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Abstract 

This thesis describes a novel active stereo vision platform that was developed to provide 

visual guidance to fruit harvesting robots. A five degree of freedom camera platform was 

built in order to identify and localize tomatoes grown in greenhouses in farms. A novel 

cognitive model of attention with three main features map is used to control the gaze of 

the camera system. The three feature maps are (A) an online epipolar geometry update to 

produce a disparity map and affordance of grasping, (B) a vergence controller to provide 

a map of the depth of tomatoes at high accuracy and (C) a bottom-up saliency map to 

detect and identify ripe tomatoes. The properties and performance of each of these maps 

is studied in detail. The final system, tuned to the visual properties of the tomato, has been 

assessed and reveals a detection performance of 82% and operates over a range of 200+/-

0.2cm. The proposed system is not limited to tomato detection, since the attention system 

can be adjusted to different type of crops such as apply, orange etc. The camera system 

is designed to integrate with any robotic manipulator arm.  

.  
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Chapter 1 
 

1 Introduction 
 

The main objective of this PhD project is to build, validate and calibrate an active 

binocular vision platform that can be attached to manipulator robot for use in harvesting 

tomato fruit. The platform will help improve the accuracy and robustness of the depth 

system beyond that offered by current solutions. This will be achieved by studying and 

understanding the properties of binocular vision with a vergence controller and a variable 

baseline (the horizontal distance between the cameras) that estimate the depth based on a 

motor encoder. Simultaneously, the project will aim to study and explore the 

accompanying error in the active binocular vision system. Moreover, a relationship 

between the motor angle and image space will be obtained to update the epipolar 

geometry, which ultimately leads to a rectified image. 

Robots usually require a system to update the location information of the fruits/vegetables 

within the camera’s field of view. However, in many cases, the fruit/vegetable is not 

within the range of the gripper, or the fruit or vegetable may not be mature enough for 

picking. Therefore, an adaptive model is needed to control the robot in such situations. In 

this thesis, a saliency model that combines colour, edge intensity and orientation and 

information theory is adopted in a manner that is extensible and that emulates the 

behaviour of human fruit pickers. The model developed by Itti et al. (1998) was extended 

to suit the conditions for picking tomatoes in a greenhouse better, and then, it was 

integrated with a visual attention model combined with active binocular vision. 
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1.1 Motivation  

According to a United Nations report from 2017, the global population in 2017 was 7.5 

billion and that number was predicted to increase to 9.7 billion by 2050 (United Nations, 

2017). Farmers will be required to increase their production, which has opened up a need 

for machines that can help increase the productivity of famers. This high demand 

motivates the development and improvement of advanced machinery in agriculture, a 

field in which many tasks can be systemised using robots. Harvesting, weed control, 

autonomous mowing, pruning, seeding, spraying and thinning, phenotyping, sorting and 

picking are all tasks that can be done by programmed robots (Reddy et al., 2016). 

Ultimately, all of the aforementioned tasks rely on computer vision. Generally, computer 

vision is one of the main components required for automated tasks in robotics due to the 

complex information provided by vision. 

For example, in harvesting, computer vision is responsible for three main processes, 

namely fruit detection, fruit classification and computation of the 3D position of the fruit. 

Much research has been done on fruit detection and classification to identify the maturity 

of fruit before it is picked (Constante et al., 2016; Rakun et al., 2011; Xiang et al., 2014). 

Kapach et al. (2012) presented a review of the state of the art in fruit detection and 

classification. The processes discussed required a single camera to accomplish the task. 

In many harvesting robots, identification and picking of the fruit uses onboard cameras 

(Häni and Isler, 2016; Hayashu et al., 2002). This process is time-consuming since it 

requires cycling through the fruit one by one to determine whether the fruit is ready for 

picking. Using multiple cameras provides information on depth, allowing the position of 

the fruit to be localised in relation to the robot, as well as allowing the size of the fruit to 

be determined. Depth is as important as detecting the maturity of fruit for accelerating the 

picking process (Gao et al., 2017; Tejada et al., 2017). The increase in accuracy resulting 
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from depth data reduces the time required for the visual serving mechanism to reach and 

pick the fruit (Jiménez et al., 2000; Zhao et al., 2016). 

In a related example, depth data is not only used to locate fruit; it is also used to survey 

crops such as cauliflower, cabbage and broccoli. Depth information is used to reconstruct 

3D maps of the crops to measure their maturity or to look for damage to the product (Kise 

and Zhang, 2008; Underwood et al., 2016). Depth-measurement systems are also used to 

monitor plant growth, which includes such features as leaf size and shape, which requires 

a measurement resolution of millimetres (Kazmi et al., 2014). The leaf angle and direction 

of a plant can also be monitored using stereo vision (BISKUP et al., 2007).  

A fourth industrial revolution is predicted, which is based on automating the entire 

manufacturing process (Drath and Horch, 2014; Pfeiffer, 2017). For example, in welding, 

a vision system can be used to monitor seam welding and detect defects. Some systems 

utilise depth information to reconstruct the welding joint at different welding passes to 

monitor the quality of the weld (Li et al., 2010; Wu et al., 1996). Currently, in welding 

robots, identification of the trajectory of the welding process is accomplished by hard 

coding the coordinates or by using time-consuming teaching methods (Du et al., 2018; 

Maeda and Nakamura, 2015). Researchers have recently implemented a new intelligent 

system able to track the welding seam, enabling the trajectory of the robotic arm to be 

determined without human intervention (Fang et al., 2011; Sicard and Levine, 1989). 

Detecting the welding joint requires a high-precision system to maintain the quality of 

the joint (Timings, 2008). In spite of the fact that industrial technology in computer vision 

has reached an advanced level, agricultural automation is still considered a challenge. The 

main reason for this challenge is the factors and variables involved in industrial 

manufacturing processes are manageable and can be controlled, unlike the factors that 

affect computer vision processing in agriculture. For example, colour detection in a 

controlled environment requires a simple threshold, whereas outdoors, the problem of 
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tracking a colour remains a challenge due to constant changes in the lighting conditions 

(Zhao et al., 2016b). Moreover, a slightly change in the camera position lead to different 

colour value. 

Based on the discussion above, it is clear that computer vision lies at the core of many 

robotics and automation processes that require image processing and depth data for 

automation. 

1.2 Contribution 

In this work the problem of detecting a tomato and compute the 3D location using an 

active stereo vision platform is study in depth and providing a reliable system that work 

outdoor. The contribution of this thesis is divided into three categories which are:  

1. The relationship between the motor angle and image space angle was 

established to update the epipolar geometry as the platform configuration 

changes accordingly in real time. It requires an offline calibration to extract 

the relation between both angles. The proposed methods eliminate the 

accumulated error in the gearbox by integrating the encoder direct with the 

camera rotating shaft. 

2. This thesis describes the use of course-to-fine vergence controller to increase 

the performance and the reliability of the fixation point between the master 

and slave cameras. An integrated Gaussian pyramid with Normalize cross-

correlation algorithm was introduced to perform the vergence control. The 

proposed system worked in complex outdoor environment (i.e. farms and 

greenhouse environment).  

3. Finally, this thesis proposes a novel cognitive map based on visual attention 

model used in tomato fruit harvesting by providing information about the 

tomato probability, the position and affordability of grasping. A saliency map, 
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vergence controller, and 3D shape analysis are all algorithms used to assess in 

generating the cognitive map. The proposed cognitive map helps to minimise 

the computational error and avoid using a large dataset to train the system. 

1.3 Papers associated with this thesis 

6. A. Mohamed, P. F. Culverhouse, A. Cangelosi, and C. Yang, Integrate a Visual 

Attention Model with a Binocular Platform for Harvesting Tomatoes”, IEEEAccess, 

2018c (In press). 

7. A. Mohamed, P. F. Culverhouse, A. Cangelosi, and C. Yang, “Depth Estimation 

Based on Pyramid Normalized Cross-correlation Algorithm for Vergence Control”, 

IEEEAccess, 2018b (In press). 

8. A. Mohamed, P. F. Culverhouse, A. Cangelosi, and C. Yang, “Active Stereo Platform: 

Online Epipolar Geometry Update,” EURASIP J. Image Video Process., vol. 2018:54, 

no. 1687–5281, p. 16, 2018a. 

9. Mohamed, P. F. Culverhouse, R. De Azambuja, A. Cangelosi, and C. Yang, 

“Automating Active Stereo Vision Calibration Process with Cobots,” IFAC-

PapersOnLine, vol. 50, no. 2, pp. 163–168, Dec. 2017. 

10. A. Mohamed, C. Yang, and A. Cangelosi, “Stereo Vision based Object Tracking 

Control for a Movable Robot Head,” IFAC-PapersOnLine, vol. 49, no. 5, pp. 155–

162, Jan. 2016. 
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Chapter 2 
 

2 Literature Review 
 

Computer vision is an interdisciplinary field that seeks to extract information from images 

and videos. In computer vision, images are processed to understand the content of the 

image, not unlike the manner in which humans or animals see. This process helps 

automate many tasks. For example, computer vision gives robots the ability to pick up 

objects. Computer vision can be used to extract 2D information from an image, such as 

colours, edges and shapes. Computer vision can also be used to extract 3D information 

from a scene using two or more 2D images. Using two images to extract 3D information 

of a scene is referred to as a stereo vision or binocular vision. In stereo vision, the 

understanding of the external geometry of a system is sought to be able to compute the 

3D information of the scene or target.  

This chapter presents a historical overview of the state of the art in binocular stereo vision. 

The literature review analyses previous research on different algorithms and processes 

used in orthogonal stereo vision. Then, the work on active stereo vision in the literature 

is described. Finally, the chapter concludes with a discussion on how to better relate the 

biological understanding of human vision and similar topics to computer vision. 

2.1 Photogrammetry 

Photogrammetry is the process of non-contact measurement using photography 

(Jiang et al., 2008). The concept of photogrammetry was first introduced in 1480 

by Leonardo da Vinci when he explained the projection of geometry (Doyle, 

1964). Based on da Vinci’s work, in 1525 Albrecht Duerer built a device that was 

used to create perspective drawings (Gruner, 1976). The mathematical principle 
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of perspective was first introduced by Johan Heinrich in 1759 (Jensen, 2007). In 

the 1840s, a French geodesist introduced the use of photogrammetry using a 

daguerreotype process (Baqersad et al., 2017). After the introduction of the 

camera in 1830s, the relationship between projective geometry and 

photogrammetry was developed by R. Sturms and Guido Hauck (Doyle, 1964). 

The Frenchman Laussedat is known as the father of photogrammetry because he 

was the first person to use terrestrial photographs for topographic maps. Laussedat 

also did the first aerial photogrammetry using balloons in 1862 (Jiang et al., 2008). 

In the 1890s, Deville, a Canadian surveyor, created the first stereoscopic device, 

which was used to create a map from a stereo photograph. In early of the 20 

century, when airplanes were created , photogrammetry become very popular and 

has been widely used for land surveying and military purposes by creating a 3D 

maps for lands (Doyle, 1964). In the 1970s, photogrammetry entered the digital 

world where the development and improvement of cameras and computers have 

helped to increase the accuracy and quality of photogrammetry. Photogrammetry 

is the process of computing the three-dimensional (3D) using two or more 

photographs. Today, this process is used in different applications from 3D 

scanning of a small object to using the system in self-driving car.  

The principle of photogrammetry is to use more than one image where the relative 

position between the images is known. A triangulation is used to compute the 

distance between the camera and the target. For instance, the point that needs to 

be measured must be visible in both images, while the position between both 

cameras is known; a triangle can be drawn between the points in both images and 

the actual point. Figure 2-1 illustrates the principle of photogrammetry. The 

process of using images to measure objects developed significantly when the 

calibration process was first introduced to compute the relative position between 
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the cameras and the internal parameters of the cameras more precisely. A step 

further in photogrammetry that is referred to as stereo vision where stereo vision 

produces a depth map computed by matching the features in the left and right 

images to create a detailed map of the object or environment. 

 

Figure 2-1: Stereo photogrammetry example. 

2.2 Stereo vision feature matching 

A stereo vision system requires four steps to compute the depth of a scene: (1) system 

calibration, (2) image rectification, (3) correspondence and (4) reconstruction 

(triangulation) (Bradski and Kaehler, 2008). Correspondence, which is the most 

complicated aspect of orthogonal stereo vision, is an area of actively ongoing research. 

Correspondence is the process of computing the differences between pixels belonging to 

the left image and the same pixels in the right image. In most of the existing studies, these 

differences are primarily computed along the horizontal axis. These differences are 

termed the disparity, which is defined as the differences in location between a feature in 

the left image and the same feature in the right image along a horizontal line (Fua, 1993). 
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Figure 2-2 shows a common method to perform matching in rectified images, which 

involves selecting windows in the left image, scanning along the corresponding horizontal 

line in the right image, and calculating the similarity using a cost function. The cost 

function is a mathematical expression used to compute the similarity between the left-

image window and the right-image sliding window. Table 2-1 lists different cost functions 

that may be used to compute the differences. Figure 2-2(b) shows the similarity computed 

from the scan along the y-axis. Selection of the best match depends on the mathematical 

cost function used. For example, in normalised cross-correlation (NCC), the bigger the 

output, the better the match.  

Table 2-1: Block-matching costs (Forsyth and Ponce, 2012) 

Cost Function  Mathematical Definition 

Sum of Squared 
Differences (SSD) 

∑(𝐼𝑙(𝑢, 𝑣) − 𝐼𝑟(𝑢 + 𝑑, 𝑣))
2

𝑢.𝑣

 

Normalised Sum 
of Squared 
Differences 

(NSSD) 

∑

(

 
(𝐼𝑙(𝑢, 𝑣) − 𝐼�̅�)

√∑ (𝐼𝑙(𝑢, 𝑣) − 𝐼�̅�)2𝑢,𝑣

 −  
(𝐼𝑟(𝑢 − 𝑑, 𝑣) − 𝐼�̅�)

√∑ (𝐼𝑟(𝑢 + 𝑑, 𝑣) − 𝐼�̅�)2𝑢,𝑣

 

)

 

𝑢,𝑣

 

Sum of Absolute 
Differences (SAD) 

∑|(𝐼𝑙(𝑢, 𝑣) − 𝐼𝑟(𝑢 + 𝑑, 𝑣))
2
|

𝑢.𝑣

 

Normalised Cross-
Correlation (NCC) 

∑ (𝐼𝑙(𝑢, 𝑣𝑢,𝑣 ) − Il̅)  × (𝐼𝑟(𝑢 + 𝑑, 𝑣) − 𝐼�̅�)

√∑ (𝐼𝑙(𝑢, 𝑣𝑢,𝑣 ) − Il̅)2  × (𝐼𝑟(𝑢 + 𝑑, 𝑣) − 𝐼�̅�)2 

 

Rank ∑(𝐼�́�(𝑢, 𝑣) − 𝐼�́�(𝑢 + 𝑑, 𝑣))

𝑢.𝑣

 

𝐼�́�(𝑢, 𝑣) =  ∑𝐼𝑘(𝑚, 𝑛) < 𝐼𝑘(𝑢, 𝑣)

𝑚,𝑛
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Figure 2-2: Stereo matching. (a) A window from the left image taken and scanned along the same horizontal axis in 
the right image. (b) The plot of differences generated from the scan process 

There are many studies that compare stereo matching methods and classify the process. 

For example, Scharstein & Szeliski (2001) examined the stereo matching process and 

presented a taxonomy of stereo matching and specify two class of correspondence 

algorithm which are local matching and global matching . Scharstein & Szeliski (2001) 

also examined parallel computing by implementing the stereo matching algorithm on 

multiple cores. The experiment concluded that block matching methods based on the sum 

of squared differences (SSD) produce the finest disparity map, while for real-time 

applications, matching processes based on the sum of absolute differences (SAD) were 

found to be the fastest. SAD produce a moderate disparity map with fast computation due 

to the lower amount of computation required by the process.  

Wang et al. (2006) and Ben-Tzvi and Xu (2010) suggested a taxonomy comprising four 

steps: matching cost computation, cost aggregation, disparity computation and disparity 

refinement. M.Z. Brown et al. (2003) and Hirschmüller and Scharstein (2007) evaluated 

the performance of a matching algorithm based on the quality of the disparity and the 
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speed of the computation. The results of these studies were similar to the results obtained 

by Scharstein & Szeliski (2001). However, M.Z. Brown et al. (2003) described a third 

class to the classification that encompassed algorithms that handle occlusion. Occlusion 

occurs when a point is visible in one image but is not visible in the other (see Figure 2-3).  

M.Z. Brown et al. (2003) defined three methods to work with occlusions: occlusion 

detection, reducing the sensitivity to occlusion and modelling occlusion geometry. The 

detection of occlusions is achieved by searching for discontinuities in the disparity map. 

Hirschmüller and Scharstein (2007) took this comparison of the matching algorithms 

further by applying an extra effect to one camera, such as additional lighting, to test the 

performance of the matching process. 

 

Figure 2-3: An example of occlusion where point Po is visible to the left camera only. 

Scharstein & Szeliski (2001) introduced four steps to compute the disparity map: (1) 

matching cost computation, (2) cost aggregation, (3) disparity computation and 

optimisation and (4) disparity refinement. Stereo correspondence algorithms can be 

grouped into two classes: local matching algorithms that use a block-matching cost 
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function and those that directly use the intensity of pixels. Local matching is usually used 

in steps (1), (2) and (3) and, in some cases, only in steps (1) and (2) (Szeliski, 2009). The 

second category of disparity computation is a global matching algorithm that computes 

the disparity and occlusion by optimising cost values (Cyganek and Siebert, 2009). The 

result of this global matching is a smooth disparity map with a fully reconstructed scene. 

Steps (1), (3) and (4) are used in global matching. The reason that the second step is not 

used in the computation is the fourth step utilises similar functions (Szeliski, 2009). 

2.2.1 Local matching 

Many studies have been conducted to improve the quality of the disparity map and 

improved the speed of the computation in the local stereo matching process. For example, 

Stefano et al. (2004) proposed a single-matching phase based on detecting unreliable 

matching features. Wang et al. (2006) and Patil et al. (2013) performed a study on cost 

aggregation, which is the second step in the computation of disparity according to 

(Scharstein and Szeliski, 2001). Wang et al. (2006) and Patil et al. (2013) works focused 

on evaluating the methods used in local-matching cost aggregation. Tippetts et al. 

(Tippetts et al., 2011) investigated an algorithm that uses the intensity of the profile of 

the rows of an image to find the shape by identifying discontinuities.  

Muhlmann et al. (2001) evaluated a colour space–matching algorithm. The algorithm 

used the SAD matching cost in the RBG colour space. The matching process generated 

the best match across the three layers. The algorithm works on rectified images; in which 

it calculates the disparity of only the left image with windows sliding along the right 

image. The results demonstrated that matching based on the colour space yields reliable 

results and that, if an occlusion exists, it can be found. However, the algorithm may face 

obstacles in the real world due to the effects of lighting, namely that changes in the 

intensity of the lighting may produce changes in colour, particularly if the cameras are 

not synchronised. 
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Another investigation was performed to improve the disparity computation by examining 

the effects of variable window size and shape (Veksler, 2003). The window size used in 

the matching process changes the quality of the disparity map depending on the texture 

in the scene. The fixed size of the windows can generate systematic errors. To address 

this, a window of variable size was used during corresponding, with the window size 

changing depending on the features in the image. This paper sought to characterise the 

systematic error generated by windows of fixed size or shape. The window cost 

computation utilised an integral image to calculate the cost of each window and find the 

average error. The experiment found that the variable-window method produced an error 

of 2.35% on the Tsukuba dataset. In the same dataset, the error near the discontinuities 

was 12.17%. This result was based on the error generated from differences between the 

ground truth disparity and the disparity computed by the method. It was found that 

changing the window size could improve the disparity map.  

Feature-based matching has been implemented in many studies, particularly those 

focused on embedded systems and real-time applications. Features are extracted using 

pre-process techniques such as SIFT and Canny edge detection. Ben-Tzvi and Xu (2010) 

integrated a stereo vision system into a mobile robotic platform using a feature-based 

algorithm. Their system made use of Canny edge detection to locate the edges in the 

image. A maximum of absolute differences (MAD) method was used for the matching 

cost aggregation to produce the disparity map. To select the algorithm, an experiment was 

conducted to compare the performance of four methods: DPN, MAD, SAD and SSD. The 

investigation found the speed of MAD (26.516 s) to be faster than that of both SSD 

(28.766 s) and SAD (28.563 s), a result that contradicts the results of certain previous 

studies (Myron Z. Brown et al., 2003; Scharstein and Szeliski, 2001). Regardless, the 

quality of the disparity map produced by SSD and SAD is better than that produced by 

MAD. 
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In another study, Stefano et al. (2004) used a local algorithm based on area matching, 

called single matching phase. This algorithm comprised four steps: (1) pre-processing the 

input image, during which the images are normalised, (2) calculating the disparity based 

on SAD matching, (3) testing the disparity to determine the reliability of the matching at 

locations where poor texture points were rejected and (4) obtaining sub-pixel 

measurements to refine the disparity map. When the algorithm was run on the Tsukuba 

dataset, the root-mean-square error was 5%, which was the same error produced by the 

bidirectional matching algorithm.  

2.2.2 Global matching 

Global stereo matching builds on local stereo matching by using advanced refinement 

algorithms. Specifically, it utilises the global smoothness, for which many global stereo 

global matching use energy minimisation (Szeliski 2011). Global matching algorithms 

rely upon different types of refinement functions, such as belief propagation, (which is 

based on probabilistic algorithms), dynamic programming, graph cut algorithms and 

hierarchical algorithms (Cyganek and Siebert, 2009). The advantage of global matching 

over local matching is it generates a smoother disparity map, which allows for better 3D 

reconstruction at the cost of slower computation. On the other hand, the accuracy of depth 

estimations decreases (Sabater et al., 2011). This constitutes a trade-off for both of the 

algorithms, and the choice of one algorithm over the other depends on the requirements 

of the task.  

The random walk algorithm is an algorithm that uses a series of steps, each of which is 

probabilistically determined, and which was first introduced by Pearson at the turn of the 

twentieth century (PEARSON, 1905). Later, in the 1970s, the random walk algorithm 

was first used in computer vision (Wang et al., 2017). Unger and Ilic (2014) used an 

algorithm based on a random walker to locate sharp details in an object. The random 

walker scans the image based on colour similarity and records the matches, after which it 
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votes for the best matching feature in the disparity based on its density. The algorithm 

matches both of the images, then uses cost aggregation based on the random walker and, 

finally, uses voting to determine the best match. The result is the random walker describes 

a path consisting of random steps using an image with partial labelling (Grady, 2006). 

This algorithm was experimentally evaluated based on the Middlebury benchmark, and 

the output of the analysis was compared to the ground truth of the dataset. On the Tsukuba 

dataset, the error was 8.68% for the overall image and 17.4% near discontinuities. On the 

Teddy dataset, the errors were 5.98% and 15.0%, respectively. The algorithm performs 

better than the previous algorithms at discontinuities and provides a shape boundary 

around the edges. 

Much research has been conducted with the aim of improving global matching 

algorithms. This is achieved by combining said algorithms with other acceleration 

methods to reduce the computation time and produce high-quality disparity maps 

(Brunton et al., 2006; Facciolo, 2015; H. Hirschmüller, 2005; Hermann and Klette, 2013; 

Hirschmüller, 2011; Wang et al., 2007). 

2.2.3 Calibration 

The calibration process in a stereo vision system consists of calculating both the internal 

and external parameters of the system, such as pixel size, focal length and image size etc. 

External parameters define the orientation and position of the cameras relate to each other 

(i.e. the transformation from the left camera to the right camera). In an orthogonal stereo 

system or a fixed system, the calibration is well-defined using Zhang’s calibration 

algorithm (Zhang, 2000). Zhang’s calibration algorithm uses a checkerboard calibration 

pattern to detect the corners within the pattern and, then, uses these corners to compute 

the camera parameters using projection equations. The output of the calibration process 

is used in the rectification process. Rectification is used to transform the left and right 

images to be parallel to the epipolar plane and collinear with the baseline (Trucco and 
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Verri, 1998). This transformation simplifies the next step, correspondence, in which the 

search across the scanning line becomes 1D instead of 2D. 

