., 2013): 

 Adding gender and race estimations. 

 Ignoring low-quality face images in the demographic estimation system. 

 Studying human estimation for gender and race (black or white). 

 Adding two additional databases, FERET and LFW. 

 Designing demographic features. 

Their experiments achieved fewer errors in age estimation than the previous 

study (Han et al., 2013), such as that the MAE was 3.8% (FG-NET), 3.6% 

(MORPH II), 4.1% (PCSO) and 7.8% (LFW). The accuracy of gender 

classification was 97.6% for MORPH II, 97.1% for PSCO, 96.8% for FERET, and 

94% for LFW. The race classification accuracy was 99.1% for MORPH II, 98.7% 

for PSCO, and 90% for LFW. The FG-NET database was not used in gender and 

race classification experiments (Han et al., 2015). These  studies on estimating 

age help law enforcement by filtering the gallery database depending on the 

criminal’s age. 
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Recently, there have been several studies focusing on including commercial 

algorithms, such as COTS systems, in their research. Best-Rowden and Jain 

(2018) studied the ability of state-of-the-art commercial facial recognition systems 

to recognise query face images that are different in ageing with enrolled face 

images. They used the longitudinal analysis of two of the largest longitudinal 

databases of repeat criminal offenders. These databases are LEO_LS, which 

contains 31,852 images of 5,636 subjects, and PCSO_LS, which contains 

147,784 images of 18,007 subjects, where the average time span between 

subjects’ multiple image acquisitions is 6.1 and 8.5 years, respectively. Also, in 

this study, the authors evaluated the performance of a number of COTS system 

face matchers, which were considered among the top-ranked performers in the 

FRVT 2013 facial recognition evaluation. The methodology scenario in this study 

was the verification scenario (one to one) and the results showed that despite 

decreasing genuine scores, 99% of subjects could still be recognised at 0.01% 

FAR up to about 6 years and 5.5 years elapsed time for the LEO_LS and 

PCSO_LS databases, respectively.  

Best-Rowden et al. (2016) evaluated the performance of a COTS algorithm 

against the newborns, infants, and toddlers (NITL) dataset and studied the effects 

of age variation over one year on the performance of the algorithm. The NITL 

dataset was collected by the authors over one year. It consists of facial images of 

314 children between the ages of 0 and 4 years. The images were captured with 

variations in lighting, pose, and expression. The experiment results are shown 

despite that the facial recognition performance for the same session had high 

accuracy (TAR > 93% at 0.1% FAR) and the cross-session performance 

degraded significantly to 47.93% TAR at 0.1% FAR at six months age for the 

children. Furthermore, the age at enrollment (children aged less than 1 year vs. 
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older than 1 year old) had more effect on the performance of facial recognition 

than time lapses of 6 or 12 months. The study indicates the COTS algorithm’s 

performance decreases when the age time lapse between the gallery and the 

probe image increases.  

Judging from the aforementioned studies, facial ageing is an unavoidable natural 

process. Further, it cannot be controlled during facial image acquisition like other 

sources of face appearance variation, such as lighting, pose, and expression. 

Therefore, the age issue in facial recognition still has shortcomings and needs to 

be overcome in law and security systems affected not only by internal factors but 

by external factors as well. 

4.4 External Factors  

Low resolution and illumination variation are two external factors obstructing the 

facial recognition process. Numerous researchers have attempted to minimise 

their effects on images to increase the accuracy of facial identification, including 

enhancing the quality of images captured from CCTV cameras or other digital 

resources. Details of such research will be discussed fully as follows. 

Buciu (2010) explored the problematic effects of the illumination factor on facial 

recognition and designed two correction methods to be applied either to a specific 

image or applied to any image. Five techniques were analysed for the second 

type by dealing with light direction and intensity to normalise facial images. These 

five techniques were the Self Quotient Image (SQI), the Morphological Quotient 

Image (MQI), the Morphological and Dynamic Quotient Image (DMQI), the Sub-

Image Homomorphic Filtering (SHF), and Recombined Multi-Scale Retinex 

(RMSR). Frontal pose images of the Extended Yale B Database (38 subjects, 

2432 samples images) were utilised for the evaluation. After correcting the 

illumination condition, PCA was applied to reduce data dimension. The various 
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facial recognition rates used up to five illumination correction methods, as shown 

in Figure 4-4. The recognition rates increased when the principal components’ 

(PCs) numbers increased. Moreover, the results show the recognition rate only 

improved slightly after 40 PCs. However, the best performance of two methods, 

SQI and DMQI, in PCs 90 was 91.67% and 88.82%, respectively. The total 

processing time was less than one second for all methods and this is critical for 

real facial recognition systems.  

 

Figure 4-4: Facial recognition performance versus the number of PCs (Buciu, 

2010) 

Nabatchian et al. (2010) proposed a method of filtering images with illumination 

variation to obtain smooth images for facial recognition. They designed a 

technique that could be applied to any single image without the requirement for 

information about face models or illumination by using a maximum filter. This filter 

assumed the low-frequency part of the image contained illumination while the 

high-frequency part contained the illumination reflectance. By applying a 

logarithm to each image, pixels in the dark domain were expanded and pixels in 

the bright domain were compressed. Two databases were used for their 

experiment—Yale B (10 subjects and 5760 images) and extended Yale B (38 



52 
 

subjects)—and images in these databases were divided into five groups according 

to the light angle of source direction:  

 Subset 1 (ϴ up to 12 )ͦ. 

 Subset 2 (ϴ up to 25 )ͦ. 

 Subset 3 (ϴ up to 50 )ͦ. 

 Subset 4 (ϴ up to 77 )ͦ. 

 Subset 5 (ϴ up to 78 )ͦ. 

The average recognition rates are presented in Table 4-2 with only frontal facial 

poses. Subset 1 is not presented in the table because it was taken under small 

illumination variation. This technique is simple and achieved good results in the 

recognition system. Moreover, it is considered fast as a result of the simplicity of 

its computation.      

Database 
Subset 2 

(%) 
Subset 3 

(%) 
Subset 4 

(%) 
Subset 5 

(%) 

Yale B (10 subjects) 100 100 98.6 98.9 

Extended Yale B (38 subjects) 100 99.78 95.44 94.68 

Table 4-2: Recognition rates for two database. 

Different techniques were used to enhance the facial recognition performance in 

terms of illumination and pose variation. Choi et al. (2011) proposed a novel 

technique by adding a weighted average intensity to light angles instead of 

shadow variations on the facial image. This was called the shadow compensated 

technique. Figure 4-5 shows an example of the shadow compensated results. In 

addition, they estimated facial poses to classify images into pose classes in 

accordance with the edge of the facial orientation. The recognition rate achieved 

about 99% on the CMU-PIE database and about 92.3% on the Yale B database. 

Their results were good but the compensated image still had noise pixels that had 

an effect in extracting discriminative features and if this noise was removed, the 

performance of the facial recognition system could be improved (Choi, 2012).  
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Figure 4-5: Example of the shadow compensated images in each pose (Choi et 

al., 2011) 

Luan et al. (2014) proposed a method that recognised the frontal pose face of 

humans under varying levels of illumination and occlusion. This technique did not 

require any previous knowledge of the illumination or face occlusion. They 

adopted Robust Principal Component Analysis (RPCA) and represented 

characteristics of the spare error component by performing sparsity and 

smoothness descriptors and applying them to facial recognition. In terms of 

classification, two methods were used: the weighted-based method and the ratio-

based method. The approach was evaluated using the Extended Yale B 

database. The database was divided into five subsets. As a result of the large 

light variation in them, subset 4 (14 images per subjects) and subset 5 (19 images 

per subjects) were considered as more important than subsets 2 and 3 that each 

including 12 images per subject. Subset 1 (seven images per subject) had normal 

illumination so it was chosen as the training set. The experiments with the 
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weighted method achieved a 95.06% recognition rate on subset 4 while with the 

ratio method achieved 54.18%. Subset 5 achieved 49.38% and 38.12%, 

respectively, for the two methods (Luan et al., 2014). The low performance in 

subset 5 was as a result of poor light around the face area which cause an 

extracting error in discriminative. Therefore, the recognition rate could be 

improved by enhancing the illumination of dark areas. 

Super Resolution (SR) is a technique or process that creates high-resolution 

images of low-resolution images (Baker and Kanade, 2002). Fookes et al. (2012) 

studied the effect of image resolution on facial recognition performance by 

applying three types of (SR) methods (i.e., Lin et al. (2005), Schultz and 

Stevenson (1996), and Baker and Kanade (2002)). PCA or Eigenface and Elastic 

Bunch Graph Matching (EBGM) were used as the matching facial recognition 

techniques. The experiments were implemented on the XM2VTS database of 295 

subjects with a head rotation shot. They observed an improvement in recognition 

accuracy variation in accordance with three super-resolution studies as shown: 

1 The improvement achieved was about 19% when they used the Lin et al. 

(2005) method that reconstructed images from low resolution by using the 

optical flow.  

2 The improvement achieved was about 30% when they applied the Schultz 

and Stevenson (1996)  method. They adopted the Bayesian maximum in the 

super-resolution technique.  

3 The least improvement was obtained when they used (Baker and Kanade, 

2002) method, referred to as the “hallucination method”. The performance 

was lower than the interpolation level.  

Zeng and Huang (2012) used radial base function (RBF) to design nonlinear 

mapping from non-frontal low-resolution (NFL) image features to front high-
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resolution (FH) image features. This technique attempts to solve the issue of 

facial recognition in video surveillance, in which most recognition has only one 

frontal high-resolution face in the gallery for testing. The FERET database was 

used in the experiments and various SR methods’ performance were compared 

with their own. These methods were GLR (Chai et al., 2007), HGLR (Sharma et 

al., 2010), Jia’s (Jia and Gong, 2005), CRBF (Huang and He, 2011), and Li’s (Li 

et al., 2009). The results were divided into two parts based on whether the input 

face pose was known or not. Firstly, when the input image pose was known, Zeng 

and Huang's method had a better facial recognition rate than the others did and 

achieved 80% at rank 1. The rate decreased to 49% when the pose angle was 

large (one side of the face). Secondly, in the result when the input face pose was 

unknown, the results here were similar to the known pose in the first experiment. 

The main weakness of this study was caused by the error in facial pose 

estimation.  

Despite two previous studies, Ren et al. (2012) criticised the SR method, finding 

that SR is not always in agreement for improving recognition accuracy and that it 

takes time, which is not appropriate for real-time techniques. In addition, there 

was a conclusion made by Xu et al. (2014), who analysed three factors in 

surveillance systems that affect recognition accuracy. These are 1) camera types, 

2) the distance between the human face and the camera, and 3) the facial image 

resolution. This study depends on indoor surveillance cameras where the motion 

is mostly slow and pose changes are few. They focused on low-quality images 

with normal variance lighting conditions. Xu et al. appraised their study by using 

four datasets, FRGC, AR, ScFace, and Curtin Faces. They ascertained three 

important points. First of all, when using low-resolution images (when distance to 

the camera is increased), the recognition rate drops sharply. Secondly, where 
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distance was fixed for all cameras, they observed a significant change in the 

recognition rate because of the camera’s resolution variations. Finally, facial 

recognition was largely improved when pre-processing was applied to enhance 

resolution (Xu et al., 2014). 

On the other hand, other external factors could affect the image quality, such as 

capturing the image near infrared light. This issue was investigated by Guo et al. 

(2017), who proposed a deep network model that studies the effect of both visible 

light images and near-infrared images on the performance of facial recognition. 

They used two datasets in the evaluation: the LFW database (more than13.000 

facial images collected from the internet) and YouTube Face Database (YTF) 

(3425 videos of 1595 different people, all videos are downloaded from YouTube’s 

website). The experimental results demonstrate the performance of the facial 

recognition algorithm based on the deep network achieved 98.95% and 97.3% 

for the LFW and YTF datasets, respectively. The deep network model is robust 

to illumination variation and could be effective in real-world scenarios as it was 

tested on two wild facial datasets.  

The problems of illumination in previous facial recognition studies were 

attributable to limitations such as facial pose, light angle, and the capture 

environment (indoors, outdoors, night, etc.). Sometimes, the solution was found 

without considering the facial image noise and its effect on recognition accuracy. 

Similarly, the low quality of images is determined by camera resolution, capture 

environment, and the distance of the object’s face from the camera. Despite the 

fact that all the best studies have tried to enhance the image quality to improve 

facial recognition accuracy, not all methods were successful and some results 

had no effect on recognition rate because of the source images being of bad 
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quality. In addition, in most studies, the probe image had low resolution while the 

database was of high resolution and this affected the recognition accuracy.   

4.5 Internal Issues 

Human interaction is unconstrained in front of surveillance cameras; as a result, 

other facial recognition problems can be related to human interaction, such as 

facial expressions (e.g., happy, sad, and angry), head motions (e.g., frontal face 

or not), and partial or occluded face (e.g., face hidden by glasses, hat, or scarf). 

Therefore, researchers have sought to overcome these challenges and have tried 

to process images before using them in the recognition system. One of the 

suggestions for processing the pose of face images was using a 3D technique. 

Ishimoto and Chen (2009) used 2D facial images to build 3D shape models by 

using a factorisation method (Tomasi and Kanade, 1992). They extracted 90 

features, mapping them to 2D feature points. The maximum facial poses angle of 

30 degrees (either right or left) was considered and the experiment was 

performed on the images of 20 persons. These conditions imposed limitations on 

the project. Ishimoto and Chen used the 3D shape reconstruction method for new 

pose angles 45, -15, 15, and 45 in the recognition system and improved system 

accuracy, as shown in Figure 4-6.  

 

Figure 4-6: The recognition rates results (Ishimoto and Chen, 2009) 

Asthana et al. (2011) designed a fully automated facial recognition system by 

normalising 3D pose variation up to ±45°. First, an Active Appearance Model 
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(AAM) was used to determine 2D landmark points. View-Based AAM (VAAM) 

approaches were found to be more robust for pose changes than correction poses 

using a 3D transformation model. Asthana et al. used the Local Gabor Binary 

Patterns (LGBP) method for face matching between two faces. Moreover, they 

used many databases for their experiments. Firstly, two databases, CMU-PIE (68 

subjects, 86 images in the gallery, and 408 images as probes) and FERET (200 

subjects, 200 images in the gallery, and 1200 images as probes), were used. 

These were found to be more useful in recognition systems with pose variation 

and the system achieved an overall recognition rate at rank-1 of 99% and 95.6%, 

respectively. In addition, they tested the system on three other datasets: USF 

Human ID 3D (94 subjects, 94 images as gallery, and 18612 images as probes), 

Multi-PIE (137 subjects, 137 images as gallery, and 1963 images as probes), and 

FacePix (30 subjects, 30 images as gallery, and 2700 images as probes). The 

results demonstrated the overall rank-1 recognition rates were 98.8%, 87.7%, and 

87%, respectively. These outstanding results may have been achieved because 

of the small face rotation angle, which was 45 degrees maximum for all 

databases.  

Because the 3D model may need more time to convert 2D faces into 3D models, 

Yi et al. (2013) sought to use a filter transformation method as a 3D model. They 

built a 3D features model and fitted it to the 2D image to get pose and shape. 

Finally, they produced a 3D feature points plane of the 2D image by applying the 

Gabor filter to extract robust pose features. Yi et al. evaluated their system on the 

FERET database, limited to a pose angle <= 45 degrees. The mean recognition 

rate was 95.31% in 12 poses.  

Moeini and Moeini (2015) proposed a facial recognition system with pose and 

expression variations from real-world 2D face images. This system combined two 
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types of 3D methods, pose synthesis and filter transformation, using gallery 

images to generate a Feature Library Matrix (FLM) that used the 3D filter 

transformation method. Each subject in the gallery images, therefore, had an FLM 

based on face pose triplet angles. Pose synthesis was then used to extract 

features from real-world images. The authors matched the FLM matrix with 

feature extraction in a classification technique by using an SVM. The mean 

recognition rate from experiments achieved on the CMU-PIE database (68 

subjects, 68 frontal images as the gallery, and 816 images as the probe) was 

98.24%. FERET (200 subjects, 200 frontal images as the gallery, and 1600 

images as the probe) achieved about 99.09% mean recognition rate, and there 

was a 93.16% mean recognition rate for the LFW database, which had 13,233 

real-world facial images from 5,749 subjects of various face ages, facial poses, 

and illumination. Slowness/delay could be a problem with this system because 

additional time is required for 3D synthesis and the matching process. 

In addition, other studies have been proposed to manage the issue of pose 

variation in facial recognition. Singh et al. (2007) created face mosaics as a form 

of panoramic view to enhance the face-matching system’s performance. The 

mosaic scheme is illustrated in Figure 4-7. Singh et al. determined face coarse 

affine alignment for different poses then used phase correlation to detect blocks 

of 8×8 pixels for image segmentation, which supported the two views’ pose to 

stitch. After three views, the images were connected and multi-resolution was 

applied on the connection boundary to generate a final face mosaic. Singh et al. 

treated face mosaics as a gallery and they were matched with probe face images 

with unconstrained poses by combining log-Gabor transform, C2 feature 

extraction, and a 2v-SVM classifier. The experiments were conducted with two 

datasets. The first was a CMU PIE face database (68 subjects), which used 
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images with a neutral expression as a gallery while images with slight variation in 

light and expression were used as probes. The WVU Multispectral face was the 

second database of 40 subjects, which were divided into two sets, visible (WVU 

visible-light) and short-wave infrared (WVU SWIR). The experiments showed 

different points: 

 When gallery and probe images are mosaics, identification accuracy was 

achieved 100%. 

 The matching performance of mosaic images as a gallery with non-mosaic 

images was better when a mosaic scheme was not used. 

 The results obtained from the WVU SWIR database was better than WVU 

visible light. This may have been because of the conditions of illumination. 

 The range of proposed system performance for mosaic images was 

between 96.85% and 100% in terms of identification accuracy.  

The advantage of using mosaic schemes in gallery datasets is that the storage 

space can be saved as, instead of using multi images in matching, only a single 

image was used. The main weakness with mosaic schemes is that a minimum of 

three poses, including frontal, left and right poses, is required; and if one of these 

is missing, the system may not work. In addition, the pose direction in this system 

is the horizontal face pose and it ignores vertical face pose views.  

 

Figure 4-7: (a), (b), and (c) are input images. (d) Mosaiced face generation. (e) 

The final image (Singh et al., 2007) 
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Cament et al. (2015) focused on Gabor features in face identification because it 

gives high accuracy and good results. Figure 4-8 shows their proposal, which 

includes three stages. The first stage consists of image alignments, using Active 

Shape Models (ASM) with local normalisation (LN) for illumination compensation. 

The second stage involves feature extraction using Gabor jet computation, which 

depends on eye positions as a central location to deform the grid of the face so it 

is similar to a frontal pose; and finally, a classification part, using a Borda count 

method and determining the pose variation by using a local statistical model. 

Cament et al. evaluated the approach by testing on the FERET with maximum 

pose rotation (-60o to +60o). The results show the mean recognition accuracy for 

the FERET database with face pose variation was 93% (i.e., a mean high 

performance with the frontal pose, 15o, 25o and 40o degrees was 93% while the 

accuracy with the 60o face pose angle was 76%). This study was an effective 

attempt to deal with pose variation of the face as a feature and to attempt to get 

a frontal pose without using 3D face representation, although facial recognition 

performance was still needed for more enhancement of large pose changes or 

vertical poses.  
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Figure 4-8: The three stages of the proposal system (Cament et al., 2015) 

Kim et al. (2013) estimated head poses based on five multiple face templates 

(ranging from frontal pose to full left pose). They removed the illumination effects 

with unimportant details by applying the difference of Gaussian (DoG) filtering 

then divided the face into 10 X 10 grids and extracted the feature vector for each 

region by using a Local Binary Pattern (LBP). The close template to test the image 

was discovered by computing the distance between them then determining the 

corresponding local parts in the test image compared with the template and, 

finally, mapping each local part in the test image to the strict-frontal position. Kim 

et al. studied 10 facial parts in the strict-frontal template pose with the left side 

only because they supposed the right side was the symmetry side of the left. 

However, that could be considered as a limitation in their study because maybe 

there are better features on the right side. The matching technique in this proposal 

depends on finding the distance between two component images, so it needs to 

compute the same process for two images (Du et al., 2014). This approach was 

tested on the Multi-PIE public database and it achieved the highest overall 

accuracy of 72.2%. Further, this approach gave a good result with the verification 

system but the weakness was found when the pose angle was large, and then it 

did not discover all facial orientations with the five templates.  
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Lee et al. (2012) provided a sound feature extraction method that attempted to 

resolve the issue of matching unconstrained facial poses for probe images with a 

frontal pose database. They decomposed the facial appearance for each pose by 

using the Embedded Hidden Markov Model (EHMM) to extract the Subject 

Specific and Pose Oriented (SSPO) component, which included intrapersonal 

facial characteristics. The Adaboost weighting scheme was used as a 

classification technique to combine the SSPO features with the component 

classifiers. Figure 4-9 shows this approach. This approach could overcome the 

limitations of the previous study and could work with any facial pose. The 

evaluation of this approach used four databases. Table 4-3 shows the databases’ 

descriptions and their features. The overall performance rate for close-set 

identification of three databases PIE, ORL, and IVLAB was 96.01% while for 

HONDA/USCD it was 95.27%. The results showed that by using the SSPO 

method to determine facial components, a good level of recognition accuracy can 

be achieved.  

