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Abstract 

Predicting the future behavior of beach and nearshore systems requires an accurate 

delineation and understanding of coastal cell boundaries, sediment transport pathways, and 

sediment sources and sinks. Unfortunately, there is a paucity of field datasets on beach and 

nearshore morphological change that extend fully from the top of the dunes to beyond the depth 

of closure to enable quantification of the sediment budget. Here, for the first time, we employ a 

total sediment budget approach, examining a sandy and embayed beach located in the north coast 

of SW England, to investigate inter- and multi-annual embayment scale sediment dynamics over 

a 10-year period that includes extreme storm erosion and post-storm recovery. We demonstrate 

that, despite the deeply embayed nature of the beach, the shoreline orientation roughly parallel to 

the dominant wave direction and the overwhelmingly cross-shore forcing of the inter-tidal beach 

volume, the system is neither closed, nor balanced. The very significant net changes in the recorded 

sediment volume from dune top to depth of closure (-14.5 m ODN), representing a loss of c. 100 

m3 m-1 during the extreme storm period and a gain of c. 200 m3 m-1 during the recovery period, 

indicate that significant sediment transport occurs seaward of the base of the terminating headlands 

and beyond the morphological depth of closure. The results further indicate that the inter-tidal 

region is partly uncoupled from the sub-tidal region, with the former region dominated by cross-

shore sediment fluxes, whereas the subtidal region is also significantly affected by longshore 

sediment fluxes. A conceptual model is presented that balances the observed volume changes with 

inferred fluxes, forced by variations in total and alongshore wave power. This study contradicts 

the general assumption that when sediment exits the inter-tidal, it rests undisturbed in the sub-tidal, 

waiting for a period of low-moderate energy to bring it onshore. The large sediment volumetric 

variations across the lower shoreface (depth of 5–20 m), which are of the same order of magnitude 

as, but uncorrelated with, those occurring in the inter-tidal region, are suggestive of an energetic 

longshore transport system across this deeper region. It is possible that this transport system 

extends along the whole north coast of SW England and this finding may lead to a shift in 

understanding of sediment budgets along exposed and macrotidal embayments globally.  
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1. Introduction 

Sandy beaches and coastal dunes have significant natural capital through representing 

efficient and natural coastal defenses that can protect the hinterland from coastal flooding. In a 

context of increasing winter-wave conditions (Castelle et al., 2018) and rate of sea-level rise 

(Church and White, 2011), it is important to understand how coasts respond and evolve as a result 

of changing boundary conditions, as this significantly affects continued human occupation of the 

coastal zone. Predicting coastal system behavior requires an accurate delineation and 

understanding of coastal cell boundaries, sediment sources and sinks, and transport pathways. The 

difficulties with identifying these key sediment-related factors, attributed to large uncertainties 

associated with sediment transport modelling and a paucity of high-quality field datasets extending 

from the top of the dunes to depths beyond the depth of closure (Aagaard, 2011; Coco et al., 2014), 

inhibit accurate quantification of sediment fluxes in a particular littoral cell. Moreover, long-term 

beach response is controlled by the sediment exchanges between the different beach sub-

components (e.g., dunes, supratidal beach, inter-tidal zone, and sub-tidal zone), and these sub-

components tend to operate over different time scales (Castelle et al., 2017b).  

A quantitative understanding of littoral cells and sediment budgets is a fundamental 

element of coastal sediment studies (Bowen and Inman, 1966; Caldwell, 1966; Komar, 1998; 

Rosati, 2005). Littoral cell (self-contained or semi-contained; refer to Fig. 1) and sediment budget 

concepts were introduced in the 1960s through several regional studies based upon coastal geology 

(rocky headlands) and estimates of longshore sand transport along specified sources and sinks 

(Bowen and Inman, 1966; Caldwell, 1966; Inman and Frautschy, 1966). Littoral cells are 

essentially defined as self-contained coastal units over a period of time, usually separated by 

prominent features (often headlands or jetties) that impede transfer of sediment (Kinsela et al., 

2017). These cell boundaries delineate the spatial area within which the budget of sediment is 

known, providing the framework for the quantification of coastal erosion and accretion (CIRIA, 

1996). Whether a littoral cell can be considered contained (Fig. 1-left panel) or semi-contained 

(Fig. 1-middle and right panels) depends on the timescale of consideration. Often, a compartment 

or coastal cell may appear closed, but over longer timescales during which long return period 

events inducing severe sediment transport are included, it may actually be open or semi-contained. 

Therefore, primary sediment compartments (self-contained/closed) are those that capture the limit 

in the sediment pathway within a large sediment-sharing area for long timescales (101–102 years); 
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while sub-cells are usually finer in scale, identify semi-contained/open systems at timescales > 101 

years and can appear closed in the short-term (< 101 years) (Rosati, 2005; Kinsela et al., 2017; 

Thom et al., 2018). 

Highly embayed beaches are often considered closed cells (Fig. 1-left panel) with the 

prominent headlands acting as barriers to littoral drift, such that sediment transport into and/or out 

of adjacent cells is insignificant. Nevertheless, recent studies show that significant sediment 

transport offshore and/or beyond these barriers exists under particular conditions, inducing 

headland bypassing (Short, 1985; Short and Masselink, 1999; Short, 2010; Cudaback et al., 2005; 

Loureiro et al., 2012; George et al., 2015; Vieira da Silva et al., 2017; McCarroll et al., 2018). 

Short (1985) suggested that major storm wave events are one of the key drivers of headland-

attached bar bypassing, allowing sand to be transported to the morphological depth of closure 

(DoC) and beyond the headland position. Additionally, recent studies of mega-rips and beach 

response to extreme storm events also reveal important cross-embayment exchanges across the 

shoreface to deeper water (Short, 2010; Loureiro et al., 2012; McCarroll et al., 2016) and between 

adjacent beaches (Cudaback et al., 2005; Vieira da Silva et al., 2017). Furthermore, new research 

also emphasizes the influence of the strong tidal currents registered around headlands in facilitating 

bypassing at macrotidal environments (McCarroll et al., 2018; King et al., 2019; Valiente et al., 

2019). All these studies demonstrate that under certain conditions of wave-tidal current interaction, 

important sediment transport paths occur at depths that well exceed the depth of the base of 

headlands, challenging the notion of embayments as closed coastal cells and highlighting 

limitations to the littoral cell and the depth of closure, critical concepts for long-term coastal 

evolution studies (e.g., application of the Bruun rule) and shoreline modelling (e.g., one-line 

models).   

A total sediment budget approach to a coastal cell enables derivation of incoming and 

outgoing sediment fluxes from the rate of sediment volume change within the cell. A significant 

research gap exists in quantification of sediment budgets, in that many studies examine parts of 

the budget (e.g., the inter-tidal), while extremely few studies capture the entire system. This 

information helps with confirming the status of a closed cell and estimating the long-term coastal 

evolution (Wiggins et al., 2019). For a given coastal cell, the sediment budget (dQnet) is expressed 

by the balance of volumes between sediment supply (ΣQsource) and sediment losses (ΣQsink) in the 

compartment (Rosati, 2005; Aagaard, 2011). In both closed (Fig. 1-left panel) and balanced 
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systems (Fig. 1-middle panel) dQnet = 0; however, for unbalanced systems (Fig. 1-right panel), 

dQnet ≠ 0 and in this case the volume of incoming sediment is not the same as the volume that exits 

the system. For prograding shorefaces and retrograding shorefaces, dQnet > 0 and dQnet < 0, 

respectively. Sediment sources include longshore transport of sediment into the area, cross-shore 

supply of sediment from offshore (beyond the cell seaward limit), anthropogenic interference 

(beach nourishment), in-situ production of sediment (Kinsela, 2017) and supply from 

autochthonous sources, such as rivers and dune and cliff erosion (Aagaard, 2011). Sediment losses 

from the upper shoreface can be accomplished through longshore and cross-shore processes. 

Sediment can leave embayments through headland bypassing, onshore aeolian transport beyond 

the coastal dune region (e.g., into a back-barrier lagoon) and offshore exchange from the upper 

shoreface to larger depths, i.e., beyond the depth of closure from where sediment may not be 

transported back onshore.  

 

Fig. 1. Plan view of beach-inner shelf dynamics for a closed cell (left panel), a balanced open 

system (middle panel) and a non-balanced open system (right panel) using an idealized high-

energy, cross-shore dominated and embayed coastal cell section. 

