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a b s t r a c t 

Digital investigators often get involved with cases, which seemingly point the responsibility to the person 

to which the computer belongs, but after a thorough examination malware is proven to be the cause, 

causing loss of precious time. Whilst Anti-Virus (AV) software can assist the investigator in identifying 

the presence of malware, with the increase in zero-day attacks and errors that exist in AV tools, this is 

something that cannot be relied upon. The aim of this paper is to investigate the behaviour of malware 

upon various Windows operating system versions in order to determine and correlate the relationship 

between malicious software and OS artifacts. This will enable an investigator to be more efficient in 

identifying the presence of new malware and provide a starting point for further investigation. 

The study analysed several versions of the Windows operating systems (Windows 7, 8.1 and 10) and 

monitored the interaction of 90 samples of malware (across three categories of the most prevalent (Tro- 

jan, Worm, and Bot) and 90 benign samples through the Windows Registry. Analysis of the interactions 

has provided a rich source of knowledge about how various forms of malware interact with key areas 

of the Registry. Using this knowledge, the study sought to develop an approach to predict the presence 

and type of malware present through an analysis of the Registry. To this end, different classifiers such as 

Neural Network, Random forest, Decision tree, Boosted tree and Logistic regression were tested. It was 

observed that Boosted tree was resulting in a correct classification of over 72% – providing the inves- 

tigator with a simple approach to determining which type of malware might be present independent 

and faster than an Antivirus. The modelling of these findings and their integration in an application or 

forensic analysis within an existing tool would be useful for digital forensic investigators. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

As malware evolves and becomes more complex, malicious at-

ackers are able to adapt their behaviour depending on the system

hey wish to infect. Malicious software can only be revealed after

he recognition of specific factors of the system and the combina-

ion of many parameters and conditions. For example, a particular

alware might reveal it’s behaviour when installing on a Windows

 platform or when specific software is installed on the victim’s

omputer (for example a PDF Reader) and to remain totally inac-

ive in any other situation. Similarly, it can reveal a part of his be-

aviour, while parts of the functionality remain hidden until cer-

ain conditions that will cause additional activity. Attempts have

een made to uncover malware activated behaviour [8,47] but it

as also shown for it to be possible to trick such analyzers [58] .
∗ Corresponding author. 
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uring the examination of a case, the possibility always exists that

igital evidence or criminal activity is the result of malware activ-

ty. It could be that the owner of a computer system is unjustly

uspected due to the presence of malicious software. Therefore, in

ach case prior to the recording of evidence, a thorough investiga-

ion for the presence of malware should be undertaken. Tradition-

lly, this is achieved using one or more Anti-Virus (AV) systems.

owever, weaknesses in AV technology and the increasing pres-

nce of zero-day vulnerabilities make them less than full-proof. 

Many researchers have conducted studies to find digital arti-

acts on the Windows operating system, including earlier versions

f Windows, were analysed, such as Vista [53] , 7 [64] and 8 [61] .

urther research has also been undertaken on the study of spe-

ific operating regions such as the Registry [44] , volatile memory

23,56,57,64] , USB devices [12,19] and the file system [9,10,40] . In

his research work a comparative study of three core Windows OSs

Windows 7, 8.1 and 10) is undertaken in order to study whether

he version of OS has an impact over the behaviour and perfor-

ance of malicious software. This will provide digital forensics

https://doi.org/10.1016/j.jisa.2019.04.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2019.04.013&domain=pdf
mailto:sshiaeles@ieee.org
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analysts with invaluable help [13,32] , as they will have a guide for

the locations to which are expected to have digital evidence. With

a targeted investigation at specific locations, it is possible to iden-

tify whether a system is infected with malware or not. The paper

also develops and evaluates an approach to automatically predict

which type of malware is present. This allows forensic examiners

to more quickly and reliably identify the presence and type of mal-

ware. 

2. Background and related work 

The detection of malware through an analysis of unknown exe-

cutables is not a new problem. Consequently, many solutions al-

ready exist. These solutions can be divided into two categories:

static and dynamic analysis. 

2.1. Static analysis 

In static analysis, an incident response team analyses the code

or the structure of a program to determine the functionality

without running the program [60] . First steps include the use of

all available anti-virus programs. This could give information to a

known malware for which signature is available, saving valuable

time in the process. A major disadvantage of this technique is

the dependence upon the detection of the virus based largely on

file signatures. Malicious code developers can easily change the

code in order to avoid detection [21] . Another technique used in

the static analysis is binary code disassembling, which convert

the binary code into an assembly and then analytical techniques

control data flow resulting in a report of the running program.

A series of binary code analysis techniques [16,18,34] have been

presented for the detection of different types of malware. The

advantage of static analysis is that its carried out quickly and

that can cover the entire application code. Whilst, there is rich

literature on static analysis techniques, which indicates that many

problems can be tackled well in practice due to predictability,

often this is because it is being applied to real applications rather

than malware. Unfortunately, since malware is directly created by

cyber criminals it can be deliberately crafted so that it is difficult

to analyse. Specifically, the attacker can make use of technical bi-

nary obfuscation to prevent both the disassembly of the code and

analysis, methods which are used by static analysis techniques. 

2.2. Dynamic analysis 

The dynamic analysis techniques of malware behaviour charac-

terized by the analysis of the actual instructions of a program or

the results it brings the program to the operating system. Com-

pared with the static approach, dynamic analysis is less suscep-

tible to various code obfuscation techniques [47] . Christodorescu

et al. [17] introduce the specifications of malware using data flows

between the system calls. They found the actual relationships be-

tween system calls are difficult to overcome with random system

calls. Since then, this knowledge of malicious software has been

widely used in malware analysis tasks such as extraction of dis-

tinct malware functions, mining the difference between malware

behaviour and benign behaviour of the program [26] , determin-

ing malware families in which samples are sharing common func-

tions [3,5,51] and to detect malicious behaviour [7,7,33,37] . Another

method uses a representative audience behaviour chart for all sam-

ples of malware in a family, instead of a behaviour chart per case.

