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ABSTRACT 
 
Classical swine fever (CSF) is a highly infectious viral disease found in domestic 

pigs and wild boar populations. Outbreaks have a large economic cost for the 

swine industry and cause significant morbidity and mortality in pigs. Only one 

compatible vaccine that allows the differentiation between infected and 

vaccinated animals (DIVA), Suvaxyn® CSF Marker vaccine, is commercially 

available. However, due to e.g. trading issues caused by vaccination of animals 

this vaccine is not used prophylactically and is only used in emergency situations 

to prevent spread of CSFV to wider areas. An urgent need exists for development 

of a safe, effective, DIVA compatible vaccine. This study set out to address this 

need by taking the initial steps towards developing porcine cytomegalovirus 

(PCMV), as a vaccine platform. CMV-based vaccines have been shown to induce 

strong, durable immune responses against heterologous antigens, and also have 

the potential to be self-disseminating, which would facilitate vaccination of 

inaccessible animal populations such as wild boar.  The aim of the present study 

was to further characterise the in vitro growth characteristics of a recent PCMV 

isolate. Our results show PCMV to have a slow growth, and low titre phenotype.  
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As a further step towards cloning of PCMV as an infectious BAC, recombinant 

BAC shuttle vectors were constructed and then characterised. Initial experiments 

using these shuttle vectors combined with homologous recombination and 

CRISPR/Cas9 technology to insert the BAC cassette within the PCMV genome 

are also described. In summary, the cloning of the shuttle vectors was successful 

but the results around PCMV replication kinetics provide preliminary evidence 

that there are difficulties to overcome before PCMV can be developed as a 

vaccine vector platform. 
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Chapter 1 

Introduction 

 

1.1 Classical swine fever 

Classical swine fever (CSF), also known as hog cholera, is a highly infectious 

viral disease found in domestic and wild pig populations (OIE. Classical Swine 

Fever Vol. 2015). It has a large impact on animal health and the swine industry 

worldwide and is classified as a disease that is reportable to the World 

Organisation for Animal Health (OIE). During an outbreak in the Netherlands in 

1997, more than 10 million pigs were culled at a cost of more than 1 billion EUR 

(Food and Agriculture Organization of the United Nations, 2011).  

 

CSF was identified about 200 years ago and work to combat its spread began in 

the nineteenth century (Edwards et al, 2000; Ji et al, 2015) but CSF is still 

widespread. It is endemic in Central and South America, parts of Eastern Europe 

and Asia (Blome et al, 2017b), but has been eradicated in Australia, Canada, 

New Zealand, and the USA. Most western and central European countries are 

considered CSF free (Figure 1), despite occasional outbreaks (EPIZONE, 2014;  

Risatti, G.R., Borca, M.V., 2016). Due to the global nature of pork production (with 

CSF being endemic in China, a leading country in pork production) and increasing 

international trade (Food and Agriculture Organization of the United Nations, 

2011; McGlone, 2013), CSF is considered to be a biosafety and food security 

threat. Additionally, outbreaks in small production farms in low-income countries 

and rural areas threaten local food security and diminish local economies, with 

communities having less money available to spend in local economies, especially 
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in areas such as education and healthcare (Food and Agriculture Organization of 

the United Nations, 2011; 2014). 

 

In CSF-free countries, a non-vaccination, ‘stamping-out’ policy has been 

adopted, whereby prophylactic vaccination is prohibited, other than in an 

emergency. Vaccination is only used when there is a threat of wider spread. In 

countries where CSF is endemic live attenuated CSFV vaccines are commonly 

used (Moennig, 2000; Chander et al, 2014; Madera et al, 2016). Different kinds 

of vaccines have been developed as discussed in more detail in section ‘1.3 

Vaccination’. 

 

 

 

 

Figure 1. OIE Members’ official CSF status map (Adapted from OIE, 2018) 

 

 

 



- 14 - 

 

1.2 Classical swine fever virus 

1.2.1 Virus properties 

CSF is caused by classical swine fever virus (CSFV), a small, 40 – 60 nm 

diameter, enveloped RNA virus. It has a genome of approximately 12.3 kilobases 

with one open reading frame (ORF) encoding one polyprotein of approximately 

4000 amino acids. CSFV is classified as a positive sense single-stranded RNA 

virus. It belongs to the genus Pestivirus within the Flaviviridae family. It is closely 

related to other pestiviruses, such as bovine viral diarrhea virus species 1 and 2 

(BVDV-1, BVDV-2) and border disease virus (BDV) of sheep but is only distantly 

related to more recently discovered pestiviruses, such as atypical porcine 

pestivirus (APPV), Bungowannah virus. CSFV has only 40% nucleotide identity 

with APPV (Yuan et al, 2017), compared to about 70% amino acid sequence 

identity with BDV (Vilcek & Belák, 1996; Strauss & Strauss, 2008) indicating wide 

genetic diversity among pestiviruses. 

 

1.2.2 Protein structure 

The infectious virus particle comprises four structural proteins and eight non-

structural proteins (Figure 2). The structural proteins include the nucleocapsid 

core (C)-protein and three envelope glycoproteins called E(rns), E1 and E2 

(Blome et al, 2017b). The core protein functions as an RNA chaperone (Riedel et 

al, 2012), and glycoproteins E(rns) and E2 play an essential role in attachment to 

the host cell surface. Glycoproteins E1 and E2 form a heterodimer which plays 

an essential role in virus entry into the cell. E2 also plays an important role as an 

immunological target, inducing neutralizing antibody production and cytotoxic T-

lymphocyte responses (Franzoni et al, 2013; Wang et al, 2015). The non-

structural proteins (Npro, p7, NS2-3, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) 
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have distinct functions in viral replication and virulence but, at this time have not 

been fully characterised (Blome et al, 2017b). 

 

 

 

Figure 2. Structure of CSFV. The structure shows a virus particle consisting of an 

envelope with its four structural proteins and the core containing the genetic 

information (Adapted from Beer, 2007).  
 

 

1.2.3 Transmission 

Viral transmission can occur in two ways, horizontally and vertically. Horizontal 

transmission is the most effective way of spreading the virus (Ribbens et al, 

2004). This happens primarily via oral and oronasal contact with infected pigs, 

and direct contact with secretions and excretions, such as saliva, urine, feces and 

semen. Indirect transmission can also occur, through contact with contaminated 

swill feed or equipment, such as transport vehicles/storage facilities. The virus 

can also be transmitted by contact with human handlers (OIE. Classical Swine 

Fever Vol. 2015; Floegel et al, 2000). Transmission to neighbouring pig farms via 

airborne transmission has also been reported (Weesendorp et al, 2008). 

Vertically, the virus can be transmitted transplacentally from pregnant sows to 

their offspring (de Smit et al, 2000).  
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1.2.4 Manifestations and clinical signs 

Following infection, symptoms appear in various forms depending on the virus 

strain, age of pigs, inoculation dose and immunological host response. There are 

three different classified manifestations -  acute, subacute / chronic and prenatal 

– which follow an incubation period of 4 to 10 days post-infection (Brown & 

Bevins, 2018; Blome et al, 2017c). Generally, the acute form is observed in 

piglets whereas the subacute/chronic form is observed in older animals (OIE. 

Classical Swine Fever Vol. 2015). However, clinical signs can vary from nearly 

inapparent to haemorrhagic fever-like illness.  

 

Within the first three weeks of an acute manifestation, clinical signs such as high 

fever, anorexia, depression, conjunctivitis, coughing, wasting and constipation 

followed by diarrhoea can be detected. At around 14 days post-infection ataxia, 

haemorrhagic skin lesions, cyanosis especially at the extremities, paresis and 

convulsion are observed, leading to death within 5 to 30 days after onset of 

illness. The mortality rate can be as high as 100% (Blome et al, 2017c; OIE. 

Classical Swine Fever Vol. 2015; Petrov et al, 2014). The chronic manifestation 

of CSF elicits similar clinical symptoms, but due to lower virulence and/or higher 

immunity in the pig herd, the symptoms can appear less specific over time. 

However, recovery often seems to be feigned, and in these cases, death typically 

occurs within three months.  

 

Prenatal infection, depending on the virulence of the virus strain and stage of 

gestation, can result either in stillbirth, mummification, embryonical death or 

abortion, or if born, in persistently infected piglets without initial clinical symptoms. 

These are often runts, which may or may not have a congenital tremor. Failure to 

thrive typically leads to death after a period of weeks to months. Although CSFV 
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infections are often lethal in younger animals, chronically infected older animals 

usually survive, with life-long immunity against CSF. However, they continue to 

shed the virus over their lifetime unless the virus is neutralized through specific 

antibodies (OIE. Classical Swine Fever Vol. 2015; Moennig et al, 2003).  

 

1.2.5 Virus inactivation 

Virus stability in offal was first reported in 1917 by Birch (Edwards, 2000). CSFV 

can survive more than 4 years in frozen pork, and up to 85 days in chilled pork. 

The virus can be inactivated rapidly by ultra-violet light, a pH of  3 or  10, 

pasteurisation or heat (Edwards, 2000). 

 

1.3 Vaccination 

Currently, there are several types of CSFV vaccines available. In CSF free 

countries a non-vaccination, ‘stamping-out’ policy (whereby prophylactic 

vaccination is prohibited other than in an emergency) is still in place although 

there is a DIVA compatible vaccine available. The reason for this policy may be  

two-fold. First, while vaccinated animals do not show symptoms of disease, they 

may not always be 100% protected against infection, leading to ‘silent’ circulation 

of the virus through herds. Second, commercial implications due to restrictions 

regarding trade imposed on vaccinated animals makes vaccination not attractive 

(European Commission, 2018).  

 

1.3.1 Modified live virus (MLV) vaccine 

In countries where CSF is endemic, conventional modified live virus (MLV) 

vaccines are commonly used to control the disease. The development of these 

vaccines began in the early 20th century (Blome et al, 2017a), but it took until the  
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middle of the 20th century (Kaden & Riebe, 2001) for promising candidates to be 

identified. Many different strains were used for vaccine development, including 

Lapinized Philippines Coronel (LPC) strain, Japanese guinea-pig exaltation-

negative (GPE-) strain, Thiverval strain, Mexican PAV strain, low virulence strain 

of Miyagi (LOM) or China-strain (C-strain).  

 

Individual MLVs differ in their efficacy.  After vaccination with the LOM strain, CSF 

outbreaks were reported in South Korea in 2014 and 2016 (Je et al, 2018), 

demonstrating lack of protection against disease. Vaccines based on the China-

strain (C-strain) of lapinized CSF virus are considered as safe and efficacious 

and induce both neutralizing antibody and T-cell responses. A single dose of this 

vaccine induces durable immunity for at least 6-18 months, and in some cases 

lifelong immunity, within a few days of vaccination (Moennig, 2000; van Oirschot, 

2003; Huang et al, 2014). Although effective, MLVs are not suitable for CSF free 

countries because of DIVA issues as they don’t allow differentiation between 

infected and vaccinated animals using standard immunological tests. The 

solution to this problem is to develop a vaccine which has the advantages of an 

MLV vaccine but also fulfils DIVA requirements. 

 

1.3.2 Marker vaccine 

The next generation of vaccines, known as marker vaccines, were developed in 

the early 1990s. A marker vaccine, also called DIVA vaccine, allows the 

differentiation between vaccinated and naturally infected animals. There were 

several important considerations for these vaccines. They needed to be safe, and 

also needed to be effective in preventing both clinical symptoms as well as 

transmission of CSFV. Additionally, the vaccine required its own matched 

companion immunological test for induction of CSFV-specific immune responses. 
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Marker vaccines were generated by genetically modifying CSFV, either by 

deleting antigenic proteins (negative marker), or substitution of antigenic 

protein(s) or epitope(s) on its own or with other markers (positive marker).  

 

Most marker vaccines are negative marker vaccines. The matching companion 

immunological tests to detect antibodies against these deleted viral protein(s) and 

epitope(s) give negative results in vaccinated animals as the epitopes are no 

longer present. Deletion of antigens detected in DIVA assays from these vaccines 

made them DIVA compatible. Several marker vaccines were generated, including 

recombinant deletion vaccines, DNA vaccines, subunit vaccines, peptide 

vaccines and recombinant chimeric vaccines (Dong & Chen, 2007; Beer et al, 

2007). However, there were several different problems identified with some of 

these different types of vaccines. DNA vaccines and subunit vaccines are 

associated with reduced immunogenicity with multiple application and high doses 

necessary (Beer et al, 2007; Li et al, 2012). Peptide vaccines are considered to 

not achieve complete protection (Dong & Chen, 2007) and viral vaccines harbour 

the risk of recombination with the live attenuated viral vaccines (Beer et al, 2007). 

 

Glycoprotein E2 of CSFV emerged as an important target for the development of 

a subunit vaccine in which usually only a single antigenic protein or epitope was 

used to induce an immune response. E2 is the major immunogen and has shown 

neutralizing antibody induction (Dong & Chen, 2007; Huang et al, 2014; Wang et 

al, 2015). Baculovirus-expressed E2 subunit vaccines were well studied by 

several groups and found to be highly immunogenic, leading to 

commercialisation. However, it was shown that while a single vaccination could 

prevent clinical symptoms, it wasn’t efficient enough to prevent transmission. 

Administration of an additional dose was unable to prevent horizontal and vertical 
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transmission. This may be due to antigen variety between different genotypes of 

CSFV as neutralizing antibody induction was more effective against homologous 

strains than heterologous strains (Dewulf et al, 2000; Huang et al, 2014). Even 

with use of multiple doses, full protection still was not achieved. The E2 subunit 

vaccines also only induced antibodies, without the induction of T-cell responses 

(Huang et al, 2014). Hence, while E2 subunit vaccines were a good step in CSFV 

vaccine development, further development using new approaches are required 

to develop a more effective vaccine.  

 

1.3.2.1 Viral vector, chimeric pestivirus and porcine cytomegalovirus-based 

vaccines 

 

Although the E2 subunit marker vaccines discussed above fulfilled DIVA 

requirements, they failed to provide adequate levels of protection. The next 

generation of vaccines built upon these findings to design more effective vaccines 

based on the use of viral vector vaccines including chimeric pestivirus vaccines  

(Beer et al, 2007).  

 

1.3.2.1.1 Viral vector vaccines 

Vaccinia virus and pseudorabies virus, genetically modified to express CSFV E2 

protein were first developed in the 1990s (König et al, 1995; Peeters et al, 1997). 

These vaccines were followed by several other viral vector-based strategies such 

as porcine and human adenoviral vectors (Hammond & Johnson, 2005; Sun et 

al, 2011), swinepox viral vectors (Hahn et al, 2001), parapox, fowlpox and 

canarypox viral vectors (Dong & Chen, 2007). Although these vaccines achieved 

full protection (Beer et al, 2007) further investigation was necessary for example 

in regard to pre-existing immunity for some of the candidates, such as vaccinia 

viral vectors or adenoviral vectors  (Ura et al, 2014). 
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1.3.2.1.2 Chimeric pestivirus vaccines 

To date, the most successful CSFV vaccine strategy is based on a chimeric 

pestivirus vaccine expressing the E2 protein. A chimeric pestivirus is a 

recombinant CSFV, in which a region, or the entire E2 gene is replaced by the 

corresponding region of the E2 gene from a ‘sister’ pestivirus, such as BVDV or 

BDV. Chimeric viruses are generated in two different ways. A copy of CSFV 

serves as the backbone, with the E2 gene of a non-CSFV pestivirus inserted in 

place of the CSFV E2 gene. Alternatively, a copy of one of the ‘sister’ pestiviruses 

is used as the backbone, with the E2 gene from CSFV inserted to replace the 

native E2 gene. Wehrle and colleagues (Wehrle et al, 2007) developed a live-

attenuated CSFV strain Riems expressing antigenic epitopes of the E2 gene from 

border disease virus strain Gifhorn. This resulted in the construction of three 

different mutants based on the exchange of the domains. The change of all three 

domains A, B and C resulted in the CSFV variant pRiems-ABC-Gif which, 

administered intramuscularly, showed full protection against wild-type CSFV. 

Additionally, pRiems-ABC-Gif vaccinated animals could be distinguished from 

wild-type CSFV infected animals by the absence of antibodies against CSFV E2 

using commercially available CSFV E2-antibody ELISAs. The ability to 

differentiate between infected and vaccinated animals made this vaccine DIVA 

compatible. The other two candidates failed to show potential for development as 

a vaccine. Exchange of domain A only did not protect against the virus and 

exchange of domain B/C resulted in a vaccine that was not DIVA compatible.  

Eblé and colleagues (Eblé et al, 2013) developed chimeric pestivirus vaccine 

candidates using BVDV as the backbone, carrying the E2 gene of classical swine 

fever virus, and vice versa. The live recombinant vaccine ‘CP7_E2alf’ therefore 

consists of a BVDV type 1 backbone (‘CP7’ strain) combined with the E2 gene of 
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CSFV strain ‘Alfort/187’ (Blome et al, 2017d). Two additional live recombinant 

vaccines were generated from a CSFV strain combined with the E2 genes of 

BVDV (‘Flc9’) and BVDV (‘Flc11’) respectively (de Smit et al, 2001). Under an 

EU-funded project to ‘Improve tools and strategies for the prevention and control 

of classical swine fever’, Grant agreement ID:227003 (European Commission, 

2013), CP7_E2alf and Flc11 were chosen as the most promising candidates, 

based on data related to safety, efficacy, genetic stability, DIVA capability and 

comparative animal trials.  

 

CP7_E2alf and Flc11 were compared (along with a control group of animals 

vaccinated with the C-strain “Riems’) using oral and intramuscular vaccination, in 

three independent domestic pig animal trials. At 14 and 21 days post-vaccination, 

the animals were challenged with the highly virulent CSFV strain ‘Koslov’ 

(European Commission, 2013). Animals were fully protected after challenge at 

21 days post-vaccination with all three vaccines, up to at least 6 months post- 

vaccination. However, when challenge occurred 14 days post-vaccination, 

clinical protection was observed with CP7_E2alf, but only 50% protection was 

shown with Flc11, and 83% protection was observed with the C-strain (Blome et 

al, 2012; European Commission, 2013). This data led to the decision to license 

the CP7_E2alf vaccine, and a dossier for intramuscular vaccination was 

submitted to the European Medicines Agency (EMA).  

 

In 2014 the BVDV type 1 backbone (‘CP7’ strain), expressing CSFV E2 from 

‘Alfort/187’ strain, known as CP7_E2alf, became the first licensed live attenuated 

marker vaccine against CSF. It was named Suvaxyn® CSF Marker (Zoetis) 

(Blome et al, 2017d). However, there were still some remaining issues with 

CP7_E2alf that needed to be overcome. First, vaccination led to a reduction, but 
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not complete inhibition, of transplacental infection. Second, although the vaccine 

was licensed based on intramuscular vaccination performed in domestic pigs, 

wild boars, which act as a reservoir species, would still need to be vaccinated 

orally as it would not be feasible to trap and intramuscularly vaccinate wild 

populations of animals. Field studies from Italy monitoring virus neutralizing 

antibodies in wild boars found detectable antibodies in only 36.3% of wild boars 

after vaccination using oral bait.  However, there was no evidence that the studied 

animals had eaten the baits. It was not known if all of the population came into 

contact with the baits due to environmental conditions including weather or other 

animal species having eaten the baits. Another study showed wild boar to be 

selective in their bait choice, with different bait types being preferred based on 

wild boar age (European Commission, 2013). There was no information in both 

studies about the density of the population though as this is one key factor for the 

transmission rate. Next to the density of the population the basic reproduction 

number (R0) depends on the virulence of the CSF strain and the susceptibility of 

animals within the population. For domestic pigs the R0 value was shown to be 

high in general but differ through the populations due to age and status 

(Weesendorp et al, 2009; Ribbens et al, 2004). One experimental study (Dewulf 

et al, 2001) estimated an R0 of 13, another study during an outbreak in the 

Netherlands 1997 – 1998 (Stegeman et al, 1999) estimated R0  as 2.9 in breeding 

pigs and 81 between weaned piglets. Therefore, the vaccine coverage calculated 

with the formular Vc = (1-1/R0) ranges between 92% based on the Dewulf study 

and 65% and 99% based on the Stegeman study.  