Most of current coastal research based on observations lack rigorous uncertainty 

calculation, potentially identifying measurement artefacts as real morphological changes and 

consequently, misrepresenting sediment fluxes. For a robust quantification of cross-shore and 

longshore sediment fluxes within coastal cells, is important to distinguish real changes from noise 

(Lane et al., 1994; Milne and Sear, 1997; Lane, 1998; Brasington et al., 2000; Lane et al., 2003; 

Wheaton et al., 2010; Wiggins et al., 2019; Guisado-Pintado and Jackson, 2019). Sandy coastlines 

commonly exhibit vertical morphological fluctuations of similar magnitude to the uncertainty 
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associated with the measurement. In order to account for this uncertainty, but retain information 

on real morphological change, effective spatially-variable uncertainty computation techniques are 

required (Brasington et al., 2003; Lane et al., 2003, Wheaton et al., 2010).  

In this study, we apply a total sediment budget approach based on field observations and 

spatially-variable uncertainty analysis. We evaluate the inter-annual dynamics of Perranporth 

beach, a sandy, exposed and embayed coastal system located on the north coast of SW England, 

over multi-annual time scales. Recent model-based studies investigated the potential for headland 

bypassing and offshore shoreface limits for significant sediment transport across Perranporth 

(McCarroll et al., 2018; Valiente et al., 2019). These indicated that the sub-tidal zone is potentially 

as dynamic as the rest of the beach system, and that, despite the cross-shore dominated nature of 

this type of embayment, alongshore processes and sediment fluxes may play an important role in 

the sediment balance of the system. Hence,  we examine: (1) inter-annual morphological evolution 

of the inner embayment, including cross-shore and longshore sediment exchanges between sub-

systems; (2) multi-annual full embayment morphological response to the 2013/14 winter, which 

represents the most energetic period along most of the European Atlantic coast since at least 1948 

(Masselink et al., 2016b), using a total sediment budget approach,; (3) relationship between wave 

forcing and embayment response; and (4) the nature of Perranporth’s coastal cell (closed or open). 

A description of the study area together with the methodology applied to estimate the total 

sediment budget is presented in Section 2. A comprehensive analysis of quasi-full embayment 

beach morphology (inter-annual records of dune, inter-tidal and sub-tidal regions) is presented in 

Section 3. This analysis is extended spatially (for multi-annual epochs) to the full embayment 

(coastal cell) by including observations offshore (>-40 m Ordnance Data Newlyn, ODN) and 

beyond the bounding headlands for the years 2011, 2016, 2017 and 2018 in Section 4. Links 

between wave forcing and embayment morphological change are presented in Section 5. Section 

6 presents discussion with a conceptual sediment budget model. Finally, conclusions are presented 

in Section 7. 
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2. Study area and methodology 

2.1. Perranporth and Penhale Sands beach 

Perran and Penhale Sands beach (hereafter noted as Perranporth beach) is a sandy, exposed, 

dissipative and macrotidal embayment located on the north coast of Cornwall, SW England (Fig. 

2a). The configuration of the beach is typical of this coastline (Burvingt et al., 2018), which is 

characterized by sandy beaches embayed by sharp headlands (Fig. 2b). The site represents a 3.5-

km long wide sandy beach facing 290° at the south and 280° at the north, backed by an extensive 

and high dune system both in the north (Fig. 2c, 60 m ODN) and south (Fig. 2d, 20 m ODN), 

divided by a small headland (Cotty’s Point). The embayment is delineated by Ligger Point 

(northern end) and Droskyn Point (southern end), comprised of metamorphic rocks with 40-m high 

cliffs dropping near vertically (at their most offshore extent) to 2–7 m depth ODN at the south and 

to 5–7 m depth ODN at the north. The southern hindshore dune system is the center of numerous 

anthropogenic interventions that affect the natural morphologic response of that area of the beach, 

in contrast to the northern dunes where natural processes dominate. The beach presents a relatively 

featureless upper inter-tidal zone, a three-dimensional lower inter-tidal region (around MLWS), 

mostly characterized by inner low-tide bar/rip systems (Masselink and Short, 1993; Scott et al, 

2011), and a sub-tidal outer bar oscillating between 5 to 7 m depth ODN. The shoreface is 

characterized by a low-gradient (mean bed slope of 0.018) with the limit of detectable 

morphological change or morphological depth of closure (DoC) at -14.5 m located 750–950 m 

from the mean sea level (MSL; approximately 0.3 m ODN) and a c. 500-m wide inter-tidal region. 

Perranporth beach is composed of medium sand with a median grain size (D50) of 0.33–0.40 mm 

for the supra- and inter-tidal area (Prodger et al., 2017). The D50 attains a relatively constant value 

of 0.30 mm for the sub-tidal area with gravel patches (D50 = 2–3 mm) appearing around 26 m 

depth ODN (Valiente et al., 2019).  
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Fig. 2. (a) Location map of Perranporth beach, SW England, physical context and regions used 
for quasi and full embayment volume time series calculation (red and blue boxes, and black 
dashed region, respectively). (b) Embayment 3D-view with extension of north and south sectors 
and aerial photograph of Penhale Sands taken to the north showing north dune system. Bottom 
right-hand panels show a representation of a vertical profile from the frontal dune system to the 
inner-shelf for the north (c) and south (d) beach sectors, including the considered sub-systems 
(sub-tidal, inter-tidal and dunes). 
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Perranporth is exposed to regular North Atlantic swell with an annual average significant 

wave height (Hs) of 1.6 m and peak period (Tp) of 10.2 s, and storm events with a 1% exceedance 

wave height and associated peak wave period of 4.6 m and 16.7 s, respectively (Fig. 3e). Incoming 

wave energy displays strong seasonal modulation (Fig. 3a-b) with monthly average Hs ranging 

from 1.2 m (June) to 2.3 m (January) over the period 2007–2018. Wave approach is typically from 

the W (0.5 probability) and WNW (0.4 probability), with the larger winter waves also slightly 

more northerly in direction (WNW: Hs,50% = 1.6 m; W: Hs,50% = 1.3 m; WNW: Hs,1% = 5.2 m; W: 

Hs,1% = 4 m) (Fig. 3d). Therefore, winters are associated with peaks in southerly-directed (negative) 

alongshore wave power (Py) (Fig. 3f). The tidal regime is semi-diurnal and macrotidal with a mean 

spring and neap tidal range of 6.3 m and 2.7 m, respectively (Masselink et al., 2014; Scott et al., 

2016). Tidal currents with values of c. 0.7 m s-1 are registered during spring tides near the 

headlands (Valiente et al., 2019). The flood-ebb asymmetry in the current magnitude during a tidal 

cycle results in a northward tidal net residual current along the embayment (McCarroll et al., 2018), 

in particular near the northern headland. Computed bed shear stresses, reinforced by observations 

of sediment distribution within the embayment, suggest that wave-driven currents during extreme 

storm events can induce energetic sediment transport well seaward of the DoC, even when 

disregarding tidal action (Valiente et al., 2019). When also considering tidal currents during the 

maximum flood in a tidal cycle, the depth limit for this dynamically active shoreface increases by 

more than 5 m, reaching 28 m depth ODN (Valiente et al., 2019). 
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Fig. 3. Monthly statistics of: (a) significant wave height; and (b) peak wave period; and (c) wave 
direction, computed for the period 2007–2018. Wave statistics were derived from the 
Perranporth directional waverider buoy (refer to Fig. 2a for location). In all left panels, bars 
indicate monthly-averaged values with error bars showing the monthly standard deviation and 
circles indicating 2013/2014 and years 2016–2018 monthly-averaged values. (d) Directional 
wave rose showing distribution of Hs and (e) joint probability of Hs and Tp with percentage 
occurrence contours. (f) 11-year time series of alongshore wave power, Py (1-day and 8-week 
running mean) for an averaged orientation of c. 285°. Southward Py is negative. 
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2.2. Multimethod morphological surveys  

The complete dataset used in this paper is complex as it involves various survey methods 

at a range of spatial and temporal extents. Fig. 4 provides an overview of the coverage of the 

dataset collected by the Coastal Processes Research Group (CPRG), University of Plymouth, and 

the Plymouth Coastal Observatory (PCO) since October 2006. The south part of the beach has 

been monitored for over 11 years, whereas the northern part has only been surveyed since 2016.  