The proposed approach is valid and effective since most new mal-

ware variants are from known families [28,52,69] . Despite vari-

ous metamorphic and polymorphic blackouts, samples of malicious

software within the same family tend to reveal similar malicious

behaviour [36] . 
The most popular method of analysing the malware operation

n a safe way is to use sandbox technology. The sandbox is running

s a separate system, contains the untrusted program and prevents

ny action from accessing the real network and often provides net-

ork services for malware in a form of "black hole." If the un-

rusted program makes a DNS request, for example, the sandbox

ill answer the question, usually with 127.0.0.1 (loopback). 

Since the spread of metamorphic and polymorphic viruses, dy-

amic analysis of malware has been established as an effective ap-

roach to understanding and classifying malware by observing the

xecution of malware samples in quarantine environment [24,72] .

he interaction between the execution of the malicious sample and

perating system allows dynamic malware analysis systems to col-

ect those behavioural characteristics that help shape technical de-

ense. 

A problem that was found in modern viruses is that the ma-

icious code is often equipped with detection routines that check

or the presence of a virtual machine or a simulated operating

ystem environment. When such an environment is detected, the

alware modifies its behaviour and the analysis yields incorrect

esults or even worst, the malware stops to function making

nalysis impossible. Moreover, some malware also checks for

oftware (even material) having breakpoints to detect whether

he program is running in a debug program. In order to bypass

he aforementioned problems, the analysis environment should be

nvisible to malicious code, comprehensive and cover all aspects of

he interaction of an environmental program. 

Effort s to investigate the possible prevention of malware inci-

ents have prompted earlier studies on malicious codes [4,20,74] .

urrent research in cybersecurity focuses on the characterization

nd modelling of specific attacks, with the aim of understanding

he mechanisms of penetration, detection, and response. As cyber

hreats are increased both in number and in complexity, it has

ncreased the interest in infectious malware [38] . In theory, one

f the interesting issues is the creation of reliable mathematical

odels that can be applied to effectively describe and forecast

he evolution of malicious computer software. Since the spread

f malicious code is similar to the biological epidemics [66] ,

ome epidemiological models have been employed to study the

ehaviour of malicious software [15,35,45,46,59] . In addition, new

trategies and methodologies necessary to prevent invasions and

ddressing their effects [27] . 

. Experimental methodology 

The purpose of this research was to examine in a dead-box

ode the impact that malware has on the Windows Registry. Fur-

hermore, the research sought to understand what differences ex-

st in differing versions of the OS. To this end, 90 samples of both

alware (split between Trojans, worms, and bot) and cleanware

ere selected to provide a robust and comprehensive analysis. The

icrosoft’s Windows operating systems was focussed upon as, it is

till the prominent OS in use today [48] . 

.1. Virtual lab 

The analysis laboratory consists of two testbeds. The first one

s running locally on a host machine with a CPU Intel Core i7-

790, 16 GB RAM and Windows 10 Pro as the bare metal con-

guration. In this machine we installed VMware Workstation Pro

2 [70] and we created a Virtual Machine|(VM) with Ubuntu 16.04

perating system which hosted the Cuckoo Sandbox. Ubuntu com-

atibility with the Cuckoo Sandbox [50] is excellent and has been

sed by other investigators [57] for the same purpose ( Fig. 1 ).

uckoo utilised a methodology for the understanding of malicious

ode based upon sandboxing [29] and execution of arbitrary code
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Fig. 1. Virtual lab architect. 
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n a controlled manner that allows direct observation of results

hrough a Python agent script. The script in Python and the li-

raries are Cuckoo’s important components [31] . The system con-

ists of a server where the Cuckoo software is installed along with

 virtualization program such as Oracle VirtualBox [22] . In Oracle

irtualBox, various VMs can be created with different versions of

perating Systems where the agent of Cuckoo should be also in-

talled. In the guest VM an examiner has to make sure to disable

ny services that may prevent the malware executed successfully

uch as User Account Control (UAC), automatic updates, Antivirus

nd firewall in case of Windows Operating System. The isolated
Fig. 2. Virtual networ
nvironment allows the sample to run without adversely affecting

he system host computer or the quest and simultaneously docu-

enting evidence, such as open ports, registry keys, IP addresses,

le incorporated and domain names, which are important for an

xaminer. Once the desired state of the system has accomplished,

 system snapshot is taken. This snapshot can be used to restore

he system to a known clean state after the sample is analysed. In

ur case in VirtualBox, three VMs were created with the following

haracteristics: CPU a core of the Intel Core i7-4790, 2 GB RAM and

perating System Windows. In each of these three VMs, a different

ersion of Windows Operating System is installed and specifically

, 8.1 and 10. In order Cuckoo to communicate with each guest

achine, Cuckoo network card and a unique guest VM card were

onnected to a virtual isolated network (192.168.56.0/24) as shown

n Fig. 2 . 