 

Figure 4-9: The full system approach (Lee et al., 2012) 
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Database Subjects Enrollment Probe Var 

ORL 40 5 5 ~ (+30o, -30o) 

IVALB 15 60 30 ~ (+60o, -60o) 

PIE 68 8 5 ~ (+90o, -90o) 

Honda/UCSD 20 60 153 ~ (+90o, -90o) 

Table 4-3: Databases description (Lee et al., 2012) 

Other challenges in facial recognition related to uncontrolled human action are 

facial expression and occlusion. Researchers tried to resolve more than one issue 

of facial images by combining two or more facial challenges in the study. Sultana 

et al. (2014) provided a study for recognising faces across facial expression 

changes further to invariant pose and illumination. They used two methods as 

feature vectors: the lower order Pseudo Zernike Moments (PZMs) method (Teh 

and Chin, 1988) and Daubechies Discrete Wavelet Transform (DWT) (Shen and 

Strang, 1998) with K-NN classifier to develop the performance of the facial 

recognition system across expression and pose invariants. First, the illumination 

and shadow effect was eliminated using an improved Weber-face method as the 

normalisation technique while preserving enough details for recognition 

purposes. Then the extraction feature vector and, finally, applying the k-NN 

classifier, which depends on the distance between the features to matching. 

Sultana et al. evaluated the proposal by testing on different datasets, as shown 

in Table 4-4. However, they disregarded variations in expression, pose, and 

illumination by using a small feature number in recognising facial images and 

applied a feature vector with classifiers on three final databases DB1, DB2, and 

DB3, as shown in Table 4-4. The results showed that the best recognition rate 

was on DB2: 98% with little or no expression changes and large illumination 

changes while a recognition rate of 97% was achieved on DB1 with large pose 

and expression changes and with little or no illumination changes. The authors 

maintained that this proposal was better than the PCA method when using the 
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same databases (Sultana et al., 2014). This system constituted an effective 

attempt to ignore uncontrolled facial image issues.  

Database Subjects 

AT&T  40 

AR 70 male, 56 females 

Yale 15 

Sheffield 20 

Final databases 

DB1 40 subjects randomly chosen from AT&T, AR and 
Sheffield databases. 

DB2 40 images randomly chosen from Yale and AR 
databases. 

DB3 Contains all images in DB1 and DB2. 

Table 4-4: Facial image databases description (Sultana et al., 2014) 

Bhat and Wani (2015) adopted an Elastic Bunch Graph Matching (EBGM) 

algorithm as the facial recognition approach, with changes in facial expression, 

pose, and lighting. There are five steps that have to be followed in the EBGM 

method to identify a face: 

 Normalisation: in this step, eye location is needed to rescale the image to 

128 pixels on an edge and to normalise image brightness.  

 Landmark Localisation: the user selects different points on the facial 

image to create a bunch graph. 

 Face graph creation: using landmark points and creating the structure of 

the face graph.  

 Distance measurement: computing the similarity graph vectors for each 

pair in the database. 

 Identification: choosing the close distance to identify faces.  
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They depended on three databases for their study: the ORL dataset (40 subjects, 

400 images) was used to evaluate the system with facial expression variation; the 

Yale B dataset (65 subjects, 2470 images) was used for illumination condition 

evaluation; and, part of the FERET dataset (20 subjects, 200 images) was 

selected for pose variation. The experiment was divided into two parts: in the first, 

the authors used the training set, including all the same images from the testing 

set so, in this case, the recognition rates reached 100% for three face conditions. 

This is a normal result because all images could be found in the two sets. In the 

second experiment, the authors divided the subject images into two, half for the 

testing set and the other half for the training set; in this case, the recognition rates 

achieved 91.5% for facial expression variation, 65.78% for the illumination 

condition, and 77% for pose changes (Bhat and Wani, 2015). Generally, this 

performance achieved good results but each issue process separated from the 

other with their dataset, so there was no experiment to collect all issues in one 

system.  

Liao et al. (2013) studied how to identify any suspect in a large crowd of people 

with uncontrolled captured images, such as pose changes, illumination variation, 

partial occlusion, and disguise. They proposed a partial face-matching technique 

that included various categories of partial images, such as facial accessories 

(e.g., hat, sunglasses, scarf, and mask), out of the camera, occlusion by other 

subjects, non-frontal pose, etc. The Multi-Keypoint Descriptor (MKD) method was 

used for representing probe image and gallery database features. Further, face 

probes were achieved by using multitask sparse representation. In addition, the 

Sparse Representation-based Classification (SRC) technique was used for face 

matching. This proposal works on both holistic and partial faces, so it 

automatically determined the type of image from the descriptor details that give 
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the length size. However, the size of the holistic face descriptor will be greater 

than that of the partial face descriptor. An additional descriptor technique, the 

Gabor Ternary Pattern (GTP), was used. It gave more definition to local facial 

components and it was robust with regard to illumination changes. The evaluation 

of this proposal was applied to four databases FRGCv2.0, AR, LFW, and PubFig, 

as illustrated in Table 4-5. The proposed method, MKD-SRC-GTP, was compared 

with different facial recognition approaches to evaluate the performance by using 

a ROC curve (i.e., Detection and Identification Rate (DIR) versus FAR). However, 

the overall results of four databases prove the MKD-SRC-GTP method performs 

well for the general partial facial recognition issue when compared with other 

commercial techniques. The ROC curve was about 95%, 90%, 98%, and 16% of 

20% for FRGCv2.0, AR, LFW, and PubFig datasets, respectively. This approach 

was computationally dense but the results showed improvements in partial facial 

recognition issues with different partial categories.  

Datatsets Scenario Subjects Probe Gallery Characteristic  

FRGCv2.0 Partial 
patch 

20466 25562 10466 Synthesized partial 
faces. 

AR Occlusion 20135 11530 10135 Occluded holistic faces. 

PubFig Pose & 
occlusion 

5140 8027 5083 Occluded or nonfrontal 
faces collected in 
unconstrained 
condition. LFW Pose & 

occlusion 
5749 6000 6000 

Table 4-5: Database description and methods used in experiments of (Liao et al., 

2013) 

Similarly, Weng et al. (2013) attempted to match partial faces with full faces and, 

as with (Liao et al., 2013), these did not require manual alignment. They extracted 

local feature key points instead of holistic features using the Scale-Invariant 

Feature Transform (SIFT) then concatenated with the speeded up robust features 
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(SURF) for both probe and gallery images. They designed a new approach for 

matching, called Metric Learned Extended Robust Point Set Matching 

(MLERPM), which was based on matching two feature vectors geometry features 

and texture features for probe images and gallery images. There was an error 

ratio when matching key points in the probe image that did not appear in the 

gallery image. To evaluate the performance of their proposal, Weng et al. adopted 

three datasets: the LWF dataset (5749 subjects; 13233 images, with only 1680 

subjects having more than two images), and with variation in lighting, expression, 

resolution, and makeup; the AR dataset (126 subjects, 70 males and 56 females), 

including different illumination, expressions and facial disguises (sunglasses and 

scarf); and the extended Yale B dataset (38 subjects, 2414 frontal faces). The 

system results demonstrated recognition accuracy for the LFW dataset 50.72% 

at Rank 1 and 72.75% at Rank 20. The AR dataset for sunglasses and scarf 

conditions achieved 97.5% while it achieved a different facial recognition 

accuracy on Extended Yale B up to 98.3% for occlusion rate 30% and 30.2% 

accuracy for 50% occlusion rate (Weng et al., 2013). Although these results are 

normal for these conditions, it was observed that the performance was poor on 

high occlusion images. Furthermore, this method was robust when discriminative 

facial components were available.   

Min and Dugelay (2012) studied another type of occlusion called sparse 

occlusion, in which faces occluded by stains, text, orthogonal grid, and diagonal 

grid were differentiated from dense occlusion faces, such as those with scarves 

and sunglasses. This study suggested using the Robust Principle Component 

Analysis (RPCA) method to detect automated sparse occlusion parts on faces, 

after which the Field-of-Experts (FoE) model was applied to inpainting the 

occluded parts. Min and Dugelay utilised this approach to improve recognition 
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rates in video surveillance. They evaluated their approach by using the AR 

database (126 subjects, 4000 images, 70 men and 56 women) with various facial 

conditions such as expressions, illumination, and occlusion. They tested the 

proposal by applying three facial recognition algorithms: PCA, Scale Invariant 

feature transform (SIFT), and Local Binary Patterns (LBP). The results showed 

improved recognition rates for all three algorithms. The improvement rate for the 

SIFT technique was more than 75% for all four types of occlusion faces. The 

results of the LBP technique were closer, because it is more robust for occlusion 

faces, although, for diagonal grid face images, it improved by 74%. This study 

was a good attempt for specific types of face occlusion images.  

Recently, most researchers are interested in recognising faces from the wild to 

find faces from a million photos, which is considered a difficult challenge for facial 

recognition. Wang et al. (2017) proposed a face search system by fusing the 

number of COTS matchers. Firstly, they filtered a large gallery by using features 

learned by a convolutional neural network to find the top-k most similar faces. 

These top-k features were recognised by the COTS matcher. After that, the 

researchers fused the deep features with the COTS matcher to improve the 

overall performance. This study used one mugshot dataset and four web face 

datasets in its experiment, which are PCSO, LFW, IJB-A, CASIA-WebFace, and 

built a private dataset called “Web-Face”. Web-Face was built by downloading 

millions of web images that were filtered to ignore all images without faces. 

Finally, 80 million facial images were collected. The fusion technique used in this 

study improved the overall performance to 99:5 percent TAR@FAR of 0.01 

percent. This study was considered a good attempt to recognise and search for 

faces among millions of images and this scenario helped the investigation in 

digital forensics. Additionally, Wang et al. (2017) were using real criminal case 
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images of the Tsarnaev brothers (the Boston Marathon bombing was described 

in Section 1.1). They found the younger brother’s (Dzhokhar Tsarnaev) photo at 

rank 1 in one second on a 5Mgallery and at rank 8 in seven seconds on an 

80Mgallery.   

4.6 Soft Biometric Attributes 

Many researchers have used multi-biometric systems to enhance biometric 

recognition applications. For the facial recognition technique, the researcher 

added specific details to increase the matching accuracy. Soft biometric traits, 

such as tattoos, facial marks (e.g., scars, moles, and freckles), gender, height, 

and eye colour, are considered helpful in enhancing the performance of the facial 

recognition system (Flynn et al., 2008). Moreover, in face matching, the soft 

biometric attributes could contribute to the minimisation of large databases by 

filtering data according to its features and could be used to differentiate between 

identical twins or as visual evidence in court (Park and Jain, 2010). However, the 

limitation of soft biometrics is that the traits could not be considered as primary 

features for recognising people because they could be shared by people and so 

it serves to support other recognition systems in making a decision. 

Park and Jain (2010) suggested using facial marks, gender and ethnicity to 

increase face matching and retrieval performance. They studied occluded or 

partial face image cases where facial marks support these categories and they 

filtered databases by using gender (i.e., male, female, and unknown) and ethnicity 

(e.g., Caucasian, African-American, and unknown) as demographic information 

that does not change over time. This study adopted an automated method to 

determine facial marks by applying the Active Appearance Model (AAM) to 

determine and remove primary facial components, such as eyes, nose, and 

mouth. Then, they detected the silent facial marks by using the Laplacian-of-
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Gaussian (LoG) operator. Finally, the authors combined two face-matcher 

models, the mark-based matcher and a commercial face matcher (FaceVACS), 

to improve the matching process. Park and Jain built two databases DB1 (213 

subjects and 213 images for the probe, 10213 subjects and 10213 images for the 

gallery) from mugshot faces (probe) and the FERET (gallery) database while DB2 

(554 subjects with 554 images for the probe, 671 subjects with 671 images for 

the gallery) consisted of a mugshot face database. They also built two additional 

databases. DB3 was collected from a video for five subjects and DB4 included 

five identical twins. Because of the low resolution of images in DB2, the authors 

used it for the statistical analysis of marks. This framework was tested by several 

experiments, as follows: 

 They used DB1 to match and retrieve faces, so the recognition accuracy 

at rank-1 improved from 90.61% (only used Face VACS matcher) to 

91.08% (adding marks with the FaceVACS matcher). Moreover, the 

accuracy rate of applying marks with the FaceVACS matcher on gender 

and ethnicity increased from 91.55% to 92.02%, demonstrating there is a 

slight improvement in their approach. 

 Face occlusion from video frames (DB3) was examined by applying the 

soft biometric matcher after the failed the commercial face matcher to 

retrieve five probes face occluded images. So, the proposed soft biometric 

traits-based matcher was successful at ranks 3, 4, 6, 7, and 8. 

 The authors tried to distinguish between identical twins, so they applied 

the soft biometric matcher on DB4. After the FaceVACS failed to recognise 

identical twins, the soft biometric marks helped the mark-based matcher to 

distinguish five pairs of identical twins. However, gender and ethnicity did 

not help in this case because they were shared between identical twins 
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within the dataset. In addition, the AAM method did not work well because 

of the light condition, so the authors had to detect primary features 

manually. 

These results support a forensic application because they depended on 

automatic extraction for facial marks. The limitation of this work is that it depended 

on good quality images with normal facial condition and so, when images in DB4 

were with strong light, the manual face component detection technique was 

chosen instead of the automatic technique.  

Tiwari et al. (2012) attempted to identify 210 newborns by using the face as a 

primary biometric while gender, height, weight, and blood were used as 

secondary biometric traits. The challenge was uncontrolled on newborn facial 

conditions, so the database images that were collected for one year included 

variations in expression, pose, and illumination. The vector feature of the newborn 

face or the posterior probability were extracted and secondary biometrics were 

computed; then this system was evaluated by implementing four algorithms PCA, 

Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), and 

Local Binary Pattern (LBP). The images of newborns (10 images per infant) were 

divided into a training database (six images per subject and 1260 images totally) 

and a testing database (four images per subject and 840 totally). The experiments 

showed that four biometric trails improved recognition by 6% when using just 

faces. Gender was the worst feature for improving facial recognition accuracy 

while the increased accuracy rate was 1.5% for blood group, 3.1% for height, and 

2.1% for weight, compared with using only the facial recognition, as shown in 

Table 4-6. This study was a good attempt to analyse infant facial recognition 

issues. Infants’ faces change quickly and any feature vector for an infant's face 

will change. In addition, most secondary biometrics are not unique, could change 
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(for example, weight or height except blood group), and are not easily found within 

a standard image dataset.  

Procedure F% F+G% F+H% F+W
% 

F+B% F+G+H+W+B% 

Identification 

Accuracy (Rank-1) 

80.42 82.40 83.12 82.10 83.60 86.80 

Table 4-6: Accuracy of the face and biometric identification (Tiwari et al., 2012) 

Tome et al. (2015) tried to translate a set of facial features into information that 

could be understood by judges or forensic investigators who need a supporting 

tool to distinguish between people from their facial images. They took forensic 

methodology aspects into consideration to produce a study that would be useful 

in real criminal investigation cases. They divided the facial features into two 

groups: continuous and discrete. The continuous features represented facial 

landmark measurements, such as height and width of the nose and mouth, while 

the discrete features represented the facial landmark shapes, such as the 

eyebrow shape, such as arched and rectilinear. The facial landmarks were 

extracted manually from frontal faces. The authors studied and analysed the 

correlation, stability, and discriminative facial soft biometrics and found that these 

traits improve the forensic facial recognition accuracy system. In addition, they 

divided faces into regions according to their discriminative power. They adopted 

two frontal face databases to extract soft features: the ATVS forensic database 

(50 subjects, eight samples per subject) and a subset of the MORPH database 

(130 subjects, six samples per subject). The identification performance of ATVS 

rank 1 was 48.75% and achieved 100% rate at rank 5. For the second database, 

MORPH DB, the identification rate at rank 1 was 23.84%, 62.05% for rank 5, and 

75.13% for rank 10. For the overall results, the results for the first database were 

better than the second because the latter one had more unconstrained conditions 
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and low-quality images. Also, the research team found that the nose and forehead 

areas have more discriminative information than the eye and eyebrow areas do. 

Gonzalez-Sosa et al. (2018) used soft biometric such as gender, ethnicity, age, 

glasses, beard, and moustache to improve the facial recognition system in 

unconstrained scenarios. They explored improving two COTS facial recognition 

systems based on deep learning by fusing soft biometric data. Their experiments 

evaluated by using the labelled faces in the wild (LFW) database. Firstly, they 

considered two suggestions to estimate soft biometric information: manual and 

automatic. The experiments’ results showed that soft biometrics are considered 

valuable data and relate to the face in unconstrained scenarios. There were 

improvements up to 40% and 15% in the performance of the verification when 

using manual and automatic soft biometric data, respectively.  

4.7 Commercial Face Identification Systems 

Recently, many companies have been interested in publishing facial matcher 

software as a result of the increased interest in this field. Therefore, these 

commercial software aim to overcome the drawbacks of existing studies and 

identify unconstrained face images. For this reason, today's many researchers 

are used to these types of facial-matching systems in their studies. For example, 

Klontz and Jain (2013) conducted a study of the Boston Marathon bombings of 

2013 and analysed the reasons why the automated facial recognition system 

failed to identify the suspected persons at that time. They used three commercial 

matchers: NEC NeoFace 3.1, Cognitec FaceVACE 8.6 (they chose these two 

systems based on their top performance in the National Institute of Standards and 

Technology (NIST) Multiple Biometrics Evaluation), and PittPatt 5.2.2 (acquired 

by Google). Their study concluded that forensic facial recognition systems 
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operate under unconstrained faces of people in the presence of digital 

surveillance cameras and need more progress to overcome such issues. 

Wang et al. (2017) used a few commercial off-the-shelf (COTS) systems to search 

for persons within large-scale photos by using deep features while Best-Rowden 

et al. (2016) evaluated one of the COTS system’s face matchers on their 

Newborns, Infants, and Toddlers Longitudinal face image database to explore the 

ability of face identification on children faces. Their result showed that facial 

recognition technology still has complexity to recognise young children’s faces. 

In addition, Juefei-Xu et al. (2015) studied the performance of COTS facial 

recognition systems on partial faces or occluded facial parts. However, they found 

inconsistencies existed in the COTS systems depending on image sources, 

especially occluded faces.  

As demonstrated above, existing studies have attempted to deal with different 

commercial systems of facial recognition to identify suspects. There are some 

advantages of focusing on commercial facial recognition systems in digital 

forensics, such as they could release the forensic team from building their own 

algorithm to matching faces in criminal investigations. In addition, investigators 

could benefit from using updated facial recognition systems by the state of the art 

in underlying recognition performance.  

 Nowadays, many companies, such as Amazon, Microsoft, NEC NeoFace, and 

Google, provide facial matching systems. However, there are some limitations 

that researchers could encounter when using these types of algorithms in their 

studies, such as high costs (e.g., NEC NeoFace) and requiring consent from 

governments and law enforcement organisations (e.g., Cognitec, faceVACS). 

Furthermore, there is a variance between commercial facial recognition systems 

in their ability to accept all image issues such as quality, light degree, and face 
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orientation degree. Therefore, it is essential in the criminal investigation field that 

researchers check the characteristics of the commercial facial recognition 

systems that suit their aims.  

4.8 Discussion 

As mentioned previously, several problems in facial recognition systems need to 

be addressed to improve their performance, permitting them to offer more reliable 

assistance to the digital forensic investigation field. Table 4-7 summarises all 

studies presented in this chapter. Amongst these issues, facial ageing plays a 

role in the forensic facial identification application. Several studies adopted 

generating new faces at different ages to minimise the age gap in the face-

matching technique. For example, the work of Kemelmacher-Shlizerman et al. 

(2014) achieved a good level of performance in the age-progression area 

although they used human decisions instead of an automated identification 

system. In comparison, others preferred to use the discriminative approach to 

solve the ageing issue in the facial recognition system, including Li et al. (2011), 

Sungatullina et al. (2013), and Pal and Gautam (2015). They used the local 

features of faces as a method to achieve good results in the identification system. 

In addition, soft biometric traits (e.g., scars, moles, and freckles) were also 

investigated to improve the accuracy of age estimation. For instance, the 

experimental results of Ling et al. (2010) demonstrate the recognition 

performance is improved by using soft features. In particular, these methods 

could be effective in dealing with adult faces where the face shape normally does 

not change but where identification is limited by accessories (glasses, hat, scarf, 

etc.).  

Other factors that could play a key role in the face-matching process are external 

factors (i.e., illumination and resolution). As demonstrated in Section 4.4, several 
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methods were investigated for enhancing recognition accuracy, such as 

illumination filter enhancements, the shadow compensated technique, and the 

super-resolution method. Despite all current studies, external factors still pose 

significant challenges in the performance of facial recognition systems, especially 

in digital forensics because most evidence images come from CCTV, which can 

be located indoors or outdoors and can be affected by changes in light and 

camera quality.  

Another problem in forensic facial recognition is face pose and expression 

changes. Most studies on face pose variation have limitations in the degree of 

facial pose angle, with the complexity increasing when the angle increases. 

However, this issue, and the issue of expression changes, can be managed by 

extracting soft biometric features or landmarks of the face and further dividing the 

face into regions and matching each part with the same region in database 

images, such as in studies by Singh et al. (2007) and Cament et al. (2015). These 

suggestions could serve to filter a large database and allow for focus on the best 

face region in matching. Other studies preferred using a 3D model to solve 

change in the facial pose, such as Asthana et al. (2011), which converted frontal 

pose by creating 3D face viewing from a 2D image. In some cases, the using 3D 

model made the system more robust because of the high discriminative 

information and less sensitive to environmental variations, such as illumination. 

In contrast, the main drawback of the 3D model is requiring all the elements of 

the system to be well-calibrated and synchronised to acquire accurate 3D data 

(texture and depth maps). In addition, costs of the set-up and additional time 

needed for processing data should also be considered when using a 3D module. 