Monthly inter-tidal beach surveys covering the south part of the beach (red box; Fig. 2a) 

were conducted since October 2006. Airborne LiDAR datasets that cover the inter-tidal beach and 

dune system of the whole beach, obtained from PCO, are available for 2008, 2009, 2011, 2012, 

2014, 2016 and 2017. The monthly inter-tidal all-terrain vehicle (ATV) based real-time kinematic 

Global Positioning System (RTK-GPS) surveys of the south area of the beach are complimented 

with quasi-quarterly single-beam echosounder bathymetric surveys (herein SBE) for the sub-tidal 

zone during the period 2010–2012 and 2014–2018. Only since 2016 was the survey program 

specifically designed to enable quantification of the total sediment budget and net sediment fluxes 

for Perranporth beach, and multi-method morphological surveys capturing the entire beach (black 

dashed box; Fig. 2a) from May 2016 were performed during spring and autumn. The sub-tidal 

coverage was extended (down to a depth of -40 m ODN) through conducting yearly 

(spring/summer) multi-beam echosounder bathymetric surveys (herein MBE). Despite great 

efforts to collect sub-tidal data, Perranporth is an exposed high-energy environment and areas in 

close proximity to headlands were too hazardous to survey due to exposed rocks and breaking 

waves, and hence are not covered in this analysis. 

Photogrammetric data of the south and north dunes were collected using an DJI Phantom 

4 quadcopter (herein unmanned aerial vehicle; UAV), covering the supratidal up to an elevation 

of 30 m ODN. Ground control points (GCPs) were vertically and horizontally distributed 

throughout the survey region at intervals of 100–250 m and were surveyed by RTK-GPS for 

constraining bundle adjustment during Structure-from-Motion post-processing workflow. The 

inter-tidal and supratidal zone was surveyed using ATV-based Trimble 5800 RTK-GPS, with line 

spacing of 20–25 m. The shallower sub-tidal data were collected using a Valeport Midas Surveyor 

single-beam echosounder with a 210 KHz transducer with a sample rate of 6 Hz mounted on an 

Arancia inshore rescue boat (IRB) and external Trimble 5800 RTK-GPS positioning. These 
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bathymetric surveys were conducted following cross-shore transects at 50-m spacing for inshore 

lines (< 10 m depth) and 100-m spacing for offshore lines (> 10 m depth). Yearly multi-beam 

echosounder bathymetric surveys were collected using a pole-mounted 400 kHz R2Sonic 2024 

MBES, with motion data provided by a vessel-mounted GNSS-aided Applanix POSMV MRU and 

primary positioning provided by a Trimble SPS RTK-GPS system.  

 
Fig. 4. Timeline of the data sources available for analysis. From top: Perranporth beach inter-
tidal beach morphology (Inter south), Perranporth beach sub-tidal bathymetry (Bathy south), 
full embayment dune morphology from LiDAR and UAV (Dunes), full embayment inter-tidal 
beach morphology (Inter full), full embayment sub-tidal bathymetry (Bathy full) and directional 
wave rider buoy (DWR). Grey stripes show years for which LiDAR data are available. Orange 
dashed line represents winter 2011 reference state. 

2.3. DEM creation 

Three sets of 2-m gridded digital elevation models (DEMs) were constructed from 

composite datasets: (1) 27 DEMs covering the southern inter- and sub-tidal beach for the period 

2010–2018 (red box, Fig 2a); (2) 6 seasonal DEMs covering the quasi full embayment (black 

dashed box down to DoC, Fig 2a) from the sub-tidal to the dunes (included), hereafter referred to 

as the ‘inner embayment’, for the period 2016–2018; and (3) 3 DEMs covering the entire 

embayment including adjacent areas beyond the bounding inner headlands (including depths > 18 

m), hereafter ‘full embayment’, for the years 2011, 2016 and 2018 (Table 1). Topographic (RTK-

GPS) and bathymetric (SBE) measurements (RTK+SBE; 27 DEMs) were combined using a Loess 

interpolation function (Plant et al., 2002), with variable smoothing scales and maximum 
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permissible interpolation error level of 0.15 m. Individual UAV, RTK+SBE and MBE datasets 

were combined for the final multimethod full embayment DEM construction with natural neighbor 

interpolation function (Sibson, 1981).  

To determine the impacts of the 2013/14 winter storms on the Perranporth beach sediment 

budget, an additional full embayment dataset for the year 2011 was constructed by combining 

LiDAR and multi-beam bathymetry, corrected and referenced to ODN using the Vertical Offshore 

Reference Frame separation model (VORF) facilitated by the United Kingdom Hydrographic 

Office.  

Table 1. Component gridded datasets and calculated uncertainty (σ) included in the 3 full 
embayment DEMs 

Name Method Date Coverage 
Calculated 

uncertainty, σ (m) 

2011 

DEM 

LiDAR 01/2011 Dunes, supra- and inter-tidal (-2–>30 m) 0.15 

SBE 01/2011 Sub-tidal (-10–-2 m) 0.05 

MBE 2011, not specified Sub-tidal (<-7 m) 0.27 

2016 

DEM 

UAV 04/2016 Dunes (4–>30 m) 0.06 

RTK 04/2016 Supra- and inter-tidal (-2–4 m) 0.04 

SBE 04/2016 Sub-tidal (-18–-2 m) 0.05 

MBE 08/2016 Sub-tidal (-16–<-30 m) 0.06 – 0.3 * 

2018 

DEM 

UAV 09/2018 Dunes (4–>30 m) 0.06 

RTK 09/2018 Supra- and inter-tidal (-2–4 m) 0.05 

SBE 09/2018 Sub-tidal (-18–-2 m) 0.05 

MBE 06/2018 Sub-tidal (-16–<-30 m) 0.06 – 0.3 * 

*majority of values < 0.15 with maximum values registered around a rocky platform at the northern sector 

outside the embayment domain 

2.4. Full embayment volume change computation 

Full embayment morphological measurements were used to calculate volume change and 

derive net sediment fluxes following a total sediment approach and accounting for gridded 

uncertainty through the domains. Several approaches to quantifying the total sediment budget of a 

coastal cell exist (Van Rijn, 1997; Cowell et al., 2003; Aagaard, 2011; Van Rijn, 2011); however, 

none of these account for the associated uncertainty (𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷) in the volume computation. Here, we 

follow the methodology proposed by Wheaton et al. (2010) applied to rivers and later used by 
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Wiggins et al. (2019) for application to gravel beach environments. This methodology consists of 

three main steps: (1) computing the surface uncertainty associated with the digital elevation model 

(DEM); (2) quantifying the DEM of difference (𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷1 − 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷2) and the propagated 

uncertainty or minimum level of detection, minLoD = √(σ𝐷𝐷𝐷𝐷𝐷𝐷1
2 + σ𝐷𝐷𝐷𝐷𝐷𝐷2

2 ) for a defined confidence 

level (95% in this instance); and (3) only considering significant bed-level changes by disregarding 

elevation changes that are less than the minLoD value (herein LoD).  

Estimates of net morphological change are fundamentally controlled by DEM quality, itself 

largely inherited from the quality of the survey data (Wise, 1998; Wechsler, 2003; Wechsler and 

Kroll, 2006; Wheaton et al., 2010). We quantify the quality of each DEM using a spatially variable 

uncertainty which is the result of the combination of the spatially uniform (UAV, inter-tidal RTK-

GPS and sub-tidal SBE) and spatially variable (MBE) surfaces presented in Table 1. Associated 

uniform uncertainty of the UAV survey technique was extracted from Wiggins et al. (2019), who 

applies a UAV model comparison to an absolute reference control surface on a gravel beach. Due 

to the lack of a control surface to compare to RTK and SBE techniques, uncertainty surfaces for 

these methods were calculated computing instrument and interpolation uncertainties individually 

and then added using a quadratic sum (Taylor, 1997). RTK instrument error (2σ for 95% 

confidence level; Brasington et al., 2000) was estimated using the vertical deviation in repeated 

control points over 3 years (~35 observations); while SBE instrument error was extracted from the 

standard deviation of the actual SBE measured points with respect to overlapped RTK-GPS 

topographic points along a testing control line of 1000 m (facilitated by large tidal range). For both 

methods, standard deviation values between the raw input data and the resulting interpolated grids 

within a control region of 50x50 m were used as interpolation error. MBE spatially variable 

residual uncertainty surface was based on total propagated uncertainty (TPU) values for each 

individual sounding (generated through QPS QINSy/Qimera hydrographic software) which were 

then gridded using the Combined Uncertainty and Bathymetric Estimator (CUBE) algorithm 

(Calder and Mayer, 2003; Calder and Wells, 2007; Schimel et al., 2015). The vertical accuracy of 

the only externally sourced MBE dataset (for 2011) was based on the known survey specification 

(International Hydrographic Organization Order 1a). This was relatively large (σ = 0.27 m), but 

provided the only opportunity to obtain a full embayment survey prior to 2013. 
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Finally, the total volume difference or total sediment budget and associated uncertainty 

were quantified using the non-discarded DoD values, �𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷1 − 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷2� ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for a 95% 

confidence level. Sediment volumes (in m3 per meter width) were computed for different sections 

of the beach profile: dune (> 30 to 5 m ODN), supra- and inter-tidal (5 to -2 m ODN) and present 

sub-tidal (beyond -2 m ODN). To avoid errors in the dune volume computation, the vegetated 

areas not comprising part of the active beach system were discarded. The beach was also divided 

into northern and southern sections (divided black dashed box, Fig 2a), allowing a full embayment 

investigation of embayment-scale alongshore variability in volumes. It is noted that alongshore 

variability refers to volumetric differences between south and north, and not small scale alongshore 

variability associated with bar/ rip morphology.   

