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Abstract

In the first half of this paper we study John H. Conway’s construction of the Surreal
Numbers, showing it is a proper class that forms the totally ordered Field No that
extends the real and ordinal numbers, and then explore some of these novel numbers,
such as ω ´ 1, where ω is the first von Neumann ordinal. In the second half we then
introduce the notion of Games as a precise expression of two player perfect information
sequential games, and analyse several of these Games such as Nim, Brussel Sprouts,
and the original Game of Borages.
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General Introduction

...a thing once for all done and there you are somewhere
and finished in a certain time, be it a day or a year or
even supposing, it should eventually turn out to be a
serial number of goodness gracious alone knows how
many days or years.

– James Joyce, Finnegans Wake [1, p.118]

The fundamental concept explored in this paper is precisely what mathematical struc-
tures emerge if, sometimes with restrictions, we construct objects called Games, which
are ordered pairs of independent sets containing already constructed Games, one of
which we call the Left set and the other the Right set. These fractal constructions, first
discovered and studied by John H. Conway, are able to describe both the games of
Game Theory after which they are named, as well the real and ordinal numbers, and
more besides. This paper provides an introduction to Games, and specifically to Con-
way’s Surreal Numbers, as introduced in his 1976 book On Numbers and Games, a
subclass of Games that contains and extends the real and ordinal numbers to a Field
[2]. It intends to be readable to the undergraduate student, requiring no prerequisite
knowledge except some of the basics of Zermelo-Fraenkel set theory (ZFC), which
when needed is refreshed along the way. The paper is split into two parts: in sections
2-5 we study the Surreal Numbers, showing they form a totally ordered field, comparing
the surreal constructions of the reals and ordinals to their usual constructions in ZFC
(via equivalence relations, Dedekind cuts &c.) and exploring the new numbers that
emerge from this method of construction. In sections 6-8 we introduce the concept of
combinatorial games and how they relate to the mathematical objects of Games, some
of the mechanisms and arguments by which we try to analyse these games, and then
work through and prove the complete theory for a few of these games. At the end of
the paper there is also an appendix containing the oft-used definitions of the first half
for easy reference.

Most of the proofs in the first half of the paper follow those of Conway in On Numbers
and Games, who is notably terse and leaves much to the reader (to be expected from
a 200-page book written in a week), though they are here expanded and explicitly
reasoned, and the paper attempts to be comprehensive in the material that it covers,
omitting no proofs except those which are obvious repetitions. In contrast, much of the
reasoning, notation, and many of the proofs in the second half are, for better or worse,
the author’s own, and the final section of the paper, on the impartial game of Borages
(rhymes with porridges), is, as far as the author can tell, original.
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An Introduction to the Surreal Numbers

Loosely, the Surreal Numbers are a totally ordered class that form a Field (a field of a
class, rather than a set) that extends the real and ordinal numbers, and is the largest
totally ordered Field described yet in history (in von Neumann-Bernays-Gödel set the-
ory (a conservative extension of ZFC to proper classes) it has been shown to be the
largest possible ordered Field [3, p.362]). In the next few sections we shall show this
rigorously, but in this section we less formally explore the (literally) simplest surreal
numbers and arguments to help develop the reader’s intuition around this unique con-
struction, as well as defining many key terms.

Construction of Numbers

We begin with two axioms that must be considered in tandem:

Axiom 1: For any two sets of numbers L and R,

D the number tL|Ru ðñ Ex P L : x ě y, @y P R.

That is, there exists a new number tL|Ru if and only if no member of L is greater-
than-or-equal to any member of R.

We denote the left set of a number a as AL and the right set as AR, so a “ tAL|ARu.
It is important to distinguish between numbers and sets of numbers, so we use lower
case letters to denote numbers, and upper case letters to denote sets of numbers. We
also denote an arbitrary member of AL as aL, and write aL “ tALL|ALRu, and similarly
write aR “ tARL|ARRu for a member of AR.

Axiom 2: For any two numbers x “ tXL|XRu and y “ tY L|Y Ru,

x ď y ðñ ExL P XL : xL ě y ^ EyR P Y R : yR ď x.

That is, x ď y if and only if no member of XL (the left set of x) is greater-than-or-
equal to y and no member of Y R (the right set of y) is less-than-or-equal to x. We
will also often use the inverse of this:

x ę y ðñ DxL P XL : xL ě y _ DyR P Y R : yR ď x

We also define equality here as: x “ y ðñ x ď y ^ y ď x, define less-than as
x ă y ðñ x ď y ^ y ę x, and define greater-than as x ą y ðñ x ě y ^ y ğ x.
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We see directly then that equality is a symmetric relation between two numbers (i.e.
x “ y ðñ y “ x), that both less-than and greater-than are asymmetric relations (i.e.
x ă y ùñ y ć x), and that both less-than-or-equal and greater-than-or-equal are
antisymmetric (i.e. x ď y ^ y ď x ùñ x “ y).

From these two axioms we can begin to construct and order numbers. First we in-
voke the Axiom of Existence from ZFC (which states there exists a set containing no
elements, called the empty set, written ø “ tu) and consider the empty set. Then by
Axiom 1, letting L “ R “ ø, there exists a number tø|øu, since the empty set has
no elements and so Axiom 1’s requirement is automatically fulfilled. Let us call this
number 0 :“ tø|øu (and we will later show that it is the additive identity for the surreal
numbers as we expect from zero), giving us two sets of numbers, ø and t0u. Then we
can construct three more possible numbers:

a :“ tt0u|øu b :“ tø|t0uu c :“ tt0u|t0uu

(For ease, since in all our constructions there is only one left set, and only one right set,
we usually omit the outmost brackets of these sets, and if one of these sets is the empty
set, we leave that side empty. So we rewrite: a “ t0|u, b “ t|0u, c “ t0|0u, 0 “ t|u).

For a, the only member of AL is 0, and there are no members of AR, so from Axiom 1,
a is a number. Similarly, as there are no members of BL, b is a number. Generally, any
construction x “ tXL|XRu with either XL “ ø or XR “ ø will be a number, as Axiom
1 will hold vacuously. For c, we have 0 P CL and 0 P CR. But from Axiom 2 we know
that 0 ě 0, so by Axiom 1 we see that c is not a number (it is a Game, a more general
construction we explore in the second half of this paper).

Now we have three numbers, 0, a, and b. We can use Axiom 2 to order them. First we
consider 0 and a:

Is 0 ď a? There are no members of 0L, so Ex P 0L : x ě a. Similarly, there are no
members of AR, so EaR P AR : aR ď 0. So by Axiom 2, 0 ď a.

Is a ď 0? 0 P AL and 0 ď 0, so by Axiom 2, 0 ę a.

So we have 0 ď a and a ę 0, which implies 0 ă a.

Next we consider 0 and b:

Since 0 P BR and 0 ď 0, we have 0 ę b. And since BL “ 0R “ ø, the conditions for
b ď 0 hold vacuously, so 0 ę b^ b ď 0 ùñ b ă 0.

We can now order our three numbers: b ă 0 ă a, and it is easy to check directly by the
same method that b ă a. We write 1 :“ a “ t0|u and ´1 :“ b “ t|0u, and will justify
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these names later. For now we consider the eight sets of numbers we can now form:

ø t´1u t0u t1u t´1, 0u t´1, 1u t0, 1u t´1, 0, 1u

Pairing these up into left and right sets, we get 64 candidates for numbers. However,
since we have ordered ´1, 0 and 1, we can quickly show using Axiom 1 that most of
them are not numbers, leaving us with the following:

t´1|u t´1, 0|u t´1, 1|u t´1, 0, 1|u t0, 1|u t1|u

t| ´ 1u t| ´ 1, 0u t| ´ 1, 1u t| ´ 1, 0, 1u t|0, 1u t|1u

t´1|0u t´1|0, 1u t´1|1u t´1, 0|1u t0|1u

However, by using the Truncation Theorem later introduced in section 2 (Theorem 3.8,
which tells us we can remove all but the greatest element in the left set, and all but
the least in the right set, and this new construction will be equal to the original one),
and noting that, for example, 0 ď t´1|1u and t´1|1u ď 0 (meaning t´1|1u “ 0), we
can show that many of these candidates are equal to each other (we formalise this in
the next section after showing “ is an equivalence relation), leaving us finally with only
these four new numbers created (and ordered using Axiom 2):

t| ´ 1u ă ´1 ă t´1|0u ă 0 ă t0|1u ă 1 ă t1|u

Indeed we will show later that we are justified in calling these numbers ´2 :“ t| ´ 1u,
´1{2 :“ t´1|0u, 1{2 :“ t0|1u and 2 :“ t1|u, that is that they have the properties we
expect, such as 1{2` 1{2 “ 1.

We began with one number, 0, from which we constructed two more numbers, -1
and 1, from which in turn we constructed four more numbers. Notice that it would be
impossible to construct 2 before constructing 1, or 1 before constructing 0. This is
because 0 was constructed in a previous step, or day. We call one number simpler
than another if it was constructed on an earlier day, and call the day a number is
constructed on is its birthday. Thus 1 is simpler than 2, but 2 is as simple as -2 or
1/2, since they have the same birthday. We say then that 0 was created on day 0, 1
on day 1, &c. Similarly, if we have a set of numbers, we call the sum of their birthdays
their day sum, and if one set of numbers has a lower day sum than a different set of
numbers, we say that set is the simpler set.

Definition. Birthday: The birthday of a number is day on which it is first constructed.

Definition. Simplicity: We say that a number x is simpler than another number y if x
has an earlier birthday than y.
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The Surreal Numbers are a Proper Class

We distinguish between lower case field and upper case Field because the Surreal
Numbers are not a set. Similarly to how the existence of an ordinal number in ZFC
implies the existence of another ordinal [4, p. 108], the existence of a surreal number
x implies at the very least that the new surreal number tx |u exists. Thus the Surreal
Numbers are not a set, but a proper class.

Methods of Proof

We will call the elements of XL the left options of x, and the elements of XR the right
options of x. Often we use induction on the options of a number x to show that a
property P holds for that x. In terms of birthdays, we can express this method of proof
as follows: suppose that, for some property P , x is the simplest number for which P

does not hold. Then if we can show that this implies that P does not hold for one of the
options of x, we have a contradiction, since we can always express x in a form where it
has only options simpler than x, since this is the only way to express x on its birthday.
This means that either P holds for no numbers, or if we show that P holds for the
simplest number, 0, that P holds for all numbers. In the first proof below we will repeat
this argument explicitly, but after that we will use it implicitly, and use phrases like ‘we
eventually only have to check the case of 0’ or ‘we inductively reduce the question
down to 0’ to refer to this reasoning.

We will in general be proving theorems on all numbers, including infinite ordinals. Usu-
ally in transfinite induction we must show that P holds for the base case (P p0q holds),
the successor case (for any successor ordinal α ` 1, P pα ` 1q holds if P pαq holds),
and the limit case (for any limit ordinal β, P pβq holds if P pβ1q holds for all β1 ă βq [4,
p. 114]. However, since here we do induction on the birthday of a number, we treat
each day after 0 as a limit case, and only need to show P p0q holds, and then that for
any number x, including ordinals, P pxq follows from P px1q for some x1 simpler than x,
since we assume that P px1q holds for all x1 created on an earlier day than x.

Ordering the Surreal Numbers

In this section we build on our two Axioms and show that the Surreal Numbers are
totally ordered, and then prove some more general properties of the surreals, which
allow us to manipulate them up to equality, which will be very useful for later proofs.
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Lemma 0.1. For any number x “ tXL|XRu, x ď x and x “ x.

Proof.

(a) x ď x: From Axiom 2, we must show

ExL P XL : xL ě x, or equivalently, x ę xL, @xL P XL (0.1.1)

ExR P XR : xR ď x, or equivalently, x ğ xR, @xR P XR (0.1.2)

but x ę xL if there exists an rxL P XL such that rxL ě xL for any xL, and x ğ xR if
there exists an rxR P XR such that rxR ď xR for any xR. But we can choose rxL “ xL

and rxR “ xR, and in this way we have reduced the question on x to questions on
the options of x, that is we now know that x ď x if both xL ď xL and xR ď xR.
Now suppose that the theorem does not hold for x, and that furthermore x is the
simplest number for which the theorem does not hold. Then we must also have
either that the theorem holds for no numbers, because the theorem holding for
simpler numbers would imply it holding for numbers with those simpler numbers
as options, or that the theorem holds for all numbers, if the theorem holds for the
simplest number, 0. So we only have to consider only whether 0 ď 0. But this
follows from the fact that 0 has no options, so by induction, x ď x for all x. This
method of argument will we use often, and from now on, implicitly. See Section
2.3 above for a full explanation of the argument.

(b) x “ x: This follows directly from our definition of “ and (a).

Theorem 0.2. For any number x “ tXL|XRu, xL ă x for all xL P XL.

Proof.

(a) We first show that xL ď x for all xL P XL. For this to be true we must have from
Axiom 2 that both

ExLL P XLL : xLL ě x, and (0.2.1)

ExR P XR : xR ď xL, @xL P XL. (0.2.2)

Note that (0.2.2) is just restating of Axiom 1, so we just need to show (0.2.1),
which can be equivalently written as

@xLL P XLL, x ę xLL. (0.2.3)
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Then by the inverse form of Axiom 2, (0.2.3) is true if

DxL P XL : xL ě xLL, @xLL P XLL (0.2.4)

but this is the same condition that we wanted to show at the start of (a), replacing
x with xL and xL with xLL, that is to say, we have xL ď x only if xLL ď xL, for all
xLL P XLL. By repeating this process, we will eventually only have to consider
sets whose only left option is 0, so (0.2.1) will hold vacuously. Thus by induction,
xL ď x for all xL P XL.

(b) Now we show that x ę xL for all xL P XL. By the inverse form of Axiom 2, to prove
this it is enough to show that

DrxL P XL : rxL ě xL (0.2.5)

and we can choose rxL “ xL, and then (0.5.1) holds from Lemma 0.1. Thus xL ă x

for all xL P XL.

Theorem 0.3. For any number x “ tXL|XRu, x ă xR for all xR P XR.

Proof.

By a symmetric argument the proof for this is the same as the proof from Theo-
rem 0.2, but considering the right options of x.

We say that any two numbers x “ tXL|XRu and y “ tY L|Y Ru are identical if and only
if XL “ Y L and XR “ Y R, and write x ” y to express identity. We also simplify the
notation here by writing ‘for all/there exists xL’ instead of the longer ‘for all/there exists
xL P XL’, since there is no ambiguity, as every number has only one left set and one
right set.

Theorem 0.4. If two numbers x and y are identical, then they are also equal.

Proof.

Since x and y are identical, XL = Y L and XR = Y R. Then x ď y if there does not
exist any yL ě y or any xR ď x, and y ď x if there does not exist any xL ě x or
any yR ď y. But from Theorems 0.2/0.3 none of these exist, so x “ y.

Theorem 0.5. For all numbers x, y, and z, if x ď y and y ď z, then x ď z.

Proof.
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We will do a proof by contradiction, so assume that the proposition πpx, y, zq : px ď

y ^ y ď z ^ x ę zq holds. Then the following all hold by Axiom 2:

ExL : xL ě y (0.5.1)

EzR : zR ď y (0.5.2)

DxL : xL ě z _ DzR : zR ď x (0.5.3)

If we suppose the first proposition of (0.5.3) holds, then by considering also (0.5.1)
the following holds:

DxL : y ď z ^ z ď xL ^ y ę xL (0.5.4)

That is, πpy, z, xLq. If we suppose the second proposition of (0.5.3) holds, then by
considering also (0.5.2) the following holds:

DzR : zR ď x^ x ď y ^ zR ę y (0.5.5)

That is, πpzR, x, yq. So in either case the truth of πpx, y, zq depends on the truth of
π with one of x or z replaced by one of their options. Then, since (0.5.3) will not
hold for any XL “ ZR “ ø, by induction πpx, y, zq will not hold. So we must have
x ď y ^ y ď z ùñ x ď z, that is that numbers are transitive under ď.

It follows directly from Theorem 0.5 that “ is transitive, so we have now shown that
“ is an equivalence relation on numbers, as it is reflexive, symmetric, and transitive.
Then equality partitions the surreals into equivalence classes, and in general when we
talk of constructing a new number we mean a number that is not equal to an already
constructed number, that is it does not belong to any already existing equivalence
class. We call a construction that is not identical to an already constructed number,
but that is equal to one, a new form of that number, so that on day 2 we construct
the new number 2 “ t0, 1|u, but the new construction t´1, 0|u is just a new form of the
number 1. In section 5 we define the natural form of a number, which is the simplest
representation of any equivalence class that can be constructed in a finite number of
days.

Theorem 0.6. For any numbers x and y, either x ď y or y ď x.

Proof.

By contradiction, suppose neither x ď y nor y ď x. Then by the inverse of Axiom
2:

DxL : xL ě y _ DyR : yR ď x (0.6.1)
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DyL : yL ě x_ DxR : xR ď y (0.6.2)

Then there are four combinations of statements that we must show are contradic-
tory:

(a) DxL : xL ě y and DyL : yL ě x. From Theorem 0.2 we know xL ď x and
yL ď y. It follows from Theorem 0.5 that y ď xL ď x and x ď yL ď y. But then
x “ y, which contradicts our supposition.

(b) DxL : xL ě y and DxR : xR ď y. It follows that DxL, xR : xR ď xL, but this
contradicts Axiom 1.

(c) DyR : yR ď x and DyL : yL ě x. The argument is as in (b).

(d) DyR : yR ď x and DxR : xR ď y. Similarly to (a), from Theorem 0.3 it follows
that y ď yR ď x and x ď xR ď y, so x “ y.

So numbers are total under ď.

We have now shown that ď is a non-strict total order on numbers, as it is reflexive
(from Lemma 0.1), antisymmetric (from the definition of equality), transitive (from The-
orem 0.5), and total (from Theorem 0.6).

Theorem 0.7. ă is a strict total order on numbers.

Proof.

For any numbers x, y, and z, we have:

(a) Irreflexivity: if x ă x, then both x ď x and x ę x hold, which is contradictory.

(b) Trichotomy: we show that in all possible cases we have a contradiction. If
x ă y and y ă x, then we must have both x ď y and x ę y; if x “ y and x ă y,
then y ď x and y ę x; if x “ y and y ă x, then x ď y and x ę y. All three
cases produce contradictions so we must have no more than one of x ă y,
x “ y, and y ă x. But if x ć y and y ć x and y ‰ x, then we have (x ę y or
y ď x) and (y ę x or x ď y) and (x ę y or y ę x). But for any combination,
either (x ď y and x ę y) or (y ď x and y ę x), or (x ę y and y ę x). The first
two are clear contradictions, and if follows from the latter that one of xL ě xR,
yR ď yL, yL ě y, or yR ď y holds, all of which are contradictions of Axiom 1 or
Theorems 0.2/0.3, so exactly one of x ă y, x “ y, and y ă x holds.
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(c) Transitivity: Suppose that π : px ă y and y ă z and x ć z) is true. Then we
can rewrite the last inequality as (x ę z or z ď x). If we have then x ę z,
then from the definition of ă, π implies (x ď y and y ď z and x ę z), which is
false from Theorem 0.5. If we have the instead z ď x, then noting that x ă y

implies y ę x and y ă z implies z ę y, π implies (y ę x and z ę y and z ď x).
But from Theorem 0.5, y ę x implies (y ę z or z ę x). So either (y ę z and
y ă z), or (z ę x and z ď x), both of which are contradictory, so π must be
false, and numbers are transitive under ă.

Therefore ă is a strict total order on numbers.

Theorem 0.8. Truncation Theorem: For any number x “ tXL|XRu, such that for
some xi, xj P XL we have xi ă xj, the number x1 “ tXLztxiu|X

Ru is equal to x.
Similarly, for any y “ tY L|Y Ru, if for some yi, yj P Y

R we have yi ą yj, the number
y1 “ tY L|Y Rztyiuu is equal to y.

Proof.

For x “ x1 we need to show that both x ď x1 and x1 ď x. From Axiom 2 these are
true if the following are all true:

(a) ExL P XL : xL ě x1

(b) Ex1R P XR : x1R ď x

(c) Ex1L P XLztxiu : x1L ě x

(d) ExR P XR : xR ď x1

But (a) follows from the transitivity of ă and Theorem 0.2, (c) follows directly from
Theorem 0.2, and (b) and (d) follow directly from Theorem 0.3. A similar argument
shows that y “ y1.

Corollary 0.8.1. For any number z “ tZL|ZRu, if ZL has a greatest member a, we can
write z “ ta |ZRu, and if ZR has a least member b, we can write z “ tZL| bu.