 

 

 



- 24 - 

 

1.3.2.1.3 Porcine cytomegalovirus based viral vector platform 

To overcome issues mentioned above this study has been building on previous 

work directed towards developing a CSFV E2 based vaccine in a replication 

competent cytomegaloviral background, this time using a porcine 

cytomegalovirus based viral vector platform which is discussed in more detail in 

the following sections. As replication competent cytomegaloviruses spread easily 

within host populations, it would be ideal for vaccinating wild boar populations as 

it would only be necessary to trap and vaccinate a few ‘founder’ animals.  This 

would then return to the herd and spread the vaccine naturally, eliminating the 

need for baiting. 

 

1.4 Porcine cytomegalovirus (PCMV)  

1.4.1 Lineage 

PCMV (also known as suid herpesvirus-2), belongs to the subfamily 

Betaherpesvirinae of the family Herpesviridae and order Herpesvirales. 

 

1.4.1.1 Herpesvirales 

The order Herpesvirales is divided into three families: Herpesviridae, 

Alloherpesviridae and Malacoherpesviridae. The Herpesviridae family covers 

mammalian, avian and reptilian viruses. The Alloherpesviridae family includes 

fish and frog viruses, and the Malacoherpesviridae comprises molluscs viruses 

(Davison et al, 2009; Savin et al, 2010). Comprising over 100 viruses 

herpesviruses are among the most thoroughly studied group of large DNA viruses 

(McGeoch et al, 2006). Paleovirology indicates that the first Herpesvirales virus 

appeared around 200 million years ago, with further sublineages developing over 
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the past 80 million years.  It is likely that these sublineages largely co-evolved 

with their host species (McGeoch et al, 1995).  

 

 

Figure 3. Herpesvirales classification (abstract of International Committee on 

Taxonomy of Viruses (ICTV) Master Species List 2018a v1) 
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1.4.1.2 Herpesviridae 

Herpesviruses represent one of the three families in the order of Herpesvirales 

(Figure 3). Herpesviridae are further divided into three subfamilies: 

Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae. These 

families contain several well-known human pathogens such as varicella zoster 

which is the cause of the common childhood disease chickenpox, Herpes simplex 

virus 1 which causes coldsores, cytomegalovirus (CMV) and Kaposi’s sarcoma 

herpesvirus (KSHV; human herpesvirus-8). Infection with herpesviruses such as 

CMV and HSV1 is frequently asymptomatic being well-controlled by individuals 

with healthy immune systems. This is presumably due to extensive co-evolution 

leading to a balance between replication and immunological control within the 

host (Stuart-Harris, 1983; Grinde, 2013).  However, co-existing with the host is a 

delicate balance, and these viruses can reactivate and cause disease when the 

host immune system is compromised. In the case of HSV-1, triggers such as 

stress, immune suppression or UV light can trigger reactivation and localized 

replication leading to the appearance of cold sores (Grinde, 2013; Hillaire et al, 

2013). CMV can cause severe disease in immunocompromised patients, and in 

congenitally infected infants.  KSHV is also known for being prominent in immune 

suppressed patients – commonly seen in patients with acquired immune 

deficiency syndrome (AIDS). 

 

Common clinical manifestations of herpesvirus infection are shown in (Table 1) 

(WHO, 1985; Krug & Pellett, 2014;  Hill & Zerr, 2014; The Pig Site; Center for 

Food Security and Public Health, Iowa State University, 2015; Rezk et al, 2018; 

ViPR, 2018; Donofrio et al, 2007).  
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Subfamily Virus Clinical manifestations 

 

Alpha- Herpes simplex virus Skin vesicles, labial mucosal lesions, 

herpesviruses  type 1 keratoconjunctivitis, gingivostomatitis,  

 encephalitis, meningitis     

Herpes simplex virus Genital lesions 

type 2 

 Varicella zoster virus Chickenpox, Shingles 

 

Beta-  Cytomegalovirus Infectious mononucleosis, retinitis, anemia, 

herpesviruses  thrombocytopenia, pneumonia, encephalitis, 

miscarriage, stillbirth, hearing loss, hepatitis 

 Roseolavirus roseola infantum, febrile rash in infants, 

Encephalitis and rejection in transplant   

patients, Hashimoto thyroiditis 

Suid betaherpesvirus 2 Rare except for young piglets: rhinitis,  

sneezing, respiratory distress, poor weight  

 gain 

 Pigs older than 3 weeks: subclinical to mild 

 Infected pregnant sows: fetal death,  

 mummified fetuses, stillbirth, weak piglets, 

 nasal hemorrhage 

 

Gamma- Epstein-Barr virus Infectious mononucleosis, associated with 

herpesviruses  hematopoietic, epithelial and mesenchymal 

 neoplasms 

Human herpesvirus 8 Kaposi’s sarcoma with skin lesions,  

lymphoma, fever, weight loss 

Bovine herpesvirus 4 Uterine disease, metritis 

  

Table 1. Clinical manifestations caused by Herpesvirinae 
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The herpesvirus life cycle can be divided into two phases – the lytic phase and 

the latent phase. During lytic replication, the viral genome is replicated, 

assembled into new virus particles which are then released from the host cell due 

to cell lysis. During the latent phase, the virus genome is maintained as an 

episome, largely concealed from the host’s immune system, allowing 

herpesviruses to persist within the host (Guo et al., 2010).  

 

The ability to establish latency is a trait shared by all members of the 

Herpesviridae family (Whitley, 1996; Mettenleiter et al., 2008); however, 

members of different subfamilies establish latency in distinct cell types. 

Alphaherpesvirus latency occurs in neuronal cells. When reactivation occurs, 

newly formed virions travel along neuronal cells where they can then cause a lytic 

infection in epithelial cells, facilitating spread of the virus (Stuart-Harris, 1983). 

Betaherpesviruses establish the latent phase within secretory glands and cells of 

the lymphoreticular system, while gammaherpesviruses latency involves B- and 

T- lymphocytes. The host range available also varies within the subfamilies from 

wide host range (alphaherpesviruses) to restricted host range (beta- and 

gammaherpesviruses).  

 

Herpesviruses are linear double-stranded (ds) DNA viruses ranging from 120 to 

260nm in diameter (Sadeghipour & Mathias, 2017). Genome size is variable, 

ranging between 108 to 300 kb. Depending on the virus, the number of proteins 

encoded by the genome can vary from 70 to 200 proteins (NCBI, 2013). 

 

Herpesvirus virions consists of four layers: core, capsid, tegument and envelope. 

The core is the innermost area of the virion and contains the dsDNA viral genome 

encapsidated within an icosahedral capsid of 115 to 130 nm in diameter. This 
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nucleocapsid core is surrounded by the tegument. The tegument layer contains 

virus encoded proteins that are important in dampening initial host cell immune 

responses facilitating infection and replication. Proteins that play a role in 

assembly and egress of virus particles can also be found in the tegument. The 

envelope is a bilipid outer layer of the virion, and contains several different viral 

glycoproteins which often appear as spikes on the virion surface (Guo et al., 

2010; Sadeghipour & Mathias, 2017).   

 

 

 

 

 

Figure 4. Structure of herpes virion. The double-stranded DNA is packaged within 

the icosahedral capsid. The nucleocapsid is surrounded by the tegument which 

contains virus encoded proteins. The outer envelope layer is a bilipid membrane 

spiked with viral glycoproteins. Adapted from (ViralZone 2017, Swiss Institute of 

Bioinformatics, with permission) 
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1.4.1.3 PCMV (suid herpesvirus-2, SuHV2) 

1.4.1.3.1 History of the disease’s name 

Histological results from pig samples from several outbreaks in a Yorkshire pig 

herd in 1954 in England, and 1955 in Scotland indicated an outbreak of  inclusion-

body rhinitis (IBR) first reported by Done and colleagues (Mitchell & Corner, 

1958a). While atrophic rhinitis was well known at the time, especially in Canada 

and the United States, this disease in the UK appeared to be different, warranting 

further investigation (Mitchell & Corner, 1958). In 1964 Corner et al. described 

the disease as cytomegalic inclusion disease (CID), caused by porcine 

cytomegalic inclusion disease virus, due to the similarity of inclusion bodies found 

in human, mouse and guinea pig cell-cultured cytomegalovirus (L’Ecuyer & 

Corner, 1966).  

 

1.4.1.3.2 Taxonomy of PCMV 

In the 1st report in 1971, the International Committee on Taxonomy of Viruses 

(ICTV) catalogued PCMV as a new species of herpesviruses, under the name 

porcine inclusion body rhinitis virus (International Committee on Taxonomy of 

Viruses). Following removal from the list in the 2nd report in 1976, the virus was 

reinstated in the 6th report in 1995 under an unassigned genus of the subfamily 

Betaherpesvirinae, species suid herpesvirus 2. In 2015 the virus was renamed 

as suid betaherpesvirus 2 [International Committee on Taxonomy of Viruses 

(ICTV)].  

 

1.4.1.3.3 PCMV and Roseolavirus, a comparison 

The only fully characterised genome of PCMV (BJ09 strain; GenBank no: 

KF017583) is comprised of 128,367 bp and a G/C content of 45.54% The PCMV 
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genome is shorter and has a higher G/C content than the Roseolavirus HHV-6A 

strain U1102 (159,322 bp; 42.44%), HHV-6B strain z29 (162,114 bp; 42.77%) 

and HHV-7 strain RK (153,080 bp; 36.22%) (Gu et al, 2014). The length of the 

direct repeats is also substantially shorter (363bp) (Gu et al, 2014) than those 

found in HHV-6A strain U1102 (8087 bp) (Megaw et al, 1998), HHV-6B strain z29 

(8,793 bp) (Dominguez et al, 1999) and HHV-7 strain RK (5,814 bp) (Megaw et 

al, 1998).  The unique region of PCMV contains 79 ORFs, flanked by direct 

repeats (Figure 5). Seventy-one ORFs of the PCMV genome have homologs in 

other herpesviruses, especially within the Roseolavirus genus. Only eight non-

core genes (U13p, U24p, U26p, U83p, U85p, U89p, U90p and U100p) differ from 

HHV-6A, HHV-6B and HHV-7. These genes encode a transcriptional repressor 

(U13), membrane proteins (U24, U26), a CC chemokine (U83), glycoproteins 

(U85, U100) and IE-A proteins (U89, U90), while the functions in PCMV remain 

unknown.  It has been suggested that PCMV be classified within the Roseolavirus 

genus rather than classifying it as a CMV - although there are some similarities 

between the unique regions of PCMV, HCMV, RCMV and MCMV. Similarities 

between PCMV genome and roseolavirus strains HHV-6A, HHV-6B and HHV-7 

are shown in regard to genes encoding DNA polymerase, major capsid protein 

and glycoprotein B (gB) (Gu et al, 2014; Denner, 2015; Fiebig et al, 2017). PCMV 

gB showed high consensus with HHV-6 and HHV-7 (43.4% and 42.6%, 

respectively), much higher than with other herpesvirus gB genes (Widen et al, 

2001).  
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Figure 5. Characterisation of PCMV genome. 79 ORFs were identified, 

represented as arrows indicating location and orientation. Arrows with white 

rectangles illustrate so-called core genes which are present in all three 

subfamilies of the Herpesviridae family, due to a common ancestor. The unique 

regions are flanked by terminal direct repeats (DR), represented as white 

rectangles. Reprinted from (Gu et al, 2014). 

 

 

1.4.1.3.4 Species specificity 

Herpesviruses, especially CMV (a well-studied representative of the 

betaherpesvirus family), are known to be highly species specific with cross 

species infections inhibited, at least in part, due to prevention of viral replication 

in host cells by induction of the apoptotic pathway (Jurak & Brune, 2006). 

 

When this project commenced PCMV was described as uncategorized within the 

betaherpesvirus subfamily, although studies had shown high similarities to the 

Roseolavirus genus. It is not known if PCMV is as highly species specific as other 

CMVs, or whether it is able to infect and replicate in other cell types.  For example, 

the ability to replicate in human cells would be hugely problematic with regards 

to xenotransplantations from pigs into humans. Although under study, this 

question has not been fully answered (Denner, 2018). Studies to date have had 
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inconsistent results. Whittaker’s group (Whitteker et al, 2008) confirmed PCMV 

infection of human fibroblasts using tissue culture, PCR and western blot, 

whereas Tucker and colleagues (Tucker et al, 1999) failed to demonstrate stable 

virus transmission of PCMV from infected primary porcine alveolar macrophages 

to a human detector cell line (RAJI), and a human epithelial cell line (293) by 

PCR. Fiebig and colleagues  (Fiebig et al, 2017) were also unable to detect PCMV 

in five human cell lines (HeLa, 293T, TZM-bl, Jurkat and HepG2) by PCR, 

indicating that there was no virus transmission and replication following infection 

of these cell lines with serum from a PCMV-infected animal. They did however 

demonstrate antibody cross-activity between PCMV and the Roseolavirus HHV-

6, which can likely be ascribed to the genomic similarity between PCMV and 

Roseolaviruses. Despite the likelihood of PCMV being able to infect humans 

being very low, the possibility has not been ruled out (Denner, 2017). In terms of 

xenotransplantation (e.g. heart valves are commonly used in human patients), 

PCMV has to be eradicated from pigs designated for organ donation and 

appropriate programs have been developed to ensure this goal (Clark et al, 2003; 

Tucker et al, 2003; Denner, 2015; Fiebig et al, 2018).  

 

1.4.1.3.5 Transmission and clinical manifestation 

Pigs are the natural host for PCMV. The virus is ubiquitous and is considered to 

be endemic in nearly all pig populations worldwide. It is thought that PCMV can 

be transmitted vertically, via transplacental transmission (Edington et al, 1988; 

Fryer et al; 2001 Clark et al, 2003), and also horizontally, via nasal and ocular 

secretions and urine (Morozov et al, 2017). Infection is usually latent, with the 

exception of infected piglets (Morozov et al, 2017). Symptoms can appear as mild 

sneezes, but infertility in older pigs has also been attributed to PCMV (Kavanová 
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et al, 2018). Clinical manifestations in piglets manifest as rhinitis with inclusion 

bodies observed in cells of the nasal mucosa (Basso et al, 2017). Infections in 

piglets less than 3-weeks old can lead to runting and death with a high mortality 

rate (Clark et al, 2003; Liu et al, 2014).  

  

1.4.1.3.6 PCMV as a viral vector 

While PCMV has been assigned to the Roseolavirus genus by ICTV since 

February 2019, it shares many similarities with the CMV genus. Infection of 

immunocompetent individuals with CMV results in an asymptomatic but 

persistent latency, and reactivations, which are actually consistent with low level 

chronic replication, occur frequently, evoking high levels of antibodies and T- cells 

directed against CMV (Sylwester et al, 2005). These strong immune responses, 

combined with the fact that CMV can also re-infect infected individuals, makes it 

ideal for use as a vector platform, as pre-existing immunity won’t impede 

vaccination (Hansen et al, 2010; Tsuda et al, 2011; Tsuda et al, 2015). The use 

of CMV as a vaccine platform offers several advantages over conventional 

vaccines. It is ubiquitous, and its species-specific nature minimizes the risk of 

spread to other animals - as shown in a recent predator/prey study (Murthy et al, 

2013). CMV spreads well through its host populations indicating a high 

transmission rate and provides long lasting durable immunity that can be 

achieved with a single vaccine dose (Redwood et al, 2005; Tsuda et al, 2015; 

Quinn et al, 2016) This is more cost effective than strategies which require 

multiple doses to achieve protection, or strategies where animals have to receive 

a vaccination individually, such as the chimeric vaccine described earlier. The 

ability of CMV to spread and essentially become ‘self-disseminating’ has great 

potential for controlling diseases in wild animal populations that can serve as a 
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reservoir of disease, and act as a source of infection for domestic animals and 

vice versa. A self-disseminating vaccine would be invaluable for targeting 

inaccessible wild-life populations such as wild boars and would eliminate the 

need for complex baiting strategies. Such a strategy would involve capturing and 

inoculating a small number of animals. When released back into the wild, the 

virus will then spread from animal to animal, through the whole population, 

spreading immunity as it goes (Murphy et al, 2016). In this study we hypothesised 

that PCMV will have similar properties, and in the future, it could be adapted for 

use as a self-disseminating viral vector platform. 

 

1.4.2 PCMV mutagenesis 

1.4.2.1 Cloning strategy using bacterial artificial chromosome (BAC-) based 

technology 

 

Cloning strategies involving the insertion of large DNA fragments (12.5 kb) into a 

viral genome (baculovirus) that was propagated in Escherichia coli (E. coli) were 

first reported by Luckow and colleagues in the early nineties (Luckow et al, 1993). 

Generating an infectious BAC containing viral genomes allows genetic 

engineering of the viral genome in a circular plasmid form by using the E. coli 

recombination system. This is much faster than methods which rely on 

homologous recombination to insert / delete regions into / from viral genomic 

DNA. The genetically engineered BAC can then be transferred into eukaryotic 

cells to reconstitute the genetically modified virus (Adler et al, 2003).  By the late 

1990s, this strategy had been adapted to the mouse muromegalovirus model 

(murine cytomegalovirus, MCMV), to investigate the pathogenesis of CMV 

infection (Messerle et al, 1997). This technique is still widely used, and infectious 
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BACs have now been generated for many other DNA and RNA viruses (Hall et 

al, 2012).  

 

BACs are supercoiled circular DNA plasmids based on the low-copy fertility factor 

(F-factor) (one to two copies per cell) of E. coli. Despite their often very large size 

(up to 300 kb pairs), they facilitate easy, quick editing of viral genomes. Other 

vector models such as plasmids or cosmids can maintain only small DNA 

constructs of 10 to 50 kb, respectively in comparison to BACs which can maintain 

the entire genome of a virus (Ramsay, 1994). BACs are also quite stable, as 

demonstrated through several serial passages. The low copy number of BACs 

minimizes the risk of rearrangements or deletions of sections within the cloned 

DNA (Shizuya et al, 1992), reducing the risk of mutations which would be present 

in the reconstituted virus (Osterrieder et al, 2003). 

 

Other similar recombination systems also exist. Yeast artificial chromosomes 

(YACs) have also been used as a vector platform (Ketner et al, 1994), but have 

some disadvantages when compared to BACs. Although YACs can maintain 

2000 kb DNA (Ramsay, 1994), they exist as linearized DNA constructs (as 

opposed to the circularized BACs), and therefore are much more susceptible to 

degradation (O’Connor et al, 1989), resulting in structural instability (Neil et al, 

1990). It was decided to use a BAC based strategy for this project as several 

promising vaccine candidates have been generated using this technique with 

Human CMV (human cytomegalovirus), HSV-1 (herpes simplex virus 1), VZV 

(varicella zoster virus), MCMV (murine cytomegalovirus), GPCMV (guinea pig 

cytomegalovirus) and RhCMV (rhesus cytomegalovirus) BACs. 
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1.4.2.2 BAC vector  

As described above BACs are large DNA plasmids that allow genetic 

manipulation of viral genomes in E. coli, rather than having to manipulate the viral 

DNA directly. BACs contain several genes that are required for maintenance and 

partitioning of the BAC in the bacterial cell. These regulatory genes are contained 

in an element known as a BAC cassette which is about 8 kb in size (Brune et al, 

2000). This cassette contains an origin of replication (oriS) and repE, which are 

involved in reproduction of the plasmid within the bacteria. It also contains parA 

and parB genes which are involved in the partitioning of the BAC to daughter 

cells, forming part of the control mechanism for limitation of BAC copy numbers 

to one or two copies per bacterial cell. The BAC cassette also contains a 

selectable marker (frequently Chloramphenicol), which allows for selection of 

clones that carry the BAC. Additionally the cassette contains several restriction 

enzyme sites and some cleavage sites (e.g. loxP, locus of crossing over P1 

phage) which facilitates the deletion of the BAC cassette after generation of the 

recombinant virus (Shizuya et al, 1992; Warden et al, 2011). Additional selectable 

markers which can be used to select eukaryotic cells infected with the resulting 

recombinant virus are also present. These include guanine phosphoribosyl 

transferase gene (GPT) and green fluorescent protein gene (GFP).  