Vergence cues are used by humans to focus visual attention on a target, i.e. to keep both 

of the eyes focused on the same object. Because, in an active system, the external 

parameters change whenever the target moves or changes, disparity maps generated by 

active stereo vision depend on updating the epipolar geometry. One way to compute the 

new epipolar geometry is using a feature-based algorithm (e.g. SIFT algorithm) involves 

to compute the fundamental matrix1 (Bjorkman and Eklundh, 2002; Krotkov et al., 1990; 

Luong and Faugeras, 1997; Sang De Ma, 1996). Studies that utilise the aforementioned 

technique focus on matching features between the left and right images upon every 

change in a system to compute the fundamental matrix. A drawback of this method is the 

potential for failures when matching features. This leads to errors in the computation of 

the fundamental or homography matrix. 

Another approach combines image features and the motor angle to correct errors in 

feature matching. Thacker and Mayhew (1991) used a Kalman filter on encoder readings 

to predict the position of an object in subsequent frames (Thacker and Mayhew, 1991b). 

Changes in the epipolar geometry occur as a result of changes in the camera angle and 

the position of the camera. These changes are measured by shaft encoders and are used 

in the control of camera position. Dankers et al. (2004) developed an online calibration 

process for the CeDAR head (Dankers et al., 2004). Their work was built on static system 

rectification (Fusiello et al., 2000) where the perspective projection matrix (PPM), 

obtained from the standard calibration process for the left and right cameras, was used to 

determine the mapping between the two images. The PPM was decomposed and a new 

PPM and transformation between the left and right images were used to update the 

                                                
1 Fundamental matrix is a 4 × 4 matrix contain the internal and external information of the stereo system. 
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epipolar line parallel to the baseline. Dankers et al. (2004) modified the algorithm so that 

the rotation angle of the left and right images was replaced by the angle of the encoder of 

each camera (Dankers et al., 2004). Both the motor angle and the image were captured 

simultaneously. However, though this process was quite fast, it required a system 

manufactured with extremely high accuracy, since it is very difficult to correctly place 

the axis of rotation of the motor with regard to the camera origin, which can lead to errors 

in the baseline size. 

Kwon et al. (2007) designed another approach to calibrate active stereo vision. Their 

method treats the system as a kinematic chain that links the camera to its pan and tilt 

joints. By creating a kinematic chain between the joints and the camera and initialising 

the system, a calibration at the zero position of the system can be used to generate 

calibration matrices for the new positions. The motor angle is transformed to image 

coordinates via the transformation matrix between the image and the motor. Even though 

this method takes into account the position of the origin of the camera, if it is not 

intersected by the axis of rotation, the error accumulates during the running time because 

of the integration of the differences computed between the old and new angles. 

Hart et al., (2008) developed a calibration algorithm using a humanoid head and 

controlling the stereo vergence angle. The algorithm starts with an offline process in 

which the essential matrix of each camera at two different orientations is computed before 

the properties of the system are decomposed from the fundamental matrix. Rodrigues’ 

rotation formula is used to calculate the centres of each camera and the rotation matrix 

(Szeliski, 2009). These parameters are used at run time to compute a new epipolar 

geometry using the motor angle by inverting the process offline. An experiment was 

performed to compare the standard calibration algorithm to the new algorithm. The result 

demonstrated a mean difference of 2.38 pixels between the two methods. However, their 



20 

 

algorithm used the difference between the encoder readings of each orientation rather 

than the absolute angle. This led to the accumulation of errors with time. 

Sapienza et al. (2013) investigated, in real time, the parameters of a stereo vision system 

during operation. Their system maps the angle of the motor encoder to the image space 

by calibrating the system offline. The offline calibration finds a linear equation that maps 

the value of the motor angle to the image space angle. The algorithm in their study 

calculates the homograph of each image (left and right) and decomposes the matrix to 

find the value of the angle in image space. This process was repeated at a range of motor 

angles and the results were used to determine the relationship between the motor angle 

and the image area. In addition, they determined the properties of a common homograph 

with the same features at different angles. All of this was performed during an offline 

process. A linear equation was generated to map the motor space to the image space using 

the motor angle as its input. During operation, the homographs of both the left and right 

images were calculated using this equation and the motor angle. From the homographs, 

the fundamental matrix was calculated and used to rectify the images. This equation 

works linearly within the range of −20° to 20°, with a transfer error of 1.03 pixels at 0° 

that increases to 3.28 pixels at 20°. These results were compared to the conventional 

calibration process. In this study, the model coefficient was fixed throughout the range of 

angles. This assumption requires a high-precision manufacturing process to maintain the 

origin of the camera as close to the rotating angle as possible. 

Both Kwon et al. (2004) and Sapiens et al. (2013) have performed similar studies of 

transformations from the motor angle to the image angle. Kwon et al. (2004) worked with 

larger angles (from −45° to 45°) compared to Sapiens et al.(2013), whose work was 

limited to −20° to 20° for each camera. However, Kwon et al. (2004) included the tilt 

angle, and their study placed the origin of the camera better. Hart et al. (2008) used the 

angle of the motor encoder to estimate the essential matrix, which resulted in an error in 
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the value of the matrix; conversely, Sapiens et al. (2013) corrected the motor angle via 

pre-processing. 

2.3 Active stereo vision 

In this work, active stereo vision refers to the stereo vision system in which the geometry 

of the camera changes dynamically. There are many configurations of active stereo 

vision. For example, the following parameters can be adjusted: pan and tilt of the stereo 

camera or pan and tilt each camera individually, variable baseline and focal length. Active 

stereo vision is used to control the angle of each camera dynamically to extend the field 

of view, improving object tracking. It can also be used to fix the view of both cameras on 

a point of interest while controlling the baseline to improve distance measuring between 

the system and the object. Controlling the focal length helps to improve the focusing. 

Selecting the right parameters is crucial for the design of a stereo vision system.  

There are several characteristics of an active stereo vision system that improve its 

performance relative to orthogonal or fixed stereo vision systems. An active stereo vision 

system narrows the correspondence process (small disparity) to allow it to focus on an 

object of interest in a scene by increasing the overlap between the left and right images 

(Dankers et al., 2007). The vergence angle simplifies the depth measuring process by 

keeping the fixation point on the object (Zhang and Tay, 2011). The fixation point is the 

point at which both focal axes intersect. This fixation remains on the object as either it or 

the system move. Another characteristic of active stereo vision is the variable baseline, 

which refers to the fact that the depth of the object from the system is proportional to the 

baseline. Increasing the intensity enhances the accuracy of depth measurement.  

2.3.1 Vergence controller 

Stereoscopy techniques have been widely used to measure distance by focusing two 

devices, typically cameras, at different positions on a single point. Here the distance 
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between the devices is known, forming a triangle consisting of both cameras and the 

point. Geometric triangulation is used to calculate the distance between a camera and the 

target point. Disparity calculation between two fixed cameras is an alternative. However, 

this method suffers from known sources of error (Dang et al., 2009; Kanatani, 2005; 

Xiong and Matthies, 1997). A previous study (Sabater et al., 2011) employed a block-

matching algorithm to investigate the error generated by the disparity calculation. 

It is clear that disparity map quality can be affected by changing the verge angle. (Krotkov 

et al., 1990) carried out an investigation to explore the relationship between the verge 

angle and the quality of the disparity map. The two cameras in the system were able to 

pan independently, making it a 2-DOF system. The baseline was fixed at 13 cm. The 

experiment involved measuring the distance from the camera to the object while varying 

the vergence angle. A feature-matching algorithm using edge detection was used in this 

work to compute the disparity. Three methods were utilised to control the performance 

of the matching: (1) supervised matching, (2) unsupervised matching and (3) partially 

supervised matching. The depth was measured based on the vergence angle and the 

disparity. Supervised matching produced the best performance with regard to measuring 

depth. The experiment yielded an error of 5% with regard to measuring depth (distance 

from the camera centroid to the object) at a distance of 3 m.  

In (Sahabi and Basu, 1996), the difference error was studied by varying both the vergence 

angle and the spatial resolution. Spatial resolution was determined using a log-polar 

transformation that increased the resolution at the centre of the image while decreasing 

the resolution at the periphery. The paper presents two experiments. In the first 

experiment, a single camera with a focal length of 8.37018 mm took images from two 

different locations 112 mm apart. Objects were placed in front of the system at known 

distances. The key contribution of the paper was the disparity error was not affected by 
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the particular angle, based on the complete image. The result of this experiment was 

similar to that performed by Krotkov et al. (1990).  

In the second experiment, spatial resolution was used in the analysis, as it mimics the 

function of the human eye. The experiment showed that, when both of the cameras 

focused on the same point, the disparity error at that point was minimised, a result that 

agrees with the theoretical prediction. In Figure 2-4, the minimum error occurs when both 

projection rays of the cameras meet at the centre of the object. 

  

Figure 2-4: Average depth error using spatial resolution over vergence angle2. 

Another study that analysed the performance of active stereo vision parameters was 

performed by Das and Ahuja (1995), in which the performance of three-cue vision was 

examined based on (1) parallel focal length, (2) vergence angle and (3) focus3. The 

characteristics of the system were analysed and the error was divided into systematic error 

                                                
2 Reprint by permission of Elsevier 
3 Focus refers to the motorisation that allows the focal length to zoom in and zoom out. 
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and rounding error. This work was done to study the limitations of cue-based vision 

(Figure 2-5).  

 

 

Figure 2-5: Three signals in the stereo vision system. (a)Parallel focal length setup. (b) Configuration of the 
vergence angle with the camera rotating on the pan axis. (c) Focus setup with the focal length controlling the field of 

view to increase the focus on the point. 

The experiment highlighted the advantages and disadvantages of each system. Use of the 

focusing cue leads to obtaining fine features of the object. However, adjusting the focus 

of both cameras to converge at the same point is a difficult task and the paper did not 

describe the process used in the experiment. The vergence angle affects the quality of the 

disparity map, and a mixed focus cue and vergence angle lead to less error in the disparity 

map as a result of increasing the resolution of the object when the system zooms in. 

Therefore, a more accurate centroid can be computed. A system using these vision cues 

requires a precise controller to position both of the cameras and control the lens. The 

result of this work is similar to that of (Sahabi and Basu, 1996), which found that focusing 

on an object in the scene causes the depth error drop to a minimum. 

The advantage of using the vergence angle over orthogonal in a stereo vision system is 

an increase in the quality of depth estimation and an increase in the overlap of the field 

of view between the two cameras. This leads to better accuracy with regard to resolving 

an object in the scene at the expense of full image reconstruction. Georgoulas and 

Andreadis (2010) built a system to control two cameras able to pan independently, 

producing disparity map in real time using a field-programmable gate array. The system 
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consists of two parallel processes. The first process is setting the angle of each camera 

and the second process is producing the disparity map. The first process uses a pyramid 

reduction algorithm to reduce the computation time of calculating the ZNCC cost function 

to determine the optimal verge angle that allows both of the cameras to focus on the same 

object. The process begins with a parallel focal axis and involves changing the vergence 

angle in 1° increments until it attains a value of 45°. The value of the ZNCC at each angle 

is stored and the vergence angle corresponding to the minimum value is selected. This 

process seems to work for an entire scene as opposed to focusing on an object, and the 

resolution will always be highest in the middle of the scene. 

The second process Georgoulas & Andreadis (2010) utilised involved the use of a colour-

SAD support window to construct a disparity map and estimate the distance to an object. 

The system operates at 320 FPS with a resolution of 640x480 pixels. Standard test 

samples were used to compare the results with other systems. It achieved 87.12% 

accuracy on the Tsukuba dataset (384x288, disp. level = 16) and 89.28% accuracy on the 

Teddy dataset (450x375, disp. level = 6). These values are obtained by comparing the 

output of the correspondence process to the ground truth image. 

Rougeaux et al. (1993) built an active stereo vision system that used two joints to control 

two cameras to track moving objects against a complex background and developed the 

idea of a virtual horopter. The horopter is the circle that passes through the centre of both 

of the cameras’ 3D views and the target, wherein the target has zero disparity (Cyganek 

and Siebert, 2009). A virtual horopter was designed to continue tracking the object even 

if it strayed outside the actual horopter by shifting the image to the left or right to increase 

or decrease the size of the horopter, respectively. A ZDF-based edge detection algorithm 

was used for this task. The system used by Rougeaux et al. operated at an image resolution 

of 230x130x8 bits and a frame rate of 30 FPS. The resolution with which the pan angle 

could be controlled was ±0.4°, and the system could track an object in the horopter circle 
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at a rate of 50° per second. The depth error calculated at a distance of 112 mm was ±6 

cm. Their experiment demonstrated that this shifting approach enabled a virtual horopter 

to track objects. However, shifting the image can lead to error because the baseline is 

fixed and the image is taken at the baseline distance. When the image is shifted, the 

baseline increases, which was not considered in the final depth calculation. 

Marefat et al. (1997) evaluated gaze stabilisation for object tracking to calculate the 

disparity map and improve the fixation point of the slave camera. Their system employed 

two cameras with independent pan and tilt control. The focus of their work was to control 

the vergence angle. Marefat et al. investigated the disparity of the object of interest rather 

than exploring the disparity of the entire scene. To calculate disparity, a Fourier phase-

based approach was used to distinguish the subject matter between both images. This 

transformation was estimated by calculating the phase difference between the images. 

The transformation process was performed in binary space to increase computation speed. 

Their results indicate that the disparity error depends on the vergence angle, similar to the 

previously mentioned studies on the fixation point. Gibaldi et al. (Gibaldi et al., 2017) 

employed local phase differences between the left and right images to control the 

vergence angle. Here, a Fourier-shift theorem based on a population of oriented disparity 

detectors was applied in a 2D search, where disparity was computed using both horizontal 

and vertical search. 

Marefat et al. (1997) and Georgoulas & Andreadis (2010) have done similar work with 

vergence control. Georgoulas & Andreadis (2010) searched for methods to determine the 

optimal vergence angle by starting the system with parallel focal length and then 

increasing the angle by a 1° visual angle. On the other hand, Marefat et al. (Marefat et al., 

1997) used tracking methods to keep the focus on the fixation point. It is clear that the 

approach advocated by Marefat et al. has the advantage, since it can concentrate on the 

object during tracking even when the object is not situated between the two cameras. 
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However, the difference in processing speed was due to advances in hardware between 

the experiments. In addition, both of the systems have a weakness in using ZDF due to 

the virtual horopter that depends on the image shifting horizontally in pixel space. 

For the most part, active stereo vision systems with vergence angle controllers are used 

in object tracking. Shibata and Honma (2002) designed an active stereo system with three 

joints: two joints to independently control the pan of the cameras and one joint to control 

the pan joint of the base. The system was designed to track an object in 3D space ensuring 

that the object was always located in the centre of the cameras. The system used the 

cameras as feedback sensors for the motor to track the object and keep it within the centre 

of the field of view. A basic threshold algorithm was used to find the centroid of the object 

in the scene. The main purpose of this work to focus on the controller component of the 

vergence angle. A Kalman filter was used to stabilise the controller due to slow image 

processing (33 ms per stereo pair). The system was tested by hanging a black ball and 

swinging it left and right. The tracking was smooth, and the camera became stable in four 

seconds, after which it continued to track the object. However, the system was slow and 

it was difficult to track an object in real time. Moreover, depth measurements obtained 

with it were not accurate.  

In object tracking, probability knowledge can improve tracking performance. The 

maximum a posteriori probability (MAP) is an estimate of the unknown point that 

maximises the distribution (Prince, 2012). Dankers et al. (2007) used active stereo vision 

to track a hand using maximum a posterior probability combined with ZDF (MAP ZDF). 

Their platform used the ZDF to track and segment the hand gesture. The difference value 

between Gaussians and NCC was utilised in the algorithm to smooth images and compute 

the disparity map. Note that Dankers et al. (2007) used the same methods as Rougeaux et 

al. (1993). MAP ZDF was used to track the hand, control the camera joint to follow the 

hand and maintain the centre of gravity within the cameras’ centres. This system operated 
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at an average of 25 FPS and achieved ample working space. The object tracking 

performance of this system was robust and accurate. However, occasionally, the system 

failed to track fast moving hands. Dankers et al. (2007) employed the same standard 

methods as Rougeaux et al. (1993), i.e. both of the studies used ZDF at the same resolution 

at nearly the same speed (25 and 30 FPS, respectively).  

The search speed of matching feature-based correlation vergence control has been 

improved by implementing a coarse-to-fine pyramid algorithm (Yim and Bovik, 1994; 

Zhang and Tay, 2011). Zhang and Tay (2011) reported a solution based on a coarse-to-

fine (pyramid image) search algorithm, where the image is transformed to log-polar space 

prior to constructing the pyramid. An NCC search algorithm was run on the log-polar 

images, and the output was used to set the vergence angle. Implementing this log-polar 

transformation in the search algorithm improved tracking performance in a compound 

sense with multiple disparities. Zhang and Tay’s study (2011), the image resolution was 

200x200, the window size was 84x84 and the baseline was 24 cm. Here, a three-level 

pyramid was used. The average accuracy of the depth measurement for different objects 

was 90%. 

There are many more studies on object tracking using active stereo vision (for example 

Tanaka et al. (1994), Yu and Baozong (1996) and Tsang and Shi (2006)). The algorithms 

used in each study are different but the results are similar. They focus on tracking an 

object and keeping it within the camera centres to simplify depth measuring without 

implementing an extra tracking filter such as the Kalman filter. 

2.3.2 Active baseline 

Another variable in active stereo vision is the baseline. Baseline refers to the distance 

between the origins of both cameras. Klarquist and Bovik (1997) developed a system 

consisting of a variable baseline and two cameras with a pan joint. They introduced a 
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method to improve the quality of the depth map by using a variable baseline. The process 

starts with a short baseline to simplify the matching process, after which the baseline is 

increased to explore the depth resolution of the scene. The new baseline is chosen based 

on the result of the previous baseline, and the cycle repeats until a satisfactory resolution 

is attained. The experiment was run with different objects at different distances, and it 

was found that a minimum distance of 50 cm was required to produce excellent resolution. 

The result of the experiment shows that the process provided an excellent depth map with 

smooth reconstruction, though the authors published no specific details regarding the 

baseline. 

Another study on variable baselines was performed by Nakabo et al. (2005), who built an 

active stereo vision system with a variable baseline and rotary joints that allowed each 

camera to pan and tilt independently. The work was used to achieve a uniform depth error 

by controlling the baseline and vergence angle during object tracking. The speed of the 

baseline travel was 4 m/s, the system was run on images with 120x120x8 bit resolution, 

and the image processing speed was 30 FPS. The system could be used to track an object, 

estimate the distance and reconstruct the object only if the object was near the platform. 

The experiment made use of SAD during the matching process with a window size of 5x5 

pixels. The goal of the experiment was to track an object moving in a circle. Three 

experiments were conducted at fixed baselines of 400 mm and 800 mm, as well as with a 

variable baseline. The error generated by the variable baseline was 30% lower than the 

error generated by the fixed baselines. This result demonstrates that the potential exists 

for developing a system that can achieve low depth error using a variable baseline. 
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2.4 Detection and Classification 

2.4.1 Deep learning 

Deep learning has been successful in many applications, especially in computer vision 

where the technique of using a dataset to train a vision system to detect and identify 

objects in an image motivated researchers to apply deep learning techniques to 

agricultural processes. One of the motivations is the challenge of outdoor detection, where 

the lighting conditions are difficult to control (LeCun et al., 2015). Deep learning adds 

more depth to the model in a hierarchical way that allows the model to extract the features 

without pre-processing algorithms (Kamilaris and Prenafeta-Boldú, 2018). 

There are 16 areas where deep learning is being used in agriculture, of which fruit 

classification (e.g., Steen et al., 2016; Christiansen et al., 2016; Sakai et al., 2017), 

weeding, fruit counting (e.g., Rahnemoonfar and Sheppard, 2017; Sa et al., 2016), and 

plant recognition are the most popular. Deep learning has been implemented in plant 

disease classification where the crop or the leaf is scanned to identify the disease 

(Barbedo, 2018; Rangarajan et al., 2018). One of the most popular deep learning 

implementations is a proposed detection system based on a Faster Region Convolutional 

Neural Network (R-CNN) that works in real time to detect fruits such as sweet peppers 

and rock melons (Sa et al., 2016). Zhang (2014) has proposed another fruit classification 

using a basic neural network that is the forward neural network. 

Deep learning requires a huge amount of data to work perfectly, but many small farms 

cannot spend much on such a system, especially if required to generate data and label it, 

which is time consuming. Moreover, there are tradition processes that can solve the 

classification and detection problems without requiring a huge amount of data. 
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2.4.2 Visual Attention 

According to Rosenblum et al. (2010), humans acquire 83% of their total sensory 

information visually. This amount of information needs to be processed in less than a 

millisecond, which requires an efficient operation. 

When a human observes a scene, a single target is often the focus of attention and can be 

described as the most interesting part of the scene. This phenomenon is referred to as 

visual attention, where a complex process occurs in the human brain to identify the target. 

Visual attention has been studied since the time of Aristotle (Shields, 2016), including 

intensive studies by psychologists, and many models have been proposed to describe the 

mechanisms that human brains use in visual attention (Frintrop, 2006). Heinke et al. 

(2004) provides a review of cognitive psychological models of visual attention. 

One of the best-known models that describes a possible visual attention mechanism was 

developed by Treisman and Gelade (1980) and is called feature integration theory (FIT). 

In FIT, the lower levels of the features are computed from a scene by separating the 

features into different map-like colour maps and brightness and edge orientation features; 

these are referred to as feature maps (Treue, 2003). Each feature map shows the locations 

of the special feature in that space (e.g., a red flower in a green field). The special features 

in each map are registered in parallel processes. These features are combined into a master 

map to locate the target with the highest value. In later studies, this master map is referred 

to as the saliency map, indicating the most salient features in an input scene (Bichot, 

2001). Another model proposed by Cave and Wolfe (1990) extends the Treisman and 

Galade model, which split the colour features into separate channels (red–green–blue). 

Cave and Wolfe (1990) tried to answer some of the questions raised by the FIT model 

and conducted a guided search in the master map by fusing the features (Frintrop, 2006). 
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Many studies have been conducted on visual attention models that can be implemented 

in computer vision systems. Visual attention can be classified into two types: bottom-up 

and up-down. A bottom-up model is a mechanism by which the visual scene drives the 

saccadic attention, resulting in attention being focused on a target. Conversely, the second 

attention mechanism, known as up-down attention, is a conscious mechanism (Connor et 

al., 2004). For example, if a person is hungry his/her attention will be focused on food. 

One of the first visual attention models for computer vision was proposed by Koch and 

Ullman (Koch and Ullman, 1985) based on the work of Treisman and Galade (Treisman 

and Gelade, 1980) and included an algorithm to process the input feature maps in parallel 

to form a saliency map. The most salient region in the saliency map was selected 

dynamically using a winner-take-all (WTA) network; then the network selected the next 

most salient region. Driscoll et al. (Driscoll et al., 1998) proposed a visual attention model 

referred to as the feature gate model. Milanese (1993) introduced conspicuity maps for 

visual attention models, which were later implemented by Itti el at. (Itti et al., 1998). 

Frintrop et al. (Frintrop et al., 2010) presents a collection of previous studies done on 

visual attention. 

Itti el at. (1998) describe a visual attention model based on a saliency map. Figure 2-6 

shows the general architecture of the proposed model. The model is based on the work of 

Koch and Ullman (Koch and Ullman, 1985). The algorithm adopted in Figure 2-6 starts 

by computing the feature maps from the input image using a linear filter. In the same 

study, Itti el al. used three initial feature maps: the intensity map, the RGB colour 

opponent maps (red–green and blue–yellow) and the orientation feature maps 

(0°, 45°, 90°, 135°) (Figure 2-6). A centre-surrounding operation is introduced to enhance 

the small features in the centre and the surrounding regions (e.g. the edges) (Westheimer, 

2004).  
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Figure 2-6: Itti et al., (1998) Saliency map architecture [Taken with permission from copyright © 2011 IEEE] 

The initial feature maps are processed by the centre-surrounding operation, where the 

output consists of six feature maps from each initial feature map. In a study by Itti el at. 