3. Quasi full embayment beach response and evolution (volume time series) 

Fig. 5 shows beach volumetric time series for each of the sub-systems considered (dunes, 

inter-tidal and sub-tidal) for the north and south sectors of the beach (red and blue boxes, Fig. 2a). 

Sediment volumes are plotted relative to the reference state, January 2011, as a topographic and 

bathymetric survey is available for that time for both north and south sectors of the beach. The 

beach/dune morphology is significantly different for the two sectors: the inter-tidal beach in the 

north is narrower than in the south (refer to Fig. 2c,d) and, the front of the northern dune system 

is characterised by a high and steep ramp, whereas the southern dune system is fronted by a 

developing fore dune.  

The two regions also show markedly contrasting behavior in terms of dune volumetric 

change. Over the monitoring period, the southern dune system has progressively accreted 5,550 

m3 (30 m3 m-1), representing 800 m3 year-1 (4 m3 m-1 year-1). The northern dune system, on the 

other hand, has remained relatively stable over the period 2008–2013, but during the 2013/14 

winter, 80,000 m3 was lost (50 m3 m-1, accompanied by total retreat of the dune foot of c. 15 m) 

with no significant post-event recovery. The dune ramp is still located 7 m landward of the pre-

2013/14 dune face 4 years later, without a developing fore dune. The dune volume time series also 

shows a modest seasonal modulation (amplitude c. 15 m3 m-1), largely due to the advance/retreat 

of the dune foot during the summer/winter cycle.  

Inter-tidal volumetric changes are shown in Fig. 5c for the south (11-year time series) and 

for the north (2.5-year time series) sectors. The southern inter-tidal time series displays both 
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seasonal (amplitude c. 50 m3 m-1, refer to Fig. 5c) and multi-annual event response signals 

(amplitude c. 200 m3 m-1, refer to Fig. 5c). Specifically, the southern time series started (October 

2006) in a fully accreted state (+50 m3 m-1 with respect the reference state), then experienced 

significant erosion (c. 180 m3 m-1) during the 2006/7 winter (Hs,50% = 2.4 m), followed by a 3–5 

year recovery (up to October 2010) to a stable fully accreted state. The intense storms during the 

2013/14 winter (red circles Fig. 3a, Hs,50% = 2.7 m) resulted in sediment losses in excess of 200 m3 

m-1 in the south. Following the 2013/14 winter, an increase in alongshore volume standard 

deviation (Fig. 5c) was observed during the 2014–2017 recovery period. According to Scott et al. 

(2016), this is associated with the development of large-scale three-dimensional sandbar 

morphology in the lower inter-tidal region during beach recovery phases (see also Poate et al., 

2014). Post 2013/14 winter, southern and northern beach volumes experienced a multi-annual 

recovery phase within which significant seasonal variability was observed (for example, an 

energetic 2015/16 winter (Hs = 2.6 m), resulted in 140 m3 m-1 loss in the south). By autumn 2018 

(4.5 years after 2013/14 storms), the south beach had recovered by 88%.  

 Examining the 10-year time series of beach sediment volume (Fig. 5), a surprising 

observation is that the inter- and sub-tidal volumes do not exhibit the inverse correlation expected 

for a cross-shore dominated beach, suggesting that alongshore sediment fluxes are significant. 

Indeed, there appears to be a positive correlation between southern inter-tidal volume and sub-

tidal volume, with a time lag of approximately 1-year (e.g., compare the 2013-2014 decrease in 

inter-tidal volume with the 2014-2015 decrease in sub-tidal volume). The imbalance in total 

volume for the south sector was previously alluded to by Scott et al. (2016), who examined the 

2013/14 storm response for a 250-m southern sector of Perranporth and found that the inter-tidal 

zone lost >200 m3 m-1, while the sub-tidal zone only gained 110 m3 m-1. The monthly time series 

of sediment volume for the southern region (Fig. 5c-e) clearly demonstrates that the inter- and sub-

tidal volumes do not balance. For example: (1) from October 2010 to July 2012, the sub-tidal 

gained c. 200 m3 m-1 of sediment, whereas the inter-tidal sediment volume remained relative 

constant (ignoring seasonal fluctuations); (2) from May 2014 to February 2015, the sub-tidal lost 

c. 300 m3 m-1 of sediment, whereas the inter-tidal gained c. 100 m3 m-1 of sediment; and (3) from 

March 2017 to May 2018, the sub-tidal gained c. 200 m3 m-1 of sediment, whereas the inter-tidal 

sediment volume lost c. 30 m3 m-1. These observations for the southern region strongly point to 

the presence of significant longshore exchange of sediment, either within the embayment or 
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beyond the southern extend of the region, and/or offshore sediment transport beyond the detectable 

DOC.  

 

Fig. 5. South (black) and north (green) Perranporth beach response and evolution. (a) 11-year 
time series of significant wave height measured at Perranporth wave buoy (30-min and 8-week 
running mean), wave power P (Herbich, 2000) and storm events (orange bubbles, Hs>Hs,99% , 
minimum of 6 hours duration and a meteorological independence criterion of 24 h between 
peaks). The size of the bubbles is proportional to storm duration based on Hs,95% cut-off. Dune 
(b), inter-tidal (c) and sub-tidal (d) sediment volume (m3 m-1 alongshore-averaged) and 
associated alongshore standard deviation (bounded area). (e) Total beach sediment volume (m3 
m-1 alongshore-averaged, from dune foot to -14.5 m ODN) and associated alongshore standard 
deviation (bounded area). Dune volume refers to the area above the dune foot (z = 5), inter-tidal 
volume corresponds with the area from the dune foot to z = -2 m ODN and sub-tidal from z = -
2 m to -14.5 m ODN. Red (storm) and blue (recovery) squares represent the considered epochs 
in Section 4. 
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When the more discontinuous sediment volume time series for the northern region is also 

considered, an alongshore quasi-coherent response is observed. For the period 2016–2018, the 

inter-tidal accretion for the northern and southern sectors of the beach are very similar (130–160 

m3 m-1). Over that same period, the sub-tidal region also accretes, but the accretion in the northern 

region (c. 50 m3 m-1) is significantly smaller than in the southern region (c. 160 m3 m-1). 

Importantly, the total sediment volume for both the southern and northern region increase during 

this period by a very substantive amount (200–300 m3 m-1). This strongly suggests that the inner 

embayment is not ‘closed’ (cf. Fig. 1) and that sediment may be transported alongshore, potentially 

around the terminating headlands, and/or offshore beyond the detectable DoC, and/or onshore into 

the vegetated dune area. To robustly examine the sediment fluxes within and beyond the inner 

embayment and quantify the sediment fluxes between the different sub-systems, it is necessary to 

take a total sediment budget approach, expanding both the alongshore and cross-shore spatial 

coverage, and accounting for propagated volumetric uncertainty. The following section examines 

the two epochs where full embayment coverage is available. 

4. Full embayment total sediment budget  

In this section we will present the full embayment analysis for two epochs, representing 

extreme storm response (Fig. 6) and post-storm recovery (Fig. 7). The results for both epochs are 

then summarized in Fig. 8 and Table 2.  It is noted that in the figures the sediment volume changes 

are presented in units of m3 per unit meter beach width, whereas in the table the total volume 

changes in m3 are listed. 