 

1.4.2.3 Red/ET homologous recombination 

Homologous recombination (HR) was first introduced using YACs in the early 

1990s (Baudin et al, 1993). Since then HR has become an important tool for gene 

editing to genetically modify specific genetic loci and is often referred to as 

recombinogenic engineering or recombineering. Although recombinogenic 

engineering in yeast pioneered HR technology, this approach had several 
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limitations. Structural instability of YACs was a primary problem. Yields of DNA 

were also quite low and working with YACs was labour-intensive. A prokaryotic 

based system, using bacterial artificial chromosomes (BACs) and an endogenous 

E. coli recombination system involved in DNA repair (RecA protein and RecBCD 

enzyme), was developed as an alternative strategy to overcome the 

disadvantages of YACs. Although more stable than YACs, a disadvantage of 

RecA-dependent recombinogenic engineering was the need for homologous 

regions 1000 bp in length, and the need for strong induction of RecBCD to 

degrade inserted linear DNA fragments.  

 

An alternative bacterial recombination system based on the RecE and RecT 

proteins from the phage Rac, or Red and Red from the phage  (called E/T 

recombineering) overcame both of these limitations (Zhang et al, 1998; Muyrers 

et al, 1999; Rivero-Müller et al, 2007). Both E/T systems use similar pathways, 

and both require a Red protein which inhibits the activity of RecBCD, preventing 

degradation of the exogenously added DNA ‘recombination fragment’ containing 

the desired genetic alteration (Wagner & Koszinowski, 2004). RecE and Red 

degrade the 5’ end of the linear dsDNA recombination fragment to enable RecT 

and Red respectively, to anneal the resulting single-stranded homologous 

region (35-60 nucleotides) of the fragment to the targeted single-stranded circular 

DNA of the BAC genome being targeted, resulting in a strand exchange. Proteins 

from eukaryotes and viruses can also be used for E/T recombination (Kolodner 

et al, 1994; Muyrers et al, 2001), enabling E/T recombination to be performed in 

cell types other than bacteria.  

 

E/T recombination has several advantages over other systems mentioned above, 

including the ability to insert large regions of DNA into the targeted BAC. The 
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relatively short size of the homologous region necessary to target the 

recombination fragment (35-60 nts) also means that the fragment can be 

amplified using polymerase chain reaction (PCR) (Zhang et al, 1998; Muyrers et 

al, 2001). Flanking marker genes by recognition sites such as FRT (FLP 

recognition target) or LoxP (locus of crossing over P1 phage) sites (Shizuya et 

al, 1992) can be used to enable marker gene removal from the targeted BAC 

genome following selection of recombinants. Due to these advantages, E/T 

recombination is regarded as a state-of-the-art, reliable technology for genetic 

modifications of virus genomes within BACs, with many studies having been 

performed in the years since its inception (Table 2). 
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Virus vector Target Studied by 

Murine 

cytomegalovirus 

(MCMV) 

Sperm binding 

protein in mice 

(Zona pellucida 

protein 3) 

 

Ebolavirus (Zaire) 

nucleoprotein 

 

 

 

Melanoma antigen 

(B16) 

(Redwood et al, 

2005) 

 

 

 

(Tsuda et al, 

2011) 

(Tsuda et al, 

2015) 

 

(Qiu et al, 2015) 

 

 

Rhesus 

cytomegalovirus 

Various proteins in 

simian 

immunodeficiency virus  

 

Ebolavirus (Zaire) 

glycoprotein 

 

 

Mycobacterium 

tuberculosis antigen 

(Hansen et al, 

2011) 

 

 

(Marzi et al, 

2016) 

 

 

(Hansen et al, 

2018) 

 

Bovine herpesvirus 4 

(BoHV-4) 

Anti-complement 

protein I and II in 

Ixodes ricinus (tick) 

(IRAC I and IRAC II)  

 

BVDV E2 protein 
 

(Gillet et al, 2005) 

 

 

 

 

(Donofrio et al, 

2007b) 

 
 

Table 2. BAC-based vaccines 
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1.4.2.4 Genome editing by CRISPR/Cas9 technology  

In addition to Red/ET HR, recently developed CRISPR/Cas9 technology can also 

be used to generate recombinant viruses. 

 

1.4.2.4.1 Introduction 

Although Red/ET based homologous recombination was a milestone in genome 

editing, the generation and subsequent screening of BAC clones is labour- and 

time intensive (Lin et al, 2016). A new powerful technology known as 

CRISPR/Cas9 has emerged in recent years. The first steps towards discovery of 

CRISPR began in the late 1980s (Ishino et al, 1987, Ishino et al, 2018). However, 

it has taken over 20 years to fully understand how CRISPR systems function in 

bacterial immunity (Hsu et al, 2014). CRISPR denotes clustered regularly 

interspaced short palindromic repeats and was discovered along with Cas 

(CRISPR-associated) proteins in prokaryotes where it functions to defend against 

bacteriophage infections (detailed below).  

 

1.4.2.4.2 Classification 

CRISPR-Cas systems are divided into two classes (Class 1 and Class 2) based 

on the presence of Cas1 and Cas2 genes, respectively. These two classes are 

then subdivided into different types based on the presence of additional 

accessory Cas subunit genes. Class 1 systems, which can contain several 

different Cas subunits, include type I, III and IV systems. Some of these are 

further sub-divided into different subtypes. Class 2 systems contain only one 

specific CRISPR ribonucleoprotein and are subdivided into types II, V and VI 

(Figure 6). As with Class 1, the Class 2 types are further sub-divided into subtypes 

(Koonin et al, 2017). The best characterised of all of these systems is the 
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CRISPR/Cas9 system, a type II system from Streptococcus pyogenes. This is the 

system that was utilized in this study and is described in more detail below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. CRISPR/Cas classification showing two separate classes. Each class 

contains three ‘types’. Cas 1 and Cas 2 proteins (not shown) are common to all 

‘types’. These ‘types’ can then be further divided into subtypes (not shown), on 

the basis of Cas proteins found in each subtype. The CRISPR/Cas9 system is 

the one used in this study. 
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1.4.2.4.3 CRISPR defence 

CRISPR systems function as an adaptive immune system within prokaryotes. All 

of the different systems function in a very similar manner, proceeding through the 

same three steps of (spacer) acquisition, expression (also called crRNA 

biogenesis) and (target) interference (Yao et al, 2018) (Figure 7). 

 

 

 

 
 

Figure 7. The natural bacterial adaptive immune defence system. This figure 

demonstrates the three stages of the CRISPR/Cas9 system (adapted from Yao 

et al, 2018) 
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1.4.2.4.3.1 Acquisition 

When an external / invading genome is released into the bacterial cell for the first 

time, a copy of a short fragment (26 – 72 bp) of the invasive DNA (protospacer) 

is made and placed in a CRISPR array, downstream of a leader sequence. The 

leader sequence plays an important role in expression of pre-crRNA which is 

necessary for crRNA biogenesis (see below). The CRISPR array functions as a 

library record of prior infections, where all of these protospacer sequences are 

stored together, with each protospacer sequence being flanked by repeat 

sequences (21 – 48 bp) (Rath et al, 2015; Yao et al, 2018).  

 

Protospacers are not randomly selected, but instead are captured using a 

sequence of 2 – 5 nucleotides adjacent to the protospacer, called the protospacer 

adjacent motif (PAM). The CRISPR array is surrounded by Cas genes which 

encode different Cas proteins depending on the specific CRISPR system (Hille & 

Charpentier, 2016; Yao et al, 2018). Cas1, Cas2 and Cas9 are all required for 

adaptation in type II systems but the process is not yet understood in full detail 

(Garneau et al, 2010; Wei et al, 2015). Together, the protospacer and Cas 

proteins form a ribonucleoprotein complex, forming a basis for the memory of viral 

invasion, leading to a defensive immune response during subsequent infections 

with the same pathogen. 

 

1.4.2.4.3.2 crRNA biogenesis 

After incorporation of the new protospacer the complete CRISPR array is 

transcribed into a precursor CRISPR RNA (pre-crRNA). During the maturation 

process, protospacers match with a complementary trans-activating RNA 

sequence (tracrRNA) at the repeat region, forming a unit called guide-RNA 

(gRNA), which is about 20 nucleotides long. The Cas9 protein recognizes the 
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CRISPR array, with its bound tracrRNAs, and clips the sequence to generate 

individual gRNAs. This event leads to the formation of a mature gRNA complex 

consisting of pre-crRNA and tracrRNA. For efficiency in genome editing 

technologies, pre-crRNA and tracrRNA can be synthesised to be used as a single 

guide RNA (sgRNA) (Hille & Charpentier, 2016; Yao et al, 2018). Together with 

the Cas9 protein, the gRNA forms the CRISPR/Cas9 complex which is widely 

used to efficiently edit genomes. 

 

1.4.2.4.3.3 Interference 

The CRISPR/Cas9 complex recognises a 20-nucleotide invasive DNA sequence 

(protospacer) that is complementary to the protospacer-derived gRNA sequence 

in the CRISPR array, when presented adjacent to a PAM (3-nucleotide sequence 

(NGG) downstream of the protospacer). The protospacer is cleaved 3 – 4 

nucleotides upstream of the PAM by Cas9 nucleases. Cas9 HNH-like nuclease 

(endonuclease domain named for histidine and asparagine residues) cuts the 

strand complementary to the crRNA sequence and Cas9 RuvC-like nuclease (an 

endonuclease domain named for E. coli protein involved in DNA repair) cuts the 

non-complementary strand, resulting in a double-stranded break (DSB), leading 

to the destruction of the invasive DNA, preventing establishment of infection 

(Gasiunas et al, 2012; Jinek et al, 2012; Martinez-Lage et al, 2017). 

 

1.4.2.4.4 Taking advantage of CRISPR/Cas9 mediated targeting  

The development of CRISPR/Cas technologies has revolutionised the field of 

genetic engineering in eukaryotic systems, allowing easy and efficient targeted 

modifications to viral, bacterial and eukaryotic genomes. CRISPR/Cas is much 

more efficient than earlier technologies such as homologous recombination 
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(distinct from bacterial HR detailed above), the technology initially used in 

development of knock-in / knock-out animal models (Capecchi, 1989; Hsu et al, 

2014). Several studies showed that by introducing targeted DNA DSB, 

CRISPR/Cas stimulated cellular repair events [either homologous direct repair 

(HR) or non-homologous end joining (NHEJ)], increasing recombination 

efficiency thereby becoming a powerful tool in genome editing technology (Rudin 

et al, 1989; Rouet et al, 1994; Bibikova et al, 2003). As Cas9 can be targeted to 

selected genomic regions based on the sequence of the gRNA, the DSBs can be 

targeted highly specifically to within the genome. Once a DSB occurs, one of the 

two distinct cellular repair mechanisms can be triggered: the more frequent but 

error-prone NHEJ pathway, and the high-fidelity HDR pathway. NHEJ repairs the 

DSB by processing the broken ends to fit together for ligation (Weterings & Chen, 

2008). The repair is not always completely accurate and small deletions or 

insertions (indels) occur frequently (Gaj et al, 2013; Boel et al, 2018). These 

indels can lead to frameshifts in the genome, resulting in loss of functionality 

(Weterings & Chen, 2008). In contrast to the NHEJ pathway, repair by the HDR 

pathway is very precise as it requires a homologous stretch to the target 

sequence. HDR is the better tool for genome editing, as a gene of interest can be 

inserted into or deleted from the genome where desired, without the occurrence 

of indels - however, the efficiency is relatively low. To overcome this issue various 

approaches have been developed, including an NHEJ inhibitor SCR7 (used in 

this study), which tips the balance towards use of the HDR pathway [increases 

Cas9-mediated HDR by up to 19-fold (Aird et al, 2018)], over the NHEJ pathway 

by degrading DNA ligase IV, a ligase on which the NHEJ pathway is dependent 

(Maruyama et al, 2015; Aird et al, 2018); although a study by Zhang and 

colleagues (Zhang et al, 2017), reported that they did not find that SCR7 



- 47 - 

 

increased efficiency of HDR at their desired loci, but factors such as different cell 

lines and vectors may have contributed to this discrepancy. Hence, the role of 

SCR7 in increasing the efficiency of HDR still remains unclear. 

 

1.5 Rationale for development of a PCMV vaccine vector  

Cytomegalovirus (CMV), a member of the herpesvirus family, is a well-studied 

vaccine vector platform (McGeoch et al, 2006). Based on sequencing of one 

strain, the BJ09 strain, PCMV has been characterised within the Roseolavirus 

genus (Gu et al, 2014). However, PCMV is expected to share characteristics 

with other members of the beta-herpesvirus subfamily. In common with all 

members of the beta-herpesvirus subfamily, PCMV shares many open reading 

frames restricted to this subfamily such as UL83, which expresses the late 

tegument protein pp65. PCMV contains glycoprotein B (gB), an envelope 

protein which facilitates fusion of the virion with the host cell membrane and is 

essential for infectivity. PCMV also shares similarities in cytopathology with 

other beta-herpesviruses such as HCMV or MCMV: infection being associated 

with the development of cytomegalic intranuclear inclusions (Narita et al, 

1987). 

 

PCMV is ubiquitous and, where studied, is present in all pig populations 

worldwide  (Edington et al, 1988; Fryer et al, 2001; Clark et al, 2003). Similar 

to other CMVs, PCMV infection is associated with asymptomatic, or mild 

disease. Only in the presence of immune suppression is PCMV associated 

with overt symptomology, for example causing disease or death in piglets, 

which is again comparable to other CMVs. Generally, this occurs through 
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congenital infection and only if the sow has a primary infection in late 

pregnancy (Morozov et al, 2017; The Pig Site).  

CMVs have the capacity to induce high levels of antibody (Marzi et al, 2016) 

and T-cell responses against heterologous target antigens, even in CMV-

infected individuals (Tsuda et al, 2011; Hansen et al, 2011; Tierney et al, 2012; 

Tsuda et al, 2015). Similarly, PCMV has been shown to induce high levels of 

antibodies, with one study reporting >99% pig sera from Japan testing positive 

for PCMV antibodies (Tajima et al, 1993; Plotzki et al, 2016). Previous studies 

by Edington and colleagues in 1976 and Staczek and colleagues in 1990, also 

reported high levels of antibodies in sera (Liu et al, 2012). There does not 

appear to be any published studies analysing T-cell responses during PCMV 

infection.  

 

Based on the common characteristics PCMV shares with other members of 

the beta-herpesvirus subfamily, we hypothesized that PCMV has similar 

advantages for exploitation as a vaccine vector, with a capacity for inducing 

high levels of antibodies and T-cell responses against heterologous target 

antigens, even in PCMV-infected animals. Although betaherpesvirus-based 

vaccines have shown substantial promise in experimental studies (Tsuda et 

al, 2011; Tierney et al, 2012; Tsuda et al, 2015; Marzi et al, 2016), the utility of 

a mammalian herpesvirus platform is established commercially for a gE-

deleted alphaherpesvirus-based vaccine (Bovilis, Rispoval, AKIPOR 6.3). The 

Bovilis-IBR marker live vaccine which targets bovine herpesvirus-1, the 

causative agent of infectious bovine rhinotracheitis (IBR) has shown to reduce 

clinical signs of IBR, and also reduce the shedding of virus from infected 

animals (Bosch et al, 1996). Zoetis also markets live and inactivated versions 

of this vaccine (Rispoval IBR Marker Vaccines). AKIPOR 6.3, marketed by 
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Merial, a live virus (Bartha-K-61 strain) vaccine in adjuvant targets 

pseudorabies virus (PRV), the causative agent of Aujeszky’s disease. It has 

shown full protection against lethal challenge with the classical PRV SC strain 

and played an important role in eradication of PRV in e.g. Europe, North 

America and New Zealand. However, in 2011 it was shown in China that the 

Bartha-K61 strain showed only 50% protection against a challenge with HeN1 

strain and therefore, does not protect effectively against this PRV strain (An et 

al, 2013). 

As discussed earlier in this chapter, several types of vaccines against CSFV 

have been developed, but many of these vaccines do not provide adequate 

levels of protection or meet DIVA requirements. Live recombinant viruses 

showed the most efficacy, but to date, only one DIVA compatible live 

recombinant vaccine against CSFV called Suvaxyn® CSF Marker (Zoetis), is 

commercially available (Blome et al, 2017d). However, the Suvaxyn® CSF 

Marker (Zoetis) vaccine has some limitations (see above). The long-term goal 

of this project is to take advantage of the characteristics of beta-herpesviruses 

by generating a PCMV-based vaccine designed to overcome issues 

associated with existing CSF vaccines. The high antibody and T-cell 

responses seen with other beta-herpesvirus based vaccines, if recapitulated 

with a PCMV-based vaccine, might eliminate transplacental infection – 

something the Suvaxyn® CSF Marker (Zoetis) vaccine fails to do.  Based on 

the capacity for CMVs to spread from animal to animal within defined species 

populations, a PCMV-based vaccine for CSF also has the potential to achieve 

substantial vaccine coverage in less accessible key animal populations, such 

as wild boar. As a licensed vaccine Suvaxyn® CSF Marker (Zoetis) requires 

direct intramuscular vaccination. Although it has shown potential for oral 
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vaccination (Blome et al, 2017d) further investigation might be necessary to 

achieve substantial coverage in wild animal reservoir species.  

PCMV was initially identified over 60 years ago when Done and colleagues 

first reported about an outbreak in the UK that involved a rhinitis in pigs, with 

a histological discovery of ‘inclusion bodies’ (Mitchell & Corner, 1958a). This 

new condition was different than the already known disease of atrophic rhinitis, 

leading to the classification of a new disease in pigs called ‘inclusion-body’ 

rhinitis (Mitchell & Corner, 1958a). However, PCMV has remained largely 

unstudied both in terms of its growth characteristics in vitro, as well as 

immunology / virology in vivo (Liu et al, 2014). Combined with the generally 

benign nature of infection, the lack of exploration into PCMV probably also 

results from the viruses extremely slow in vitro growth characteristics, which 

amongst other things makes cloning of the virus as an infectious BAC difficult.  

 

The aim of the present study was to further characterise the in vitro growth 

characteristics of a PCMV isolate provided by Dr. Jay Fishman (Section 2.2.1). 

As further steps towards cloning of PCMV as an infectious BAC, two 

recombinant BAC shuttle vectors were constructed to facilitate insertion of a 

BAC cassette into the PCMV genome at specific locations and were 

characterised. For development of a key reagent for these and subsequent 

studies, sera from a cohort of abattoir pigs were screened, and PCMV positive 

/ negative sera were identified by ELISA. Initial experiments towards the use 

of homologous recombination and CRISPR/Cas9 technology to insert the BAC 

cassette within the PCMV genome are also described. 
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Chapter 2 

Materials and Methods 

All eukaryotic cell culture and virus work was performed in a Class II biological 

safety cabinet (Scanlaf Mars; LABOGENE, Leighton Buzzard, UK) using aseptic 

technique (ThermoFisher Scientific, Aseptic Technique). 