(1998), the centre-surrounding operation was performed by computing the difference 

between the pyramid layers, and the output of the operation was normalised. The output 

feature maps from the centre-surrounding operation consist of multiple scale maps; 

therefore, these maps combine together in an across-scale combination operation, where 

the final feature has the same size as the input image size and the output maps are referred 

to as conspicuity maps. This operation is done by resize the feature maps to actual input 

image size, then subtract them element by element to create the final conspicuity maps. 

Finally, the saliency map is formed by combining the conspicuity maps. Itti el at. (1998) 

used WTA for the operation of the inhibition of return. Inhibition of return is referring to 

the process of selecting the salient region from the highest to the lowest features. The 
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feature maps generated from the input image are colour maps used to compute the colour 

opponents red–green and blue–yellow, the intensity map, and the local orientation 

information using a Gabor filter and a Gaussian pyramid. This model has good 

performance for detecting colours and shapes when these features are already included in 

the algorithm. However, it cannot detect features that are not included in the model, such 

as contour completion or tracking objects in motion. 

There are multiple published studies on the integration of visual attention with an active 

binocular vision platform. Choi et al. (2004) used an attention model to control a vergence 

platform, using a selective attention model to improve the attention process by ignoring 

unwanted output from the saliency map and focussing on the desired feature using fuzzy 

adaptive resonant theory (Fuzzy ART). The visual attention in this study is based on a 

bottom-up model that computes four feature maps (the colour opponents red–green and 

blue–yellow, the intensity, and the edge features). These feature maps are processed to 

determine the centre-surrounding differences and normalised before computing the 

saliency map. The system first finds the most salient region in the saliency map and then 

passes it to Fuzzy ART to determine whether the target is good using the feature maps of 

the centre-surrounding differences. This process occurs in parallel for the left and right 

cameras; the outputs of both saliency maps are compared to determine the dominant 

salient region for the master camera (e.g., there is no fixed slave camera in the system). 

The verge of the system is determined by comparing the saliency region of the master 

camera to that of the slave camera. This could lead to an incorrect verge on the target if 

the same object occurs twice in the scene. 

Several studies have been performed on visual attention using different approaches. In a 

study by Aragon-Camarasa et al. (2010), an active stereo vision system with two pan-tilt 

cameras was used. The proposed visual attention model used a scale-invariant feature 
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transform (SIFT) algorithm to determine the salient feature in the scene. These features 

were used for the gaze, vergence controller, and object recognition. The features were 

computed in both images to compute the 2D disparity in the x- and y-axes with respect to 

the image. The vergence controller depended on the global SIFT features between both 

images in the verge process; this is referred to as nonselective vergence. The proposed 

vergence controller using SIFT resulted in a maximum error generated by the system of 

±6.5 pixels. The visual attention model was based on a pre-attention model. The pre-

attention model was trained using the salient features of different objects at various 

orientations and locations. The model was trained to recognize targets in search mode. 

The drawback of this type of system is that the entire process depends on the SIFT feature 

of the target for the scene to verge correctly. 

Improvements and extra testing on the above algorithm were performed by the same lab 

(Khan et al., 2016). An extra operation was added to memorize the target visited by the 

system to avoid revisiting targets. The architecture of the model was redesigned to be 

based on sensor fusion effects and to work with a robot operating system (ROS) (Quigley 

et al., 2009). In this study, three feature matching algorithms were evaluated in the model, 

i.e., SIFT, SURF, and KAZE. The proposed algorithms were also evaluated on two 

platforms. The experimental results indicated that the performance of the system depends 

on the feature extraction algorithm, where KAZE produced the best recognition rate. 

Moreover, their results demonstrated that the position of the object being tracked using 

extracted features was affected by the position of the object relative to the system. 

In studies by both Aragon-Camarasa et al. (2010) and Khan et al. (2016), a visual attention 

model integrated with an active stereo vision system was proposed, in which the cameras 

moved using motors. The proposed model is based on feature extraction, which is used 

to control the verge angle and track the object with the most salient features. The model 
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was also integrated with object recognition using the same features computed in the first 

step. This type of model performs better in environments with many features, such as 

indoor environments. In our model, we use a visual attention model to identify and locate 

tomatoes, which are texture-less and cause the feature extraction algorithm to fail even if 

the feature is extracted from the surroundings. Therefore, another algorithm was used to 

detect the tomatoes; this is referred to as the saliency map. 

2.5 State of art conclusion 

There is a considerable amount of literature on stereo vision correspondence methods. 

The literature seemed to be divided into studies on local matching and global matching, 

with the focus primarily on reducing computational time and producing high-quality 

disparity maps that improve 3D measurements. As demonstrated by these studies, 

advances in hardware and lower hardware costs have resulted in many improvements, 

allowing the research on stereo vision correspondence to focus increasingly on improving 

quality instead of focusing on decreasing computational speed. New algorithms have been 

introduced that improve the accuracy of the depth map, such as the random walker 

algorithm, MGM and RGB-SAD. These algorithms contribute to the production of high-

quality disparity maps and analysis. 

2.5.1 Online epipolar geometry  

The literature on active stereo vision is divided into three categories: the study of vergence 

angle, object tracking and variables baselines. Though these studies make use of the same 

principles of active stereo vision, the targets of their work are different. In papers that 

study on vergence angle, the focus is on reconstructing the target object by altering the 

vergence angle of the cameras to achieve the most significant overlap in their fields of 

view where dese disparity map generated with high-quality details. Some papers 

investigate the differences between fixed stereo vision systems and active stereo vision 
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systems concerning vergence angle (Das & Ahuja 1995), with the results of these studies 

showing that there is a disparity between some of these systems due to the low 

computational power of hardware power before 2000.  

There are no complete methods that can be used in active stereo vision platform to 

generate fast and accurate calibration data after the change in the position of the camera. 

Most of the continues epipolar geometry work has a weak point such as the limited in 

verge angle (e.g. ± 25 degrees), error accumulative between encoder reading and image’s 

angle, compute wrong essential matrix due to the fewer number of features in the image 

and compute the internal and external parameters of the system up to scaler which cannot 

be used to in measurement. The most apparent thing in published works is that the 

disparity map computation to evaluate the result of the calibration methods has not been 

used and tested with the online calibration algorithms. In other words, the disparity map 

has not been generated using the proposed algorithms.   

2.5.2 Vergence Controller 

Other studies falling into the second category focus on object tracking and gaze control, 

specifically the challenge of keeping both cameras focused on the same point. Different 

approaches, such as the master and slave system which have been introduced above; uses 

the correspondence algorithms to match the images from the two cameras, or the ZDF 

algorithm, which utilises the horopter. ZDF introduced the so-called virtual horopter, 

which enhances object-tracking performance. The methods used in these studies are 

limited in terms of their ability to calculate distance and improve the depth map. The 

proposed methods in the literature on vergence vision were focused on controlling the 

slave camera to focus on the fixed point as well as stability of the controller. Ultimately, 

the mentioned algorithms are limited to focusing on stabilising the controller and features 

matching which in sequence lead to the use of low image resolution that will ultimately 

effect negatively on the depth estimation. In fact, depth estimation plays a major role in 
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addition to the two factors mentioned above to improve the vergence vision. Moreover, 

there is no mathematical analysis for vergence controller that study how the parameters 

in the system contribute to the error in depth measurement. Most of the published works 

are focusing on testing and evaluating the vergence vision inside laboratories but not yet 

proposing useful application that can be use in real life. Therefore, this thesis will utilise 

the vergence vision system to allocate the relative position of tomato fruit in green house. 

2.5.3 Detection System 

Finally, the literature review chapter introduced the visual attention model. The literature 

on visual attention is focus on understanding human vision behaviour and implementation 

into computer vision and robotics. There are different approaches to implement visual 

attention, such as saliency map and feature matching algorithm to track the salient 

features in the scene. Both studies focus on the performance of the detection of notable 

feature in the scene where the feature matching studies required an intense feature to 

detect the salience feature where it is not reliable to use in the harvesting process. 

Moreover, the research of saliency map shows that there are so-called the return of 

inherits (ROI) which processes the salient features from the highest to lowest in term of 

salient strength. There are two approaches introduced in the published work which (I) 

find the highest value in the saliency map then cover it with zeros and (II) find the highest 

value then apply a flood fill algorithm to cover region belong to that point. In both 

approaches, the system needs to be tweak for different application; furthermore, the 

information of the target such as size and shape cannot be computed. In this work, the 

focus on visual attention is to create an application that able to detecting tomato in a 

greenhouse by integrating the information theory and watershed algorithm into the 

proposed algorithm. Unlike the other works, the focus in this thesis is to design a useful 

application that can be used outside the lab.
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Chapter 3 
 

3 System Design and Overview 
 

This chapter provides an analysis to the previous chapter where the gap in the state of the 

art is addressed. Later the chapter, an overview of the stereo vision platform will be 

presented, as well as its specifications and the mechanical design and system controller. 

This chapter concludes with an overview of the experiments reported in subsequent 

chapters. 

3.1 The gap in state of the art 

3.1.1 Online epipolar geometry update 

In stereo vision, the internal and external parameters are needed in order to be able to 

estimate the depth of an object. The process of computing the external and internal 

parameters of the system is referred to as the calibration process (Szeliski, 2009). Intense 

research has been conducted in order to estimate the parameters of the system or update 

the parameters of the system when there is any modification of the parameters in the fixed 

stereo vision system. For example, an increase in the temperature leads to extension of 

the overall dimensions of the system. In active stereo vision, the research on updating the 

external parameters can be divided into three categories: (1) feature-based matching (e.g., 

SIFT), (2) integrating feature matching with encoder reading, and (3) using the motor 

encoder to update the parameters. 

In the first approach, the parameters are updated to scale as a result of using image space 

only, and at the same time the process is computationally expensive and the mismatched 

features lead to incorrect parameter estimations that affect the output (Bjorkman and 

Eklundh, 2002; Krotkov et al., 1990; Luong and Faugeras, 1997; Sang De Ma, 1996). The 
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second category overcomes the problem of estimating the parameters in a scale dimension 

but is still prone to feature mismatching and is computationally expensive (Cyganek and 

Siebert, 2009). The third category involves direct use of the encoder reading to update the 

geometry. This approach requires a precise manufacturing platform. Many studies have 

been conducted to solve this problem; for example, Hart et al. (2008) have computed the 

differences between the old position and the new position and then updated the 

differences which this approach leads to accumulate of the error in the encoder. One 

different approach was to directly integrate the motor encoder into the parameters, but 

this approach requires precise manufacturing (Dankers and Zelinsky, 2004; Kwon et al., 

2007). Sapienza et al. (2013) have proposed using an offline calibration to determine the 

relationship between the encoder and the image space using a homograph. However, this 

approach has a limited small angle range of +/- 20 degrees, and no further results, such 

as rectification image output, have been presented. 

Most of the proposed approaches have not provided sufficient results on the online 

geometry update or shown further process after the rectification. In this study, the problem 

of updating the parameters of the external parameter is addressed by proposing an offline 

calibration to estimate a relationship between the encoder angle and the image angle. This 

approach helps to improve the rectification process while generating data that helps to 

identify the accuracy and reliability of the platform. Furthermore, the algorithm is used 

to compute the disparity map and used to identified the 3D shape of tomato fruit. 

3.1.2 Vergence controller 

A vergence controller is used to control the slave camera to verge correctly on the fixation 

point of the master camera. There are three classes of vergence controller algorithms: (1) 

zero disparity, (2) feature-based matching, and (3) template matching.  
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The first class of vergence controller algorithm computes the disparity between the slave 

and master images, and then moves the motor using the disparity value. This method is 

computationally expensive, and the major issue is the update of the external parameters 

(Krotkov et al., 1990). The second class provides a good result but is not reliable 

especially because this algorithm requires a textured background and target to manage to 

verge on the target, which means that this method will not work in a harvesting process 

due to the texture less nature of the tomato and some fruits. The final class of the algorithm 

is the fastest algorithm and requires less computational power. This class has been studied 

using different approaches to control the vergence angle; for example, cross correlation, 

sum of absolute differences based on edge detection and cross-correlation in log polar 

space (Dankers et al., 2007; Georgoulas and Andreadis, 2010; Rougeaux et al., 1993). 

These algorithms have been tested and evaluated indoors (i.e., inside a lab) where the 

lighting conditions are controllable. In this thesis, a vergence controller algorithm is 

developed and implemented on an active stereo vision platform to detect tomatoes. The 

algorithm is developed to work outdoors and overcomes the issue of the uniform 

background (i.e., the uniform leaves and sky), but the proposed algorithm suffers from 

the sunlight effect, which leads to incorrect vergence on the target. Moreover, in this study 

the depth estimation based on the vergence controller is measured and evaluated in order 

to provide an accurate depth estimation. There are few studies on vergence controllers 

that evaluate the depth estimation, which will be compared with the present research. 

3.1.3 Visual attention model for fruit detection 

The visual attention model has been studied and implemented in general application 

where the behaviour has been studied to detect the most salient feature in the scene. 

Different applications of the visual attention model have been proposed, such as detecting 

the motion of the object, detecting the most salient object in the scene, or detecting the 

strongest colour in the scene. Moreover, visual attention models have been developed to 
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search for objects based on a few input parameters or using the system to memorise the 

targets (Khan et al., 2016). Few researchers have implemented the visual attention model 

in an active stereo vision to mimic the human cognitive system in tracking the most salient 

object in the environment (Aragon-Camarasa et al., 2010; Choi et al., 2004). Other studies 

have used the visual attention model to control the vergence on the targets (Khan et al., 

2016). 

The majority of the published works on visual attention have taken different approaches 

to focus of attention FOA. FOA is the process of isolating the most salient feature in the 

scene, then moving on to the second, and so on. Most studies have used a fixed circle or 

rectangle to cover the salient feature (e.g., Itti et al., (1998), while others have used a 

flood algorithm (Frintrop, 2006). Both approaches require parameter tuning.  

It is apparent that the majority of visual attention applications have been general or have 

focused on developing the model to be more accurate. In this study, the visual attention 

model is developed to be implemented in a specific application that considers a 

challenging problem in computer vision, which is fruit detection outdoors. The model is 

developed to detect tomatoes and identify the size of the tomato by implementing a 

watershed algorithm within the FOA process. The algorithm is developed to generate a 

cognitive map that integrates with a robotic arm to accelerate the picking process. 

3.2 Active stereo vision platform 

To evaluate the active stereo vision system in detail and overcome the issue addressed 

above, a research platform was designed and established, allowing for a variety of active 

stereo vision configurations. Two versions of the platform were constructed. The first 

version of the stereo vision platform has three degrees of freedom (DOFs), that is, two 

DOFs that control the angle on each camera (pan angle) and one DOF that is associated 

with the distance between the cameras (baseline). Meanwhile, the second version has five 
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degrees of freedom, that is, four DOFs to control the pan and tilt of each camera 

independently and one DOF to control the baseline distance.  

3.2.1 Platform configuration 

Both versions of the platform have common materials, overall dimension and cameras. 

The platform was constructed using 3D-printed parts4, with aluminium-extruded tube 

used as the rail. Two carriers were used to carry the two cameras and their motors; the 

horizontal position of these carriers is controlled by stepper motors (Figure 3-1). The parts 

used in building the platform are shown in Table 3-2, as well as the suppliers and the 

price. Integrated stepper motors with encoders are used to control the baseline distance. 

Stepper motors are frequently used in most automated machines, such as computer 

numerical controllers and many manipulator arms, because these motors divide the 

rotations into small steps that aid for a precise movement. However, the drawback of 

these motors with very small steps is the decline in torque, thereby leading to missing 

steps. Hence, an encoder was integrated with the stepper to address the missing steps.  

The carriers on the baseline have a linear velocity of 3 m/s, in comparison with that of 

Nakabo et al. (2005) where the camera speeds were 4 m/s. The baseline was integrated 

with an endstop and a linear encoder. The endstop is used to identify the starting distance 

between the carriers once the rig is turned on. Meanwhile, the linear encoder consists of 

two parts: (1) a magnet incremental quadrature encoder with a resolution of 12 bits and 

(2) a magnetic strip which is fixed on the rail with a resolution of ±40 µm/m. Both parts 

are used to determine the position of the carriers with respect to one another, where the 

baseline is the distance between the left and right origins of the cameras. The more precise 

                                                
4 The materials are Polylactic Acid (PLA) printed using a Prusa i3 mk2 3D printer with a resolution of 0.2 
mm. 
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the encoder used in this platform is, the more accurate the measurement estimation will 

be.  

In the camera, the origin is located at the camera aperture. All physical measurements are 

related to this origin. The cameras are attached to the motor using a 3D-printed bracket 

(Figure 3-3). The design of the bracket was chosen carefully to ensure that the rotating 

axis of the motors intersects with the origin of the cameras. Both cameras’ origins should 

intersect with each other on the x-axis (Figure 3-1). This option is important to minimise 

the offset between the axes, thereby simplifying the kinematic chain of the platform. 

Table 3-1 describes the overall dimensions of the platform. 

 

Figure 3-1: Version 1 of the stereo vision platform. 

 

Table 3-1: Stereo vision rig specification and overall measurement. 

Variable Unit Value 

Overall dimensions 

Width mm 860 

Depth mm 180 

Height mm 247 

Working range 

Min. baseline mm 46.7 

Max. baseline mm 500 

Min. cameras’ pan angle degree −90 

Max. cameras’ pan angle degree 90 

Min. cameras’ tilt angle degree −48 

Max. cameras’ tilt angle degree 70 
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Table 3-2: Part list, price and suppliers. 

Part 
No. 

Description Qty Price Total Prices Supplier 

Version 1 

1 
Stepper Motor 

NEMA 17 
2 £12.50 £25.00 Ooznest.co.uk 

2 
Stepper Motor 

NEMA 23 
1 £23.00 £23.00 Ooznest.co.uk 

3 
Ustepper Controller 

Board 
3 £43.20 £129.60 Ooznest.co.uk 

Version 2 

 Dynamixel XL-420 2 £50.00 £100.00 Amazon.co.uk 

 Dynamixel AX-12A 2 £45.00 £90.00 Amazon.co.uk 

 USB2Dynamixel 2 £38.00 £76.00 Amazon.co.uk 

Commonly used in versions 1 and 2 

4 Endstop 1 £1.40 £1.40 Amazon.co.uk 

5 

Power Supply 
Transformer AC 

110–240 V and DC 
12 V/24 V 

1 £12.99 £12.99 ebay.co.uk 

6 
C-BEAM LINEAR 
RAIL – 1000 MM 

1 £26.20 £26.20 Ooznest.co.uk 

7 
V-Slot Gantry Plate 

Kit 
2 £35.50 £71.00 Ooznest.co.uk 

8 Smooth Idler Pulley 1 £4.80 £4.80 Ooznest.co.uk 

9 Tee Nuts M5 1 £5.26 £5.26 Ooznest.co.uk 

10 Idler Pulley Plate 1 £6.50 £6.50 Ooznest.co.uk 

11 
NEMA 23 Motor 
Mounting Plate 

1 £7.50 £7.50 Ooznest.co.uk 

12 
GT3 Pulley and 

Timing Belt Kits [2 
m] 

1 £25.00 £25.00 Ooznest.co.uk 

13 
Magnet strip 400 

mm in length 
2 £15.91 £31.82 rls.co.uk 

14 
Linear encoder 

AS5304 AB 
2 £12.34 £24.68 mouser.co.uk 

15 
3D printing filament 

and service 
1 £25.00 £25.00 

University of 
Plymouth 

Total £ 959.75  
 

 

http://www.mouser.co.uk/Search/ProductDetail.aspx?R=AS5304_ABvirtualkey58040000virtualkey985-AS5304AB
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Version 1: three DOFs 

Encoders were integrated in the platform to increase the accuracy of the stepper motor 

measurements. They were assembled with the shaft of the stepper motors. The encoder 

used in controlling the rotation angle is an absolute magnet encoder with a resolution of 

0.08° (12 bits), whereas that in previous studies was ±0.1° (Gibaldi et al., 2015) and 

±0.01° (Dankers and Zelinsky, 2004). The resolution of the encoder is important for the 

final output depth measurement in which the accuracy and the repeatability of the 

platform depend on. The value of the encoder was set to 0 to maintain the focal axis of 

the cameras perpendicular with the baseline. 

The motors, which are attached to the cameras, were set with an angular velocity of 100 

rpm. This angular speed was selected to minimise motion blurring to 0.43 mm at a 

working distance of 2 m. The cameras used in this project have a shutter speed of 0.021 ×

 10−3 s, which is sufficient to process the images. The stepper motors are PID controlled, 

in which the system was set to minimise the damping to avoid clash between the cameras. 

Version 2: five DOFs 

Version 2 was constructed to incorporate tilting in the platform. The initial idea was to 

add a common tilt for the platform, but it was not feasible owing to the weight and 

difficulty to install a platform with a manipulator arm. This version has an independent 

tilt for each camera. The stepper motors that control the pan were replaced by the 

equivalent digital servomotors Dynamixel XL. The new digital motor has a higher torque. 

Moreover, the controller and performance were better than those of the stepper motor. 

Version 2 of the platform (Figure 3-2) is different from version 1 owing to the following: 

1. The tilt joints of each camera use Dynamixel AX-12A, with an encoder resolution 

of 8 bits (0.29°) and a motor speed of 60 rpm. 

2. The range of motion in the tilt angle is from −45° to 75°). 
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3. The pan motors were replaced with a Dynamixel XL motor with an encoder 

resolution of 12 bits, but the angular speed of the motor remains constant at 100 

rpm. 

 

Figure 3-2: Version 2 of the platform.
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Figure 3-3: Overall dimension drawing of the stereo vision rig (version 1). 
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3.2.2 Camera specification 

The cameras used in the platform are colour Point Grey Flea 3 with 8.8 MP and a frame 

rate of 21 fps. The camera has different mode that control the resolution of the image and 

the frame rate. The sensor is Sony IMX121 with a resolution of 4096 × 2160 and 12-bit 

ADC. The pixel size is 1.55 µm, and the cameras have a high dynamic range (HDR) of 

10.71 bits (see Appendix A for further details). Note that the HDR of the cameras is not 

optimal when used outdoor but is suitable for indoor use because the plan was to use the 

platform indoor. However, in a future work, we should consider replacing the cameras.  

The camera lenses were selected to have a depth of view within 1–2 m. The focal length 

is 8.5 mm, providing a diagonal field of view of 54.0°. This selection includes the overlap 

in the stereo vision between the two cameras at a maximum baseline range of 500 mm 

that leads to 77% overlap at 2 m. Figure 3-4 illustrates the criteria used for the selection 

of the camera lenses, where the maximum baseline in the platform is 500 mm, the working 

distance from the platform is 2 m and the specified CCD sensor size is 10.1 mm. The 

figure shows the guide for the camera lens selection considering the parameters and 

variables. The lens was selected to provide a maximum overlap (grey line) with a small 

angle of view. The angle of view was selected to be small to increase the pixel density 

(Uliano, 1992). The horizontal pixel density of the system for each camera is 75.85 pixels 

per degree, in comparison with the human eyes 60.0 pixels per degree (Uliano, 1992). 
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Figure 3-4: Lens selection to provide a maximum overlap in the stereo vision. The baseline used to generate this 
result is 500 mm. 

3.2.3 Depth resolution in the fixed stereo vision setup 

The depth measurement resolution depends on the geometrical dimension of the system 

(Cyganek and Siebert, 2009). The depth resolution is computed based on the baseline (𝑏), 

focal length (𝑓), horizontal pixel resolution (𝑅ℎ), view angle (𝛼) and depth (𝑍) 

 

𝑅 =
𝑍2

[
𝑅ℎ𝑏

2 tan (
𝛼
2)
] − 𝑍

 

(3.1) 

Eq.(3.1) (Cyganek and Siebert, 2009) is used to compute the depth measurement 

resolution for a fixed setup. Figure 3-5 shows the output of eq.(3.1) for 4 baseline size 

and over a variety of depth. The working range for the propose platform is 1-2m. 