4.1. Storm response 

Full embayment DEMs for the years 2011 and 2016 were used to further investigate cross-

shore sub-compartment sediment fluxes and along-coast sediment exchange, within and beyond 

the inner embayment, surrounding the high energy 2013/14 winter period. The lack of a full 

embayment morphological dataset bracketing the 2013/14 winter forced us to extend the period 

from 2011 to 2016. This is considered acceptable in terms of dune and inter-tidal volumetric 

changes as beach volumes in 2011 were similar to that of 2013, and the volumes for 2014 were 

similar to that of 2016 (refer to Fig. 5b-c). We also acknowledge that total embayment response 

over this epoch disregards both the dramatic accretion in the southern sub-tidal region during 2011 
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(>100 m3 m-1; Fig. 5d) and the significant inter-tidal erosion during winter 2015/16 (-150 m3 m-1; 

Fig. 5c), meaning that embayment response to the 2013/14 events could potentially have been 

different than shown. 

The difference DEM, offshore acoustic backscatter and along-coast variation in sub-

compartment sediment volumes are presented in Fig. 6. Light colors in the acoustic backscatter 

image indicate presence of medium sand, interrupted by gravel patches (dark colors) around 26 m 

depth ODN. It is emphasized that for the sediment volume considerations, only those bed-level 

changes that exceed the LoD (95% uncertainty level) are considered, and a large portion of the 

deeper sub-tidal is therefore discarded as the measured changes are considered insignificant 

(uncoloured parts of Fig. 6). The salient features of the storm response are: (1) extensive erosion 

of the front of the dunes in the north part of the beachfront (c. 50 m3 m-1); (2) erosion across the 

entire supra- and inter-tidal beach (c. 190 m3 m-1); (3) erosion in the shallow sub-tidal zone up to 

6–7 m depth ODN; and (4) accretion in the deeper sub-tidal zone up to and even beyond the DoC 

at 14.5 m depth ODN (0–250 m3 m-1).  

Integrating the positive and negative sediment volumetric changes across the entire beach 

to the DoC (Fig. 8-top panel) robustly demonstrates that the full embayment sediment budget is 

not balanced: there is a net loss of 280,000 m3 and an associated uncertainty of 206,000 m3 (Table 

2). There is also a considerable longshore variability in the morphological response and this is 

better demonstrated when the sediment volumes are summed across the different sub-

compartments for the different sections of the beach (north versus south, Fig. 8 and Table 2). Over 

the period 2011–2016, the northern and southern sectors of the beach lost 50,000 m3 and 230,000 

m3 of sediment, respectively. These values represent losses per unit meter beach of 36 m3 m-1 in 

the north and 164 m3 m-1 in the south (although northern volume change is within uncertainty 

bounds therefore not significant at 95% level).  
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Fig. 6. Storm response total sediment budget. Left panel: full embayment DoD from 2011 to 2016. Areas where morphological change 
is not significant (�𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷1 − 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷2� ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚95%) are uncoloured. Orange and yellow contours represent the inter-tidal to sub-tidal 
limit (-2 m, ODN) and DoC (-14.5 m, ODN) respectively. Right panels: cross-shore and alongshore variability of sediment fluxes for 
the complete cross-shore profile and the different sub-systems for the domain comprised inside the black box. 
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Morphological changes beyond the DoC and the lateral extent of box (Fig. 6a), referred to 

as ‘outer embayment’, are analysed to investigate possible sediment pathways in/out the inner 

embayment. The region beyond the DoC (within the box, Fig. 6) showed a small, but significant 

gain of 76,000 m3 (with uncertainty of 50,000 m3), and regions beyond the lateral extents of the 

box (represented by ellipses in Fig. 6) indicated significant gains with a combined total of 180,000 

m3 (uncertainty of 120,000 m3). The gains beyond the lateral extents of the box are related to three 

regions. Two are offshore regions at the full embayment extents: one in the south of the study area 

in proximity to the Cligga Head, the southern embayment boundary (Fig. 6a-i), located between 

14.5 and 26 m depth ODN; and the second located near Penhale Point, the northern of embayment 

boundary (Fig. 6a-iii), where only accretion occurred. The third region, alongshore to the north of 

Ligger Point, experienced significant sediment gains offshore of the headland (accretion of 0.6–

0.8 m) and in the region of Hoblyn’s Cove (Fig. 6a-ii) providing a possible sink for sediment lost 

from the inner embayment. While the total sediment budget cannot be entirely resolved in these 

regions due to lack of data in the nearshore (data collection too hazardous), these observations 

suggest major morphological losses from within the inner embayment are linked primarily to inner 

headland bypassing mechanisms, rather than cross-shore exchange beyond the depth of closure 

within the inner embayment, suggesting that significant sediment transport occurs seaward of the 

base of the inner headlands (Ligger and Droskyn) and beyond the morphological depth of closure 

at the embayment extremities.  

4.2. Multi-annual beach recovery 

Full embayment DEMs for the years 2016 and 2018 were compared to further investigate 

multi-annual sediment fluxes during a recovery period within and beyond the central embayment 

(black box, Fig. 7a). Fig. 7a shows the DoD for the entire epoch 2016–2018. The 2.5 years of 

recovery show a system that is not balanced, but has a net gain of 670,000 m3 with an associated 

uncertainty of 180,000 m3 (Table 2). Similar to the storm period, sediment inflows and outflows 

occur primarily between the inter- and the sub-tidal sub-systems (Fig. 8). Overall, both inter- and 

sub-tidal sub-systems accreted, mostly in the south, and although the dunes continued losing 

sediment (11,000 m3 erosion, uncertainty of 3,000 m3), the embayment is fully recovered from the 

2013/14 winter in terms of net sediment budget (Fig. 7). 
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The key morphological responses over the recovery period are: (1) limited dune recovery; 

(2) accretion across the entire inter-tidal beach (143 m3 m-1); (3) accretion in the shallow sub-tidal 

down to 6 m depth ODN; and (4) significant longshore variability in the deeper sub-tidal area 

down to (and beyond in certain sectors) the DoC. The latter observation manifests in an alongshore 

gradient in the sub-tidal accretionary rates from 50 m3 m-1 in the north to 150 m3 m-1 in the south. 

Hence, morphological changes during the 2.5-year period of recovery (dQout << dQin) show an 

accretion of the supra- and inter-tidal sectors, not matched by sub-tidal erosion. 

The influx of sediment into the inner embayment leading to recovery is interpreted as a 

combined response of entrainment of sediment sourced from greater depths (beyond the 

morphological DoC) and/or outside the headlands that delineate the system (from lateral sub-

embayments). This supposition is supported by the recorded loss of sediment (-23,000 m3) from 

within the DoC in Hoblyn’s Cove sub-embayment (shown in available data to the north of the 

inner embayment, Fig. 7a-ii), where the bed was lowered 0.3–0.6 m. While a small proportion of 

net losses, it provides an indication of possible source regions and transport mechanisms. 

Additionally, the alongshore continuity of the DoC contour located beyond the headland bases 

(620 m in the south and 170 m in the north), in combination with the morphological change 

detected beyond the embayment limits, strongly suggests that Perranporth beach is part of an 

extended coastal cell, not just during high energy events. Despite the large uncertainty associated 

with offshore areas, localised accumulation patterns similar to those shown in the 2011/16 DoD, 

and located between 14.5 and 26 m depth ODN in the south and far north of the survey area, are 

also present during the accretionary period (dashed ellipsoids, Fig. 7a-i,iii). The possible processes 

and forcing mechanisms leading to embayment recovery are further examined in Sections 5 and 6.  
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Fig. 7. Multi-annual recovery total sediment budget. Left panel: full embayment DoD from 2016 to 2018. Areas where morphological 
change is not significant (�𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷1 − 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷2� ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚95%) are uncoloured. Orange and yellow contours represent the inter-tidal to sub-
tidal limit (-2 m, ODN) and DoC (-14.5 m, ODN) respectively. Right panels: cross-shore and alongshore variability of sediment fluxes 
for the complete cross-shore profile and the different sub-systems for the domain comprised inside the black box. 
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Fig. 8. Averaged sub-tidal, inter-tidal and dune volume per beach width (m3 m-1 alongshore) 
and associated uncertainty (error bars) for epochs 2011–2016 and 2016–2018. Alongshore-
averaged volumes are presented for north (1400-m alongshore) and south (1400-m alongshore) 
domains, except for the case of south dunes (100-m alongshore). Dune volume correspond with 
regions > 5 m ODN, inter-tidal volume from 5 m to -2 m ODN and sub-tidal volume corresponds 
with the regions from -2 m to -14.5 m ODN. 
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Table 2. Net volumetric changes (m3) and associated uncertainty in sub-tidal, inter-tidal and 
dune sub-systems for epochs 2011–2016 and 2016–2018. Volumes are presented for north and 
south domains. Inter-tidal volume corresponds with the area from the dune foot (z=5 m) to -2 m 
and sub-tidal volume corresponds with the area from -14.5 to -2 m, inter- and supratidal from -2 

to the dune foot (z=5 m) and dunes beyond z=5 m 

EPOCH Sector ΔVnet (m3) ΔVsub-tidal (m3) ΔVinter-tidal (m3) ΔVdunes (m3) 