Nevertheless, the decision on whether to use a 3D model to improve the 
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performance depends on several factors, such as case background, the overall 

cost involved, and the data type available. 

In comparison to dealing with a single issue, numerous researchers have tried to 

solve multiple challenges within the system. For instance, Bhat and Wani (2015) 

studied face expression, face pose, and illumination. However, each evaluated 

system performed two stages: firstly, for large lighting changes and, secondly, for 

large pose and expression change. Therefore, their system was limited to 

collecting all issues in one experiment. Another good attempt was by Liao et al. 

(2013) who identified suspect persons’ images with uncontrolled images 

captures, such as partial face and variation in lighting and face pose. They 

focused on partial and disguised faces in images and achieved good accuracy 

but, still, the commercial technique as higher accuracy.  

Several studies have sought out all previous issues and found that when the 

face’s soft biometric features are used, the accuracy of recognition improves. This 

feature is able to filter a large database for quick and easy matching and could 

help with various cases, such as distinguishing identical twins and dealing with 

partial faces, occluded faces, and changes in facial posture. A number of 2D 

databases are used in facial ageing experiments but the most popular ones are 

FG-NET and Morph Album2 because they include various ages for each sample. 

Furthermore, the popular databases that support illumination studies are the 

Extended Yale B and CMU-PIE databases. They are characterised by containing 

samples with different light angles. The FERET and CMU PIE databases are 

mostly used for experiments on face pose changes while the AR dataset is 

suitable for partial face experiments.  

There are new studies that utilise commercial facial recognition systems in their 

research. These types of algorithms or systems (commercial) could save time for 
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researchers to build or improve new face-matching algorithms. In addition, they 

do not need to have deep knowledge of algorithms. Commercial systems have 

continuously enhanced their face-matching algorithms and have tried to integrate 

any new method that has emerged in their systems as a result of the extreme 

competition between companies. Therefore, most researchers in digital forensics 

are moving toward the use of these types of facial recognition systems and have 

included them in their studies (as shown in Section 4.7). For instance, Table 4-7 

shows a number of studies have solved facial recognition issues by using COTS 

algorithms, such as Park et al. (2010), Best-Rowden and Jain (2018), and Best-

Rowden et al. (2016), which implemented several COTS algorithms to solve the 

ageing issue. Also, Wang et al. (2017), Park and Jain (2010), and Gonzalez-Sosa 

et al. (2018) implemented COTS algorithms to solve issues in forensic facial 

recognition scenarios.  

As has been shown, numerous investigations have been conducted into the 

effects of different applications of facial recognition. Although many researchers 

have attempted to solve more than one issue in their studies, few attempts have 

been made to combine all techniques involved in criminal investigation cases. 

The major challenges of digital forensics investigation with facial recognition are 

accuracy, processing more than one issue in the system, limited time, and size of 

the data that need to be managed. It is, therefore, necessary to seek the best 

method of solving facial recognition problems and to construct a framework that 

includes most of these methods in the forensic application. 

4.9 Conclusion 

This chapter presented a comprehensive analysis of existing work in forensic 

facial recognition and highlighted the challenges within this field. These 

challenges are facial ageing, external issues (change lighting and image quality), 
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and internal issues (face pose, facial expression, and partial face). Accordingly, 

various studies have been published that provide incremental improvements to 

solving issues individually. Further, a few researchers have suggested solutions 

to fusing some of these issues into one system so they can be studied. 

Furthermore, in the last few years, the research on facial recognition has included 

deep learning techniques or commercial algorithms to improve the previous 

studies’ results. It is noticed that this type of algorithm makes using the facial 

recognition technique easier (there is no need for deep experts in recognition 

algorithms) and promise improved accuracy.   

Despite previous literature review, more effort is required to optimise solutions in 

an integrated framework that deals with the facial recognition issues holistically, 

in terms of digital forensics, and understand how well they can perform on a range 

of real-world datasets.   
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Author/Year 
Matcher 

Algorithm 
Dataset Result 

Measure 
types 

Age or Face 
Pose 

Facial Aging 

Park et al. 
(2010) 

COTS 

FG-NET 37.4 

Rank1 - 
MORPH-
Album1 

66.4 

BROWNS 28.1 

Mahalingam 
and 
Kambhamettu 
(2010) 

Age Model 

FG-NET 

70%- 
80% 

Rank10-
Rank20 

0-69 
The potential 
individual 

69% Rank10 

(Juefei-Xu et 
al., 2011) 

unsupervised 
discriminative 
projection 

FG-NET 100% Rank1 - 

Kemelmacher-
Shlizerman et 
al. (2014) 

Human 
decision 

(40,000 
photos) 
Google search 
images 

- - 1-80 

Ling et al. 
(2010) 

A Support 
Vector 
Machine 
(SVM) 

FG-NET 
30.5% 

EER 

8-18 

38.6% 0-8 

Passport I 8.9% 
>=18 

Passport II 11.2% 

Li et al. (2011) MLBP 

MORPH 
album 2 

83.9% 
Rank1 - 

FG-NET 47.50% 

Sungatullina 
et al. (2013) 

MDL 

FG-NET 91.8% 

Rank 1 - 
MORPH 
album 2 

65.2% 

Pal and 
Gautam 
(2015) 

SVM FG-NET 76.6% Rank 1 - 

Best-Rowden 
and Jain 
(2018) 

COTS 

LEO_LS 

~99% 0.01%FAR 0-17 

PCSO_LS 

Best-Rowden 
et al. (2016) 

COTS 

NITL (same 
session) 

93% 
TAR at 

0.1% FAR 
0-4 

NITL (cross 
session) 

47.93% 

External Factors (illumination and resolution) 

Yale B 98.9% R1 - 
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Nabatchian et 
al. (2010) 

SVM and k-
nearest 
Neighbors 
rule 

extended Yale 
B 

94.68% 

Choi et al. 
(2011) 

Nearest 
Neighbor rule 

CMU-PIE 99% 
Rank 1 - 

Yale B 92.3% 

Luan et al. 
(2014) 

the weighted 
based 
method 

Extended Yale 
B(subset4 

95.06% 

Rank 1 - 
the ratio-
based 
method 

Extended Yale 
B(subset4) 

54.18% 

Guo et al. 
(2017) 

Deep 
Network 
Model 

LFW 98.95% 

Rank 1 - 
YouTube 
Face 

97.3% 

Internal Issues (pose, partial, expression) 

Asthana et al. 
(2011) 

Local Gabor 
Binary 
Patterns 
(LGBP) 

CMU-PIE 99% 

Rank 1 - 

FERET 95.6% 

Moeini and 
Moeini (2015) 

SVM 

CMU-PIE 98.24%. 

Rank 1 Pose FERET 99.09% 

LFW 93.16% 

Singh et al. 
(2007) 

2v-SVM 

CMU 
PIE+WVU 
Multispectral 
face 

96.85% Rank 1 Pose 

Cament et al. 
(2015) 

Borda count 
method 

FERET 93% Rank 1 Pose 

Kim et al. 
(2013) 

LBP 
(distention 
measure) 

Multi-PIE 72.2% Rank 1 Pose 

Lee et al. 
(2012) 

Adaboost 
weighting 
scheme 

ORL 

96.01% 
Rank 1 Pose 

IVALB 

PIE 

Honda/UCSD 95.27% 

Sultana et al. 
(2014) 

k-NN 

DB1(AT&T, 
AR and 
Sheffield) 

97% 

Rank 1 
Expression, 

pose,illumination 
DB2(Yale and 
AR) 

98% 
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DB3(DB1 and 
DB2) 

96.5 

Bhat and Wani 
(2015) 

Distance 
Measurement 

ORL 91.5% 

Rank 1 
expression, 
pose, and 

lighting 
Yale B 65.7% 

FERET 77% 

Liao et al. 
(2013) 

MKD-SRC-
GTP 

FRGCv2.0 95%, 

ROC 
large crowd of 

people 

AR 90%, 

LFW 98%, 

PubFig 
16% of 

20% 

Weng et al. 
(2013) 

Metric 
Learned 
Extended 
Robust Point 
Set Matching 
(MLERPM) 

LWF 50.72% 

Rank 1 partial faces AR 97.5% 

extended Yale 
B 

98.3% 

Min and 
Dugelay 
(2012) 

PCA, SIFT 
and LBP 

AR ~>74 Rank 1 sparse occlusion 

Wang et al. 
(2017) 

COTS 

PCSO, LFW, 
IJB-A, CASIA-
WebFace and 
Web-Face 

99:5 
TAR@FAR 

of 0.01 
Web images 

Soft Biometric Attributes 

Park and Jain 
(2010) 

COTS DB1 91.08%  
gender and 

ethnicity 

Tiwari et al. 
(2012) 

PCA 

Private  

74.34% 

Rank 1 

new-borns, 
gender, height, 

weight, and 
blood 

ICA 78.12% 

LDA 80.15% 

LBP 82.76% 

Tome et al. 
(2015) 

Continuous 
Discrete 
Fusion  

ATVS forensic 48.75% Rank 1 

 
subset of 
MORPH 

62.05% Rank 10 

Gonzalez-
Sosa et al. 
(2018) 

multi COTS LFW 
88.66 
and 

93.30 
Rank 1  

Table 4-7: Summarise the current state of art 
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5 An Investigation Into Forensic Facial Recognition 

5.1 Introduction 

As illustrated in the previous chapter, the major issue concerning forensic facial 

recognition is the need to overcome a group of facial recognition problems within 

a single holistic system. The ability to address issues regarding image resolution, 

lighting, face pose, facial expression, and occluded faces is considered an 

essential requirement in a forensic facial identification system, as this has a major 

impact on the system’s performance. Moreover, existing forensic tools seek to 

involve the aforementioned facial identification challenges, especially in the 

analysis of digital multimedia evidence and image files. By using facial recognition 

technologies, valuable information used in identifying culprits can be extracted 

from photographs or videos that are taken at crime scenes (Peacock et al., 2004). 

As a result, automating the process of suspect recognition can save forensic 

investigators an immense amount of time when compared with search tasks 

carried out manually by watching videos. 

Previous studies have suggested a solution to facial recognition issues but, to the 

best of the author’s knowledge, these studies rely on including a single issue in 

their experiments, rather than all issues. In addition, some of the studies 

presented in the previous chapter did not conduct experiments with a real facial 

dataset, which leaves concerns regarding accuracy. As a result, there is still a 

need to investigate a new facial recognition approach that will meet forensic 

investigation requirements.  

With the aim of overcoming the above-mentioned facial recognition challenges, 

this investigation derived several research questions that need to be identified in 

the forensic facial recognition field. This research investigates: 
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 How to determine a baseline performance of a number of commercial 

facial recognition algorithms individually by using a facial dataset with 

varying issues such as pose, light, and expression.  

 How the performance of the previously examined algorithms changes 

when using a realistic dataset that is close to or simulates real-world digital 

forensics scenarios.  

 Whether a multi-algorithmic approach would improve underlying 

classification performance by using a fusion mechanism. 

The remaining sections of this chapter describe the methodology of the 

experiments, details of the facial datasets, and present the results. The chapter 

then presents an overall discussion of the three experiments conducted. 

5.2 Experimental Methodology 

5.2.1 Recognition Algorithms 

This research used three commercial facial recognition algorithms: 

Neurotechnology, Microsoft, and Amazon Rekognition. To the best of author’s 

knowledge, these algorithms are not implemented by studies in the field of 

forensic facial recognition, so it is considered a good challenge for this research. 

In addition, the research focused on using and evaluating commercial algorithms 

because this could bring several advantages in practice. It was clear from the 

literature review that an extensive volume of literature has been undertaken with 

a good number of commercial systems in place. Further, it would relieve forensic 

investigators of having to design, implement, and manage facial recognition 

systems. Leaving specialists to manage an application-independent facial 

recognition system would also lead to algorithmic improvements and updates 

beyond a forensic team’s capability. Also, commercial algorithms are built based 

on years of research and experts in the biometric field (facial recognition) and 
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they adopt biometrics standards, such as data exchange and interoperability (i.e., 

Internationational Standards Organisation (ISO)). In addition, some of the 

commercial algorithms provide cloud sources that could be used to speed up the 

process, eliminate the storage capacity, and allow for collaboration from different 

locations. 

The first commercial system selected in this research was Neurotechnology. 

Neurotechnology was one of ten algorithms evaluated in the Multiple Biometrics 

Evaluation (MBE) test report of 2010 by the National Institute of Standards and 

Technology (NIST) (Grother et al., 2010). In addition, a Neurotechnology software 

development kit (SDK), called the VeriLook SDK, was designed to be PC-based 

and supports different programming languages, allowing further rapid 

development of a biometric application with the help of libraries and functions. It 

also includes programming samples and tutorials that show how to use the SDK’s 

components. The VeriLook is selected by several national-scale customers, such 

as Lenovo computer is selected VeriLook to be PC user authentication for some 

webcam-enabled notebook computers. Border control in a Spanish airport used 

VeriLook to access the border system for European citizens quickly. More 

information about this software can be found at 

https://www.neurotechnology.com. 

Microsoft and Amazon are two well-known companies that provide an application 

programming interface (API) that facilitates the process of facial recognition by 

interacting with their cloud-based developed algorithms. APIs are the second 

generation of SDKs and consist of a set of routines or blocks that make 

programming easier and release users from having to understand how to use 

libraries and functions. The API service supports different programming 

languages or platforms, which allow code to be written to use the API’s services. 

https://www.neurotechnology.com/
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Table 5-1 shows full details of the three algorithms selected for this research to 

explain their abilities and limitations and enable comparison between them. 

Features Neurotechnology Microsoft 
Amazon 

Rekognition 

Face detection √ √ √ 

Multiple face detection √ √ √ 

Face recognition (image)  √ √ √ 

Face recognition (video) √ - √ 

SDK √ - - 

API - √ √ 

Gender determination √ √ √ 

Age estimation √ √ √ 

Emotion recognition √ √ √ 

Deep learning recognition √ √ √ 

Time of open source 1 month 1 year 1 year 

Table 5-1: Comparison between the three systems used in the research 

 

5.2.2 Facial Image Datasets  

This study proposes a means to determine criminal identity when required in a 

forensic investigation based on the face. Thus, choosing a suitable dataset was 

considered as an essential step in this research to ensure that various face-

related challenges would be examined. This research chose two facial datasets 

for its experiments: one is available publicly, CAS-PEAL-R1, and the author 

collected the second set of data. The methodology for creating the two databases 

is described in the following sections. 

A. CAS-PEAL-R1 Dataset 

A large number of facial datasets have been collected and are publicly available 

because of the importance of facial recognition in various emerging fields, such 



88 
 

as computer vision, security, and digital forensics. The choice of an appropriate 

dataset was aimed at being able to study and evaluate the performance of 

algorithms with variant facial issues, such as facial expression, lighting, and pose. 

Table 5-2 illustrates an overview of some public facial databases with their face 

conditions. It can be noticed there is some limitation either in missing some facial 

issues that must be included in this study, such as FERET, AR, and CMU PIE, or 

the number of subjects is considered small and does not satisfy the practical 

requirements, such as Yale B, and E-Yale B. This research is deemed important 

to include as many general forensic facial recognition challenges in one dataset 

as possible with accepted subjects. 

Database #Subjects Pose Expression Accessory Lighting Distance 

Yale B 
(Belhumeur et 
al., 1997) 

10 √   √  

E-Yale B 
(Georghiades et 
al., 2001) 

28 √   √  

CMU PIE (Sim 
et al., 2002) 

68 √ √  √  

AR (Martinez, 
1998) 

126  √ √ √  

FERET (Phillips 
et al., 1998) 

1199 √ √  √ √ 

CAS-PEAL-R1 1040 √ √ √ √ √ 

Table 5-2: Overview of some current facial databases 

Therefore, the baseline experiment employed one of the current public datasets: 

the CAS-PEAL-R1 Chinese face dataset (Gao et al., 2008). The dataset was 

collected by the Chinese Academy of Sciences (CAS) between August 2002 and 

April 2003. It consists of 30,900 images across 1,040 subjects (595 men and 445 

women) for seven categories: pose, expression, accessory, lighting, background, 

distance, and time. Table 5-3 summarises the CAS-PEAL-R1 face dataset 

content, which includes two main subsets: frontal and pose. Figure 5-1 shows 

examples of each set.  
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1. In the frontal subset, all the images show people looking towards the 

camera. The subjects have six different expressions between them 

(normal, smile, frown, surprise, closed eyes, and open mouth), six different 

accessories (three types of hat and three types of glasses), and at least 

nine lighting angles. Furthermore, there are other subsets which are 

background, distance, and ageing (two sessions at a six-month interval). 

2. In the pose subset, all the images are taken across 20 different poses. The 

poses are divided into upward (up to 30◦), right (up to 90◦), left (up to 90◦), 

and downward (up to 30◦). 

Subset #Sample #Subjects #Images 

Frontal 

Normal 1 1,040 1,040 

Expression 5 377 1,884 

Lighting ≥ 9 233 2,450 

Accessory 6 438 2,646 

Background 2-4 297 650 

Distance 1-2 296 324 

Aging 1 66 66 

Pose  20 1,040 20,800 

Table 5-3: Details of the CAS-PEAL-R1 dataset (Gao et al., 2008) 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 5-1: Example images from the CAS-PEAL-R1 dataset: (a) Accessory 

subset, (b) Expression subset, (c) Lighting subset, and (d) Pose subset (Gao et 

al., 2008) 
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The methodological reason for this study using a subset of the CAS-PEAL-R1 

dataset (95 subjects only) was that the 95 subjects met all the main conditions 

(Pose, Lighting, Expression, and Accessory) while the other subsets missed at 

least one of the conditions. This decision was reached after studying the nature 

of CAS-PEAL-R1 and viewing the statistics for all the subjects’ (1,040) 

photographs. The remaining subsets (timing, background, and distance) were 

excluded from the study because the period was just 6 months and was not a 

large enough difference in time for facial features to change. The background 

subset changed the unicolour blanket background and this was similar to the 

Lighting set. Finally, the maximum distance used in the dataset was 1.2 meters 

(this was considered a small distance). Table 5-4 shows a breakdown of the CAS-

PEAL-R1 dataset used in this study. 

Subset #Subjects Image/subject #Images 

Normal 95 1 95 

Accessory 95 6 569 

Expression 95 5 475 

Lighting 95 ≥ 9 1,203 

Pose 95 20 1,900 

Total 4,242 

Table 5-4: Subsets of the CAS-PEAL-R1 dataset used in Experiment 1 

The final subject’s names statistics for the 95 substances used in this study can 

be a good result to assist other researchers in the future when using the CAS-

PEAL-R1 data set. These individuals were the first 100 subjects in the dataset 

(from subject 000001 to subject 000100). Five subjects (000030, 000031, 

000037, 000043, and 000074) were excluded because they did not satisfy the 

condition (four facial recognition issues, expression, lighting, pose, and 

accessories). 
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B. Collection of a Realistic Dataset 

As shown in the previous section, the first dataset (CAS-PEAL-R1) was the most 

variant face dataset in its ability, in terms of transparent so it is used initially to 

evaluate the algorithm’s performance. However, this dataset is not reflect a 

forensic problem (i.e., forensic face images). Forensic images (as shown in 

Chapter 1) could suffer from more issues than standard images such as bad 

quality, distance from the camera, uncooperative subject, different background, 

complex accessories (beard, mask), bad illumination, and face orientation. To 

fulfil the requirement of the second experiment, a more realistic face dataset was 

required to examine the performance of algorithms with a dataset that simulates 

law enforcement evidence requirements.  

Although a number of face datasets were collected from the internet, such as 

Labelled Faces in the Wild (LFW) (Huang et al., 2007) and CelebFace (Sun et al., 

2013), they do not include enough samples for each subject under unconstrained 

facial capture challenges (e.g., lighting, pose variation, and expression) that this 

study has attempted to address.   

As a result, the author collected a second facial dataset for this investigation from 

the web based on celebrities, because of the ease of collecting these images. 

The criteria used in choosing the images depended on unconstrained facial 

capture, such as different environments (e.g., day and night), a variety of face 

poses and differently obstructed faces, distance from the camera, the wearing of 

accessories (e.g., glasses and hats), and different periods (i.e. different  ageing). 

The collection method aimed to include most of the facial recognition challenges 

determined in the previous chapter. Another reason for using this method was to 

simulate the forensic requirements that are involved when examining real case 
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evidence, so most photographs were taken outdoors (e.g., in a street, airport, or 

garden) and people were not looking at the camera.  

Initially, 4,001 images were gathered manually from 100 subjects, with each 

subject having at least 30 images. In addition, 100 frontal images (one image per 

subject) were collected and used for reference (enrolment dataset) while all the 

other images (4,001) were used as test images (testing dataset). Most of the 

images only contained a single face. Figure 5-2 illustrates samples for two of the 

celebrities used in this study as a testing set.  
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Figure 5-2: Samples of the Realistic dataset used in the test set. A) Photo 

samples for Adam Sandler and B) Photo samples of Alec Baldwin 

The samples illustrate the nature of the imagery and show the reality of the variety 

and complexity of the issues present in the photographs, such as poor lighting, 

low resolution, variation in facial expression and pose, the different accessories 
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worn, and images showing different ages. The issues included in the dataset 

make it a useful facial dataset that meets researchers’ needs in the field of 

criminal investigation in the future. 

Figure 5-3 shows samples of frontal pose face photographs used in the enrolment 

set. The photographs were chosen because they show no expression and are 

well lit; the features should be clear to help the matching process. 