Proof.

If a is the greatest element of ZL, then for all zL ‰ a, zL ă a, so we can apply the
Truncation Theorem on zL and rewrite z “ ta |ZRu. We can similarly do this for
ZR, and write z “ ta | bu.
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A word more on notation: every number has only one left set and one right set. But
in specifying that a number’s left or right set contains the elements from the union of
more than one set, we wish to omit to union sign for ease and esthetics. Thus we read
a “ tAL1 , AL2 |AR1 , AR2u as a “ tAL1 Y AL2 |AR1 Y AR2u.

Theorem 0.9. Extension Theorem: For any number x “ tXL|XRu, and sets of num-
bers A and B, if for all a P A, a ă x, and for all b P B, x ă b, then xe :“ tXL, A|XR, Bu “

x.

Proof.

We need to show that x ď xe and xe ď x. From Axiom 2 then we must show:

(a) ExL : xL ě xe

(b) ExR : xR ď x and Eb P B : b ď x

(c) ExL : xL ě x and Ea P A : a ě x

(d) ExR : xR ď xe

But (a) follows from the fact that xL P xLe and Theorem 0.2, (b) follows Theorem 0.3
and x ă b, (c) follows from Theorem 0.2 and a ă x, and (d) follows from the fact
that xR P xRe and Theorem 0.3.

Arithmetic on the Surreal Numbers

Our aim in this section is to show that we can define an arithmetic on the Surreal
Numbers such that its equivalence classes have a field structure. That is, for any
three surreal numbers x, y, and z, we can define the two operations ` (addition) and ¨
(multiplication), such that all the following field axioms hold [5, p. 5]:

(a) Closure under addition and multiplication: x` y is a number and x ¨ y is a number.

(b) Commutativity under addition and multiplication: x` y “ y ` x and x ¨ y “ y ¨ x.

(c) Associativity under addition and multiplication: px ` yq ` z “ x ` py ` zq and
px ¨ yq ¨ z “ x ¨ py ¨ zq.

(d) Existence of an addition identity 0 such that x` 0 “ x.

(e) Existence of a multiplicative identity 1 such that x ¨ 1 “ x.
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(f) Existence of an additive inverse ´x such that x`´x “ 0.

(g) Existence of a multiplicative inverse x´1 such that x ¨ x´1 “ 1, for all x ‰ 0.

(h) Distributivity of multiplication over addition: a ¨ pb` cq “ a ¨ b` a ¨ c.

Note that we will often write x ¨ y as simply xy. We begin now with addition.

Addition

Conway says in On Numbers and Games: “The spirit of definitions is to ask what we
already know about the object being defined, and to make the answers part of our
definition.” [2, p. 6] In defining addition then, what we want (if we are to construct an
arithmetic that matches our intuitive understanding of the world) is that, for example,
x` y ą xL ` y, for all x and y. Let us then define addition on numbers then as:

x` y :“ tXL
` y, x` Y L

|XR
` y, x` Y R

u

so as to satisfy all our expectations (recall from Theorems 0.2/0.3 that
px` yqL ă x` y ă px` yqR). However, this definition involves the addition of a number
to a set of numbers. So we will define addition between a number and a set of numbers
then as:

z ` A :“ tz ` a : a P Au

A` z :“ ta` z : a P Au

Clearly then z`A ” A`z if addition on numbers is commutative (which we shall show
momentarily), and z ` ø ” ø` z ” ø. We can now write x` y in an expanded form:

x` y “ txL1 ` y, x
L
2 ` y, ..., x` y

L
1 , x` y

L
2 , ...|x

R
1 ` y, x

R
2 ` y, ..., x` y

R
1 , x` y

R
2 , ...u

which is a recursive definition. Inductively however, our definition of addition will cas-
cade down finally into many additions between a number and 0, since 0 is the simplest
number, and in evaluating xL1 ` y, for example, we have to first know the value of the
sum of y and each of the left options of xL1 . But then we have:

z ` 0 “ tZL
` 0, z ` ø|ZR

` 0, z ` øu “ tzL1 ` 0, ...|zR1 ` 0, ...u

0` z “ tø` z, 0` ZL
|ø` z, 0` ZR

u “ t0` zL1 , ...|0` z
R
1 , ...u

which will themselves reduce down finally to:

0` 0 ” tø` 0, 0` ø|ø` 0, 0` øu ” 0
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giving us, eventually, an inductive basis for addition. That is, since 0`0 is well defined,
0`1 and 1`0 are well defined, as 0 is the only option of 1, which in turn means 1`1 is
well defined, which is turn means 2` 0, 0` 2, 2` 1, 1` 2 are well defined, ad infinitum.

We will now show addition on numbers to be commutative, associative, and to have an
identity element, as well as that y ě z if and only if x` y ě x` z.

Theorem 0.10. For any numbers x, y and z, we have:

(a) 0 ” t|u as the identity element: x` 0 ” x

(b) Commutativity: x` y ” y ` x

(c) Associativity: px` yq ` z ” x` py ` zq

Proof.

(a) x ` 0 ” tXL ` 0|XR ` 0u ” txL1 ` 0, ...|xR1 ` 0, ...u. Then by induction x ` 0 ” x if
0` 0 ” 0, but this follows from 0` 0 “ 0 as shown above.

(b) We have x`y ” tXL`y, x`Y L|XR`y, x`Y Ru ” txL1`y, ..., x`y
L
1 , ...|x

R
1 `y, ..., x`

yR1 , ...u and y ` x ” tY L ` x, y `XL|Y R ` x, y `XRu ” tyL1 ` x, ..., y ` x
L
1 , ...|y

R
1 `

x, ..., y ` xR1 , ...u. The commuativity of x and y then depends on the commutativity
of the pairs formed of one of x or y and an option of the other. So inductively we
need to check only that x ` 0 ” 0 ` x. But 0 ` x ” t0 ` xL1 , ...|0 ` xR1 , ...u, so
inductively 0` x ” x ” x` 0, since 0` 0 ” 0` 0.

(c) We have tpxL1 `yq`z, ..., px`yL1 q`z, ..., px`yq`zL1 , ...u for the left set of px`yq`z,
and txL1 ` py ` zq, ..., x` pyL1 ` zq, ..., x` py ` zL1 q, ...u for the left set of x` py ` zq.
So again we inductively reduce the question down to associativity on 0, but clearly
px ` yq ` z ” x ` py ` zq when one of x, y, or z is equal to 0 from (a). The same
argument shows that ppx` yq ` zqR ” px` py ` zqqR, finishing the proof.

Theorem 0.11. For any numbers x, y and z, we have πpx, y, zq : px ď y ðñ x ` z ď

y ` zq. Furthermore, x ă y ðñ x` z ă y ` z, and x “ y ðñ x` z “ y ` z.

Proof.

(a) First, suppose x` z ď y ` z. Then we have both

ExL : xL ` z ě y ` z (0.11.1)

EyR : yR ` z ď x` z (0.11.2)
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Now further suppose that πpxL, y, zq holds. Then xL ď y ðñ xL ` z ď y ` z. But
from (0.11.1) and Theorem 0.6, we know the right hand side of πpxL, y, zq holds,
so we have xL ď y.

Next suppose that πpx, yR, zq holds. Then x ď yR ðñ x ` z ď yR ` z. But
again we know from (0.11.2) and Theorem 0.6 that the right hand side holds, so
we have yR ě x

But xL ď y and yR ě x implies x ď y. So if our assumptions of πpxL, y, zq and
πpx, yR, zq hold we have shown one side of the theorem. But by induction this
reduces down to showing that πp0, 0, zq holds, which it does since we showed in
Theorem 0.10 that 0 is the additive identity.

(b) Next suppose that x ď y. Then

ExL : xL ě y (0.11.3)

EyR : yR ď x (0.11.4)

By contradiction, assume x` z ę y ` z. Then one of the following is true:

DxL : xL ` z ě y ` z (0.11.5)

DzL : x` zL ě y ` z (0.11.6)

DyR : yR ` z ď x` z (0.11.7)

DzR : y ` zR ď x` z (0.11.8)

If (0.11.5) is true, then further suppose that πpxL, y, zq holds. Then xL ď y ðñ

xL ` z ď y ` z. But since x ď y, we know xL ď y from Theorem 0.5. So
then πpx, y, zq being false depends on πpxL, y, zq being false. But inductively, as
in part (a), we know that π holds for the basis case, so we get a contradiction.
Similar arguments show that the other possibilities from x ` z ę y ` z also give
contradictions, so we must have x ď y implies x` z ď y ` z.

(c) Next, if x ă y, then x ď y and y ę x. Then it follows directly from (a) and (b) that
x` z ď y ` z and y ` z ę x` z, that is, x` z ă y ` z. Similarly, if x` z ă y ` z, it
follows directly that x ă y.

(d) Finally, if x “ y, then x ď y and y ď x. Then it follows directly from (a) that
x ` z ď y ` z and that y ` z ď x ` z, which implies x ` z “ y ` z. Similarly, if
x` z “ y ` z it follows directly that x “ y.
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Theorem 0.12. πpw, x, y, zq: pIf w ď x and y ď z, then w ` y ď x ` z. If w ă x and
y ă z, then w ` y ă x` zq

Proof.

We have already shown the first part to be true if either w “ x or y “ z in The-
orem 0.11, so we just consider the case when w ă x and y ă z. We need to
show that there is no element of pw ` zqL greater-than-or-equal to y ` z and no
element of py ` zqR less-than-or-equal to w ` x, and the same in the other direc-
tion. For example, we must show that wL ` x ă y ` z. But since wL ă w ă x,
this is πpwL, x, y, zq. Similar arguments reduce π down onto its options in the other
cases, so by induction π holds for all w, x, y, z.

Theorem 0.13. If x and y are numbers, then x` y is a number.

Proof.

From Axiom 1 we must show that no element in px ` yqL is greater-than-or-equal
to any element in px`yqR. But if all of xL`y, x`yL, xR`y, x`yR are numbers, this
follows from Theorems 0.2/0.3/0.5/0.11. For example, since xL ă x and y ă yR,
we know xL ` y ă x ` y ă x ` yR. So inductively we reduce the question on
x ` y down to questions on the sums of one of x or y and an option of the other.
Eventually then we only need to show that for a number z that z ` 0 and 0` z are
numbers, which follows from 0 being the additive identity, so the theorem holds for
any numbers x and y.

It should be noted that when applied to ordinal numbers (defined in the next section),
the sum refers to the natural ordinal sum, that is that α ` β is the least ordinal greater
than all α1 ` β and α` β1 for all α1 ă α, β1 ă β. It is also possible to define and use the
normal ordinal sum [2, p. 193], but then the field structure of the surreals is lost, since
the ordinal sum is not commutative.

Negation

We define the negation of a number x as:

´x “ t´XR
| ´XL

u

where for any set of numbers A

´A “ t´a1,´a2,´a3, ...u for all ai P A

Then we have the following properties:
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Theorem 0.14. For any numbers x and y, if ´x and ´y are also numbers, we have
x ď y ðñ ´y ď ´x, and furthermore x ă y ðñ ´y ă ´x

Proof.

The first part follows directly from Theorem 0.11, since x ď y ùñ x ` ´y ď

y`´y ùñ x`´y`´x ď y`´y`´x ùñ ´y ď ´x. Similarly ´y ď ´x implies
x ď y. The second part follows from the first and Theorem 0.7.

Theorem 0.15. If any x is a number, then so is ´x

Proof.

We have x “ tXL|XRu and ´x “ t´XR| ´ XLu. We need to show by Axiom
1 that no ´xR is greater-than-or-equal to any ´xL. But since x is a number we
have xL ă xR, for all xL, xR, and if ´xL and ´xR are also numbers, then by
Theorem 0.14, we must have that ´xR ă ´xL, that is that x is a number. So
inductively we reduce the question on x to questions of the options of x, and
eventually we only have to consider the theorem for 0, but since 0 ” ´0, the
theorem holds for 0 and therefore inductively for any number x.

Theorem 0.16. For any numbers x and y:

(a) ´p´xq ” x

(b) ´px` yq ” ´x`´y

(c) x`´x “ 0

Proof.

(a) ´p´xq ” ´t´XR|´XLu ” t´p´XLq|´p´XRqu. Then by induction, since ´p´0q ”

´p0q ” 0, we have ´p´xq ” x.

(b) We have ´px`yq ” t´pXR`yq,´px`Y Rq|´pXL`yq,´px`Y Lqu and ´x`´y ”
t´XR`´y,´Y R`´x|´XL`´y,´x`´Y Lu, so by induction ´px`yq ” ´x`´y
because ´p0` yq ” ´0`´y and ´px` 0q ” ´x`´0.

(c) We want to show that both x`´x ď 0 and 0 ď x`´x. x`´x in expanded form
is:

x`´x “ tXL
`´x, x`´XR

|XR
`´x, x`´XL

u

By contradiction let us assume that x ` ´x ğ 0. This is the case if there exists
an element of px ` ´xqR that is less-than-or-equal to 0, or some element of 0L

is greater-than-or-equal to x ` ´x. But 0L has no elements so we need either
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some XR ` ´x ď 0 or some x ` ´XL ď 0. But this is only true if there is no
element in pXR ` ´xqL greater-than-or-equal to 0 and no element in px ` ´XLqL

greater-than-or-equal to 0. But if we expand these sets we have:

pXR
`´xqL “ tpxR1 `´xq

L, pxR2 `´xq
L, ...u

px`´XL
q
L
“ tpx`´xL1 q

L, px`´xL2 q
L, ...u

and
xR1 `´x

R
1 P px

R
1 `´xq

L, xR2 `´x
R
2 P px

R
2 `´xq

L, ...

xL1 `´x
L
1 P px`´X

L
q
L, xL2 `´x

L
2 P px`´X

L
q
L, ...

all of which we need to be not greater-than-or-equal to 0. So by induction, since
0 ` ´0 ď 0, we have x ` ´x ď 0. A similar argument shows that 0 ď x ` ´x,
finishing the proof.

We have now shown that the equivalence classes of the surreals form an abelian
group under addition: they are closed, associative, commutative, with 0 as the identity
element and ´x as the inverse element of x.

Multiplication

In defining multiplication, we can use the fact that we know, for example, x ´ xL ą 0

and y ´ yL ą 0, and that we want the property that px ´ xLqpy ´ yLq ą 0, and also
the property that we can expand this to get xy ´ xLy ´ xyL ` xLyL ą 0. So we want
xy ą xLy ` xyL ´ xLyL, and similarly we can formulate inequalities for all the other
combinations of x ´ xL ą 0, y ´ yL ą 0, x ´ xR ă 0, y ´ yR ă 0, to give us a tentative
definition of multiplication as:

xy “ tXLy`xY L
´XLY L, XRy`xY R

´XRY R
|XLy`xY R

´XLY R, XRy`xY L
´XRY L

u

which we will now check has all the properties we expect of it.

Similarly to addition and negation, we use the notation Ax “ tax : a P Au, and AB “

tab : a P A, b P Bu to express multiplication on sets.

Theorem 0.17. For any numbers x and y:

(a) x ¨ 0 ” 0

(b) x ¨ 1 ” x

(c) yx ” xy
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(d) p´xqy ” xp´yq ” ´xy

Proof.

(a) Since 0L “ 0R “ ø, x ¨ 0 ” t|u ” 0.

(b) x ¨1 ” tXL|XRu¨t0|u ” tXL ¨1|XR ¨1u, so inductively, as 0 ¨1 ” 0, we have x ¨1 ” x.

(c) yx “ tY Lx ` yXL ´ Y LXL, Y Rx ` yXR ´ Y RXR|Y Lx ` yXR ´ Y LXR, Y Rx `

yXL ´ Y RXLu. Inductively then we reduce the question down to whether Y Lx ”

xY L, yXL ” XLy, &c. But these are all true when one of the terms in 0, which is
the basis case.

(d) For the left sets of p´xqy and ´xy:

pp´XqY qL ” tp´XR
qy ` p´xqY R

´ pp´XR
qY L

q, p´XL
qy ` p´xqY R

´ pp´XL
qY R

qu

And
p´XY qL ” t´XLy ´ xY R

`XLY R,´XRy ´ xY L
`XRY L

u

So by induction we reduce the question down to whether p´XLqy ” ´XLy,´pp´XLqY Rq

” XLY R. But again these all hold in the basis case, and the proof is similar for the
right sets and xp´yq.

Theorem 0.18. For any numbers x, y and z:

(a) πpx, y, zq : px` yqz “ xz ` yz

(b) Ωpx, y, zq : pxyqz “ xpyzq

Proof.

(a) We have

xz ` yz ” tpXZqL ` yz, ...|...u ” tXLz ` xZL
´XLZL

` yz, ...|...u

and
px` yqz ” tpXL

` yqz ` px` yqZL
´ pXL

` yqZL, ...|...u

Now suppose πpXL, y, zq, πpx, y, ZLq, πpXL, y, ZLq all hold. Then px`yqz becomes,
using the equality x`´x “ 0:

px` yqz ” tXLz ` yz ` xZL
` yZL

´XLZL
´ yZL, ...|...u

“ tXLz ` yz ` xZL
´XLZL, ...|...u ” xz ` yz

So πpx, y, zq depends on π holding for the left options of x and z, but if xL “ 0 or
zL “ 0, then clearly π holds, so inductively px` yq “ xz ` yz.
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(b) We have
xpyzq ” tXL

pyzq ` xpY ZqL ´XL
pY ZqL, ...|...u

” tXL
pyzq ` xpY Lz ` yZL

´ Y LZL
q ´XL

pY Lz ` yZL
´ Y LZL

q, ...|...u

then using (a), ´p´xq ” x, and yx ” xy,

“ tXL
pyzq`xpY Lzq`xpyZL

q´xpY LZL
q´XL

pY Lzq´XL
pyZL

q`XL
pY LZL

q, ..|...u

and
pxyqz ” tpXY qLz ` pxyqZL

´ pxyqLZL, ...|...u

” tpXLy ` xY L
´XLY L

qz ` pxyqZL
´ pXLy ` xY L

´XLY L
qZL, ...|...u

then using (a) and ´p´xq ” x,

“ tpXLyqz`pxY L
qz´pXLY L

qz`pxyqZL
´pXLyqZL

´pxY L
qZL

`pXLY L
qZL, ...|...u

which, if ΩpXL, y, zq,Ωpx, Y L, zq, ... all hold,

” tXL
pyzq`xpY Lzq´XL

pY Lzq`xpyZL
q´XL

pyZL
q´xpY LZL

q`XL
pY LZL

q, ...|...u

” xpyzq

So again we reduce Ωpx, y, zq down to the same proposition on its options, but
when one of x, y, or z is equal to 0, clearly Ω holds, so by induction, xpyzq “ pxyqz.
Note that since we evoke the equality x ` ´x “ 0 in the proof, the theorem only
holds up to equality, not identity.

Lemma 0.19. For any x, y and z, we have πpx, y, zq : px “ y ùñ xz “ yzq

Proof.

For xz “ yz we must have that both xz ď yz and yz ď xz. For the former, this
means there is no element of pxzqL greater-than-or-equal to yz and no element of
pyzqR less-than-or-equal to xz. Suppose then by contradiction that we have some:

xLz ` xzL ´ xLzL ě yz ą yLz ` yzL ´ yLzL (0.19.1)

and further suppose that πpxL, yL, zq, πpx, y, zLq, and πp´xL,´yL, zLq all hold.
From the Extension Theorem we can write x and y so that there exists some
xL “ yL, giving us xLz “ yLz, xzL “ yzL and ´xLzL “ ´yLzL. Then from Theo-
rem 0.11, we have:

xLz ` xzL ´ xLzL “ yLz ` yzL ´ yLzL (0.19.2)

which clearly contradicts (0.19.1). So we reduce πpx, y, zq down to π on their
options, and πpa, b, cq holds when one of a, b or c is equal to 0. Similar arguments
show there is no pyzqR ď xz and that yz ď xz, giving us xz “ yz.
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Theorem 0.20. P px1, x2, y1, y2q: pIf x1 ď x2 and y1 ď y2, then x1y2`x2y1 ď x1y1`x2y2q,
and if both premises are strict, the conclusion is.

Proof.