 

2.1 Eukaryotic cell culture 

2.1.1 Cell line 

Porcine fallopian tube (PFT) cells, an adherent fibroblast-like cell line, were kindly 

provided by Dr. Jay Fishman, Harvard Mass General Hospital, Boston, USA 

forwarded by Dr. Helen Crooke, Animal and Plant Health Agency (APHA)-

Weybridge, New Ham, Surrey, UK.  

PFT cells were cultured and maintained in minimum essential media (GibcoTM 

MEM; Fisher Scientific, Loughborough, UK) supplemented with 10% (v/v) fetal 

bovine serum (GibcoTM FBS; US origin; heat inactivated at 56°C for 30 min; Fisher 

Scientific) and 1% (v/v) penicillin-streptomycin-glutamine (GibcoTM PSG; 

penicillin 100 U/ml; streptomycin 100 µg/ml; L-glutamine 0.29 mg/ml; Fisher 

Scientific) [complete MEM; MEM-10], at 37°C in a 5% CO2 humidified 

atmosphere.  

 

2.1.2 Maintenance of PFT cells 

2.1.2.1 Thaw of cells 

Cryovials containing 1 ml of PFT cells in 10% cryopreservation agent dimethyl 

sulfoxide (DMSO; Sigma-Aldrich Company Ltd., Gillingham, UK) diluted in FBS 

(see Section 2.1.2.3) were rapidly thawed in a 37°C water bath and transferred 
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into 5 ml prewarmed MEM-10. Cells were centrifuged at 296 x g (1200 rpm; 

Eppendorf Centrifuge 5810R, rotor S-4-104; Eppendorf Ltd, Stevenage, UK) for 

5 min at room temperature (RT). After discarding the supernatant, the cell pellet 

was gently resuspended in 7 ml prewarmed MEM-10 and transferred to a 25 cm2 

tissue culture flask, which was incubated at 37°C in 5% CO2 humidified 

atmosphere. 

 

2.1.2.2 Growth of cells 

Cell confluency was monitored under a light optical microscope (Motic AE 2000; 

VWR, Lutterworth, UK). Cells were passage into a new cell culture flask 

(generally every 3 – 4 days) after reaching a confluency of 90 - 100%. For 

passage, media was removed, and the monolayer was washed twice with 1X 

Dulbecco’s phosphate buffered saline (GibcoTM DPBS; Fisher Scientific). The cell 

monolayer was detached by incubation with Trypsin-EDTA (GibcoTM Trypsin-

EDTA (0.25%), Phenol red; Fisher Scientific) [1 ml for 25 cm2, 2 ml for 75 cm2, 3 

ml for 175 cm2] at 37°C for up to 5 min. Cells were resuspended in MEM-10 to 

inactivate the trypsin. For maintenance, cells were not counted but seeded at a 

1:3 – 1:6 split ratio of the single cell suspension which was then transferred to a 

new flask. Cells used in experiments, with a defined number of cells required, 

were counted and seeded at a defined density (see Section 2.1.2.4). 

 

2.1.2.3 Cryo-preservation of cells 

Cells from one 175 cm2 cell culture flasks were trypsinized as described above 

and centrifuged at 296 x g (1200 rpm; Eppendorf Centrifuge 5810R, rotor S-4-

104; Eppendorf) for 5 min at RT. The cell pellet was resuspended to a 

concentration of 5 x 106 cells/ml in freezing media [FBS containing 10% (v/v) 
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DMSO] and 1 ml volumes were aliquoted into appropriately labelled 1.8 ml 

cryovials (Thermo ScientificTM NuncTM Biobanking and Cell Culture Cryogenic 

Tubes; Fisher Scientific). Cells were then immediately transferred into a Mr. 

Frosty freezing container (Fisher Scientific) followed by storage at -80°C 

overnight (achieves controlled cooling a rate of -1°C/min). For short-term storage, 

vials were transferred to freezer boxes and maintained at -80°C. For storage 

longer-term, vials were transferred to a liquid nitrogen tank. 

 

2.1.2.4 Cell counting 

Cell counts were performed under a light optical microscope (Motic AE 2000; 

VWR) using a haemocytometer (Hirschmann InstrumentsTM Counting Chamber; 

Fisher Scientific). Cells were counted in the four corner squares and the average 

of counted cells was used to calculate the concentration in cells / ml 

(multiplication factor 104, see Appendix IV) prior to expansion / maintenance or 

for use in experiments.  

 

2.2 Porcine cytomegalovirus cultivation 

2.2.1 Virus 

Frozen PFT cells infected with porcine cytomegalovirus (PCMV) wild type (WT) 

were kindly provided by Dr. Jay Fishman, Harvard Mass General Hospital, 

Boston, USA forwarded by Dr. Helen Crooke, Animal and Plant Health Agency 

(APHA)-Weybridge, New Ham, Surrey, UK. Little information was given in regard 

to this WT strain hence this strain was called ‘JF strain’. 

PCMV WT (JF strain) infected PFT cells were cultured and maintained in MEM-

10 at 37°C in 5% CO2 humidified atmosphere.   
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2.2.2 Culture maintenance 

2.2.2.1 Thawing of cells 

Cryovials containing 1 ml of PCMV WT (JF strain) infected PFT cells in 10% 

freezing media were rapidly thawed in a 37°C water bath and transferred into 10 

ml prewarmed MEM-10. After centrifugation at 296 x g (1200 rpm; Eppendorf 

Centrifuge 5810R, rotor S-4-104; Eppendorf) for 5 min at RT, the supernatant 

was discarded, and the cell pellet was gently resuspended in 10 ml prewarmed 

MEM-10. Cells were counted and diluted to 2.1 x 104 cells / ml (Appendix IV) in 

MEM-10.  

 

2.2.2.2 Growth of cells 

For maintenance of PCMV WT (JF strain)-infected PFT cells, a 175 cm2 cell 

culture flask of uninfected PFT cells was trypsinized (as described above) and 

resuspended to a concentration of 8.5 x 104 cells / ml MEM-10. A 1 ml volume of 

PCMV WT (JF strain) infected PFT cells (at a concentration of 2.1 x 104 cells / 

ml) was then mixed with an equivalent volume of uninfected PFT cells (at a 

concentration of 8.5 x 104 cells / ml), equivalent to a 1:4 ratio. The entire mixture 

was then transferred to a 75 cm2 cell culture flask, the volume increased to 15 ml 

by addition of MEM-10 and cells were cultured at 37°C in a 5% CO2 humidified 

atmosphere. Every 4 days, 5 ml of media was replaced, and cells were monitored 

via light optical microscopy until cells had reached confluency and cytopathic 

effect (CPE), characterised by swollen ‘cytomegalic’, rounded up cells.   

 

2.2.2.3 Cell-free PCMV WT (JF strain) seed-stock production  

Extracellular and cell-associated virus from a 175 cm2 cell culture flask was 

harvested by scraping the cells into the supernatant, followed by centrifugation at 
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296 x g (1200 rpm; Eppendorf Centrifuge 5810R, rotor S-4-104; Eppendorf) for 5 

min at RT. The clarified supernatant was then transferred to a fresh tube. Cell 

pellets were freeze-thawed three times, followed by resuspension in 5 – 10 ml of 

clarified supernatant. Resuspended cells were centrifuged again at 296 x g (1200 

rpm; Eppendorf Centrifuge 5810R, rotor S-4-104; Eppendorf) for 5 min at RT. The 

residual pellet was discarded, and all clarified supernatants were combined, 

aliquoted into 1 ml aliquots in cryovials (FisherbrandTM Polypropylene 

Microcentrifuge Tubes; Fisher Scientific) and stored in freezer boxes at -80°C.  

 

2.2.2.4 Large-scale PCMV WT (JF strain) stock production  

PFT cells were cultured as described (see Section 2.1.2.2) and expanded into 

ten 175 cm2 cell culture flasks. After reaching a confluency of 70 – 80% media 

was removed and replaced by 20 ml fresh MEM-10 per flask. 10 ml seed stock 

were added to 40 ml MEM-10 and 5 ml of this suspension were added to each 

175 cm2 cell culture flask of PFT cells, followed by culturing until CPE was evident 

throughout the monolayer. The virus was harvested as previously described 

(Section 2.2.2.3) and stored as large ‘bulk’ stocks at -80°C. For final stock 

production, frozen ‘bulk’ stocks were rapidly thawed in a water bath at 37°C, 

pooled and then added to high speed polycarbonate centrifuge tubes (Thermo 

Scientific NalgeneTM Oak Ridge; Fisher Scientific) (31ml volume supernatant 

added per tube). Supernatants were underlaid with a 4 ml 20% (w/v) Sorbitol 

cushion and centrifuged at 69,600 x g (24,000 rpm; Beckmann Coulter Avanti® 

J-26XP, Rotor JA 25.50) for 80 min at RT. After centrifugation, supernatants were 

decanted, and virus pellet were resuspended in 2 ml of 2% FBS in DPBS. Virus 

stocks were then aliquoted and stored at -80°C. 
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2.2.2.5 Initiation of experimental infections 

A T75 cm2 cell culture flask of uninfected / PCMV WT (JF strain) infected PFT 

cells was set up in the same ratio as described (Section 2.2.2.2). 5 ml of 

supernatant were harvested after 5, 10, 16, 22, 30 and 37 days and replaced by 

MEM-10. The supernatant was aliquoted into 1 ml aliquots in cryovials 

(FisherbrandTM Polypropylene Microcentrifuge Tubes; Fisher Scientific), stored 

in freezer boxes at -80°C and used in experiments. 

 

2.2.3 Determination of infectious titre by TCID50 (tissue culture 

infectious dose) assay 

PFT cells were seeded at a density of 2 x 104 cells / well in 100 µl volumes of 

MEM-10 in flat-bottom 96-well plates and incubated overnight at 37°C in 5% CO2 

humidified atmosphere. Virus stocks to be titrated were ten-fold serially diluted 

and 100 µl of each dilution was added to each row. Ten replicate wells were used 

for each dilution, along with two uninfected control wells. Plates were incubated 

at 37°C in 5% CO2 humidified atmosphere. Cells were visualised by light 

microscopy (Motic AE 2000; VWR) and scored as positive when CPE was 

detected. TCID50 / ml was determined by the calculation of Reed and Muench 

(http://xenobiologista.com/wp-content/uploads/2014/05/Reed-Muench-

Lindenbach-version-2008_TCID50-calculator.xls). Titres are expressed as plaque 

forming units per ml (pfu / ml) by multiplying the TCID50 / ml by a conversion factor 

of 0.7 (0.7 = natural logarithm (ln) of 0.5 where 0.5 states any titre expressed as 

a TCID50; ATCC, converting TCID50 to PFU). 
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2.2.4 Virus DNA extraction  

Viral DNA was extracted using a QIAmp MinElute Virus Spin Kit (QIAGEN, 

Manchester, UK) according to the manufacturer’s instructions. Briefly, high-titre 

crude viral stock aliquots were adjusted to 200 µl total volume with DPBS. 25 µl 

of QIAGEN Protease and 200 µl of Buffer AL (containing carrier RNA) were added 

and mixed thoroughly. Samples were then removed from the bio-safety cabinet 

and incubated at 56°C for 15 min. 250 µl ethanol (96 – 100%, Fisher Scientific) 

was added, mixed thoroughly and incubated for 5 min at RT. The lysate was 

transferred to a QIAmp MinElute column, and centrifugation and washing steps 

were carried out, as per manufacturer’s instructions. Residual ethanol was 

removed by incubation at 56°C for 3 min. DNA was eluted from the column twice 

with 50 µl Buffer AVE and stored at -20°C. 

 

2.2.5 Targeted degradation of non-encapsulated viral DNA 

In order to distinguish between the total viral genome copy number and virion-

protected genome copy number, viral supernatant was treated with DNase I to 

degrade viral DNA not protected within a viral particle. Twenty microliters of (10X) 

DNase I Reaction Buffer (NEB, Hitchin, UK) and 5 µl DNase I (RNase free; NEB) 

were mixed and added to 175 µl of viral supernatant. The reaction was pulse-

vortexed to mix and incubated at 37°C for 10 min. After heat inactivation of the 

enzyme at 75°C for 10 min, DNA was extracted from the samples as previously 

described (Section 2.2.4). 

 

2.2.6 Spinoculation of virus onto cell monolayer 

PFT cells were seeded at a density of 5 x 105 cells / well in 2 ml volume of MEM-

10 in two flat-bottom 6-well plates and incubated overnight at 37°C in 5% CO2 
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humidified atmosphere. Plates were infected with 200 µl of day 22 PCMV WT (JF 

strain) supernatant (as detailed in Table 5). One plate was then centrifuged at 

1000 x g for 30 minutes at RT, the control plate was not centrifuged. Both plates 

were incubated at 37°C in 5% CO2 humidified atmosphere. Cells were fed with 

fresh media once per week. Virus titre (pfu/ml) was then determined by TCID50 

assay as described in Section 2.2.3. 

 

2.3 Bacterial cell culture 

2.3.1 Inoculation 

Overnight bacterial cultures [3 – 5 ml Luria broth (LB); Fisher Scientific], with 

appropriate antibiotics (Appendix I) were inoculated either with a single colony 

from LB agar (Fisher Scientific) plates, or from frozen glycerol stocks (Section 

2.3.2). Cultures were incubated at 30°C for 12 – 18 hr in a shaking incubator at 

230 rpm (Incubating Orbital Shaker; VWR) with a vented cap. After incubation, 

culture growth was assessed by turbidity. Overnight cultures were then used for 

either preparing glycerol stocks for long term storage, or for extraction of DNA.  

 

2.3.2 Glycerol stocks 

Glycerol stocks were prepared by mixing equal amounts of overnight cultures 

(Section 2.3.1) with 80% (v/v) glycerol (molecular grade, Bp 229-1; Fisher 

Scientific) in 1.8 ml Nunc™ cryovials (Fisher Scientific). Glycerol stocks were then 

stored at -80°C. 
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2.4 Molecular biology methods 

2.4.1 Plasmid DNA extraction (miniprep/midiprep) 

Five millilitre cultures of E. coli containing plasmids of interest were cultured 

overnight with appropriate antibiotics (Appendix I); E. coli strain used for culture 

depended on the plasmid being amplified. Cultures were centrifuged at 2300 x g 

(3500 rpm; HeraeusTM MultifugeTM X1 Centrifuge, rotor TX-200; VWR) for 15 min 

at RT to pellet bacteria. Plasmid DNA was then extracted and purified using a 

GenEluteTM Plasmid Miniprep Kit (Sigma-Aldrich) and a PureLinkTM HiPure 

Plasmid Midiprep Kit (Invitrogen; Fisher Scientific) respectively, in accordance 

with manufacturer’s instructions. Briefly, bacterial pellets were resuspended in 

Resuspension Solution containing RNase A, lysed with Lysis Solution and pH 

neutralised and precipitated with Neutralization Solution and Precipitation Buffer, 

respectively. After centrifugation, clarified bacterial lysates were transferred to 

DNA Binding Columns, followed by several wash steps with centrifugation, as per 

manufacturer’s instructions. Plasmid DNA was then eluted from columns with 

Elution Solution and stored at 4°C or -20°C for longer term storage. DNA 

concentration and purity were determined using a nanodrop-spectrophotometer 

(Section 2.4.4). 

 

2.4.2 DNA restriction enzyme digestion 

Plasmid DNA digestion was performed using restriction enzymes and buffers 

from New England Biolabs (NEB). High-Fidelity (HF®) enzymes were used when 

available. For sample reaction volumes, see Appendix II. Digestion was always 

performed for 2 h at 37°C. Prior to subsequent use in cloning, restriction enzymes 

were either heat inactivated when possible, or alternatively treated with SDS (0.1 



- 60 - 

 

– 0.5 %) and purified by PCR spin-column purification (see Section 2.4.3). 

Digestion was confirmed by using agarose gel electrophoresis (Section 2.4.6). 

 

2.4.3 DNA purification 

PCR products and digested plasmid DNA were purified to remove primers, 

dNTPs, enzymes and salt by using PureLink® PCR Purification Kit (Invitrogen; 

Fisher Scientific) according to the manufacturer’s instructions. Briefly, 4 volumes 

of binding buffer (B2 or B3, depending on the DNA size) were mixed with 1 

volume of DNA. The DNA mixture was then added to the spin-column and 

centrifuged at 12,000 x g (rpm 11807; Eppendorf Centrifuge 5418, rotor FA-45-

18-11; Eppendorf) for 1 min at RT. After washing and centrifugation steps, DNA 

was eluted in Elution buffer and stored at -20°C. Purified DNA was visualized by 

agarose gel electrophoresis (Section 2.4.6). 

 

2.4.4 DNA quantification (Nanodrop) 

Purified DNA was quantified using a NanoDrop™ ND-2000 Spectrophotometer 

(ThermoFisher Scientific, Paisley, UK). One microliter of DNA was used for 

quantification. Measurements were taken at wavelengths of 230 nm, 260 nm and 

280 nm. A ratio of 260 / 280 ≥ 1.8 and 260 / 230 between 2.0 and 2.2 indicate 

DNA suitably free from contaminants such as proteins or salt for down-stream 

application. 

 

2.4.5 Polymerase chain reaction (PCR) 

2.4.5.1 Standard PCR 

All primers (Table 3) were purchased from Eurofins Genomics (Wolverhampton, 

UK). High quality HPLC- or PAGE-purified primers were used for all cloning and 
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E/T-based recombinations to minimize the risk of sequence errors being 

introduced at the primer level. Whilst preparing PCR reactions, all reagents were 

kept on ice to minimize primer dimer formation, and PCR enzymes were stored 

in a bench cooler to avoid denaturation. Non-template negative control reactions 

were included with every PCR, with molecular grade water substituted for the 

DNA template. PCR reactions were performed in duplicate. After preparing the 

reaction mix (Appendix III) PCR was carried out in duplicate in a T100™ Thermal 

Cycler (Bio-Rad Laboratories Ltd, Watford, UK). PCR programs and extension 

times were adjusted according to the nature of the template being amplified 

(Appendix III). PCR products were visualized by agarose gel electrophoresis 

(Section 2.4.6). 

 

 

Table 3. Primers for generating and sequencing E2 BDV Gifhorn recombinants 

 

 

 

  

Primer  Sequence  

 

BDV E2 Forward                 GCGCGCTAGCACCATGGCATCGA 
GCAACAGCCTTC 

 
BDV E2 Reverse GCGCGCGGCCGCTCACGTAGAAT 

CGAGACCGAGGAGAGGGTTAGGG 
ATAGGCTTACCTGCTGATGCCATT 
GCTC 

 
pMiniOri BGH pA FOR GCGCCCTAGGAAGCCATAGAGCC 

CACCGCA 
 
 

pMiniOri EF1a REV GCGCCCTAGGTTCTGAATTTCGA  
TGCGC 
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2.4.5.2 Droplet digital PCR (ddPCR) 

PCMV primers and probes (Table 4), targeting the U38 gene (encoding a DNAse 

polymerase catalytic subunit), were kindly provided by Dr. Helen Crook. The 

ddPCR was performed using virus supernatant that had either been DNase I-

treated or non-treated (Section 2.2.5) prior to DNA extraction (Section 2.2.4). This 

comparison allowed differences between total genome copy number and copy 

number within the viral particles. The Bio-Rad QX100™ Droplet Digital™ PCR 

System was used for ddPCR in accordance with the manufacturer’s instruct ions. 

Briefly, the reaction mix (Appendix III) was thoroughly mixed and incubated for 3 

min at RT. DG8TM Cartridge wells were loaded with 20 µl of each reaction mix 

and 70 µl of Droplet Generator Oil for Probes. The cartridge was then placed in 

an Automated Droplet Generator. After droplets were generated the samples 

were transferred to a 96-well plate and sealed with a PX1 PCR Plate Sealer prior 

to PCR amplification in a C1000 Touch Thermal Cycler (Appendix III). After 

amplification, the plate was placed into the QX100 Droplet Reader. DNA 

concentration was measured using QuantaSoftTM Software and reported as 

copies / µl. Viral supernatant from a harvest day 10 post-infection was used as a 

positive control and nuclease-free water was used as a negative control. 
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Table 4. Primers for quantifying viral DNA. The probe is dual labelled with a 

FAM as a 5’ Fluorophore and a TAM as a 3’ Quencher. 