 

Figure 5-3: Samples of the enrolment dataset collected for the study 

The collection process took two weeks, including the time taken to filter the 

images and check if there were any errors in the files or repetition. After that, the 

photographs were indexed, so they could be easily checked when using them in 

the experiments. For example, a number from 1 to 100 was used to identify each 

subject and all the photographs were numbered as belonging to a particular 

subject, from 1 to N (i.e., subject 1’s photographs were labelled 1_00001, 

1_00002, 1_00003, etc.). 

5.2.3 Experimental Methodology 

A set of experiments was conducted to investigate how to achieve solutions to 

the three previous questions identified in Section 5.1 and are illustrated below:  
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 Experiment 1 - An evaluation of the three chosen algorithms (control 

experiment): This provides a basis for understanding how well the three 

commercial facial recognition systems perform against a standardised 

facial dataset from publicly available facial datasets. 

 Experiment 2 – Using a realistic dataset: A replication of the previous 

experiment to study the accuracy of the previous algorithms by using a 

facial dataset with greater variance. 

 Experiment 3 – Multi-algorithmic fusion approach: This experiment seeks 

to develop a model for use in multi-algorithmic fusion that aims to enhance 

the previous experimental results.  

The results from the first experiment can then be directly compared with those of 

the second experiment, which focuses on using more forensically realistic 

images—where numerous facial recognition challenges are likely to co-exist 

simultaneously. In addition, an analysis of facial recognition research identified 

several different routes for facial matchers, with different algorithms focused on 

different aspects of facial image issues. It was this analysis that gave rise to the 

question of whether a multi-algorithmic fusion approach to facial identification 

might improve the results (i.e., the strengths of one algorithm overcoming the 

weaknesses of the others) and, thus, the third experiment was conducted. 

The first and second experimental investigations were conducted to determine 

the performance and nature of the three contributing facial recognition algorithms 

against certain facial recognition issues but with two different facial datasets. The 

experimental study in the third investigation was intended to fuse the individual 

algorithm results. Therefore, the following methodology description is divided into 

two parts: baseline evaluation and the muti-algorithmic experiment.  
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 Baseline Evaluation of Facial Recognition Algorithms Using Two Facial 

Datasets (Experiments 1 and 2) 

The three baseline facial recognition algorithms used in this investigation are 

Neurotechnology, Microsoft, and Amazon Rekognition, as explained in Section 

5.2.1. These algorithms can be contrasted in terms of their facial matching 

accuracy. Therefore, there is a fundamental need to understand their individual 

matching accuracy.  

The first software examined was Neurotechnology and this experiment used the 

tutorials in VeriLook SDK 10.0. The numbers of the script coding in C# were 

modified so they would be suitable when implementing the software. The main 

processes required in this software are illustrated in the flowchart in Figure 5-4. 

 

Figure 5-4: Flowchart of the Neurotechnology facial recognition algorithm 
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As shown in the above flowchart, the matching process requires the face template 

for matching. The created template process detects faces and extracts facial 

feature details, such as eyes, nose, and mouth attributes, based on the 

Neurotechnology feature-extraction algorithm. Finally, the generated template is 

compressed and stored as a binary file.  

The matching process in Neurotechnology also uses the stored templates to 

identify faces. The test template is compared against all the stored enrolled 

templates to check whether it belongs to one of them. The result of each 

comparison is the similarity score and a higher score represents a higher 

probability that the features belong to the same person. After that, the score is 

mapped to the checking process (a yes/no answer) by comparing it with the 

matching threshold. The matching threshold is the minimum score that the 

identification function will accept to assume the faces being compared are similar. 

The results give an N-rank result with a score and N depending on the number of 

subjects.  

The second facial recognition software comes from Microsoft. In this 

investigation, the Windows Presentation Framework (WPF) application was used 

through the C# environment. As this software is based on a cloud API, a 

subscription key is required to run any sample. In this experiment, a one-year free 

trial key from Microsoft was used along with a FaceAPI algorithm. The Microsoft 

FaceAPI algorithm includes face detection, facial attribute extraction, facial 

recognition, and face grouping. The main process of the FaceAPI is shown in 

Figure 5-5. 
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Figure 5-5: Flowchart of the Microsoft Face API process 

As shown in Figure 5-5, all the images for testing and enrolment will be uploaded 

to the Microsoft cloud. In the cloud, a face list is created from the enrolment 

images that will include all the faces detected from the uploaded images, their 

attributes, and FaceId. The list is saved in the server until deleted by the user. 

Microsoft allows a Facelist of up to 1,000 faces to be created. 

After creating a Facelist, all the faces are imported from the Facelist for use in a 

matching or ‘find similar’ process. One of FaceAPI operations is called Face 

Identify, which is a match based on (one-to-many) identification methods to find 

the closest matches to query face images from the Facelist set. Face Identify 

computes similarities by using an internal threshold and returns a similar ranked 

face with a confidence value for each match. The confidence value represents 

the similarity between faces in numerical terms.  
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The third software used in the research is Amazon Rekognition, which is a cloud-

based API, the same as the Microsoft software employed. The Amazon 

Rekognition API operates by using an Amazon Web Services (AWS) SDK and 

supports different language environments. Python was chosen as the 

environment in which to run the Amazon API. Amazon provides an easy way to 

use the API that does not require expertise in computer vision or machine learning 

and was released to build complex facial recognition algorithms. The API just 

needs to be provided with an image and the available services can then detect, 

analyse, and recognise faces.  

Amazon Rekognition provides two types of API operation: non-storage and 

storage. In non-storage operations, Amazon Rekognition does not keep any 

information about the input image (no input image bytes persist in the Amazon 

cloud). Hence, all images are stored in the user repository and imported to 

Amazon operations when called. Alternatively, in storage API operations, 

Amazon creates a face collection in one of the user’s AWS regions and stores 

facial feature information for all the input images. It is worth noting that the service 

does not store actual image bytes but stores extracts of facial features for facial 

detection in images then saves them in a vector in the facial collection. Amazon 

then uses features vectors when performing face matching. In this experiment, 

the storage operations were used because they support the facial identification 

aspect and can be compared with face collection more than once until deleted by 

the user. Figure 5-6 summarises the Amazon Rekognition process for its facial 

recognition service. 
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Figure 5-6: Flowchart of the Amazon Rekognition API process 

The service returns a confidence score for every result it identifies based on a 

similarity threshold. The threshold value controls how many results are returned 

based on the similarity between faces. Therefore, when using a high threshold 

value, the degree of misidentification will be reduced. If the aim of identification is 

to return more results, it is better to use a low threshold value, which would be 

more suitable for forensic investigations. Hence, Amazon’s suggestion for a low 

threshold is 80%.  

The CAS-PEAL-R1 dataset was used in the first experiment and the realistic 

dataset was in the second setup. Each of the two facial datasets was divided into 

two sets: an enrolment set and a testing set. The two sets are defined and 

described below: 

1. Enrolment set: A collection of known individuals’ images used as a source 

to check identity in the matching process. In the evaluation experiments 1 

and 2, this set contained one image per subject under normal conditions. 
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This assumption is one of the most challenging hypotheses in facial 

recognition technology because whenever there are more source images 

per subject, the probability of identifying an individual will be higher. 

Nevertheless, this assumption was adopted in these experiments to 

suppose the hardest available solutions in criminal investigations. 

2. Testing set: This is a collection of images of unknown individuals that need 

to be recognised. Therefore, all the sets of the CAS-PEAL-R1 dataset, 

except for the normal set, and all the Realistic datasets, also except for 

the normal set, were considered as part of the testing set. 

Table 5-5 shows the subdivision details for the CAS-PEAL-R1 facial dataset used 

in the first experiment. 

Subset #Subjects 
Enrolment set Testing set 

#Samples #Images #Samples #Images 

Accessory 95 1 95 6 569 

Expression 95 1 95 5 475 

Lighting 95 1 95 9+ 1,203 

Pose 95 1 95 20 1,900 

Table 5-5: Splitting of the CAS-PEAL-R1 dataset 

Table 5-6 shows the splitting of the Realistic facial dataset used in the second 

experiment. 

Subset #Subjects 
Enrolment set Testing set 

#Samples #Images #Samples #Images 

 100 1 100 30+ 4,001 

Table 5-6: Division of the Realistic facial dataset 

 Multi-Algorithmic Fusion Approach (Experiment 3)  

In light of potential limitations in the individual facial matcher algorithms in the 

previous two experiments, the third investigation assessed the use of a fusion 
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technique to improve the overall performance of the selected matcher systems. 

Prior biometric research has shown that multi-algorithmic fusion has resulted in 

improved performance; thus, it seemed prudent to explore this aspect (!!! 

INVALID CITATION !!! (Mitra et al., 2016, Ross and Jain, 2003)). The use of a 

multi-algorithmic fusion technique enables an identification system to depend on 

more than one identification algorithm decision. It also increases overall system 

reliability because of the existence of multiple identification results for the same 

input. Consequently, a multi-algorithmic fusion approach was adopted in this 

experiment by leveraging the knowledge of the three identification systems: 

Neurotechnology, Microsoft, and Amazon Rekognition.  

As referred to in Section 2.4 (in Chapter 2), a different level of fusion method could 

occur at any process step within a multi-biometric system, such as the sensor 

level, feature level, matching score level, and decision level (Ross et al., 2006). 

In this experiment, the decision-level fusion approach was adopted so that it could 

be applied to three Commercial Off-The-Shelf (COTS) facial matcher results 

(Neurotechnology, Microsoft, and Amazon). It was considered the most suitable 

approach because most current commercial biometric systems (i.e., facial 

recognition) provide access only to the final matching results. In addition, these 

systems sometimes provide limited access to the feature sets or classifier 

algorithms used (Ross et al., 2008). The decision-level fusion approach can also 

be used for a number of different facial matchers without the need to train the 

system or determine the best features to use and/or modify. The approach is also 

considered more suitable for digital forensic investigation because it will be 

scalable and flexible so new robust facial recognition technology can be added in 

the future. Figure 5-7 shows the main process of the third experiment. 
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Figure 5-7: Multi-algorithmic fusion approach flow diagram 

Before the fusion process, the various score ranges that were obtained from the 

different matching algorithms (in the previous two experiments) were normalised. 

The scores were mapped from multiple domains into the public domain. 

Normalisation is a crucial characteristic of any multi-algorithmic fusion approach. 

One of the normalisation techniques available is Min-Max, which is considered 

more suitable when the score bounds produced by the matcher systems are 

known (Jain et al., 2005). Therefore, all the scores of the three systems were 

transformed into a common range (0 to 1) so the minimum and maximum scores 

would range between 0 and 1. The normalisation equation is given as: 

𝑆~ =
𝑆𝐾 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 

Where: 

SK is the matching score; where K = 1…N (N is the number of samples). 

S~ is the normalised score. 

Min and Max are the bounds of the scores. 
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The decision-level fusion approach has different methods that could be used in 

this experiment, such as "AND" and "OR" rules (Daugman, 2000), majority voting 

(Lam and Suen, 1997), and weighted majority voting (Kuncheva, 2004). Facial 

matching is an identification technique that requires a return for any similar 

photographs, so this research adopted weighted majority voting in the fusion 

decision. Therefore, depending on the rank-1 results each system produced, the 

decision-level fusion approach demonstrated the best result by adding weight to 

each score level then using majority voting to choose the highest score to make 

the final decision. 

When the three facial recognition systems provided an identity for any testing 

sample, it was reasonable to consider the more accurate facial recognition 

system by giving it a higher weight (a weighted majority voting function). The 

weight value is gained by studying the accuracy or identification rate (IR) of each 

system in the previous baseline experiments. After that, the IR value is 

normalised for all systems to be in the same domain. Then all the scores in each 

system are multiplied by the system weight to produce a new score value. The 

discriminant equation for a new score computed using weighted voting is: 

𝑆𝑊𝐾 = 𝑊𝑅𝑆𝐾 

Where: 

SWK is the new score after weighting. 

WR is the weight of the Rth facial recognition system. 

SK is the matching score where K =1…N (N is the number of samples). 

The final decision will take the highest score value among the three identification 

scores by using majority voting, which leads to the greatest matcher accuracy.  
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In this investigation, the proposed fusion technique was used to compare the 

performance between the fusion results and those achieved in experiments 1 and 

2. 

5.3 Experimental Results  

Three experiments were conducted with the aim of studying the performance of 

a number of facial recognition systems when facing facial image challenges. The 

evaluation used in the experiments was based upon calculating the IR for rank-1 

(one-to-many matching) of the results. The IR is computed as follows: 

𝐼𝑅 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝐹𝑎𝑐𝑖𝑎𝑙 𝐼𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝐼𝑚𝑎𝑔𝑒𝑠 𝑁𝑢𝑚𝑏𝑒𝑟
∗ 100 

There were two reasons for only adopting rank-1 in the evaluation. First, the 

accuracy of the commercial systems mostly gives the best matcher in the first 

rank. Moreover, they do not return a matching value for N samples in a facial 

recognition approach, although they can do this when using a verification 

approach. Second, the adopted setup of the facial dataset (one sample per user 

in the enrolment set) meant that there would only be one correct matcher (i.e., a 

complex division of the dataset in the facial recognition technique). 

Furthermore, the false positive identification rate (FPIR) and the failure to acquire 

(FTA) rate were implemented for further data analysis. The FPIR is the ratio of 

test samples that are classified as true when they are actually false, whereas the 

FTA represents the rate of failure to create face templates in the testing dataset.  

5.3.1  Results of Experiment 1 

To evaluate and test the efficiency of the three facial identification systems, each 

image in the testing set was compared with all the images in the enrolment set in 

the CAS-PEAL-R1 dataset. The facial dataset was split into an enrolment set and 
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a testing set, as shown in Table 5-5. The accuracy of the systems was then 

compared and the strengths and weaknesses of each system identified.  

The facial recognition accuracy result for each system is illustrated in Table 5-7. 

The table shows that Microsoft and Amazon identifiers achieved the same IR for 

rank-1 in the Accessories category (over 98%). Their Neurotechnology 

counterpart gained a slightly lower result (by 6%). As can be seen from the 

results, the IRs for the Expression set for the three systems are all over 98%. The 

high accuracy of the two sets (Accessories and Expression) reflects the good 

performance of the three systems in facial recognition in these conditions.  

Regarding the Lighting and Pose conditions, the overall performance of the three 

algorithms decreased. However, Microsoft outperformed the other two algorithms 

in the Lighting dataset and achieved 86.69%. The Neurotechnology system 

achieved a low accuracy rate in the Lighting set (63%), 20% less than the 

accuracy for Microsoft and Amazon Rekognition. 

For the final testing set, which is the Pose set, it should be noted that 

Neurotechnology performance dropped significantly to 31.31%. This could have 

been caused by the large face pose angle problem in some samples and the 

limitation of these systems in managing it. The highest facial matching accuracy 

in the Pose set was achieved by the Amazon system (slightly more than 85%). 
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Subset 
IR at Rank-1 (%) 

Neurotechnology Microsoft Amazon Rekognition 

Accessories 92.61 98.76 98.76 

Expression 98.31 99.57 99.78 

Lighting 63.42 86.69 83.95 

Pose 31.31 74.47 85.73 

Table 5-7: Experiment 1 results (using CAS-PEAL-R1 dataset) 

In order to conduct further analysis, Table 5-8 demonstrates that the FPIR and 

FTA rates of all the systems for the Lighting and Pose conditions are significantly 

higher than those presented in the Accessories and Expression conditions. 

Incorrect matching rates (i.e., FPIR) of the three systems in all face conditions are 

less than the FTA rates. Some images in the testing subset could have caused 

the high FTA rates, as they were acquired with low resolution, darkness, poor 

exposure, and an angled pose. This means the number of templates implemented 

in the matching process was fewer than the total input images; hence, the high 

failure in identification rates. For example, the Neurotechnology system achieved 

the highest FTA rates: 66.1% for Pose and 25.27% for Lighting. This suggests 

only 34% for Pose and 75% for Lighting face templates were implemented in the 

matching processing in this system. This weakness in creating templates from 

images was as a result of a large pose degree and a high rate of darkness and 

there was just one sample facial image in the enrolment set (a front pose of good 

quality).  
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Subset #Images 

Neurotechnology Microsoft 
Amazon 

Rekognition 

FPIR 
(%) 

FTA 
(%) 

FPIR 
(%) 

FTA 
(%) 

FPIR 
(%) 

FTA 
(%) 

Accessories 569 0.52 6.85 0.52 0.70 1.05 0.17 

Expression 475 0.21 1.47 0 0.42 0 0.21 

Lighting 1,203 11.13 25.27 2.66 10.64 5.90 10.14 

Pose 1,900 2.05 66.10 0.78 24.73 4.26 10 

Table 5-8: FPIR and FTA rates for Experiment 1 

Overall, the results of this experiment demonstrate the facial identification ability 

of the three systems for four facial image issues: accessories, expression, 

lighting, and pose. It is clear the accuracy of all the commercial systems examined 

suffers when the darkness of the image is increased, as well as changes in facial 

orientation. Furthermore, Microsoft’s performance was better for the lighting issue 

than the facial pose issue, whereas Amazon was better in terms of facial pose 

than the lighting issue.  

5.3.2 Results of Experiment 2 

The aim of this investigation was to study how the performance of the previous 

algorithms would change when using a dataset from real-world use. The results 

of the previous experiment were simulated with a controlled facial dataset, which 

arguably did not resemble the situation when using images in samples close to 

current real images of suspects. Moreover, the performance of the three 

algorithms would differ from Experiment 1 because it dealt with all the facial 

recognition issues in one group set (not spilt into sets), or it could even contain 

more than one issue in one sample image. Furthermore, the realistic dataset 

reflects issues in the forensic investigation as shown in Section 5.2.2, so it 

represented a good challenge for three algorithms. Therefore, it was felt that it 

would be useful to conduct another evaluation to enable more investigation in this 

study. The realistic dataset collected and used in this experiment was split into 
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two sets: an enrolment set (one image per user) and a testing set (more than 30 

images per user with varied issues), as described in Table 5-6.  

As demonstrated in Table 5-9, with an IR at rank 1 of 67.23%, the Microsoft facial 

identification system achieved the best performance against the Realistic dataset 

while the Neurotechnology system obtained the lowest performance with just 

6.6%. In comparison with the results obtained from the first experiment, this 

experiment showed that the performance of all three systems dropped 

significantly because of the complexity of realistic facial images in the Realistic 

dataset, highlighting the challenge that a digital forensics investigator has to face 

when dealing with real-life scenarios.  

Testing Set 
IR at rank-1 (%) 

Neurotechnology Microsoft Amazon Rekognition 

100 6.60 67.23 48.24 

Table 5-9: Experiment 2 results (performance of the three commercial systems 

with the Realistic dataset) 

To understand the reason for the results regarding the accuracy of the systems, 

Table 5-10 shows more evaluation by presenting the incorrect matching (FPIR) 

and FTA rates for the three algorithms. The highest FPIR of 11.47% was obtained 

by the Amazon system, whereas the highest FTA rate (87.35%) was achieved by 

the Neurotechnology system. Therefore, it is clear the Neurotechnology system 

failed to create templates for most of the testing photos and this means there is 

some limitation in its algorithm to manage photo issues such as resolution, 

illumination, and orientation. Whilst, Microsoft and Amazon’s ability to create 

templates from the testing photos were close to each other.  
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Testing Set 
Neurotechnology Microsoft Amazon Rekognition 

FPIR (%) FTA (%) FPIR (%) FTA (%) FPIR (%) FTA (%) 

100 6.04 87.35 6.37 36.39 11.47 40.28 

Table 5-10: FPIR and FTA rates for experiment 2 for the Realistic dataset 

This experiment shows most photos that failed to be acquired by the three 

systems suffered from big issues such as illumination, quality, distance, and 

orientation. Further, more than one issue may appear in a photo. For example, 

Figure 5-8 shows some photo samples from the testing set where the three 

systems failed to create templates. In comparison with the incorrect matching 

(FPIR), there were some testing photo samples that represented a challenge to 

find correct matches. Figure 5-9 shows some examples of the difference between 

the enrollment and testing photos that matched incorrectly and it is clear that this 

issue was caused by accessories, face orientation,  ageing, and expression. 

These problems simulate some current issues in forensic investigation discussed 

in Chapter 1, such as the Boston Marathon bombing and Belgium's Airport attack, 

and reflect the complexity of the realistic dataset used in this experiment. 
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Figure 5-8: Some of testing photos that failed in acquired templates 
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Figure 5-9: Some of testing photos that matched incorrectly 



113 
 

Overall, the FTA rates obtained in this experiment are significantly higher than 

those presented for the first experiment. As mentioned previously, an increased 

FTA rate will decrease the number of face templates that can be sent to the next 

stage (i.e., the matching process). This higher rate in FTA is as a result of the 

complexity of photos that add more challenges for the three algorithms to discover 

their features and read them as described.  

Indeed, the overall results of this set of experiments demonstrate how the 

photographs from the realistic dataset affected the performance of three top 

commercial facial recognition algorithms and show the complexity of the problem 

this study is trying to solve.  

5.3.3 Results of Experiment 3 

As mentioned earlier, the facial identification accuracy for the above three 

systems varied when they were compared. Moreover, sample results in more 

than one system were assigned the same identity. Therefore, to enhance the 

overall performance, the multi-algorithmic fusion system was applied using the 

same dataset setting as the previous experiments. This investigation anticipated 

that the identification accuracy obtained by the fusion system would improve in 

comparison with the results of the first and second experiments.  