From the above lemma we have already shown the case when x1 “ x2 and y1 “
y2, as the terms simply cancel to 0 ď 0 from using Theorem 0.11, so we just look
at the case when x1 ă x2 or y1 ă y2. But if x1 ă x2, then x2 ę x1, so either
x1 ă xR1 ď x2, or x2 ą xL2 ě x1, for some xR1 or xL2 . But if we have the former,
suppose P px1, xR1 , y1, y2q and P pxR1 , x2, y1, y2q hold. Then we have:

x1y2 ` x
R
1 y1 ă x1y1 ` x

R
1 y2

xR1 y2 ` x2y1 ď xR1 y1 ` x2y2

Using Theorems 0.11/0.12, we can add both sides of the inequalities and cancel
their common terms, leaving us with:

x1y2 ` x2y1 ă x1y1 ` x2y2

which is what we want to prove, and is strict since x1 ă x2 or y1 ă y2. So in
the case that xR1 ď x2, we can reduce P px1, x2, y1, y2q down to P pxR1 , x2, y1, y2q

and P px1, x
R
1 , y1, y2q, the former of which is strictly simpler than P px1, x2, y1, y2q.

Similarly, if instead we have xL2 ě x1, it reduces down to P px1, x
L
2 , y1, y2q and

P pxL2 , x2, y1, y2q. Similarly if y1 ă y2 we reduce down to P px1, x2, y
R
1 , y2q and

P px1, x2, y1, y
R
1 q if some yR1 ě y2 or to P px1, x2, y1, yL2 q and P px1, x2, yL2 , y2q if some

yL2 ě y1, again where all the former propositions have strictly simpler terms than
the propositions that they reduced. When the new propositions are simpler, we
know by induction that P px1, x2, y1, y2q. Then for when they are not strictly simpler,
consider, for example, when both P px1, x

R
1 , y1, y2q and P px1, x2, y1, y

R
1 q. Then we

have P px1, xR1 , y1, yR1 q, which means x1yR1 ` xR1 y1 ď x1y1 ` xR1 y
R
1 . But we can use

Theorem 0.11 to rearrange this into x1y
R
1 ` xR1 y1 ´ xR1 y

R
1 ď x1y1, which is always

true from Theorem 0.2, since the left hand side is an element of pX1Y1q
L. The

other combinations are similar.

Theorem 0.21. If x and y are numbers, then xy is a number. Furthermore, if x and y
are positive numbers, then xy is a positive number.

Proof.

For the first part, since x and y are numbers, their options are all numbers. For xy
to be a number, we need to show that, for example, xL1y ` xyL ´ xL1yL ğ xL2y `

xyR´xL2yR. From Theorem 0.6, for all xL1 , xL2, either xL1 ď xL2 or xL2 ď xL1. But
if we have the former, then from Theorem 0.20, we have both

P pxL1 , xL2 , yL, yq : xL1y ` xL2yL ď xL1yL ` xL2y (0.21.1)

83



The Plymouth Student Scientist, 2019, 12, (1), 63-134

P pxL2 , x, yL, yRq : xL2yR ` xyL ă xL2yL ` xyR (0.21.2)

Then using Theorem 0.11, we can rearrange these and add xyL to (0.21.1) and
add xL2y to (0.21.2), giving us:

xL1y ` xyL ´ xL1yL ď xL2y ` xyL ´ xL2yL (0.21.3)

xL2y ` xyL ´ xL2yL ă xL2y ` xyR ´ xL2yR (0.21.4)

which using transitivity give us:

xL1y ` xyL ´ xL1yL ă xL2y ` xyR ´ xL2yR (0.21.5)

which is what we needed to show. Similar arguments show this holds if instead
we have xL2 ď xL1, and that every other element of pxyqL is not greater-than-
or-equal to any element of pxyqR. So inductively we have that xy is a number if
xLy, xyL, xLyL, ... are all numbers, which holds in the basis case as 0 is a number.

For the second part, since 0 ă x and 0 ă y, from Theorem 0.20 we have 0 ă xy.

It should be noted that, like with addition, on ordinals multiplication refers to the nat-
ural product, not the ordinal product. Again, the ordinal product can be defined and
used [6], but at a loss of the field structure.

Division

The last thing we must show to have a field is how to find the multiplicative inverse of
a number, that is, for any x ‰ 0, if there exists a number y, such that xy “ t, then we
need to show how to find this y. But note that if, for a positive x, we could find a y1

such that xy1 “ 1, then we would also know that tpxy1q “ t ùñ xpty1q “ t, that is that
y “ ty1. If x were instead negative, we would just need to multiply the equation through
by ´1. So we only need show how to find y for some xy “ 1, where x is positive.

Lemma 0.22. For every positive x “ tXL|XRu, we can write x in a form with XL “

t0, xLu, where all xL are positive, and this new form is equal to the original one.

Proof.

Since 0 ă x is positive, by the Extension Theorem we can append 0 to XL. Then
from the Truncation Theorem we can remove any element of XL less than 0.
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For the rest of this section when we write xL we are referring only to the non-zero
terms, and since x here is positive, we must have all xR ą 0. Now we define y recur-
sively. That is, every element of Y L generates a new element in Y L, and similarly for
Y R. We write

y “

"

0,
1` pxR ´ xqyL

xR
,
1` pxL ´ xqyR

xL

ˇ

ˇ

ˇ

ˇ

1` pxL ´ xqyL

xL
,
1` pxR ´ xqyR

xR

*

which has yL and yR in the definition of y! What we mean by this is that we build up
these left and right sets by using elements already in them, so that if yL1 is in Y L, then,
for example, pp1` xR ´ xqyL1 q{xR is also in Y L. Conway gives the following elucidation
[2, p. 21]:

Let x “ t0, 2|u. Then the only (non-zero) xL is 2, giving us 1{xL “ 1{2 and
pxL´xq “ ´1, and there is no xL, so we have y “ t0, 1

2
p1´ yRq|1

2
p1´ yLqu. Putting

in yL “ 0 into the right option updates y to y “ t0, 1
2
p1 ´ yRq|1

2
, 1
2
p1 ´ yLqu, and

we can now put this new right option into the left set, giving us y “ t0, 1
4
, 1
2
p1 ´

yRq|1
2
, 1
2
p1´ yLqu. We can then repeat this process endlessly.

Theorem 0.23. For all yL, yR, we have xyL ă 1 ă xyR

Proof.

In our recursive definition, every option of y is in the form

y2 “
1` px1 ´ xqy1

x1

where y1 is an already know option of y (the first always one being yL “ 0) and x1

some non-zero option of x. If we then multiply both sides by x1 and take from 1,
we get:

1´ xy2 “ p1´ xy1q
x1 ´ x

x1

But since x is positive, pxL ´ xq{xL ă 0 and pxR ´ xq{xR ą 0. Then consider

yL
2

:“
1` pxR ´ xqyL

xR

ùñ 1´ xyL
2

“ p1´ xyLq
xR ´ x

xR

where yL
2 is some recursive member of Y L. Then if xyL ă 1, we know that

1´ xyL ą 0, and since pxR´ xq{xR is positive, that p1´ xyLqppxR´ xq{xRq ą 0. So
xyL

2
ă 1 if xyL ă 1. Similarly, consider

yR
2

:“
1` pxL ´ xqyL

xL
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ùñ 1´ xyR
2

“ p1´ xyLq
xL ´ x

xL

where yR
2 is some recursive member of Y R. Again, if xyL ă 1, then since pxL ´

xq{xL is negative, we have 1 ´ xyR
2
“ p1 ´ xyLqppxL ´ xq{xLq ą 0, so xyR2

ą 1 if
xyL ă 1. A similar argument shows that this is true of the other two forms of the
options of y. So by induction, xyL ă 1 ă xyR for all yL, yR since vacuously the
theorem holds for y “ 0.

Theorem 0.24. y is a number

Proof.

This follows directly from Theorems 0.20/0.23, as no yL ě yR, for all yR.

Theorem 0.25. For all pxyqL, pxyqR, we have pxyqL ă 1 ă pxyqR

Proof.

Note that if we expand 1`xLpy´yR
2
q, we get 1`xLy´xLyR

2
“ 1`xLy´p1`xL´

xqyLq “ xLy`xyL´xyL, which is a member of pxyqL. But we know that y´yR2
ă 0

from Theorem 0.3, and that xL is positive, so therefore 1 ´ xLpy ´ yR
2
q “ xLy `

xyL´xyL ă 1. Similarly we can show that xRy´xyL´xRyL “ 1`xRpy´yL
2
q ą 1,

since y´ yL2
ą 0 and xR ą 0. Similar arguments show this is also the case for the

other two options of xy.

Theorem 0.26. xy “ 1

Proof.

We need to check that both xy ď 1 and 1 ď xy. For the former, from Theorem 0.25,
we have that no element of pXY qL is greater-than-or-equal to 1, and we know that
1R “ ø. For the latter, the only element of 1L is 0, but since 0 is in XL and Y L, it is
also in pXY qL, so from Theorem 0.2 we have xy ą 0, and then from Theorem 0.25
again we have that no element of pXY qR ď 1.

So we have shown that we have a multiplicative inverse for any non-zero number. We
also showed before that we have an additive inverse, additive and multiplicative iden-
tities, that both addition and multiplication are associative, commutative, and closed,
and finally that multiplication is distributive under addition. That is, we have defined
addition and multiplication on the equivalence classes of the Surreal Numbers in a
way that satisfies all the field axioms, as stated in the beginning of the section. We
also showed in the previous section that numbers are totally ordered. In sum then, we
have shown that the surreals form a totally ordered Field, which Conway calls No.
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Real, Ordinal, and Surreal Numbers

Having defined arithmetic, we are now in a position to justify our naming of numbers
in the first section. Firstly we defined 1 :“ t0|u and ´1 :“ t|0u (and we shall we show
momentarily that these are the natural forms of 1 and ´1). Clearly, ´p1q “ ´1 and
´p´1q “ 1 by our definition of negation. We also want the property that ´1 ` 1 “ 0,
and this must hold, as we have shown x ` ´x “ 0 for all x. We also wanted that
1{2 ` 1{2 “ 1. We could show this by simply adding the left hand terms together and
showing both 1{2` 1{2 ď 1 and 1 ď 1{2` 1{2, but we will first introduce a theorem and
then prove 1{2` 1{2 “ 1 as an example of that theorem.

Theorem 0.27. Simplicity Theorem: If for some x “ tXL|XRu we have xL ă z ă xR

for all xL, xR, and no option of z has this property, then z “ x

Proof.

To show that z ď x, we need that no element of zL ě x and no element of xR ď z.
The latter holds by our condition on z, and the former not holding would imply that
xL ă x ď zL ă z ă xR, that is that xL ă zL ă xR, which is a contradiction since zL

is an option of z. A similar argument shows that x ď z, so we have z “ x.

We can now apply this to show that 1{2 ` 1{2 “ 1. By our definition of addition,
we have 1{2 ` 1{2 “ t1{2|1 ` 1{2u “ tt0|1u|t1|2uu. Then 1{2 ă 1 ă 1 ` 1{2 from
Theorems 0.2/0.3. But the only option of 1 is 0, which is not greater than 1{2, so from
the Simplicity Theorem, 1{2` 1{2 “ 1. In general, this means that any number x is the
simplest number lying between all xL and all xR.

Note that this theorem is well named: if we have a number like t2` 1
2
|7u, we can read

off straight away that it must be equal to 3, and we know that any number that has only
negatives in its left set and only positives in its right sets must be equal to 0, and this
includes the special case when the left or right set is the empty set.

We now introduce the natural form of numbers, which will be an essential idea used
in later proofs:

Definition. Natural Form: A number x is in its natural form if it has at most one left
option, and at most one right option, and all its options are strictly simpler than x.

For example, if we express the number 2 as 2 “ t0, 1|u, it is not in its natural form
because it has two left options. Its natural form is in fact 2 “ t1|u. As we shall we later,
not all numbers have a natural form, most notably the non-dyadic rationals. But we
shall now prove that all numbers constructed on finite day have a natural form:
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Theorem 0.28. Natural Form Theorem: For any number x “ tXL|XRu constructed
on a finite day n, we can express x in its natural form, and this form is unique. Fur-
thermore, each equivalence class of the surreals which has a member constructed on
a finite day has just one member that is in a natural form.

Proof.

Since x is constructed on finite day n, it must be able to be expressed with a finite
amount of options created by day n´1. Then since all the numbers on the pn´1q-
th day are totally ordered, there must be a greatest left option rxL and a least right
option rxR. Using the Truncation Theorem we can then write x as x “ trxL|rxRu,
which is its natural form, and is uniquely determined by rxL and rxR. The second
claim follows from this uniqueness and the transitivity of “.

Theorem 0.29. Suppose all the numbers constructed by the finite (n-1)-th day are:

x1 ă x2 ă x3 ă ... ă xm

Then the new numbers constructed on the n-th day are:

t|x1u ă tx1|x2u ă ... ă txm´1|xmu ă txm|u

Proof.

Note that from the Natural Form Theorem, we can write any x “ tXL|XRu created
on day n in its natural form, with just the greatest xL in the left set and the least
xR in the right set. First we show that t|x1u and txm|u are new numbers, then that
txi|xi`1u for all i are all new numbers, and then that txi|xju for i ` 1 ‰ j are all
already constructed numbers. Finally we show their ordering.

(a) Since x1 ă xk for all k ‰ 1, the number t|x1u must be smaller than any already
constructed number, from Theorem 0.3. Similarly txm|u is greater than any already
constructed number.

(b) We know that xi ă txi|xi`1u ă xi`1 from Theorems 0.2/0.3, and since we haven’t
constructed any numbers yet with this property, all numbers in the form txi|xi`1u

must be newly constructed numbers.

(c) Since i ` 1 ‰ j, and i ă j, we have i ` 1 ă j. Now let xk be the simplest number
in the range xi`1, ..., xj´1, and consider xk as expressed in its natural form. Then
the left options of xk must be less than xi`1 and the right options greater than
xj´1. That is, xLk ď xi and xj ď xRk . So from the Extension Theorem we can write
txi|xju “ txi, x

L
k |xj, x

R
k u. Similarly, since xk is greater than xi and less than xj,

we can write xk “ txLk |x
R
k u “ txLk , xi|x

R
k , xju “ txi|xju, so txi|xju is not a newly

constructed number.
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(d) The ordering follows directly from Theorems 0.2/0.3.

Corollary 0.29.1. The number of numbers constructed by the finite day n is mn “

2n`1 ´ 1

Proof.

From Theorem 0.29 we see that on each day k we construct mk´1 ` 1 new num-
bers, where mk´1 is the number of numbers constructed by day k ´ 1. Then by
induction, assume mn1 “ 2n

1`1´ 1 for all n1 ă n. Then we have that mn´1 “ 2n´ 1.
Since we construct mn´1` 1 new numbers on day n, the total number of numbers
constructed by day n is mn “ mn´1 `mn´1 ` 1 “ 2n ´ 1 ` 2n ´ 1 ` 1 “ 2n`1 ´ 1

as required. Then on day 0 we have only 20`1 ´ 1 “ 1 number constructed, which
gives the basis of our induction.

The Natural Numbers, Integers, and Dyadic Rationals

Let us consider the numbers that are constructed in finite days when we have the
condition that either the left or right sets must be empty. On the zeroth day we have
0 “ t|u, then on the first day ´1 “ t|0u and 1 “ t0|u, on the second day ´2 “ t|0,´1u

and 2 “ t0, 1|u, etc. On each new day then we create two new numbers, one that is
the greater than every other number created, and one that is less than every number
already created, and these two being additive inverses of each other. That is, on the
n-th day we create the numbers ´n “ t| ´ 0,´1, ...,´pn ´ 1qu “ t| ´ pn ´ 1qu and
n “ t0, 1, ..., n´ 1|u “ tn´ 1|u, and all the numbers already created are strictly ordered
by ă.

If we limit ourselves further to only the numbers where the right set is empty, then
we construct 0 “ t|u ă 1 “ t0|u ă 2 “ t0, 1|u ă ... ă n “ t0, 1, 2, ..., n ´ 1|u by the
n-th day. Then these numbers are well-ordered, since we showed that all the Surreal
Numbers are totally ordered, so any finite non-empty subset will have a least element
in ă. We call all the numbers constructed in this way in finite days the natural numbers,
and justify this name by noting there is a one-to-one correspondence with the natural
numbers as constructed in ZFC. In ZFC, using the von Neumann construction, we use
the axiom of existence and define 0 “ ø as the first natural number, then define the
successor of an already created natural number n as the union Spnq “ nYtnu. Finally
using the axiom of infinity we define the set of natural numbers as the set closed under
the successor function that contains 0 [4, chap. 3]. We say nz P Nz for these numbers.
In Conway’s construction, we have instead that 0 “ t|u is the first natural number, and
then the successor function is SpnqL “ n Y nL, SpnqR “ nR “ ø, and that the natural
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numbers are all those constructed in this way. We say ns P Ns for these numbers.
The constructions are essentially the same, and we can explicitly give the bijection
between them as:

π : nz Ñ ns : πpnzq “ tnz|u

with inverse:
π´1 : ns Ñ nz : π´1pnsq “ nLs

We then get the integers by returning to the condition that either a number’s left or
right set is empty, since then every number is either equal to a natural number or the
negative of a natural number [7]. Note that clearly from our construction we can also
inductively define the set of integers Z as:

0 P Z

If n0, n1, ... P Z then tn0, n1, ...|u P Z and t| ´ n0,´n1, ...u P Z

This is in contrast to the standard ZFC construction of the integers, where we would
first create ordered pairs pa, bq “ ta, tbuu for every combination of two natural num-
bers a and b, and then partition these into the equivalence classes of the relation
pa, bq ∼ pc, dq ðñ a ` d “ b ` c [4, chap. 10]. In this method of constructing the
integers we must first construct all the natural numbers, then define addition between
any pair of these, and then reconstruct them while constructing the negative integers,
none of which can be constructed without the axiom of infinity. Conway’s construction
instead uses symmetry, and does not require having constructed all the positive inte-
gers before we can construct any negative integers. Instead, we introduce the negative
of a number as an inductive definition, as in section 3, and then in one stroke we create
both 1 and ´1, then 2 and ´2, &c, and every integer is created in a finite amount of
steps, or days. We do not need to define addition, and in this manner of constructing
integers there is no primacy of the positive integers over the negatives, there is just
a symmetry around 0. Indeed, if we wanted we could construct the negative integers
before the positives! This symmetry in construction extends beyond just natural num-
bers, and in general if we can construct a new positive number x on a given day, then
we must also have that we can construct ´x on that same day.

The next step in ZFC would be to construct the rational numbers as the equivalence
classes of the relation pa, bq ∼ pc, dq ðñ ad “ bc for integers a, b, c, d [4, chap. 10]. In
this way all the rational numbers are created at the same time, and since they require
all the natural numbers having already being constructed, none can be constructed
without the axiom of infinity. In contrast, Conway’s construction has that every dyadic
rational, that is every number of the form y{2z, where y is a integer and z is a natural
number, is created in a finite amount of days, and only the non-dyadic rationals require
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the axiom of infinity before any can be constructed. We formalise all we have said here
in the following theorems.

Theorem 0.30. For positive integers xm, we have txm|u is an integer and equals xm`1.
For negative integers xn, we have t| ´ xnu is an integer and equal to ´xn ´ 1

Proof.

We have xm ` 1 “ txLm ` 1, xm|u. Suppose that xm “ txLm|u where xLm “ xm ´ 1

is an integer. Then xLm ` 1 “ xm, so xm ` 1 “ txm|u. So by induction, since
1 “ t0|u “ t1 ´ 1|u is an integer, the first part of the theorem holds. The second
part follows directly from the first and our definition of negation.

Theorem 0.31. For any rational number x whose denominator divides 2n, we have that
x “ tx´ 1{2n |x` 1{2nu

Proof.

For n “ 0, x is an integer. If x “ 0, then we have from the Simplicity Theorem that
0 “ t´1|1u. If x is the positive integer n, then we have from Theorem 0.30 that
n “ tn´ 1|u. Now let y “ tn´ 1|n` 1u. Then we have yL ă n ă yR, and the only
option of n is n ´ 1, which is equal to the left option of y, so from the Simplicity
Theorem, n “ y “ tn´ 1|n` 1u. A similar argument shows this is also true when
x is a negative integer.