Therefore, for the maximum resolution using baseline bigger or equal to 0.2 m in the 

depth estimation is 5 mm at 2 m and 0.62 mm at depth of 1 m. However, this resolution 

is based on the external geometry. 
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Figure 3-5: Depth measurement resolution for 4 baseline size over variety of depth. 

3.2.4 System controller 

A robot operating system (ROS) (Quigley et al., 2009) was adopted as the software 

architecture of the platform. Four low-level nodes are present in the basic structure of the 

platform, which directly communicate with the hardware, that is, three nodes to control 

the joints and one node to control the cameras (Figure 3-6). The nodes that control the 

motors are the baseline, left and right controller nodes. The right and left nodes control 

the pan and tilt joints, respectively. Each node has a subscribe topic (e.g. /left/pan/move) 

and a publish topic (e.g. /left/pan/angle). The values of these topics are in degrees, 

whereas the baseline is in meters. 

The stereo node is responsible for the synchronisation of the left and right cameras, 

generates different types of images (e.g. greyscale and rectified) and controls the 

parameters of the cameras (Table 3-3). The ROS manages the control command and 

feedback and then converts raw signal into useful data (e.g. speed in rpm). 
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Table 3-3: Platform low-level nodes with their topics (the stereo controller node shows the main topics only). 

Nodes Subscriber Publisher Units 

Right Controller 
/right/pan/move /right/pan/angle degrees 

/right/tilt/move /right/tilt/angle degrees 

Left Controller 
/left/pan/move /left/pan/angle degrees 

/left/tilt/move /left/tilt/angle degrees 

Baseline controller /baseline/move /baseline/position meter 

Stereo controller 

/stereo/right/parameters /stereo/right/image_raw   

/stereo/left/parameters /stereo/right/image_gray   

  /stereo/left/image_raw   

  /stereo/left/image_gray   

  /stereo/camera_info   
 

 

Figure 3-6: Architecture of the platform and controller levels. 

The high-level nodes are responsible for applying the algorithm and generating the results 

and control commands. The node in the level has three types, namely, the online geometry 

update node, vergence controller for the slave camera (right) node and master controller 

for the left camera node. These nodes are explained in detail in the following chapters.  

In the online geometry update node, the images and angles from the left and right cameras 

are processed to rectify both images and generate a disparity map (Chapter 4). The 

vergence controller node controls the fixation point of the slave camera and computes the 
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depth of the fixation point using vergence depth (Chapter 5). Meanwhile, the master 

camera node (the “brain” of the system) is responsible for detecting the tomato fruit. The 

rest of the high-level node actions are based on the change of the master camera (Chapter 

6). The high-level nodes are integrated with the cognitive map node which is used in 

detecting and generating the 3D shape and estimating the depth of the tomato. 

3.3 External hardware and software libraries 

3.3.1 Computers 

Two computers were used in this project, namely, an ASUS ROG GL551JW with Intel® 

Core™ i7 4720HQ, 2.6–3.6 GHz processor, 16 GB DDR3 1600 MHz memory and 

NVIDIA GeForce GTX 960M 2 GB GDDR5, which was used in the field experiments; 

and a desktop with Intel® Core™ i7-7700K, 4.2–4.5 GHz Turbo Quad Core, 8 thread 

processor, 32 GB 3000 MHz DDR4 memory and NVIDIA GeForce GTX 1080 Ti 11 GB. 

This desktop was used inside the lab for platform testing and internal experiments.  

3.3.2 Computer vision library 

Apart from the ROS, we fully used the open computer vision (OpenCV)5, which is an 

open-source library. OpenCV has multiple available interfaces. In this work, both C++ 

and Python were utilised. The version used in this work is OpenCV 3.3.1. 

3.3.3 Integration with manipulator arm 

The system was designed to work with any manipulator arm. Appendix C (page 186184) 

shows the integration with a GummiArm robot.  

                                                
5 https://opencv.org/  

https://opencv.org/
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3.4 Experimental procedure 

Various sets of experiments were planned in this project to improve the active stereo 

vision rig. Each set of experiments is discussed in detail in separate chapters with regard 

to its theory, experiment and results, as indicated in the following section. 

3.4.1 Calibration system (chapter 4, page 71) 

Calibration is the most important aspect of the entire project. The calibration process was 

divided into two parts. The first part is offline calibration, and the second one is the online 

geometry update process. In the first part, a set of 30 different configurations of the 

platform was setup, in which the baseline and the verge angle were altered in every run. 

In each run, a calibration process was performed using the algorithm of Zhang (2000) to 

determine the internal and external properties of the rig. A checkerboard was used during 

the calibration process. After the calibration process is completed, the external parameters 

were decomposed to identify the raw data of the rotating angle yaw, roll and pitch.  

The raw data were used to analyse the geometry of the rig and evaluate the error generated 

owing to the manufacturing process and misalignment during assembly. These errors 

were employed to obtain more accurate movements of the rig during operation. 

3.4.2 Vergence controller (chapter 5, page 100) 

The vergence cue is the ability to estimate the depth by focusing both cameras on one 

point. In chapter 5, the vergence controller is evaluated and tested in details using two 

different approaches which are quantitative and qualitative experiments. In the qualitative 

experiments, the system examines using a multiple target template. The template contains 

a 16 target with ArUco at a different height. The designer of the template was to test the 

reliability and the accuracy of the system to verge on the targets. Then the system tested 

under un-balance lighting condition where the master camera input light was reduced 

while the slave maintains the same lighting input.   
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In quantitative experiments, a depth measurement setup used to analysis the accuracy and 

repeatability of the platform under different configuration (i.e. at different baseline). 

Finally, the platform and the vergence controller tested to verge on a tomato fruit in an 

outdoor environment (greenhouse). 

3.4.3 Tomato detection based on visual attention model (chapter 6, page 136) 

The final application of the thesis was introduced in this chapter, where a visual attention 

model was designed and implemented for the harvesting application. The model was 

designed to identify a tomato fruit and compute the 3D location of the fruit in relation to 

the manipulator's arm. The algorithms designed and implemented in Chapters 3 and 4 

were integrated together with a saliency map to form visual attention for tomato detection.  

The saliency map was designed to detect the salient feature in the scene: the tomato fruits 

are more salient than the ground leaves and the sky. The saliency map reduces the search 

for special objects in the scene to a few that deemed to have the most salient features. 

Therefore, a Bayes model was implemented to identify the most salient feature from the 

saliency map.  

The visual attention algorithm generates a cognitive map that contains information related 

to the target, such as 3D position, probability of the target being a tomato and the grasping 

affordance.  The visual attention experiment is more qualitative than quantitative where 

a data set of 120 image was capture and used to evaluate the performance of the saliency 

map. The other experiment was test the entire system in a greenhouse where the system 

was evaluated by counting the number of success in identify the entire information 

regarding the targets and then update them in the cognitive map. 
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Chapter 4 
 

4 Motor Controller 
 

4.1 Introduction 

Visual tracking is a classical problem has been studied in computer vision and has 

many applications. The classical visual tracking is used a statistic camera where an object 

tracked within the field of view of the camera; such process uses in industrial especially 

on the conveyor belt. Many algorithms were developed for the static camera such as 

background subtracting that assume the background is static and the foreground is 

changing (Barnich and Van Droogenbroeck, 2011; Ren and Wang, 2016). Background 

subtraction has many disadvantages like the introduction of illumination and light 

changing (Xu et al., 2016), various moving backgrounds like moving trees or slow 

moving of the foreground where these two issue has been studied in (Lin et al., 2017).  

Another approach in tracking an object is optical flow. Optical flow is an algorithm 

depends on feature extraction of the target like using corner detection, Scale-Invariant 

Feature Transform SIFT (Lowe, 1999), then track these feature in the next frames (Kale 

et al., 2015). Many works have been done on this approach to improve the quality and the 

speed of the tracking (Bota and Nedevschi, 2011; Denman et al., 2010; Salmane et al., 

2011).  

In sport the camera tracking the players or the ball where the camera in these case is 

moving or in humanoid case the head is tracking the moving object. In this case, the 

problem of object tracking gets more complicated when the issue of moving camera 

introduced. The object tracking problem introduces to the control system, which required 
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to design a controller suit the camera specification. Many works have been done on this 

type of issue using different techniques and based on the required task.  Kim and Kweon 

(2011) implement object tracking for multiple targets using the homography based 

motion detection (Loan et al., 2015) to detect an individual target then an online boost 

tracker was integrated to combine the separate targets. 

 In (Chen et al., 2014), a detection algorithm to track an object in a moving camera 

was studied. The algorithm base on feature correspondences between frames, then using 

the information generated from feature matching the properties of motion is computed. 

Hu et al. (2015) studied a multiple object detection in moving camera. Which the 

algorithm was presented in their work is using feature detection in the frames. The 

features are classified into background and foreground where the foreground represent 

the target. 

 In (Mohamed et al., 2016), an algorithm of object tracking in 3D coordinate was 

studied. The controller used was based fuzzy logic that gives the performance to track the 

object in 3D coordinate relate to the robot. Where the focus was to control the motor that 

attached to the camera in order to keep the target within the field of view and the centroid 

of the camera. 

In this chapter, the work is focusing on the controller system that controls the camera 

during the tracking process where the primary focus on keeping the target within the field 

of view. In this work, we are interested in keeping the centroid of the target matching the 

center of the image during the tracking process. This chapter focuses on the control side 

of the system by integrating an exponential function with the motor controller. To provide 
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smooth object tracking and control the blur that generated during the movement of the 

camera.  

The chapter is organized as follow: the next section introduces the methodology of the 

control system, then the setup of the experiment will be shown in section three. In the 

fourth section, the result and discussion are presented and, finally the conclusions and 

future development closing this work. 

4.2 Background and Preliminaries 

4.2.1 Camera model 

The pinhole camera model is the standard model used to describe a space point relate to 

the camera origin (Figure 4-1). Point P is a world point in front of the camera. This point 

coordinate [𝑋 𝑌 𝑍]𝑇 is relate to camera origin. A projection of this point 𝑝 = [𝑢, 𝑣]𝑇  is 

shown on the camera plane π when a connected line between 𝑃 and the origin of the 

camera O. (𝑢, 𝑣) is the corrected coordinate of the image plane which transform the 

centroid to lay on the 𝑧 axis of the camera origin. The relationship between the point 𝑃 

and the camera origin 𝑂 describe using trigonometry, where two right angle triangle is 

form and describe in eq. (1) and eq. (2) 

 𝒖

𝑿
=
𝒇

𝒁
 

(4.2) 

 𝒗

𝒀
=
𝒇

𝒁
 

(4.3) 

𝑓 is the focal length of the camera and describe the perpendicular distance between the 

origin 𝑂 and image plane 𝜋. Using these two equations help to determine a scaler position 

of point 𝑃, due to the missing of 𝑍. 
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Figure 4-1 single camera model 

The ability to move the eyes focus on a fixation point is referred to as vergence vision. 

This cue is used by human and different kinds of animals. In this work, the control system 

was designed to work with an active stereo vision that has five degrees of freedoms. The 

system was designed and built to keep the origin of the cameras collide with the rotating 

axis of the motors. Because if the rotating axes are not aligned with the origin of the 

camera a large displacement will occur during the tracking and this will lead to losing the 

target.  

4.2.2 Object tracking 

In object tracking, the moving speed of the target affects the detection part in the 

system, where this depends on the shutter speed of the camera. Shutter speed is defining 

the time the camera exposed to the light. The higher the shutter speed leads to less motion 

blur (Szeliski, 2009). The motion blur can be computed using eq.Error! Reference s

ource not found. 

 𝐵𝑚 =  𝜈 × 𝑆𝑇 (4) 
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Where 𝐵𝑚 is motion blur size, 𝜈 is the velocity of the moving object, and 𝑆𝑇 represent 

the shutter speed. Eq.Error! Reference source not found. use to computer the blur occur d

ue to the motion of the object or the camera’s motion.  

The motion blur uses to determine the maximum speed of the moving camera or the 

object in order to match it with the detection algorithm. The quality of the detection 

algorithm depends on the features in the image where a large motion blur could lead to 

mixed the features or erase them (Figure 4-2). As shown in Figure 4-2 the feature of the 

image has been mixed and erase, where the detections algorithm fails to detect the 

fundamental features such as corner and lines. From this, we know that the motion blur 

has a significant effect on the detection algorithm.   

 

Figure 4-2 Motion blur generated due to the fast camera motion 

A standard object tracking algorithm is used in this work because the focus on 

implementing the control system is the task of this paper. An open-source library was 

used in this paper as a tracking algorithm. The library used in this work is Aruco (Garrido-

Jurado et al., 2014) which used a pattern to identify the centroid of the pattern. This 

algorithm depends on detecting the corners and lines which will have a major effect on 

the detection when the camera speed passes the limited speed. 

The control system used in this work is based on exponential function. The reason for 

using an exponential function is the behaviour generated using it. As described in motion 
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blur that affects the quality of the object detection algorithm, where at substantial 

differences the camera can move fast but when the target gets close to the center a more 

resolution image required which need a smooth movement. At the same time using a 

camera as a feedback sensor, the oscillation behaviour is unwanted.  

The control system in this work represented as motor and camera used as feedback 

sensor. The block diagram is shown in Figure 4-3 where the output of the system is the 

position of the object about the camera centroid. The input to the motor is the angular 

velocity �̇� in 𝑟𝑝𝑚, which computed by the exponential function eq.(6.11). 

 

 �̇� = exp(𝑞 × 𝜆)×  𝛽 (5) 

Where �̇� is the angular velocity in 𝑟𝑝𝑚, 𝛽 is control constant that control the range of 

the output to meet the range of the motor. While 𝜆 is the constant describe the shape of 

the output. 𝑞 is the input to the exponential function where this has to be always positive? 

The direction of the output velocity �̇� is corrected using the sign of the 𝑞 before taking 

the absolute of this value eq.(6.12).  

 �̇�𝑐𝑜𝑟𝑟 =
𝑞

|𝑞|
×  �̇� (6) 

Figure 4-3 The block diagram of the object tracking 
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Where |𝑞| is an absolute q always positive. 

4.3 Experiment setup 

The control system was evaluated using a static target and moving target, where the 

static target test places the target in front of the platform at a different position then start 

the system from the default position (zero position of the motors). This will give 

information about the system as when introducing a step input where the behaviour of the 

system will be studied. The second test it a moving object. Where an object fixed on a 

cantilever attached to the motor. The speed of the rotating of the motor can be control 

which will define how fast the target can move. 

The size of the image was used in this setup is 2084 𝑥 1042 (4.4 MP). The object 

detection returns the centroid 𝑞𝑡𝑎𝑟𝑔𝑒𝑡  of the target in image coordinate which the origin 

is at top left corner of the image. Therefore, a remapping to these coordinate was applied 

to move the origin coordinate to the center of the image plane; which is the origin of the 

camera and the rotating axis. Using the new coordination, the output of the 𝑞(𝑢, 𝑣) has 

range of (−1024,1024) pixel.  

The maximum speed of the motor that should move at to avoid blur image was 

calculated using eq.Error! Reference source not found. where in the worse scenario the m

aximum distance between the target and the platform is 2 meters. The maximum angular 

speed of the motor �̇�𝑚𝑎𝑥 = 60 𝑟𝑝𝑚. Convert the angular speed to linear speed using 

motion equations 𝑣 = 12.5 𝑚/𝑠𝑒𝑐. Now put these value with the camera speed shutter 

𝑆𝑇 = 0.021 𝑚𝑠 into eq.Error! Reference source not found. the blur motion 𝐵𝑚 =
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0.26 𝑚𝑚. This value converted to a pixel in order to check the detection algorithm 

requirement to detect the object in motion.  

The exponential function was designed to meet the input pixel size and the output 

angular speed. From eq.(6.11), there are two parameters need to optimize 𝜆 and 𝛽, one 

responsible on controlling the behavior of the trajectory of the motion and the other 

parameter responsible to control the speed of the trajectory respectively.  

 

Figure 4-4 The experiment setup with the static target 

Figure 4-4, shows the experimental setup the static target where the target place in 

front of the platform at different positions in x range from (400 to 2500) mm and y from 

(-500 to 500) mm. 

The second experiment is to track a moving target. This experiment will determine the 

performance of the controller. A Stepper motor with speed controller is connected to a 

cantilever, and on the other end of the cantilever, the target is fixed. The Stepper motor is 

controlled by speed in rad/sec, and the linear velocity of the target was calculated as well 

in order to compare it with the blur motion. The setup of the experiment is shown in 
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Figure 4-5where this time the detection algorithm was used is based on colour detection 

just to simplify the process.  

 

Figure 4-5 Moving object tracking experiment setup. 

The cantilever is used in the experiment can be extended at different length which helps 

to generate more data that help to improve the performance. The length of the cantilever 

is set to 200,400, and 500 mm. 

4.4 Result and discussion 

In this part, the result of the testing is presented. The output result of the system was 

divided into three different lambda 𝜆 (0.0010, 0.0015, 0.0020). In each 𝜆, there are 4 

control 𝛽 that responsible on controlling the angular speed of the camera motor.  

Figure 4-6 to Figure 4-8 show the results of the static experiments where each figure 

compare the different running of different 𝛽. 
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Figure 4-6 Angular velocity of the motor at lambda 0.0010 

 

Figure 4-7 Angular velocity of the motor at lambda 0.0015 

 

Figure 4-8 Angular velocity of the motor at lambda 0.0020 

The output of the experiment shows that the system can track the target at the 

maximum speed of the motor where 𝛽 = 0.5. However, the time take for the system to 

center the target with the camera is range from 1.5 𝑡𝑜 7.5 seconds, which depend on the 

𝜆 and 𝛽. The increase of 𝛽 lead to increase in the tracking speed. This increase in 𝛽 leads 
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the system to change the behaviour of the exponential function output where the output 

become more step.  

In Figure 4-7 and Figure 4-8, shows the increase of the beta leads to increase in the 

speed of tracking the object in the same time this cause the camera to lose the target as a 

result of the increase of the blur that effects the feature detection at the beginning of the 

tracking process. Moreover, based on this output the maximum angular velocity should 

be set to 2 rad per seconds, which is half the speed of the theoretical velocity that 

calculated in the experiment setup section.  

The output of the system in all cases has followed the exponential output as is wanted 

with a confidential of 90%. Using the exponential in object tracking system help the 

system to track the object at a different position, and fix the gaze point with the centroid 

of the target with an error of ± 5 pixels, which this improve the performance a lot in the 

next process. 

There is an issue with the lambda, where the increase of the lambda leads to steep in 

the angular velocity when the object is far away from the center; then the angular velocity 

drops to a minimum while still, the object is far from the centre. Difference setup of 

lambda is shown in Figure 4-9. The increase of the value of lambda leads to the drop of 

the speed control value 𝛽 to maintain the speed within the limited.  

 

Figure 4-9 Exponential function at different lambda 
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Moreover, the result shows that using exponential function help to improve the 

settlement time of the system and avoiding fluctuating. In object tracking using the 

movable camera, the fluctuating of the camera leads to increase in the error which the 

system loses the target.  

Therefore, the selected lambda and beta was chosen in order to give the best 

performance was to select a small lambda (𝜆 = 0.001) and combine it with large beta 

(𝛽 = 0.5). This combination was selected due to the output performance which help the 

system to keep tracking the target without losing the target.    

The results of tracking moving object are shown in Figure 4-10 - Figure 4-12. These 

results show the differences between the object center and zero coordinate of the image. 

Three cantilever length was used in the experiment where it leads to maximum linear 

velocity of the object to 0.76 m/sec. As figures shows that the controller keep the target 

within the field of view. The increase in object speed lead to extend the distance of the 

object to the origin of the image. 

At speed of 90 deg/sec with cantilever length of 500 mm the control system start to 

suffer lose in the target as shown in Figure 4-12. These occur due to the presents of large 

motion blur that effect the output of object tracking.  

 

Figure 4-10object tracking using cantilever length 200 mm 
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Figure 4-11object tracking using cantilever length 400 mm 

 

Figure 4-12 object tracking using cantilever length 500 mm 

4.5 Conclusion 

To conclude, this chapter present a work was done on an active stereo vision with five 

degrees of freedoms. The control system of object tracking using the portable camera was 

studied. The controller was designed to use the exponential function in order to track the 

object. The functions show the ability to track the object with a good speed that maintains 

the image with no blur. Moreover, the control system help to improve the track the object 

with an accuracy of ±5 pixels which lead to improvement in deploying the vergence 

system. This improvement was due to the nature of the exponential that show linear 

behaviour when the target gets closer to the center of image.
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Chapter 7 
 

5 Active Stereo Platform: Online Epipolar Geometry Update 
 

This chapter presents a novel method to update a variable epipolar geometry platform 

directly from the motor encoder based on mapping the motor encoder angle to the image 

space angle, avoiding the use of feature detection algorithms. First, an offline calibration 

is performed to establish a relationship between the image space and the hardware space. 

Second, a transformation matrix is generated using the results from this mapping. The 

transformation matrix uses to update the epipolar geometry of the platform to rectify the 

images for further processing. The system has an overall error in the projection of ±5 

pixels, which drops to ±1.24 pixels when the verge angle increases beyond 10°. The 

platform used in this chapter is version one, that has three degrees of freedom to control 

the verge angle and the size of the baseline.  

5.1 Introduction 

In this chapter, the problem of updating the epipolar geometry in active stereo vision 

directly from a motor angle is solved using Projective Projection Matrix (PPM) to rectify 

the images. An improvement to the algorithm used by Dankers et al. (2004) is presented 

in this chapter. The idea to find the relationship between the image space and the motor 

space was taken from Sapienza et al. (2013) where in this work the PPM is used instead 

of computing the homography transformation between both images. When the raw data 

of the system are extracted using the image space and the actual geometry data, a linear 

relationship is drawn to perform conversions between the motor angles and the image 

angle, including the error in the manufacturing process. The configuration of the system 
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is studied in depth to allow an accurate rectification process for the images generated by 

the system under different arrangements. 

The rest of this chapter is organized as follows. The epipolar geometry and the process of 

computing the parameters in image space are presented in Section 5.2. Section 4.3 

presents the process of collecting the data using a stereo calibration algorithm and the 

setup used to evaluate the algorithm. In Section 5.4, the results and discussion are 

presented, and finally, the chapter is concludes in Section 5.5. 

5.2 Epipolar geometry analysis 

This section introduces the algorithm used to produce the disparity map and depth 

measurement while the camera tracks an object without the need to constantly recalibrate 

the system. The process of updating the epipolar geometry online is described in this part. 

The method of updating the configuration of the system has two stages. The first stage is 

the offline calibration process using Zhang’s calibration algorithm (Zhang, 2000), where 

the output of this algorithm is the PPM and distortion matrix for each camera. The PPM 

and distortion matrix contain the internal and extrinsic parameters for each camera, and 

the internal and distortion parameters are assumed fixed at all times. 

Figure 5-1 shows the outer parameters of the system. The origin of the system is set, as is 

frequently done in computer vision, with the left origin as the origin of the system 

(Bradski and Kaehler, 2008). Therefore, the essential matrix describes the rotation and 

translation from the left image to the right image. In the offline calibration stage, the 

calibration was done under different geometric configurations. This process is used to 

find the relationship between the rotation angle in the image space and the motor space. 
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Figure 5-1: The relationship between the left and right cameras described by the essential matrix, which contains the 
rotation and the translation measurements. 

The second stage of the calibration is online calibration, where the generated relationship 

between the image space and the motor space is used to update the PPM. 

5.2.1 Single-camera model 

We start with a single-camera model that describes a pinhole camera system. This model 

is also used to describe the Complementary Metal-Oxide Semiconductor (CMOS) sensor 

in the cameras used in this project. The center of the camera is 𝑂, which is the center of 

the Euclidean coordinate system. The image plane π coincides with the Z-axis, and the 

distance between the origin and the image plane is the focal length 𝑓. 