The second testbed was hosted on cloud and we utilised two

loud sandboxes to withdraw as much information as possible in

rder to find more unique registry hives from the malware and

leanware. For this experiment we utilised an Agentless (VMRay

nalyzer) and AI-based (SNDBOX) sandbox. VMRay Analyser as

forementioned is an agentless sandbox cloud solution and the

eason choosing this platform is that some sophisticate malware

sually monitor the running environment and to prevent their dis-

overy they usually stop their execution which provides insignif-

cant features to the analysis [1] . SNDBOX applies an invisible

ernel mode agent and AI to offer the next generation Sandbox,

xtending the individual capabilities and expertise of security and

esearch teams through AI, dynamic analysis and network map-

ing. It is Located between the User mode and Kernel mode, SND-

OX’s invisible agent deceives malware into executing its full range

f intended functionality, revealing its true malicious nature, in-

ent, and capabilities [63] . 

.2. Standardized naming scheme for malware 

Security analysts and researchers from different AV com panies

n 1991 developed a standardized naming scheme for malware

nown as Computer Antivirus Research Organization (CARO) (“A

ew Virus Naming Convention (1991) - CARO - Computer Antivirus

esearch Organization,” n.d.). The philosophy behind the develop-

ent of this standard is to remove the confusion among the users
k configuration. 
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Fig. 3. CARO malware naming scheme (“Malware names | Microsoft Docs,” n.d.). 

Fig. 4. The ratio of clean and malicious hives. 
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and AV-Vendors by having a common standard or syntax for nam-

ing malware. The generic form of this format is mentioned below 

< malware type > :// < platform > / < family name > . < group name > .

< infective length > . < sub-variant >< devolution >< modifiers > 

In the string above only family name is compulsory and the rest

of the fields are optional. Although most companies claim that they

follow the CARO scheme, but in practice only Microsoft is using

this convention in their AV software for MSE or the Win8 version

and windows defender etc. ( Fig. 3 ). 

In this research work we used the CARO naming scheme to

name malware as shown in Section 3.3 . 

3.3. Malware samples used 

Often, malware investigators have to deal new threats and un-

known executable. In some cases, there are scenarios where you

can handle malware that already knows its name and is classified,

e.g. for research purposes as in this work. To analyse such mali-

cious software, there are many places where one researcher can

collect known samples. The Lenny Zeltser, who is the head of the

private SANS Institute [55] , recommends several free resources on

his website [73] . The samples of malicious code used in this re-

search were taken from Malware.lu [41] , Virussign [67] , Vx Heaven

[71] , Malekal [39] and MalwareTips [42] . Ninety samples of mali-

cious code were selected, 41 Trojan, 28 Worms, and 21 Bot. These

three malware families were selected ( Table 1 ) as they are the

main categories that are detected more often [2,43,65] . 

3.4. Clean samples used 

The need to differentiate the clean registry hives from mali-

cious hives, cleanware samples such as chrome, teamviewer, skype

etc. were collected and analysed. During the analysis emphasis was

given on collecting system changes along with register hives in or-

der to have more information. The Table 2 below shows the sam-

ples used as well as the type of each sample. 

3.5. Sandbox analysis procedure 

To export information from the samples we performed exper-

iments in three different environments. In the first experiment,

Cuckoo was utilised for behaviour analysis of malware of files

mentioned in Sections 3.3 and 3.4 above. For each analysis request,
 separate subfolder containing all the reports is produced with

aw logs, .pcap files, images and any other information obtained

uring the analysis. Using the Cuckoo as the main malicious soft-

are analysis tool, each sample was studied in three different soft-

are environments (Windows 7, 8.1 and 10) and the results of the

nalysis are stored in a suitable form for further study and analy-

is. 

The program sends the sample to the virtual machine that we

ave selected in the settings file. When injection of the sample into

he operating system has completed successfully, Cuckoo monitors

ll system activity and records it. Once the analysis of the virtual

achine is terminated, the .html file with the report of the analy-

is is created. 

The second experiment was completed in two different cloud

andboxes named VMRay analyzer and SNDBOX. In both these

andboxes, benign and malicious samples of Sections 3.3 . and

.4 respective were executed. For each analysis request, a separate

ubfolder containing all the reports is produced, the raw logs, .pcap

les, images, JSON and any other information obtained during the

nalysis. 

.5.1. Dataset preparation 

Data constitute the input/output variables required to make a

rediction. Usually, data comes in two forms either structured or

nstructured data. In this research we have taken structure data

hich implies that data are defined and properly labelled. In or-

er to label data VIT and Virus Total reputation scoring were in-

roduced, to categorize samples as malicious and benign. VirusTo-

al inspects items with over 70 antivirus scanners database along

ith URL/domain blacklisting services, in addition to a myriad of

ools to extract signals from the studied [68] . Cuckoo sandbox uses

irusTotal to perform the experiments, moreover, in the case of

MRay analyzer VTI score is used to label the samples. 

To evaluate the proposed research and create the raw and in-

egrated feature set, malware and benign samples were collected

rom a different source as mentioned in the above section. In order

o validate the propose works different portion of samples were

aken for validation purpose. 

.6. Pre-processing and feature generation 

In this stage data were processed and cleaned from noise and

rrelevant entries and string information was extracted from the

ogs file generated by the different sandboxes and features set

ere constructed. In this research, 34 register hives were identi-

ed for malware and 13 register hives for cleanware as shown in

he Table 3 . Furthermore, these strings were converted into binary

eature vector, so they can be given as input to the machine learn-

ng algorithm. 
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Table 1 

The malware samples that were used. 