For n ą 0, let y “ tx ´ 1{2n|x ` 1{2nu. Then we have 2y “ y ` y “ ty ` yL|y `

yRu “ ty ` x ´ 1{2n|y ` x ` 1{2nu, so from Theorems 0.2/0.3 we know that both
y ` x´ 1{2n ă 2y ă y ` x` 1{2n and x´ 1{2n ă y ă x` 1{2n. If we then multiply
the latter by 2, we get 2x ´ 1{2n´1 ă 2y ă 2x ` 1{2n´1. We can also add x ´ 1{2n

to both sides of x ´ 1{2n ă y to get 2x ´ 1{2n´1 ă y ` x ´ 1{2n, and similarly add
x ` 1{2n to both sides of y ă x ` 1{2n to get y ` x ` 1{2n ă 2x ´ 1{2n´1. Then
putting these all together we get the string of inequalities for 2y:

2x´ 1{2n´1 ă y ` x´ 1{2n ă 2y ă y ` x` 1{2n ă 2x` 1{2n´1

Now by induction, assume that the theorem holds for rational numbers that have
denominators that divide 2n´1, and since x is a rational number that has denom-
inator that divides 2n, 2x must be a rational number that has denominator which
divides 2n´1. Then we have that 2x “ t2x´1{2n´1|2x`1{2n´1u. It follows from our
inequality x´1{2n ă y ă x`1{2n that both 2x ă y`x`1{2n and y`x´1{2n ă 2x

so we also have the string of inequalities for 2x:

2x´ 1{2n´1 ă y ` x´ 1{2n ă 2x ă y ` x` 1{2n ă 2x` 1{2n´1

Then it is clear that 2x is greater than the left option of 2y and less than the
right option of 2y, and that neither option of 2x also has this property, so from
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the Simplicity Theorem we must have that 2x “ 2y, which implies x “ y “ tx ´

1{2n|x ` 1{2nu. Since we have already shown the basis case when n “ 0, the
theorem must hold for all n.

Theorem 0.32. Suppose that all the positive numbers constructed by the finite n-th
day are:

x1 ă x2 ă x3 ă ... ă xm

Then any number created on the (n+1)-th day that is not an integer is a dyadic rational.
Similarly, all the negative numbers created on the (n+1)-th day that not integers are
dyadic rationals.

Proof.

We know from Theorems 0.29/0.30 that all the non-integer numbers created on
day n ` 1 are in the form txi|xi`1u, so let x “ txi|xi`1u, where xi ě 0 (we show
the theorem holds for positive numbers, and then the negatives follows from our
definition of negation). We will now show that we must have x “ pxi ` xi`1q{2,
from which the theorem follows.

Firstly, we must have that if x “ txi|xi`1u, then from Theorems 0.29/0.30, for some
integer a, both a ď xi ď a`1 and a ď xi`1 ď a`1 hold. It follows that a ă x ă a`1,
and also that we cannot have that both xi and xi`1 are created until at least day
α ` 1, where α is the birthday of a.

Now suppose by induction for any y ă y1 created before day n`1, such that on the
first day by which they have both been created they directly follow each other, that
is there is no number y˚ such that y ă y˚ ă y1, that we have ty|y1u “ py ` y1q{2.

Then we have both a ď xi ď a` 1 and a ď xi`1 ď a` 1 for some integer a created
before day n ` 1. Note that if both xi and xi`1 are created by day α ` 1, we must
have both a “ xi and a ` 1 “ xi`1, so we have xi`1 ´ xi “ a ` 1 ´ a “ 1 “ 1{20.
If instead they are created by day α ` 2, then we have either that a “ xi and
ta|a` 1u “ xi`1 or instead that ta|a` 1u “ xi and a ` 1 “ xi`1. In either case we
have xi`1 ´ xi “ pa ` 1 ´ aq{2 “ 1{21 by our induction. This motivates us to want
to show that if xi and xi`1 are created on day n “ α ` k, then xi`1 ´ xi “ 1{2k´1.
We have already shown the base case when n “ α`1. Now by induction assume
that for all z ă z1 created on day α ` k ´ 1 (such that there is no z˚ with property
z ă z˚ ă z1 also created by day α ` k ´ 1) we have z1 ´ z “ 1{2k´2. Then if we
created the numbers xi and xi`1 on day n “ α` k we have either that both xi “ z

and xi`1 “ tz|z1u or that both xi “ tz|z1u and xi`1 “ z1 for some z, z1. If we have the
former, then xi`1´xi “ tz|z1u´z “ pz`z1q{2´z “ pz1´zq{2 “ p1{2k´2q{2 “ 1{2k´1.
Similarly if we have the latter we get the same result. So by induction, for whatever
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a we have such that a ď xi ď a`1 and a ď xi`1 ď a`1, we have xi`1´xi “ 1{2k´1,
where k “ n´ α.

Similarly, if xi and xi`1 are created on day α`1, then we must have that xi`xi`1 “
2a` 1, which has denominator 1, which divides 20. We want to show that if xi and
xi`1 are created on any day n “ α ` k, then the denominator of their sum divides
2k´1, so by induction assume for our z and z1 as above that we have that z`z1 has
denominator that divides 2k´2. We have that xi`1´xi “ 1{2k´1, so then in the case
that x2i`1 “ tz|z1u, we have xi`1`xi “ 2x2i`1`1{2k´1 “ z`z1`1{2k´1. If instead we
have that x2i`3 “ tz|z1u, then we have xi`1`xi “ 2x2i`3´ 1{2k´1 “ z` z1´1{2k´1,
so in either case using our induction assumption the sum must have denominator
that divides 2k´1.

We now use Theorem 0.31 and write xi ` xi`1 “ txi ` xi`1 ´ 1{2k´1|xi ` xi`1 `

1{2k´1u. We also have that 2x “ tx ` xi|x ` xi`1u, and that xi ` x ă xi ` xi`1 ă

x ` xi`1. Finally, since xi`1 ´ 1{2k´1 “ xi ă x, using Theorem 0.11, we have
xi ` xi`1 ´ 1{2k´1 ă x ` xi, and again since x ă xi`1 “ xi ` 1{2k´1 we have
x ` xi`1 ă xi ` xi`1 ` 1{2k´1. Putting these all together we get the string of
inequalities:

pxi ` xi`1q
L
ă p2xqL ă xi ` xi`1 ă p2xq

R
ă pxi ` xi`1q

R

Then it follows from the Simplicity Theorem that 2x “ xi ` xi`1, since p2xqL ă
xi ` xi`1 ă p2xq

R, and neither option of xi ` xi`1 satisfies this property. Therefore
x “ pxi ` xi`1q{2, which suffices to prove the theorem for positive numbers. The
negatives follow from our definition of negation.

Corollary 0.32.1. If on some day n we have already constructed the numbers xi and
xi`1 such that xi ă xi`1 and there does not exist any y such that xi ă y ă xi`1, then
on the day n we construct the number txi|xi`1u “

xi`xi`1

2

Proof.

Follows directly from Theorems 0.29/0.32

So unlike in the standard ZFC construction of numbers, seemingly simple rationals
such as 1{3 cannot be constructed in a finite amount of days (if we try and calculate the
multiplicative inverse of 3, we find that we need a countably infinite amount of dyadic
rationals, where as, for example, the inverse of 2 quickly resolves to 1{2 “ t0|1uq. To
form the rest of the rationals, and the real numbers, we need to consider numbers that
have countably infinitely many options, which are exactly those constructed on day ω.
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The Numbers Constructed on Day ω

Suppose that by some day ω we have constructed all the natural numbers. Then
consider the number t1, 2, 3, ...|u. This is a valid number from Axiom 1, and clearly it is
greater than every natural number. In ZFC, to construct infinite ordinals we continue
to use the von Neumann construction as we had for the natural numbers, and have
ω “ t0, 1, 2, ...u as the first infinite ordinal, which contains in it every finite ordinal, and
every other infinite ordinal is strictly greater than it. In Conway’s construction we have
that ω “ t0, 1, 2, ...|u, but we also construct at the same time ´ω “ t|0,´1,´2, ...u,
due to the symmetry of construction. This number ´ω has no place in ZFC, but in
Conway’s construction it is given naturally as long as the negative of every natural
number is defined, that is as naturally as ω is given, for we showed that there is a parity
of esteem between the positive and negative naturals. It would be more destructive to
not have it (and every other negative ordinal) in the class of Surreal Numbers, as this
would break the Field structure, since then no ordinal would have an additive inverse.
It should also be noted that these two numbers are the first constructed that cannot be
truncated into natural forms, with only one element in their left and right sets, since in
ω, the left set has no greatest element, and in ´ω, the right set has no least element.
This is why the Natural Form Theorem demands construction on a finite day, so only
integers and dyadic rationals have a natural form. We can instead express ω in an
infinite amount of ways, as long as the left set is uncountably large and has no natural
number upper bound, such as ω “ tall primes |u.

Another number we can create on day ω is the infinitesimal number ε “ t0|1
2
, 1
4
, 1
8
, ...u,

which is again a valid construction from Axiom 1. We must have then that:

0 ă ε ă
1

n

for all natural numbers n. But if ε were real, then 1{ε would also be real, so we would
have the inequality 1{ε ą n for all natural numbers n, which is a contradiction, since
every real number is bounded by some natural number. So ε is not a real number,
indeed it is a surreal number! Again, by symmetry we also construct ´ε, but we can
also construct numbers such as 1`ε “ t1|1` 1

2
, 1` 1

4
, ...u and 1´ε “ t1´ 1

2
, 1´ 1

4
, ...|1u,

&c.. It is because we can construct new numbers like this, all while still in an ordered
Field, that we say the Surreal Numbers extend the real numbers (which we define and
show form a subclass of the surreals in the next section).

We can also show that ε “ 1
ω

as follows. Consider the product

εω “
!

ε, 2ε, ...
ˇ

ˇ

ˇ

!ω

2
,
ω

4
, ...

)

` tε, 2ε, ...u ´
!1

2
,
1

4
, ...

)

¨ t1, 2, ...u
)

Then clearly all the left options are less than 1 but greater than 0, and by using the
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Truncation Theorem and writing the right options as
ω

n
` ε´

m

2
“

2ω ` 2nε´mn

2n
for some natural numbers m and n, and then letting l “ mn, k “ 2n, which are both
still natural numbers, we see that

2ω ` 2nε´ l

k
ą
ω

k
ą 1

So by the Simplicity Theorem we must have that εω “ 1, which implies ε “ 1
ω

, that is
that in our Field of surreals ω has a multiplicative inverse, as we would expect.

In ZFC, after constructing the rational numbers, one way to construct the irrationals is
through Dedekind cuts, where we split the rationals into two sets, one closed down-
wards where every element satisfies some less than inequalitie, and the other which
contains all the other rationals [4, chap. 5]. For example, if we split the rationals into
the two sets tx P Q : x2 ă 2 or x ă 0u and tx P Q : x2 ě 2 and x ą 0u, we construct
the Dedekind cut representing

?
2. In Conway’s construction we do similarly, though

we start instead with having all the dyadic rationals constructed by day ω, and then by
splitting them into constructions of left and right sets we construct the rest of the real
numbers in one sweep, since the dyadic rationals are dense in the reals. For example,
let us tentatively say that, for the set of non-negative dyadic rationals D:

1

3
“ tx P D : 3x ă 1 |x P D : 3x ě 1u “

!

0,
1

4
,

5

16
,
21

64
, ...

ˇ

ˇ

ˇ

1

2
,
3

8
,
11

32
, ...

)

then we want 1
3

to be the multiplicative inverse of 3, so let 3y “ 1 for some y. Then
since 3 “ t2|u, by our algorithm for calculating multiplicative inverses we have:

y “

"

0,
1´ yR

2

ˇ

ˇ

ˇ

ˇ

1´ yL

2

*

where yR and yL are already calculated elements of the left and right sets of y respec-
tively. So the first steps become:

y “

"

0,
1´ yR

2

ˇ

ˇ

ˇ

ˇ

1

2
,
1´ yL

2

*

y “

"

0,
1

4
,
1´ yR

2

ˇ

ˇ

ˇ

ˇ

1

2
,
1´ yL

2

*

y “

"

0,
1

4
,
1´ yR

2

ˇ

ˇ

ˇ

ˇ

1

2
,
3

8
,
1´ yL

2

*

and after ω iterations:

y “

"

0,
1

4
,

5

16
,
21

64
, ...

ˇ

ˇ

ˇ

ˇ

1

2
,
3

8
,
11

32
, ...

*

which is to say that y “ 1
3
, as we expected. In a similar manner we can construct every

other real number on day ω. For example, we have:

π “

"

3,
25

8
,
201

64
, ...

ˇ

ˇ

ˇ

ˇ

13

4
,
101

32
,
3217

1024
, ...

*
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The Real Numbers

We have just shown that on day ω we can construct any real number, though we have
not yet formally defined the real numbers in Conway’s construction. Thus:

We say that a number x “ tXL|XRu is a real number if both:

´m ă x ă m for some integer m, and

x “ tx´ 1, x´
1

2
, x´

1

4
, ...|x` 1, x`

1

2
, x`

1

4
, ...u

Theorem 0.33. If x and y are real numbers, then so are ´x, x` y, and xy

Proof.

(a) We have´x “ t´XR|´XLu “ t´x´1,´x´ 1
2
,´x´ 1

3
, ...|´x`1,´x` 1

2
,´x` 1

3
, ...u,

and ´m ă x ă m implies ´p´mq ă ´x ă ´pmq, so ´x is a real number if x is.

(b) We have x “ tx´ 1, x´ 1
2
, x´ 1

3
, ...|x` 1, x` 1

2
, x` 1

3
, ...u and y “ ty´ 1, y´ 1

2
, y´

1
3
, ...|y`1, y` 1

2
, y` 1

3
, ...u, so x`y “ txy´1, xy´ 1

2
, xy´ 1

3
, ...|xy`1, xy` 1

2
, xy` 1

3
, ...u

and ´mx ă x ă mx and ´my ă y ă my imply that ´pmx`myq ă x` y ă mx`my,
so x` y is a real number if x and y are.

(c) We write x “ tx ´ 1{n|x ` 1{nu and y “ ty ´ 1{n|y ` 1{nu, where n ranges
over all the positive integers, and then we have xy “ txy ´ 1{n2|xy ` 1{n2u “

txy ´ 1, xy ´ 1{4, ...|xy ` 1, xy ` 1{4, ...u, which then using the Extension Theorem
becomes xy “ txy ´ 1, xy ´ 1{2, xy ´ 1{3, ...|xy ` 1, xy ` 1{2, xy ` 1{3, ...u. From
Theorem 0.20, since ´α ă x ă α and ´α ă y ă α for some integer α, we have
´α2 ă xy ă α2 so xy is a real number if x and y are.

Theorem 0.34. All integers and all dyadic rationals are real numbers.

Proof.

For the integers, from Theorem 0.30 every positive integer a “ ta ´ 1|u, which
is a’s natural form. Let α “ ta ´ 1, a ´ 1{2, ...|a ` 1, a ` 1{2, ...u. Then we have
that a ď α, since the only left option of a is also a left option of α, and every
right option of α is strictly greater than a. Similarly, we also have α ď a, since
every left option of α is strictly less than a, and there are no right options of a. So
a “ ta ´ 1, a ´ 1{2, ...|a ` 1, a ` 1{2, ...u and therefore a is a real number for every
positive integer a, and then the negative integers follow from Theorem 0.33.

For the dyadics, from Theorem 0.31, we have that for a dyadic rational x whose
denominator divides 2n

1, that x “ tx ´ 1{2n
1

|x ` 1{2n
1

u. But if the denominator
of x divides 2n

1, then it must also divide 2n for all n ą n1, and so, using also the
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Extension Theorem, we can write x as x “ tx ´ 1{2n|x ` 1{2nu, where n ranges
over all the integers greater than n1. Then again by the Extension Theorem we
can we can add in the remaining terms we need such as x ´ 1 in the left set, to
obtain x “ tx´ 1, x´ 1{2, x´ 1{4, ...|x` 1, x` 1{2, x` 1{4, ...u as required.

Theorem 0.35. No infinite ordinal numbers or infinitesimal numbers are real numbers.

Proof.

Any infinite ordinal number is greater than every integer, so we cannot have ´m ă

α ă m for an ordinal α. For any infinitesimal number ε1, the number tε1 ´ 1, ε1 ´

1{2, ε1 ´ 1{3, ... | ε1 ` 1, ε1 ` 1{2, ε1 ` 1{3, ...u “ 0 from the Simplicity Theorem, as
every option of the left set must be less than 0, and every option of the right set
greater than 0.

Day ω ` 1 and Onwards

On day ω`1, we can use ω as an option and construct the numbers ω`1 “ t1, 2, ..., ω|u,
then on day ω ` 2 construct ω ` 2 “ t1, 2, ..., ω, ω ` 1|u &c., which match up with
their von Neumann constructions ω ` 1 “ t1, 2, ..., ωu, ω ` 2 “ t1, 2, ..., ω, ω ` 1u.
In general we call a surreal number an ordinal if it can be written in the form γ “

tAll ordinals less than γ|u, which gives a correspondence between the ordinals in Con-
way’s construction and their von Neumann construction in ZFC, where we have γ “

tAll ordinals less than γu, from which it is clear that the natural numbers are all the fi-
nite ordinals. We can also construct the additive inverses of the ordinals, as well as
numbers like x “ t1, 2, 3, ..|ωu and ´x “ t´ω|´1,´2,´3, ...u. Then what is x? Observe
that

x` 1 “ t2, 3, 4, ..., x|ω ` 1u

But then all the left options are less than ω, and the ω is the simplest number less than
ω ` 1, so by the Simplicity Theorem we must have that x ` 1 “ ω, so then x “ ω ´ 1,
which is smaller than ω but larger than any natural number. We call numbers such as
ω ´ 1 and ω ` ε that are not ordinals in ZFC but are larger than every natural number
surreal-ordinal numbers. Similarly, on the days following ω we can construct ω`2, ω`

3, ... , ω`n “ tω, ..., ω`pn´1q|u, and ω´2, ω´3, ... , ω´n “ t1, 2, 3, ...|ω, ..., ω´pn´1qu

and all their negatives. But what about after another ω days? Then we would have

2ω “ ω ` ω “ tω ` 1, ω ` 2, ω ` 3, ...|u

ω

2
“ t1, 2, 3, ... |ω ´ 1, ω ´ 2, ω ´ 3, ...u
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created on day 2ω (the above equations being easily verified in our arithmetic). We
can also use ε as an option on day ω ` 1 and construct 2

ε
“ t0 | εu, an even smaller

infinitesimal, 2ε “ tε | ε ` 1
2
, ε ` 1

4
, ...u, a slightly larger infinitesimal, and ε

3
, 3ε, &c. So

Conway’s construction extends the ordinals and infinitesimals, introduces new num-
bers between any two real numbers such as 1` ε, and places all these numbers along
with the reals into one single huge Field, which acts just like the field of real num-
bers as constructed in ZFC, in an inductive construction that fundamentally uses the
symmetry of the positives and negatives around 0.

An Introduction to Combinatorial Games

We will now study the similar constructs of Games, as introduced in Winning Ways [8],
so called because they are the mathematical expressions of certain games played by
humans. Specifically, we will be studying only games that fulfill the following properties:

(a) Are played by two players, who move alternatively from one position (or one
Game) to another position (or Game) according to well-defined rules;

(b) Always come to an end, with the first player who cannot move being the loser;

(c) Are fully deterministic with no random elements;

(d) Both players have perfect information of the game - nothing is known to only one
of the players.

Thus we do not consider games such as Chess(fails (b)), Battleships(fails (d)) or
Go(fails (b)) to be Games, but do consider Nim, Hackenbush, Brussels Sprouts, and
Mathematical Go to be. We are also only interested in the outcomes of games where
both players have perfect play, where they never play a sub-optimal move. To help ex-
plain the notation used and basic properties of Games, we will here introduce a card
flipping game, played as follows: on a table cards are placed face-down in a grid, in
any shape, so long as every card has at least one cardinally neighboring card. This
is the starting position. One player, called Left, flips on their turn any two horizontally
adjacent cards, and the other player, called Right, on their turn flips any two vertically
adjacent cards. This continues until one player has no two adjacent cards to flip, and
is declared the loser.

This game fulfills our properties above, so let us consider the particular starting posi-
tion given in Figure 1.
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Figure 1: The position ˚ ” t0|0u Figure 2: Two forms of the position 0 ” t|u

What happens if Left starts? There is only one move, to flip the two lower cards,
leaving just one unflipped card. Similarly, if it is Right’s turn, the only move is to flip
the two rightmost cards, leaving only one lone card. But in that position, there is no
move for either player. We call this position the endgame, 0 ” t|u, aptly named as it
cannot be a legal starting position, and it is lost by whoever plays first, as they cannot
find a move. Since both players’ moves lead to the endgame, Figure 1 is won by the
first player to move. Note that this is only one of the forms of the endgame for this card
game, the other being when there are no unflipped cards remaining, as in Figure 2.

We call games that are won by the first player fuzzy Games, and in Figure 1 we
have the particular fuzzy game called star, ˚ ” t0|0u, which later we shall examine
further. Similarly, we call games that are lost by the first player zero Games, such as
the endgame. The notation here is as with numbers, that for a game g “ tGL|GRu, the
left options gL P GL are the values of the positions that left can move to, if it is their
turn, and the right options gR P GR those that right can move to on their turn. However,
unlike numbers (where we must respect Axiom 1), we can have left options that are
not strictly less than all the right options, such as in ˚, and vice versa.