Suppose a point 𝑊 with coordinates 𝑊 = [𝑋 𝑌 𝑍]𝑇  set in the front image plane. A 

projection point 𝑤 = [𝑥 𝑦]𝑇 on the image plane will form when we draw a line from 𝑊 

to the origin of the camera 𝑂. This creates a mapping from 3D space to 2D space. Using 

a homogeneous coordinate to map between points, we get Eq. (5.1): 

 𝑤 = 𝑃𝑊 (5.1) 

where 𝑊 = [𝑋 𝑌 𝑍 1]𝑇 and 𝑤 = [𝑥 𝑦 1]𝑇 are homogenous vectors and 𝑃 is the camera 

projection matrix.  
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The camera projection matrix 𝑃 contains the internal and external parameters: 

 𝑃 = 𝐴𝑅[𝑅|𝑡] (5.2) 

where 𝐴 is a 3 × 3 matrix describing the internal properties of the camera (Eq. (5.3)), 

where 𝛼𝑥 and 𝛼𝑦 are the focal lengths in pixels in the 𝑥 and 𝑦 directions, respectively, 

and 𝑠 is a skew parameter, which, in most new cameras, is zero (Szeliski, 2009). 𝑅 and 𝑡 

are external parameters that refer to the transformation between the camera and world 

coordinate, where 𝑅 is a 3 × 3 rotation matrix of rank 3 and 𝑡 is a translation vector. 

 𝐴 = [

𝛼𝑥 𝑠 𝑥0
0 𝛼𝑦 𝑦0
0 0 1

]. (5.3) 

5.2.2 Stereoscopic model 

Stereo model represents two cameras observe the same view from different location. In 

this section, the parameters with subscript letters 𝑙 and 𝑟 are used to refer to the left and 

right camera models, respectively. Figure 5-2 shows the model that is studied in this 

section. The distance between the two origin cameras is 𝑏 and is referred to as the 

baseline. Supposing that both cameras look at the same point in the world 𝑊 = [𝑋 𝑌 𝑍]𝑇, 

a point 𝑤𝑖 will be projected onto both image planes 𝑤𝑙 = [𝑥𝑙 𝑦𝑙] and 𝑤𝑟 = [𝑥𝑟 𝑦𝑟]. 
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Figure 5-2: Stereo model represent the epipolar geometry. 

From the model, a plane is formed when 𝑂𝑙 ,𝑊, and 𝑂𝑟 are connected. This plane is called 

the epipolar plane. Epipolar point 𝑒𝑖, is the point occur when the line 𝑂𝑟𝑂𝑙 cross the image 

plane 𝜋𝑖. However, in some cases there is no cross between 𝑂𝑟𝑂𝑙 line and the image plane 

which result 𝑒𝑖 lays in infinite (Cyganek and Siebert, 2009). If 𝑤𝑙 is known, 𝑤𝑟 will be 

excite laying on line 𝑙𝑟 = 𝑒𝑟  ×  𝑤𝑟. This line is called the epipolar line. From the epipolar 

line, 𝑙𝑟 = 𝑒𝑟  ×  𝑤𝑟 = [𝑒𝑟]  ×  𝑤𝑟, where [𝑒𝑟] is the cross product, and because we know 

that 𝑤𝑟 is mapping to 𝑤𝑙, we get the relation 𝑤𝑟 = 𝐻 𝑤𝑙 . 𝐻 is a 3 × 3 homography matrix 

of rank 3 that describes the mapping between two points. By combining both equations, 

we get 𝑙𝑟 = [𝑒𝑟]  ×  𝐻 𝑤𝑙 = 𝐹 𝑤𝑙, where 𝐹 = [𝑒𝑟]  ×  𝐻 and is called the fundamental 

matrix (Hartley and Zisserman, 2003). 

The fundamental matrix (𝐹) can be extended to include the camera projection matrix, as 

shown Eq. (5.4), where 𝑃𝑙
+ is the pseudoinverse of 𝑃𝑙. The fundamental matrix describes 

the internal and external parameters of the stereo vision system. F is a 3 × 3 matrix of 

rank 2. 

 𝐹 = [𝑒𝑟] × 𝑃𝑟  𝑃𝑙
+ (5.4) 
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For a stereo vision system, the projection camera matrix satisfies Eqs. (5.5) and (5.6), 

where 𝑅 and 𝑡 represent the rotation and translation between the left and right origins. 𝑂𝑙 

is the origin of the system. 

 𝑃𝑙 = [𝐼 |0] (5.5) 

 𝑃𝑟 = [𝑅 |𝑡] (5.6) 

The fundamental matrix should satisfy Eq. (5.7), where 𝑤𝑙 lies on the epipolar line 𝑙𝑟 =

𝐹𝑤𝑙  (Hartley and Zisserman, 2003): 

 𝑤𝑟𝐹𝑤𝑙 = 0 (5.7) 

Equations (5.5) and (5.6) are in normalized coordinates, and solving them, we obtain Eq. 

(5.8): 

 𝐸 = [𝑡]× 𝑅 = 𝑅[𝑅
𝑇𝑡]× (5.8) 

The essential matrix (𝐸) describes the transformation between the left and right origins in 

normalized image coordinates. The 𝐸 matrix has similar properties to the 𝐹 matrix in its 

correspondence between �̂�𝑙 and �̂�𝑟 in normalized coordinates (Hartley and Zisserman, 

2003): 

 �̂�𝑟𝐸�̂�𝑙 = 0 (5.9) 

The essential matrix is used to compute the coordinate of the point 𝑊(𝑋,𝑌, 𝑍) seen by 

both cameras. Using the essential matrix means that there will be six degrees of freedom: 

three degrees from the rotation angle and three degrees from the translation. In our 

system, the rotation angle around the y-axis and the translation along the baseline are not 

fixed. These two parameters were selected because they change the visual view of the 

camera. 
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5.2.3 Calibration  

The calibration camera is the process to estimate the camera parameters the intrinsic and 

the extrinsic parameter. The principle of the calibration process is to define a point in the 

scene that correspondence to the image points. A checkerboard is used due to the 

simplicity to detect the corners and the easier to measure their position (Cyganek and 

Siebert, 2009).  

First Eq.(5.1) is convert to homogeneous form Eq.(5.10).  

 [
𝑥
𝑦
1
] = [

𝑃00 𝑃01 𝑃02     𝑃03
𝑃10 𝑃11 𝑃12      𝑃13
𝑃20 𝑃21 𝑃22     𝑃23

] [

𝑋
𝑌
𝑍
1

] (5.10) 

The calibration process use the define points in the scene and the correspondence points 

in the image to solve eq.(5.10). The only missing in eq.(5.10) is the projection matrix. 

Therefore, for each point (𝑖 = 1,2, . ,.) in the scene a two equation is computed eq.(5.11) 

(5.12) 

 𝑥𝑖 =  
𝑃00𝑋𝑖 + 𝑃01𝑌𝑖 + 𝑃02𝑍𝑖 + 𝑃03
𝑃20𝑋𝑖 + 𝑃21𝑌𝑖 + 𝑃22𝑍𝑖 + 𝑃23

 (5.11) 

 𝑦𝑖 =  
𝑃10𝑋𝑖 + 𝑃11𝑌𝑖 + 𝑃12𝑍𝑖 + 𝑃13
𝑃20𝑋𝑖 + 𝑃21𝑌𝑖 + 𝑃22𝑍𝑖 + 𝑃23

 (5.12) 

There are two equations with 12 unknown variables from projection matrix therefore, 6 

point required in the scene to find the projection matrix variables. Eq.(5.11) (5.12) split 

into a vectors with known and unknown variables, then the solution done using the 

singular value decomposition (Cyganek and Siebert, 2009).  

The extrinsic parameters in stereo vision is solving eq.(5.9) where 𝑤𝑟 and 𝑤𝑙 is the 

normalized correspondences points between the left and right and as well to the scene 

points (Hartley and Zisserman, 2003).  



78 

 

The calibration function used in this work is based on OpenCV library6.  

5.2.4 Rectification algorithm 

The disparity is the difference between the same points in the left and right images. The 

calibration process generates the parameters used to rectify the images, where the 

rectification process is the transformation of the left and right images to obtain the same 

horizontal epipolar lines. The rectification process used in this study is based on 

Bouguet’s algorithm (Bradski and Kaehler, 2008). 

The process starts by dividing the rotation matrix 𝑅 that is responsible for rotating the 

right image into the left image into two rotating matrices, 𝑅𝑙 and 𝑅𝑟, for each image. 

These two rotation matrices rotate the left and right images by a half rotation. This 

rotation aligns both image planes with the baseline, but the images are not aligned in the 

raw data. Therefore, we find a correction matrix to rotate the epipolar lines into infinity 

and align them horizontally with the baseline. 

In the Stereoscopic model, it is assumed that the left camera was set as the origin of the 

system. Starting with the epipole point 𝑒1𝑙 in the left image and connecting to the epipole 

point 𝑒1𝑟 in the right image, the point is translated along the baseline that defines the 

translation vector 𝑇. This leads to Eq. (5.13): 

 𝑒1 =
𝑇

‖𝑇‖
. (5.13) 

Using the cross product of 𝑒1 will generate 𝑒2, which is orthogonal to the focal length ray. 

This results in 𝑒2 being orthogonal to 𝑒1. The result is shown in Eq. (5.14): 

                                                
6 OpenCV used (Zhang, 2000) to find the camera matric and used (Brown, 1971) to find 

the lens distortion. 
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 𝑒2 =
[−𝑇𝑦 𝑇𝑥  0]

𝑇

√𝑇𝑥2 + 𝑇𝑦2
. (5.14) 

The last vector is 𝑒3, which is orthogonal to 𝑒1 and 𝑒2, and can be calculated via a cross 

product: 

 𝑒3 = 𝑒1  ×  𝑒2. (5.15) 

Now, we add these vectors into the correction matrix 𝑅𝑐𝑜𝑟𝑟, which transforms the epipolar 

lines to be infinite and parallel with the baseline by rotating the image about the projection 

center. 

 𝑅𝑐𝑜𝑟𝑟 = [

𝑒1
𝑇

𝑒2
𝑇

𝑒3
𝑇

]. (5.16) 

𝑅𝑐𝑜𝑟𝑟 is multiplied by the split rotation matrix to form correction rotation matrices for the 

left and right images. 

 𝑅𝑙𝑐𝑜𝑟𝑟 = 𝑅𝑐𝑜𝑟𝑟  𝑅𝑙 (5.17) 

 𝑅𝑟𝑐𝑜𝑟𝑟 = 𝑅𝑐𝑜𝑟𝑟  𝑅𝑟 . (5.18) 

This leads to the importance of a given rotation matrix and translation matrix to rectify 

an image. The rotation and translation matrices are taken from the essential matrix, i.e., 

decomposing the essential matrix allows the rotation and translation matrices to be 

calculated. 

5.2.5 Online geometry update 

This subsection integrates the above discussion to generate a relationship between the 

image angle and the motor encoder angle. Mapping between motor space to image space 

lead to errors if we use the encoder angle direct to the image angle (Kyriakoulis et al., 

2008). 
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As explained in the above section, the process is divided into two parts: an offline 

calibration process and an online geometry update. The offline calibration calculates the 

essential matrix and the internal parameters of the cameras. The essential matrix is 

decomposed to generate the rotation and translation matrices. The translation matrix is a 

pure translation from the left to right camera origins. 

In theory, the rotation matrix should be equal to the pure rotation around the y-axis. 

However, in reality, this assumption is not valid because of the actual installation of the 

camera on the platform and the installation of the camera sensor. The calibration result in 

online calibration returns the rotation matrix, including these small values around the x- 

and z-axes. Therefore, the rotation matrix returns three angles. The complete rotation 

matrix is a product of multiplying the rotation matrices in XYZ order7: 

 𝑅 = 𝑅𝑥(𝜓) × Ry(𝜃) × 𝑅𝑧(∅).  (5.19) 

The rotation matrix is solved to return the individual angle. These angles are recorded as 

the image space angles. The most important angle is 𝜃𝑖𝑚𝑔 , which changes the angle 

around the y-axis. 

The calibration process is done 30 times with different configurations (different verge 

angles) and each time the encoder verge angle 𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟  is recorded. The complete 30-

configuration calibration set constituted one run, and 20 runs were performed. The data 

of the calibration process are used to generate a linear relationship between the encoder 

angle and the image angle: 

 𝜃𝑖𝑚𝑔 = 𝑒 +  𝜂 × 𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ,  (5.20) 

where 𝑒 refers to the error due to the mechanical misalignment and lens distortion and 𝜂 

is an estimated factor to correct the encoder angle. 

                                                
7 In OpenCV Library the product is follow Z-Y-X sequence (Bradski and Kaehler, 2008). 
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5.2.6 Disparity 

After the rectification of the system, the generated left and right images are used to 

compute the disparity map. Correspondence is then established, following the extensive 

literature, for example (Scharstein and Szeliski, 2001). The primary junction of 

correspondence is to find the point in the right image to match the point in the left image 

and then calculate the differences in the x-axis. These differences are called the disparity. 

The Semi-Global Block-Matching algorithm (SGM) (H. Hirschmüller, 2005) is used in 

this study to evaluate the disparity map of the rectified images. SGM is a global stereo 

matching algorithm using multiple direction searches (pixel-wise) to smoothen the 

output, where the matching cost used in SGM is Mutual Information to overcome issues 

in lighting, different time exposures, and reflection (Banz et al., 2010). The pixel-wise 

method calculates the final disparity by summing the total cost of the disparities at 

different angles from the scan line. This approach ensures that there is some smoothness 

in the disparity. 

𝐸(𝐷) =  ∑(𝐶(𝑝, 𝐷𝑝) + ∑ 𝑃1𝑇[|𝐷𝑝 − 𝐷𝑞| = 1] + ∑ 𝑃2𝑇[|𝐷𝑝 − 𝐷𝑞| > 1])

𝑞𝜖𝑁𝑝𝑞𝜖𝑁𝑝𝑃

. (5.21) 

Equation (5.21) represents the minimized cost function used by SGM, where 𝑝 and 𝑞 are 

the pixel indices in the image, 𝐶(𝑝,𝐷𝑝) is the cost of disparity matching based on the 

intensity, 𝑁𝑝 represents the neighbour of the pixel 𝑝, and 𝑃1 and 𝑃2 are constraints to 

penalize the change in the disparity, where 𝑃1 represents the change equal to 1 and 𝑃2 

represents the change greater than 1 (Hirschmuller, 2008). 

The disparity map is used to transform the pixel from the image coordinate in 2D into a 

world coordinate in 3D [𝑋 𝑌 𝑍]𝑇 relative to the camera origin. This process is done using 

a triangulation approach in Eqs. (5.22)–(5.24). In Eq. (5.23), 𝑥 and 𝑦 represent the 



82 

 

modified coordinates of the object in the image frame, 𝑏 is the baseline, 𝑑 is the disparity, 

and 𝑓 represents the focal length. 

 𝑍 = 𝑓 ∗
𝑏

𝑑
 (5.22) 

 𝑋 = 𝑓 ∗
𝑥

𝑍
 (5.23) 

 𝑌 = 𝑓 ∗
𝑦

𝑍
. (5.24) 

5.3 Experiment 

The setup of the experimental system was divided into two stages. The first stage 

collected the data for the calibration process to find the relationship between the image 

angle and the motor angle. The second stage evaluated the new calibration algorithm. 

5.3.1 Collecting data 

This section explains the process of obtaining the data to help extract the parameters of 

the active stereo vision system. Exploring the parameters of the system and comparing 

the image space to the motor space required generating data for different platform setups, 

which meant setting different verge angles and baselines; 30 configurations of varying 

verge angles and five configurations for the baseline were selected. 

In each configuration, a calibration process was performed as explained in Section 5.2.3 

to find the parameters of the system using a calibration board. The board consists of an 8 

× 6 array of black and white squares with sizes of 34.5 mm in height and width. The 

algorithm used to find the corners on the checkerboard also detected the 48 internal 

corners on the board. For a robust calibration, 15 images were taken of the calibration 

board at various positions and orientations relative to the platform as recommended by 

(Bradski and Kaehler, 2008). 
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To accelerate and improve the collection of data, the calibration process was automated 

using a Baxter robot. Automating the calibration process reduced the time required to 

complete the calibration process by three times and improved the calibration result. 

Figure 5-3 shows the data collection setup, where the platform was installed in front of 

Baxter at a distance of 2 m and the calibration board was fixed on the arm of the robot. A 

total of 40 positions and orientations of the board were pre-recorded using the Baxter 

teaching methods. A desktop PC was used to control Baxter, and a laptop was used to 

control the platform and perform the calibration process. A UDP connection was used to 

communicate between the PC and the laptop. 

 

Figure 5-3: Baxter holding the checkerboard while the rig works on the calibration (in the lower left of the figure). 

Figure 5-4 shows a flowchart of the calibration process, where the process starts by setting 

the verge angle. The second step is to find the corner and to move the arm to a new 

position. This step was repeated until 15 sets of images were taken successfully with the 

corners detected. Then, the calibration process is started at the same time as the evaluation 

of the quality of the calibration; when the output meets the requirement that the projection 

error is less than 0.1, the calibration process is a success, and the system moves to a new 
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configuration. If the projection error is larger than 0.1, the process repeats until it meets 

the requirement. This algorithm was repeated 20 times to generate data for the analysis. 

 

Figure 5-4: Flowchart of the automated calibration process. 
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5.3.2 Rectification 

The calibration algorithm results in a rectified image where the epipolar lines of the left 

and right images become co-linear and parallel with the horizontal axis. To measure the 

performance of this rectification, a projection error measurement was used as described 

in (Hartley and Zisserman, 2003). The projection error is defined as the difference 

between the point y-axis in the left image and the point y-axis in the right image, as shown 

in Figure 5-5 (Forsyth and Ponce, 2012). 

 

Figure 5-5: Definition of the error generated in the rectified images. 

A calibration board was placed in different locations and orientations at distances between 

1.5 and 2.5 m from the platform. This allowed us to obtain more data and to evaluate the 

calibration algorithm more accurately. The geometry of the system needs to be updated 

when the configuration of the platform changes, and rectified images should then be 

generated. The rectified images are the output of the calibration algorithm, and these two 



86 

 

images are used to evaluate the quality of the calibration. The evaluation algorithm uses 

the calibration board to detect the corners of the left and right images and then calculate 

the Root Mean Square error (RMS), i.e., Eq. (5.25). The output value is in units of pixels. 

 𝑒𝑟𝑟𝑜𝑟 =   √(𝑦𝑙 𝑖 − 𝑦𝑟𝑖)
2
 

 
(5.25) 

5.3.3 Surface compression 

The data generated from the disparity map are used to create a 3D point cloud related to 

the system origin, which is a physical dimension of the scene. These data are used to 

evaluate the quality of the system in generating the point cloud. A spherical object was 

placed in front of the system, and a 3D point cloud was generated for this sphere. These 

data were then compared to the ground truth of the sphere that was generated using a 3D 

model. 

The iterative closest point (ICP) algorithm was used to translate and rotate the source of 

the point cloud to the reference by minimizing the differences (Rusinkiewicz and Levoy, 

2001); that is, ICP was used to align the two point clouds. There are four steps that ICP 

uses in the alignment process, as described in the work of (Rusinkiewicz and Levoy, 

2001). 

1. Apply the correspondent to the points where the strategy starts by selecting a point 

with a uniform distribution. 

2. Use singular value decomposition to compute the rotation and translation between 

the reference and source point clouds. 

3. Apply rotation and translation to the registered point cloud. 

4. Calculate the error between the corresponding points by applying SSD. 

The above steps were repeated until the error reached the threshold value. 
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To evaluate the generated sample (𝑆) point cloud of the platform, it was compared to the 

reference point cloud that was generated using a model, which we refer to as the ground 

truth (𝐺). The Euclidean distance algorithm, Eq. (5.26), is used to compute the distance 

between each point in the source that lies near the point in the reference point cloud. The 

differences between the sample and the ground truth were calculated using the RMS using 

the Euclidean distance: 

 𝑅𝑀𝑆𝑒𝑟𝑟𝑜𝑟 =  √(𝑆𝑥 − 𝐺𝑥)2 + (𝑆𝑦 − 𝐺𝑦)
2
+ (𝑆𝑧 − 𝐺𝑧)2. 

 
(5.26) 

In the experiment, three spheres were used, with different diameters (80, 125, and 150 

mm). CAD software was used to generate the ground truth, which was then converted to 

a point cloud. These point clouds were set to have a subsampling between points equal to 

1 mm in all directions (Figure 5-6A). 

 

Figure 5-6: (A) Point cloud of the ground truth for a sphere with a diameter of 120 mm and (B) generated point 
cloud of a sphere with a diameter of 120 mm. 

The generated point cloud from the platform is shown in Figure 5-6(B) prior to post-

processing to remove the surrounding points that do not belong to the sphere; the post-

processing was done using the Point Cloud Library8 (Rusu and Cousins, 2011). The setup 

of the experiment is shown in Figure 5-7. 

                                                
8 http://pointclouds.org/  

http://pointclouds.org/
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Figure 5-7: The setup for the shape reconstruction using a sphere with a diameter of 120 mm. 

The data were collected at different configurations (verge angles from −6° to 12° and 

baselines from 55 to 250 mm) while the ball was placed at different positions between 1 

and 2.5 m from the platform. A set of 10 samples was taken at each configuration. 

5.4 Results and discussion 

5.4.1 Offline calibration 

The results of the offline calibration allow us to understand the geometry of the platform 

in depth; these data show the tolerance of the manufacturer and the repeatability of the 

motors. As explained in Section 5.2.5, the only variable axes are the verge angle (yaw) 

and the baseline (along with the Y-axis), whereas the other axes are fixed, i.e., the pitch 

and roll angles and translation along the Y- and Z-axes. These should be fixed in the 

different configurations. The value of the roll and pitch angles are shown in Figure 5-8, 

where the roll angle is 0.526°, with a margin of error of ±0.047°, and the pitch angle is 

−0.433°, with a margin of error of ±0.015°. These two values were generated as a result 

of the assemble misalignment in the platform and cameras; as a technical note, Flea3 
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Point Gray cameras (FL3-U3-120S3C-C) have an accuracy of ±0.5° of the sensor 

assembly. The same points apply to the result of the translation along the Y- and Z-axes 

(Figure 5-9). As shown in Figure 5-9, the Z-axis reading is 3.6 mm, with a large margin 

of error of ±2.3 mm, and this was the result of identifying the optical center of the 

cameras. This leads to an issue with measuring the distance if it is assumed to be fixed. 

To resolve the error in Z-axis, a relationship was computed from the calibration data to 

update the Z-axis during the changing of the configuration. 

 

Figure 5-8: The result of the offline calibration process for the roll and pitch angles. 

 

Figure 5-9: The result of the offline calibration process for the translation of the Y- and Z-axes. 

Theoretically, the verge angle is directly correlated to the motor angle. After processing 

the data in the offline calibration, the raw data related to the verge angle were generated 

and plotted against the sum of the encoder angles (Figure 5-10). As shown in Figure 5-10, 

the image angle generated by the offline calibration and the encoder angles show a linear 
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relationship with a coefficient of determination equal to 99.93%. From the data, 𝜂 is equal 

to 0.9641, and the error value 𝑒 is equal to 0.5786. Inserting these values into Eq. (5.20) 

results in Eq. (5.27): 

 𝜃𝑖𝑚𝑔 = 0.5786 +  0.9641 × 𝜃𝑒𝑛𝑐𝑜𝑑𝑒𝑟 .  (5.27) 

    

 

Figure 5-10: The image angle versus the motor angle. The image angle was calculated using the stereo calibration 
process, and the motor angle was measured using the encoders. 

Accordingly, Eq. (5.27) was used to update the image angle by providing the encoder 

angle reading from the motor. This improved the updates of the geometry of the system. 

Comparing this result to that of Dankers et al., the epipolar geometry was updated in a 

more accurate process, which studied the platform in more detail before starting the online 

update (Dankers et al., 2004). This result will help improve the vision in humanoids, 

manipulator arms, and mobile robots that use active stereo vision and will extend the 

working volume of the binocular vision. 