Category Virus name SPY-STEAL DATA C&C BACKDOOR STEALTH 

1 Trojan Trojan-Spy.Win32.Zbot.wijf X X 

2 Trojan Trojan.GenericKD.3015891 X 

3 Trojan Trojan.GenericKD.3015909 X 

4 Trojan Trojan/Win32.Yakes X 

5 Trojan Trojan.GenericKD.3016131 X 

6 Trojan Trojan/W32.KRBanker X 

7 Trojan Trojan-Spy.Win32.FlyStudio.ij X X 

8 Trojan Trojan- 

Dropper.Win32.Injector.nyds 

X 

9 Trojan Trojan.Zboter X X 

10 Trojan Trojan-Spy.Win32.Recam.yue X X 

11 Trojan Trojan. Tesla!1.A322 X X 

12 Trojan Trojan.Win32.Waldek.cbp X 

13 Trojan Trojan.Win32.Waldek.cbm X 

14 Trojan Trojan.Win32.Dridex.v X X X 

15 Trojan Trojan.Win32.Tepfer.psxezj X X 

16 Trojan Trojan.Win32.Yakes.owmp X 

17 Trojan Trojan.Win32.KeyLogger.auqd X 

18 Trojan Trojan.GenericKD.3023498 X 

19 Trojan Trojan.Generic.8742442 X X X 

20 Trojan Trojan.Generic.7738292 X 

21 Trojan Trojan.Generic. 

AAA._xeDropperSpywareTrojan 

X X 

22 Trojan Trojan.Generic .Badi X X X 

23 Trojan Trojan.Win32.CretClient.exe 

24 Trojan Trojan.Generic .InstallBC201401 X 

25 Trojan Trojan.Generic.pony X 

26 Trojan 

Trojan.Generic.Potao_Dropperswdecoy 

X 

27 Trojan Trojan.Win32.zeus X X X X 

28 Trojan Trojan.Generic.kotbjxfkzeq X 

29 Trojan Trojan.Generic.Locky X X X 

30 Trojan Trojan. Win32.njRAT.exe X X X 

31 Trojan Trojan.Generic.pafish X 

32 Trojan Trojan.Win32win32.duqu 

33 Trojan Trojan.Generic.Cerber.exe X 

34 Trojan Trojan. Win32Mole.exe X 

35 Trojan Trojan. Win32.Spora.exe X 

36 Trojan Trojan.Win32GrandCrab-01.exe X 

37 Trojan Trojan. Win32.Delf.xo X 

38 Trojan Trojan. Win32.DarkTequila.exe 

39 Trojan Trojan. Win32.psiphon.exe X 

40 Trojan Trojan.Generic.yigzwl X 

41 Trojan 

Trojan.Generic.Vcffipzmnipbxzdl 

X 

42 Worm Win32.Gamarue X X X 

43 Worm W32.Cridex.A.worm X X X 

44 Worm Worm.VBS.Agent X 

45 Worm Worm.Win32.3DStars X X 

46 Worm Worm.Generic3.PEM X 

47 Worm Worm.Win32.Mira.A X 

48 Worm Worm.Generic2.CMVO X 

49 Worm Worm.Win32.Cake X 

50 Worm Worm.Win32.Fever X X 

51 Worm Worm.Win32.Monkey.exe X 

52 Worm Worm.Win32.Mydoom.a.exe X X 

53 Worm Worm.Win32.Pikachu.exe X 

54 Worm Worm.Win32.Postman.exe X 

55 Worm Worm.Win32.Sharpei.a.exe X 

56 Worm Worm.Win32.Silver.exe X 

57 Worm Worm.Win32.Sobig.exe X X 

58 Worm Worm.KOOBFCE.SMC X X 

59 Worm W32/Wabot X X 

60 Worm Worm.vid.exe X 

61 Worm Email-Worm.Win32.Mydoom.l X X 

62 Worm Email-Worm.Win32.Naked X 

63 Worm Worm.Christmas-wishes.doc X 

64 Worm Win32.WannaCry.EXE X X X 

65 Worm Win32.F7F105F9.exe 

66 Worm Win32.2tetup.exe X 

67 Worm Win32.GrandCrab-01.exe X 

68 Worm Win32.GlobeImposter.exe X 

69 Botnet Win32.Lolbot.aoi X 

70 Botnet WORM/IrcBot.tlq X X X 

( continued on next page ) 
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Table 1 ( continued ) 

Category Virus name SPY-STEAL DATA C&C BACKDOOR STEALTH 

71 Botnet W32.Jorik_Lolbot.O!tr X X 

72 Botnet Win32.SdBot.aamk X X X 

73 Botnet W32.ZBot.42352 X X X 

74 Botnet Win32.Jorik.SdBot.e X 

75 Botnet MSIL.NanoBot.ibh X 

76 Botnet Win32.Zbot.vtii X X X 

77 Botnet Win32.Ngrbot.anak X 

78 Botnet Win32.Alinaos.G X X 

79 Botnet GenericKD.2143403 X 

80 Botnet Win32/ChkBot.A X 

81 Botnet MSIL/Lizarbot.A X X X 

82 Botnet Win32.Jorik.Lolbot.f X X X 

83 Botnet Win32.Zbot.sbdj X X X 

84 Botnet MSIL.NanoBot.bi X X 

85 Botnet Win32.Ngrbot.uyk X 

86 Botnet Win32.Boht.qo X X 

87 Botnet W32/Zbot.AJJU!tr X X X 

88 Botnet Win32.VBInject X 

89 Botnet Trickbot X 

90 Botnet obfuscated.js X 

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 5. The impact of malware on the registry. 
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Fig. 6. The impact of Bot on the registry. 
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4. Experimental results 

During the analysis of malware, some locations in the reg-

istry and in the Windows file system, have been recognized

as important for potential contamination data. Based upon

prior work, the following locations were recorded in Table 3

[6,11,14,25,30,40,49,54,62] : 

The following sub-sections present an analysis of the findings

based on three perspectives: 