What about the positions in Figure 3 and Figure 4? We can see that in Figure 3 there is
one move, to the zero position, for Left, and none for Right, so this position (or Game)
is t0| u. Similarly, Figure 4 is the opposite, with one move for Right to 0, and none for
Left, so we can express it as t |0u. This means Left will always win Figure 3, so we call
it a positive Game, and Right will always win Figure 4, a negative Game.

For a general Game g “ tGL|GRu, we write g “ 0 if it is a zero Game, g ą 0 if it is a
positive Game, g ă 0 if it is a negative Game, and g ‖ 0 if it is a fuzzy Game. Similarly,
we write g ě 0 if it is a zero or positive Game (Left always wins if Right starts), g ď 0 if
it is a zero or negative Game (Right always wins if Left starts), g ‖ą 0 if it is a positive

99



The Plymouth Student Scientist, 2019, 12, (1), 63-134

Figure 3: The position 1 ” t0|u Figure 4: The position ´1 ” t|0u

or fuzzy Game (Left always wins if Left starts) and g ă‖ 0 if it is a negative or fuzzy
Game (Right always wins if Right starts).

More specifically, since in Figure 3, the Game t0|u, Left has a one move advantage
over Right, we say this position has value 1 “ t0|u. Similarly, in Figure 4, Right has
a one move advantage, so this position has value ´1 “ t|0u. Note that these are not
specific to this card flipping Game, but describe positions in any Game where one of
the players has a single move to a zero position, and the other player has no moves.
Also note that any property that we showed for the numbers 1 and ´1 will hold for the
Games 1 and ´1, as in fact these actually are the numbers 1 and ´1, in the sense
that, for example, both the number t0|u and the Game t0|u are the same mathematical
object, and all the properties we proved in the first section about numbers only use
the fact that t0|u has only one Left option, 0 ” t|u, and has no Right options. Since
any Game that has exactly the same options as a number is the same object as that
number, all the properties we proved in the first section about numbers, such as being
totally-ordered, will hold for all the Games that satisfy our first two axioms, and indeed
our class of Surreal Numbers is just the subclass of Games that we obtain by enforcing
our two axioms.

Theorem 0.36. Every Game g is either a positive, negative, zero or fuzzy Game.

Proof.

We show that we have either g ď 0 or g ‖ą 0 , and that we also have either g ě 0

or g ă‖ 0. Then the four possible combinations define precisely when g is positive,
negative, zero or fuzzy.

Suppose that this is true for all gL and all gR. Now if Left starts in g, and there
exists some gL ě 0, Left can move to that position, and since it is then Right’s
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move, and that gL ě 0, Left has a winning strategy from g if they go first, that is
to say that g ‖ą 0. If instead all gL ă‖ 0, then any move by Left will move to a
position that is winning for Right, since in this new position it will be Right’s move,
which is to say that g ď 0. So we must have either g ď 0 or g ‖ą 0. Similarly,
by symmetry, if Right begins and there exists some gR ď 0, then g ă‖ 0, and if
instead all gR ‖ą 0, then g ě 0, so we have either g ě 0 or g ă‖ 0. Thus if the
theorem holds for all gL and all gR, then it holds for g.

It remains to show that there is a basis case for which the theorem holds. But
since we require all Games to come to an end, we must eventually only have to
consider the position before the final move, where one of the left or right sets will
only contain 0, which is clearly a zero game. So by induction, all Games are either
positive, negative, zero or fuzzy Games.

For our card flipping game, we can construct complicated starting positions, even when
all the cards have direct neighbors. For instance, it is easy to see that a 3ˆ3 square is
a fuzzy game (by symmetry, the first player makes sure to flip the middle card, leaving
them with two pairs on the table to their opponent’s one, and the turn advantage), but
a 4ˆ4 one requires some analysis, and we can see how this only grows in complexity.
However, for many other Games, such as Nim, single positions are always trivial, so
we want to examine what happens when we play multiple Games at once, with each
player on their turn making a move in only one of the Games. This leads us to define
the disjoint sum of two games:

For any two games g “ tGL|GRu and h “ tHL|HRu their disjoint sum is

g ` h “ tgL ` h, g ` hL|gR ` h, g ` hRu

for all gL P GL, gR P GR, and hL P HL, hR P HR.

This is of course the same definition as we had for numbers, and so we know that
game addition is commutative, associative, and has the identity element 0, from the
proofs for Theorem 0.10, since they do not require that every left option is strictly less
than every right option, which is true for all numbers, but not necessarily all Games.

So if we play the games g and h simultaneously, and for instance, Left moves first,
then they can either move to some gL and leave h alone, or move to some hL and
leave g alone. Similarly for Right, and this is exactly what our disjoint sum describes.
What happens then if we play the sum of Figure 3 and Figure 4? That is, what is
1 ` ´1 “ t0|u ` t|0u? If Left starts, their only move is to 0 ` ´1 “ 0 ` t|0u, to which
Right will reply with their only move, to 0 ` 0 “ 0, and Left is the loser. By symmetry,
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we see that Right must lose if instead they begin. So we have a zero Game, that is
that 1`´1 “ 0, as expected, as these Games are also numbers.

If we play the sum of Figure 1 and Figure 3, we have ˚`1 “ t0|0u`t0|u, which is clearly
not a number. Here Right’s only move is to 0 ` 1 “ 1, where Left wins by a move. If
left starts, they can move to either ˚, and promptly lose, or 0 ` 1 “ 1, and punctually
win. So ˚ ` 1 ą 0, as Left always wins with optimal play (Left should never play to ˚,
because it is a strictly worse position for them than 1), and similarly ˚ ` ´1 ă 0, as
Right always wins. We already know the values of 1` 1, ´1`´1, 1` 1` 1, &c. since
the Games 1 and ´1 also belong to subclass of Games which we obtain by enforcing
our two axioms from section 2, namely the Surreal Numbers, so since as numbers

1` 1 “ 2, it follows that as Games 1` 1 “ 2, since the definition of addition is the same
on numbers as it is on Games. Similarly, we already know the value of n cards in a
row is ˘n{2 rounded down to the nearest integer for any integer n.

What is the value of ˚`˚ “ t0|0u`t0|0u? Since this is a sum of two identical Games in
which both players have the same options, it must be a zero Game, as if the first player
can find a move, then necessarily the second player can, namely to play the same
move but in the other summand, leaving the first player to play in the new position
which has this same property again. This leads us to define the negative of a Game,
such that the sum of a Game and its negative is always a zero Game.

For any Game g “ tGL|GRu, its negative is

´g “ t´gR| ´ gLu

for all gL P GL, gR P GR.

So any option for Left in g is an option for Right in ´g, and vice versa. This justifies our
naming of the Games 1 and ´1, and we must also have that g `´g “ 0 for any Game
g, since the second player can always mimic the first player, by playing the same move
in the other summand, and be guaranteed to have a legal move if the first player does.
It follows that ˚, and any other Game where both players have the same options must
be its own negative, and we call these impartial Games, such as Nim or Cloves, which
we shall study more in the next section. Games that are not impartial we call partizan
Games, such as Borages, are generally more complicated, so we will study them after
impartial Games.

Clearly, we must also have that if g ă 0, then ´g ą 0, since the winning player in one
must lose in the other, and similarly, a zero Game must remain a zero Game, and a
fuzzy must remain a fuzzy Game, under negation.

What if, instead of playing the disjoint sum of Figure 3 and Figure 4, we move Figure
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4 so that is it directly connected to Figure 3? The only way to do this to make some
permutation of an L shape, which has either a line of three vertical cards or three
horizontal cards. We can already see from symmetry that these two Games will be
negatives of each other, so we will just consider the one with the vertical cards, making
an upright L shape, and we shall call this game L. Then by considering each players’
options, we have L “ t´1 | 0, 1u ă 0, since Right wins with perfect play regardless of
which player begins. Indeed, we already know that the value of the Game L must be
´1{2, since L is also a number, but then Right must have half a moves advantage in
this position. This means that if we were to play the sum of 1 and L, we would still have
a positive game, but if we were to play the sum of 1 and two Games of L, we would
have a zero game. We can also show this by creating an inverted tree of positions as
in Figure 5, starting from 1 ` L ` L, and at each node drawing a left arrow to another
node for each of Left’s moves, and similarly a right arrow for each of Right’s moves
(and it is this method we use to evaluate Games that are not also numbers). Then by
following the branches, we see that there is no path which leads to a positive position
if Left begins, or a negative position if Right begins, so 1`L`L “ 0, which shows that
L is half a moves advantage for Right, as we expected.

In Figure 5 we first made the tree of L, from which we could see that it must be a
negative Game, and then the tree for L`L, in which we use the knowledge that L ă 0,
and finally the tree for 1 ` L ` L, where we used both that L ă 0 and L ` L ă 0, to
see that it was a zero Game. Since more complicated positions always collapse into
simpler ones, when analysing Games we create a dictionary of positions, so we can
quickly truncate branches which already know the values of. For example, in our tree
of 1 ` L ` L, we can ignore Left’s opening move to L ` L, as we already know it is a
winning position for Right.
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Figure 5: Position trees for the Games L, L` L, and L` L` 1
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Impartial Games

Earlier we introduced the impartial Game ˚ “ t0|0u, though we don’t know much about
it yet, except that it is fuzzy, which means it is its own negative, or that ˚ ` ˚ “ 0.
Since it is not a number, we must examine it using its sum with other Games. For
example, who wins the Game ˚ ` 1 “ t0|0u ` t0|u? It must be Left, since they can
play in ˚ and move to 1 if they begin, which is also Right’s only move if they start. So
we must have ˚ ` 1 ą 0 which implies ´1 ă ˚ ă 1, since we already showed that
impartial Games are their own negatives. Similarly we have ˚`1{2 “ t0|0u`t0|1u ą 0,
˚`1{4 “ t0|0u`t0|1{2u ą 0, ..., ˚`1{n “ t0|0u`t0|2{nu ą 0, for all natural numbers n,
since Left can always plays in ˚ and move to a positive position, and Right must either
move to the same position, or play in the other summand to ˚` 2{n, where Left begins
and wins. So we have:

´1 ă ´
1

2
ă ´

1

4
ă ... ă ˚ ă ... ă

1

4
ă

1

2
ă 1

but we also know that it is not equal to 0, since the first player will always win ˚. It
follows that ˚ is less than any positive real, and greater than any negative real, since
for any positive real we can find a reciprocal power of 2 less than it, and ˚ will be less
than that, and similarly for the negative reals. This means that if a Game g is winning
for one player, then g ` ˚ must also be winning for that player.

From this point on we will not bother to write out both the left and right sets for impartial
Games, as both these sets are always equal, so we just write ta, b, c, ...u to mean
ta, b, c, ...|a, b, c, ...u, and not a single set. For example, we write ˚ “ t0u.

The Game of Nim is played with stacks of counters on a table, with either player on
their turn removing as many counters as they wish from any one stack. The loser as
always is the first player who cannot make a move, as there are no counters left to
remove. It is an impartial Game then, as there are no moves that are restricted to only
one of the players. We will express Nim positions as ra, b, c, ...s, where each variable
a, b, c, ... is a natural number greater than 0 denoting how many counter are in that
stack. Clearly, then, a single stack ras is a fuzzy Game, for any a, as the first player
can simply remove all a counters from the table. However, it is not necessarily equal
to ˚, for if it were we should expect then that ra, bs “ ras ` rbs “ 0 for all a and b. But
consider the Game r3, 2s. The first player can move to r2, 2s, which is a zero Game, as
whoever starts in r2, 2s will have their moves copied by the following player, which is to
say that r2s “ ´r2s, but r3s ‰ r2s, even though if they were played alone they would
have the same result. So r3, 2s is in fact another fuzzy Game, and in general, ra, bs “ 0

when a “ b, and ra, bs ‖ 0 when a ‰ b, since the first player can move to the position
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where a “ b, which by the same argument as with r2, 2s is a zero Game but now with
the second player beginning.

What are then the values of r1s, r2s, r3s, ...? We know that r0s “ t|u “ tu “ 0, so we must
have r1s “ tr0su “ t0u “ ˚. Then r2s “ tr1s, r0su “ t˚, 0u, and more generally rns “
tr0s, r1s, r2s, ..., rn´ 1su. We call these Games nimbers, and we shall shortly show they
form a finite field of their own. We generally denote nimbers as ˚n “ t0, ˚1, ˚2, ..., ˚pn´
1qu for any non-negative integer n, and say that n is the number associated with the
nimber ˚n. Then the value of Nim positions with just one stack ras is exactly ˚a.

Nim and Nimbers

Figure 6: The Nim Game r3, 7, 1, 4s

Any position in Nim then is a sum of nimbers, and we have shown enough already to
provide a complete theorem for any sum of binary Nim Games, that is for any ra, b, c, ...s
where each a, b, c, ... is either equal to 1 or 2. Since r1, 1s “ r2, 2s “ 0, we can remove
any pairs of stacks of the same height, without affecting overall value of the game.
Since every Game must be of the form nr1s ` mr2s, where nr1s denotes n stacks of
height 1, if both n and m are even that Game is a zero Game, and if one of n or m is
odd it is the fuzzy Game ˚n or ˚m respectively, and if both are odd we have the Game
˚1` ˚2 ‖ 0.

To study more complicated Nim positions we should first work out a general theory of
addition on nimbers. For example, the game r1, 2, 3s is a zero game, since any starting
play must move to a position in either the form ra, bs (by removing any whole stack),
which is a fuzzy Game, or a position in the form ra, a, bs (by removing a portion from
either r2s or r3s), which is equal to rbs, a fuzzy Game. So we have that ˚1`˚2`˚3 “ 0,
and since nimbers are their own negatives, we know that:

˚1` ˚2 “ ˚3, and ˚ 3` ˚1 “ ˚2, and ˚ 2` ˚3 “ ˚1
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We can also show this more explicitly using our definition of Game addition. We have
that ˚1 “ t0u, ˚2 “ t0, ˚1u, and 3 “ t0, ˚1, ˚2u, so ˚1`˚2 “ t˚1, ˚1`˚1, ˚2u “ t0, ˚1, ˚2u “
˚3. However, trying the other two equations gives us ˚3` ˚1 “ t0, ˚1, ˚3u and ˚2` ˚3 “
t0, ˚2, ˚3u, for which we need to develop some more theory to verify equal ˚2 and ˚1
respectively.

We define the minimal excluded number, or mex, for a list non-negative integers
a, b, c, ... as the least non-negative integer that is not included in that list. For example,
mexp0, 1, 2, 4, 5q “ 3. We now use this concept to prove the following theorem:

Theorem 0.37. Any impartial Game G “ t˚a, ˚b, ˚c, ...u that has only nimber options
˚a, ˚b, ˚c, ... is equal to the nimber ˚mexpa, b, c, ...q, where a, b, c, ... are all the numbers
associated with the nimbers ˚a, ˚b, ˚c, ....

Proof.

We have G “ t˚a, ˚b, ˚c, ...u, and let ˚m “ ˚mexpa, b, c, ...q. Then we must have
that the player who wins the Game ˚m, must also win the Game G. For if the first
player wins ˚m, whatever their winning move is in ˚m is also their winning move in
G, because every move from ˚m must be to some ˚l where l ă m, and this ˚l must
also be an option of G, otherwise m would not the mex of a, b, c, .... If instead the
second player wins ˚m, then either the first player moves in G to some position
˚l such that l ă m, or they move to some position ˚n such that m ă n. For the
former, since ˚l is an option of ˚m, it is as if they had started in ˚m, and the second
player plays their winning strategy in ˚m. For the latter, ˚m must be an option of
˚n, so the second player plays to ˚m and wins. So we have that ˚m “ G, and that
any impartial Game with only nimber options is itself equal to some nimber.

We call the nimber ˚m the nim-value of G, and we call the moves to ˚n where m ă n

reversible moves, since as we showed, the following player can always reverse the
Game back to ˚m, unlike in the moves to ˚l where l ă m. In Nim no such moves
exist, since we only remove counters, but we could play an altered version where
either player could on their turn either decrease any stack as usual or increase any
stack by any amount of counters they have removed on previous turns. The outcome
of this Game from any starting position must be exactly the same as the Nim Game
from that position, since if any player chooses to increase a stack by n counters, the
other player can instantly reverse to the previous position by removing those same n

counters. Note that this game would still be finite, since the player with a winning Nim
strategy will never want to increase the amount of counters in any stack, and the other
player can only finitely many times increase a stack, until they run out of counters and
have to reduce a stack.
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It also follows directly from Theorem 0.37 that the sum of two nimbers must be another
nimber, and we can now evaluate ˚3`˚1 and ˚2`˚3 explicitly. We had that the former
was equal to the impartial Game t0, ˚1, ˚3u, and the latter equal to t0, ˚2, ˚3u. But using
Theorem 0.37 the minimum excluded number associated with 0, ˚1, and ˚3 is 2, so we
have ˚3 ` ˚1 “ ˚2, and similarly mexp0, 2, 3q “ 1 implies that ˚2 ` ˚3 “ ˚1. To simplify,
we will also write mext˚a, ˚b, ˚c, ...u to mean ˚mexpa, b, c, ...q, so, in this notation, we
have simply that ˚1 “ mext˚0, ˚2, ˚3u.

We now define the nim-sum of any amount of nimbers and show that the nim-sum of
a Nim position is 0 if and only if the first player wins that position. The nim-sum of
any nimbers ˚a, ˚b, ˚c, , ... is defined as the nimber associated with digital sum of their
associated non-negative integers. That is to say that it is the nimber associated with
the sum without carrying over of the binary representations of a, b, c, .... For example,
we have:

3`d 4`d 5 “ 0112

`d 1002

`d 1012

“ 0102 “ 2

where x2 is a number expressed in binary, and `d is the digital sum. This is clearly
commutative and associative, with additive identity 0, and it’s also easy to see that the
additive inverse of any number is itself. Also note that the digital sum of any natural
numbers must also be a natural number. So the natural numbers together with `d form
a group, and so do the nimbers together with the nim-sum. From our example above,
we can read off ˚3 ` ˚4 ` ˚5 “ ˚2, which is a fuzzy Game, as long as the nim-sum
represents playing multiple Nim stacks at once, which we shall now prove.

Theorem 0.38. Any Nim game ra, b, c, ...s is a zero Game if and only if the nim-sum
˚a` ˚b` ˚c` ... is equal to 0.

Proof.

We write each of a, b, c, ... in binary, with a column for each power of 2, so for
example, 12 “ 0 ¨ 16` 1 ¨ 8` 1 ¨ 4` 0 ¨ 2` 0 ¨ 1 “ 011002. Then each of a, b, c, ... has,
for each power of 2, either a 1 or 0 in that column, and there is a largest power of
2 for each a, b, c, .... We can then write the binary forms of each of a, b, c, ... one
under the other, so that for each power of 2 there is a column which contains some
amount of 1s and 0s in every row that doesn’t have a 1.

Now suppose there are an even amount of 1s in each column. Then the first player
can change any one row, and, since the number of counters must decrease in that
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stack, can only change the column of the largest power of 2 from a 1 to a 0, though
if do then they may change any column of a smaller power of 2 to either a 1 or a
0, and thus make those column they change have an odd number of 1s. If they do
change the column of the largest power of 2, then the second player can choose
another row which has a 1 in that column, and change that 1 to a 0, and then in all
the lower power 2 columns change the number so that each column has an even
amount of 1s. If the first player does not change the largest power of 2, then they
cannot change the next highest power of 2 from a 0 to a 1, as this would increase
the number. But of the columns they do change, there must be a highest power
of 2 which they change from a 1 to a 0. Then the second player can choose to
play in a row that has that power of 2 as its heighest power, and similarly change
all the lower powers to make sure every column has an even amount of 1s. So
whatever the first player does, if the position starts with an even amount of 1s in
each column, the second player can always play to make the position keep an
even amount of 1s in each column.

Since each move must reduce the value of a row, after a finite amount of moves
we must get to the position were there are no counters left, that is that every
column has no 1s, and the player whose turn it is loses. But since in this position
there are zero 1s, that is an even amount of 1s in each column, if original position
had an even amount of 1s, then with perfect play the second player can always
win by the strategy shown above. Since the nim-sum of a position is 0 when there
are an even amount of 1s in each column, if the nim-sum of a position is 0, the
Nim game ra, b, c, ...s is a zero Game.