2011-2016 

Full* 

Outer** 

-2.8x105±2x105 

2.7x105±2.4x105 

North -5x104±1.5x105 2.6x105±1x105 -2.4x105±5x104 -7x104±3x103 

South -2.3x105±5x104 5.3x104±6x104 -2.9x105±5x104 2x103±1x103 

2016-2018 

Full* 

Outer** 

6.7x105± 1.8x105 

8.7x104±4.5x104 

North 2.4x105±8x104 6.7x104±5x104 1.8x105±3x104 -1.1x104±3x103 

South 4.3x105±1x105 2.1x105±5x104 2.2x105±5x104 1x103±1x103 

*Full is the sum of north and south net volumes (down to DoC, within black box on Fig. 6 and 7).  
**Outer is the sum of the morphological change beyond the morphological DoC (-14.5 m) and all areas 
outside of the area of the central embayment (beyond DoC and outside black box on Fig. 6 and 7). 

4.3. Sub-tidal sediment redistribution 

Both storm response and recovery was rather longshore-uniform (disregarding the increase 

in 3-dimensionality during the accretionary phases) in the inter-tidal zone, but less so in the sub-

tidal region, warranting further investigation into the alongshore redistribution of sediment in 

especially the lower sub-tidal zone. The 6 DoDs covering the inner embayment recovery response 

(black dashed box down to the DoC, Fig. 2a) for the multi-annual erosive period 2011–2016, and 

inter-annual recovery period 2016–2018, are used to compute longshore variability and inter-

annual volume change between the north and south (Fig. 9). The key finding here is that following 

the erosion over the 2011–2016 epoch, accretion of 0.5–2x105 occurred over each 6-month epoch 

in the recovery period, with most recovery occurring during the 2017/18 winter, especially in the 

sub-tidal region of the southern part of the beach.   

Burvingt et al. (2017) defined longshore variation in the inter-tidal beach morphological 

response using the longshore variation index (LVI): 

 𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠/(|𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚| + 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠) (1) 
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where Qstd is the standard deviation of the net volumetric change for cross-shore transects (Qcross) 

and |Qmean| is the absolute value of the mean of Qcross values. In order to discriminate between 

alongshore variability between the north and south sections and variability associated to 3-

dimensionality, Qcross is computed using 2-m alongshore-averaged cross-shore profiles, and is low-

pass filtered using a moving averaged filter with a 400-m span. LVI index is then computed for 

the original and the filtered Qcross. This index is dimensionless and varies between 0 and 1, with 

zero values implying cross-shore sediment transport is dominant, and LVI = 1 representing both 

significant alongshore transport and large 3-dimensionality. Hence, by applying the low-pass filter 

to Qcross, most of the differences associated to the small scale morphology are eliminated. For 5 of 

the 6 epochs, LVI (both filtered and no filtered) for the sub-tidal region is considerably larger (LVI 

= 0.5–0.9) than for the inter-tidal region (LVI = 0.1–0.7), indicating that the sub-tidal is 

characterised by a significant longshore variability whereas the inter-tidal is more longshore-

uniform. The only exception is the winter 2017/18 period during which the large LVI results from 

very significant changes in the lower inter-tidal bar/rip morphology (still present in the filtered 

signal), which is associated with the positive feedback between rip-cell circulation, sand transport 

and evolving bathymetry, and not driven by longshore transport processes.   
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Fig. 9. Upper panels: 3D variability of Perranporth full embayment where red indicates erosion 
and blue erosion. Contours are from the first of the beach surveys. In order from 2nd to 3rd row 
panels: full embayment erosion (Er.), accretion (Ac.) and net (Net) volumetric change; and 
volumes for north and south sectors. All volumes are for epochs 2011–2016 and seasonal 2016–
2018. Bottom panels: longshore variation index (LVI) computed using 2-m alongshore-averaged 
cross-shore profiles (circle) and a low-pass filter with a 400-m span (triangle). 
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5. Relating wave forcing and morphological change  

To determine the sediment budget for any coastal domain, it is necessary to understand the 

forcing controls on sediment fluxes within, and in and out of the system, with waves being the 

primary forcing control in this instance. In the study area, the wave climate is strongly seasonal 

(Fig. 3f), such that the larger waves over winter periods are also slightly more northward in 

direction. Therefore, winters are associated with greater absolute wave power (forcing offshore 

transport), but also with greater southward alongshore wave power, likely to result in southward 

alongshore transport. 

The wave parameters we seek to correlate with observed morphological change are the 

demeaned cumulative total wave power (𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐) and the cumulative alongshore wave power 

(𝑃𝑃𝑦𝑦,𝑐𝑐𝑐𝑐𝑐𝑐), computed for the 11-year available time series (2007–2018). The wave time series is 

transformed from the wave buoy location (~20 m depth ODN) to the breaking point using Van 

Rijn (2014). Assuming that beaches have an equilibrium condition related to the long-term mean 

wave forcing, total wave power is parameterised using the cumulative integral of the demeaned 

value (Stokes et al., 2016), denoted Pcum, as: 

 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) =  � (𝑃𝑃 − 𝑃𝑃�)𝑑𝑑𝑑𝑑

𝑡𝑡𝑛𝑛

𝑡𝑡0
 (2) 

where 𝑃𝑃� is the long-term mean condition, and P corresponds to instantaneous wave power at the 

breakpoint. The assumption of equilibrium (or near-equilibrium) is supported by the morphology 

observations that show large variations but no clear trend on a decadal timescale (Fig. 5).  

For alongshore wave power (𝑃𝑃𝑦𝑦,𝑐𝑐𝑐𝑐𝑐𝑐), rather than demeaning the signal we select the long-

term average power direction as shore-normal (285° in this instance), noting that the average wave 

direction is 283°, but bigger waves are more northerly. Again, the assumption here is that a long-

term embayment equilibrium exists around variations in longshore forcing. The direction 285° also 

coincides with the mean orientation of the shoreline near the mid-point of the embayment, but this 

is not our primary motivation for choosing this angle. 

 
𝑃𝑃𝑦𝑦,𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) =  � 𝑃𝑃𝑦𝑦,285 𝑑𝑑𝑑𝑑

𝑡𝑡𝑛𝑛

𝑡𝑡0
 (3) 
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For the purpose of relating wave forcing to morphologic change, only the southern sector 

observations are sufficiently long to draw statistical correlations (Fig. 5), therefore all analyses in 

this section are restricted to the southern part of the embayment. We seek to differentiate between 

forcing controls on the inter-tidal and sub-tidal components of the system, as observations suggest 

these systems behave, to some degree, independently (Fig. 5c-d). The morphologic change 

variables we will use for comparison to wave power are: (i) south-end inter-tidal volume, as it is 

the longest consistent time series [monthly 2007-2018]; (ii) south-end sub-tidal volume 

[sporadically 2011-2016, quarterly 2016-2018]; and (iii) total volume for the south end [time 

points as per sub-tidal volume]. Our preference is for analysis of the longest available dataset in 

each instance, to avoid misleading correlations with shorter time series’. 

An initial examination of the correlations with sub-tidal volumes (Table 3, 𝑉𝑉𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆) suggest 

this variable is poorly correlated with wave forcing. This may be due to the sub-tidal being open 

to flux from the inter-tidal as well as to beyond the outer boundaries, obscuring forcing 

correlations. What is required is for the exchange with the inter-tidal be offset from the sub-tidal 

volume. The value we are interested in is flux from the sub-tidal to beyond the outer boundaries 

(cross- and alongshore) of the southern sector, which is approximated by changes in the total 

system volume: 

𝑉𝑉𝑆𝑆,𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  𝑉𝑉𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑉𝑉𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (4) 

We use the change in total south sector volume (∆𝑉𝑉𝑆𝑆,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) as a proxy indicator for 

transport in and out of the sub-tidal outer domain boundaries. If we assume that sediment entering 

and leaving the southern sector primarily passes through the sub-tidal, then the total volume change 

(∆𝑉𝑉𝑆𝑆,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) is the flux through the outer boundaries (offshore and lateral) of the sub-tidal region. 