 

 

2.4.6 Agarose gel electrophoresis 

Agarose gels (1%w/v) were prepared by dissolving molecular biology grade 

agarose powder (Fisher Scientific) in 1X Tris-acetate-EDTA buffer (50 x TAE 

Buffer; Fisher Scientific) in the microwave, allowing to cool and then pouring into 

a gel-forming tray. Ethidium bromide (EtBr, 0.5 µg/ml; Fisher Scientific) was 

added and mixed thoroughly. DNA samples were prepared by mixing with loading 

dye (gel loading dye purple (6X); NEB) to a final concentration of 1X and then 

loaded into the wells of the gel. A molecular weight marker (either Invitrogen™ 1 

Kb Plus DNA Extension ladder or NEB Quick-Load® 1 Kb Extend DNA Ladder) 

was added to each gel. Gels were electrophoresed in a horizontal tank filled with 

1X TAE buffer at 80 V for 1.5 hr. DNA was visualized under UV light and imaged 

using a gel imager (ChemiDoc-IH2 with VisionWorks®LS Software, Ultra-Violet 

Products Ltd (UVP), Cambridge, UK). 

 

 

 

Primer  Sequence  

 

Forward PCMV primer  GTTCTGGGATTCCGAGGTTG 

Reverse PCMV primer  ACTTCATCGCAGCTCATCTGA 

Probe                                            FAM CAGGGCGGCGGTCGAGCTC TAM 
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2.4.7 DNA plasmid dephosphorylation  

One microliter of Antarctic Phosphatase (NEB) together with 2 µl of Antarctic 

Phosphatase Reaction Buffer (10X concentration; NEB) were added to 20 µl of 

purified digested vector plasmid. After incubation at 37°C for 1 hour, the mixture 

was heat inactivated at 75°C for 5 min. In some cases, incubation times at 37°C 

were increased to 2 hr to further reduce parental plasmid contamination resulting 

from relegation of non-fully dephosphorylated vector. The dephosphorylated 

backbone vector was either used immediately for ligation reactions or stored at -

20°C. 

 

2.4.8 DNA ligation 

Dephosphorylated vector backbone and purified E2 BDV Gifhorn PCR product 

(insert DNA) were ligated using DNA ligase (NEB). Dephosphorylated vector 

backbone (1ul), 3 µl insert DNA, 2 µl ligation buffer (10 x), 1 µl T4 DNA ligase and 

13 µl molecular grade dH2O were mixed together and incubated at RT for 30 min. 

The ligase was then heat inactivated at 65°C for 20 min. A negative control which 

lacked DNA insert was also included. Ligation reactions were either immediately 

transformed into bacteria or were stored at -20°C until use for bacterial 

transformation. 

 

2.4.9 Transformation of bacteria 

Chemically competent PIR1 E. coli (Invitrogen; Fisher Scientific) were thawed on 

ice and gently transferred into pre-chilled 12 ml polypropylene tubes. 0.5 - 1 µl 

plasmid, or 4 µl ligation product were added, gently mixed by shaking and 

incubated on ice for 30 min.  
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PIR1 bacteria contain a ‘pir’ gene which expresses the protein π. It is required for 

replication from an R6Ky ori. This ori is called a ‘suicide’ ori as plasmids having 

this R6Ky ori can only be replicated in PIR1 bacteria. The bacteria were heat 

shocked at 42°C for 30 sec without shaking and recovered on ice for 5 min. 

Prewarmed S.O.C medium (250 µl) was added and bacteria were allowed to 

recover at 30°C for 2 hours in a shaking incubator at 230 rpm (Incubating Orbital 

Shaker, VWR). Following recovery, bacteria were plated at different volumes (25 

µl and 250 µl) on LB agar containing the relevant antibiotics. Plates were 

incubated at 30°C for 24 to 48 hours (INCU-Line, VWR). Colonies were picked, 

masterplated and DNA from overnight cultures was screened by restriction digest 

(Section 2.4.2). Digested DNA was visualised by agarose gel electrophoresis 

(Section 2.4.6) and band sizes were analysed to identify colonies carrying the 

correct recombinant plasmid. Once identified, the sequence of these clones was 

then confirmed by direct DNA Sanger sequencing (Eurofins Genomics). Glycerol 

stocks (Section 2.3.2) of selected clones were then prepared for long-term 

storage. 

 

2.5 Biological methods 

2.5.1 ELISA 

Blood was collected from 20 abattoir pigs. Samples were allowed to clot by 

incubation at RT followed by centrifugation. Serum was removed and stored at -

20°C. Prior to use, serum was heat inactivated at 56°C for 30 min to inactivate 

complement and unknown adventitious pathogens (Soltis et al, 1979). Serum 

samples were analysed by ELISA to detect PCMV-specific antibodies using a 

‘Porcine Anti-cytomegalovirus IgG antibody (Anti-CMV IgG) ELISA Kit’ (Sincere; 
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2bscientific, Upper Heyford, UK), in accordance with the manufacturer’s 

instructions. The starting standard used in this ELISA contained a Porcine Anti-

CMV IgG concentration of 20 ng/ml which was then serially diluted to 0.312 ng/ml 

to generate a linear regression curve for analysis. Briefly, either 100 µl of 

standards, 1:2 diluted samples or standard diluent buffer (negative control) were 

added to pre-coated wells of a 96-well plate containing porcine anti-CMV IgG 

which, in this case, serves as the corresponding antigen for capturing porcine 

anti-CMV IgG antibodies in the sample. The plate was incubated and washed 

prior to addition of 100 µl of Detection Porcine Anti-CMV IgG solution, followed 

by 100 µl Avidin-Biotin-Peroxidase Complex and 100 µl tetramethylbenzidine 

(TMB). After development of blue colour in the 3 - 4 most concentrated standard 

solution wells, 100 µl acidic TMB stop solution was added to all wells, causing a 

colour change from blue to yellow. Within 10 min the OD absorbance was 

measured in a microplate reader (FLUOstar Omega, BMG LABTECH) at 450 nm. 

The concentration (ng / ml) was determined using linear regression based on 

blank corrected raw data, taking the dilution factor into account (Omega Control 

Software). 

 

2.5.2 DNA transfection 

Purified DNA was transfected into PFT cells and PCMV WT (JF strain) infected 

PFT cells, using Lipofectamine™ 3000 (Invitrogen, Fisher Scientific). Briefly, cells 

were seeded at a density expected to yield 80% confluent monolayers on the day 

of use. Prior to transfection the media in the wells was replaced with MEM 

containing 1% FCS, without antibiotics. Lipofectamine™ 3000 reagent was mixed 

with Opti-MEM™ Medium (GibcoTM Opti-MEMTM I Reduced Serum Medium, No 

Phenol Red; Fisher Scientific) and DNA was mixed with Opti-MEM™ Medium and 
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p3000™ Reagent, as per manufacturer’s instructions. The Lipofectamine™ 3000 

mix and the DNA were combined in a 1:1 ratio and incubated for 5 min at RT. The 

DNA-Lipofectamine mix was then added to wells in a dropwise manner and the 

plate was rocked to spread evenly. Plates were then centrifuged at 1000 x g 

(3000 rpm; Eppendorf Centrifuge 5810R, rotor S-4-104; Eppendorf) for 30 min at 

RT to ‘spinoculate’ the DNA-Lipofectamine mix onto the monolayers. After a few 

hours the media was replaced with MEM-10 and monitored under a fluorescence 

imaging system (ZOE Fluorescent Cell Imager; Bio-Rad Laboratories Ltd.). 
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Chapter 3 

Results 

 

3.1 Characterisation of PCMV in vitro in terms of 

distribution between cells and supernatant prior to 

growth of PCMV 

3.1.1 Harvest of supernatant  

CMVs are known to differ substantially in their characteristics of growth in vitro 

in regard to relative levels of cell-associated versus cell-free virus. Clinical 

isolates tend to be highly cell associated during initial passages, and this cell-

associated phenotype is progressively lost following repeated passaging in 

vitro – usually correlating to changes within the viral genome (Yamane et al, 

1983; Sinzger et al, 1999; Dargan et al, 2010). This characteristic can be 

influenced by the particular CMV, level of virus passage, as well as cell type 

being used for culture. The aim of these initial studies was to determine the 

replication kinetics of PCMV WT (JF strain) in porcine fallopian tube (PFT) cells 

and to assess the relative distribution of virus between cell-associated and cell-

free compartments.   

 

PFT cells were infected with PCMV WT (JF strain) as described in Section 

2.2.2.2 and 2.2.2.5. Twice a week supernatant (5 ml) was harvested and 

replaced with fresh MEM-10. Harvested supernatant was stored at -80°C. 

Cytopathic effect (CPE) started to become visible around day 20, with 
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approximately 80% of PFT monolayers infected (determination based on 

experience) by day 34. PFT cells were harvested at day 37 post-infection. 

 

3.1.2 Titration of infectious virus in harvested supernatant by 

TCID50 assay  

TCID50 is a standard assay used in virus titration. In the case of PCMV, as we 

knew very little of its growth kinetics, we sought first to optimise this assay. 

Day 22 post-infection supernatant was used for the optimisation. The day 22 

supernatant used was selected for the experiment as it appeared to have the 

highest titre as visual inspection indicated that approximately 80% of the 

monolayer was infected based on CPE. Following infection of the TCID50 plate, 

TCID50 readings were taken at day 22, 25, 27, 29 and 32 post-infection. As 

shown in Figure 8, titres did not significantly increase after reading at day 29, 

we therefore selected day 29 as suitable time for TCID50 assays. 
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Figure 8. Titration of virus SN at increasing times on PFT cells. PFT cells were 

infected with day 22 post-infection supernatant and the virus was cultivated at 

37°C. The virus titres were determined by TCID50 assay at various days post-

infection of TCID50 plates. Data is presented as the average (+/- standard error 

of the mean) of three experiments, each carried out in 10 replicates.  

 

 

 

Following optimisation, we sought to determine the kinetics of virus release 

from PCMV WT (JF strain) infected PFT cultures. PCMV WT (JF strain) titres 

released into supernatant at days 5, 10, 16, 22, 30 and 37 post-infection were 

measured by TCID50 (Section 2.2.3). We had hypothesized that the highest 

titre would be determined after the monolayer was completely infected. 

However, as shown in Table 5, the highest titre was from day 22 at a time 

when visual inspection indicated that less than 80% of the monolayer was 

infected based on CPE. At later times, even though CPE was more extensive, 

reaching 100% of the monolayer, the titre did not increase. 
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Table 5. Titration of supernatant by TCID50 assay, harvested from PCMV WT 

(JF strain) infected PFT cells at different time points post-infection.  

 

 

 

3.1.3 Quantification of infectious virus in harvested supernatant 

by droplet digital PCR (ddPCR) 

Droplet digital PCR (ddPCR) (Section 2.4.5.2) was used for genome copy 

number quantitation. DNAse I treatment (Section 2.2.5) was used to enable 

distinction between total genome compared to virion-protected genome copy 

number released into the supernatant. Using this approach, DNA extracted 

from untreated supernatant is equivalent to the total genome number, whereas 

DNA extracted from DNAse I treated supernatant is equivalent to virion-

protected genome numbers. The ratio of total genome copies to virion genome 

copies being greater than 1 (Table 6) indicated that a proportion of PCMV 

genomes were exposed to DNAse I and represented non-virion associated 

genome.  

 

SN harvested 

day 

Titre 

 (pfu/ml) 

 

5 

 

< 1.0E+02 

10 < 1.0E+02 

16 2.21E+03 

22 4.77E+03 

30 2.21E+03 

37 3.68E+03 
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SN 

harvested 

day 

Total genome 

copy 

(copies/ml) 

Virion genome 

copy 

(copies/ml) 

Ratio  

Total genome 

/ 

Virion genome 

 

5 

 

2.60E+06 

 

1.80E+06 

 

1.4:1  

10 3.32E+07 3.02E+07 1.1:1 

16 8.58E+08 1.23E+08 7.0:1 

22 4.20E+09 1.12E+09 3.8:1 

30 2.34E+09 9.82E+08 2.4:1 

37 >1.0E+10 >1.0E+10 ** 

 

 

Table 6. Quantitation and ratio of total genome and virion genome copy 

numbers in supernatant by ddPCR, harvested from PCMV WT (JF strain) 

infected PFT cells at different time points. ** Could not calculate ratio because 

the individual numbers were higher than the cut-off. 

 

 

The particle to PFU ratio, represented below as the virion genome to infectious 

particles ratio, is a measure of virus particles that can complete an infection cycle 

(i.e. lead to formation of a plaque), relative to the total number of virus particles 

present. The lowest value possible is 1, and this means that every single virus 

present is capable of forming a plaque. This is quite unusual but has been 

observed with some viruses such as Semliki Forest virus (Klasse, 2015; Virology 

blog: Are all virus particles infectious? ). A high particle to PFU ratio may indicate 

the presence of non-infectious defective particles, but often there is nothing 

‘wrong’ with the particles other than they have been prevented from completing 

their infectious cycle for some reason e.g. unable to reach cells for attachment to 

occur, or perhaps underwent an abortive infection that did not result in plaque 

formation. 
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The ratio of virion-associated (DNAse I protected) genome copies to infectious 

particles on the basis of TCID50 indicated that a proportion of virion-associated 

genome copies (DNAse I protected) were non-infectious (Table 7). Virion-

associated genome copies and infectious particles were determined from the 

same sample. Of note, the sharp increase in the ratio seen at day 37 post-

infection was also reflected in whole genome sequencing data, which reported 

large genome deletions in PCMV WT (JF strain) at this time-point, relative to 

genome samples from earlier time points. This indicates an accumulation of 

defective particles that have lost large segments of their genomes, at later time-

points post-infection. 

 

 

SN 

harvested 

day 

Virion genome 

copy 

(copies/ml) 

Infectious  

particles 

(pfu/ml) 

Ratio  

Virion genome 

/ 

Infectious 

particles 

 

5 

 

1.80E+06 

 

< LOD 

 

< LOD 

10 3.02E+07 < LOD < LOD 

16 1.23E+08 2.21E+03 5.57E+04:1 

22 1.12E+09 4.77E+03 2.35E+05:1 

30 9.82E+08 2.21E+03 4.44E+05:1 

37 >1.0E+10 3.68E+03 ** 

 

 

Table 7. Quantification and ratio of virion genome copy numbers and infectious 

particles in supernatant by ddPCR and TCID50 assay, respectively. PCMV WT 

(JF strain) infected PFT cells were harvested at different days post-infection. 

Limit of detection (LOD) ** Could not calculate ratio because one individual 

number was higher than the cut-off. 
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3.1.4 Comparison of spinoculated virus versus non-spinoculated 

virus onto cell monolayer and time-dependent titre 

determination 

Previously, low speed centrifugation has been shown to increase effective 

multiplicity of infection (MOI) for a virus inoculum (called spinoculation). Whilst 

the speeds used for centrifugation are not high enough to spin the virus down 

onto cells, one study using HIV-1 virus demonstrated that the effect seen was 

due to the effects of centrifugal stress on the cell monolayers, rather than 

directly on the virus. They found that spinoculation triggered dynamic actin and 

cofilin activity, enhancing HIV-1 binding and infection (Osborn & Walker, 1968; 

Cheng et al, 2007; Guo et al, 2011). In the next series of experiments, we 

determined whether PCMV WT (JF strain) infection of PFT cells was 

susceptible to enhancement by low speed centrifugation. Our hypothesis was 

that spinoculation of PCMV   WT (JF strain) onto PFT cells would significantly 

enhance infection, which would be visualized by increased virus levels in the 

supernatant. The results are shown in Figure 9. Using a two-tailed t-test, we 

found there was a significant difference at day 29 (P = 0.0154) between 

spinoculated and non spinoculated plates.  
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Figure 9. Titration of spinoculated and non-spinoculated virus onto PFT cells 

monitored at day 29. PFT cells were infected with PCMV WT (JF strain) SN 

harvested at day 22 post-infection and the virus was either spinoculated or not 

onto the monolayer and cultivated at 37°C. At day 29 post-infection, the virus 

titres were determined by TCID50 assay. Data is presented as the average (+/- 

standard error of the mean) of three experiments, each carried out in 10 

replicates.  

 

 

 

3.1.5 Preparation and titration of virus stock 

Concentrated virus stocks were prepared as described in (Section 2.2.2.4). 

After preparation of concentrated virus stock, the infectious titre was 

determined by TCID50 assay (Section 2.2.3) as shown in Table 8. We 

hypothesized that the titre would be similar to other cytomegaloviruses that are 

in use in the lab such as rhesus macaque CMV (RhCMV) or murine CMV 

(MCMV) with pfu/ml at about 107 to 109.  As shown in Table 8, although 

reproducible, PCMV WT (JF strain) has a significantly lower titre.  
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Table 8. Titre of two different PCMV WT (JF strain) concentrated virus stocks 

were determined by TCID50 assay. 

 

 

3.1.6 Sequence analysis of concentrated virus stock 

The PCMV WT (JF strain) virus stock was sent for full length sequencing to 

collaborators in the Davison Laboratory at the University of Glasgow. The 

PCMV WT (JF strain) genome matched fully characterised genome available 

in the GenBank database [GenBank no: KF017583] (mentioned in 1.4.1.3.3, 

(Gu et al, 2014)), however, PCMV WT (JF strain) had an additional 10 Kb 

terminal region, which is not present in the GenBank strain. This information 

was given by the collaborator as unpublished privileged information. 

 

3.2 PCMV BAC cloning 

For design of the shuttle vectors to be used in BAC cloning, an intergenic 

region (approximately 2800 bp) in the PCMV genome between U1 and U2 was 

selected as the site for BAC cassette insertion within the PCMV genome. The 

U1 and U2 genes run in opposite directions, meaning insertion into this 

location is less likely to cause issues with expression of either U1 or U2 as no 

PCMV WT (JF strain) stock 

concentrated 

Titre (pfu/ml) 

 

21 June 2018 

 

1.95E+04 

10 July 2018 2.50E+04 
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upstream regulatory sequences will be disrupted during the cloning. 

Additionally, U1 and U2 are non-essential genes within the PCMV genome as 

shown in Figure 5. The BAC cassette is approximately 8900 nt.  An additional 

construct that would result in deletion of PCMV genes U2 through U4 

(approximately 7000 bp) was also constructed to avoid over-size genome 

issues that can occur due to capsid packing size constraints. Homologous 

recombination is the means by which the BAC cassette will be inserted within 

the PCMV genome. PCMV recombinant plasmids comprised of a BAC 

cassette derived from pHA2, flanked by homologous regions to the site of 

insertion within the PCMV genome were available as pU1-BAC-U2 and pU1-

BAC-U5 respectively at the beginning of this thesis work (generated by Dr. 

Michele Kiernan, University of Plymouth, UK), as was the g-RNA designed for 

insertion of pU1-BAC-U2 and pU1-BAC-U5 into the PCMV genome by 

CRISPR/Cas9 technology (generated by Dr. Michael Jarvis, University of 

Plymouth, UK).  