In this experiment, the more accurate system among three identification systems 

is found by choosing the highest weight (a weighted majority voting function). This 

first involves multiplying all the scores in each system by the system weight to 

produce a new score value that is used in the voting. Table 5-11 Illustrates the 

weight value for each system for two datasets (the calculation method described 

in Section 5.2.3 – point 2). The final decision will take the highest score value 

among the three identification scores by using majority voting, which leads to the 

greatest matcher accuracy.  
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Subset  

Weight Value 

Neurotechnology Microsoft 
Amazon 

Rekognition 

The CAS-PEAL-R1 dataset 

Accessories 0.9261 0.9876 0.9876 

Expression 0.9831 0.9957 0.9978 

Lighting 0.6342 0.8669 0.8395 

Pose 0.3131 0.7447 0.8573 

The Realistic dataset 

Testing set 0.065 0.672 0.482 

Table 5-11: The weight values for three systems for two datasets 

As illustrated in Figure 5-10, when applying the proposed fusion technique to the 

results of Experiment 1, which used the CAS-PEAL-R1 dataset, the improved 

performance can be observed for all four chosen sets. The improvement rates 

vary among the four sets: Accessories, Expression, Lighting, and Pose. The high 

identification accuracy that had previously been achieved in the Accessories set 

by Microsoft and Amazon led to a low improvement rate when using the fusion 

technique (0.71%). A higher degree of enhancement in terms of Neurotechnology 

accuracy (6.86%) was observed. Similarly, in the Expression set, enhancement 

from using the fusion method was low by reason of the high accuracy in the 

single-algorithm approach for the three systems. 

In particular, the identification accuracy for Lighting improved from 63.42% when 

using the Neurotechnology facial identification system alone to 90.44% when 

using the fusion method (i.e., an improvement of 27.02%). This enhancement is 

considered the greatest compared with the improvement in the Microsoft (3.75%) 

and Amazon (6.49%) systems. 



115 
 

 

Figure 5-10: Performance comparison between the fusion method and the other 

systems when using the CAS-PEAL-R1 dataset 

In the facial Pose set, the results clearly show the use of the fusion method 

enhanced performance significantly for the Neurotechnology and Microsoft 

systems, which were 55.47% and 12.32%, respectively, while the enhancement 

for the Amazon system was 1.05%. This rate was low compared to the two other 

systems because Amazon Rekognition had already achieved the highest 

accuracy in the first experiment. 

The results above confirm the proposed fusion technique (which used majority 

and weighted majority voting) outperformed the three individual facial 

identification systems in Experiment 1. 

Figure 5-11 shows a comparison of the results for the proposed fusion method 

and the three chosen facial identification systems using the realistic facial 

dataset. Again, the proposed fusion system achieved the highest performance of 

71.6% of IR; this result is over 4% better than the best individual system (i.e., 

Microsoft) obtained. The considerable variation in the accuracy of the individual 

algorithms in this study (i.e., the difference between the accuracy of 
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Neurotechnology compared with Microsoft and Amazon) influenced the outcome 

of the accuracy of the decision-level fusion technique.  

As a result, this experiment shows that improved performance can be obtained 

using the proposed fusion approach, particularly for the unconstrained dataset. 

This highlights the potential impact the proposed fusion system could have on the 

forensic investigation field. 

 

Figure 5-11: Performance comparison between the fusion method and the other 

systems when using the Realistic dataset 

5.4 Discussion 

The observations from the first experiment show there is contrast in the 

performance of the three commercial facial recognition systems 

(Neurotechnology, Microsoft, and Amazon Rekognition) when using the CAS-

PEAL-R1 dataset. In this experiment, the results indicate the accuracy of these 

systems in matching a front face position with hat, glasses, and some expression. 

The reason for this is that all face samples were tested with a front pose with good 

resolution. However, the three systems managed lower facial matching rates with 

regard to lighting and the lowest for facial pose. The main reason for the drop in 

system performance was the failure to acquire templates from the input face 
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images because of poor image quality, low lighting, and a high pose angle. As 

template generation is considered the primary step in facial recognition systems, 

this had a negative impact on the number of acceptance templates that could be 

sent to the matching process. Overall, it can be concluded from this experiment 

that the Microsoft system performed better than the other systems for lighting, 

whereas Amazon achieved significant performance in pose challenges. All three 

systems showed the same high accuracy in the expression and accessories 

issues. The results give a clear impression of each system when faced with four 

facial recognition issues. 

The second experiment can be used to conclude there was a significant drop in 

facial matching accuracy for the three systems when compared with the results 

for Experiment 1. This drop is by reason of the nature of the dataset of the images 

that were collected for this experiment, which simulated the real world (realistic 

dataset) to reflect the images of criminal cases. Moreover, the FPIR slightly 

increased in this dataset when compared with CAS-PEAL-R1, whereas there 

were significantly increased FTA rates for all systems when compared with the 

first experiment. This difference between two experiments’ results was because 

of the complexity of the Realistic dataset that simulated the current facial 

recognition issues in the forensic investigation, such as poor quality, orientation, 

bad illumination, and accessories. This substantiates the notion that 

unconstrained facial imagery is a significant challenge in comparison with 

standard datasets and that commercial systems still struggle to achieve reliable 

performance.  

As in previous experiments, the performance of the systems varied and was not 

stable for each system under different image issues. Therefore, the hypotheses 

of the multi-algorithm fusion approach support better performance of the holistic 
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system. Therefore, the multi-algorithmic fusion approach should be executed in a 

constructive rather than destructive way. The fusion method improved all the 

results for the control experiment (experiment 1) by 100% for the Expression 

issue. In addition, this approach improved the facial matching rate at rank-1 from 

about 67% for the Microsoft system (which showed the best performance) to 71% 

for the realistic dataset. The last enhancement is considered an essential effect 

in the forensic field. The fusion method is needed to propose a more robust 

technique than the single algorithm and it fuses the good performance for each 

system in one approach.  

This study supports the proposition that a multi-algorithmic approach in forensic 

facial recognition would lead to improvement of the final accuracy rather than an 

individual algorithm. Although the use of commercial systems has several 

advantages, most notably, a degree of specialisation that should see 

performance rates maximised, there is the issue of privacy. For example, 

Microsoft uses cloud services in its recognition process; however, in doing so, it 

saves copies of the submitted images so subsequent algorithmic improvements 

can be made. From a forensic data privacy perspective, this would be a significant 

barrier to adoption. It is notable that other systems, such as Amazon and 

Neurotechnology, do not do this, so it is far from being a standardised approach. 

In addition, most commercial systems do not provide a feature vector for facial 

images. Therefore, there is a limitation to doing more research about fusing 

features or using feature vectors in further analysis.  

In addition, through this research, a number of challenges were observed that 

need further research:  

 It is important to explore how to enhance images to increase the rates of 

generation of face templates to improve identification accuracy, such as 
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through the enhancement of images by better lighting, quality, and, if 

possible, correct pose angles by using 3D technology.  

 The way in which face grouping could enhance identification system 

accuracy should be investigated. A face grouping approach divides a facial 

dataset into several groups based on similar classifications. For example, 

age and gender (i.e., age estimate and gender determination) are 

considered two important classification types that need to be investigated.  

 The scalability of the dataset should be assessed by increasing the 

number of users (the number of subjects in the enrolment set). This leads 

to the question of whether facial identification systems could achieve the 

same results if data size increased. In addition, study one of the standard 

face datasets specific to ageing to investigate how the accuracy of the 

ageing issue. 

 The investigation could establish the possibility of evaluating an additional 

facial identification system or algorithm (i.e., a fourth algorithm) that could 

have a positive effect on the overall results.  

 The ability to use video files instead of static images could also be 

examined. Further investigation is needed of hypotheses regarding facial 

identification using a multi-algorithmic fusion approach and whether video 

would offer the same performance as static images. 

5.5 Conclusion  

This chapter introduced three experiments to evaluate the performance of three 

current commercial facial recognition systems (Neurotechnology, Microsoft, and 

Amazon Rekognition) and how multi-algorithmic fusion could improve accuracy. 

The multi-algorithmic fusion approach showed high accuracy regarding using 

facial recognition for two selected datasets: CAS-PEAL-R1 and Realistic. When 
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using an unconstrained face dataset, the proposed system improved facial 

identification accuracy when compared with the highest identification accuracy 

for the commercial systems considered. The results demonstrated the fusion 

method outperformed the accuracy of the individual identification systems in two 

types of dataset.    
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6 A Novel Architecture for Facial-Forensic Recognition 

6.1 Introduction 

The previous chapter presented a set of experiments that were carried out to 

improve the accuracy of a facial recognition system by using a multi-algorithmic 

fusion approach. A few limitations in experiments were also observed in the 

previous chapter. The prevailing digital forensic investigation experiences intend 

to incorporate these facial identification challenges, specifically in the analysis of 

digital multimedia evidence. For example, a child abduction case might require 

identifying faces (child or suspect) from CCTV but the question posed might be 

where is the individual going with the child?. Therefore, a correlation of that 

individual who has been identified from the CCTV streams of the local area and 

plotted onto a map would be far more useful to an investigator than merely the 

recognition output. With the aim of overcoming these challenges in the 

investigation process, the approach does not merely concern the identification of 

an individual but an understanding of the context, acknowledging the 

relationships between individuals, and formulating timelines. With the 

advancement and evolution of digital forensic tools in the facial recognition field, 

numerous hindrances also exist, must be addressed. Some of those limitations 

are as follows:  

 Manual investigations are still being conducted in practice to investigate 

specific criminal individuals.  

 Facial recognition procedures face major issues in forensic investigation, 

such as image quality, facial poses and expression, and the effects of 

lighting and ageing. 

 Insufficient ability to analyse photo content in an automated way to extract 

evidence. 
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 Lack of capability to answer questions regarding the identification of an 

individual, appreciation of the relationships between individuals from their 

facial appearance in photographs, and tracking people on a map. 

Therefore, this research seeks to add further analysis of facial recognition results 

through the ability to answer questions that have aroused the interest of 

investigators. To achieve the task of addressing and resolving the above-

mentioned issues, a novel architecture has been designed and developed which 

is known as the Facial-Forensic Analysis System (F-FAS). This chapter sheds 

light on the holistic system architecture and its functions. 

6.2 Facial-Forensic Analysis System (F-FAS) Requirements 

The objective behind creating the F-FAS is to overcome the aforementioned 

limitation points (in Section 6.1) relating to current forensic tools in multimedia 

analysis. F-FAS is an efficient design that analyses the content of photo evidence 

to identify criminal individuals. Furthermore, it aims to provide deep analysis of 

the evidence to allow investigators to find answers about different questions, such 

as individual identification and evidence correlation. To be successful, the F-FAS 

must meet several essential requirements: 

 Acquisition of various data collection from different sources, such as 

CCTV, mobiles, and computers to create forensic images. As described in 

Chapter 3, the first part of the digital forensics process is collecting 

evidence from the crime scene and saving it in a secure manner. 

Therefore, any proposed system in digital forensics analysis needs this 

step. 

 Ability to pre-process all sources by filtering and indexing photos from 

multimedia files based on face detection in order to extract the necessary 
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metadata. The second step in the digital forensics process (Section 3.2.1) 

starts with analysing the data collected and isolating interesting files. This 

action will allow investigators to search in depth inside the collected data. 

 Identification of suspects by matching their face with existing dataset 

images. This requirement is considered the base the F-FAS has suggested 

and it allowed for searching for faces among the millions of images 

collected. Furthermore, it minimises the effort and time compared to 

manual searching.  

 Provision of a range of forensic analysis techniques, such as facial social 

network analysis (faces that are associated with others), geolocation, and 

the ability to adjust a photograph of a suspect’s face to assess whether it 

matches additional evidence. This allows for in-depth analysis of data and 

enables finding answers to advanced questions to an understanding of the 

context. This requirement identifies associations between artefacts and 

presents them in a usable and visual form to draw a wider picture of a 

crime. 

 Data integrity, which aims to ensure there are no unintentional changes to 

information. The F-FAS must, therefore, ensure the data retrieved are the 

same as those recorded earlier. As mentioned in Chapter 3, the data 

integrity is necessary for any system related to criminal investigations. This 

action increases the integrity of the evidence found.  

 The system must be flexible enough to be upgradeable with new 

technology. For example, the system should be flexible enough to add or 

update any of the facial recognition technology that can be used in a multi-

algorithmic fusion approach.  
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 System management with a function for managing the overall system 

process, such as investigators’ management, case management, and 

configuration setting. Authentication and authorisation are also important 

prerequisites that should be considered in this system.  

 Communication, collaboration and knowledge sharing over a public utility 

that allows the F-FAS to work more efficiently between groups or over 

networks. It would also allow users to take advantage of the software 

service without in-depth knowledge of the process required to build this 

technology. In addition, it avoids repeating the same analyses or searching 

between users because most actions are shared.  

6.3 The F-FAS Architecture 

The F-FAS architecture in this research aims to provide tools for investigators, in 

terms of facial recognition, and to minimise the task of searching a massive 

amount of data comprising videos and images collected from CCTV cameras, 

computers, and mobiles. The proposed architecture is a holistic system 

developed to collect, examine, and analyse multimedia evidence (photo and 

video) in an effective manner and then produce a reporting document. These 

objectives could be achieved by using the engines of the main components of the 

proposed F-FAS framework, as illustrated in Figure 6-1. 

The system model depicted in Figure 6-1 is composed of seven major 

components that represent the main digital forensic methodology levels, from the 

collection to the reporting stages.  
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Figure 6-1: A Novel architecture of the F-FAS 

The main classes are: 

 Acquisition: evidence acquired from different input resources. 

 Pre-processing: transforming the evidence acquired into searchable 

resources, such as identifying videos and photos, indexing, and face 

detection. 

 Facial recognition using the multi-algorithmic fusion: to increase the 

reliability and accuracy of facial recognition in the facial recognition engine. 

 Analysis: enabling quicker answers to queries by using three types of 

evidence analysis: geolocation, facial modification, and social networks. 

 Presentation (reporting and documentation). 

Moreover, the above system offers a bookmarking technique that enables 

investigators to find and refer quickly to important data that have been identified 
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from the evidence in a case. Bookmarks can be included in the reporting at any 

stage, whether during investigation or analysis. 

The F-FAS Manager has a vital role in the F-FAS architecture, as it is responsible 

for managing the overall system. Furthermore, the F-FAS Manager provides 

robust authentication when logging into the system and offers users various 

authorisation levels that determine the nature of the access to data. Thus, the 

system manager allows users to achieve different levels of management 

functionality, such as the ability to create, edit, and delete cases or forensic 

images. In addition, it manages the system configuration and global setting for 

each function in the F-FAS and ensures data integrity. It should be noted that the 

F-FAS is not restricted by the number of facial recognition algorithms in the multi-

model approach. Therefore, the system has the ability to adopt a new matching 

algorithm by offering administrators the scope to add, remove, or update the 

algorithm. Furthermore, the databases used in the F-FAS architecture are 

classified into the following: Forensic Images, Process Evidence, Case Evidence 

and System Management. Each database stores the different types of data 

relevant to each case. 

As discussed earlier, the framework aims to save the time and effort of the 

investigators involved in a criminal investigation process. Details of each part of 

the system architecture are provided in the following sections. 

6.3.1 Acquisition Engine 

The evidence acquisition stage is the first step in solving any criminal case. 

During this procedure, a digital device, whether related to an incident or used by 

one of the individuals involved, would, normally, be considered one of the 

artefacts’ suspected resource. Although this device does not play a vital role in 

the case, it could initially be a foundation for providing a clue or could lead to 
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further information to facilitate answering several of the questions posed during 

the investigation. Therefore, to examine digital devices as part of the chain of 

custody and to protect their integrity, there will be a master copy of the devices, 

which is essential for their protection. Afterwards, processed data (copies) should 

be generated for further work throughout the investigation process, rather than 

using the originals (Marshall, 2009). Figure 6-2 shows the workflow processes of 

the Acquisition Engine.  

 

Figure 6-2: Acquisition Engine 

The Acquisition Engine enables investigators to collect evidential artifacts from 

different electronic media sources. For example, CCTV systems are used almost 

everywhere—inside and outside of buildings—, because they have now become a 

vital source of evidence in the digital forensics domain. Moreover, with the wide 

range of technologies available, people are now using various types of devices, 

such as mobile phones, computers, digital cameras, and tablets. These devices 

may also contain related devices for storing additional data, such as external 

hardware, Secure Digital (SD) cards and other types of removable media. 

Different techniques are, therefore, required to acquire data from these 
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resources. Interestingly, this engine has the ability to deal with various types of 

devices and technologies.  

First, it is crucial to identify the basic information related to a case in order to gain 

artifacts. The information gathered, such as case name, incident date, location, 

number of devices and types, is then fed to the system, which enables the 

acquisition process to start. Ideally, the data will be acquired in a forensically 

sound manner by creating a bit-by-bit copy of the data without making any 

changes or deletions. In addition, to certify the original evidence has not been 

subject to modification or transferred into unauthorised hands, a hashing function 

should be used, such as Secure Hash Algorithm 2 (SHA-2) (NIST, 2008) to 

generate a (unique) digital signature for any digital data. This also allows 

examiners to check data integrity throughout the investigation process. Some 

forensic tools that generate forensic images use a hash function as a sub-process 

of their procedures. 

The entire data for the Acquisition Engine stage is then stored in the system 

database i.e., the Forensic Images database. Table 6-1 presents information that 

describes all the cases in the F-FAS, such as case ID, name, creation time, the 

creator of the case, and the location of the crime. Subsequently, this information 

could be entered by the investigator who creates the case (the investigator ID is 

used to indicate the person’s record in the investigator table). This table is directly 

connected to the forensic table (Table 6-2) to seek reference to the corresponding 

forensic images for each case. The table includes all the information that is 

associated with forensic images after their creation, such as image name, 

resource type, such as CCTV, mobile or computer, the size of the data acquired, 

a timestamp for the image, processing, as well as the start and finish time. The 

table also includes the hash value of each forensic image. These two tables are 
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considered as integral sources throughout the investigation process until the final 

report is produced. A copy of the data collection is examined in the next stage, 

the Pre-Processing Engine, in order to extract the relevant evidence. 

 Case 
ID  

Case Name Crime Time Crime 
Location 

Case 
Creation 

Time 

Investigator 
ID 

Case 
description 

1 Case1 
2017-05-10 
16:35:55 

Plymouth 2017-05-10 
18:00:55 

1 Case 
details  

2 Case2 
2018-04-14 

08:45:05 
London 2018-04-14 

15:00:15 
5 Case 

details 

3 Case3 
2018-01-30 

11:55:45 
Cardiff 2018-01-31 

07:20:44 
2 Case 

details 

…… …… …… …… …… …… …… 

 Table 6-1: Case table 

Case 
ID 

Image 
ID 

Image 
Name 

Resou
_rce 
Type 

Size 
Acquisition 

Time 
Starting 

Acquisition 
Time 

Ending 
Longitude Latitude 

Hash 
Inves. 

ID 

1 1 
CCTV
_Pl1 

CCTV 2GB 
2017-05-10 

18:30:55 
2017-05-10 

18:45:44 -4.143841 
50.3762

89 

5455F
06E… 

1 

1 2 
CCTV
_Pl1 

CCTV 3GB 
2017-05-10 

18:56:57 
2017-05-10 

19:30:22 -4.143842 
50.3762

90 

3456G
T23E… 

1 

1 3 
Compu
ter_12 

CCTV 1GB 
2017-05-10 

19:40:33 
2017-05-10 

20:05:07 -4.143845 
50.3762

92 

122E8
7F… 

1 

…… …… …… …… …… …… ……   …… …… 

Table 6-2: Forensic images table 

 

6.3.2 The Pre-Processing Engine 

As already mentioned, it is in the Acquisition Engine phase that the system 

acquires data from different devices. In the pre-processing stage, the engine tries 

to answer what the data means and what could be considered related information. 

The F-FAS architecture provides a Pre-Processing Engine that can automate 

digital forensics examination and make it easier to complete the investigation 

process. This engine examines the content of forensic images piece by piece in 

order to filter the data that are relevant to the case.  
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The Pre-Processing Engine allows investigators to take a copy of forensic images 

from the Forensic Images database to ensure the original images are not used. 

Investigators can also ensure the image copy that has been received is 

undamaged and unaltered. This strategy enables the investigation process to be 

accomplished with integrity while guaranteeing the safety of the original evidence. 

There are different levels of evidence examination in this engine, as shown in 

Figure 6-3. The first level is forensic pre-processing, which aims to filter and 

extract relevant files from forensic images. 
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Figure 6-3: Pre-Processing Engine levels 

The forensic image has to pass through different forensic examination functions 

for filtering. Currently, most forensic tools use these functions for examination and 

analysis. Therefore, there is a pressing need to include some of these functions 

in the F-FAS architecture. The inclusion of this task could be accomplished by 

expanding a compound file to extract the child files that could be contained within 

it, such as RAR or ZIP files. This action can extract any piece of data and will 

regard it as an individual file to investigate whether it could be considered as 
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evidence. It can also extract files from unallocated file system space by using data 

carving, which facilitates the finding of hidden or deleted files. Another task that 

has to be included in the forensic pre-process level is decryption file or password 

recovery (to access password-protected files or folders). In some examples, 

encryption software creates a hash value for each password and then stores it, 

instead of text, so the data become unreadable. Therefore, it is essential that the 

F-FAS includes a password-cracking technique. The Pre-Processing Engine 

could use one or more types of attack scenarios, such as rainbow, dictionary, and 

rule-based, to recover passwords or decrypt files. However, this technique would 

use in the F-FAS in seeking to design an integrated forensic tool to solve different 

issues in a reasonable amount of time. Moreover, one of the Forensic Pre-

Processing Engine role is to calculate a hash value for each file content to use 

later to verify file integrity and identify known files. Known files are then referred 

to standard system files, which it might ignore, such as operating system or 

application files. It also refers to illegal materials, which it would be inclined to 

create an alert for, such as malware. Thus, data reduction could be used, which 

is based on the comparison of each hash file in a forensic image with the Known 

File Filter (KFF) database, which contains libraries of the hash values of known 

files.  