5.4.2 Online geometry update 

Equation (5.27) was used to calculate the image angle based on the input of the encoder 

angle; the new image angle was then used to update the essential matrix. This process 

was done during the online running time, as described in Section 5.2.5. To evaluate the 
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new algorithm, the projection error was used as described in the experimental section. 

The result of the projection error is shown in Figure 5-11. This result was collected at 

different verge angles and baselines, and the experiment was repeated 20 times. In 

general, the result shows that the platform and the online calibration algorithm have 

repeatability with a marginal range of ±0.5 pixels, which gives us confidence in the ability 

of the platform for repeating tasks. 

Figure 5-11 indicates that the projection error has a linear relationship with the verge 

angle when the baseline has a small value, e.g., a baseline of 50 or 100 mm. However, 

the projection error increases with increasing baseline size. This could be a result of the 

misalignment in the roll angle, which was set in the opposite direction, or the y 

displacement misalignment during the manufactures, which increases with the baseline. 

Moreover, the projection error increases by increasing the diverge angle, and drop when 

the platform start to verge, the error is not constant; this is due to the position of the target: 

the images started to overlap, which led to a drop in the error. Figure 5-11 shows that, 

when the verge angle starts to increase, the projection error starts to decrease, where the 

target gets close to the horopter. At an angle of 6°, the projection error drops because of 

the position of the target, which leads to zero disparity. The zero disparity reduces the 

disparity range and the error in the depth measurement. 
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Figure 5-11: Projection error at different verge angles and baselines; the error in the points is ±0.233 pixels. 

A list of rectified images captured at different verge angles is shown in Figure 5-12. The 

colored lines show the epipolar lines where the pixel in the left image is lying on the same 

line. Figure 5-12(A) was captured at the parallel focal axis, and the rest were taken in 2° 

increments. This shows that the image sizes decrease with increasing verge angle; the red 

square represents the image size after rectification. 
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Figure 5-12: Rectified image using the online updated geometry. The lines represent the epipolar lines, and the red 
square shows the size of the image after rectification: (A) at the parallel focal length, (B) at an angle of 2°, (C) at an 

angle of 4°, (D) at an angle of 6°, (E) at an angle of 8°, and (F) at an angle of 10°. 
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Figure 5-13: Disparity map of a box used to evaluate the projection error: (A) at the parallel focal length, (B) at an 
angle 2°, (C) at an angle of 4°, (D) at an angle of 6°, (E) at an angle of 8°, and (F) at an angle of 10°. 

Figure 5-13 shows the disparity map of the rectified images at different verge angles. The 

disparity shows the box that was used to evaluate the process. The corresponding process 

was based on the SGM algorithm with a window size of 5 × 5 pixels and a disparity 

number of 2569. The size of the windows was selected based on the output of the 

projection error analysis (Figure 5-11) to cover the potential error in the rectified image. 

At the same time, windows at this size will sharpen features, as discussed in (Szeliski, 

2009). As shown in Figure 5-13, the disparity map becomes more intense with increasing 

verge angle, where Figure 5-13(F) with an angle of 10° is due to the overlap of the images. 

Because the disparity map can only provide a visual analysis, the next section generates 

a point cloud to compare to the ground truth. 

                                                
9 Note that OpenCV was used to compute the disparity map. The parameter was tuned after the system 
update to new configuration. Moreover, OpenCV can deal with Zero Disparity. 
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5.4.3 Surface compression 

To demonstrate the quality of the disparity map, the disparity was converted into a point 

cloud using the triangulation equations, as described in Section 5.3.3. The ground truth 

point cloud was generated using a CAD model. A sample of the data used in the 

comparison is shown in Figure 5-14. 

 

Figure 5-14: A sample of a post-processed point cloud used in the comparison for a 120mm diameter sphere 

Figure 5-15–17 show the result of computing the RMS between the ground truth and the 

sample for three sizes of the sphere (80, 120, and 150 mm). The result describes the sum 

of the differences of the points from the ground truth. Five different baselines (55, 100, 

150, 200, and 250 mm) were used to generate samples at different verge angles (from −6° 

to 12°) with steps of 2°. The overall result has the same shape as the result of the 

projection error (Figure 5-11) and shows that the result of the baseline with 100 mm has 

the lowest RMS and that an increase in the baseline led to an increase in the RMS. The 

RMS of the baseline with 55 mm has the highest RMS in the three cases because of the 

proportional error in measuring the depth in relation to the baseline, as described in (Dang 

et al., 2009). 
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Figure 5-15: RMS error for a sphere with a diameter of 80 mm at different baselines and verge angles. 

 

 

Figure 5-16: RMS error for a sphere with a diameter of 120 mm at different baselines and verge angles. 
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Figure 5-17: RMS error for a sphere with a diameter of 150 mm at different baselines and verge angles. 

However, the RMS of the verge angle shows a linear result at different verge angles, with 

a slight drop in the result at larger verge angles; this is because the overall error in the 

projection was 4 pixels, and 5 pixels were used to compute the disparity windows to 

overcome mismatching at the scan line. This result may lead to a misunderstanding in the 

use of the variable verge angle in computing the disparity if the result shows an 

approximate equal RMS at different verge angles. However, to generate the sample, post-

processing was performed on the sample to reduce the amount of RMS points computed, 

and as shown in Section 5.4.2, the disparity became smaller when the verge angle 

increases. Moreover, the measurement of the depth approached the origin of the system, 

where the parallel focal length of the minimum depth was 1 m, and for the verge angle, 

the depth converged to 0.5m. However, the size of the sphere does not affect the result of 

the object reconstruction; all results had an average RMS of approximately 0.02 mm and 

a margin of error of ±0.0039 mm at a confidence of 95%. 

The drawback of this algorithm is that the size of the rectified image generated becomes 

smaller when the verge angle increases. This occures due to the behavior of epipolar lines 

at verge angle (Figure 5-18). Moreover, the rectification process makes this line parallel 

with the baseline; therefore, the new image becomes smaller. 
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Figure 5-18: Epipolar line before rectification at a verge angle of 8°: (A) left image and (B) right image. 

5.5 Conclusions 

An active stereo vision platform with three degrees of freedom, providing individual 

camera pans with a shared variable baseline, was constructed and assessed for its depth 

resolution and repeatability. A study was performed using both traditional stereo disparity 

estimations and the camera verge angle to provide depth information. 

The problem of computing the epipolar geometry of an active stereo vision system was 

studied to avoid traditional methods that use feature-based algorithms (Bjorkman and 

Eklundh, 2002). A relationship was found between the image angle and the encoder angle 

to update the epipolar geometry of the system directly from the encoder reading. 

An offline calibration process was performed to find measurements in the image space of 

the platform, and then, these measurements were used to find the relationship between 

the image space and the encoder angle. A linear correlation was found between the image 

space and encoder angle with a shift of 0.5° in image space. The overall measurement of 

the epipolar geometry in image space was found using the offline calibration. 

In order to evaluate the performance of the rectification algorithm, the projection error 

based on SSD (Hartley and Zisserman, 2003) was used. The maximum projection error 

that the platform generates at de-verge is ±5 pixels and when the platform starts to verge 

the error drop to ±1.24 pixels at 12°. This compares to ±2.38 pixels in the work of (Hart 

et al., 2008). This result shows that increases in the baseline increase the projection error, 

and increases in the verge angle decrease the projection error and the effect of overlapping 
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between the two images. A drawback of this algorithm is that the size of the new rectified 

images becomes smaller when the verge angle increases. The maximum verge angle that 

allowed the image to work with is 20°. 

The disparity map depends on the quality of the rectification algorithm which the better 

the rectification the better the disparity map; therefore, an experiments to evaluate the 

disparity map was conducted. The disparity maps show good results in different 

configurations. Point cloud compressions were made with ground truth datasets to 

evaluate the quality of the shapes. These compressions show that the quality of the shape 

has an average standard deviation of 0.0142 m and a margin of ±0.0039 m. 

Overall, the system improves the quality of the disparity map by controlling the baseline 

and the verge angle. One of the main advantage of the system is the capability of focus 

on one target with reconstruct the 3d shape using a small disparity search area. As a result, 

the system extends the working volume space of robots. Future studies will automate the 

optimal baseline and verge angle based on the object position to reduce the error. 
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Chapter 6 
 

6 Pyramid Normalized Cross-Correlation-based Algorithm 
 

Different from such fixed stereo vision, this chapter proposes a depth estimation method 

that uses a vergence controller. In the proposed method, a matching feature-based 

correlation technique is integrated with a Gaussian pyramid to control the slave camera’s 

gaze and integrated with exciting platform (version 2). Here, depth is estimated 

considering target position by analyzing the external parameters of the system such as the 

baseline, and the pan angle of the left and right camera. The point where both focal rays 

intersect is referred to as the fixation point. An algorithm was developed to ensure that 

both rays intersect at the fixation point. In addition, a fast control system was developed 

to keep both cameras focused on the same point. We performed experiments to evaluate 

the proposed method, and the results are compared to those reported by Zhang and Tay 

(2011).  

In addition, the proposed depth estimation method is compared to two stereo vision 

cameras, i.e., the ZED, which uses traditional stereo correspondence to estimate depth, 

and the Intel RealSense D415, which uses an infrared projector to estimate depth. 

The remainder of this paper is organized as follows. Verge depth mathematics is 

introduced in Section 6.1. Section 6.2 describes the experimental setup used to evaluate 

the performance of the proposed algorithm and the implemented platform. Experimental 

results are presented and discussed in Section 6.36.4, and conclusions and suggestions for 

future work are given in Section 5.4. 
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6.1 Background: Verge-based depth vision 

Vergence cue methods focus on a point in space where the centers of two images (𝐼𝑐𝑙  and 

𝐼𝑐𝑟) are aligned with the interested point of the target, i.e., the fixation point. The angle 

between the two cameras is the verge angle. Figure 6-1 shows the coordinate frames of 

the system. The fixed frame, i.e., the  of the system, ￼𝑂𝑃￼𝑂𝑖￼𝑖 = 𝑟￼𝑖 = 𝑙)￼-axis, 

and the distance between  the𝑌𝑝￼𝑌𝑝￼𝑏￼𝑌𝑟￼𝑌𝑙,.. 

 

Figure 6-1: Two-and-a-half depth coordinate system. 

The geometric rotation between the left and right frames is referred to as an essential 

matrix 𝐸𝑙𝑟 , which is a (4 × 4) homogenous transformation matrix, as described by 

Hartley and Zisserman (2003). 𝐸𝑙𝑟  describes the rotation and translation between the left 

and right frames expressed as follows:  

 𝐸𝑙𝑟 = [𝑅 |𝑇] (6.1) 

Here,  𝑅 is the Euler rotation angle of the right frame relative to the left frame, and 𝑇 =

[ 𝑋 𝑌 𝑍]𝑇 is the translation of the right frame relative to the left frame. Each frame rotates 

independently; thus, 𝐸𝑙𝑟  is the product of 𝐸𝑙 and 𝐸𝑟 calculated from 𝑂𝑝. Note that the left 

and right frames only rotate around the 𝑌𝑖-axis; therefore, the only variable rotation matrix 

used is 𝑅(𝑌), where 𝜃𝑖 is the angle of rotation (𝑖 = 𝑟 or 𝑙). 𝑅(𝑌) is expressed as follows:  
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 𝑅(𝑌)𝑖 = [
cos(𝜃𝑖) 0 sin(𝜃𝑖)
0 1 0

−sin(𝜃𝑖) 0 cos(𝜃𝑖)
] (6.2) 

The essential matrix 𝐸𝑙𝑟  contains the information required to calculate the distance to the 

target, i.e., the angles of rotation and the distance between the frames (Cyganek and 

Siebert, 2009). Assuming that the plane (𝑂𝑟 , 𝑂𝑙 , 𝑂𝑡) intersects the target origin, the left 

origin and right origin, all internal angles (including that of the baseline) can be derived 

trigonometrically.  Therefore, the internal angles can be expressed as follows:  

 𝜃𝑙 = 90 − 𝜃𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑙  (6.3) 

 𝜃𝑟 = 90 + 𝜃𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑟  (6.4) 

 𝜃𝑣 = 180 − (𝜃𝑙 + 𝜃𝑟) (6.5) 

The sine rule is used to calculate 𝐷𝑙 and 𝐷r as follows:  

 𝐷𝑙 =
𝑏 × sin(𝜃𝑟)

sin(𝜃𝑣𝑒𝑟𝑔𝑒)
  (6.6) 

 𝐷𝑟 =
𝑏 × sin(𝜃𝑙)

sin(𝜃𝑣𝑒𝑟𝑔𝑒)
   (6.7) 

Therefore, to calculate the depth of the target on plane (𝑂p 𝑂𝑙 𝑂r), a line 𝐷t is drawn from 

the target 𝑂t perpendicular to 𝑋p  (Figure 6-1) to form two right angles (left: (𝑂l 𝑂t 𝑂p); 

right: (𝑂r 𝑂t 𝑂p)). Then use Pythagorean theorem, 𝐷t is calculated using Eq. (6.8) where 

𝑖 = 𝑟 , 𝑙. 

 𝐷𝑡 = 𝐷𝑖 × sin (𝜃𝑖)  (6.8) 

Now use Pythagorean theorem to calculate 𝑌t as well, as shown in Eq. (6.9). Here, 

baseline 𝑏 is negative when 𝜃𝑙 is used in the calculation and positive when  𝜃r is used. 
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 𝑌𝑡 =
±𝑏

2
± (𝐷𝑖 × cos(𝜃𝑖)) (6.9) 

Eqs. (6.8) and (6.9) give the position of the target relative to the platform’s frame. Note 

that the sign of the baseline depends on which side is considered to compute 𝑌t (e.g., for 

the left angle, 𝑌t =
𝑏

2
− (𝐷𝑖 × cos(𝜃𝑖))). 

Note that the above discussion assumes that the target lies on the same plane as the image 

center. Therefore, using the rotations angle of a tilting motor, the final coordinates of the 

object can be calculated. In standard coordinates, 𝐷t is the 𝑋-axis and 𝑌tis the 𝑌-axis; 

therefore, the 𝑍-axis is computed using the rotation around the tilting axis 𝑅𝑦(𝜃) (Eq. 

(6.10)). 

[
𝑋
𝑌
𝑍
] = [

cos (θy) 0 sin (𝜃𝑦)

0 1 0
−sin (𝜃𝑦) 0 cos (𝜃𝑦)

] [
𝐷
𝑌𝑡
0

] (6.10) 

6.1.1 Fixation object 

The platform includes a master and slave system to keep both cameras’ centres focused 

on the target centroid using coarse-to-fine template matching based on a Gaussian 

pyramid where the slave tracks the center of the master camera.  

 

Figure 6-2: ArUco pattern refers to number 1. 
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Typically, the master camera tracks the target using an object detection algorithm or 

colour threshold technique. In this study, the ArUco detection algorithm, which tracks a 

specific target (Figure 6-2), is used. ArUco is an OpenCV library for camera pose 

estimation using squared markers (Garrido-Jurado et al., 2014). The ArUco algorithm 

was selected to evaluate the system because it demonstrates high precision and fast pattern 

detection.  

 

Figure 6-3. Motor controller based on the exponential function. 

The vergence controller uses an exponential function controller to align the centroid of 

the target to the center of the image (Figure 6-3). The algorithm returns the position of 

the target in image coordinate where the center of the image is where the fixation point is 

required to be on. This difference is describing how far the object from the center of the 

image. This difference is the input to the exponential function and the output is angular 

velocity. The input and the output of the exponential function is always positive therefore, 

a direction correction function is used to correct the direction of the angular velocity. 

 �̇� = exp(𝑞 × 𝜆)×  𝛽 (6.11) 

Where �̇� is the angular velocity in 𝑟𝑝𝑚, 𝛽 is control constant that control the range of the 

output to meet the range of the motor. While 𝜆 is the constant describe the shape of the 

output. 𝑞 is the input to the exponential function where this has to be always positive. The 
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direction of the output velocity �̇� is corrected using the sign of the 𝑞 before taking the 

absolute of this value eq.(6.12).  

 �̇�𝑐𝑜𝑟𝑟 =
𝑞

|𝑞|
×  �̇� (6.12) 

Where |𝑞| is an absolute 𝑞 always positive.  

6.1.2 Coarse-to-fine template-matching algorithm 

A template-matching algorithm searches a large image 𝐼 using a small image template 𝑇, 

where the template represents the target information in the image. Here, the search type 

is classified as 2D, i.e., the template passes over an image in two directions 𝑢 and 𝑣 that 

represent the x- and y-axes, respectively. The similarity between the template and the 

region in the image is then computed. Therefore, to determine the position of the template 

in image 𝐼, a cost function is used to estimate similarity between the template and the 

position of the template in the image, which is stored in matrix 𝑀. The size of matrix 𝑀 

is determined by subtracting the size of template T from image I (𝐼 − 𝑇). Depending on 

the cost function, the location of the template in the image is determined by the smallest 

or largest value in 𝑀. Eq. (6.13) shows a Normalized Cross-Correlation (NCC) 

differences cost function where the large image is (𝑢, 𝑣) and the size of the template is 

(𝑚, 𝑛). Using this cost function, the best location for the template is determined by the 

largest value in 𝑀. 

𝑁𝐶𝐶(𝑢, 𝑣) =
∑ (𝑇(𝑚, 𝑛𝑚,𝑛 )  ×  𝐼(𝑢 +𝑚, 𝑣 + 𝑛))

√∑ 𝑇(𝑚, 𝑛𝑚,𝑛 )2  ×  ∑ 𝐼(𝑢 + 𝑚, 𝑣 + 𝑛)2𝑚,𝑛  
 

(6.13) 

NCC methods were selected to compute matching because NCC removes large 

differences between the template and image around a large brightness (Bradski and 

Kaehler, 2008).  
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Figure 6-4. A three-level Gaussian pyramid. 

In the proposed platform, the template is a window with a small number of pixels cropped 

from the center of the master image (100x100).  A coarse-to-fine Gaussian pyramid is 

constructed to improve tracking quality and increase the speed of the template-matching 

algorithm by reducing the number of unnecessary computations (Figure 6-4). The 

Gaussian pyramid algorithm produces a sequence of images by down-sampling, where 

the image size and resolution are reduced at every level (𝐼𝐿𝑡ℎ) (Fouda and Ragab, 2013). 

Here, the Gaussian pyramid produces images that are half the size of the level under the 

current level (𝐼𝐿+𝑖 =
𝐼𝐿

2
 ). 

Note that Gaussian pyramids are calculated for both the template and image. The cross-

correlation algorithm implemented at the top level 𝐼𝐿 (coarse) uses both the template and 

image. A threshold is applied to the output 𝑀𝐿. 𝑀𝐿 is up-sampled by a factor of 2, and a 

counter is applied to find the region with large differences 𝐶𝐿 = (𝑥, 𝑦, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡). 
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The search in level 𝐼𝐿−1 is constrained to region 𝐶𝐿, which covers the neighborhood pixels 

around the maximum likeliness found in the previous level. In each level, the search is 

reduced to the highest matching feature until the search reaches the base of the pyramid 

𝐼0,which represents the finest resolution image. 

6.1.3 Sensitivity of depth measurement to erroneous system assembly and calibration 

In practical applications, various parameters must be considered to generate accurate 

output. These parameters can have significant effect on the system’s output depending on 

their contribution to the overall error. Kanatani  (Kanatani, 2005) identified four factors 

that influence the system’s final output, i.e., (1) accuracy bound, (2) reliability evaluation, 

(3) computational efficiency and (4) model plausibility. 

In a binocular vision system, different parameters contribute to depth measurement errors. 

A detailed discussion of these parameters can be found in the literature (Dang et al., 2009; 

Kanatani, 2005). Such parameters vary relatively to the extent to which they increase the 

number of errors in the depth measurement. In practical vergence vision applications, the 

verge angle depends on the fixation point and the gaze of slave camera having the same 

fixation point as the master camera. Computing the depth depends on the verge angle, 

which, in turn, depends on encoder reading, baseline measurement and pixel size. Note 

that these values relate to the geometry of the platform and its manufacturing process. 

The accuracy of computing the fixation point depends on the computational efficiency 

and the algorithm used to compute the fixation point.  

In the following, we provide a geometrical analysis of the system to evaluate parameters 

contribution to error. By solving Eq. (6.8) using the left angle is as follows:  

 𝐷𝑡 =
𝑏 sin(2𝜃𝑙)

2 sin(𝜃𝑣)
  (6.14) 



108 

 

The error in b are related to the error in various measurement quantities, thus allowing 

for an error in b as 𝑏 =  b0  ± 𝛿b   

 𝐷𝑡 =
(𝑏0 ± 𝛿𝑏)× sin(2𝜃𝑙)

2 sin(𝜃𝑣)
  (6.15) 

The result of depth 𝐷𝑡 will be affected owing to the errors in Equation (5.15). Thus, we 

write 𝐷𝑡 =  𝐷𝑡0  ± 𝛿𝐷𝑡 . A Taylor expansion is applied to solve the depth error 𝛿𝐷𝑡 in 

Equation (5.15): 

 𝛿𝐷𝑡 =
𝑏0
2 × sin(2𝜃𝑙)

2 sin(𝜃𝑣)
 𝛿𝑏  (6.16) 

Now solving Eq. (6.14) to 𝑏, then replacing the output with 𝑏 in Eq.(5.16) we derive 

 𝛿𝐷𝑡 =
𝐷𝑡
2 sin(2𝜃𝑙)

3

8 sin(𝜃𝑣)3
 𝛿𝑏  (6.17) 

Eq. (6.17) shows that depth error is proportional to the square of the depth. However, 

compared to orthogonal stereo vision, the depth error in a verge system is multiplied by 

eight. The same applies to Eq. (6.9), which shows that the size of the baseline does not 

affect error in the 𝑌𝑡 measurement. Here, the verge angle is inversely proportional to the 

error in measuring 𝑌𝑡.  

To clarify the effect when a verge angle error occurs in the system, we differentiate Eq. 

(6.14) relative to verge angle 𝜃𝑣. The output is shown in Eq. (6.18). 

𝛿𝐷𝑡 =
𝑏

2
sin(2𝜃𝑙) (−csc(𝜃𝑣)) cot(𝜃𝑣) 𝛿𝜃𝑣  (6.18) 
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Figure 6-5. Depth error at different verge angles (smaller angles give greater depth). 

Increasing the verge angle reduces the depth error 𝛿𝐷𝑡 where the verge angle is inversely 

proportional to the square depth error. The verge angle is the sum of 𝜃𝑟 and 𝜃𝑙; therefore, 

both angles contribute to the accuracy of the final depth output. Figure 6-5 shows the 

theoretical error generated by the verge angle in a worst-case scenario for the proposed 

system where the encoder resolution is 12 bits (equal to 0.08°). 

The depth error 𝛿𝐷𝑡 shown in Figure 6-5 was computed using the maximum error 

generated using the given encoders. The profile of the error curve exactly follows the 

curve generated by the analytical error (Eq. (6.18)) (Sahabi and Basu, 1996). The results 

of both verge angle and depth relative to depth error demonstrate that the size of the error 

increases significantly as the measured depth increases, which is consistent with the result 

obtained when a disparity calculation is used in an orthogonal stereo vision.  

Disparity maps employ a multi-stage technique that introduces errors into the process, 

including the pixel matching process. A fixed stereo vision system introduces errors from 

different parameters that significantly affect the final output, such as misalignment of the 

y-axis of both cameras, camera rotation and the size of the pixels. Based on a 3D 

reconstruction of the target, Kanatani (2005) discussed errors in stereo vision systems and 

how they affect performance. A fixed stereo vision system depends on the quality of the 

calibration output, where internal and external parameters are computed for use in a 
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rectification process. Error analysis of standard stereo vision systems can be classified as 

the effect on normalized image coordinates, the effect on pixel coordinates and the effect 

on 3D reconstruction (Dang et al., 2009) (see appendix D). In vergence stereo systems, 

depth errors are generated by the external geometry (i.e., the assembly and encoder 

quality) and the effectiveness of the tracking algorithm. 

The source of errors in vergence and orthogonal stereo vision systems are compared in 

Table 6-1. As can be seen, most of the parameters of orthogonal systems do not contribute 

to errors in vergence systems. Appendix D contains a brief error analysis for an 

orthogonal stereo vision. 