 

3.2.1 Construction of a recombinant plasmid by cloning the BAC 

cassette between the U1 and U2 gene and the U1 and U5 gene, 

respectively in the PCMV genome 

An infectious PCMV BAC would be extremely advantageous for manipulation 

of the virus genome. In order to achieve this aim, a BAC cassette containing 

genetic elements required for replication and maintenance of the genome in 

bacterial cells, must first be inserted within the virus genome. An aim of the 

current project was to construct plasmids that would enable insertion of the 

required BAC cassette within the virus genome. A subsequent modification of 

this approach inserted a eukaryotic expression cassette expressing a target 
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antigen from the simulant CSFV agent, border disease virus (BDV), at the 

same time as the BAC cassette. Two locations within the PCMV genome were 

chosen to insert the BAC cassette. The first location selected for insertion was 

between the U1 and U2 genes, and the second location was between the U1 

and U5 genes. This second location was selected to result in removal of non-

essential genes U2 through to U4, reducing the overall size of the genome. 

This alternative strategy was incorporated to address the possible concern of 

size related packaging problems when reconstituting the virus. Figure 10 

outlines the cloning strategy, which is described in more detail below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Schematic of construction of a PCMV recombinant U1-BAC-U2 and 

U1-BAC-U5 plasmid. The BAC cassette from plasmid pHA2 was cloned into a 

supplied GeneArt plasmid containing the desired flanking region U1-U2 and 

U1-U5 respectively, next to an AmpR marker. 
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3.2.1.1 Excision of the BAC cassette from pHA2  

The plasmid pHA2 (kindly provided by Professor Dr. Martin Messerle, 

Hannover Medical School, Hannover, Germany) which contains a BAC 

cassette flanked by two PacI restriction sites was transformed into DH10B E. 

coli cells. DNA was extracted (Section 2.4.1) and screened by restriction digest 

with PacI (Section 2.4.2) followed by gel electrophoresis (Section 2.4.6; Figure 

11). The DNA gel confirmed the expected DNA band sizes of approximately 

8.9 kb (BAC cassette) and 4.3 kb (pHA2 backbone). 

 

 

 

Figure 11. Gel electrophoresis showing PacI digestion of plasmid pHA2. The 

uncut plasmid was compared to PacI digested plasmid. The expected DNA 

bands of approximately 4.3 kb (pHA2 vector) and 8.9 kb (BAC cassette) were 

observed.  
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3.2.1.2 Insertion of the BAC cassette into U1-U2 and the U1-U5 shuttle 

plasmids 

Insertion of the BAC cassette into the PCMV genome at the desired locations 

required flanking of the cassette by sequences homologous to PCMV U1 and 

U2 genes and U1 and U5 genes. U1-U2 and U1-U5 homologous regions were 

synthesized and supplied in plasmids by GeneArt. A PacI restriction site was 

placed between the U1 and U2, and U1 and U5 homologous regions in the 

plasmids, to enable cloning of the BAC cassette into the shuttle vector, as 

depicted in Figure 10. The GeneArt plasmid was transformed into DH10B        

E. coli. DNA was extracted from an overnight culture, miniprepped and 

digested with PacI. The digested plasmid was then dephosphorylated and 

ligated with the BAC cassette, liberated from pHA2 by PacI digestion. The 

ligation reaction was transformed into DH10B E. coli, followed by plating onto 

LB plates containing 100µg/ml Carbenicillin and 17.5 µg/ml Chloramphenicol 

and incubation at 30°C. Once colonies were visible, they were masterplated 

and overnight cultures were inoculated for screening. DNA was extracted 

(Section 2.4.1) from these overnight cultures and screened by restriction 

digestion with PacI and BamHI (Section 2.4.2), followed by gel electrophoresis 

(Section 2.4.6; Figure 12). PacI digests of U1-BAC-U2 and U1-BAC-U5 

confirmed the presence of bands at the correct sizes (U1-BAC-U2 at 5.2 kb 

and 8.9 kb; U1-BAC-U5 at 4.9 kb and 8.9 kb). BamHI digests were used to 

determine the orientation of the BAC cassette within the shuttle vectors. DNA 

bands at a molecular weight of 4.6 kb and 9.4 kb confirmed insertion in the 

forward orientation for U1-BAC-U2, and DNA bands at 2.1kb and 11.6 kb 

confirmed insertion in the reverse orientation for U1-BAC-U5. 
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Figure 12. Gel electrophoresis showing PacI and BamHI digestion of U1-BAC-

U2 and U1-BAC-U5. The uncut plasmid was compared to PacI and BamHI 

digested plasmids. The gel confirmed the correct DNA band sizes for PacI 

digested U1-BAC-U2 (5.2 kb and 8.9 kb) and U1-BAC-U5 (4.9 kb and 8.9 kb), 

and the BamHI digests confirmed orientation of BAC cassette insertion for U1-

BAC-U2 (4.6 kb and 9.4 kb; forward orientation) and U1-BAC-U5 (2.1 kb and 

11.6 kb; reverse orientation) 
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3.2.1.3 Excision of U1-BAC-U2 and U1-BAC-U5 from its backbone 

Prior to use of the U1-BAC-U2 and U1-BAC-U5 fragments for transfection into 

eukaryotic PFT cells, the fragment needed to be excised from its vector 

(outlined in Figure 10). DNA was extracted (Section 2.4.1) from an overnight 

culture, miniprepped and quantified (Section 2.4.4). DNA was digested with 

PmlI and SwaI (Section 2.4.2), purified by using a PCR purification kit, followed 

by gel electrophoresis (Section 2.4.6; Figure 13). The PmlI / SwaI digests of 

U1-BAC-U2 and U1-BAC-U5 confirmed the presence of bands at the correct 

sizes (U1-BAC-U2 at 2.3 kb and 11.7 kb; U1-BAC-U5 at 2.3 kb and 11.4 kb). 

To summarize, a combination of state-of-the-art synthetic and more 

conventional molecular biology technologies resulted in production of two 

linear recombination fragments designed to target a BAC cassette to two 

distinct regions of the PCMV genome. 

 

 

Figure 13. Gel electrophoresis showing PmlI / SwaI digestion of U1-BAC-U2 

and U1-BAC-U5 after purification. The uncut plasmid was compared to 

restriction enzyme digestion with PmlI / SwaI. The gel confirmed the correct 

DNA band sizes in regard to U1-BAC-U2 of approximately 2.3 kb and 11.7 kb 

and U1-BAC-U5 of approximately 2.3 kb and 11.4 kb. 
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3.2.2 Cloning the gRNA into pX330 CRISPR/Cas9 plasmid 

Two different approaches to generating a PCMV BAC were taken. One utilized 

CRISPR/Cas9, which we hypothesized would be more efficient, and the other 

was based on more conventional homologous recombination. The 

CRISPR/Cas9 approach required the design of gRNAs targeting the U1-BAC-

U2 intergenic region of the PCMV genome for Cas9 cleavage, to induce a 

double-stranded break. Two independent gRNAs were designed. The gRNAs 

were inserted into a pX330 backbone vector carrying the Cas9 protein gene, 

an AmpR resistance marker gene and several other elements not included in 

the schematic below. The vector plasmid, originally deposited by the Zhang 

group at MIT, was supplied by Addgene (Plasmid number: 42230). Once 

colonies were visible, overnight cultures were prepared. DNA was extracted 

from each of the two gRNA clones (Section 2.4.1), screened by restriction 

digest with EcoRI and BbsI to verify insertion, and then quantified (Table 9) to 

determine the amount of DNA to be used for transfection. gRNA sequence 

was verified by Sanger sequencing. 

 

 

 

 

 

 

Figure 14. Schematic showing the CRISPR/Cas9 plasmid 
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3.2.3 Transfection of U1-BAC-U2 fragment and gRNA containing 

plasmids into PFT cells 

For both strategies it was necessary to introduce PCMV and the U1-BAC-U2 

fragment into PFT cells. For the CRISPR/Cas9 approach, it was also 

necessary to introduce the plasmid containing the gRNA, as this was required 

to introduce a double-stranded DNA break at the correct location on the PCMV 

genome (target sequence for the gRNA see Appendix VI). The U1-BAC-U2 

fragment and the pX330 gRNA plasmids were quantified (Table 9) and 

transfected into PFT cells by using lipofectamine, a reagent known for high 

transfection efficiency and low toxicity in many cell types (Cardarelli et al, 

2016).  We anticipated that initially there would be a large number of green 

cells due to the presence of GFP in the BAC cassette. We then expected these 

cells to disappear over time as the unintegrated U1-BAC-U2 fragment was 

degraded, with the only remaining green cells representing cells in which the 

BAC cassette had integrated into the PCMV genome. As infection progressed 

we would expect to see expansion of green zones over time. 

 

Multiple different conditions were evaluated in terms of experimental design.  

First, different amounts of DNA (1 µg and 0.5 µg) were compared for the U1-

BAC-U2 fragment and both pX330 gRNA plasmids at a ratio of 1:1 (Appendix 

V), to assess the impact of DNA concentration on transfection efficiency. An 

EGFP-C1 plasmid (Clontech) was used as a transfection efficiency control. At 

day 3 post-transfection, the transfection efficiency rate was approximately 50% 

(Figure 15), determined by fluorescence read-out, when 0.5 g of plasmid was 

used for transfection. As transfection efficiencies did not improve with 

increased (1 g) amounts of plasmid, we decided to proceed with 0.5 g for 
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further experiments. Transfection efficiencies were always lower with the U1-

BAC-U2 fragments than the EGFP-C1 plasmid. This was not unexpected given 

the larger size of the fragments (approximately 14 kb) relative to the EGFP-C1 

plasmid (4.7 kb). As shown in Figure 16, the transfection efficiency was lower 

again when the CRISPR/Cas9 plasmid was added into the mix. This may be 

due to additional toxicity caused by adding increased DNA to the cells.  

 

BAC DNA fragments and plasmids were either i) transfected into uninfected 

PFT cells, which were then infected with PCMV the next day, or ii) transfected 

directly into infected PFT cells. Cells were fed twice a week with fresh media. 

In wells containing the pX330 CRISPR/Cas9 gRNA plasmid, non-homologous 

(NHEJ) end joining inhibitor reagent (SCR7) was added to the media.   

 

 

 Plasmid  ng / µl 260 / 280 260 / 230 

 

 

PCMV U1-U2-BAC clone 1 1341.0 1.89 2.41 

PCMV U1-U5-BAC clone 2 1476.4 1.91 2.44 

gRNA pX330 #21 clone 2 246.0 1.91 3.74  

gRNA pX330 #23 clone 2 152.7 1.89 5.64 

EGFP-C1 (Clontech) 243.8 1.93 3.76 

 

 

Table 9. Concentration and purity of relevant plasmids used for transfection into 

PFT cells based on absorbance. 
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Figure 15. Evaluating transfection efficiency. 0.5 µg EGFP-C1 (Clontech) 

plasmid was transfected into PFT cells. At 3 days post-transfection the 

monolayers were imaged, revealing a transfection rate of approximately 50%. 

 

 

 

   

Figure 16. Decreased transfection efficiency when the pX330 CRISPR/Cas9 

gRNA plasmid was included during transfection. (i) 0.5 µg of U1-BAC-U2 

fragment was transfected into PFT cells. (ii) 0.5 µg of U1-BAC-U2 plasmid and 

0.5 µg of pX330 CRISPR/Cas9 plasmid were transfected into PFT cells. Both 

monolayers were infected with PCMV the day after transfection, and 

monolayers were monitored daily and imaged at 11 days post-transfection. 

Transfection efficiency appeared reduced in the presence of the pX330 

CRISPR/Cas9 plasmid. 

 

 

 

 

(i) (ii) 
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Prior to our determination that spinoculation was not an effective means of 

increasing infection, we had hypothesized that spinoculation would increase 

the ongoing viral infection. Therefore after 11 days the transfected / infected 

PFT cells were centrifuged weekly at 1000 x g for 30 min and fed with fresh 

media. Once it was realized that titres were not enhanced by spinoculation 

(Section 3.1.4), this practice was stopped. In this initial experiment, cell 

monolayers partially detached after 22 days, without development of any GFP 

positive plaques. This was likely due to PCMV infection (i.e. non-recombinant 

wild-type PCMV), as it was not observed in uninfected control monolayers. To 

maintain the cultures, fresh PFT cells were seeded on top of the existing cell 

monolayers, and cells were fed twice a week with fresh media. The experiment 

was stopped after 20 days post-re-seeding as green fluorescent plaques were 

not observed. 

 

Next, the U1-BAC-U2 fragment and pX330 CRISPR/Cas9 gRNA plasmid were 

transfected into PFT already infected with PCMV WT (JF strain) to determine 

whether this strategy would improve the outcome due to the anticipated higher 

probability of the transfected DNA entering an infected cell. Addition of the 

NHEJ inhibitor to the media prior to transfection was also evaluated (Appendix 

V). However, again no fluorescent green plaques were observed by 30 days. 

 

The BAC cassette contains a gpt gene involved in guanine nucleotide 

synthesis using xanthine (Mulligan & Berg, 1981). Virus recombinants 

containing a BAC cassette with the gpt gene are able to form plaques in the 

presence of GPT, while wild-type (WT) virus cannot (Mulligan & Berg, 1981). 

Xanthine-guanine phosphoribosyltransferase (GPT) (Merck Millipore) 

selection reagent which contains mycophenolic acid, aminopterine, xanthine 
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and hypoxanthine was therefore added to the medium post-infection in order 

to enrich for recombinant PCMV carrying the BAC cassette. Mycophenolic acid 

and aminopterine inhibit purine metabolism in mammalian cells. The GPT 

selection reagent was then added during feeding twice a week.  

 

Initial experiments failed as the concentration of GPT was too high and cell 

monolayers died after 11 days.  The experiment was repeated and the U1-

BAC-U2 fragment was transfected into non-infected PFT cells, seeded in a 12- 

well plate at a density of 2x105 cells / well. Day 1 post-transfection the cells 

were infected with 100 µl PCMV WT (JF strain). GPT selection reagent was 

added 2 days post-transfection (Appendix V). Fresh GPT selection reagent 

was added during feeding twice a week. At 15 days post-transfection, the 

experiment was stopped due to high auto-fluorescence background 

associated with GPT which made it impossible to distinguish between GFP 

positive virus spread and GPT background (Figure 17, I - VII).  
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I) - transfection II) + transfection III) + transfection 

- infection - infection + infection 

- GPT reagent - GPT reagent - GPT reagent  

   

 

IV) + transfection V) - transfection VI) - transfection 

 + infection + infection - infection 

 + GPT reagent + GPT reagent + GPT reagent 

    

 

VII) + transfection 

 - infection 

 + GPT reagent 

 

 

Figure 17. GPT induced fluorescence interfered with selection of GFP positive 

virus. I) to VII) showed PFT cells after 15 days grown under various conditions. 

GPT reagent alone, in untransfected, uninfected PFT cells (VI) caused high 

levels of green fluorescence that prevented screening for GFP positive virus.  
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3.2.4 Construction of PCMV recombinant plasmid encoding E2 

BDV protein  

As discussed above, when using the GPT selection agent to enhance the 

population of recombinant virus, the high fluorescence background induced by 

this reagent made it impossible to screen for GFP positive virus plaques. The 

overall aim of the study was to develop a prototype CSFV vaccine vector by 

inserting a simulant pathogen BDV E2 antigen into the PCMV virus. Originally 

the plan was to generate a PCMV BAC and then introduce the E2 gene at a 

later date. However, given the problems encountered above, it was decided to 

insert the E2 gene at the same time as the BAC cassette, so that we could 

screen for the V5 tag attached to the E2, rather than for GFP positive virus. 

The first step in this process was to clone the BDV E2 gene into a pMiniOri 

plasmid, to place it under the control of the constitutive EF1alpha promoter. 

 

3.2.4.1 Cloning E2 BDV into pMiniOri plasmid  

pMiniOri is a suicide plasmid, meaning it contains a suicide origin of replication 

(ori) which allows replication of the plasmid only in bacteria containing a ‘pir’ 

gene. In this instance, using the pMiniOri plasmid will allow the E2 BDV to be 

cloned under the control of the constitutively active EF1alpha promoter, and 

will provide a bovine growth hormone polyadenylation (BGH polyA) tail for the 

E2 BDV. Figure 18 outlines the cloning strategy used, which is described in 

more detail in Sections 3.2.4.1.1 to 3.2.4.1.3. 
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Figure 18. Schematic outlining the cloning strategy for insertion of E2 BDV 

Gifhorn into the pMiniOri vector. 
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3.2.4.1.1 Preparing E2 BDV (Gifhorn) fragment for cloning into the pMiniOri 

vector 

The E2 BDV (Gifhorn) gene was kindly provided in pCR®-XL-TOPO 

(Invitrogen; Kanamycin resistance) by Dr. Thoman Bruun Rasmussen of the 

National Veterinary Institute DTU Denmark via Dr. Helen Crooke. The plasmid 

was transformed into One Shot® TOP10 E. coli (Section 2.4.9). DNA was 

extracted from an overnight culture (Section 2.4.1) and screened by restriction 

digest with EcoRI (Section 2.4.2) followed by gel electrophoresis (Section 

2.4.6; Figure 19). EcoRI restriction digest confirmed the expected DNA band 

sizes of 3.5 kb (pCR-XL-TOPO vector) and 1.2 kb (E2 BDV (Gifhorn) insert). 

Glycerol stocks of successfully transformed bacteria were prepared and stored 

at -80°C (Section 2.3.2).  

 

 

 

Figure 19. Gel electrophoresis showing EcoRI digestion of pCR-XL-TOPO E2 

BDV plasmid after transformation into One Shot® TOP10. The gel confirmed 

the expected band sizes of 3.5 kb and 1.2 kb, for EcoRI digested pCR-XL-

TOPO E2 BDV plasmid, representing the vector backbone and E2 BDV insert, 

respectively.  
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Using the pCR-XL-TOPO E2 BDV (Gifhorn) plasmid as a template, the E2 

BDV (Gifhorn) sequence was amplified by PCR (Section 2.4.5.1; Appendix III). 

Oligonucleotide primers were synthesized (Table 3) that contained GCGC 

anchors and NheI and NotI restriction sites to enable cloning into the pMiniOri 

plasmid. A Kozak sequence was included on the 5’ primer and a V5 tag 

sequence and stop codon were included on the 3’ primer. The PCR reaction 

was performed in duplicate. PCR products were analysed on an agarose DNA 

gel (Section 2.4.6). A band of the expected size (approximately 1.3 kb) was 

observed (Figure 20). The E2 BDV PCR product was then digested with NheI 

and NotI, purified by spin-column purification (Section 2.4.3), and cloned into 

the NheI and NotI sites of the pMiniOri vector, as described below. 

 

 

 

 
 

Figure 20. Analysis of E2 BDV PCR fragments used for cloning into pMiniOri 

vector. Gel electrophoresis confirmed the presence of DNA bands at the 

expected size of approximately 1.3 kb. Two independent PCR reactions were 

performed.  

 

 

 



- 94 - 

 

3.2.4.1.2 Restriction digest of pMiniOri vector plasmid  

The NheI-E2 BDV-NotI PCR product (Section 3.2.4.1.1) was cloned into a 

pMiniOri Zaire EBOV GP plasmid, under the control of the EF1alpha promoter. 