• The purpose/payload/motivation of the malware (e.g., spying

or command and control) 

• The type of malware (i.e., Bot, Trojan or Worm) 

• The version of the operating system (i.e., Windows 7, 8, or

10) 

In each case, the previously identified 47 registry and file lo-

cations are analysed against the 90 samples of both malware and

cleanware to proof our initial research question. The raw results

from the analysis derive can be found in Appendix A . 
.1. Analysis of malware motivation 

The first analysis is concerned the research question, whether

he motivation of the malware affected the frequency of digital ev-

dence in a particular position within the Registry. As previously

dentified in Table 1 , the types of functionality include: 

• Spying and/or steal user data (Trojan) 

• Communicating with a control centre to receive commands

(Botnet) 

• Self-Propagation (Worm) 

• Benign file 

Figs. 5 –7 illustrate the degree to which the registry locations

re affected. The analysis focussed upon an analysis of the reg-

stry against the type of malware. Fig. 4 illustrates the proportion

f each type of malware upon the 34 Registry locations. The signif-

cant register keys/values for malware and benign values are men-

ioned below 
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Table 2 

The cleanware samples that were used. 

Category Sample name Type 

1 Normal grammarlyaddinsetup.pe32 Application software plug 

2 Normal Poweriso6-x64. Executable 

3 Normal Vlc-2-2-1-win32 Executable 

4 Normal Wireshark-win64-2.6.5 Executable 

5 Normal ProtonVPN.exe Executable 

6 Normal Notepad.exe Executable 

7 Normal McAfeeWebAdvisor.exe Executable 

8 Normal Putty2.exe Executable 

9 Normal FTPDesktopClient.exe Executable 

10 Normal SQLiteStudio-3.2.1.exe Executable 

11 Normal KeePass-2.40-Setup Executable 

12 Normal LinuxLiveUSB Creator 2.9.4.exe Executable 

13 Normal flashplayer32_install.exe Executable 

14 Normal Firefox Setup 14.0.1 Executable 

15 Normal 7za.EXE Executable 

16 Normal GoogleUpdateSetup.exe Executable 

17 Normal Epson512523eu.exe Executable 

18 Normal Microsoft-Toolkit.exe Executable 

19 Normal Googlewebdesigner_win.exe Executable 

20 Normal PDFSAM_Installer.exe Executable 

21 Normal FoxitReader_Setup.exe Executable 

22 Normal TeamViewer_Setup.exe Executable 

23 Normal Internet.Download.Manager.exe Executable 

24 Normal TrueCrypt.exe Executable 

25 Normal SkypeSetup.exe Executable 

26 Normal HottNotes4.1Setup.exe Executable 

27 Normal TorchSetup Executable 

28 Normal GitHubDesktopSetup Executable 

29 Normal Nektar Bolt v1.0 CE.exe Executable 

30 Normal ForkInstaller.exe Executable 

31 Normal hashcat32.exe Executable 

32 Normal AdobePatchInstaller.exe Executable 

33 Normal TWUploader.exe Executable 

34 Normal vmnat.exe Executable 

35 Normal SenseDriver.exe Executable 

36 Normal ISSetup.dll DLL 

37 Normal SrvCtl.dll Executable 

38 Normal panfinder.exe Executable 

39 Normal strings.exe Executable 

40 Normal procexp.exe Executable 

41 Normal cbhqgi.vbs vbs 

42 Normal acc.exe Executable 

43 Normal KutoolsforExcelSetup.exe Executable 

44 Normal DTools.exe Executable 

45 Normal winsdk_web.exe Executable 

46 Normal ClipboardHistory.exe Executable 

47 Normal MEGAsync.exe Executable 

48 Normal AnyDesk.exe Executable 

49 Normal npp.7.6.Installer.exe Executable 

50 Normal CVHP.exe Executable 

51 Normal WinSCP-5.13.6-Setup.exe Executable 

52 Normal coreftplite64.exe Executable 

53 Normal eagleget_setup.exe Executable 

54 Normal NetAssemblyInfo.exe Executable 

55 Normal Morgan Spencer.htm htm 

56 Normal fdminst-lite.exe Executable 

57 Normal sigcheck.exe Executable 

58 Normal RBInternetEncodings500.dll DLL 

59 Normal cryptolibcps-5.0.43.exe Executable 

60 Normal Trustlook PDF 

61 Normal shell.hta Executable 

62 Normal rufus-usb-3-3.exe Executable 

63 Normal photosync_setup.exe Executable 

64 Normal Home Sweet Home 2 - 

Kitchens and Baths.exe 

Executable 

65 Normal ThrottleStop.exe Executable 

66 Normal Portal.2.incl.upd30-NSIS.exe Executable 

67 Normal libeay32.dll Executable 

68 Normal PwDump7.exe Executable 

69 Normal UaInstall-7.0.6-4.msi MSI 

70 Normal TP8-2019.exe Executable 

71 Normal tlscntr.exe Executable 

72 Normal cccredmgr.exe Executable 

73 Normal fdminst-lite.exe Executable 

( continued on next page ) 
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Table 2 ( continued ) 

Category Sample name Type 

74 Normal HoMM3_HD_Latest.exe Executable 

75 Normal ILSpy.exe Executable 

76 Normal AnyDesk.exe Executable 

77 Normal 

vs_community__1072350829.1545770560.exe 

Executable 

78 Normal winsdk_web.exe Executable 

79 Normal KutoolsforExcelSetup.exe Executable 

80 Normal acc.exe Executable 

81 Normal cbhqgi.vbs VBS 

82 Normal PDFsam_Basic3_3_Installer.exe Executable 

83 Normal A_info.pdf PDF 

84 Normal Angry Birds.exe Executable 

85 Normal aspcmd.msi MSI 

86 Normal Research_Paper1.pdf PDF 

87 Normal SupportAssistLauncher.exe Executable 

88 Normal meda-mp3-joiner-install.exe Executable 

89 Normal AutoCopyFiles.exe Executable 

90 Normal soffice.exe Executable 

Table 3 

The locations were investigated for digital forensics. 