For example, if over a given period ∆𝑉𝑉𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 erode (-100 m3/m) and ∆𝑉𝑉𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆 also erodes 

(-100 m3/m), then we assume that the sub-tidal gained +100 m3/m from the inter-supratidal and 

therefore lost (-200 m3/m) through the outer boundaries. This is not an ideal assumption as some 

material may be transported alongshore through the inter-tidal, but earlier findings have 

demonstrated the inter-tidal behaves coherently throughout the embayment and is largely cross-

shore dominated (for example see Fig. 5c–e). 

Considering the relationship between total and alongshore wave power (Fig 10a), there is 

a clear visual inverse correlation between 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑦𝑦,𝑐𝑐𝑐𝑐𝑐𝑐 at a seasonal time scale i.e., larger waves 
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are more northerly (see also Fig. 3f). However, at decadal time scales (2007-2018) there is no clear 

correlation, in fact the relationship is very weakly positive (Table 3; r = 0.2), suggesting that 

decadal trends in wave height are decorrelated from changes in wave direction. Inter-tidal 

morphological response (𝑉𝑉𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼; Fig. 10-second row) is negatively correlated with 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 (Table 

3; r = -0.59), indicating that more powerful waves erode the inter-tidal region. This relationship is 

consistent with the approach of a shoreline prediction model (Davidson et al., 2010; Splinter et al., 

2014), which demonstrated a strong relationship at Perranporth between the shoreline position and 

disequilibrium in the dimensionless fall velocity parameter.  

The southern total volume (𝑉𝑉𝑆𝑆,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇; red line in Fig. 10c-d) is inversely correlated with 

total wave power (r = -0.56, Fig. 10c) and positively correlated with alongshore wave power (r = 

0.41, Fig. 10d). This suggests that as wave power increases overall and becomes cumulatively 

more negative (southward), the south end erodes, which is primarily attributed to flux through the 

sub-tidal boundaries. This is counter-intuitive, given that in a closed embayment, we would expect 

more northerly waves to drive clock-wise rotation and accrete the southern end of the embayment. 

Following the discussion by Harley et al. (2015), we also note that it is difficult to differentiate 

between the influence of total- and alongshore wave power on the total volume, as the wave 

variables themselves are correlated at short time scales (seasonal), and the strength of the 

correlations are sensitive to statistical design (e.g., start and end points of wave time series, shore-

normal angle chosen). Additionally, low temporal resolution of the survey data aliases the seasonal 

signal. Taking these caveats into account, there appears to be a weak-moderate relationship where 

𝑉𝑉𝑆𝑆,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 erodes during big, northerly waves (both for individual winters and multiple years above 

average wave power).  

Assessing morphological correlations, it is interesting to note that the total southern system 

volume (𝑉𝑉𝑆𝑆,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) is positively correlated (Table 3) with both 𝑉𝑉𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (0.66) and 𝑉𝑉𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆 (0.70), 

such that each contributes about half the total variance, indicating that conditions which cause the 

inter- or sub-tidal to erode (accrete), will also cause the total system to erode (accrete), primarily 

through transport beyond the outer boundaries. More broadly, the positive correlation between the 

inter-tidal and total volume suggests that the ability to predict inter-tidal volume change (e.g., 

using a shoreline prediction model such as Davidson et al., 2010) may also provide some skill in 

predicting total embayment volume, with the implication that total embayment volume may 



Personal copy confidential manuscript, Geomorphology 

31 
 

respond to a disequilibrium in the wave climate, analogous to the inter-tidal. As mentioned in 

section 3, it is surprising to note that the expected inverse correlation between 𝑉𝑉𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑉𝑉𝑆𝑆,𝑆𝑆𝑆𝑆𝑆𝑆 

is entirely absent at a time-lag of 0. Instead, it appears that these systems operate with a time-lag 

of approximately 1-year, with a peak cross-correlation of r = 0.67 found at 11.5-months lag (with 

the sub-tidal response following the inter-tidal). This suggests that sub-system response occurs at 

different timescales in reply to different forcing conditions. A hypothesised sequence to explain 

the lag in response may include: (i) an extreme storm that transports beach material far offshore, 

beyond the level of detectable change [inter-tidal erodes, sub-tidal is relatively unchanged]; (ii) an 

initial stage of recovery where sediment is transported mainly from the inner-sub-tidal to the 

beachface [inter-tidal accretes, sub-tidal erodes]; and (iii) a later phase of gradual transport from 

the lower-subtidal [from beyond the level of detectable change] to the upper-sub-tidal [inter-tidal 

unchanged, sub-tidal accretes]. The exact nature of this relationship is unclear and will be the target 

of future work.  

Table 3. Correlation coefficients (r) for Perranporth southern sector beach volume and 

cumulative wave power (total and alongshore). Bold values are significant (p-value < 0.01).  

 Pcum Py,cum VS, INTER VS, SUB VS,TOTAL 

Pcum 1 0.2 -0.59 -0.17 -0.56 

Py,cum  1 0.24 0.05 0.41 

VS, INTER   1 0.01 0.66 

VS, SUB    1 0.70 

VS,TOTAL     1 
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Fig. 10. Time series of wave power and volume observations. (a) 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑦𝑦,𝑐𝑐𝑐𝑐𝑐𝑐; (b) 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 and 
𝑉𝑉𝑆𝑆,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼; (c) 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑉𝑉𝑆𝑆,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇; (d) 𝑃𝑃𝑦𝑦,𝑐𝑐𝑐𝑐𝑐𝑐 against 𝑉𝑉𝑆𝑆,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. For (c, d) grey circles are the points 
on wave power time series’ interpolated to volume. Southward alongshore wave power is 
negative. 
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6. Discussion 

6.1. Sediment budget conceptual model 

This study has demonstrated that, with reference to Fig. 1, Perranporth is an open system, 

that does not have a balanced sediment budget at the short to medium temporal scale (up to 10 

years), and displays multi-annual accretional or erosional trends (Fig. 5e). Computed DoDs based 

on full embayment observations show significant morphological change in front of the headland 

bases and beyond the DoC in some sectors (Figs. 8 and 9). The alongshore continuity of the DoC 

contour line off the headland base (620 m in the south and 170 m in the north), linked with the 

detected morphological change beyond the inner embayment limits, suggests that Perranporth 

beach is part of an extended coastal cell. In line with earlier works (e.g., McCarroll et al., 2018; 

King et al., 2019; Valiente et al., 2019), these major morphological changes evidence substantial 

transport at depths > 15 m that are related to headland bypassing mechanisms.  

A semi-quantitative conceptual sediment budget model that is consistent with all 

observations presented thus far is shown in Fig. 11. Volume changes in the north and south sectors 

(∆𝑉𝑉𝑁𝑁,∆𝑉𝑉𝑠𝑠) and fluxes within the model domain (𝑞𝑞𝑥𝑥,𝑁𝑁, 𝑞𝑞𝑥𝑥,𝑆𝑆) are based on observations. We are 

unable to quantitatively resolve fluxes beyond the survey domain; instead, we refer to a prior 

numerical modelling study predicting bypass at the northern headland of Perranporth (McCarroll 

et al., 2018). That study predicted that rapid southward sediment flux occurred at the northern 

headland during winters (up to 0.5x105 m3 for a single winter), whilst gradual northward transport 

(~0.2x105 m3) occurred during ‘summer’ (spring to autumn). McCarroll et al. (2018) estimated 

transport through a transect extending off the northern headland, while in the present study the 

outer boundary for the northern sector extends cross-shore from the shoreline, and alongshore over 

the northern extent of the bay. Consequently, there are differences between the values inferred 

here and the values provided in McCarroll et al. (2018). The proposed flux values should be 

considered as broad estimates, useful for conceptualization and providing hypotheses for future 

testing, but they are not definitive. The direction and approximate magnitude of 𝑄𝑄𝑁𝑁 is inferred 

based on McCarroll et al. (2018), then the budget is balanced (Equations in Fig. 11) to calculate 

fluxes at the mid-point of the embayment (𝑄𝑄𝑀𝑀) and the southern boundary (𝑄𝑄𝑆𝑆), which are 

consistent with the observed morphologic change (∆𝑉𝑉𝑁𝑁,∆𝑉𝑉𝑠𝑠). Note that fluxes at the outer 
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boundaries (𝑄𝑄𝑁𝑁 ,𝑄𝑄𝑆𝑆) refer to both cross- and alongshore contributions. In summary, major phases 

of morphologic change include: 

1. The inter-tidal erodes under energetic (and more northerly) waves and accretes when 

wave conditions are below average. This process is fairly uniform alongshore over the multi-year 

epochs (2011–2016; 2016–2018), but does vary for individual seasons (e.g., Fig. 11, Winter 2017–

18). 