The pMiniOri Zaire EBOV GP plasmid also contains a BGH-polyA tail, 

KanamycinR marker and R6Ky origin of replication. The R6Ky ori is known as 

a suicide ori, as it requires a ‘pir’ gene (which produces the π protein) to be 

present in bacteria for replication. This prevents the plasmid from replicating 

in bacteria that do not express the protein π. The pMiniOri Zaire EBOV GP 

vector plasmid was digested with NheI and NotI restriction enzymes. At the 

same time, the plasmid was also digested with BamHI (Section 2.4.2), which 

cuts within the Zaire EBOV GP gene that is being removed from the plasmid, 

to decrease the likelihood of re-insertion of the Zaire EBOV fragment during 

cloning. The digested plasmid was then run on a gel (Section 2.4.6) and spin-

column purified (Section 2.4.3). Gel electrophoresis of the digested plasmid 

confirmed the presence of bands of the expected sizes of 3 kb, 1 kb, 0.6 kb 

and 0.5 kb (Figure 21). The digested vector was dephosphorylated as 

described in Section 2.4.7., prior to ligation with the NheI/NotI digested E2 BDV 

PCR product. 
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Figure 21. Gel electrophoresis showing NotI, NheI and BamHI digested 

pMiniOri Zaire EBOV GP vector plasmid. The gel confirmed the presence of 

the correct DNA band sizes of approximately 3 kb, 1 kb, 0.6 kb and 0.5 kb.  
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3.2.4.1.3 Construction of recombinant pMiniOri E2 BDV plasmid 

The digested, purified E2 BDV PCR product (Section 3.2.4.1.1) was ligated 

(Section 2.4.8) into the linearized pMiniOri vector (Section 3.2.4.1.2; Figure 

21), generating a pMiniOri E2 BDV plasmid. The ligated plasmid was 

transformed into PIR1 E. coli bacteria (Section 2.4.9), which express the 

required replication protein π (as described in Section 3.2.4.1.2). The bacteria 

were plated onto LB agar containing 50 µg/ml Kanamycin and incubated at 

30°C for 24 to 48 hours. DNA was extracted from overnight cultures and 

analysed by restriction digest with NheI and NotI, followed by agarose gel 

electrophoresis. The DNA gel (Figure 22) confirmed the correct DNA band 

sizes for the parental pMiniOri Zaire EBOV GP plasmid (3.0 kb and 2.1 kb), 

and the recombinant pMiniOri E2 BDV plasmid clones (3.0 kb and 1.3 kb) 

confirming that the E2 BDV has been inserted into the correct position, placing 

it under the control of the EF1alpha promoter. Glycerol stocks of clones 1, 6 

and 7 were prepared and stored at -80°C (Section 2.3.2). Sequence of the E2 

BDV was confirmed by Sanger sequencing. 
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Figure 22. Gel electrophoresis showing NotI, NheI digestion of recombinant 

pMiniOri E2 BDV plasmid. The DNA gel confirmed the correct DNA band sizes 

for the parental pMiniOri Zaire EBOV GP plasmid (3.0 kb and 2.1 kb), and the 

recombinant pMiniOri E2 BDV plasmid clones 1-10 (3.0 kb and 1.3 kb). Clone 

1, 6 and 7 were selected to move forward to the next step. 
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3.2.4.2 Cloning of E2 BDV-EF1alpha-BGH pA PCR fragment into U1-BAC-U2 

plasmid  

The next step in the cloning process was to clone the E2 BDV-EF1alpha-BGH 

poly A cassette into the shuttle vectors containing the U1-BAC-U2 and U1-

BAC-U5. In order to do this the E2 BDV-EF1alpha-BGH pA- sequence was 

amplified off the pMiniOri plasmid by PCR, digested and then ligated into the 

shuttle vectors as detailed in this section. Figure 23 outlines the cloning 

strategy used in this step.  

 

 

 

 

Figure 23. Schematic of cloning strategy for insertion of E2 BDV-EF1alpha- BGH 

pA into U1-BAC-U2 and U1-BAC-U5 shuttle vectors. 



- 99 - 

 

3.2.4.2.1 Preparing E2 BDV-EF1alpha-BGH pA cassette fragment for cloning into 

the U1-BAC-U2 and U1-BAC-U5 shuttle vectors 

Using pMiniOri E2 BDV plasmid (Section 3.2.4.1) as a template, the E2 BDV- 

EF1alpha-BGH pA cassette was amplified using PCR (Section 2.4.5.1; 

Appendix III). Oligonucleotide primers that contained GCGC anchors and AvrII 

restriction sites to were designed to clone the cassette into the U1-BAC-U2 

and U1-BAC-U5 shuttle vectors (Table 3). PCR products were analysed on an 

agarose gel (Section 2.4.6), with observation of the expected 2.7 kb band 

(Figure 24). The E2 BDV-EF1alpha-BGH pA PCR product was digested with 

AvrII, purified by spin-column purification, and cloned into the U1-BAC-U2 and 

U1-BAC-U5 shuttle vectors, as described below. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 24. Analysis of E2 BDV- EF1alpha-BGH pA PCR fragments used for 

cloning into U1-BAC-U2 and U1-BAC-U5 vectors. Gel electrophoresis 

confirmed PCR products of E2 BDV-EF1alpha-BGH pA were of the expected 

band size of approximately 2.7 kb. Two independent PCR reactions of three 

different clones were performed. 
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3.2.4.2.2 Restriction digest of U1-BAC-U2 and U1-BAC-U5 vector plasmids 

The U1-BAC-U2 and U1-BAC-U5 vector plasmids were digested with AvrII 

restriction enzyme (Section 2.4.2), to enable cloning of the AvrII digested E2 

BDV-EF1alpha-BGH pA PCR product (Section 3.2.4.2.1). The digested 

plasmid was then run on a gel (Section 2.4.6) and spin-column purified 

(Section 2.4.3). Gel electrophoresis of the digested plasmid, alongside the 

digested PCR fragment, confirmed the presence of bands of the expected 

sizes of approximately 14 kb and 2.7 kb, representing the digested shuttle 

vectors and the digested BDV-EF1alpha-BGH pA PCR fragment respectively 

(Figure 25).  The digested vector was dephosphorylated as described in 

Section 2.4.7., prior to ligation with the digested E2 BDV-EF1alpha-BGH pA 

PCR product. 

 

Figure 25. Gel electrophoresis showing AvrII digested U1-BAC-U2, U1-BAC-

U5 and E2 BDV-EF1alpha-BGH pA PCR fragment. The gel confirmed the 

expected band sizes of approximately 14 kb for the linearized vectors, and 2.7 

kb for the E2 BDV-EF1alpha-BGH pA PCR fragment. 
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3.2.4.2.3 Construction of U1-E2 BDV-BAC-U2 and U1-E2 BDV-BAC-U5 plasmids 

The digested, purified E2 BDV-EF1alpha-BGH pA PCR product (Section 

3.2.4.2.1) was ligated (Section 2.4.8) into the linearized U1-BAC-U2 and U1-

BAC-U5 vectors (Section 3.2.4.2.2), generating U1-E2 BDV-BAC-U2 and U1-

E2 BDV-BAC-U5 plasmids. The ligation product was transformed into DH10B 

E. coli bacteria. Bacteria were plated onto LB agar containing 100 µg/ml 

Carbenicillin and 17.5 µl/ml Chloramphenicol and the plates were incubated at 

30°C for 24 to 48 hours. DNA was extracted from overnight cultures of 

colonies, and screened by restriction digest with AvrII and SacI, followed by 

agarose gel electrophoresis. AvrII digest DNA gels (Figure 26 & 27), revealed 

two possible U1-E2 BDV-BAC-U2 clones (clones 16 & 25) with the presence 

of bands at the expected sizes of 2.7 kb & 14.1 kb, and three possible U1-E2 

BDV-BAC-U5 clones (clones 15, 29, & 34) with bands of 2.7 kb & 13.9 kb 

present. Parental plasmid linearized as expected, giving bands of 14 kb for 

U1-BAC-U2 and 13.8 kb for U1-BAC-U5.  

Figure 26. Gel electrophoresis showing AvrII digestion of U1-E2 BDV-BAC-U2 

clones. This screen of AvrII digested U1-E2 BDV-BAC-U2 plasmids revealed 

two potential positive clones (16 & 25) with two bands present at 2.7 kb and 

14.1 kb. The parental plasmid was linearized as expected, giving a band at the 

expected size of approximately 14 kb. 
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Figure 27. Gel electrophoresis showing AvrII digestion of U1-E2 BDV-BAC-U5 

clones. This screen of AvrII digested U1-E2 BDV-BAC-U5 plasmids revealed 

three potential positive clones (15, 29 & 34) with two bands present at 2.7 kb 

and 13.9 kb. The parental plasmid was linearized as expected, giving a band 

at the expected size of approximately 13.9 kb. 
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A second digest with SacI (Figure 28 & 29) was used as an additional 

confirmation that the clones were correct. This second screen found only one 

of each of the U1-E2 BDV-BAC-U2 and U1-E2 BDV-BAC-U5 clones had the 

expected banding pattern, highlighting the importance of confirming construct 

through analysis with multiple restriction enzymes. U1-E2 BDV-BAC-U2 clone 

25 had the expected banding pattern of 1.5 kb, 1.6 kb, 3.0 kb and 10.6 kb and 

U1-E2 BDV-BAC-U5 clone 29 had bands of 1.6 kb, 2.2 kb, 2.8 kb and 9.9 kb, 

as expected. The large size of the plasmids (kb) was a hurdle to the use of 

direct Sanger sequencing for final confirmation of the clones. The two clones 

were therefore sent to the Davison Laboratory for full length sequencing by 

using Illumina next-generation sequencing. Sequencing confirmed that the E2 

BDV was inserted into U1-E2 BDV-BAC-U2 clone 25 in the correct position 

(Figure 30). The sequence data matched the in silico sequence prediction, 

although several indels were detected in regions of the BAC cassette, which 

were common to both clones and presumably reflect errors in the original 

pHA2 sequence. The U1-E2 BDV-BAC-U5 sequencing is still ongoing. In 

summary, a combination of two linear recombination fragments containing the 

BAC cassette and E2 BDV gene, flanked by regions homologous to either the 

U1 and U2, or U1 and U5 regions of PCMV were generated.  
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Figure 28. Gel electrophoresis showing SacI digestion of U1-E2 BDV-BAC-U2 

clones. This screen of SacI digested U1-E2 BDV-BAC-U2 clones revealed that 

clone 25 had the correct banding pattern of 1.5 kb, 1.6 kb, 3.0 kb and 10.6 kb 

bands, while clone 16 did not. Parental band sizes were as expected. 

 

 

Figure 29. Gel electrophoresis showing SacI digestion of U1-E2 BDV-BAC-U5 

clones. This screen of SacI digested U1-E2 BDV-BAC-U5 clones revealed that 

clone 29 had the correct banding pattern of 1.6 kb, 2.2 kb, 2.8 kb and 9.9 kb 

bands, while clone 15 and 34 did not. Parental band sizes were as expected. 
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Figure 30. In silico map of U1-E2 BDV-BAC-U2 plasmid showing the insertion 

of E2 BDV-EF1alpha-BGHpA. Sequence was confirmed by whole genome 

sequencing. 
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3.3 Identification of PCMV-antibody positive pig sera 

In these next studies, pig sera from a local abattoir was screened for PCMV-

reactive antibodies. These studies were performed for two main reasons.  

Firstly, PCMV positive pig sera can be used for assays within the laboratory- 

it can be used as a primary antibody for western immunoblot analysis, and as 

control sera in ELISAs – both of which will prove very useful as this project 

progresses. Secondly, as the vaccine being constructed for use in swine, it is 

of interest to know the level of existing PCMV positivity within local farm 

populations, and it will also be of interest to compare the levels with other parts 

of the UK, if known, and other countries in Europe and beyond. 

Sera from 20 pigs were screened using a commercial PCMV antibody-capture 

ELISA kit as described in Section 2.5.1. As a positive and negative control 

were not included in this ELISA Kit we had to set our own valuation by 

comparison of the individual values. From these, 3 PCMV-positive, 2 PCMV-

borderline and 15 PCMV-negative sera were identified as shown in Table 13.  

These sera samples have been aliquoted and stored at -20°C for use later in 

the project. 
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Table 10. ELISA results of pig sera. Three PCMV-positive and two PCMV-

borderline sera were identified out of 20 pigs. The assay was performed in 

duplicate with a 2-fold dilution factor using Omega Control Software for data 

analysis. 

 

 

Well

Row

Well

Col Content Dilutions

Raw Data 

(450)

Blank 

corrected 

based on 

Raw Data 

(450)

Linear 

regression fit 

based on Blank 

corrected in 

ng/ml (450)

A 3 Sample X1 2 0,199 0,135 2,029

B 3 Sample X1 2 0,221 0,156 2,436

C 3 Sample X2 2 0,529 0,465 8,229

D 3 Sample X2 2 0,533 0,469 8,299

E 3 Sample X3 2 0,201 0,137 2,071

F 3 Sample X3 2 0,21 0,146 2,241

G 3 Sample X4 2 0,282 0,217 3,582

H 3 Sample X4 2 0,256 0,192 3,107

A 4 Sample X5 2 0,283 0,219 3,612

B 4 Sample X5 2 0,242 0,178 2,841

C 4 Sample X6 2 0,26 0,196 3,177

D 4 Sample X6 2 0,273 0,209 3,419

E 4 Sample X7 2 0,62 0,556 9,932

F 4 Sample X7 2 0,253 0,189 3,047

G 4 Sample X8 2 0,412 0,348 6,032

H 4 Sample X8 2 0,38 0,316 5,428

A 5 Sample X9 2 0,202 0,138 2,087

B 5 Sample X9 2 0,153 0,089 1,169

C 5 Sample X10 2 0,265 0,2 3,261

D 5 Sample X10 2 0,236 0,172 2,723

E 5 Sample X11 2 0,189 0,124 1,84

F 5 Sample X11 2 0,202 0,138 2,086

G 5 Sample X12 2 0,249 0,184 2,965

H 5 Sample X12 2 0,272 0,208 3,402

A 6 Sample X13 2 0,288 0,223 3,694

B 6 Sample X13 2 0,275 0,21 3,45

C 6 Sample X14 2 0,337 0,272 4,615

D 6 Sample X14 2 0,34 0,276 4,68

E 6 Sample X15 2 0,474 0,409 7,183

F 6 Sample X15 2 0,47 0,406 7,118

G 6 Sample X16 2 0,274 0,21 3,435

H 6 Sample X16 2 0,319 0,254 4,275

A 7 Sample X17 2 0,266 0,202 3,291

B 7 Sample X17 2 0,261 0,196 3,19

C 7 Sample X18 2 0,309 0,245 4,103

D 7 Sample X18 2 0,311 0,246 4,125

E 7 Sample X19 2 0,242 0,178 2,839

F 7 Sample X19 2 0,242 0,178 2,841

G 7 Sample X20 2 0,213 0,148 2,29

H 7 Sample X20 2 0,249 0,185 2,967

positive

positive

borderline

positive

borderline
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3.4 Discussion 

The long-term goal of this project is to develop PCMV as a vaccine vector 

platform, using it to vaccinate against CSFV, as well as potentially other swine 

diseases. To date, PCMV has not been well characterised, so the initial focus 

was on characterising in vitro growth characteristics. 

 

Given the lack of information available with regards to culturing and titration of 

PCMV, initial experiments were focused on optimisation of the TCID50 assay, a 

standard assay used in virus titration. After reading the TCID50 plates at several 

timepoints post-infection, we observed that the readings reached their maximum 

at 28/29 days post-infection.  This time-point was therefore selected to be the 

reading point for all PCMV based TCID50 assays moving forward.  Other CMVs 

within the lab have a readout time of 7 – 10 days (MCMV & RhCMV), so these 

initial data suggested a slow growing phenotype for PCMV relative to other 

CMVs. 

 

Having optimised the TCID50 assay, we then looked at the kinetics of virus 

release from infected cells into the supernatant. CPE was only visible after 20 

days post-infection, further supporting a slow growing phenotype. Additionally, 

titration of supernatants from several different timepoints post-infection revealed 

relatively low titres, with a maximum titre of 4.77E+03 pfu/ml observed at 22 days 

post-infection. This compares with maximum titres for MCMV and RhCMV on the 

order of 1.00E+06 to 1.00E+07 pfu/ml. The PCMV titre did not increase further 

with additional incubation time, despite progression of visible CPE. Using ddPCR 

we demonstrated that the ratio of virion genome copy number to infectious virion 

particles increased over time, indicating an accumulation of defective, non-

infectious virus particles in the supernatant. Whole genome sequencing of the 
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supernatants supports this scenario, with analysis of day 37 supernatant 

revealing large genome deletions in the PCMV genome, relative to earlier 

timepoints. The total/infectious particle ratio has been measured for many viruses 

(Klasse, 2015), including the alphaherpesvirus HSV-1 which has a ratio of ~ 50 

– 200. Interestingly, another alphaherpesvirus, varicella-zoster virus, which is 

reported to be difficult to work with due to difficulties obtaining high titre cell free 

virus stocks (Harper et al, 1998), also has a much higher ratio of ~ 4E+04 

(Carpenter et al, 2009). Harper and colleagues devised a method to obtain 

slightly higher titre virus stocks by harvesting and freezing virus in a sucrose-

based buffer, so it is possible that the low titres observed with PCMV could be 

improved with further optimisation in future studies. 

 

Given the low titres of PCMV observed in supernatants, we tried low speed 

centrifugation/spinoculation to determine whether this technique would increase 

the effective MOI, as has been previously reported for several other viruses 

(Osborn & Walker, 1968; Cheng et al, 2007; Guo et al, 2011). As can be seen in 

Figure 8, spinoculation did not result in increased supernatant virus titres, 

[caused a small, but significant decrease in supernatant virus titres]. Attempts to 

prepare a concentrated virus stock with a higher titre were also unsuccessful, 

yielding maximum titres of ~2.5E+04 pfu/ml, indicating that the concentration 

process most likely increased the amount of non-infectious (or possibly non-

infecting/un-available to infect/aggregated) particles. Overall, the data obtained 

in this study indicate that the WT (JF strain) has a slow growing, low titre 

phenotype. Our data concurs with two previous studies which reported PCMV to 

be a slow growing virus in PFT cells (Fryer et al, 2004). There are, however two 

published studies that report significant visible CPE within 7 days (Whitteker et 

al, 2008) and 7-10 days (Rupasinghe et al, 2001), which is significantly earlier 
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than the 20 days at which we first observed CPE, but it is possible that this may 

be due to differences in the cell lines and virus strains used. Further optimisation 

will need to be carried out in the future to try and improve virus yields. 

 

The overall aim of this study is to develop PCMV as a vaccine platform (Section 

3.2). To accomplish this, heterologous antigens needed to be inserted into the 

genome such that they can be expressed during virus infection and elicit 

protective immune responses.  In order to facilitate insertion of antigens into this 

slow growing PCMV genome, it was decided to clone it as a BAC (Section 3.2), 

thereby allowing the genome to be manipulated in bacterial cells. As outlined in 

Figure 9, the BAC cassette, which contains all of the elements necessary to allow 

replication within bacterial cells (Shizuya et al, 1992; Warden et al, 2011), was 

cloned into shuttle vectors to position it between flanking homologous targeting 

sequences, to direct the cassette to the correct genomic locations for insertion. 

Two different locations within the genome were chosen for insertion of a BAC 

cassette – between U1 and U2, and U1 and U5 (Section 3.2). Insertion of the 

BAC cassette into the shuttle vectors was confirmed by restriction digest analysis 

(Figure 11), and then the BAC cassettes, flanked by the homologous regions was 

released from the vectors as linear fragments by restriction digests with PmlI and 

SwaI (Figure 12). Two different approaches were selected to introduce this 

linearized fragment into the PCMV genome – one based on homologous 

recombination (Section 1.4.2.3) (Zhang et al, 1998; Muyrers et al, 1999; Rivero-

Müller et al, 2007) and one based on CRISPR/Cas9 technology (Section 1.4.2.4) 

(Hsu et al, 2014; Ishino et al, 2018). The CRISR/Cas9 approach required an extra 

plasmid to supply the gRNA and CRISPR proteins (Section 1.4.2.4.3.3) (Yao et 

al, 2018). Cloning of the shuttle vectors and gRNA CRISPR plasmid was 

straightforward and no issues were encountered.   
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After preparation by restriction enzyme digestion and purification, the linearized 

fragments U1-BAC-U2 and U1-BAC-U5 were transfected into either uninfected 

or PCMV infected PFT cells. As the BAC cassette contains GFP we were able to 

monitor transfection efficiency. The expectation was that initially there would be 

a lot of GFP positive cells. Over time, we expected that this number would 

decrease as the linearized fragment was degraded, and the only remaining GFP 

positive cells would be those where the BAC cassette had recombined into the 

PCMV genome. After transfection we observed that the transfection efficiency of 

the U1-BAC-U2 and U1-BAC-U5 fragments (Figure 15) was very low in 

comparison to transfection efficiency of an EGFP-C1 plasmid which was used as 

a control (Figure 14).  According to a study from Kreiss and colleagues (Kreiss et 

al, 1999), this is likely due to the larger size of the linearized fragments  (~14kb), 

relative to the EGFP-C1 plasmid (~4.7kb). Transfecting a higher quantity of DNA 

did not improve the transfection efficiency. When the CRISPR/Cas9 plasmid was 

co-transfected into cells, the transfection efficiency was even lower again 

(Figures 16), possibly due to increased toxicity caused by introducing increased 

levels of DNA. 