It remains to show that if the nim-sum is not equal to zero, that is not every column
has an even amount of 1s, then we cannot have a zero Game. But in this case
there must be a highest power of 2 that has an odd number of 1s in its column.
Then the first player can play in a row with that power of 2 as its highest power,
change that 1 to a 0, and then change all the lower powers of 2 so that every
column has an even amount of 1s. Then the second player must start on a zero
Game, so the first player can always win. Thus if the nim-sum is non-zero the Nim
game cannot be a zero Game.

With this we can now calculate if any Nim Game is a zero Game or not, without having
to play out every possible variation. The digital sum of two non-negative integers is
equivalent to just expressing both numbers as their sum of powers of 2, and then
adding only the powers of 2 that are in just one of the two numbers, this computation
being easier if, by some chance, one wants to actually play a game of Nim. In that
case, the optimal strategy is to move to a zero position if possible, and then after each
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of the opponent’s replies revert back to a zero position as we did in Theorem 0.38. If it
is not possible to move to a zero position, then position must already a zero position,
and so the optimal strategy must be psychological, attempting to trick the opponent by
means of some comical expressions or sounds into moving to a non-zero position, as
otherwise with perfect play they will always win.

We have for any two nimbers ˚a and ˚b, that ˚a` ˚b “ ˚a` ˚c if and only if b “ c, since
otherwise either b ă c or c ă b, and if the former then ˚a`˚b is in the mex of ˚a`˚c, that
is to say ˚a`˚b would be an option of ˚a`˚c, and so by Theorem 0.37 ˚a`˚b ‰ ˚a`˚c,
and similarly for the latter. For example, we have that ˚3 ` ˚2 “ t0, ˚1, ˚2u ` t0, ˚1u “
mext˚3, ˚3`˚1, ˚2, ˚2`˚1, 0u, which has ˚3`˚1 in the mex so clearly ˚3`˚2 ‰ ˚3`˚1.

This then allows us to write the sum of ˚a and ˚b inductively as:

˚a` ˚b “ mext˚a1 ` ˚b, ˚a` ˚b1u, for all a1 ă a, b1 ă b

since ˚a1` ˚b ‰ ˚a` ˚b ‰ ˚a` ˚b1. With this expression we can now explicitly show the
properties that nim-addition has:

Theorem 0.39. For any three nimbers ˚a, ˚b, and ˚c, we have:

(a) ˚a` 0 “ ˚a;

(b) ˚a` ˚b “ ˚b` ˚a;

(c) ˚a` ˚a “ 0 and ˚a` ˚b ‰ 0 for all ˚b ‰ ˚a;

(d) p˚a` ˚bq ` ˚c “ ˚a` p˚b` ˚cq;

(e) ˚a` ˚b is a nimber.

Proof.

(a) There are no 01 terms, so ˚a ` 0 “ mext˚a1 ` 0u. So we reduce the question
down to the elements of ˚a. Then by induction, since 0` 0 “ mextu “ 0, we have
˚a` 0 “ mext˚a1u “ ˚a.

(b) We have ˚a` ˚b “ mext˚a1 ` ˚b, ˚a` ˚b1u and ˚b` ˚a “ mext˚b1 ` ˚a, ˚b` ˚a1u, so
we reduce the question down to the elements of ˚a and ˚b. But clearly ˚x ` 0 “

0` ˚x “ ˚x for all nimbers ˚x, so by induction ˚a` ˚b “ ˚b` ˚a.

(c) Suppose the property holds for all simpler nimbers. Then we have by induction
that ˚a`˚a “ mext˚a`˚a1, ˚a1`˚au “ mext˚a`˚a1u “ 0, since none of ˚a`˚a1 “ 0,
and the inductive basis follows from (a).
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(d) By induction suppose the associative property holds when we replace one of ˚a, ˚b
or ˚c with ˚a1, ˚b1 or ˚c1 respectively. Then we have p˚a`˚bq`˚c “ mextp˚a`˚bq1`

˚c, p˚a`˚bq`˚c1u “ mextp˚a1`˚bq`˚c, p˚a`˚b1q`˚c, p˚a`˚bq`˚c1u “ mext˚a1`p˚b`

˚cq, ˚a`p˚b1`˚cq, ˚a`p˚b`˚c1qu “ mext˚a1`p˚b`˚cq, ˚a`p˚b`˚cq1u “ ˚a`p˚b`˚cq.
It remains to show the inductive basis, but clearly the associative property holds
when one of ˚a, ˚b or ˚c is equal to 0.

(e) Follows directly from our inductive definition, (a), (b), and Theorem 0.37.

So we see that the position r3, 7, 1, 4s in Figure 6 is equal to ˚1, since we can express
the sum of the stacks in terms of powers of two, and cancel pairs of the same power,
as follows: ˚3 ` ˚7 ` ˚1 ` ˚4 “ p˚2 ` ˚1q ` p˚4 ` ˚2 ` ˚1q ` ˚1 ` ˚4 “ p˚4 ` ˚4q ` p˚2 `
˚2q ` p˚1` ˚1q ` ˚1 “ ˚1.

Next in our quest of a nimber field we must define multiplication. For any two nimbers
˚a and ˚b, we have the inductive definition:

˚a ¨ ˚b “ mext˚a1 ¨ ˚b` ˚a ¨ ˚b1 ` ˚a1 ¨ ˚b1u

for all ˚a1 options of ˚a and ˚b1 options of ˚b. Remembering that nimbers are their own
negatives, we see that this definition is just our definition for multiplication on surreals,
if we use the Simplicity Theorem in place ofmex and limit ourselves to just the naturals.
Thus we have the following:

Theorem 0.40. For any three nimbers ˚a, ˚b and ˚c, we have:

(a) ˚a ¨ 0 “ 0 and 0 ¨ ˚a “ 0;

(b) ˚a ¨ ˚1 “ ˚1;

(c) ˚a ¨ ˚b “ ˚b ¨ ˚a;

(d) p˚a` ˚bq ¨ ˚c “ ˚a ¨ ˚c` ˚b ¨ ˚c

(e) p˚a ¨ ˚bq ¨ ˚c “ ˚a ¨ p˚b ¨ ˚cq;

(f) ˚a ¨ ˚b is a nimber.

Proof.

(a) Since there are no options of 0, that is 01 is not defined, we have directly ˚a ¨ 0 “
0 ¨ ˚a “ mextu “ 0

(b) Firstly, we know that 0 ¨ ˚1 “ 0 from (a). Now by induction assume that ˚α ¨ ˚1 “
˚α for all α ă a. Then we, since the only option of ˚1 is 0, we have ˚a ¨ ˚1 “
mext0, ˚1 ¨ ˚1, ˚2 ¨ ˚1, ... ˚ pa ´ 1q ¨ ˚1u and so using our induction step ˚a ¨ ˚1 “
mext0, ˚1, ˚2, ..., ˚pa´ 1qu “ ˚a.
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(c) We have ˚a ¨ ˚b “ mext˚a1 ¨ ˚b`˚a ¨ ˚b1`˚a1 ¨ ˚b1u and ˚b ¨ ˚a “ mext˚b1 ¨ ˚a`˚b ¨ ˚a1`

˚b1 ¨ ˚a1u. Since the nim-sum is commutative, we have ˚a ¨ ˚b “ ˚b ¨ ˚a if and only if
their options are commutative. So inductively we reduce the question on any two
nimbers down to their options, and eventually we only have to calculate the basis
case, whether 0 ¨ ˚x “ ˚x ¨ 0 for some nimber ˚x, which we showed in (a).

(d) By induction suppose that this distributive property holds if we replace any one
of ˚a, ˚b or ˚c with ˚a1, ˚b1 or ˚c1 respectively. Then we have that p˚a ` ˚bq ¨ ˚c “
mextp˚a`˚bq1 ¨˚c`p˚a`˚bq ¨˚c1`p˚a`˚bq1 ¨˚c1u “ mextp˚a1`˚bq ¨˚c`p˚a`˚bq ¨˚c1`

p˚a1`˚bq ¨ ˚c1, p˚a`˚b1q ¨ ˚c`p˚a`˚bq ¨ ˚c1`p˚a1`˚b1q ¨ ˚c1u “ mextp˚a1 ¨ ˚c`˚a ¨ ˚c1`

˚a1 ¨˚c1q`p˚b ¨˚c`˚b ¨˚c1`˚b ¨˚c1q, p˚a ¨˚c`˚a ¨˚c1`˚a ¨˚c1q`p˚b1 ¨˚c`˚b ¨˚c1`˚b1 ¨˚c1q “

mextp˚a ¨ ˚cq1 ` ˚b ¨ ˚c, ˚a ¨ ˚c ` p˚b ¨ ˚cq1u “ ˚a ¨ ˚c ` ˚b ¨ ˚c. It remains to show the
induction basis, but clearly the distributive property holds when any of ˚a, ˚b or ˚c
equals 0.

(e) By induction suppose that this associative property holds if we replace any one
of ˚a, ˚b or ˚c with ˚a1, ˚b1 or ˚c1 respectively. Then we have that p˚a ¨ ˚bq ¨ ˚c “
mextp˚a¨˚bq1¨˚c`p˚a¨˚bq¨˚c1`p˚a¨˚bq1¨˚c1u “ mextp˚a1¨˚b`˚a¨˚b1`˚a1¨˚b1q¨˚c`p˚a¨˚bq¨

˚c1`p˚a1¨˚b`˚a¨˚b1`˚a1¨˚b1q¨˚c1u “ mextp˚a1¨˚b¨˚c`˚a¨˚b1¨˚c`˚a1¨˚b1¨˚c`˚a¨˚b¨˚c1`˚a1¨

˚b¨˚c1`˚a¨˚b1¨˚c1`˚a1¨˚b1¨˚c1u “ mext˚a1¨p˚b¨˚cq`˚a¨p˚b¨˚cq1`˚a1¨p˚b¨˚cq1u “ ˚a¨p˚b¨˚cq.
It remains to show the inductive basis, but clearly the associative property holds
when one of ˚a, ˚b or ˚c is equal to 0.

(f) We have ˚a ¨ ˚b “ mext˚a1 ¨ ˚b ` ˚a ¨ ˚b1 ` ˚a1 ¨ ˚b1u. Since the nim-sum is closed,
˚a ¨ ˚b is nimber if and only if all of ˚a1 ¨ ˚b, ˚a ¨ ˚b1, and ˚a1 ¨ ˚b1 are. So inductively
we reduce the question on ˚a ¨ ˚b down to its options, and eventually only have to
show the basis cases, that 0 ¨ ˚x and ˚x ¨ 0 are nimbers, which we did in (a).

So we can step-by-step calculate the nim-product of any two finite nimbers by starting
with 0 ¨ ˚n “ 0 and ˚1 ¨ ˚n “ ˚n, then calculating ˚2 ¨ ˚2, ˚2 ¨ ˚3, ˚3 ¨ ˚3, ˚3 ¨ ˚4 &c., and
using the commutative property proved above. Here is the multiplication table for the
first nine nimbers (we don’t bother writing the ˚s):
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1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 3 1 8 10 11 9 12 14
3 3 1 2 12 15 13 14 4 7
4 4 8 12 6 2 14 10 11 15
5 5 10 15 2 7 8 13 3 6
6 6 11 13 14 8 5 3 7 1
7 7 9 14 10 13 3 4 15 8
8 7 12 4 11 3 7 15 3 5
9 9 14 7 15 6 1 8 5 12

It can be shown by rigorous calculation that the nim-product of two finite nimbers obeys
the following rules, where A is a Fermat power (2, 4, 16, 256, ...), that is an integer in
the form 22n for some non-negative integer n:

˚A ¨ ˚b “ ˚pA ¨ bq for b ă A

˚A ¨ ˚A “ ˚

ˆ

3A

2

˙

So for example ˚16 ¨ ˚3 “ ˚p16 ¨ 3q “ ˚48, ˚4 ¨ ˚4 “ ˚6, and

˚5 ¨ ˚9 “ p˚4` ˚1q ¨ p˚4 ¨ ˚2` ˚1q

“ ˚4 ¨ ˚4 ¨ ˚2` ˚4` ˚4 ¨ ˚2` ˚1

“ ˚6 ¨ ˚2` ˚4` ˚8` ˚1

“ p˚4` ˚2q ¨ ˚2` ˚4` ˚8` ˚1

“ ˚8` ˚3` ˚4` ˚8` ˚1

“ ˚3` ˚4` ˚1 “ ˚2` ˚1` ˚4` ˚1 “ ˚6

We have already said how nimbers are their own negatives, so we clearly have an
additive inverse that has the properties we expect. It remains to define a multiplicative
inverse, and again we do this similarly to how we did it on the surreals, and letting
˚b “ ˚ 1

a
, we recursively define

˚b “ mex

"

0, ˚1`
p˚a1 ` ˚aq ¨ ˚b1

˚a1

*

were ˚b1 is an already previously calculated element in the mex. Then the proof that
˚b is the multiplicative inverse of ˚a, that is that ˚a ¨ ˚b “ ˚1, is similar to the the proof
given for the multiplicative inverse of surreals, but we do not expand it here.

So we have shown now that nimbers form their own field, but unlike the Field of surre-
als, since we require that all games come to an end, and have that the only numbers
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associated with nimbers are non-negative integers, this field of nimbers has a finite
amount of elements, so it is a finite field. We can further note that it is of characteristic
2, since we only have to sum two terms of the multiplicative identity, ˚1, to equal the
additive identity, 0, since ˚1` ˚1 “ ˚1´ ˚1 “ 0.

Turning Corners

Figure 7: The Turning Corners Game tp2, 1q, p2, 2q, p2, 5q, p3, 6q, p4, 2q, p4, 5q, p5, 1qu

In the previous section we defined multiplication on nimbers, but we didn’t give any of
its applications to Games. So let us consider the Game of Turning Corners, which is
an expansion of Nim into two dimensions. The Game is played on a grid board, as in
Figure 7, where each intersection may hold a stone, and a zero axis which can never
hold any stones. Then on each player’s turn they pick a stone that is already on the
board and construct a square on the grid (including the zero axis) which has that stone
as it right-upmost corner. The move is then to turn all the corner of that square, so that
on the corners where there is a stone it is removed, and on the corners where there
is not a stone one is placed (but remembering that the zero axis can never hold any
stones). Then we can express any position as just a set of the intersection that hold a
stone, for example tp1, 1q, p1, 2q, p2, 1q, p2, 2qu is the position which stones in a square in
the left-bottom most corner (and so one possible move from this position would be to
turn all the stones over, leaving an empty board). As ever the objective of the Game is
to be the last player to move, and since neither player has any moves the other does
not, it is an impartial Game. In order to analyse this Game we first prove the following
vital theorem of impartial Games:

Theorem 0.41. Sprague-Grundy Theorem: Every impartial Game is equal to some
nimber. Specifically, for an impartial game G with options a, b, c, ..., G “ ˚mexpa, b, c, ...q

Proof.
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Let G “ ta, b, c, ...u be an arbitrary impartial Game. Then by induction, since all
of a, b, c, ... are simpler impartial Games, suppose they are all equal some the
nimbers ˚α, ˚β, ˚γ, ... respectively. Then from Theorem 0.37 we must have that
G is also equal to a nimber, specifically G “ mextα, β, γ, ...u “ ˚mexpa, b, c, ...q.
Finally since we require that all Games come to an end, we must have that all
impartial Games reduce down to the endgame 0 “ tu, which is equal to the nimber
˚0, so by induction every impartial game is equal to some nimber.

This theorem helps us immensely in solving impartial Games, as we can use all that we
have already proved about nimbers, and we just have to work out how to describe any
given position of an impartial Game using nimbers. In Turning Corners, let us first con-
sider positions where only the first row and first column hold stones. In such positions,
the only moves are to remove a stone entirely, or to remove a stone and turn a lower
intersection on the same row or column as the removed stone. For example, if we had
the position tp1, 1q, p1, 2q, p1, 4qu, where all the stones lie on the first column, we could
choose to remove the stones at p1, 4q and p1, 2q, to get tp1, 1qu or we could remove the
stone at p1, 4q and place one at p1, 3q, to get tp1, 1q, p1, 2q, p1, 3qu. Since all the stones
are in the first column, the only moves that can be played will move to positions where
still all the stones are in the first column, and so in fact the value of tp1, 1q, p1, 2q, p1, 4qu
is equal to the value of the Nim position r1, 2, 4s, because we can show inductively that
every position from these single column Turning Corners Games has a Nim positions
of equal value. For example, the move from tp1, 1q, p1, 2q, p1, 4qu which removes both
the p1, 1q and p1, 4q stones and leaves the position rp1, 2qs is equivalent to moving in the
Nim Game r1, 2, 4s to the position r1, 2, 1s. So in these first row and column positions,
we see that the value of the position is just the nim-sum of greatest coordinate of each
stone on the board.

Next lets consider the position with just a single stone at the p2, 2q intersection. Then
there are four possible moves for the first player: they can: aq remove the stone,
so the board is empty and in the zero position; bq turn the corners of the square
tp0, 1q, p0, 2q, p1, 2q, p2, 2qu so that there remains a single stone at p1, 2q, with value
˚2; cq symmetrically, turn the corners of the square that leaves just the single stone
p2, 1q, again of value ˚2; or pdq turn the corners of the square that leaves the position
tp1, 1q, p1, 2q, p2, 1qu, of value ˚1 ` ˚2 ` ˚2 “ ˚1. Clearly this is a fuzzy Game, since
the first player can move to the zero position, and from the Sprague-Grundy Theo-
rem we know it must be equal to some nimber, and specifically since we know the
values of all the options, we can directly read off that the Game tp2, 2qu is equal to
˚mexp0, 1, 2q “ ˚3.

Let us write Gpn,mq for the value of a general stone at pn,mq, also known as its Grundy
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Value, which we know will be a nimber. Then to calculate Gpn,mq we need to know all
values of having a stone at all the intersections further to the left of n and lower than m,
since we can construct a square with any of these intersections and pn,mq as two of its
corners. That is, we must have already calculated each of Gpn1,mq, Gpn,m1q, Gpn1,m1q,
for all n1 ă n and m1 ă m. Then in turning pn,mq we choose some fixed n1 and m1

and also turn the intersections pn1,mq, pn,m1q, pn1,m1q, and from the Sprague-Grundy
Theorem we must have that pn,mq has value Gpn,mq “ mextGpn1,mq ` Gpn,m1q `

Gpn1,m1qu for all n1, m1. But note that this is the same as our definition of multiplication
between two nimbers given above, since clearlyGp0, 0q “ mextu “ 0 “ ˚0¨˚0, and then
Gpa, bq for all a ą 0 or b ą 0 is defined recursively in the same way as nim multiplication
is, namely ˚a ¨ ˚b “ mext˚a1 ¨ ˚b ` ˚a ¨ ˚b1 ` ˚a1 ¨ ˚b1u. So in fact the value of any given
stone at pn,mq is equal to the nim-product ˚n ¨ ˚m.

Finally we consider positions with multiple stones that are not all on the first row and
column. Suppose we choose the stone at pn,mq as the top-rightmost stone to turn,
then the other three corners of the square we turn either hold a stone or do not. If any
do, then we remove it, removing a stone of some definite value ˚v1 from the board, and
if any don’t, we add a stone of another definite value ˚v2 to the board. Now consider
instead if we played the same position over multiple boards, with each board holding
only one stone. Then in turning the stone at pn,mq, we would add a stone to a board
for every other corner of the square that we turn. Then if no other board has a stone at
that same intersection, we add a stone of definite value ˚v2 to the sum of boards, and
if instead another board does have a stone at intersection, then since it has the same
value ˚v1 as this stone that we have just added, and nimbers are their own negatives,
the two stones cancel out, and we have effectively removed a stone of value ˚v1 from
the sum of boards. This means that the total value of any Turning Corners position
is just the sum of the values of all the separate stones on the board, so the arbitrary
position tpa1, b1q, pa2, b2q, ..., pan, bnqu has value ˚a1 ¨ ˚b1 ` ˚a2 ¨ ˚b2 ` ...` ˚an ¨ ˚bn.