The second level of the Pre-Processing Engine is the multimedia stage, as shown 

in Figure 6-3. As the system focuses on multimedia files (e.g., videos and photos) 

that contain suspects’ faces, the primary task of this pre-processing level is to 

search for diverse sources that could include this category of file. The multimedia 

level could use data reduction but normally depends on file types, such as the 

retrieval of only multimedia files in a forensic image. The file name or extension 

could be referred to as no meaning file. Instead, as a prerequisite, it is essential 
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to use a sequence of bytes that represent file types, which are available in the 

header of the files. Multimedia pre-processing will filter files using a file signature 

table to isolate multimedia files from the rest. A file extension that has a different 

format, or Hex signature, needs to be checked with all formats.  

In addition, it is a requirement that the F-FAS architecture, which is dependent on 

still photos, can extract frames from a video. The number of frames per second 

can be determined in the system as a default value and can be changed in the 

future via the system settings. Duplicate frame removal is another technique that 

has to be added to the multimedia examination engine to reduce the number of 

photo files considered in the investigation process.  

Once still images are filtered, a facial detection process is applied to extract 

photos that include faces to achieve final data reduction by isolating these photos 

files from others. This process is usually achieved by using an automated face-

detection approach that looks for key facial features, such as the eyes, nose, and 

mouth, to detect faces in an input photo. It then extracts a facial features vector 

and transforms it into a face template in a standard form. It must be ensured the 

feature extraction techniques are robust for unconstrained issues, such as 

changes in pose, lighting, distance, and quality. As the face template is 

considered to contain the unique characteristics of an individual person, the 

sample template will be employed for comparison throughout the investigation 

process in the Facial Recognition Engine. Some photos contain more than one 

face; therefore, it is important to extract all face templates and make references 

to the source photo. In addition, for every single face, the face detection operation 

returns face attributes that are included in the machine learning-based prediction 

of facial features. For instance, a set of facial attributes will include gender, age 

range, and the face having a beard, glasses, or a hat. Facial attribute values can 
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be of numerous types, such as Boolean (if a person has a beard) and string (for 

gender). However, any photo file that is successful in face detection will be 

considered as resource evidence. In addition, as part of the suggested F-FAS 

architecture in this engine, it is vital to extract the metadata of every file, such as 

name, size, and GPS, which would provide assistance in describing each file. 

As a final step in the structure of the Pre-Processing Engine, an indexing 

component that is stored in such a manner that it enables file retrieval to work 

efficiently in the future. The results of this engine will be stored directly in the 

Process Evidence Database. As a result of the size of the data required to deal 

with this, the indexing approach will save considerable time and effort when 

performing analysis or searching for any file in the database. It is clear that, in 

terms of the aim of the F-FAS architecture, the most substantial data will be the 

photo files that contain faces. It is essential to store these file types and their 

details on the system storage to use them in the investigation process with the 

relevant forensic images, as illustrated in Table 6-3. The system also stores the 

metadata of each file (e.g., capture device, device model, and capture location) 

by connecting to the metadata table, as shown in Table 6-4. Moreover, Table 6-5 

contains all the face templates and attributes that have been generated and will 

act as a reference for any face in a forensic image. 
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Image 

ID 

Photo 
ID 

File Location TimeStamp  
Photo 
Size 

Photo 
Type 

Hash 
Inves
. ID 

1 
1 \\image1\photoe

vidence\photo1 
2017-05-10 

17:30:55 
300KB 

JPG 
234E6
6H9.. 

1 

1 
2 \\image1\photoe

vidence\photo2 
2017-05-10 

17:45:10 
900Kb 

JPG 
896F9
8E2.. 

1 

1 
3 \\image1\photoe

vidence\photo3 
2017-05-10 

17:55:00 
100KB 

JPG 
654F7
9E1.. 

1 

…… …… …… …… …… 
…… 

…… …… 

Table 6-3: Photo evidence table 

 

Photo 

ID 

Capture 

Source 

Device 
Model 

Model 

No. 
Longitude Latitude 

1 
CCTV Dome 

camera 
WFB-

100A 
-4.143841 50.376289 

2 
CCTV Dome 

camera 
WFB-

100A 
-4.143841 50.376289 

3 
CCTV Dome 

camera 
WFB-

100A 
-4.143841 50.376289 

…… ……  …… …… …… 

Table 6-4: Photo metadata table 

 

Photo 
ID 

Face 
ID 

File Location 
Template 
Storage 

Gender Age Glasses Hat Beard 

1 1 
\\image1\photo
evidence\face1

-1 

\\image1\photoe
vidence\photo1\t
emplate\face11 

Male 30 No No No 

1 2 
\\image1\photo
evidence\face1

-2 

\\image1\photoe
vidence\photo1\t
emplate\face12 

Male 25 No Yes No 

2 1 
\\image1\photo
evidence\face2

-1 

\\image1\photoe
vidence\photo1\t
emplate\face21 

Male 26 Yes Yes Yes 

…… …… …… …… …… …… …… …… …… 

Table 6-5: Face photo table 

6.3.3 Facial Recognition Engine 

This engine is considered as the core component of the F-FAS, as it helps to 

examine criminal evidence in terms of facial identification and minimises the 

file://///image1/photoevidence/photo2
file://///image1/photoevidence/photo2
file://///image1/photoevidence/face1-1
file://///image1/photoevidence/face1-1
file://///image1/photoevidence/face1-1
file://///image1/photoevidence/face1-2
file://///image1/photoevidence/face1-2
file://///image1/photoevidence/face1-2
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scope of a search. Another feature of this engine is that it saves time and effort 

when examining significant amounts of evidence, which will further facilitate 

investigators in making a final decision regarding identity by narrowing down the 

matching results. Following the promising validation results obtained from the 

experimental packages referred to in the previous chapter, the Facial Recognition 

Engine uses a multi-algorithmic matching approach by combining them into one 

engine with the aim of improving system performance. As a multi-algorithmic 

approach is taken with this engine, the decision to choose a better facial 

recognition algorithm or commercial system for each case will not be an easy 

task. Therefore, this system architecture is flexible and can be adapted to any 

new facial recognition algorithm (whether private or commercial) in the future so 

the system can be updated.  

 The question that could affect the F-FAS architecture is what is the cost of using 

multi-algorithmic facial recognition instead of a single algorithm? Will it cost 

more? It is suggested that the proposed F-FAS use some commercial algorithms, 

such as Amazon and Microsoft (Chapter 5), which are based on providing cloud 

services to customers. The payment system for these algorithms involves paying 

only for the resources used at any time. For instance, Amazon Rekognition 

charges customers only for the number of images analysed (e.g., face detection, 

face matching) or cloud storage. The price is calculated per image analysed and 

it is minimised when the number of images is increased, as shown in Table 6-6. 

It is noticed from these prices that this type of system provides cheap prices than 

buying a full facial recognition system. Further, customers will benefit from using 

the newest technology developed by computer vision scientists and daily updates 

of the service’s features.  

 



137 
 

Image Analysis Price per 1,000 Images Processed 

First 1 million images processed per month $1.00 

Next 9 million images processed per month $0.80 

Next 90 million images processed per month $0.60 

Over 100 million images processed per 
month 

$0.40 

Table 6-6: Examples of Amazon Rekognition’s prices. 

To perform facial recognition, this engine contains a controller, which manages 

the data flow and processes. When a request is received from an investigator 

(e.g., for a suspect’s face), the Facial Recognition Engine performs facial 

identification by drawing comparisons (one to many) between the input query and 

the mugshot data in the Process Evidence Database, as shown in Figure 6-4.  

 

Figure 6-4: Facial recognition Engine 

The input query (unknown identity), which represents the suspect’s description 

information, will be in position to check the identity. This could appear in two ways: 

1- Photo file: this type is provided to the system when the investigator has 

any photograph of a suspect’s face and then needs to return all the 
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photos that are matched with it. The photo source could either be from 

external resources, such as having been collected from a relevant 

witness or chosen from the data acquired.  

2- Soft-biometric information: this type of query arises when the 

investigator does not have a photograph of a suspect’s face but has 

some information collected directly from a witness at the crime scene. 

For example, this information could be a victim’s or culprit’s soft-

biometric features, such as age, gender, any accessories, or a beard. 

This information will help minimise the search scope. 

Moreover, the F-FAS structure allows the inspector (optional) to specify a specific 

narrower search to reduce the amount of time involved. For instance, the search 

scope time, which signifies the initial start and end time, ultimately relies on the 

crime case time. Another example is determining the GPS (both longitude and 

latitude) coordinates that are sought.  

The Facial Recognition Engine calculates a match by exploring the similarity 

between the input query and the face templates available in the Process Evidence 

Database. In the case of the input query being a photograph, this engine will 

generate a template with which to draw a comparison while, in a soft-biometric 

case, the engine will directly draw comparisons with information already saved in 

the database (Table 6-5). The match score result will then normalise every 

algorithm to be ready for the decision fusion to generate the suspect’s final 

identity. Decision fusion is essential to give weight to every individual contributing 

matching algorithm used. High weights are assigned to an individual algorithm 

based on its features (i.e., the ability to deal with face photo issues, such as 

illumination and pose) and identification accuracy, which could be tested before 

being added to the F-FAS structure. Hence, the fusion objective is intended to 
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provide a robust identification decision. Once the similarity comparison has been 

made, all relevant face photos will be displayed to the investigator ordered by 

high matching scores. 

All the identity outcomes of the decision fusion will be returned to the controller, 

which will store them in the Case Evidence Database. This will provide a search 

ID for every request, the search time, and the ID of the investigator who sent the 

query. An input query value, for either the photo source or text, represents the 

soft-biometric information, as shown in Table 6-7. Moreover, any additional 

search criteria will be stored in Table 6-8. The results of the photo ID that 

correspond to the search ID will be stored in Table 6-9.  

Bookmarking is now a convenient strategy for identifying relevant information 

because it provides a facility to search for specific bookmarked files rather than 

looking into all the existing files. Therefore, by using this facility, an investigator 

is permitted by the architecture to select any particular photo to keep as 

bookmarked evidence and set a value (1), as shown in Table 6-9.  
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Search 
ID 

Query 
Type 

Value 
Investigator 

ID 
Search 
Time  

1 Photo \\case1\Queryphoto\photo1 1 
2017-05-11 

10:30:55 

2 Text male, 35, 1, 1, 0 1 
2017-05-11 

14:40:11 

3 Photo \\case1\Queryphoto\photo2 6 
2017-05-11 

15:08:33 

…… …… …… …… …… 

Table 6-7: Query details of Facial Recognition Engine 

Search 
ID 

Scope Time Start Scope Time End Longitude Latitude 

1 
2017-05-01 

01:00:00 
2017-05-10 

17:00:00 
-4.143830 50.37695 

2 
2017-04-11 

02:00:00 
2017-05-11 

15:00:00 
-1.143830 52.37725 

3 
2017-05-12 

09:00:00 
2017-05-30 

03:00:00 
-3.143830 51.33455 

…… …… …… …… …… 

Table 6-8: Additional Filter information for facial recognition process 

 

Search 
ID 

Photo 
ID 

Face ID Bookmark 

1 1 1 1 

1 20 2 1 

1 35 3 0 

…… …… …… …… 

Table 6-9: Facial recognition results 

At the end of this stage, the investigator will have found most of the photos that 

are related or are similar to a particular suspect’s face. Moreover, the resulting 

photos will be ready for further analysis to find any correlation between them. 

6.3.4 Forensic Analyses Engine 

The most significant part of any digital investigation is the ability to analyse the 

evidence that has been found. Because there is a huge amount of information 

that needs to be to analysed and evidence found for correlations between data. 
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This will help reduce the effort and time in the investigation process. The F-FAS 

architecture provides a wide range of analysis capabilities that will allow 

investigators to perform in-depth analyses that can lead to cases being solved. 

Therefore, the Forensic Analyses Engine enables investigators to find answers 

to those questions that are often not merely about the identification of an 

individual but are also related to an understanding of the context. The engine 

identifies associations between artifacts and presents them in a usable and visual 

form to draw a wider picture of a crime. To help illustrate how the proposed 

framework would operate, a child abduction example is presented. In this 

example, it is assumed a child has been kidnapped. Intelligence provides a rough 

last location of the child and the latest picture of the child. In order to solve a child 

abduction case, an investigator starts by collecting all preliminary evidence that 

may help find the child as quickly as possible, such as narrowing the timeframe 

of abduction, determining the location of the abduction, and any information about 

the suspect (e.g., face description, age, and gender). The next step of the 

investigative process would involve collecting all available imagery (e.g., videos 

from surveillance cameras at the crime scene and from nearby surveillance 

systems). The current solution would involve teams of investigators manually 

trawling through the footage from possibly dozens of evidence sources. The use 

of a manual human-matching process is laborious and time-consuming, resulting 

in examining large volumes of image data. Further, given the pressurised nature 

of the task, it is likely to result in a high proportion of human error. The proposed 

system will permit an investigator to select the necessary evidence sources and 

automatically process all of the footage. The system will then perform facial 

recognition across the evidence sources, providing an investigator with a 

prioritised set of results with which to interact. The investigator will be able to 

target images from the retrieval results and the forensic analysis engine will 
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provide further correlation between faces in images and enable the target face to 

be tracked across different evidence sources. The resulting visualisation would 

provide the graphical map of the resulting journey alongside the image sources 

used to identify the victim’s path. 

 

Figure 6-5: Forensic Analysis Engine 

The Forensic Analyses Engine carries out its work based on previous Facial 

Recognition Engine results. The Forensic Analyses Engine provides three 

different types of forensic analysis processes: Facial Social Network (FSN), Geo 

Location (GL), and Facial Modification (FM). These three types of analysis aim to 

identify any relevant correlation between found artifacts based on different input 

queries or requests and to reduce the outcome evidence in a short time. Figure 

6-5 shows the process of the Forensic Analyses Engine.  

 Facial Social Network Analysis 

Facial social network analysis is a type of forensic analysis suggested in this 

design. This technique is based on searching people’s faces using facial 

matching and returning all photos other than those of the suspected person. 

Interestingly, it also has the ability to return photos of the faces of the people who 
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appear in the same image along with the suspect. This form of forensic analysis 

uses graph theory to depict a network structure. Graph modelling is an approach 

that describes a connected graph of nodes and relationships. Nodes are utilised 

to represent a source photo of a suspect’s face or faces of people who are closely 

related. A relationship is represented by the connection between two nodes, 

which represents the facial similarity between the nodes and the closely related 

relationship.  

In a facial social network, the investigator first selects a face photo of interest from 

the retrieved results (Facial Recognition Engine) in the Case Evidence Database. 

At the first level, the Facial Recognition Engine is used to return all possible 

photos of the selected input. At the next levels, and while building a facial graph 

network model, a recursive process is repeated for each face that appears closely 

associated with a photo node (using Table 6-5) and repeats the retrieval process 

(face matching) to return all possible faces. 

This approach appears to reduce the time required to analyse large numbers of 

photos and can build complete tree tracking for suspects, as well as their 

relatives. Furthermore, filtering options are provided to aid the investigator, 

depending on the investigation requirements. For example, only the photos of a 

suspect that are found in the databases could be displayed or photos of all the 

faces that seem, by their appearance, to be associated with the suspect. It is 

noteworthy that visualisation of a facial social network is extremely significant to 

understanding the results proposed by the investigator. A version of a graph 

visualisation platform could be used to represent the results as a graph, which 

the investigator would more easily understand.  

 Geo Location 

An increasing number of photos are captured on devices to support location-

determining technology. Geolocation data are often incorporated into metadata, 



144 
 

thereby providing the potential to analyse artifacts further. From a forensic point 

of view, location data are valuable because of the ability to indicate the last 

location of a suspect and could provide an accurate account of that person’s 

movements. Therefore, a geolocation analysis objective could be to: 

 refine outcome analysis by location; 

 determine the location of photo matches onto maps; and 

 track the movements of individuals of interest by location and time.  

An investigator can refine photos of interest from the retrieval (facial recognition) 

results and metadata provide useful information that can assist investigators in 

determining the exact location of a captured image. The results can present 

further visual reorientation by using Google Maps. Forensic investigators can 

then track photos of suspects based on metadata information (Table 6-4). This 

can be helpful in solving criminal cases and reducing the time that is normally 

required in manual tracking. In addition, this technique provides an overview of 

the directions of persons of interest to assist in tracing their whereabouts. 

 Facial Modification 

Facial modification analysis allows investigators to adjust a photo of a suspect’s 

face to establish if it can be matched with additional evidence. In some cases, 

there is a difference between the appearance of faces that were saved in a 

database and the input face query. Therefore, the F-FAS augments the ability to 

make changes to the shape of a face, such as adding glasses, a beard, pose 

correction, changing the expression, and employing ageing effects. This 

technique is intended to increase the probability of retrieving more faces that 

resemble those changes. In addition, it could enhance facial identification 

performance by trying to solve some of the forensic facial recognition problems 

discussed in Chapter 3. 
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When an investigator selects this type of analysis, it requires choosing a face 

photo, which needs changes to the face shape. This selection depends either on 

the facial recognition results from the previous engine or the entry of a new photo. 

The modification types that need to be applied are then selected and the system 

allows the simultaneous application of more than one face modification, such as 

adding glasses and a beard. This could use algorithms with a high degree of 

accuracy that specialise in facial modification suggestions and can be added to 

the F-FAS architecture. A new facial photo could be re-sent to the Facial 

Recognition Engine to verify the match results. 

6.3.5 Reporting 

One of the most important steps in the digital forensic investigation process is 

generating forensic reporting. Forensic investigators spend much of their time in 

the examination and analysis of evidence, so their findings can be reported to 

stakeholders in such a way the results can be understood. Some stakeholders 

will not have a relevant technical background or in-depth knowledge of facial 

recognition techniques. Therefore, it is helpful to provide multiple options for 

viewing digital forensic reporting so it is available in a simple and understandable 

viewer. The report content could contain tables, facial photos (match results), 

Google Maps screenshots, and any data associated with a case and a summary.  

The F-FAS organises all artifacts found in the reporting viewer, such as 

bookmarking, search details, and analysis. However, it also allows investigators 

to select which evidence they prefer to include in the final report or to choose the 

option to include everything automatically. All the evidence found is stored in the 

Case Evidence Database and is ready to export for reporting. In addition, the F-

FAS manager can feed the reporting of any information that is related to the case 

details (Forensic Images Database) or the investigators’ management details 
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(System Management Database). Once the reporting is complete, it can be saved 

as a different file type, such as Word or PDF, and can be shared with other 

stakeholders.  

6.3.6 The F-FAS Management 

The F-FAS Management is the central controller of the system processing and 

provides an interface between the investigator and the underlying processes, 

which helps investigators manage the overall system. The system management 

also controls the monitoring of the dataflow through the chain of custody. The F-

FAS Management provides an optimal forensic environment that ensures that all 

stages, from data collection to final reporting, work securely and with integrity. 

The F-FAS Management’s responsibilities can be stated as follows: 

 System Security (AAA Functionality) 

This task manages the authentication, authorisation, and accountability (AAA) of 

the overall system in order to fulfil privacy requirements. The first process, 

authentication is aimed at verifying who will have access to the system by 

checking credentials such as user ID and password. Once the user is logged in, 

the authorisation process determines what types of tasks, activities, resources or 

services are allowed to the user. However, the authorisation of tasks is based on 

the context of the authentication, so an investigator’s account roles are authorised 

once he/she has been authenticated to log into the system. The final aspect of 

the AAA function is accountability, which involves tracking, recording, and 

measuring the operations and activities undertaken by the investigators while 

they access the F-FAS. The purpose of this process is to record the answers to 

questions of “Who did”, “What did” and “When did”, which circumvents the 

possibility of any conflict between investigators in the future. This process begins 

once an investigator starts logging into the F-FAS, so the system management 
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starts recording but is not restricted to point and time of access, current services, 

or data usage, and updates the user status. Once an investigator’s access has 

ceased, the system management will stop recording, the investigator’s status will 

be updated to inactive, and all the information will be stored in the investigator’s 

records in the database. It is worth mentioning that all the AAA security aspects 

come under the responsibility of the System Administrator. 

 System Tasks 

The purpose of system tasks is to distribute the roles between the system 

members to ensure the smooth running of the whole system throughout the F-

FAS, such as system security, case management, investigators’ management, 

and digital investigation steps. The F-FAS task is assigned three different roles: 

System Administrator, Case Leader, and Forensic Examiner. The System 

Administrator is responsible for all levels of system security, such as 

authentication and investigators’ account configuration, including adding/deleting 

users, and giving roles, permissions and authorisations to others, such as the 

Case Leader and Examiner. In addition, it maintains the system databases to 

ensure each is running correctly by checking its structure and size, mainly to 

monitor data archives. It is also responsible for any software configuration (install, 

modify, remove, turn on/off) the F-FAS needs; for example, the facial recognition 

systems and analysis tools would be part of the System Administrator’s main 

duties. 

The Case Leader is responsible for case management, such as creating cases, 

acquiring images, examining analysis, managing case data, and reporting further 

to ensure the investigation process follows the rules as mentioned in ACPO 

principle 4 (ACPO, 2012). In addition, all cases that are no longer necessary will 

be considered archived by the System Administrator and Case Leader. Archived 
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cases are deleted from the case database and will, instead, be stored in the case 

folder (external disk). The Case Leader could allocate a case to a specific 

examiner for investigation to identify evidence and perform all tasks (Forensic 

Examine). The Case Leader’s duties could function at two levels: either globally, 

across all cases in the F-FAS, or through taking specific roles that vary from case 

to case, as determined by the System Administrator. 