2. During the storm epoch (2011–2016, Fig. 11), under larger and more northerly waves, 

the full embayment erodes, with the south eroding more than the north. Evidence is equivocal as 

to whether net transport is northward or southward, therefore we hypothesise two scenarios, to be 

resolved by future modelling efforts. In the first scenario (Fig. 11, Residual N transport), a net 

input of 1x105 m3 is estimated at the southern boundary (𝑄𝑄𝑁𝑁), with the northern sector losing 

sediment offshore and northward in the outer-subtidal. In the second scenario (Fig. 11, Residual S 

transport), a net input is estimated at the northern boundary, which implies that offshore sediment 

transport is occurring at the south end, exporting sediment beyond the survey region (Fig. 6). 

3. During the recovery period (2016–2018), the waves are relatively smaller and more 

westerly, and the full embayment accretes. The south accretes more than the north, in particular 

during winter conditions. Northerly transport is inferred to occur during summer periods (Fig. 11, 

Summer 2016), assisted by a northerly residual tidal current (McCarroll et al., 2018). Influx is 

inferred to occur at both ends of the embayment during ‘recovery winters’ (Fig. 11, Winter 

2017/18), demonstrating the critical role of winter wave conditions in multi-annual beach recovery 

(Burvingt et al., 2018; Dodet et al., 2019). This convergent flux is consistent with modelled 

circulation (McCarroll et al., 2018) for storms from the WNW (~285°), that may produce a 

northward current at the south end, and a southward current at the north end.  
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Fig. 11. Semi-quantitative conceptual sediment budget for Perranporth embayment with 
volume changes (∆𝑽𝑽𝑵𝑵,∆𝑽𝑽𝒔𝒔) and cross-shore flux (𝒒𝒒𝒙𝒙,𝑵𝑵, 𝒒𝒒𝒙𝒙,𝑺𝑺; sed. flux obs.) based on 
observations. The external flux (𝑸𝑸𝑺𝑺,𝑸𝑸𝑵𝑵) refer to both cross- and alongshore contributions. 𝑸𝑸𝑺𝑺 
and 𝑸𝑸𝑴𝑴 are estimated using observations and bypass rate in the northern headland (sed. flux 
est.). Flux and volume change values are x105 m3. + and – symbols refer to magnitude of 
significant wave height (Hs) with (++) for large waves, (-) for low energy wave conditions and 
(+) for moderate to energetic conditions. Direction (Dir) refers to shore normal wave direction 
(Dir ~ 283o) with -S for more southward wave approach (W), and +N to ++N for WNW and NW, 
respectively.  
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The conceptual model (Fig. 11) is useful for explaining the observations, but currently has 

limited predictive capacity due the complexity of the system response. Further development 

through numerical modelling approaches are required in order to better predict sediment pathways.  

6.2. Multi-annual embayment scale dynamics 

The ‘classic’ characterization of beaches such as Perranporth is that winter storms erode 

the dunes and the upper part of the beach, depositing the sediment in sub-tidal bar systems, while 

calmer conditions return the sub-tidal sediment back to the beach (Komar, 1998). This is indeed 

what our understanding was for the studied beach based on almost a decade of inter-tidal beach 

surveys and a few sub-tidal surveys (Masselink et al., 2014; Scott et al., 2016), and which has led 

to the suggestion that Perranporth beach, and similar beaches in the region, are ‘closed systems’ 

(cf. Fig. 1-left panel). However, this characterization has shown to be incorrect as the full sediment 

budget analysis presented here indicates an ‘open system’ with sediment inputs and outputs in the 

order of 300 m3 m-1 over a decadal time period (Fig. 5e). The inner embayment region seems 

therefore connected via sediment pathways to the region beyond the DoC and the bounding 

headlands, which is in line with numerical modelling by Valiente et al. (2019).  

To explain the sediment pathways and close the sediment budget, it is necessary to consider 

both longshore sediment transport gradients along the embayment (Fig. 11) and from adjacent bays 

through headland bypassing. Importantly, the large sediment volumetric variations across the 

lower shoreface, which are of the same order of magnitude as those occurring in the inter-tidal 

region (c. 200 m3 m-1), is suggestive of an energetic longshore transport system across this deeper 

region, and it is possible that this transport system extends along the whole north coast of SW 

England as alluded to by May and Hanson (2003) and Valiente et al. (2019). These findings are 

critical for informing the next stages of regional scale modelling and observational studies and 

may lead to a shift in understanding of sediment budgets along exposed and macrotidal 

embayments globally. 

There is an interesting contradiction that, despite the extensive sediment volumetric 

variations in the sub-tidal region (Fig. 5e), a model based solely on inter-tidal beach volume 

variations such as presented in Fig. 5c can be used to predict shoreline position over the 10-year 

time period (e.g., Davidson et al., 2010). This suggests that the upper part of the beach (supra- 

inter- and shallow sub-tidal) is partially decoupled from the deeper sub-tidal region. The vast 
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majority of beach studies in the past (and present) have been (and are) solely based on inter-tidal 

topographic surveys (e.g., Castelle et al., 2015; Loureiro et al., 2015; Masselink et al., 2016a,b; 

Harley et al., 2017; Burvingt et al., 2018; Mentaschi et al., 2018); however, full embayment 

surveys, such as pioneered here, are likely to reveal an additional layer of complexity concerning 

nearshore sediment transport and beach morphodynamics. Future numerical modelling efforts will 

be aimed at providing complementary understanding of embayment scale sediment fluxes.  

7. Conclusions  

• A total sediment budget approach was implemented across the macrotidal, high energy 

Perranporth embayment for the period 2011–2018, using a multi-method surveying approach 

and accounting for measurement uncertainties. 

• Inter-tidal volumetric changes indicate a longshore coherent, cross-shore dominant 

behavior, following a seasonal cycle superimposed by a multi-annual oscillation induced by 

extremely energetic winter seasons, with full recovery taking at least 5 years.  

• Total embayment (combined inter- and sub-tidal) volumes varied by c. 300 m3 m-1 over 7-

years, indicating that the inner embayment (down to the DoC) is ‘open’ and ‘unbalanced’ over 

multi-annual timescales.  

• Sediment volumetric variations in the inter-tidal region are uncorrelated with those in the 

sub-tidal region at zero time-lag, but a positive correlation is observed at 1-year time-lag. This 

suggests that the upper and lower shoreface are partially decoupled, responding to different 

forcing controls. 

• The largest dunes system monitored (northern Perranporth) experienced a significant 

erosion event in 2013/14 (15 m onshore translation of dune foot) with little recovery within 5 

years. 

• Inter-tidal sediment volume for the long-term southern sector time series was inversely 

correlated with variations in total wave power (r = -0.6), coherent with a cross-shore 

dominated response. Total sediment volume change (primarily due to flux through the outer 

sub-tidal boundary) was correlated with both total (r = -0.6) and alongshore wave power (r = 

0.4), suggesting a combined cross- and alongshore dominated response.  
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• The inter-tidal volume was found to be positively correlated with the total volume (for the 

south sector), such that when the inter-tidal eroded or accreted, so too did the total system. 

This was evident for an erosive period of extreme waves (2011–2016), followed by a 

‘recovery’ period (2016–2018), where consistent influxes into the embayment were observed, 

even during energetic winter periods. This suggests a degree of equilibrium for the total 

embayment volume. 

• A conceptual model was presented that balances the observed volume changes with 

inferred fluxes, forced by variations in total and alongshore wave power. At present, this 

model has limited predictive capacity and requires further development through numerical 

modelling approaches to better predict future sediment budgets on similar coastlines. 

• Given the extent of flux through the sub-tidal outer boundaries, it is likely that Perranporth 

and beaches on similar coastlines form part of an extended coastal cell, with individual 

embayments linked via a ‘river of sand’ that flows around headlands. 
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