So, using our rules of nim multiplication as above, we can calculate that the position in
Figure 7 has value:

˚ 2 ¨ ˚1` ˚2 ¨ ˚2` ˚2 ¨ ˚5` ˚3 ¨ ˚6` ˚4 ¨ ˚2` ˚4 ¨ ˚5` ˚5 ¨ ˚1

“ ˚ 2` ˚3` ˚2 ¨ p˚4` ˚1q ` p˚2` ˚1q ¨ p4` ˚2q ` ˚4 ¨ ˚2` ˚4 ¨ p˚4` ˚1q ` ˚5

“ ˚ 2` ˚3` ˚8` ˚2` ˚8` ˚3` ˚4` ˚2` ˚8` ˚6` ˚4` ˚4` ˚1

“ ˚ 2` ˚8` ˚6` ˚4` ˚1

“ ˚ 9

So the position is winning for the first player. The best move is to turn the square
tp2, 5q, p2, 2q, p0, 5q, p0, 2qu, as this removes the stones at p2, 5q and p2, 2q, which have a
total value of ˚2 ¨ ˚5` ˚2 ¨ ˚2 “ ˚2 ¨ ˚4` ˚2 ¨ ˚1` ˚2 ¨ ˚2 “ ˚8` ˚2` ˚3 “ ˚9, leaving the
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second player to make the first move in a zero position.

Cloves and Brussels Sprouts

To end this section we will use what we have shown so far about impartial Games to
give a complete theory of the impartial Game Cloves, which is a generalized version of
the game Brussels Sprouts. The standard version of Brussels sprouts is played with
a pen and a piece of paper (a plane), with the initial position being a page that has a
number of crosses drawn on it, each of which we consider as two lines, both open at
both ends, bisecting each other. Then on each players move, they must connect any
two open ends of lines with a new line (which will necessarily be closed on both ends),
such that this new line doesn’t intersect any other line already on the page, and then
make a cross through this line, that is draw through this line another line that is open
at both ends. As ever the Game ends when one player cannot find a move, because
there is no possible way to connect any two open ends of lines without intersecting an
already present line, and they lose. This is then an impartial Game, as every move
allowed to one player is also allowed to the other. The only difference in Cloves is that
we do not necessarily require that the initial position be a number of crosses, just that
it be a number of vertices, each with a number of open lines (or prongs) coming out
of it, which we’ll call the pieces of the position, and write Pn for a piece with n open
ends. If we draw over an open end with a square, then we consider it a closed end, so
that no other open end can connect to it. We furthermore write Pn1,n2,...,nk

for a page
that has the pieces Pn1, Pn2, ..., Pnk

on it, and write Pn1 ` Pn2 ` ... ` Pnk
for the Game

where each piece is a page by itself, so that we can never connect the open ends of
two different pieces to each other, which is to say Pn1 ` Pn2 ` ... ` Pnk

is the disjoint
sum of Pn1 , Pn2, ..., Pnk

. Figure 8 gives some of the reachable positions from the initial
position with a vertex of one prong (a P1 piece, and note the square closing of one
end of the line) labeled a, and a vertex of three prongs (a P3 piece), labeled b, c, and d
respectively.

In Figure 8 from our starting position P1,3 we connect the ends b and c, and then draw
a line through this connecting line, so that the open ends bc1 and bc2 appear either
side of it, and since b and c are no longer open ends, we remove their labels. Note
that if we connected b and d clockwise, or connected c and d anticlockwise, so that the
connecting line did not form a loop around c or b respectively, then by symmetry these
positions are equivalent to the position in Figure 8, since they all move to positions
which have one prong in a loop, and a one prong and a two prong piece outside that
loop, which is the meaning of the text above the arrow from our starting position, and
the same idea is meant by the other arrows. Then from this second position there are
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Figure 8: Just two of the possible move paths in the Cloves Game P1,3

two distinct moves (accounting for symmetry), one pointed to by the rightward arrow
where we connect the ends bc1 and d, and one pointed to by the leftmost arrow where
we connect d and a. Then from both of these positions (accounting for symmetry),
there are two more moves to be played until we come to positions where there are no
legal moves, which are the final graphs in the figure.

Before we can analyse positions like P1,3 which have more than one starting piece, we
must work out the value of single piece positions. If we consider the simplest piece,
P1, which has just one open end, we see that from this position there are no legal
moves, so the second player always wins, that is P1 “ 0. Then what about P2? This
piece has two open ends, so a legal move is to these connect these two ends to each
other, and then draw an open end either side of the new connecting line. But this
connecting line makes a loop, so one of the new open ends will be inside the loop,
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and the other outside. Clearly then these two open ends can never be connected with
a line without cutting through the loop, so from this position there are no moves, that
is it is a zero position. Alternatively we can see this by noting that the position is the
disjoint sum of P1 and P1, so has value P1 ` P1 “ 0. Then P2 must then be a fuzzy
position, and we can use the Sprague-Grundy Theorem to precisely show that it has
value P2 “ ˚mexp0q “ ˚, since the only option from P2 is to move to a zero position.

It’s obvious that for a single open end there are no moves to be made, regardless of
whether the end is inside a loop or not. However it is not so clear in general if the
value of n open ends inside the loop is equal to the value of n open ends outside of
any loop. But by considering Figure 9 we can see that any position outside a loop
can be morphed into an equivalent position inside a loop, where the options from the
position are not changed by this morphing, and vice versa. We see that in first position
of Figure 9 the legal moves are to make one of the following connections ab, af, bf, de.
Then we add an empty loop in the centre of the piece, and the possible moves are
unchanged. Finally, we fold the lines on the outside of the circle ‘through the page’
into the inside the circle, and we see that the legal moves are still to connect one of
ab, af, bf, de as before. So we are now justified in also writing Pn for n open ends inside
a loop.

Figure 9: Morphing a position outside a loop to an equivalent position inside a loop

What about P3? If we label to open ends a, b, and c, then from this position there are
6 distinct moves for the first player: to connect a and b with a line that loops around c,
to connect a and b with a line that doesn’t loop around c, to connect a and c (the line
either looping or not around b), and to connect b and c (the line either looping or not
around a.) But since there is nothing distinct about a, b or c, we can use symmetry
to reduce this down to two moves, either a connection between two ends that doesn’t
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loop around the last end, or a connection between two points that does loop around
the last end.

In the first case we move to a position with one open end inside a loop, and two ends
outside any loop. But again the ends inside the loop will never be able to connect with
those outside, and the single end inside the loop will never connect to another end,
so we can consider this position as the disjoint sum of P1 and P2. Then there are no
moves from P1, but there is one move to a zero position from P2, which means the
Game P1 ` P2 “ ˚, that is the first player wins, as we’d expect, since P2 “ ˚. So we
know that one option from P3 has value ˚.

In the second case, we move to a position which has two open ends inside the loop,
and one outside. Again we see they are disjoint, and there is only one legal move from
this position, to join the two ends inside the loop, in which case there remain three
disjoint open ends, which is a zero position. Alternatively we can just note that the two
open ends inside the loop have value P2. So we see that the other option of P3 also
has value ˚.

Then we can use the Sprague-Grundy Theorem to see that P3 “ mext˚u “ ˚mexp1q “

0.

Let us now generalise, and consider the options of an arbitrary Pn. Any move from Pn

must connect one of its prongs to another, which will be sure to make a loop, though
this loop may contain some of the other prongs of Pn. If we connect a prong to its
directly adjacent prong, either clockwise or anticlockwise, then we will make a loop
that surrounds no other prong, and so when we draw the bisecting line through the
loop, we end up in a position with one open end inside the loop, and n ´ 1 open
ends outside the loop (we lose the two that are connected, but gain one from the
bisecting line). If instead we make make the loop surround one of the prongs, then
we get the position P2 ` Pn´2, since the bisecting line adds one open end both inside
and outside the loop. Similarly, when we surround two prongs with the loop we move
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to the position P3 ` Pn´3, and in general, if we surround k prongs, where necessarily
k ă n´2 (considering the two prongs that are joined together), we move to the position
Pk`1 ` Pn´k´1 (the loop contains k prongs plus one side of the bisecting line, and the
outside of the loop looses k prongs, plus the two that where joined together, but gains
one from the bisecting line). Below we have drawn (accounting for symmetry) each of
the possible moves from P8:

With this in mind, and what we already know about the addition of nimbers, we can
prove the following lemma:

Lemma 0.42. Pn “ ˚ for all even n, and Pn “ 0 for all odd n.

Proof.

By induction, suppose that the theorem holds for all n1 ă n. Now every move from
Pn must form a loop, and so must split the position into two disjoint Games, which
have values Pk`1 and Pn´k´1 respectively, where k ă n´2 is the number of prongs
surrounded by the loop. Then every option of Pn is in the form Pk`1 ` Pn´k´1, and
we have both k ` 1 ă n and n ´ k ´ 1 ă n, so we have four possibilities: (i) both
n and k are even, so both k ` 1 and n ´ k ´ 1 are odd; (ii) n is even and k is
odd, so both k ` 1 and n ´ k ´ 1 are even; (iii) n is odd and k is even, so k ` 1

is odd and n ´ k ´ 1 is even; and (iv) both n and k are odd, so k ` 1 is even
and n ´ k ´ 1 is odd. Then for (i) we have Pk`1 ` Pn´k´1 “ 0 ` 0 “ 0, for (ii)
we have Pk`1 ` Pn´k´1 “ ˚ ` ˚ “ 0, for (iii) we have Pk`1 ` Pn´k´1 “ 0 ` ˚ “ ˚,
and for (iv) we have Pk`1 ` Pn´k´1 “ ˚ ` 0 “ ˚. In summary then, for all k, if n is
even, Pk`1 ` Pn´k´1 “ 0, and if n is odd, Pk`1 ` Pn´k´1 “ ˚. Finally, we use the
Sprague-Grundy Theorem to see that Pn “ mextPk`1 ` Pn´k´1u, so Pn “ ˚ if n is
even, and Pn “ 0 if n is odd. Then it just remains to show that P1 “ 0 and P2 “ ˚,
which gives a basis for our induction, and we have already shown this above.

Now we can move on to considering positions with more than one piece. In positions
Pn,m, with only two pieces, there are only two kinds of moves: to connect the two
pieces, so that we reach the one-piece position Pn`m, (which has n ` m prongs be-
cause we connect two ends into one piece, don’t form a loop, and add two new ends
to that piece), or to connect one piece to itself and leaving the other alone, so that we
move either to Pn´k´1,m ` Pk`1 or to Pn,m´j´1 ` Pj`1, for k ă n ´ 2, j ă m ´ 2. Using
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this and the Sprague-Grundy Theorem we can prove the following interesting result, in
a similar manner to how we proved the above lemma, however using two inductions,
one nested within the other. The idea with nested induction is that we assume some
property holds for all Pn,m1 where m1 ă m ě n, and then to show that the same property
holds for all Pn,m we prove it follows if that property holds for all Pn1,m, where n1 ă n.
So we first conside the case when m “ 1, and the only possible n is n “ 1, then we
increase m to m “ 2, and show that if the property holds for n “ 1 then it must hold for
n “ 2, then increase m to m “ 3, and then show that if the property holds for n “ 1 it
must hold for n “ 2, and then n “ 3, &c.

Lemma 0.43. The value of two pieces played jointly is equal to the sum of their values
when played disjointly. That is, Pn,m “ Pn ` Pm

Proof.

First we show by nested induction that Pn,m “ ˚ if only one of m,n is even, and
0 otherwise. Without loss of generality let n ď m. Then by a first induction, for
m1 ă m, suppose that Pn,m1 “ ˚ only if only one of n,m1 is even, and equals 0

otherwise. We want to show then that this property also holds for n and m. So
by a second induction, for fixed m and all n1 ă n, suppose Pn1,m “ ˚ if only one of
n1,m is even, and equals 0 otherwise. Now we know that the options of Pn,m are
(i) Pn`m, (ii) Pn´k´1,m ` Pk`1 for k ď n´ 2, and (iii) Pn,m´j´1 ` Pj`1 for j ď m´ 2.

For (i), since the sum n`m is odd only if only one of n,m is even, using Lemma 0.42
we see that Pn`m “ 0 if only one of n,m is even, and equals ˚ otherwise.

For (ii), first note that n ´ k ´ 1 ă n, so we can use our induction assumption
that Pn´k´1,m “ ˚ only if only one of n ´ k ´ 1,m is even, and equals 0 otherwise.
Now consider the case when m is even. Then, in the same way as we did in
Lemma 0.42, if we consider the combinations of n and k being even or odd, we
get the following results: if both are even, then k ` 1 is odd and n ´ k ´ 1 is odd,
so Pn´k´1,m ` Pk`1 “ ˚` 0 “ ˚; if both are odd, then k ` 1 is even and n´ k ´ 1 is
odd, so Pn´k´1,m ` Pk`1 “ ˚ ` ˚ “ 0; if n is even and k is odd, then k ` 1 is even
and n´ k ´ 1 is even, so Pn´k´1,m ` Pk`1 “ 0` ˚ “ ˚; finally when n is odd and k
is even, then k` 1 is odd and n´ k´ 1 is even, so Pn´k´1,m`Pk`1 “ 0` 0 “ 0. In
summary we find that if m is even, Pn´k´1,m`Pk`1 “ 0 only if n is odd, and equals
˚ otherwise. If we instead consider the case when m is odd, then we similarly
find that Pn´k´1,m ` Pk`1 “ 0 only if n is even, and equals ˚ otherwise. Therefore
Pn´k´1,m ` Pk`1 “ 0 only if only one of n,m is even, and equals ˚ otherwise.

For (iii), note that m ´ j ´ 1 ă m, so we can use our inductive assumption that
Pn,m´j´1 “ ˚ only if only one of n,m´ j ´ 1 is even and equals 0 otherwise. Then,
by the same method as we did in (ii), we find that Pn,m´j´1 ` Pj`1 “ 0 only if one
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of n,m is even, and equals ˚ otherwise.

Then since each option of Pn,m equals 0 only if only one of n,m is even, and equals
˚ otherwise, using the Sprague-Grundy Theorem we find that Pn,m “ ˚ only if one
of n,m is even, and equals 0 otherwise. Then for our second induction it only
remains to show the base cases, that is the claim holds for P1,m and P2,m, but this
is easy (if laborious) to show by applying Lemma 0.42 and the Sprague-Grundy
Theorem. We must show the base cases for our first induction, that is that the
claim holds for Pn,1 for n “ 1 and Pn,2 for n ď 2, but again these are easily shown
by applying Lemma 0.42 and the Sprague-Grundy Theorem. This completes our
inductive argument, and we have shown that Pn,m “ ˚ if only one of m,n is even,
and equals 0 otherwise.

Finally using Lemma 0.42 we note that Pn`Pm “ ˚ only if only one of n,m is even,
and equals 0 otherwise, and therefore Pn,m “ Pn ` Pm, completing the proof.

So we see that with two pieces, the outcome of the Game is independent of whether
we play the pieces together on one piece of paper or separately on two. This of course
begs the question as to whether this is true for an arbitrary amount of pieces, the
answer to which is yes, as we prove:

Theorem 0.44. The value of j pieces played jointly is equal to the sum of their values
when played disjointly. That is, Pn1,n2,...,nj

“ Pn1 ` Pn2 ` ...` Pnj
.

Proof.

We do another nested induction, and show that Pn1,n2,...,nj
“ ˚ only if there is an

odd number of even n1, n2, ..., nj, and equals 0 otherwise. For the first induction,
assume that for j´1 pieces Pn1,n2,...,nj´1

“ ˚ only if there are an odd number of even
n1, n2, ..., nj´1, and equals 0 otherwise. We want to show this property also holds
for any position with j pieces. Then for the second induction, assume that for a
position with j pieces Pn11,n12,...,n1j , which have a total sum of prongs n11`n12`...`n1j ă
s for some integer s, then Pn11,n12,...,n1j “ ˚ only if there are an odd number of even
n11, n

1
2, ..., n

1
j´1, and equals 0 otherwise.

Now from the position Pn1,n2,...,nj
with j pieces and total sum of prongs s, there are

two kinds of options. The first, for pieces with more than one prong, is to connect
that piece to itself. The second is to connect two distinct pieces, and therefore
reduce the position to one of j ´ 1 prongs.

In the first case, we must have some piece Pnl
with at least two prongs, and

we change that one piece to the disjoint sum of two pieces. So if choose to
surround k prongs of Pnl

, we move from the position Pn1,n2,...,nl,...,nj
to the position
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Pk`1 ` Pn1,n2,...,nl´k´1,...,nj
. Now suppose Pn1,n2,...,nl,...,nj

has an even amount of
even n1, n2, ..., nl, ..., nj. Then there are four possible combinations of nl and k

being even or odd: (i) nl is even and k is even; (ii) nl is even and k is odd; (iii) nl is
odd and k is even; and (iv) nl is odd and k is odd. Then we have: for (i) nl ´ k ´ 1

is odd and k` 1 is odd; for (ii) nl´ k´ 1 is even and k` 1 is even; for (iii) nl´ k´ 1

is even and k`1 is odd; and finally for (iv) nl´k´1 is odd and k`1 is even. Then
using our second induction assumption and Lemma 0.42, we have: (i) Pk`1 “ 0

and Pn1,n2,...,nl´k´1,...,nj
“ ˚; (ii) Pk`1 “ ˚ and Pn1,n2,...,nl´k´1,...,nj

“ 0; (iii) Pk`1 “ 0

and Pn1,n2,...,nl´k´1,...,nj
“ ˚; and lastly (iv) Pk`1 “ ˚ and Pn1,n2,...,nl´k´1,...,nj

“ 0. So
we see that if Pn1,n2,...,nl,...,nj

has an even amount of even n1, n2, ..., nl, ..., nj, then
connecting one piece to itself always leads to a position with value ˚. A similar
argument shows that if Pn1,n2,...,nl,...,nj

has an odd amount of even n1, n2, ..., nl, ..., nj,
then all its options have instead value 0.

In the second case, in connecting two distinct pieces, we move from Pn1,n2,...,nj
to a

position of j´1 pieces, and without loss of generality let us write Pn1`n2,...,nj
for this

position. Now again suppose Pn1,n2,...,nj
has an even amount of even n1, n2, ..., nj.

Then there are again four possible combinations of n1 and n2 being even or odd:
(i) n1 is even and n2 is even, and so n1`n2 is even; (ii) n1 is even and n2 is odd, and
so n1`n2 is odd; (iii) n1 is odd and n2 is even, and so n1`n2 is odd; and (iv) n1 is
odd and n2 is odd, and so n1`n2 is even. But in all of these cases Pn1`n2,...,nj

has
an odd amount of even n1 ` n2, ..., nj, so using our first induction assumption we
see that if Pn1,n2,...,nj

has an even amount of even n1, n2, ..., nj, then every option
of Pn1,n2,...,nj

has value ˚. A similar argument shows that if Pn1,n2,...,nj
has an odd

amount of even n1, n2, ..., nj, then every option of Pn1,n2,...,nj
has instead value 0.

Then using the Sprague-Grundy Theorem we see that Pn1,n2,...,nj
“ ˚ only if there

are an odd number of even n1, n2, ..., nj´1, and equals 0 otherwise. In remains to
show the inductive base cases. For our first induction, by Lemma 0.42, if j “ 1,
then Pnj

“ ˚ only if nj is even, and equals 0 otherwise. For our second induction,
for any number of pieces j the minimum amount of prongs is j, with each piece
just having one prong. But then the only move is to connect two distinct pieces,
and therefore move to a position of j ´ 1 pieces, where one piece has 2 prongs
and j ´ 1 have 1 prong. Then by our first induction this position has value ˚, and
so by the Sprague-Grundy Theorem our base case for the second induction has
value 0 as expected, since it has 0 pieces with an even amount of prongs.

Finally we note that from Lemma 0.42, Pn1 ` Pn2 ` ...` Pnj
“ ˚ only if there is an

odd amount of even n1, n2, ..., nj, and equals 0 otherwise, so therefore Pn1,n2,...,nj
“

Pn1 ` Pn2 ` ...` Pnj
, completing the proof.
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In these proofs we showed that Pn1,n2,...,nj
“ ˚ only if there is an odd number of even

n1, n2, ..., nj, and equals 0 otherwise. Specifically, if we have n1 “ n2 “ ... “ nj “ 4,
then this is a Game of Brussels Sprouts, and the first player wins only if j is odd, which
matches the result attained by analysing Brussels Sprouts in the usual way, using
graph theory [9, p. 47]. These results then give a complete theory of Cloves, and since
every move from ˚ is to a zero position, the player who begins in a position with an odd
number of even n1, n2, ..., nj will always win, regardless of what moves are played by
either player. Therefore Cloves is completely deterministic, and isn’t much of a game
at all.

The Partizan Game of Borages

To end this paper we will study a Partizan generalisation of Cloves, which as far as the
author is aware has not yet been named, so we shall call it Borages, after the flower.