The Forensic Examiner is responsible for pre-processing images and examining 

multimedia files by using the facial recognition function. Moreover, the results can 

be analysed using a facial social network, geolocation, and facial modification 

tools, which further extract evidence and verify its integrity by producing a report. 

However, every role is determined and does not overlap with others, as illustrated 

in Table 6-10. The F-FAS provides a System Management Database that stores 

all the information about stakeholder users (i.e., the System Administrator, Case 

leader, and Forensic Examiner), as shown in Table 6-11. 

  



149 
 

Tasks 

Role 

System 
Administrator 

Case Leader 
Forensic 
Examiner 

Authentication √   

Authorisation √   

Accounting √   

Software 
Configuration 

√   

Investigator 
Management 

√   

Create Case  √  

Acquire Image  √  

Examine Image  √ √ 

Analyse image  √ √ 

Extract 
Evidence 

 √ √ 

Reporting  √ √ 

Delete Image  √  

Archive Case √ √  

Archive Image √ √  

Delete Case √ √  

Table 6-10: The F-FAS’ responsibilities and roles 

Investgator 
ID 

Investgator 
Name 

Role 
Registration 

Time 
Address Telephone 

1 Hiba Mo Admin 
2015-06-18 

12:00:10 
86 Camden 

Street…. 
07747… 

2 Alex Jo Leader 
2015-06-18 

17:45:10 
25 Armada 

Street ….  
07757… 

3 Dany John Examiner 
2015-06-18 

18:45:10 
14 Northhill Road… 07748… 

........ ........ ........ ........ ........ ........ 

Table 6-11: Investigators’ details 

6.4 The F-FAS Implementation 

F-FAS implementation aims to reflect on how the F-FAS prototype would help in 

visualising and understanding how the architecture would work in practice. The 

F-FAS architecture can be designed according to two types of prototype: a web-
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based service and a local desktop tool. This implementation chose a web-based 

design to give an example of how the architecture would function in the web 

environment. There are also the following advantages of using web-based tools:  

1. Cross-platform: this would be identical on any operating system, such as 

Windows and Mac. 

2. User interaction: this uses multiple tabs in a browser to perform several 

tasks, while a desktop tool would need several windows. 

3. Maintenance: a web browser is needed to use it and it would be updated 

once on the server while a desktop tool would need to be downloaded and 

updated on a desktop computer. 

4. Community: this would provide greater scalability and could be used by 

worldwide organisations. In addition, the cloud allows using any files from 

any computer from different locations, so this is a good example that 

provides more scalability in the investigation process or local private 

servers (for more security).  

5. Usability: this could be accessed by users from any location, who would 

simply need the internet while a desktop tool is confined to a physical 

location. 

Despite the above advantages, there are some risks that could be faced by using 

a web-based tool, such as security. For example, the tool would be open to 

hackers but a cryptography technique could be used to cipher data when moving 

between the client and server sides. Another risk is that a web tool depends on 

internet connectivity being live; when this is absent, the tool cannot be accessed. 

Moreover, the cost could be higher for a web tool that needs to be continuously 

maintained. 
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The prototype of the F-FAS was developed with a front-end design to show the 

visualisation of each engine in the system architecture. The web development 

used Bootstrap, HTML, and a JavaScript framework to develop the front-end 

design. The F-FAS prototype provides a responsive design tool that allows it to 

be adapted to various screen sizes, such as for mobiles, tablets, and desktops. 

In addition, the F-FAS architecture suggested for future use with private secured 

local servers to save all files and database. The F-FAS prototype will give good 

insight into how architecture is designed in the real world. 

6.5 The F-FAS Prototype Samples 

Each user has a specific task to perform based on its role (Admin, Case Leader, 

Forensic Examiner), such as the System Administrator having full access to the 

system, including administrative tasks. When a user is authenticated, all running 

systems would show up based on the user’s authorisation. Figure 6-6 shows the 

Forensic Examiner dashboard, which includes the range of available cases in the 

investigator’s account that are ready for investigation. There is information that 

describes each case (case metadata) and four actions that could be taken for 

each one: open, edit, archive, and print reporting. A new case could also be 

created and added to the number of current cases.  
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Figure 6-6: Forensic Examiner dashboard 

Once the case to be investigated is specified by the investigator and the “open” 

action has been selected, the case dashboard will appear, as shown in Figure 

6-7. This dashboard will show all the digital images acquired and display their 

metadata, such as type, name, and size. Moreover, a new image could be added 

by clicking on the “New Image” link; a new window then appears that allows 

information to be entered about the new digital image, as illustrated in Figure 6-8. 

The left-hand side of the case dashboard contains a range of actions that are 

available to aid examination and analysis and create further case reporting.  
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Figure 6-7: The case dashboard 

 

 

Figure 6-8: The ‘add new forensic image’ window 
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When all images are uploaded to the servers, they will automatically undergo pre-

processing operations (described in Section 6.3.2) to filter the data and generate 

photo files. The forensic examiner can examine all the photo results using a facial 

recognition process to determine a suspect’s identity. The facial recognition 

option, as illustrated in Figure 6-9, provides three methods for uploading a 

suspect’s details. The first option is uploading the suspect’s digital photo to find a 

match, if available.  

 

Figure 6-9: The facial recognition options window 

For the second option, if the information about a suspect comes from a witness 

(no photo available), then choose “Select Soft Biometric”, as shown in Figure 

6-10. For the third option, if the investigator would like to choose from the 

database of acquired forensic images, choose “Select from Acquisition Faces”. 

There are also additional (optional) search criteria, such as date, time, and 

location. These search limitations could help decrease the scope of the search 

by matching photos that have the specified metadata limitations. 
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Figure 6-10: Soft biometric option of facial recognition searching 

The facial recognition results will be returned after being processed using the 

multi-algorithmic fusion approach and displayed as a list for the investigator, as 

shown in Figure 6-11. The investigator can select photos of interest either to add 

them to the bookmarked evidence or to send them for analysis options.   

 

Figure 6-11: Facial recognition results window 
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To help the investigator avoid repeating any facial recognition searches, the F-

FAS tool saves the whole search history and allows the investigator to check it, 

as illustrated in Figure 6-12. 

 

Figure 6-12: History facial recognition searching 

The forensic investigator can conduct more analysis of the facial recognition 

results by using the three forms of analysis provided by the F-FAS tool. The first 

analysis type is a facial social network, which builds a visualisation network of 

related faces (based on appearance) shown in a visual format. Graph 

visualisation provides additional value for data analysis by presenting 

connections and quick access to photos of interest. Figure 6-13 presents an 

example of facial social network analysis results.   
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Figure 6-13: Facial Social Network Visualisation  

The second type of analysis is to determine the location (geolocation) of photos 

using their metadata (if available) and showing their location on Google Maps, as 

shown in Figure 6-14.   

 

Figure 6-14: Geolocation Visualisation  
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The final analysis type offered by the F-FAS tool is facial modification. This 

analysis technique enables the investigator to modify any photo selected and 

uploaded into the tool. Some facial modifications that are possible are to add a 

beard, glasses, sunglasses, and effects of ageing. The web design option for this 

analysis type is shown in Figure 6-15.  

 

Figure 6-15: Facial Modification window (ageing example) 

Once the case has been analysed, the forensic examiner can generate a report 

and determine the content of that report, as seen in Figure 6-16. The final report 

is created and can be saved and printed. Figure 6-17 shows an example of a 

reporting design suggested by the F-FAS tool. 
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Figure 6-16: Reporting creation window 

 

Figure 6-17: An example of reporting design  
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The System administration dashboard is different from the Examiner and 

Investigator dashboards, as shown in Figure 6-18. The Administrator can monitor 

cases and investigators by compiling statistics regarding the numbers of cases, 

users, and their statuses. The F-FAS tool also offers the Administrator the ability 

to manage investigators’ accounts and add or delete users (Figure 6-19).  

 

Figure 6-18: Admin dashboard 

 

Figure 6-19: Investigator’s accounts window 
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6.6 Conclusion 

The architecture characteristics of the F-FAS have been designed in a modular 

and robust manner to allow investigators’ a fundamentally novel approach to 

facial forensic analysis. The mechanism has been designed on the principle of 

allowing a suspect’s identity to be found by reconstructing digital images. In 

addition, the system employs various analysis techniques for correlating between 

facial photos, geolocation, and facial modification to reduce the amount of 

investigation time required.  

The proposed architecture meets most forensic technique requirements with the 

aim of maintaining the chain of custody, system security (the AAA function), and 

data monitoring. Further, the system is updatable. The proposed F-FAS 

architecture has been designed according to a pattern that enables forensic 

organisations to meet specific requirements by providing the flexibility and 

convenience of predefined composite factors. All investigation steps are 

integrated and managed within one system in the F-FAS architectural model. 

This chapter has demonstrated that a complete case can be tracked from the 

point of image acquisition through image examination (facial recognition) and 

analysis (facial network, geolocation, and facial modification) to the reporting 

process, all performed within a single system. Based on this architecture, a 

prototype (web-based service) has been designed and presented to enable the 

visualisation of the proposed system. 
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7 System Evaluation 

7.1 Introduction  

The system evaluation aims to provide an estimation of the performance and to 

recognise the limitation of the F-FAS. Therefore, selection of the appropriate 

evaluation methodology is a significant factor that facilitates measuring the 

concepts of the entire project such as problem, requirements, suggested solution, 

and architecture. One of the evaluation methods is participative research that 

evaluates the stakeholders’ community (digital forensics experts) in order to 

review the project, its unique functionality and to identify its strengths, 

weaknesses, and limitations. The system evaluation is envisaged to have these 

evaluations, which could be from academic and specialist participators in digital 

forensics to support the results performed during the PhD research work. Based 

on the academic context of the research, people with an academic background 

are considered the best selection to evaluate the project.  

For that sake, the system evaluation requires preparatory steps to find the 

appropriate answers for evaluation. The first step in our system evaluation 

methodology was to create a video podcast that provided a brief description about 

the research problem in the facial forensic system by using case example, the 

model system requirements and architecture (Chapter 6), the experiment 

methodology and analysis of multi-algorithmic fusion (Chapter 5), and 

screenshots of interfaces of the developed prototype. The video is approximately 

20 minutes long1. Afterward, the questions were created to collect feedback that 

                                                
 

 

1 Available at https://vimeo.com/289571247 and a password is required to open it, which is 
“h#17m05*hh12” 

https://vimeo.com/289571247
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evaluates and measures the capabilities of the project. The questions were 

designed to accomplish the project journey. 

 The second step is to identify people with various kinds of experiences in the 

digital forensic field, which assists in seeking feedback to cover different research 

dimensions. After that, it will invite these academic experts formally by sending 

individual e-mails. Once the invitation is accepted, the ethical approval consent 

form will be sent to him/her to be read and signed. 

The interview session will be conducted to ask the evaluation questions. Possibly, 

it will be done over the internet (i.e. Skype) or face to face (if applicable). The 

communication language will be English and the total amount of time required for 

the entire interview will be between 30 to 40 minutes (this depends purely on the 

discussion time).  

7.2 Research Methodology 

7.2.1 Evaluations Questions 

The total questions prepared for the evaluation interview were 10 questions and 

they are listed as follows: 

1. What are your thoughts regarding the research problem? 

2. What are your thoughts about the current facial recognition systems? 

3. What are your thoughts about taking a multi-algorithmic fusion approach?  

4. What are your thoughts about the proposed F-FAS architecture? Is it 

realisable?  

5. The purpose of the F-FAS is to reduce the time taken for data analysis and 

to reduce the cognitive effort required to understand the relationship between 

artifacts. Do you feel it does this? 
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6. What do you think about the effectiveness, reliability, and usability of the 

following functionalities offered by the F-FAS tool: 

a) Facial recognition 

b) Facial social analysis 

c) Geo analysis 

d) Facial modification 

e) Reporting 

7. What is your opinion about case management that is provided by the F-FAS? 

8. What do you think are the particular strengths and weaknesses of the F-FAS 

tool? 

9. Do you suggest any other functions could be added to the system to improve 

its effectiveness? 

10. Do you have any further comments? 

As described above, these questions were designed precisely, in terms of the 

project, to explore the problem validity, and the reliability, efficiency, and utility of 

the suggested tool. Additionally, they inquired about the effectiveness of the 

experimental methodology, results of the multi-algorithmic fusion technique, and 

about how this suggestion will minimise the investigator’s time and effort 

throughout the investigation. Moreover, they were used to collect various 

perspectives to appraise the strengths and weaknesses of the proposed 

approach. Finally, the open questions were aimed at investigating options for the 

development of the F-FAS.  

7.2.2 The Participants  

This section describes the participants selected for the evaluation and provides a 

short background on them. Because this research focuses on digital forensics, 

cybersecurity, and digital facial investigation fields, people with adequate 
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knowledge, background, and experience in this field were chosen. The evaluation 

methodology focused on academic people more than technical people because 

it was aimed at evaluating the research problem, experimental results, the novelty 

and effectiveness of the proposed F-FAS, and the weaknesses and strengths in 

the suggested system. Furthermore, technical people prefer to test tools or full 

programming system to give their opinions while academic people focus on 

theoretical and scientific concepts. Therefore, the suitable method was to search 

for people via the internet by looking into scientific conferences, committees, 

scientific journals, and professors or lecturers in educational institutions.  

However, there was a list of candidates who were determined. There were about 

30 people and the research aim was looking for 10 responses. The time needed 

for finishing this evaluation was two months from the beginning of September 

2018 until the end of November 2018 process (sending e-mails and waiting for 

responses). Finally, only seven participants responded positively to the e-mail 

and confirmed their availability. These final participants provided valuable 

information, sufficient for the evaluation objective. The following list is of the final 

participants’ details, which provides brief information about them and their 

research interests. 

 Professor Iain Sutherland – Noroff - Norway 

Professor of digital forensics at Noroff educational institution in Kristiansand, 

Norway. Email Iain.sutherland@noroff.no and the Skype interview was on 

September 17, 2018. 

Professor Sutherland is a recognised expert in the area of computer forensics 

and data recovery. He has authored numerous articles ranging from forensics 

practice and procedures to forensic tool development. In addition to being actively 

mailto:Iain.sutherland@noroff.no
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involved in research in this area, Professor Sutherland has taught computer 

forensics at both undergraduate and postgraduate levels. He has advised on 

forensic problems to police forces and commercial organisations. In addition, he 

has many papers in the aforementioned field and has supervised students’ 

theses.  

 Dr Robert Hegarty – Manchester Metropolitan University – UK 

Senior lecturer at Manchester Metropolitan University in Manchester, UK. Email: 

r.hegarty@mmu.ac.uk and the Skype interview was on September 21, 2018. 

Dr Hegarty is a senior lecturer in cyber security and digital forensics from the 

School of Computing, Mathematics, and Digital Technology at Manchester 

Metropolitan University (UK). He has taught computer forensics, security 

fundamentals, and file system forensics and analysis at an undergraduate level 

and further advanced network security at a postgraduate level. In addition, Dr 

Hegarty has interest in signature detection, cloud computing, and the Internet of 

Things. He has published several papers in the aforementioned fields and 

presented related research outcomes at various international conferences.  

 Dr Mo Adda - University of Portsmouth – UK 

Principal lecturer at Portsmouth University in Portsmouth, UK. Email: 

mo.adda@port.ac.uk and the Skype interview was on September 25, 2018. 

Dr Mo Adda has been a principal lecturer in advanced networks, digital forensics, 

and mobile forensics at the University of Portsmouth since 2002. In addition, he 

is a course leader of forensics information technology. Dr Adda is interested in 

different research areas such as multithreaded architectures, mobile networks, 

and business process modelling, parallel and distributed processing, wireless 

mailto:mo.adda@port.ac.uk
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networks and sensor networks, network security, embedded systems, simulation 

and modelling, and mobile intelligent agent technology. Therefore, he has 

published many papers in the aforementioned fields, presented related research 

outcomes in various international conferences, and supervised on four of doctoral 

theses.  

 Professor Yin Pan - Rochester Institute Of technology – USA 

Professor at Rochester Institute of Technology in Rochester, USA. Email: 

yin.pan@rit.edu and the Skype interview was on September 27, 2018. 

Yin Pan is a professor in the Computing Security Department. Dr Pan teaches 

both undergraduate and graduate courses in digital forensics. She holds four US 

patents in the areas of network quality of services, voice over IP, and artificial 

intelligence. Dr Pan has been actively involved in the IT security area, especially 

in security audits and computer forensics. Her current research interests include 

game-based digital forensics and memory-based malware detection using 

machine learning. She has published over 45 papers and presentations in 

research conferences and journals.  

 Professor Andrew Jones - University of Hertfordshire – UK 

Principal lecturer at the University of Hertfordshire in Hertfordshire, UK. Email: 

a.jones26@herts.ac.uk and the face-to-face interview was on October 3, 2018. 

Andrew Jones is currently a professor at the Centre for Computer Science and 

Information Research/School of Computer Science at the University of 

Hertfordshire. Since 2002, after leaving the defence environment, he has had 

experience working as a manager, a researcher, as well as an analyst in the area 

of information warfare and computer crime at a defence research establishment 
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at the University of South Wales. Prof. Jones gave lectures during his scientific 

life on different subjects such as network security and computer crime, further 

researching on the threats to information systems and computer forensics. He 

has authored seven books on topics including information warfare, risk 

management, and digital forensics and cybercrime, and has published numerous 

papers on the aforementioned subjects. 

 Professor Bill Stackpole - Rochester Institute of Technology – USA 

Professor at Rochester Institute of Technology in Rochester, USA. Email: 

bill.stackpole@rit.edu and the Skype interview was on October 12, 2018. 

Bill Stackpole is a professor in the Computing Security Department. He teaches 

various undergraduate and graduate courses in digital forensics and security. 

Since joining RIT in 2001, Prof. Stackpole has been actively involved in the IT 

security area, especially in computer forensics, penetration testing, and security 

competitions. He has interests in different areas including mobile security and 

forensics, attack trees, and mobile malware mitigation. He has published papers 

in research conferences and journals.  

 Professor Golden G Richard III - Louisiana State University, USA 

Professor at Louisiana State University (LSU) in Louisiana-USA. Email: 

golden@cct.lsu.edu and the Skype interview was on October 18, 2018. 

Golden G. Richard III is a professor of computer science and engineering at the 

Louisiana State University and associate director for cybersecurity at the Centre 

for Computation and Technology (CCT). He teaches different subjects, such as 

memory forensics, reverse engineering and malware analysis, and operating 

systems. Prof. Richard is a computer security expert and a fellow of the American 
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Academy of Forensic Sciences with over 35 years of practical experience in 

computer systems and computer security. His primary research interests are 

malware analysis, reverse engineering digital forensics, memory forensics, and 

operating systems internals. Hence, he has published numbers of papers, books, 

and chapters in the aforementioned areas and supervised numbers of MSc and 

PhD students’ theses.  

7.3 Interviewees’ Responses’ Evaluation  

The evaluation questions were designed in such a manner that intended to 

explore facial recognition in digital forensics in terms of its problem validity, and 

suggestion solution efficiency, reliability, and usability. Moreover, it determines 

the system’s limitations and illustrates the strengths of the proposal and further 

asks an open question that aims to improve the work. 

This section presents and discusses the feedback for the questions from experts 

in detail. To make comparisons between experts’ feedback, the answers for the 

same question were discussed and analysed (question by question). This way of 

presentation permitted more comprehensive methods to make the evaluation. 

7.3.1 Thoughts on the Research Problem 

This section of the questionnaire requires that respondents give thoughts on the 

validity of the research problem. Whether experts believe that facial recognition 

considers one of the forensic investigation challenges? All the experts agreed on 

the validity of the research problem.  

Professor Sutherland agreed the project identified an appropriate problem that is 

required to be investigated in terms of digital forensics. He believes this research 

area still needs more work because of an increasing amount of photo footage that 

is captured from different electronic devices such as CCTV and mobiles. In 
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addition, the issue of photos, such as low quality and poor lighting (that have been 

identified in the literature review chapter) still present a challenge for 

investigators. 

Moreover, Professor Pan believes the research problem is useful because there 

are case studies that still face complexities in solving it using the technology of 

facial recognition in digital forensics (i.e., some cases mentioned in Chapter 1). 

Dr Rob saw the research problem was defined and described clearly and he 

absolutely agreed the subject problem is valid.  

Dr Adda stated that many facial recognition tools have been generated and used 

in investigation processes, but it is still considered an interesting area to explore 

and develop.  

Professor Stackpole explained that unconstrained facial recognition, especially in 

crowds, is considered as one law enforcement challenge. For instance, terrorist 

attacks like the Boston bomber (described in Chapter One),. Therefore, there is 

still a need for facial recognition that covers some of these issues. 

Finally, Professor Richard certainly agreed the project’s problem is an important 

challenge in terms of the current terrorist threat posed to the world. In addition, 

he added that he observed some recognition systems a long time ago but the 

result was quite unpromising. He liked that this research suggests addressing 

these limitations. 

7.3.2 Thoughts on Current Facial Recognition Systems 

When the participants were asked about their opinions on the current facial 

recognition system in the forensic environment, the response was varied. 
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Some of the experts did not have any experience with current facial recognition 

tools but they found this subject interesting to explore, as noted by specialists in 

the digital forensic field, Professor Pan and Professor Sutherland.  

Dr Adda was wondering about the proposed F-FAS and how it differs from other 

available facial recognition tools. He suggested that it is better to draw 

comparisons to make this point understandable.  