Digital forensics locations 

1 HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \ Nls \ CustomLocale \ en-US 

2 HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \ Nls 

3 HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \ SESSION 

4 HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control 

5 HKEY_LOCAL_MACHINE \ SYSTEM 

6 HKEY_LOCAL_MACHINE \ Software \ Microsoft \ Rpc 

7 HKEY_LOCAL_MACHINE \ SOFTWARE \ Wow6432Node \ Microsoft \ Windows \ CurrentVersion 

8 HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ 
9 HKEY_LOCAL_MACHINE \ SOFTWARE \ Wow6432Node \ Microsoft \ 
10 HKEY_CURRENT_USER \ Software \ Microsoft \ Windows NT \ CurrentVersion \ Windows 

11 HKEY_CURRENT_USER \ Software \ Microsoft \ Windows \ CurrentVersion \ Setup 

12 HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows \ CurrentVersion \ Uninstall 

13 HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows \ CurrentVersion \ 
14 HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows \ CurrentVersion \ Explorer 

15 Documents and Settings \ [user name] \ Start Menu \ Programs \ Startup 

16 %systemdrive% \ Documents and Settings \ [User Name] \ Local Settings \ Temp 

17 %Systemdrive% \ Users \ victim_user \ AppData \ 
18 %Systemdrive% \ Windows \ System32 

19 %Systemdrive% \ Windows \ INF \ 
20 %Systemdrive% \ Windows \ Globalization \ Sorting \ sortdefault.nls 

21 %Systemdrive% \ 
22 HKEY_LOCAL_MACHINE \ software \ policies 

23 HKEY_LOCAL_MACHINE \ SOFTWARE \ Classes \ 
24 HKEY_CURRENT_USER \ Software \ Microsoft 

25 HKEY_CURRENT_USER \ Software \ Microsoft \ Windows \ CurrentVersion \ Explorer \ Shell Folders 

26 HKEY_LOCAL_MACHINE \ Software \ Microsoft \ Windows \ CurrentVersion \ explorer \ UserShell 

27 HKEY_LOCAL_MACHINE \ Software \ Microsoft \ Windows \ CurrentVersion \ RunServices 

28 HKEY_CLASSES_ROOT \ exefile \ shell \ open \ command 

29 HKEY_CLASSES_ROOT \ comfile \ shell \ open \ command 

30 HKEY_LOCAL_MACHINE \ Software \ CLASSES \ batfile \ shell \ open \ command 

31 HKEY_LOCAL_MACHINE \ Software \ CLASSES \ exefile \ shell \ open \ command 

32 HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ Windows NT \ CurrentVersion \ Winlogon \ Shell 

33 HKEY_LOCAL_MACHINE \ Software \ Microsoft \ Active Setup \ Installed Components \ KeyNameHKEY_LOCAL_MACHINE \ Software \ Microsoft \ Windows \ CurrentVersion \ Explorer \ 
34 Advanced \ Start_ShowDownloads 

35 HKEY_CURRENT_USER \ Control Panel \ Desktop 

36 HKEY_LOCAL_MACHINE \ SOFTWARE \ Classes \ Interface 

37 HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ Windows \ CurrentVersion \ Uninstall \ software_name 

38 HKEY_LOCAL_MACHINE \ SOFTWARE \ Policies \ Microsoft \ Windows \ CurrentVersion \ Internet Settings \ ZoneMapKey 

39 HKEY_CURRENT_USER \ Software \ Microsoft \ Office \ Software_name 

40 HKEY_USERS \ % account id% \ Software \ Adobe \ 
41 HKEY_LOCAL_MACHINE \ Software \ Classes 

42 HKEY_CLASSES_ROOT \ software_name 

43 HKEY_LOCAL_MACHINE \ software \ microsoft \ windows \ currentversion \ appmanagement \ arpcache \ 
44 %Systemdrive% \ Users \ Public \ Documents 

45 %systemdrive% \ Program Files \ Software_name \ 
46 %SYSTEMDRIVE% \ Windows \ Fonts 

47 %Systemdrive% \ Users \ Public \ Documents 
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Fig. 7. The impact of Trojan on the registry. 
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Table 4 

Classes for machine learning. 

Class Label 

Cleanware 0 

Malware 1 

Worm −1 

Botnet −2 

Trojan −3 
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.1.1. Values for malware 

It has been observed that few hives values are of significant im-

ortance when the forensic investigator is looking for malicious

ctivities in the system. The modification of P2, P17, P3, P18 and

1 are higher in proportion as compared to other counterpart, al-

hough P17, P18 were also present in Bots and Trojan but other

eys impact and modification is higher in malware as compared to

hem. 

• P2 (HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \
Nls), 

• P17 -%Systemdrive% \ Users \ victim_user \ AppData \ 
• P3 -HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \

SESSION 

• P18 -%Systemdrive% \ Windows \ System32 

• P1-HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control 

\ Nls \ CustomLocale \ en-US 

An analysis of the Fig. 5 and Fig. 9 (cleanware) shows that Mal-

are has a slightly different profile in many cases to that of Bots,

rojans, and Worms. For example, Bot has distinctive impacts in

he following locations: P1, P2, P8, P13, P17, P18. 