  

In order for recombination of the BAC cassette into the PCMV genome to take 

place by HR, the PCMV genome and the linearized fragment must be present in 

the same cell. For the CRISPR/Cas9 approach, the CRISPR/Cas9 plasmid must 

also be present. Low transfection efficiencies, combined with slow growing, low 

titre PCMV did not generate ideal conditions for this event. To try to maximize the 

chances of the linearized fragments entering a cell that contained virus, we also 

tried transfecting PCMV-infected cells. Regardless of the timing of infection with 

PCMV, we did not observe the development of any GFP positive virus plaques. 
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It was assumed that the replication of PCMV WT (JF strain) virus might be 

outgrowing any recombinant clones, causing CPE and monolayer detachment 

before any GFP positive plaques could be observed. To address this, GPT 

selection agent was added to the media (Section 3.2.3). The BAC cassette 

contains a gpt gene, so that only recombinant PCMV containing a BAC cassette 

should be able to grow in the presence of GPT reagent, while WT (JF strain) virus 

should not be able to replicate (Mulligan & Berg, 1981; Falkner & Moss, 1988). 

Unfortunately, as shown in Figure 17, the GPT reagent was associated with high 

auto-fluorescence background, precluding screening for GFP positive cells / 

plaques containing recombinant virus. While the increased levels of auto-

fluorescence prevents screening for GFP positive plaques, we could potentially 

monitor for the presence of recombinant virus using PCR with primers specific for 

the BAC cassette region. An increase in levels of the BAC cassette over time 

would indicate it had been recombined into the viral genome. 

Initially we had hoped to insert the BAC cassette into the PCMV genome first, 

and then perform subsequent manipulations such as insertion of the E2 BDV 

antigen in bacteria.  However, the problems encountered while trying to insert the 

BAC cassette into the genome necessitated a change in approach. We still 

wanted to use GPT selection to prevent overgrowth of cultures with WT (JF strain) 

virus, however, this meant we could no longer use GFP positivity as a means of 

detecting recombinant virus. We decided to insert the E2 BDV protein along with 

the BAC cassette. This meant we would still be able to use GPT selection and 

could screen for E2 BDV positive virus plaques rather than GFP positive plaques. 

The E2 BDV gene was first cloned into a pMiniOri vector to place it under the 

control of an EF1alpha promoter (Figure 17), followed by cloning of the E2 BDV 

expression cassette into shuttle vectors flanked by regions homologous to U1 
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and U2, and U1 and U5, as outlined in Figure 22.  Clones were confirmed by 

restriction digest with two different enzymes – AvrII and SacI. The large size of 

the plasmids (approx. 15kb) precluded direct DNA Sanger sequencing. Instead, 

NGS sequencing using the Illumina platform was used to confirm plasmid 

integrity. Due to time constraints it was not possible to transfect these into cells, 

but this work will be continued in the future. 

 

Similar to other CMV, PCMV may have substantial utility for development as a 

vaccine platform. However, the slow growth characteristics, combined with low-

titre phenotype and transfection efficiencies of PCMV permissive cells presents 

unique issues to cloning of PCMV as an infectious BAC, which is required for 

subsequent genetic manipulation of the virus. After characterisation of PCMV in 

vitro growth, all the shuttle vectors required for the project were constructed 

without any issues and all were verified by restriction digest and sequence 

analysis. Initial studies towards use of these constructs for the BAC cloning of 

PCMV encountered a number of hurdles. Future studies towards the cloning of 

the PCMV BAC will focus on optimisation of these factors, including virus growth, 

transfection efficiency and selection conditions.  
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Chapter 4 

Conclusions and future directions 

 

Classical swine fever is a notifiable disease which causes significant morbidity 

and mortality in pigs, and also, causes large economic losses in the swine 

industry. One reported outbreak in the Netherlands resulted in the culling of 

over 10 million pigs, costing over 1 billion Euro (Food and Agriculture 

Organization of the United Nations, 2011). Although most western and central 

European countries are classified as being CSF free, CSF is endemic in many 

countries, including China which is a leading producer of pork. High levels of 

international trade mean the risk of CSFV introduction into CSF free territories 

is ever present.  Currently CSF free countries use a non-vaccination, stamping 

out policy rather than prophylactic vaccination. This is due to concerns 

surrounding existing vaccines that include incomplete protection against 

infection, and DIVA incompatibility issues which would affect ability to trade 

post-vaccination, as discussed in Section 1.3.  

 

To date, several different vaccines have been developed (Section 1.3), but 

only one has made it onto the European market - Suvaxyn® CSF Marker 

vaccine, a chimeric pestivirus vaccine expressing the E2 protein of CSFV. 

Transplacental CSFV infection is not completely inhibited by Suvaxyn® CSF 

Marker vaccine, so the virus may still spread through unvaccinated piglets 

within the herd, preventing use of this vaccine prophylactically. This vaccine 

is also not suitable for use in vaccination of wild boar populations which serve 

as a reservoir for CSFV, as it requires direct intramuscular inoculation of each 

animal, and that is not feasible when dealing with inaccessible wild animal 
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populations.  This study set out to address the urgent need for development 

of a safe, effective, DIVA compatible vaccine using a herpesvirus-based 

platform. 

 

Herpesvirus based vaccines, and in particular, CMV-based vaccines, have been 

shown to introduce strong, durable antibody (Marzi et al, 2016) and T-cell 

responses (Hansen et al, 2010) against several different heterologous antigens 

(Table 2) (Hansen et al, 2011; (Tsuda et al, 2015) Hansen et al, 2018), and also 

have the potential to self-disseminate (Murphy et al, 2016), which would facilitate 

vaccination of inaccessible wild-boar populations. PCMV, classified as a 

Roseolavirus, shares biological similarities with other betaherpesviruses, and 

also in terms of cytopathology, with development of inclusion bodies and 

induction of cytomegaly in infected tissues. The overall long-term aim of this 

project is to develop PCMV as a vaccine vector platform, using it for vaccination 

against CSFV. We set out with the intention of inserting a BAC cassette into the 

PCMV genome, either by homologous recombination or through the use of 

CRISPR/Cas9 technology, to allow easier and more efficient manipulation of the 

PCMV genome in bacterial cells. 

 

Information regarding PCMV growth in vitro was lacking in the literature. This 

study took some initial steps towards characterisation, revealing that the PCMV 

WT (JF strain) virus is quite slow growing, with CPE only being visible after about 

20 days post-infection. We also found that the virus titres released into the 

supernatant were very low, reaching a maximum level of 4.77E+04 pfu/ml. Using 

ddPCR to measure the total virion genome copy number, we observed quite a 

high genome to pfu ratio for PCMV (Table 7), which increased towards later time-

points post- infection. This data, combined with whole genome sequencing data 
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of viral supernatants, which showed large genome deletions at later times post-

infection (Section 3.1.3), indicated an accumulation of defective non-infectious 

particles over time. A greater understanding of PCMV replication and growth 

kinetics will be required moving forward, and future studies should focus on 

improving virus yields as this was one limiting factor in our attempts to generate 

a recombinant PCMV BAC (Section 3.2.3). Our current understanding of genome 

to pfu ratios indicates that not all non-infecting particles are defective (Klasse, 

2015; Virology blog: Are all virus particles infectious?), and that under the right 

conditions, many of them could complete an infectious cycle. Experimentation 

with different cell lines, along with techniques such as sonication of viral stocks 

may help to improve PCMV titres.   

 

We were able to successfully clone two shuttle vectors – one targeting the BAC 

cassette into the U1 and U2 region of the PCMV genome, and the other targeting 

the BAC cassette between the U1 and U5 regions of the genome, deleting the 

intervening non-essential genes (Section 3.2.1). However, transfection efficiency 

was quite low when the linearized recombinant fragments were transfected into 

either uninfected or PCMV infected PFT cells. As discussed previously, in order 

for a recombination event to occur, the PCMV genome and the recombination 

fragment must be present in the same cell. When CRISPR/Cas9 approach is 

used, the CRISPR/Cas9 plasmid must also be present in the cell. Low 

transfection efficiencies, combined with slow growing, low titre PCMV infections 

made it quite unlikely that all the required DNA elements would end up in the 

same cell at the same time. There is evidence in the literature that transfection of 

linearized DNA is less efficient than transfection of supercoiled DNA (von Groll et 

al, 2006). When complexed with lipofectamine, circular DNA forms a compact 

spherical shape, whereas linearized DNA forms ‘worm-like’ strands, which may 
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affect uptake of the complex into the cell (von Groll et al, 2006; Lehner et al, 

2013). In the present study, the linear recombinant fragments were released from 

a circular shuttle vector plasmid by restriction digest, as outline in Figure 10, prior 

to transfection. Future studies should also evaluate using the recombinant 

fragment within the shuttle vector, rather than excising it.  Taking low transfection 

efficiencies into account, electroporation should also be evaluated as a means of 

transferring the recombinant fragments into cells, to determine whether this 

technique would be more efficient than transfection.  

 

Following transfection, our expectation was that there would be a large number 

of green cells due to the BAC cassette containing a GFP gene. The GFP 

expression was expected to fade away over time as the linearized recombination 

fragment was degraded. Any green that emerged after this time and spread from 

cell to cell forming a GFP positive plaque would be a recombinant virus that 

contained the BAC cassette. We did not see any GFP positive plaques, and the 

monolayers were usually destroyed by replication of  PCMV WT (JF strain) virus. 

In an effort to restrict WT (JF strain) virus growth, we added GPT selection agent 

to the media (Section 3.2.3). In the presence of GPT reagent, only recombinant 

virus containing a gpt gene from the BAC cassette would be able to grow, 

preventing the cells from being overgrown by WT (JF strain) virus. Unfortunately, 

GPT reagent had the unexpected property of causing bright auto-fluorescence in 

the GFP fluorescence channel (Figure 17), making it impossible to screen for 

GFP positive virus / plaques. To overcome this, we needed a means to screen 

for recombinant virus that was not GFP dependent.  Another set of shuttle vectors 

targeting the same PCMV genomic regions for insertion was constructed, but this 

time the BDV E2 gene was also cloned into the shuttle vectors. The idea behind 

this was that recombinant plaques could be selected by screening for expression 
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of the E2 BDV protein rather than GFP. There was no time to test this strategy, 

but the vectors will be used in future studies.  

 

In conclusion, we have taken the initial steps towards developing PCMV as a 

vaccine vector platform. Difficulties with low virus titres and low transfection 

efficiencies hindered experiments, and further optimisation is required to 

overcome these issues and improve the likelihood of a recombination event 

occurring. All of the shuttle vectors required for the project were successfully 

cloned and are now available, and the data gathered about PCMV replication 

kinetics is a good resource moving forward with the development of PCMV as a 

vaccine vector platform. 
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Appendix I 

 

Plasmid Antibiotic Concentration Bacteria 
 selection (µg/ml) 
 

pHA2 Kanamycin 50 DH10B 

 Chloramphenicol 17.5 

 

U1-U2 (GeneArt) Carbenicillin 100 DH10B 

 

U1-U5 (GeneArt) Carbenicillin 100 DH10B

  

 

U1-BAC-U2 Carbenicillin 100 DH10B 

 Chloramphenicol  17.5 

 

U1-BAC-U5 Carbenicillin 100 DH10B 

 Chloramphenicol  17.5 

 

EGFP-C1 (Clontech) Kanamycin 50 n/a 

 

pX330 + gRNA/Cas9  Carbenicillin 100 DH10B

  

 

pCR-XL-TOPO Kanamycin 50  TOP10 
E2 BDV (Gifhorn) 

 

pMiniOri Zaire EBOV GP Kanamycin 50 PIR1 
 

pMiniOri BDV E2 Kanamycin 50  PIR1 
(Gifhorn) 

 
U1-E2 BDV-BAC-U2 Carbenicillin 100 DH10B 
 Chloramphenicol 17.5 

 
 

U1-E2 BDV-BAC-U5 Carbenicillin 100 DH10B 
Chloramphenicol 17.5 
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Antibiotic  Stock solution Supplier  

Carbenicillin   50 mg/ml Melford 

Chloramphenicol  34 mg/ml Sigma-Aldrich 

Kanamycin  50 mg/ml Sigma-Aldrich 
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Appendix II 

 

 

Restriction digest reaction setup  

 

 volume (µl) 
 

Screening Cloning 
 

DNA 5 40 
    
Buffer (10X) 1    5 
  

 
dH2O, molecular grade 3    3  

 
High-Fidelity enzyme 1    2 

 

 

 

 

 

 

Dephosphorylation and ligation reaction setup 

 

volume (µl)   

 
1:3 ratio  no insert control 

 
Dephosphorylated vector 1 1 

 
Insert 3 X 

 
10x ligation buffer 2    2 

 
T4 DNA ligase 1    1 

 
dH2O 16 13 
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Appendix III 

 

 

Standard PCR reaction setup and thermal cycling 

conditions 

 

Component     Volume per reaction (µl) 

5x Q5™ Reaction Buffer     10 

dNTP (10 mM) 1 

Forward primer (50 µM) 1 

Reverse primer (50 µM) 1 

Template DNA 1 

Q5™ Hot Start HF DNA Polymerase 0.5 

5x Q5™ High GC Enhancer 10 

Molecular water 25.5 

 

 

 

 

 

Cycling Step Temp, °C  Time cycles 

Initial denaturation  98 30 sec 1 

Denaturation 98 10 sec 34 

Annealing  72 30 sec 34 

Extension  72 90 sec 34 

Final exte Final extension  72 2 min 1  

Hold  12 Infinite   

 

Using Q5™ High-Fidelity DNA Polymerase annealing temperatures and 

extension times can vary depending on melting temperature of the primers 

and complexity of genomic templates respectively. 
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ddPCR reaction setup and thermal cycling conditions 

 

Component     Volume per reaction (µl) 

2x ddPCR Supermix for Probes (no dUTP) 10 

Forward primer (2 uM)  1 

Reverse primer (2 uM) 1 

Probe (2 µM) 2 

Molecular water 5 

DNA (0.2 ng/µl) 1 

 

 

 

Cycling Step  Temp, °C Time Ramp Rate cycles 

Enzyme activation 95  10 min 2°C/sec 1 

Denaturation 94 30 sec  2°C/sec 40 

Annealing/extension 60 1 min 2°C/sec 40 

Enzyme deactivation 98 10 min 2°C/sec 1

  

Hold  12 Infinite 2°C/sec 1
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Appendix IV 

 

 

Density 

 

Plates   Seeding density 

per well 

       Growth medium 

(ml) 

  Surface area 

(cm2) 

  6-well 0.25 - 1 x 106   2 9 

12-well  1 x 105   1 - 2 4 

24-well   0.5 - 2 x 105   0.5 - 1 2 

96-well         1 - 4 x 104    0.1 - 0.3 n.a. 

 

From ‘Useful numbers for Cell Culture’ (ThermoFisher) and Lipofectamine® 3000 

Reagent Protocol (Invitrogen, Fisher Scientific) 

 

 

 

 

Cell count 

 

A Neubauer chamber consists of 9 big squares, each of 1 mm2. The depth 

of the chamber is 0.1 mm. The total volume amounts to 0.1 mm3 = 0.0001 

ml. 

 

Concentration of cells / ml  =   Number of cells 
                         x 104 

   
 Number of squares 
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Neubauer chamber and the method how to count cells.  

(Reprinted form BiteSizeBio). 
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Appendix V 

 
 

Transfection of DNA into PFT cells 

   
 

1.1 Red/ET recombination technology 

 

24 well plate 
 

Lipofectamine mix / RXN : 

Opti-MEM™ 24 µl 

Lipofectamine™ 3000 1 µl 

 ————  
 25 µl      
 
 

DNA mix / RXN : 

Opti-MEM™  12 µl    17.5 µl 18.9 µl 20.95 µl

  

p3000 2 µl 2 µl 2 µl 2 µl 

DNA  1 µg    0.5 µg  

EGFP-C1 plasmid  1 µg 0.5 µg 

 ———— ———— ———— ———— 
 25 µl   25 µl 25 µl 25 µl 
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1.2 CRISPR/Cas9 technology 

 

24 well plate 
 

Lipofectamine mix / RXN : 

Opti-MEM™ 24 µl 

Lipofectamine™ 3000 1 µl 

 ————  
    25 µl  

 

 

DNA mix / RXN : 

Opti-MEM™ 6.7 µl  14.85 µl 

p3000  2 µl 2 µl 

DNA  1 µg  0.5 µg 

gRNA (# 21) 0.5 µg  0.25 µg 

gRNA (# 23) 0.5 µg  0.25 µg  

  ———— ————  

  25 µl 25 µl 
 
 
NHEJ Reagent (SCR7) 1 µM 1 µM 
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Transfection of DNA in PCMV infected PFT cells 

 
 

2.1 Red/ET recombination technology 

 

24 well plate 
 

Lipofectamine mix / RXN : 

Opti-MEM™    24 µl 

Lipofectamine™ 3000 1 µl 

 ————  
      25 µl      
 

DNA mix / RXN : 

Opti-MEM™    18 µl       22 µl 

p3000  2 µl 2 µl 

DNA / EGFP-C1 plasmid 0.5 µg    0.1 µg 

 ———— ————  
 25 µl   25 µl 
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2.2 CRISPR/Cas9 technology 

 

24 well plate 
 

Lipofectamine mix / RXN : 

Opti-MEM™ 24 µl 

Lipofectamine™ 3000 1 µl 

 ————  
   25 µl  

 

DNA mix / RXN : 

Opti-MEM™ 15.35 µl  21.47 µl 

p3000  2 µl 2 µl 

DNA   0.5 µg  0.1 µg 

gRNA (# 21) 0.25 µg  0.05 µg 

gRNA (# 23) 0.25 µg  0.05 µg  

  ———— ————  

  25 µl 25 µl 
 
 
NHEJ Reagent (SCR7) 1 µM 1 µM 
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Transfection of DNA in PFT cells, selecting for GPT 

 

 

 Red/ET recombination technology 

 

12 well plate 
 

Lipofectamine mix / RXN : 

Opti-MEM™    48 µl 

Lipofectamine™ 3000  2 µl 

 ———— 
      50 µl      
 

DNA mix / RXN : 

Opti-MEM™ 24 µl 37.8 µl    

     

p3000 4 µl 4 µl  

DNA   2 µg   

EGFP-C1 plasmid  2 µg    

 ———— ————   
 50 µl 50 µl 
 
 
 
GPT Reagent: 

 

Mycophenolic acid in EtOH 500x  12.5 mg / ml  

   1x   25 µg / ml 

 

Aminopterine 100x containing Xanthine  25 mg / ml  

 Hypoxanthine 1.5 mg / ml  

  1x containing Xanthine 250 µg / ml 

 Hypoxanthine 15 µg / ml 
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Appendix VI 

 

Target sequence for gRNA 

 

gRNA Target sequence 

pX330 #21 clone 2 CCTGCGCCTTCTTCTACCGA 

pX330 #23 clone 2 CAAAAATAACTCTAATTCTAC  
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