Dr Hegarty is of the opinion that facial recognition tools have a great effect on 

different applications, such as mobile authentication (i.e., Apple) and in football 

stadiums (by the police in the UK), but that it needs more improvement. Moreover, 

Professor Jones agreed that many facial recognition tools are used currently by 

law enforcement agencies but are not adequate and there is a lot of work required 

in this field. Furthermore, he found the suggested tool promises combining more 

than one investigation requirement.  

Professor Stackpole was happy with the results of some facial recognition tools 

that he used, such as “tagging people on Facebook” and “Google”, and he found 

they were effective but he showed concern in the aims of using these tools in 

forensic investigations. Similarly, Professor Richard’s experience in forensic 

video recognition made him believe available tools could work well under ideal 

circumstances like one or two facial recognition challenges but it is still facing 

some limitations.  

7.3.3 Thoughts on the Multi-Algorithmic Fusion Experiment  

It is interesting to note that all the experts agreed that the multi-algorithmic fusion 

approach is not only novel but also an interesting contribution in facial 

identification techniques. Additionally, they were optimistic about the 

experimental results, which looked promising.  
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Moreover, a few of the experts, such as Professors Pan and Jones, were 

impressed by the experimental results and were surprised to notice how the 

accuracy was improved. Similarly, Professor Sutherland observed the use of 

multiple algorithms for the sake of facial identification was comparatively better 

than using the individual algorithm. Furthermore, this will lead to the adoption of 

new facial recognition techniques to seek better outcomes during the 

investigation phase. Dr R Hegarty’s point of view endorsed Professor 

Sutherland’s ratification. In addition, he supplemented the previous argument by 

noting that the technique used in this research considers smart technology to 

bring the best attributes of the system with the inclusion of Amazon, Microsoft, 

and others to save time to perform similar research carried out by these 

commercial systems.  

Although Dr Adda believes in the good contribution of this approach, he also 

suggested another technique, known as the hybrid technique, which could be 

used instead of the fusion technique. He recommends delivering the output of the 

first algorithms to the second ones and continuing this process until the end to get 

better results. This recommendation would be more suitable if the multi-

algorithmic approach adopted features used rather than a decision in facial 

recognition and it could be investigated in the future. 

Moving further, Professor Stackpole argued that the experimental results, which 

appeared in the fusion approach, were more effective than any other individual 

algorithms (Neurotechnology, Amazon, and Microsoft) for both databases that 

were used (CAS-PAL-R1 and Collection Realistic). Moreover, he stated that 

Google’s facial recognition system could be used for future research because he 

liked how it works and Professor Jones suggested this. 
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Professor Richard believes fusing multiple algorithms in facial recognition is a 

vital approach because it is not obvious that any one of these approaches works 

perfectly in all cases. In addition to this, he also pointed out that probably, there 

are many critics who assume using multiple algorithms in one system costs more 

money. His opinion on this concern was: if a forensic organisation saves one-third 

of the money and then the terrorist or the kidnapper runs away, will this be 

considered as a good outcome? 

7.3.4 The Architecture of The F-FAS realisable in Term of Digital Forensics  

This question asks experts their opinion in the proposed F-FAS architecture and 

whether it is reliable to use it in forensic investigation. Interestingly, almost all 

experts were optimistic regarding this and the overall response to this question 

was positive. 

All the experts answered that the F-FAS architecture is considered a valuable 

contribution to the domain of digital forensics investigation (i.e., in the facial 

identification field). Professor Pan agreed that this architecture from a computer 

forensic perspective covers most forensic investigations’ fundamental 

requirements from the acquisition phase through analysis to reporting. Professor 

Lain thinks this architecture solves an interesting problem in digital forensics 

challenges. In addition, it has numerous useful features and functions. 

Furthermore, it appears to be quite a sensible approach in reality. 

Dr Adda expressed that the F-FAS architecture appears to be a good system that 

intends to facilitate investigators in all essential things required to identify 

suspects’ identities. In addition, Professor Jones did not have any specific issue 

with it. According to Professor Stackpole, as the proposed system includes law 

enforcement aspects, therefore, it would have realistic usage. He also explains 

his concerns that probably this proposed system does not work when it has a task 
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to detect faces from a large crowd of people, which represents a critical issue in 

this field. Although, this tool or most forensic analysis tools will be able to assist 

investigators in making decisions, ultimately, the final decision requires human 

interaction. Similarly, Professor Richard found this system architecture very 

promising, usable, and better than some projects developed by graduate students 

that he saw earlier but who had poor utility. 

7.3.5 The F-FAS Capabilities to Reduce Effort and Time for Data Analysis 

According to one of the F-FAS objectives that focuses on time reduction, as well 

as a cognitive effort for data analysis and finds the relationship between artifacts; 

most of the experts believed this aim would be achievable when this tool was 

used. Professor Lain believed the tool provides adequate information to 

investigators to further verify data analysis functions, for instance, a social 

network that permits testing and analyzing massive data for the sake of 

generating a final decision. Likewise, Dr Hegarty points out that how this tool 

recognises faces and relationships between people, as well as tracks them on 

the map in a way that it would assist in terms of time and cognitive effort in the 

investigation. As a matter of fact, currently, the investigation process looks 

manually at the artifact, therefore, Professor Jones considered it better to say this 

tool provides sufficient capabilities to the investigator and absolutely reduces the 

effort. But, on the other hand, he was not certain about a reduction in time. 

Contrary to this, Professor Stackpole agrees this tool would expedite the process 

of identifying individuals but he was also concerned about whether this tool could 

find the relevant evidence. Professor Richard appreciates the analysis ability of 

the F-FAS, which allows for immediately understanding the social network 

between suspects. 
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7.3.6 Effectiveness, Reliability, and Usability of the F-FAS Functions 

While answering this question, the experts provided their views regarding the 

effectiveness, reliability, and usability of each function included in the F-FAS. All 

experts acknowledged this tool is a great effort to fill the gap of using facial 

recognition functions within the digital forensic domain and to do a thorough 

analysis of the results. Professor Pan agreed on the utility of this function but 

believed that, probably, the reliability depends on a database that can evaluate 

this tool. Dr Hegarty and Dr Adda were of the view there is no issue regarding the 

effectiveness of the function and its flexibility because it continues to work if there 

is no photo matching in the available information (using soft biometrics, such as 

age and gender). Because of the facial recognition based on the multi-algorithm 

fusion approach, Professor Jones and Richard considered it better if it presents 

the algorithm’s results individually and allows the investigator to make a decision.  

Regarding the facial social network analysis function, all experts consider this 

function as the most significant of the F-FAS and they were impressed with this 

function's ability. Professors Stackpole, Jones, and Richard thought this part was 

the most powerful and they had no doubt in its ability to be an effective function 

in the application. In Professor Pan’s view, this function would be useful in digital 

forensics investigations because it will build a relationship network between 

available pictures but that the reliability depends on the available artifact 

resources fed to it. Dr Hegarty’s perspective in this function is that it appears to 

give excellent utility demonstration just like the reliability sound. Dr Adda 

suggested this function should be developed to consider the habit while building 

the relationship, such as how many times the picture has been taken and why it 

has been taken (i.e., party, holiday) and this could be, then, investigated in the 

future.  
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Additionally, geolocation was another function the F-FAS provided to 

investigators. According to Dr Hegarty, this function is beneficial across a large 

dataset as it allows investigators to track suspects’ movements. Another utility in 

Professor Pan’s view is that this function could be more effective if the suspect’s 

face is known but CCTV data could be searched daily to find any matches in order 

to determine the suspect’s current location. According to Professors Jones and 

Stackpole, since geo location depends on the metadata information of the picture 

file but some pictures do not have this information type, the effectiveness, 

usability, and reliability of this function would be stopped. On the other side, 

Professor Richard believes this function faces a challenge in the forensic 

investigation and depends on the data collected and Professor Sutherland 

considers it could allow an investigator to manually enter the geolocation, which 

could assist in improving this function’s utility.  

Another function provided by the F-FAS is the facial modification function. 

Professor Pan represented this function like a fuzzy hash signature so it could be 

modified a little according to the face shape (i.e., add accessories and ageing) to 

improve the matching performance but it would not work in some cases. 

Therefore, it depends on the ability of methods and the accuracy of the facial 

modification. Dr Hegarty and Profesor Jones consider this function’s feature 

would be effective in the investigation process and would be valuable to facilitate 

investigators to imagine what the suspect’s face would look like if some 

modifications were made to it. Moreover, Professor Richard, Sutherland, and 

Stackpole agree this function is interesting but they have concerns about the 

effectiveness and reliability of the function and how could it facilitate the forensic 

investigation in terms of improving the facial matching accuracy. Hence, they 

proposed the function could be implemented after further testing.  
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The reporting is a key function in any forensic tool, therefore, all experts agreed 

on the utility and reliability of this function. Professor Sutherland explained that 

the reporting allowed investigators to go deep in the data or evidence found 

through the investigation process, so the effectiveness of this function depends 

on its features. According to Dr Hegarty and Professor Stackpole, the F-FAS 

generates the report with various details, such as to include some images of face 

matching, relationships on the social networks, and other things, which adds 

power to the tool’s utility. In addition, Professor Pan appreciated the tool’s ability 

to allow investigators to select the data required for the report, such as Bookmark 

data, rather than to present everything. The proposed F-FAS designs the 

reporting function to print or save the file as a .pdf but it is better to add another 

file format to save the report such as .csv or .doc (this is Professor Jones’ point 

of view). Professor Richard did not have strong feelings about how the report 

looked and he preferred to add some probability or error rate about the matching 

results and regarding any results that give full details about how evidence is 

found.  

7.3.7 Thoughts on the System Case Management 

This question asked the experts about their opinion in the case management of 

the F-FAS. All the experts were happy with this suggestion. This area will, 

probably, forget some forensic tools or some organisations that did not design 

this in their tool. The main reason seems that it could cost them money if the 

management features are added but still Professor Sutherland considers the 

ability to monitor the case overview (i.e., active, inactive, and number) a very 

useful feature of the forensic tool. In addition, Dr Hegarty and Professor Pan saw 

it vital for forensic tools to provide role-based access control to check the 

authorisation and authentication of users. In addition, Professor Stackpole 
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considered it a good approach to provide different roles, such as administrator 

and investigator, which would be useful when used by law enforcement groups.  

7.3.8 Strengths and Weaknesses of the F-FAS Approach 

The most significant part of the evaluation was to determine the strengths and 

weaknesses of the research based on the participating perspectives. In terms of 

strengths, the overall view for the research was positive and it is considered a 

good suggestion tool that would be promising in the digital forensics field. This 

response has been noted from all the experts. Moreover, the architecture is 

clearly designed and provides several novel and strong components, such as the 

visualisation aspect of facial social networks and reporting (Dr Hegarty and 

Professor Stackpole) and the multiple-algorithm technique (Professor Pan and 

Professor Richard). Professor Jones considered the proposed F-FAS is one of 

the few tools that aims to cover the forensic investigation requirements and facial 

recognition analysis. Nevertheless, there were several limitations, as the experts 

called it, rather than weaknesses of this research. The limitations of some 

algorithms that would be used in the F-FAS to identify faces led to failure to find 

the terrorists but this weakness is not in the research’s contribution (Professor 

Richard). In addition, the proposed system should have some determinants about 

the image quality that are also accepted by the system and a threshold for the 

facial matching technique. This could be modifiable based on the input 

requirements (Professor Stackpole). Professor Jones’ view on this aspect is that 

the proposed system (F-FAS) should be fully developed and integrated. In this 

way, digital forensics investigators can take full advantage of the research and 

not add new functions until the current system’s implementation is finished. Dr 

Hegarty found there is some deficiency of sufficient information about how the 

data is stored securely on the server or any container.  
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7.3.9 Suggested Enhancement  

This section summarises some of the significant points suggested by the expert 

participants. Professor Pan suggested developing the forensic part by adding a 

data-carving function and finding deleted files like current forensic tools do, such 

as FTK and Encase. Professor Jones argues that the focus on the current 

component of the F-FAS tool is developed by it and makes it work perfectly to 

achieve exhaustive results and it is better to add a new function. In addition, 

another suggestion from Dr Hegarty is to increase the current cognitive algorithms 

to counter more challenges such as facial recognition algorithms. Professor 

Sutherland suggested permitting investigators to go through the raw data and 

allowing manual selection, which could be a positive addition to the research. The 

suggestion of Dr Adda was to add some statistics about how many times any 

particular picture was taken in the same place and this could be useful to present 

in the reporting. Professor Stackpole saw that the tools work in real-time and that 

the offline case is considered a big challenge. In this area, further research could 

be conducted in the future.  

7.3.10 Further comments  

This is the final question in the research evaluation, which asks the experts 

whether they have other comments. Therefore, this section presents their 

opinions on the overall system. 

 Professor Sutherland: “Very nice PhD project. That’s excellent. You’re 

obviously in the process of completing this and writing it up. I think you 

have a very nice tool that you’ve developed. That’s excellent.”  

 Dr Hegarty: “I like the way it brings together things and techniques and I 

particularly like the visualisations in the results. That demonstrates the 
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relationship between the different faces on the social networks. I thought 

that was very good.” 

 Dr Adda: “I think it is a good job—a good piece of work. You have done it.”   

 Dr Pan: “Actually. It's quite an impressive piece.” 

 Dr Jones: “That's an interesting piece of work and I like it. I think that’s a 

good evaluation within working as forensically found and specifically facial 

recognition. Further, I advise that you do not lose this value when writing 

the thesis.” 

 Dr Stackpole: “I think it is a really interesting project. I think that integrating 

this into a forensic toolkit would be a very powerful addition and thank you 

for giving me the opportunity to look at it. It’s not something that I would 

have seen prior to this.”  

 Dr Richard: “I think it’s very impressive work.” 

7.4 Conclusion  

It was imperative to evaluate the research work and to receive unbiased and 

objective feedback from different specialists and academics in the digital 

forensics field. This evaluation aims to evaluate the research study in terms of the 

research problem, experimental results, F-FAS architecture and prototype 

design, system capabilities and limitations, and any suggestion enhancement that 

could improve the system’s usability. However, this chapter describes the entire 

evaluation process, which begins with generating a video demo, farming queries 

that aim to extract the evaluation’s relevance from the experts. Natural questions 

are prepared in a manner to cover academic research, law enforcement, and 

technical requirements. All experts who responded to the evaluation query were 

contacted and the interviews were conducted over Skype. 
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The general overview of the experts interviewed was quite positive and interesting 

and it was worth the effort and time to perform this task. A definite need for the F-

FAS has been presented and it promises to fill the gap of using facial identification 

in forensic investigations. Most of the participants were impressed by the 

suggested data analysis functions, such as a facial social network. However, 

some experts found it difficult to judge the proposed tool’s reliability unless its 

concept could be further tested in large and real data environments. In addition, 

some of the experts suggested focusing on the development of the F-FAS’ 

components to make an integrated forensic approach. Therefore, this research 

should be taken further based on the feedback received to enhance the 

capabilities of the F-FAS. 
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8 Conclusion and Future Work 

This chapter illustrates an overview of the entire research work by providing 

highlights of the achievements, as well as summarising the limitations, which 

pave the way to conduct further research in this particular area. This research is 

intended to contribute to the development of techniques that facilitate the 

automatic facial recognition of persons within the forensic investigation context. 

To attain this objective, a detailed examination of contemporary state-of-the-art 

techniques was conducted to determine the existing gap required to be 

addressed and the most appropriate approaches were investigated to tackle the 

issue. In addition to this, extensive experiments were considered by using 

different methodologies to prove the defined concept and, finally, specialists in 

the field evaluated the result.  

8.1 Contributions and Achievements of the Research  

The main achievements of this research are: 

 Investigating the facial recognition domain within digital forensic 

investigation from various aspects, such as components of the system, 

techniques, performance measures, challenges, and studies that have 

already published their issues. Based on this, the research provides a 

comprehensive background of this domain. 

 Developing an understanding of the context of the current state of the art 

in facial recognition in terms of finding a problem and then suggested 

algorithms accordingly. This helped explore the gap in this domain, which 

has been investigated in the literature. This investigation included the 

method to solve the facial recognition problems by focusing on the 

techniques or algorithms used to recognise faces and database types that 

are, specifically, suitable to study these issues. In addition, the research 
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identified the challenges posed to the digital forensic investigator in the 

facial recognition domain. 

 Undertaking and modelling a baseline set of experiments to understand 

the nature of a number of facial recognition systems by using one of the 

public facial databases to determine their potential contribution to solving 

facial recognition issues. 

 Replication of the previous set of experiments with a more challenging 

dataset, which was considered using realistic forensic scenario images 

acquired in uncontrolled environments (i.e., light, and resolution) and 

uncontrolled face actions (i.e., pose, expression, and accessories). This 

dataset was collected from the internet to validate what the actual facial 

recognition system’s performance would be in practice. 

 Modelling and developing a model using the multi-algorithmic fusion 

method aimed at investigating whether employing a fusion mechanism that 

encompasses all available facial recognition algorithms improves the 

performance of the individual algorithm.  

 Proposing a novel Facial-Forensic Analysis System (F-FAS) architecture 

in order to address the gap in this domain. The proposed tool consists of 

several components such as acquisition and data examination, which 

include a series of pre-processing techniques to isolate multimedia files 

and pictures. By using the integrated components, the proposed tool 

allows investigators to perform a facial recognition approach to identify a 

suspect’s identity. Furthermore, it provides analyses of numerous 

functions, such as geolocation, facial modification, and a novel facial social 

network function. As the objective of this proposed system is to provide a 

novel forensic tool, using the reporting and case management (AAA 
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function) were preferred. The F-FAS is promising for the next generation 

of the digital multimedia forensic tool. 

 Developing a functional demonstration of the prototype that reflects the 

newly proposed novel F-FAS framework to seek a concrete understanding 

of how this approach works in practice and an illustration of its functional 

working. 

 Evaluation of the whole PhD research by seeking valuable feedback and 

suggestions from various experts in the field. 

8.2 Limitations of the Research  

Although this research has several achievements, numerous issues were 

observed, which must be taken into account. The research limitations are 

described below.  

 The experimental dataset was limited in terms of the number of users 

(subjects). In an ideal situation, a larger number of subjects would provide 

more measures of the algorithm’s performance that could be actually 

achieved in practice. 

 The experiments, which aimed to recognise faces, did not have enhanced 

facial images before the images were sent to the recognition system. While 

this has the capability of improving the matching performance, which can 

be used for the facial recognition system, this research intends to study the 

ability to match algorithms to recognise faces with image issues.  

 The multi-algorithmic fusion experiment did not use another fusion 

approach (i.e., matching level fusion). However, the used approach 

(decision level fusion) was the most appropriate one to consider 

commercial algorithms, which were used because the system’s retraining 
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was not a prerequisite for them. Therefore, the results’ accuracy could be 

further improved if extra information from matching systems is used.  

 The focus in the final prototype has been on front-end design. Developing 

an integrated trust platform for the fully operational facial forensic analysis 

prototype would have provided better insight about the effectiveness of 

using the F-FAS and would have allowed for evaluating specialised 

operational aspects required for a successful investigation process’ 

scalability and reliability.  

 To obtain fair and precise judgment on the validity of the research, as well 

as on the proposed approach to deal with the problem discussed, 

observations were only taken into account from experts in the field. This 

fact contributes to further restrictions in terms of a large number of 

participants. Additionally, it was relatively difficult to approach these 

experts because of their busy schedules.  

It is noteworthy that despite the limitations mentioned above, it is believed that 

research has made valid contributions to existing knowledge and has also 

become a source to provide sufficient evidence related to the concept of proposed 

ideas. 

8.3 Scope for Future Work  

This research contribution has advanced the field of facial recognition within 

digital forensics. However, various areas still exist for future work, specifically 

related to this research. These suggestions are listed below.  

 Development of the matching algorithms in terms of identifying the 

suspect’s identity using additional biometric samples such as the iris and 

voice to enhance the ability of the F-FAS. 
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 Further research could be investigated to develop the proposed system’s 

architecture to consider the object recognition in pictures, such as to 

recognise a specific car and analyse the background of pictures to further 

seek assistance in predicting the location in which the photo was taken. 

 Developing the suggested F-FAS to work online and consider video 

analyses instead of offline (static image) analyses to add more flexibility to 

the research. 

 Develop the suggested facial social network approach to consider objects 

(as suggested in the second point) and build a network of query objects. 

8.4 The Future of Facial Recognition in Digital Forensics  

With the mounting number of images and videos available, multimedia evidence 

has become a key part of criminal investigations. The large increase in the volume 

of image and video data has a direct impact on the time and cost of investigations, 

unlike manual methods where immense effort is required to identify faces. In 

addition, forensic investigators require a range of forensic analyses to enable 

them to identify relevant evidence more efficiently. Notwithstanding, there is an 

ample number of researchers who have investigated the challenges of facial 

recognition in digital forensics. Furthermore, some facial recognition tools have 

been used in digital investigations to solve these issues. Moreover, these 

researches are professionally inadequate in digital investigation areas, such as 

automatic facial recognition and evidence extraction and analysing and 

correlating the derived data. As a result, this research has suggested a novel 

approach (F-FAS) as a new branch of digital forensics that allows investigators to 

identify faces and analyse the results effectively and accurately while dealing with 

a large number of images in an automated and proper way.  
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However, there are many challenges that are still posed for future research. For 

instance, further research is needed to develop the prototype and evaluate the 

performance and effectiveness of the F-FAS to verify the ability to meet all the 

key requirements. Furthermore, forensically, little work has been undertaken 

using object and facial recognition to better understand the context of images. 
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