.1.2. Values for Bots 

In the case of bots, the Modification of below-mentioned keys

re of indicative of bots activities, the detail of these keys are men-

ioned below 

• P18 – %Systemdrive% \ Windows \ System32 

• P8 – HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ 
• P19 – %Systemdrive% \ Windows \ INF \ 
• P17 – %Systemdrive% \ Users \ victim_user \ AppData \ 
• P1 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls \ CustomLocale \ en-US 

• P2 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls 

• P4 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control 

.1.3. Values for Trojan 

It is notable during analysis that modifications of few keys are

igher in the Trojan as compared to malware, the details of these

re as follows 

• P18 – HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows

\ CurrentVersion \ Explorer 

• P2 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls 

• P19 – %Systemdrive% \ Windows \ INF \ 
• P17 – %Systemdrive% \ Users \ victim_user \ AppData \ 
• P1 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls \ CustomLocale \ en-US 

• P2 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls 

• P4 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control 

• P20 – %Systemdrive% \ Windows \ Globalization \ Sorting \ sortdef
ault.nls 
The analysis of the charts shows that Bot and Trojan have simi-

ar values. Also the following locations tend to be higher: P18, P19,

nd P17, P1 in both bots and Trojan. 

.1.4. Values for Worm 

• P18 – HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows

\ CurrentVersion \ Explorer 

• P17 – %Systemdrive% \ Users \ victim_user \ AppData \ 
• P8 – HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ 
• P13 – HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows

\ CurrentVersion \ 
• P4 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control 

• P21 – %Systemdrive% \ 
• P20 – %Systemdrive% \ Windows \ Globalization \ Sorting \ sortdef

ault.nls 

From the empirical analysis, it has been identified that mod-

fication of keys P18 (HKEY_CURRENT_USER \ SOFTWARE \ Microsoft

 Windows \ CurrentVersion \ Explorer) and P17(-%Systemdrive% \ Users

 victim_user \ AppData \ ) tends to be higher in all three classes for

.g., Bots, Worms, and Trojans thus we can conclude that these two

eys are of great importance for forensic investigator ( Fig. 8 ). 

.1.5. Values for Cleanware 

The distinct thing about this research is that forensic investiga-

or will not only able to find the compromised system on the basis

f aforementioned values but he will be also able to distinguish

etween clean systems if below-mentioned keys will be taken in

onsideration. 

• P45 –%systemdrive% \ Program Files \ Software_name \ 
• P38 – HKEY_LOCAL_MACHINE \ SOFTWARE \ 
• Policies \ Microsoft \ Windows \ CurrentVersion \ Internet 

Settings \ ZoneMapKey 

• P37 – HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ 
• Windows \ CurrentVersion \ Uninstall \ software_name 

• P40 – HKEY_USERS \ % account id% \ Software \ Adobe \ 
• P42 – HKEY_CLASSES_ROOT \ software_name 

• P43 – HKEY_LOCAL_MACHINE \ software \ microsoft \ windows \ 
• currentversion \ appmanagement \ arpcache \ 
• P44 – %Systemdrive% \ Users \ Public \ Documents 

• P39 – HKEY_CURRENT_USER \ Software \ Microsoft \ Office \ Soft
ware_name 



148 M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155 

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 8. The impact of Worm on the registry. 
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Fig. 9. The impact of Cleanware on the registry. 
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Fig. 10. Impact of malware on the Windows 7 registry. 
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Fig. 11. Impact of malware on the Windows 8 registry. 
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The modification of these keys will help the forensic investiga-

tor to consider system clean instead of malicious without consid-

ering the AV scan and test report which will save lots of time as

well as resources of the system ( Fig. 9 ). 

4.2. Analysis against operating system version 

In comparison to the previous two sections where the iden-

tification of similarities and differences may assist in helping an

investigator in identifying both the presence of malware and the

type of payload, the purpose of this comparison is to identify

whether any significant differences exist across the last three prin-

cipal versions of the Windows OS. Notably, as illustrated in Figs.

10 –12 the profile exhibited against each OS version is very similar.

Going beyond the current state of the art, this study demonstrates

that Windows 10 has a very similar impact upon the previously

identified 47 registry locations as previous versions. 

Upon further examination, there are some small differences

that might help identify malware in different versions of the OS. 
• Modification to P18 (%Systemdrive% \ Windows \ System32),

P17 (%Systemdrive% \ Users \ victim_user \ AppData \ ) and P8

(HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ ) has signif-

icant impact in all three versions of Windows as shown

in Figs. 10 –12 . It has been observed that register values

from P35 to P47 are at lowest level in all three versions of

Windows. 

. Discussion 

From the statistical analysis of the results, the main locations of

igital assets from malicious and benign software were identified.

urthermore, in each type of software, in each operating system

nd in each functionality of malware, the most common locations

hat create digital evidence were recorded. In future research, this

nalysis could be extended to other categories of malware (Ran-

omware, Backdoor, etc.) and other forms of functionality. 

Whilst there is value to the investigator in better understanding

he impact differing forms of malware have upon the different ver-

ions of Windows and in particular how the Registry is effected, it
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Fig. 12. Impact of malware on the Windows 10 registry. 

Table 5 

Malware classification performance. 