Table 6-1: Error sources in orthogonal stereo vision vergence vision systems 

Error Source Orthogonal Stereo 
Vision 

Vergence Vision 

Baseline 𝛿𝐷 ∝
𝐷2

𝑓 ∗ 𝑏
𝛿𝑑 𝛿𝐷𝑡 ∝

𝐷𝑡
2 × sin(2 × 𝜃𝑙)

3

8 × sin(𝜃𝑣)3
 𝛿𝑏 

Verge angle 𝛿𝐷 𝛼
𝐷2

𝑏
�̃�𝐿 �̃�𝐿𝛿𝜃𝑣 𝛿𝐷𝑡 𝛼 − csc(𝜃𝑣) cot(𝜃𝑣) 𝛿𝜃𝑣 

Tilting angle 
𝛿𝑍

𝛿Θ𝑙
≈
𝑍2

𝑏
𝑥�̃�𝑦�̃�  None 

Focal length  
𝛿𝑍

𝛿𝑓
≈
𝑍

𝑓
 None 

Pixel size also contributes to the performance of the vergence controller, where smaller 

pixel size results in more accurate target centroid detection. In fixed-camera stereo vision 

systems, pixel size contributes to the size of the depth error when computing disparity. 

While active stereo vision depends on the precise of location of the centroid of the target. 

6.1.4 Motor controller-based exponential function 

The control system used to move the pan and tilt motors are based on an exponential 

function. The control system comprises a motor and a camera that is used as a feedback 

sensor.  
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 �̇� = exp(𝑞 × 𝜆)×  𝛽 (6.19) 

A block diagram of the motor controller is shown in Figure 6-3. Here, the camera 

generates the position of the target in pixel. The input to the motor is the angular velocity 

�̇� in rpm, which is computed using the exponential function (Eq. (6.19)). The motor 

controller and the selecting of the parameter is presented in chapter 4. 

6.2 Experiments 

Quantitative and qualitative experiments using a five degree of freedom active stereo 

vision platform (Figure 6-6) were conducted to evaluate the proposed algorithm. 

 

Figure 6-6. A stereo vision platform. 
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6.2.1 Pyramid NCC experiment 

 

Figure 6-7. A template for in-depth measurement with 16 targets at different heights. 

 

The first experiment involved a qualitative test where a 40 × 40 cm template comprising 

16 targets at different heights and positions with a center-to-center distance of 10 ± 0.1 

cm was constructed (Figure 6-7). The targets were numbered from 1 to 16 according to 

the ArUco numbering system. The numbering started at the top left corner and ended at 

the bottom right corner. The origin of the template was marked as number 18. It is critical 

to allocate the center of the template because the targets’ coordinates can only be obtained 

if the origin is known. As shown in Figure 6-7, the 16 targets are somewhat similar in 

terms of their intensity, and this similarity confuses the algorithm, which justifies using 

the vergence controller to track each target individually to determine how accurately the 

system verges toward the targets. 
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6.2.2 Unbalance brightness Conditions 

 

Figure 6-8: A tomato setup used in evaluating the performance of the platform. 

The second experiment was a qualitative and quantitative test that used an artificial setup 

for tomato fruit detection to evaluate the pyramid NCC (PNCC) algorithm and the 

platform (Figure 6-8) to test the performance of the system under different lighting inputs 

between the master and slave cameras and depth measurements. This experiment 

involved three different configurations, where the slave camera’s IRIS status was fully 

open in all configurations. Here, the difference was only in the state of the master 

camera’s IRIS, i.e., fully opened, one-quarter opened and half opened. There were four 

targets in these configurations with different depths and positions, where the master 

camera was manually fixed on the target. Then, the vergence controller algorithm was 

executed for the slave camera to verge on the target, whose depth was recorded. The 

position of the tomato was set within the calibrated range of the platform (minimum to 

maximum range: 40–200 cm). Note that the position of the tomato was determined using 

a measuring tape. 
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6.2.3 Depth estimation experiment 

 

Figure 6-9. ArUco pattern on a calibrated paper. 

The third experiment was designed to evaluate the accuracy of the depth estimation of the 

algorithm implemented in the active stereo vision platform by setting the baseline to four 

values (10, 20, 30 and 40 cm) to evaluate the effect of baseline length on the depth 

measurement. Figure 6-9 shows the pattern attached to a stand. The pattern was placed at 

various depths (40–200 cm at 20 cm intervals). The pattern was placed on various 𝑋-axes 

to justify the accuracy of the platform. The measurement was repeated 10 times for each 

interval, where the starting point of the slave camera was adjusted to the zero position 

during each measurement. The purpose of resetting the starting point of the camera to the 

zero position was to evaluate the performance and repeatability of the vergence controlller 

to verge on the fixation point. Consequently, the experiment was repeated 360 times to 

accommodate all baselines and interval conditions.  

6.2.4 Performance comparison 

The experimental system was compared to the work of Zhang and Tay (2011), in which 

the image resolution is 200×200 pixels with a three-level pyramid (baseline: 24 cm). Note 

that we used the same configuration for our system to compare the algorithms. 

The accuracy and repeatability of the platform was tested by comparing the compression 

of the proposed system, the ZED stereo camera (Stereolabs Inc. San Francisco, CA, USA) 
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and the Intel RealSense Depth Camera D415 (Intel Corp., Santa Clara, CA, USA). In this 

evaluation, the same depth configuration is used as the setup described for the depth 

estimation experiment. 

6.2.5 Small object depth detection 

 

Figure 6-10. Estimating depth of a small object (distance: 150 cm). 

Figure 6-10 shows the configuration of the fourth experiment. The main purpose of this 

experiment was to compare the performance of the three sensors (ZED, Intel RealSense 

D415, and our system) by detecting the depth of six small targets (1.2–2.4 cm). These 

objects were placed 150 cm away from the sensors. Then, the estimated depth and ability 

to measure the depth were recorded. 
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6.2.6 Field experiments 

 

Figure 6-11: The greenhouse experiment setup.

Finally, the system is tested in the field with a real tomato in a greenhouse. Where the 

system place in front of the tomato trees (Figure 6-11). Two scenes were set to test the 

vergence controller the first one with four target at distance between 100 and 105 cm and 

the second scene with six targets at distance between 85cm and 95 cm that make the scene 

more crowded (Figure 6-12). Gaze on the tomato was done manually, by selecting the 

target in the screen then the gaze controller fixes the centroid of the target to the fixation 

point of the system. After the master camera fully gazed on the target the vergence 

controller turn on to verge on the targets. The setup of the vergence controller is full 

resolution image (2080 1040), the template size was set to 150 150 and the pyramid 

layer set to seven layers. 
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Figure 6-12: two scenes used in testing the vergence controller and platform. (a) Four tomatoes setup (100 – 105cm) 
(b) Six tomatoes setup (80 – 95 cm).

6.3 Results and Discussion 

6.3.1 PNCC results 

Here, the results of the vergence controller algorithm are presented and discussed. Using 

the PNCC algorithm to verge the slave camera to the fixation point of the master camera 

has many advantages, where the correlation between both images became more robust 

and accurate under different lighting conditions and similar repeatable features in the 

scene. 

The template shown in Figure 6-7 was used to evaluate the reliability of the algorithm. 

Note that the template has a pattern that can deceive the algorithm. Moreover, some 

template-matching algorithms, such as SAD and SSD, are sensitive to illumination 

changes (Gräßl el at., 2003); therefore, the experiment included changing the illumination 

input to the master camera by controlling the IRIS.   
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Figure 6-13. Output of PNCC algorithm at target 4 in the template (target depth: 1.5 m). 

The results shown in Figure 6-13 are the output of the verged slave camera on target four 

obtained using the PNCC algorithm, where the process began at level zero and increased 
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to level seven (image sizes of 16×8 and 2048×1080). Note that the output levels are 

smaller than the actual image due to spatial convolution windowing. The results show 

how the pyramid algorithm helps fix the slave camera’s gaze by referencing the master 

camera’s fixation point. The pyramid algorithm was used to focus the correlation on the 

target at coarser levels (levels 0–4) and control the precision of the output using finer 

levels (levels 5–7). The results are shown in Figure 6-14. The template has multiple 

targets that are similar in terms of shape, which confuses standard NCC relative to 

determining the target. The final verge on the fixation point has an error of ±10 pixels 

due to the controller’s behavior. This error may occur due to the resolution of the motors, 

which is 12-bit (±0.088°)  for pan and 10-bit (±0.29°) for tilt. Consequently, this may 

affect depth estimation performance slightly despite the fact that the cameras have a high 

resolution (4.4 MP) that help in improving the align the center of the target. 

As shown in Figure 6-13, there are four peaks that demonstrate sharp rises through the 

levels, and, in level 7, these peaks are (300, 0.86), (572, 0.83), (807, 0.82) and (986, 0.98) 

from left to right, respectively. These peaks are the four patterns in the template with 

nearly equal intensity, and these patterns lie on the same horizontal line. Note that this 

occurs for nearly all patterns in the template. In some cases, the system verges on the 

pattern with high error in the final fixation point, and this is due to differences in the 

perspective view of the master and slave cameras at large angles. This error depends on 

the shape of the target, e.g., a cube target will have different shadows at different side, 

which consequently leads to increase the error during verge process.  

Another issue that occurs when using the PNCC algorithm is the selection of the template 

size. The size of the template determines the precision of the target’s position in the slave 

camera. A large template leads to a slight shift in the position due to extra neighbor pixels, 

which results in over-computation of the target’s features. This also occurs if the template 
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is small as there is insufficient information to consider during the search, which leads to 

poor verge on the target. The target size in the image varies depending on its position in 

front of the camera, i.e., distant targets are smaller and vice versa. Generally, to realize 

accurate vergence controller, the window size should be adaptive to the size of the target, 

which is determined by the number of the pixels. Therefore, controlling window sizes 

will be the focus of future research.  

 

Figure 6-14. Error in pyramid levels when the system is fully verged on the fixation point (pattern number 4). 

One disadvantage of using a pyramid in template matching is that the target search 

process depends on the course levels of the pyramid (i.e., the top), where, if the output 

location of the target at the course level is in the wrong position, the rest of the search in 

subsequent layers will be in this incorrect region. Typically, this occurs when testing the 

system in a busy environment. Furthermore, the system fails when both cameras rotate 

more than 35°, where the perspective of both views become large which leads to failure 

in vergence controller. In some cases, the vergence controller tracking is overcome if the 

object is spherical.  
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6.3.2 Unbalance lightning conditions for Master and Slave 

 

Figure 6-15. Different Brightness between the master and slave images. 

In this experiment, the PNCC algorithm was tested against changing brightness levels 

between the master and slave cameras. Figure 6-15 shows the three lighting conditions 

input to the master camera (lighting conditions for the slave camera were unchanged). 

This setup helps identify the robustness of the algorithm under different lighting 

condition, e.g., if one camera faces the light source and the other camera light source is 

behind the other camera, the camera facing the light source will have a darker image due 

to limitations in camera dynamic range.  
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Figure 6-16. Verge at target under three lighting conditions by controlling camera IRIS. 

Figure 6-16 shows the output of level 7 when the system verged on the target under 

different lighting conditions for the master camera. Here, the vertical dashed line 

represents the center of the image (where the target should be located). The error was 

calculated by measuring the difference between the centers to the peak of the PNCC 

output. The error was 0.71%, 1.3% and 1.9% for the equal, one-quarter and one-half IRIS 

configurations between the master and slave cameras, respectively. These errors could be 

due to the arithmetic precision of the PNCC calculations (± 1 pixel), wherein some steps 

are required to use an integer rather than a float. Alternatively, these errors could be due 

to the controller margin error (±10 pixel) that was set to stop the isolating.  Considering 

the camera used in this work (i.e. 12-bit which has over 4,000 tones) the image processing 

algorithm will not lead to large error. 

These results demonstrate promising performance in a practical application. The results 

of this experiment are significant for computer vision and robotics fields because, in 
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practical application, many noise sources exist, and it is difficult and expensive to control 

all of them, especially in computer vision implementations. 

6.3.3 Depth estimation results 

 

Figure 6-17. Vergedepth versus true depth for four baselines. 

The accuracy of the vergence controller depth is influenced by the accuracy of the 

mechanical joints and encoder resolution of the platform. A quantitative measurement 

was performed to evaluate the accuracy of the system. Figure 6-17 shows the depth 

measurements results with the standard deviation (error bar) for various baselines. In 

Section 6.1.3, the behaviour of the measurement was explained theoretically, and the 

experimental results validate the stated theory. The results show that the error and 

estimated depth are directly proportional to each other, where a rise of either of these 

factors results in an increase in the other one. Here, the depth is inversely proportional to 

the verge angle, where an increase in-depth reduces the verge angle. On the other hand, 

the baseline length is directly proportional to the verge angle, where any expansion in the 

baseline results in a larger verge angle. Overall, these observations are summarized in 

Figure 6-18. This behavior is clearly shown in Figure 6-17, e.g., the estimated depth of 

the target at 200 cm is improved dramatically by increasing the baseline (10, 20, 30 and 
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40 cm) because the estimated depth is 172.22 ± 3.45 cm, 196.83 ± 9.1 cm, 198.02 ± 2.7 

cm and 198.64 ± 2.06 cm, respectively. The overall results show that baseline size yields 

limited improvement relative to depth estimation due to the relationship between the 

verge angle and the depth estimation.  

The large standard deviation formed in baseline 30 cm and baseline 40 cm is partially 

related to the controller margin error (±10 pixels) and the mechanical assembly, such as 

error in the position of the camera origin. In chapter 5, error in the mechanical joints was 

measured and analysed, and the overall error was ±0.01 cm. Moreover, depth estimation 

is related to the resolution, where finer resolution results in a more precise vergence 

controller and finer depth measurement. For example, if the target at 100 cm and moves 

to a new position that is 120cm perpendicular to the baseline the depth measure at travel 

of 1.5 cm. For high-resolution images, the system measures the target in millimetres (100, 

101.5, 103.0,  .., 120 ± 1.0 cm); however, for low-resolution images, the system measures 

the target in centimetres (i.e. 101, 102, .., 120 ±1 cm). 

 

Figure 6-18. Error relationship between verge angle, depth estimation and baseline. 

Table 6-2 summarizes the depth estimation results with four baselines, i.e., 10–40 cm 

with an increment of 10 cm. The table shows the average depth, standard deviation in 

centimetres and the Mean Absolute Error (MAE) in percentage. For the 10 cm and 20 cm 

baselines, the MAE increased sharply as the depth increased. For the 30 cm and 40 cm 



125 

 

baselines, the MAE increased slightly with increased depth. However, for baselines 

greater than 30 cm, the minimum depth should be set to 60 cm because, at most positions 

less than 60 cm, the system failed to verge on the target due to the large perspective view 

between both images. 
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Table 6-2: Depth estimation summary of four baselines 

True  
Depth 

Baseline 10 cm Baseline 20 cm Baseline 30 cm Baseline 40 cm 

Avg. depth ± 
std (cm) 

MAE 
(%) 

Avg. depth ± std 
(cm) 

MAE 
(%) 

Avg. depth ± std 
(cm) 

MAE 
(%) 

Avg. depth ± std 
(cm) 

MAE 
(%) 

40 41.93 ± 4.1 2.36 39.96 ± 0.64 0.38 39.89 ± 0.37 0.31 Fail 0.00 

60 59.5 ± 2.01 1.55 60.14 ± 0.65 0.48 60.22 ± 1.02 0.77 60.35 ± 0.89 0.69 

80 79.68 ± 1.69 1.33 79.89 ± 0.82 0.69 80.02 ± 0.83 0.64 79.99 ± 0.89 0.55 

100 96.47 ± 2 3.67 100.49 ± 1.96 1.57 100.19 ± 0.85 0.67 100.35 ± 0.95 0.71 

120 119.37 ± 4.04 2.77 120.08 ± 1.71 1.43 119.49 ± 1.33 1.24 119.29 ± 0.76 0.88 

140 129.82 ± 5.22 10.18 139.06 ± 3.51 3.03 139.43 ± 2.14 1.52 139.43 ± 1.00 0.84 

160 157.07 ± 11.57 8.24 160.66 ± 3.55 2.76 160.39 ± 1.96 1.50 159.99 ± 1.06 0.86 

180 158.99 ± 9.99 21.00 178.66 ± 5.56 4.98 180.21 ± 2.12 1.73 179.56 ± 2.14 1.60 

200 172.22 ± 3.45 27.77 196.83 ± 9.1 8.10 198.02 ± 2.7 2.98 198.64 ± 2.06 2.12 
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Another depth estimation experiment was performed with artificial tomato setup (Figure 

6-8) to evaluate the reliability and repeatability of tracking a target. Here, the master 

camera was fixed on the target, and the slave camera had a different starting point. The 

baseline was set to 20 cm, and the measurement was repeated 10 times for each target. 

Table 6-3: Depth estimation with artificial tomato setup (baseline: 20 cm). 

Target  
True depth 

(cm) 
Avg ± std (cm) 

MAE 
(%) 

1 150 ± 0.2 148.91 ± 2.13 2.15 

2 140 ± 0.2 139.81 ± 1.25 1.11 

3 135 ± 0.2 132.24 ± 1.73 2.76 

4 126 ± 0.2 125.97 ± 0.86 0.68 
Table 6-3 shows the experimental results of the tomato depth estimation. As can be seen, 

the results are nearly the same as the results (e.g. average and standard derivation) of the 

previous experiment (Table 6-2). This experiment illustrates how the platform can 

perform under different configurations. Moreover, in this experiment, the target was 

fixed; therefore, the results demonstrate the reliability (almost equal to ± 3 cm) of the 

PNCC algorithm and the platform is.    

 

Figure 6-19. The output of fully verged on two different targets. 
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Thus, we conclude that the overall performance of the system depends on the size of the 

baseline. When the baseline is less than 20 cm, the error in-depth estimation increases, 

leading to poor results. However, when the baseline is set to a value greater than 20 cm, 

depth estimation is improved to up to ±2.1 cm at a depth of 200 cm. 

Comparison of experimental platform to previous work 

Table 6-4 compares the depth estimation outputs of our system and Zhang and Tay’s 

system. The system configuration, such as baseline, image size and pyramid levels, was 

set according to Zhang and Tay’s system (baseline: 24 cm, image size: 200×200, three 

pyramid levels). The results show that our system demonstrates slightly better 

improvement in terms of depth estimation because the average absolute error is better. In 

terms of standard deviation, our system outperformed Zhang and Tay’s system in all three 

runs, where our system achieved an average error of ±1.83% compared to ±3% for 

Zhang and Tay’s system. It is apparent that Zhang’s system shows a large standard 

deviation when it comes to measuring depths closer to the system. As a result, distortion 

of the perspective view of the object increases in the log-polar space.  

Table 6-4: Depth estimation results of Zhang and Tay’s and proposed systems. 

True 
Depth 
(cm) 

Zhang and Tay’s system Our system Average error 
± std dev 

differences 
(%)  

Average 
estimated 
depth (cm) 

Average error 
± std dev (%) 

Average 
estimate
d depth 

(cm) 

Average 
error ± std 

dev (%) 

80 84 5 ± 2 80.66 1.13 ± 1.74 3.87 ±  0.26 

100 106 6 ± 3 101.17 1.57 ± 1.73 4.43 ±  1.27 

180 182 3 ± 3 179.87 2.78 ± 1.83 0.22 ±  1.17 

Comparison of experimental platform with exciting systems 

Table 6-5 shows the depth computation results obtained by the three sensors (ZED, Intel 

Realsense D415, and our system). The results show that our system performs comparably 

to the other two sensors. At a depth of 200 cm, the ZED camera demonstrates the largest 

std (±4.37 cm), followed by our system (±2.06 cm) and the Intel D415 (±1.63 cm). Note 
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that the results of the ZED camera and Intel D415 meet the specifications given in their 

respective user manuals. The D415 consistently overestimated distance, and our system 

underestimated distance. Our system provided the lowest MAE (2.12%), followed by the 

ZED camera (3.5%) and D415 (2.7%). However, our system’s performance is considered 

poor compared to both systems because the depth is less than 100 cm, which could be due 

to the distortion in the perspective view that occurs when both cameras rotate greater than 

35°.  

Table 6-5: Depth estimation of ZED camera, Intel D415, and our system at baseline 40 cm. 

True 
Depth 
(cm) 

ZED camera RealSense D415 Vergence cue (40 cm) 

Avg. depth  
± std (cm) 

Mean 
Absolu

te 
Error 
(%) 

Avg. depth  
± std (cm) 

Mean 
Absolut
e Error 

(%) 

Avg. depth  ± 
std (cm) 

Mean 
Absolute 
Error (%) 

100 100 ±1.37 0.9% 100 ± 0 0.00% 100.35 ± 1.26 0.94% 

160 160 ± 4.11 3.5% 161.4 ± 0.93 1.40% 159.99 ± 1.06 0.86% 

200 200 ± 4.37 3.5% 202.7 ± 1.63 2.7% 198.64 ± 2.06 2.12% 
 The three sensors adopt different approaches to compute depth. In our system, the depth 

estimation depends on mechanical joints to position the cameras, which may be 

considered a disadvantage when depth estimation of multiple targets must be performed 

repeatedly for each individual target. In contrast, the other sensors estimate the depth of 

all targets in a single run. Overall, our system demonstrates depth measurement 

performance that is comparable to that of traditional stereo vision systems. 

Small object depth estimation 

In this experiment, the depth of small objects was measured using the three sensors 

(Figure 6-10). Table 6-6 shows the depth measurements. Here, the ZED camera failed to 

detect the objects and the Intel D415 managed to detect the two largest objects (diameters 

greater than 2 cm) with a reliable measurement of std ±0.60cm and ±1.4 cm for objects 

with diameters of 2.4 cm and 2.2 cm, respectively. Note that our system detected all 

targets. The output of our system shows that the MAE and std reduced as the diameter of 
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the objects increased, where the MAE and std values dropped from ±2.58% to ±1.06% 

and ±2.49 cm to ±1.12 cm, respectively. This variation was due to the size of the windows 

and controller error. Our system estimated the depth of all targets because the search 

process was performed for one target at a time, which depends on the features of the target 

directly from the image rather than computing the disparity of the entire scene, as is the 

case with the Intel D415. 

Table 6-6: Depth estimation of ZED camera, Intel D415, and our system at baseline 40 cm. 

True 
Depth 
(cm) 

ZED camera Intel D415 Vergence cue (40 cm) 

Avg. depth  
± std (cm) 

Mean 
Absolute 
Error (%) 

Avg. depth  ± 
std (cm) 

Mean 
Absolute 
Error (%) 

Avg. depth  ± 
std (cm) 

Mean 
Absolute 
Error (%) 

100 100 ±1.37 0.9% 100 ± 0 0.00% 100.35 ± 1.26 0.94% 

160 160 ± 4.11 3.5% 161.4 ± 0.93 1.40% 159.99 ± 1.06 0.86% 

200 200 ± 4.37 3.5% 202.7 ± 1.63 2.7% 198.64 ± 2.06 2.12% 
 

6.3.4 Field experiment results 

Two types of results are evaluated in this experiment: (I) the depth estimation of each 

target and (II) the verge on the target by computing the disparity.  Figure 6-20 and Figure 

6-21 show the output of the vergence controller experiment when the system verge on the 

fixation point. Figure 6-20 shows scene one where there are four tomato fruits while 

Figure 6-21 shows scene two with six tomato fruits. The difference between scene one 

and scene two is that scene two contains more targets that are close to each other which 

challenge the system to verge correctly on the fixation point of the gaze. In both the 

scenes, the system manages to verge on the target with an accuracy of ±10 pixels. This 

range is due to the control margin set in the controller to stop the isolation and also 

supported by the lab evaluation.  
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Figure 6-20: The output of vergence controller on scene 1. 
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Figure 6-21: The output of vergence controller on scene 2 

The vergence controller performs reliably well when the master camera fully gazed on 

the target and stay still, but when the master camera moves from one target to another, 

the vergence controller lose the tracking of the master camera particularly when the 

master camera on the leafs. The reason is that the background shares a common intensity 

value. However, this is not a big issue as long as the vergence controller verged correctly 



133 

 

on the final fixation point, or this could be avoided by suspending the vergence controller 

when the master camera changes the targets. 