Borages is played just like Cloves, except that each prong is either filled or dotted, with
the left player being only allowed connect filled prongs and the right player being only
allowed to connect dotted prongs. When a connecting line is drawn, the player who
drew it picks one side of the line to put a new filled line, and one side to put a new
dotted line. For example, the position pL1R1q2, which is a single piece with 4 prongs
that alternate being filled or dotted has the move tree shown in Figure 10 (where a left
arrow indicates a legal move for Left (filled), and a right arrow one for Right (dotted),
with symmetries omitted). We notate pieces as a list of Left prongs and Right prongs
in their anticlockwise order, and conventionally start on a Left prong if there is one. We
also condense repeated sequences by writing the sequence once with the number of
repeats in a subscript, so for example we shorten LLLRLRRRR to L3R1L1R4, and
we call each set of successive prongs a group of prongs (not to be confused with the
algebraic structure of groups), for example L5R1 is a group of five filled prongs followed
by a group of one dotted prong. Finally, we call prongs that can be connected to each
other (because there are no lines in the way) connectable prongs.

As ever in trying to analyse Games, we start by considering the simplest positions.
What is the value of a general Ln? Any move in Ln will have to join and therefore
remove two left prongs, and then add one new Left and one new Right prong. So if
Left can manage to never let Right have a move, they should be able to keep reducing
the number of left prongs until there is only one left, which will be a zero position. Is
there a way to do this? Yes, if Left makes sure to not split up any of their prongs with
the connecting move, then the position will be split by the loop created into two disjoint
positions, one which contains n ´ 2 filled prongs and one which is empty. Then Left
can choose to put the new dotted prong in the empty position, and the filled prong in
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Figure 10: The move tree for the Borages position pL1R1q2

the other position, so that they move from Ln to Ln´1 ` R1 “ Ln´1. Then they can
keep repeating this until they have only one prong left, which will be after n´ 1 moves,
so the position has value n ´ 1. By symmetry we can also see that any Rn has value
´n` 1.

The next positions to consider are those in the form LnR1 or L1Rn, since only Left can
move in the former, and only Right can move in the latter. But from LnR1, Left can
just connect two adjacent prongs, and place the new filled line on the outside of the
created loop, and the dotted line on the inside. In this way they move to the position
Ln´1R1 ` R1 “ Ln´1R1. This must be the best move for Left as it moves to another
position where Right has no moves, and reduces the amount of connectable filled
prongs by 1, which is the minimum (we always lose the two that are connected, and
add a new one in). Then Left can repeat this tactic n ´ 1 times until they reach the
position L1R1, where neither player has a move. So again LnR1 “ n ´ 1 and similarly
L1Rn “ ´n` 1. The tree of optimal moves (omitting symmetries) for the position L1R3

is shown below.

Now we can consider any general LnRm, where n,m ą 0. The key thing to notice is
that from this position, since there is no way for either player to split up their opponent’s
prongs, the best move for either player is to connect any two adjacent prongs, and
place the new prongs such that their opponent’s is inside the created loop, and theirs
is outside. This guarantees that the number of connectable prongs for the opponent
remains the same, and the number for that player only reduces by one. So we can
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write LnRm “ tLn´1Rm ` R1|LnRm´1 ` L1u “ tLn´1Rm|LnRm´1u. It follows that from
the position LnRm, if both players play optimally, Left will play n ´ 1 moves and Right
will play m´ 1 moves, so we have LnRm “ n´ 1´pm´ 1q “ n´m, which matches up
our values of LnR1 and L1Rn, and is a zero Game when n “ m, as we’d expect from
a symmetrical position where neither player wants to play, since they can only reduce
the number of their connectable prongs, and not the opponent’s.

After this point, it becomes increasingly clunky to use diagrams to analyse positions,
since there is no limit to the amount of starting prongs we may have. Luckily, we can
work out some rules to directly manipulate our notation to express possible moves
from positions. In general, we can write positions with a single piece in the form
Ln1Rn2Ln3 ...RnsLm1Rm2 ...Rmt, and we must have ns and mt be even numbers (other-
wise, for example, Lns´1 and Lm1 would join to form Lns´1`m1). Then there are two
kinds of possible moves for either player (we will just consider those for Left here, but
those for Right are symmetrically the same). To connect two prongs that have none of
the opponent’s prongs in between them (without loss of generality, two prongs in Ln1,
if there exists some n1 ě 2), which is possible as long as there is a Left group with
more than one prong, or to connect two prongs that do have some of the opponent in
between (again without loss of generalisation, a prong in Ln1 and one in Lm1), which
is always possible as long as there is more than one Left group.

In the first kind of move, we can choose 0 ď k ď n ´ 2 prongs to surround, and
move to the position Lk ` Ln1´k´2Rn2Ln3 ...RnsLm1Rm2 ...Rmt , where one of the un-
derscores is R1 and the other L1. In the second type of move, we can choose any
prong from Ln1 and any from Lm1 to be the connecting prongs, and this will split
the n1 and m1 prongs into two groups each, one of which will be in the surrounded
loop, and the other which will not. So, if we choose to have n11 ă n1 ´ 1 prongs
from Ln1 and m1

1 ă m1 ´ 1 prongs from Lm1 to be inside the loop, we should first
rewrite our original position as Ln1´n11

Ln11Rn2Ln3 ...RnsLm11Lm1´m11
Rm2 ...Rmt. Then we

connect the one prong from Ln1´n11
to the one in Lm1´m11

, and move to the position
Ln11Rn2Ln3 ...RnsLm11 ` Ln1´n11´1

Lm1´m11´1
Rm2 ...Rmt , which we can then simplify to

Ln11Rn2Ln3 ...RnsLm11 ` Lpn1`m1q´pn11`m
1
1q´2

Rm2 ...Rmt .
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With this machinery we can now prove the position P ” Ln1Rn2Ln3 ...RnsLm1Rm2 ...Rmt

has value V “ n1`n3`...`ns´1`m1`m3`...`mt´1´pn2`n4`...`ns`m2`m4`...`mtq.
As with Cloves we will use a nested induction in our proof, the first over the number
of groups of prongs, that is the number s ` t (which we know must be even), and the
second, for each fixed s`t, over the number of prongs, that is n1`...`ns`m1`...`mt.
We find all the options from our initial position, and show that the Game P is a number,
then use the properties of surreals we proved in earlier sections to show that P “ V .

Theorem 0.45. The Game P :“ Ln1Rn2Ln3 ...RnsLm1Rm2 ...Rmt, where there is at least
one L term and one R term, has value V “ n1`n3` ...`ns´1`m1`m3` ...`mt´1´

pn2 ` n4 ` ... ` ns `m2 `m4 ` ... `mtq, that is the number of Left prongs minus the
number of Right prongs.

Proof.

By a first induction assume that the theorem holds for all n1s andm1
t where n1s`m1

t ă

ns`mt. Then we consider positions with ns`mt pieces, and do another induction
on the total number of prongs σ “ n1 ` ... ` ns `m1 ` ... `mt, and assume the
theorem holds for all σ1 ă σ. Now we consider the options for a position with σ

prongs.

First we consider Left’s options. We have already shown that there are two kinds
of moves: to a position in the form (a) Lk ` Ln1´k´2Rn2Ln3 ...RnsLm1Rm2 ...Rmt ,
where one of the underscores is R1 and the other L1, for some 0 ď k ď n ´ 2, or
to a position of the form (b) Ln11Rn2Ln3 ...RnsLm11 `Lpn1`m1q´pn11`m

1
1q´2

Rm2 ...Rmt ,
for some n11 ď n1 ´ 1 and m1

1 ď m1 ´ 1.

In the case of (a), if the L1 term is in the left summand we get the position Lk`1 `
Ln1´k´2Rn2Ln3 ...RnsLm1Rm2 ...Rmt`1. At this point there are two cases, when k “ 0

and when k ą 0. For the first case, we have the two pieces L1 and
Ln1´2Rn2Ln3 ...RnsLm1Rm2 ...Rmt`1. Using our second induction assumption, since
this second piece has ns ` mt groups has but one fewer prong, we know it has
value n1 ´ 2 ` n3 ` ... ` ns´1 `m1 `m3 ` ... `mt´1 ´ pn2 ` n4 ` ... ` ns `m2 `

m4 ` ... ` mt ` 1q “ V ´ 3. Then since L1 “ 0 the two pieces sum together to
the value V ´ 3. In the second case we know that Lk`1 “ k and by our second
inductive assumption, since the second summand has ns `mt groups but fewer
prongs, we know its value to be n1 ´ k ´ 2 ` n3 ` ... ` ns´1 ` m1 ` m3 ` ... `

mt´1 ´ pn2 ` n4 ` ...ns `m2 `m4 ` ...`mt ` 1q. Adding this to k we get the value
n1`n3`...`ns´1`m1`m3`...`mt´1´pn2`n4`...`ns`m2`m4`...`mtq´3 “ V ´3

again.

If instead the L1 goes in the right summand we get
LkR1 `Ln1´k´1Rn2Ln3 ...RnsLm1Rm2 ...Rmt. Again there are two cases, when k “ 0
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and when k ą 0. If k “ 0, we get the two pieces L0R1 “ R1 “ 0 and
Ln1´1Rn2Ln3 ...RnsLm1Rm2 ...Rmt “ V ´1, which sums to V ´1. Note that this move
is always possible for Left, unless all their groups have only one prong. If instead
k ą 0, we get LkR1 “ k ´ 1 and Ln1´k´1Rn2Ln3 ...RnsLm1Rm2 ...Rmt “ V ´ k ´ 1,
which sums to V ´ 2.

In the case of (b), we have the sum of two positions with less than ns`mt groups,
so we’ll use our first inductive assumption. If we put L1 in the left summand we get
a position with two pieces of value n11`n3` ...`ns´1`m

1
1` 1´pn2`n4` ...`nsq

and n1 `m1 ´ pn
1
1 `m1

1q ´ 2 `m3 ` ... `mt´1 ´ pm2 `m4 ` ... `mt ` 1q, which
summed together give the option the value of V ´2. Similarly if we instead put the
L1 term in the right summand we get again that the option has the value V ´ 2.

None of the above reasoning depended on anything unique to the Left player.
As such, by symmetry we can see straight away that Right’s options will be to
V ` 1 (if at least one of their groups has more than one prong), V ` 2 and V ` 3.
Then there are three cases: when both player have at least one group with more
than one prong, when only one player has only groups with one prong, and when
both players have only groups with one prong. The third case is the basis for
our second induction, and is considered below. In the first case, we have P “

tV ´ 3, V ´ 2, V ´ 1|V ` 1, V ` 2, V ` 3u. We know that V is an integer, so we
must have V ˘ 1, V ˘ 2, V ˘ 3 being all integers, and therefore P is a number.
So by the Truncation Theorem we can just write P “ tV ´ 1|V ` 1u. Then by the
Simplicity Theorem, since V ´ 1 ă V ă V ` 1 and no option of V satisfies this
(because if V is positive, V “ tV ´ 1|u in its natural form, and similarly we have
V “ t|V ` 1u when V is negative), we have that P “ V . In the second case, we
have that if it is Right who only has groups with one prong, then V must be positive
(because ns and mt are always even), and so P “ tV ´ 3, V ´ 2, V ´ 1|V ´ 2u

still equals V by the Simplicity Theorem. Similarly, if it is Left who has groups of
only one prong, then V must be negative, so the Simplicity Theorem still gives
P “ tV ´ 3, V ´ 2|V ` 1, V ` 2, V ` 3u “ V . So in both cases we have P “ V as
required.

It remains to show the basis cases. For our first induction, the basis case is with
two groups, that is positions of the form Ln1Rm1, which we have already shown is
equal to n1´m1 as we require. For our second induction, the smallest σ for a fixed
ns and mt is σ “ ns ` mt, where each of n1, ..., ns,m1, ...,mt is equal to 1. Then
from the position Ln1Rn2Ln3 ...RnsLm1Rm2 ...Rmt, Left can’t connect any group to
itself, so must connect Ln1 to Lm1 and move to Rn2Ln3 ...Rns ` Rm2Lm3 ...Rmt .
Then regardless of which summand we put the L1 term in, both of the summands
have less than ns ` mt groups so by our first induction Left’s option has value
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n3`...`ns´1`m3`...`mt´1`1´pn2`...ns`m2`...`mt`1q “ n3`...`ns´1`m3`

...`mt´1´pn2`...ns`m2`...`mtq. Then since every n2, ..., ns,m2, ...,mt equals 1,
the value of this option is s{2´1`t{2´1´ps{2`t{2q “ ´2. Similarly, by symmetry
Right’s option has value 2, so the position for our second basis has value t´2|2u “

0 by the Simplicity Theorem, which is equal to n1` ...`ns´1`m1` ...`mt´1´pn2`

...`ns`m2` ...`mtq “ pn1´n2q` ...`pns´1´nsq` pm1´m2q` ...`pmt´1´mtq

as required since ns and mt are always even, finishing the proof.

From the above proof we see two interesting properties. The first is that it is only
the number of prongs for each player that affects the value of the Game, and not
the configuration they are in. Because of this we will write V1 ` V2 to express the
disjoint sum of two pieces of value V1 and V2. The second is that, unlike in Cloves, it
is possible to make a non-optimal move. The best strategy is to always connect two
adjacent prongs if possible, and put the opponent’s prong in the loop, which nullifies
it since it will be never be able to connect to another prong, and the worst move is to
instead put one’s own prong into that loop, as again it will be nullified. These moves
go to the positions V ˘ 1 and V ˘ 3 respectively. However, all the moves apart from
these two have the same value, moving to V ˘ 2.

For two piece positions we write Ln1Rn2 ...RnsLm1Rm2 ...Rmt ‘ Lx1Rx2 ...RxuLy1Ry2 ...Ryv

where ‘ indicates the joint sum, but for brevity we’ll also write Pa‘Pb, and we say that
disjointly the first piece has value Va and the second Vb. Then there are two kinds of
moves: to connect the two pieces together, or ignore one piece, and just play a move
that connects two prongs of the same piece (which may or may not surround the other
piece, but just as in Figure 9, for each move that surrounds the other piece there is
an equivalent move that doesn’t, and vice versa). Since we know that connecting two
adjacent prongs in one piece then putting the opponent’s new prong inside the loop
is always better than connecting two non-adjacent prongs, we will only consider this
move when a player decides to play in a single piece.

Then consider the sum Pa‘Pb where Va`Vb “ 0, and were each piece has at least one
Left and one Right prong. Then the first player will want to avoid connecting the two
pieces, because they will have to remove two of their prongs from the board, and then
add a new prong for them and their opponent. But since there is no way to create a
loop in connecting the two pieces, by Theorem 0.45, they will just move to a position of
value Va`Vb´ 2 “ ´2 if it is Left who begins or Va`Vb` 2 “ 2 if it is Right who begins,
which will be a winning position for the second player. The other possible option from
Pa ‘ Pb for the first player is to ignore one of the pieces and just play a move in the
other piece. But since Va ` Vb “ 0, that is the sum of the two pieces played disjointly
is zero, if the first player can find a move in just one piece, then so can the second,
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because whatever number of moves advantage one player has in Pa the other player
must have in Pb. Therefore, eventually, since our Games must be finite, if neither player
chooses to connect the two pieces, we will end up in the position L1R1 ‘ L1R1, with
the first player to move. Then their only move is to connect the two pieces, and move
to L1R3 “ ´2 if it is Left who begins or L3R1 “ 2 if it is Right who begins, both of which
are again winning for the second player. So we have for positions with Va`Vb “ 0, that
Pa ‘ Pb “ 0, that is the value of the joint sum is the same as the value of the disjoint
sum.

What about positions with Va ` Vb “ 1? Played disjointly, the position is winning by
one move for Left, so if they begin, they can just play a move in one of the pieces,
and move to a position with Va ` Vb “ 0, which they will then win since they will be
the second player. If instead Right begins, they can either connect the two pieces and
move to Va`Vb`2 “ 3, or play in one piece, and move to a position with Va`Vb “ 2, to
which Left can reply, again playing in just one piece, and move back to a position with
Va`Vb “ 1. Eventually, then, we will get to the position L2R1‘L1R1, where it is Right’s
turn move. They will have to move to L4R1 “ 3. So the Game has value t0 |3u “ 1.
Similarly, if Va ` Vb “ ´1, then the Game will have value ´1. So again we have that
the disjoint sum is equal to the joint sum.

In general, by the same arguments as above, positions where Va ` Vb “ n for n ą 0

when played disjointly will give Left n moves advantage, and as we have seen, this
doesn’t change if we allow the players to connect up the two pieces, that is play them
jointly, since it is never favourable for either play to play the connecting move. Similarly,
when n ă 0, Right will have n moves advantage whether the game is played disjointly
or jointly. So we have for positions with two pieces that their value is the same as the
value of the two piece individually, that is Pa ‘ Pb “ Va ` Vb. We will now use these
arguments to prove that this is true for positions with any number of pieces, and use
the case of two pieces as an induction basis.

Theorem 0.46. The value of m ě 2 pieces, each with at least one Left and one Right
prong, played jointly is equal to the sum of their individual values.

Proof.

We do another nested induction. Our first induction is on the number of pieces.
Suppose that the theorem holds for positions of m1 pieces, where m1 ă m. Then
for positions with m pieces, where the difference in prongs, d “ V , is the number
of Left’s prongs minus the number of Right’s (which by Theorem 0.45 is exactly
sum of the values of all the pieces played individually), we do another induction on
d, and assume the theorem holds for all d1 ă d (again we just show the case when
d ą 0, and then the case for d ă 0 is symmetrical, since we just swap the Left
and Right prongs). Then from a position with m pieces and d “ V , one of Left’s
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options will be to connect two of those pieces, and move to a position of m ´ 1

pieces, with d “ V ´ 2. Similarly one of Right’s options is to move to a position of
m´ 1 pieces with d “ V ` 2. If they do not play these moves, then the other kind
of move is to a position with m pieces, but with either d “ V ´ 1 or d “ V ` 1, for
Left’s or Right’s move respectively.

Now consider the case when d “ 0. The first player will still want to avoid connect-
ing any two pieces, but if they play in single piece, since d “ 0, the second player
will always be able to respond in a single piece, and move to a new position with
d “ 0 but with fewer total prongs. Eventually then, the first player will have to play
a connecting move, and reach a position with m ´ 1 pieces and d “ ´2 or d “ 2,
for Left or Right beginning respectively, and so the Game is a zero Game, since
the first player will always lose.

Next consider the case when d “ V ą 0. If Right begins, they still don’t want to
connect any two pieces, as this would lead to a position with m ´ 1 pieces and
d “ V ` 2 ą 0, and so by our first induction assumption of value V ` 2. But again
for any single-piece move Left can find a single piece response, that will keep d

constant, so eventually Right will have to connect, and still move to a position of
value V ` 2. If instead Left begins, They will move to position with m pieces and
d “ V ´ 1 ě 0. If V ´ 1 “ 0, that is d “ V “ 1, then this position is a zero position,
so our original Game has value t0|2u “ 1. If V ´ 1 ą 0, then we use our second
inductive assumption, and have that Left moves to a position of value V ´ 1, so
again our original Game has value tV ´ 1|V ` 2u “ V by the Simplicity Theorem,
since V ą 0.

Lastly we must show our inductive base cases. But we have already shown the
basis for the second induction, which is the case above when d “ 0, and we have
also already considered the case when we have only two pieces, which is the
basis for our first induction.

Finally we must consider positions which may have pieces with only Left or only Right
prongs. By themselves, if they have n prongs, they have value n´ 1 or ´n` 1 for Left
and Right respectively, because there is no way to use the last remaining prong, that is
L1 “ R1 “ 0. However, in positions with other pieces, this final prong can be used, and
connected to one of those pieces, and this will keep the difference in prongs as one
less than before the move was played. So each piece with n Left prongs in a position
just gives Left n more moves than in that same position if we removed the piece, and
similarly for Right.

So to evaluate the value of a Borages position which includes single-player pieces, we
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still just calculate the difference in prongs, but in this case the value will not be the
same as the sum of each of the pieces played separately.

This then is a complete theory of Borages.

Conclusion

This paper explores a few disparate, yet related topics. We first introduced the Surreal
Numbers, and showed how they relate to and extend the real numbers: they form
a totally ordered field that contains the real numbers, as well as the standard von
Neumann ordinals (ω, ω ` 1, &c.), and also some newly created numbers, such as
the infinitesimal ε “ 1

ω
, and what we called the surreal-ordinals, such as ω ´ 1. We

then compared the construction of the surreals against the standard construction of
numbers in ZFC, and noted some of the interesting symmetries present in the surreal
construction.

Next, in the second part of the paper, we introduced the concept of Games, of which
the surreals are just a subclass. We explored the way the concept of Games relate
to two player perfect information combinatorial games, such as Nim, and discussed
methods of anaylsing such games using the concept of Games. Finally we proved
complete theories of a few games, including the original game of Borages.
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