Test 

ID 

Train/Test 

ratio 

Feature 

tested 

Accuracy 

Logistic regression Neural net Decision tree Random forest Boosted tree 

Test 1 80/20 47 58% 34% 62% 58% 72% 

Test 2 70/30 47 50% 33.3% 56% 64% 64.9% 

Test 3 60/40 47 58% 33% 68.4% 67.5% 71% 

Test 4 50/50 47 64% 34% 62% 62% 65% 
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ould arguably be more useful if this analysis could be applied in

 manner that would provide a proactive approach for investiga-

ors to be able to detect and classify the type of malware present

ithin a case without having to rely upon AV. This is not designed

o replace or remove AV but to complement the approach, particu-

arly in cases where the malware is not being detected by the AV.

o this end, an extended experiment was conducted to determine

he degree to which the impact upon the registry and file loca-

ions is unique to each family of malware (i.e., is it possible given

he impact upon the registry and file locations to determine which

amily the malware belongs). 

The results from Appendix A were used, with the 47 locations

orming the features from both malware and benign samples. Then

 supervised pattern classification approach was selected because

hey have stronger reliability than unsupervised approaches and

 dataset was easily created from existing malware. The samples

rom the three families were randomized and split into training

nd testing datasets – with differing proportions to measure the

mpact that training data has on the overall performance. In this

xperiment we have used different machine learning algorithm for

lassification of cleanware and malware classes. The classes that

ere used are shown in the table below ( Table 4 ). 

During the train, test and validate phases the efficiency and ef-

cacy of the model was measured. Python was utilised and specif-

cally IPython Jupyter notebook v 5.7.2. The Jupyter notebook is

n open-source project which is web-based, interactive computing

otebook environment which is developed to support data science

nd scientific computing across the different platform. The first ex-

eriment was performed with the label ‘Test 1’, in which train/test

atio of 80/20 was taken with 47 features, furthermore logic re-

ression, Neural net, Decision tree, Random forest and Boosted

ree supervised learning algorithms were utilised and their effi-

iency and efficacy was measured. It was observed during analy-

is that Boosted tree algorithm was performing well with 72% ac-

uracy as compared to all other classifiers as depicted in Table 5 .

urthermore, investigation was performed by taking training/test

atio of 70/30 to train the model, it had been found that once

gain Boosted tree outperform all other classifiers with 64% accu-

acy as shown in Table 5 . We extend our experiments by taking

raining/test ratio to 60/40 to see the impact of accuracy on the
lassifier, we found that decision tree and Random forest accuracy

ncreases to 68.4% and 67.5% respectively, furthermore boosted tree

ccuracy decrease from 72% to 71%. 

From these experiments, it was observed that the best classi-

cation accuracy was produced by the Boosted tree with setting

0/20 as compared to other learning algorithms, moreover it was

oticed that the Random forest, Logistic regression, and Decision

ree classifiers accuracy increased drastically when we have taken

0/40 ratio but in contrast the accuracy of Boosted tree decrease

rom 72% to 71% except the neural net whose accuracy remained

onstant. 

The results of this extended experiment demonstrate that mod-

lling the impact that malware has upon the registry and hard disk

ould be a useful approach to detecting the type of malware fam-

ly. This type of modelling is far faster than traditional AV software

nd could be applied either as a standalone tool or integrated into

xisting computer forensic software as an additional forensic anal-

sis. It also has the advantage over AV tools in that, once trained, it

oes not need to be continually updated to reflect new signatures

which can be hourly for some tools) – merely periodically updated

o reflect the general trends in malware composition. Furthermore,

he approach could find applications in host-based intrusion detec-

ion systems (HIDS) or intrusion protection systems (HIPS) as well

s vulnerability scanners. 

. Conclusion 

The paper has undertaken an investigation into the impact that

hree core types of malware have upon different versions of the

indows OS – specifically targeting the Registry. Whilst previous

esearch has presented the impact of limited volumes of malware

pon the Registry, this is the first study to utilize a large volume of

alware across the three core types (Bot, Trojan and Worm) along

ith clean samples. The results from this analysis largely confirm

revious studies but provide a greater granularity as to the impact

ased on the different types of malware. This study has also ex-

ended the prior work by including Windows 10 and evidencing

hat it has overall a similar impact profile on the Registry as pre-

ious versions of the software. 
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The results have shown that it is possible to accelerate a dig-

ital forensics analysis through a preliminary analysis of the reg-

istry, the modified timestamps and the use of machine learning or

deep learning. Targeting these 47 registry locations can provide a

first indication to the digital forensics examiner on whether or not

malware is present, but also the type across all common versions

of the Windows OS. 

This type of analysis has several key advantages over existing

approaches: it is faster to scan and identify than AV, it is able to

detect and classify new malware prior to AV signatures being de-

veloped, it does not need frequent updating and can be built into

existing tools with applications in both the forensic and security

fields. 
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Worm 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 

Locations ●
●
●

●
●
●

●
●

●
●

● ● ● ● ● ●
●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ●

Trojan 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 

Locations ● ●
● ●

● ●
● ●

●
● ●

● ●
● ● ● ● ●

● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ●

●
●

●

P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27-34 

● ●
●
● ●
● ●

●
●
● ●

●
●
● ●

● ● ●
● ●

● ● ●
● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ●

● ● ● ● ●

P14 P15 P16 P17 P18 P 19 P20 P21 P22 P23 P24 P25-34 

●
● ● ●
● ● ●
● ● ●
● ●
● ● ●
● ●

● ● ● ●
●

●
● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●

● ●
● ●

●
●
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ppendix A 

Malware Dynamic Analysis Locations (1–34) that forensics arti-

acts have been recorded during dynamic analysis for each of 180

amples (Malware [p1–p34] and clean [p35–p47]) of Worm, Bot

nd Trojan ( Tables A1 –A3 ), Clean ( Table A4 ) and for the three Win-

ows operating systems ( Tables A5 –A7 ). 
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Bots 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25-34 

Locations ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ●
● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ●
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