The second evaluation is the depth estimation, Table 6-7 shows the result. The platform 

was set at a baseline of 20 cm, and the targets were between 85cm and 105cm. The depth 

estimation in the greenhouse has larger std value compared to the lab result, which is due 

to the noise present in outdoor environments. For example, for the target at scene two, the 

std is ±1.32 cm at a depth of 85 cm which is 1.5 times bigger than the result of the lab. 

The increase in the std is due to the presents of noise such as lighting intensity, the effects 

of the dynamic range that the camera has a low dynamic range.    

Table 6-7: Depth estimation for field experiments 

Scene 1 

Target  True depth (cm) Avg ± std (cm) 

a 96.8 ±1.02 

b 96.0 ±0.71 

c 101.8 ±0.84 

d 104.6 ±1.14 

Scene 2 

Target  True depth (cm) Avg ± std (cm) 

a 85.6 ±1.32 

b 91.2 ±1.30 

c 86.8 ±1.30 

d 94.8 ±0.45 

e 85.0 ±0.71 
 
 

6.4 Conclusion 

In this chapter, the PNCC algorithm for vergence controller has been studied. The 

proposed model was integrated with a binocular platform that has five degrees of 

freedom. The model was designed to overcome the problems in the traditional NCC 

algorithm by introducing a Gaussian pyramid method.  Improvements were observed with 

respect to the accuracy and reliability of the controller and stability of fixation on the 
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target in respect to the work of Zhang and Tay (2011). The verge on the target in a 

complex environment and presence of similar shapes of the proposed algorithm is more 

robust than conventional NCC and other template-matching techniques where the 

maximum difference is ±10 pixels. Our experimental system demonstrates good verge 

on the target under different lighting conditions between the master and slave cameras 

while maintaining the same output when both cameras have the same IRIS configuration 

(i.e. the error increase to 1.9% when the master camera IRIS half opened). 

Through multiple quantitative and qualitative experiments, the experimental system 

demonstrated good depth estimation with standard deviation of ±2.06 cm at a worst-case 

depth of 200 cm, where the depth estimation improved when the baseline was greater than 

20 cm MAE equal to 2.21% (Table 6-2). In addition, the system showed improvement 

compared to an existing method in terms of depth estimation and reliability, where the 

overall highest percentage of error at three different depths was 4.43% at 100 cm. The 

experimental system was also compared to other stereo vision sensors, and better depth 

estimation results were obtained despite a minor disadvantage of the system, i.e., it can 

only obtain the depth of one target at a time, thereby making it slower than orthogonal 

stereo vision systems.  

The experiments conducted showed that the system requires certain improvements to 

ensure that the cameras perform more precisely when rotates more than 35 degrees. 

Therefore, a future research question can be posed which is how to minimize the 

perspective distortion error. 

However, another experiment was conducted to test the capability of estimating the depth 

of a small objects (e.g., 1.2 and 1.4 cm objects), which are difficult to estimate with most 

stereo vision systems. The results indicate that our experimental system demonstrates 
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reliable and robust depth estimation for such targets at a standard deviation of ±1.12 cm 

at 150 cm.  

The algorithm and the platform was tested in outdoor environment with a tomato bush. 

The result shows that the system operates outdoors, in natural lighting, with a std ±1.32 

cm at 85 cm with a verge error of ±10 pixels. 

In future, the proposed PNCC algorithm could be improved by implementing an adaptive 

template size, which will allow verge on the fixation point to be more precise when it 

changes based on the target’s size and position. In addition, the experimental system will 

be tested in a practical environment for estimating the position of tomatoes fruit 

harvesting process. 
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Chapter 7 
 

7 Visual Attention Model Based Active Binocular System for 

Harvesting 
 

In this chapter, we propose a cognitive model for an active binocular platform with five 

degrees of freedom that is integrated with a manipulator arm. The model is a combination 

of a visual attention models that generates a saliency map, a gaze control system, a 

vergence control system chapter 5 (Mohamed et al., 2018a), and a 3D reconstruction 

algorithm chapter 4 (Mohamed et al., 2018b). The model is designed to harvest tomatoes; 

therefore, it generates a cognitive map with information concerning the probability of the 

target being a tomato, its 2D position, the shape of the target, the 3D location of the target, 

using the verge algorithm, and information concerning the grasping affordance using the 

corresponding stereo images. As far the authors are aware, we are the first to implement 

a cognitive model for harvesting tomatoes using active binocular vision. The advantage 

of using visual attention in harvesting is that the visual attention is focussed on a special 

target in the scene; the background is uniform, with leaves, ground, and sky, while the 

fruit is distinctive from the rest of the scene. Moreover, the saliency map focuses on the 

salient region despite the enormous variations in the outdoor illumination (e.g. sunny, 

partially cloudy, overcast or shadowy). This process quickly provides information 

concerning the possible target that can be used in further processes (e.g. classifying the 

maturity of the tomato). One motivation for using a visual attention model is to help save 

computational power and time compared to the traditional process of sliding windows 

over an image. Moreover, using an active binocular vision system allows the surrounding 

environment to be explored quickly. 
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The rest of the chapter is divided as follows. First, the proposed model is presented in 

detail; then an evaluation and experiment are presented; and, finally, a discussion and 

conclusion are given. 

7.1 Tomato colour maturity 

Tomato maturity can be distinguished based on the level of redness. Tomatoes pass 

through different stages to be ready for picking (Agrawal et al., 2016). Figure 7-1 shows 

the stages of readiness that tomatoes goes through until being ready for picking. 

According to Kaur and Guptata (2017) and farmer in tomato business10, the tomato fruits 

being picked is shown in Figure 7-1 (d), (e) and (f); therefore, the main task conducted in 

this part was to detect the tomato fruits that are ready for picking as show in the Figure 

7-1 (d), (e) and (f).  

 

Figure 7-1: Tomato maturity stages. 

                                                
10 Farmers and expertise are those who monitor the farming labs in Plymouth university. 
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7.2 Attention based vision for grasping tomato 

The visual attention model is integrated with an active binocular platform. Two cameras 

are used in the algorithms: the master and slave cameras. The master camera is used to 

explore the scene and identify targets, while the slave camera is used to compute the 3D 

information regarding the targets. The controller of these two cameras depends on the 

visual attention model. The target information is used to update the cognitive map; this 

information describes the target, including the probability that the target is a tomato, the 

3D position of the target, and information pertinent to grasping. The target information is 

computed by processing different maps, i.e., (1) the saliency map to process the master 

image and compute the 2D position of the target, (2) the gaze and vergence maps to 

determine the 3D positions of the targets generated by the saliency map, and (3) the point 

cloud map, which uses stereo vision to compute the 3D target information. The cognitive 

map is linked to the manipulator arm, which is used to grasp the target based on the 

provided information. Appendix C explained the integration between the platform and 

GummiArm. 
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Figure 7-2: The proposed visual attention model. The entire information about the target is store in cognitive map. 

Figure 7-2 shows the layout of the visual attention model, starting from capturing an 

image using the master camera. A saliency map is used to compute the salient features in 

the captured imaged; then a probability model is used to check if the targets are tomatoes. 

Later, the system verge on the target with the highest probability is used to compute the 

3D position, and a point cloud process is used to compute the grasping affordance (Song 

et al., 2016). Finally, this information is updated in the cognitive map. The system has 

two modes where when explore mode is on the system compute the saliency map every 

time it verge on target. When the explore mode is off the system first verge on all targets 

before it captures new image from the master image. 
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7.2.1 2D Saliency map 

The saliency map is the output of the visual attention model and contains the salient 

features of the master image. The model used in this study is a bottom-up model based 

on the work of Itti et al. (1998). The image input to the model is a colour image 

decomposed into different representations, such as colour, intensity, and edges, which are 

processed in parallel (Figure 7-3). A feature map is computed from each representation.  

 

Figure 7-3: Proposed Saliency map architecture. 
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Colour Feature maps 

There are many colour spaces that are excited in computer vision (e.g., red–green–blue, 

cyan–magenta–yellow, and hue–luminance–saturation). These colour spaces are used for 

different applications depending on the information required to process an image. The 

best-known colour space is RGB; this colour space contains three channels representing 

the values of red, green, and blue (Figure 7-4(a)) that describe the wavelength of the 

colour.  Figure 7-4(b) shows an image from a greenhouse where the output channels are 

affected by the surrounding lighting. The HLS colour space is widely used in computer 

vision because it separates the luminance (L) and the chrominance hue (H) and saturation 

(S); HLS makes descriptions of the colour easier (Dawson-Howe, 2014). Another colour 

space that attempts to match the psychometrics of human vision is LAB; this colour space 

has a channel to store the values of the lightness (L) and the colour opponents green–red 

in channel A and yellow–blue in channel B.   

 

Figure 7-4:  RGB image with range of colour, and split channel for red, green and blue. I represent the intensity 
image. (a) show a ground truth of the colour. (b) Image from the dataset shows the separate channels with the effect 

of lighting. 

In this study, the colour space used to produce the colour feature maps is RGB. Starting 

with the RGB colour space, the three channels are split into r, g and b, which represent 



142 

 

red, green and blue, respectively. First, the three channels are processed to compute the 

maximum value per pixel location, where the output of a single channel 𝑅𝐺𝐵𝑚𝑎𝑥 has the 

same size as the original image and any pixel less than or equal to zero is replaced by 

0.0001 to avoid dividing by zero in subsequent processes. 

Applying the colour opponent, as done in the LAB colour space, two feature maps are 

computed: red–green and blue–yellow (RG and BY, respectively). As can be seen in 

Figure 7-4, the red channel indicates that the red colour has a maximum value of 255 

(white), and the green colour has the lowest value 0 (black); the opposite is true in the 

green channel. By computing the differences between the red and green channels, any 

information about the colour green is removed. The output RG is normalised by 𝑅𝐺𝐵𝑚𝑎𝑥 

to ensure that the output is between 0 and 1 (Eq. (7.1)). Figure 7-5 shows the output of 

Eq. (7.1) . 

In the same colour space, the yellow (y) channel is computed by taking the minimum 

value between the red and green channels in an element-wise operation. Then, the blue–

yellow opponent is computed and normalised (Eq. (7.2)) (Engel et al., 1997; Krantz, 

1975). Figure 7-5 shows the colour opponent between blue and yellow.  

 𝑅𝐺 =
𝑟 − 𝑔

𝑅𝐺𝐵max
 (7.1) 

 𝐵𝑌 =
𝑏 − 𝑦

𝑅𝐺𝐵max
 (7.2) 

The above colour analysis is used to distinguish between each colour wavelength; for 

example, when cancelling the green light, the redness can be weighed, and the opposite 

is also true (Krantz, 1975). The same methodology applies to the blue and yellow colours. 

The intensity image is a grey scalar image showing the average of the three channels (Eq. 

(7.3)). The intensity image is used to extract the brightness features of objects because 



143 

 

previous studies have shown that attention is related to intensity (Miau et al., 2001; 

VanRullen, 2003). 

 𝐼 =
𝑟 + 𝑔 + 𝑏

3
 (7.3) 

 

Figure 7-5: Colour opponent where the green subtract from the green and the same for the yellow subtract from the 
blue channel. 

Orientation feature map 

The orientation feature map adds extra details to the saliency map to help focus on the 

shapes and the contrast. Processing the edge as a feature gives the saliency map the ability 

to draw a boundary around the feature extracted using the colour and intensity. 

Based on the work of Itti et al. (1998), the edge detection in our study was based on a 

Gabor filter combined with a Gaussian pyramid. The Gabor filter is used to process the 

complicated textures in an image to detect and segmentation features (Kolekar, 2002). 

The implementation of the Gabor filter in this study is used for the intensity feature map 

𝐼 and generates four orientation maps, 𝑂(𝜃) (𝜃 𝜖 {0°, 45°, 90°, 135°}). A Gaussian 

pyramid is used to construct nine layers, 𝜎 𝜖 [0,1,… , 8]. The final output of the edge 

feature map is 𝑂(𝜎, 𝜃). Figure 7-6 shows the output of the orientation feature map 

process. 
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Figure 7-6: Orientation Feature Map outputs. Four orientations with right levels outputs. Note that the images size 
are reduces with the increase of the level, but to make it more clear the size keeps the same. 
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Centre-surround operator 

 

Figure 7-7: Center-surround for feature enhance algorithm 

The area of contrast in the feature maps (𝑓) is computed by applying the centre-

surrounding model (Driscoll et al., 1998). The centre-surrounding model is an algorithm 

mimicking the visual cortex in locating the salience region in a scene, where the visual 

cortex depends on the stimuli and the region surrounding the stimuli (Driscoll et al., 

1998). That is, the centre-surrounding process boosts small features that are surrounded 

by different intensities. Gaussian pyramids (Levitt and Lund, 1997) are used to process 

these features by initially creating nine levels of the feature map, where each level is half 

the size of the layer below. These layers are divided into fine layers and coarse layers 

(𝑐 ∈ {2,3,4} and 𝑠 = 𝑐 + 𝛿 with 𝛿 ∈ {3,4}, respectively (Itti et al., 1998)).  

The centre-surrounding differences (𝑑) is computed by taking the difference between 

layers, 𝑑 = 𝑓𝑐 ⊖𝑓𝑠. The operation ⊖ is a process that subtracts two matrices element by 

element. Note that the size of 𝑓𝑠  is resized to the size of 𝑓𝑐 . Figure 7-7 shows the algorithm 

for the centre-surrounding operation.  
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Figure 7-8:  Center surrounding operation output. Six feature maps for each input with different six sizes. (Note that 
the increase of the level the size of the output is drop but in case the clarity a constant size is set for all levels) 

The outputs from the centre-surrounding operation are six feature maps with different 

sizes from the input feature maps. Figure 7-8 shows the output of the centre-surrounding 

operation for three feature maps: the (I) red–green and (II) blue–yellow colour opponents 

and (III) the intensity feature map. The centre-surrounding operation boosts the features 

in the feature maps; this is clearly shown in the RG feature map, where the tomato pixels 

(close to 255) are surrounded by lower pixel values and the tomato pixels have been 
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increased, while the surrounding pixels have been reduced to darker pixels (zero). 

Because the centre-surrounding operation boosts the small surrounding features, the 

tomato has been converted to a bigger pixel, and the surrounding pixels have become 

darker in the BY feature map. This output is shown at Level 0. 

Combine feature maps (saliency map) 

Before combining the centre-surrounding difference feature maps 𝑓, preprocessing needs 

to be done to normalise, resize and combine 𝑓 into a conspicuity map, 𝐶𝑚𝑎𝑝. The 

normalisation process uses min–max normalisation (Cao et al., 2016) and linearly scales 

the feature maps to ranges of  [−1,1] or [0,1]. This operation is used to lower the noise in 

the feature maps, and in our case, the range is set to [0,1]. After normalisation, the average 

local maximum �̅� is computed by segmenting 𝑓 into small predefined regions, and the 

global maximum value 𝑀 is computed. The normalised feature map is multiplied by 

𝐶𝑚𝑎𝑝 = 𝑓(𝑁) × (𝑀𝑁 − �̅�𝑁)
2 (Itti et al., 1998). This operation is referred to as a 

uniqueness weight (Frintrop, 2006) and is used to enhance the feature map with the most 

salient feature while minimising feature maps with many salient features—for example, 

if the salient feature depends on the orientation instead of the colour. Finally, all feature 

maps are resized to the size of the original image and summed to generate 𝐶𝑚𝑎𝑝. 

The uniqueness weight operation has a problem that has been pointed out by Itti el at. 

(1998). Taking the differences between the global maximum and the local maximum will 

only work if there is one maximum peak; however, if there are two peaks with equal 

maxima, the operation will return zero and ignore the entire feature map (Frintrop, 2006). 

There are a few workaround solutions to this problem that have been proposed by Itti el 

at. (1998) and Frintrop (2006). The proposed method by Frintrop (2006) is to divide the 

feature map by the square root of the local maximum instead of using the global 
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maximum. Applying this method requires a tuning process to set a minimum threshold 

for the local maximum. In Frintrop (2006), the threshold was set to 50% of the global 

threshold. In our study, we used the operation proposed by Itti el at. (1998); however, 

instead of computing the global maximum, we set it equal to one. 

 𝐶 = 𝑓(𝑁) × (1 − �̅�𝑁)
2 (7.4) 

 

Figure 7-9: Conspicuity maps of three input feature map. (a) colour, (b) intensity, and (c) orientation. 

The output of the combine and normalize operation is three conspicuity maps (the RGB 

colour feature map, an intensity feature map, and an orientation feature map) (Figure 7-9). 

These features are multiplied by assigned weights (the sum of the total assigned weight 

is equal to one); then, the final saliency map (𝑆𝑚𝑎𝑝) is computed by taking the sum of the 

four weighted conspicuity maps. The weights are used to control the contribution of each 

feature map to the final saliency map (Eq. (7.5)). The sum of the total weights is one. 

𝑆𝑚𝑎𝑝 =  𝐶(𝑅𝐺𝐵) ∗ 𝑤𝑅𝐺𝐵 +  𝐶(𝐻𝑆𝑉) × 𝑤𝐻𝑆𝑉 + 𝐶(𝐼) × 𝑤𝐼 + 𝐶(𝑂) × 𝑤𝑂 (7.5) 

Focus of attention 

The focus of attention (FOA) is the process used to determine the most salient region 

(MSR) in the saliency map. There are different approaches to finding the FOA. In the 

saliency map, the MSR is determined by finding the maximum value. The majority of 

published studies focus on this point by using a fixed shape, such as a circle or rectangle, 

for the FOA (Itti et al., 1998). Another algorithm for FOA is the flooding algorithm, which 

uses a segmentation process after the most salient point in the saliency map (Walther et 

al., 2002). This algorithm finds the shape of the region by searching through the pixels 
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neighbouring the most salient pixel; this produces a good result in the saliency map 

(Frintrop, 2006). This algorithm requires tuning the threshold parameter of the flooding 

algorithm to stop. 

Draper and Lionelle (2005) proposed another approach using a watershed algorithm to 

find the FOA. This algorithm does not require a tuning parameter (Frintrop, 2006). All 

the above methods can be used to detect a single SMR in the saliency map or to find 

multiple FOAs; this is referred to as inhibition of return (IOR) (Frintrop, 2006). 

The watershed algorithm was implemented in this study because it provides information 

concerning the target, i.e., the contour, radius, and position, and does not require 

parameter tuning. To use the watershed algorithm, the saliency map is scaled to be 

between 0 and 255 instead of between 0 and 1. The starting point of the watershed 

algorithm is the maximum pixel in the saliency map; then the algorithm searches for the 

region belonging to that pixel. 

The output of the FOA process is the location of the MSR (𝑥𝑠, 𝑦𝑠), the contour of the 

region 𝐶𝑠 and the radius of the region 𝑟𝑠. 𝐶𝑠 is used to cover the region in the saliency 

map to select the second maximum point in the IOR process. The location and radius are 

used to crop the target for use in the gaze and vergence stage. The target information 

computed during the IOR is used in the vergence control system, as explained in chapter 

5, to improve the verge on the target; using pyramid normalised cross-correlation 

(PNCC), the size of the target is used to determine the size of the template. However, 

because the IOR is used to find the pixel with the maximum value in the saliency map 

and then to cover those pixels with 𝐶𝑠, the limit for the IOR was set to 40% of the 

maximum salient region to stop the process from looping through all the pixels in the 

image. 
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A training model can be used to check if the output is a tomato using the RG and BY 

feature maps; the region of the saliency map can be checked in the feature map and used 

to support the saliency map output. 

Compute the probability of tomato using feature map 

In this study, a saliency map is computed to locate the salient region in a scene. The 

saliency map is used to detect the fruit due to its ability to detect the salient region in 

scenes where the most frequent occurrence is plants and leaves with a background of sky 

and ground. In this case, the fruit is counted as the salient feature in the scene due to its 

colour, shape, and smaller number of pixels. However, in many cases, there are other 

features that are in the scene and count as salient features (Figure 7-10 (c)). Such incorrect 

predictions can be due to the algorithm used to determine the FOA, where the search is 

for the pixel with the highest value. Another cause could be that the scene being processed 

has a non-regular background due to the distribution of leaves and the gaps between them 

allowing the sunlight to pass; this is, indeed, a salient feature, but an unwanted feature in 

our case. Figure 7-10 (b) shows the saliency map of Figure 7-10(a); as can be seen, the 

saliency map finds the most salient feature, which is the high-intensity light from the sun. 

 

Figure 7-10: Output of the saliency map in scene the attention of number three is not a tomato fruit but it's on leaves 
with high brightness. (a) the scene image (b) Saliency map. (c) Focus of attention. 

In general, the target of interest in this study is a ripe tomato, which tends to be a reddish 

colour; therefore, we use the RGB channel information to compute the probability of the 

region of interest selected by the saliency map being a tomato, 𝑤 𝜖 {0,1} (0 indicates non-

tomato and 1 indicates tomato). Using the information of the pixel to be checked, the 



151 

 

RGB measurement is 𝑥 = [𝑥𝑅, 𝑥𝐺 , 𝑥𝐵]. We use Bayes’ rule (Eq. (7.6)) to classify the 

pixel  as tomato or non-tomato (Prince, 2012). 

 Pr(𝑤 = 1| 𝑥) =
Pr(𝑥|𝑤 = 1) Pr(𝑤 = 1)

∑ Pr(𝑥|𝑤 = 𝑘) Pr(𝑤 = 𝑘)1
𝑘=0

 (7.6) 

The likelihood and the prior probability are computed as shown in eq.(7.7) and eq.(7.8) 

respectively (Prince, 2012).  

 Pr(𝑥|𝑤 = 𝑘) = Normx[𝜇𝑘 , Σ𝑘] (7.7) 

 

 𝑃𝑟(𝑤) = Bern𝑤[𝜆] (7.8) 

A linear regression is used to estimate the parameters 𝜇𝑘 , Σ𝑘  and 𝜆 (𝑘 𝜖 {0,1}) using pre-

labelled data during training. 

The result is classified as a tomato if the probability is greater than 0.5 (Pr(𝑤 = 1|𝑥) >

0.5) and as non-tomato if the probability is less than 0.5. This model has a drawback in 

that there is an overlap between the pixels that could lead to misclassifications; therefore, 

the average of the probability is computed around the chosen salient pixel.  

7.2.2 Gaze and vergence feature map 

The next maps in the visual attention model are used to compute the 3D position of the 

target using the active binocular system. In this process, called attention-based vision, the 

target is selected based on the visual attention model, and then the eye verge is based on 

that target (Solé Puig et al., 2013). In this process, two algorithms run in parallel: the gaze 

and vergence controllers. The gaze controller controls the master camera to align the 

fixation point with the target provided by the saliency map (i.e., it moves the master 

camera focal ray to match the centroid of the target). The vergence controller controls the 
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slave camera to track the master camera’s fixation point (i.e., it moves the slave camera 

focal ray to match the fixation point of the master camera). 

Both controllers use exponential functions to control the cameras based on a PNCC 

algorithm (for more details, see chapter 5). In chapter 5, one of the parameters used to 

improve the fixation on the centroid of the target in the PNCC algorithm was the template 

size, where a larger or smaller size leads to increases in the error. Therefore, in this work, 

the target size from the saliency map is computed to update the template size for both the 

gaze and vergence controllers. When the vergence controller verges correctly on the 

target, the 3D position of the target is computed. 

The saliency map provides a list of targets with the 2D location, contour, and radius of 

the target as well as its probability of being a tomato. The gaze controller chooses the 

target with the maximum probability, updates the template size, and moves the camera to 

the fixation point, which is the centroid of the target. The vergence controller runs in 

parallel to the gaze controller. The 3D position and the information from the saliency map 

of the target are updated onto the cognitive map. This process is repeated until all targets 

from the saliency map are visited. 

7.2.3 Affordance to grasping feature map 

When the system verges on the target, a stereo image is captured to compute the depth 

map and then convert the depth map into a point cloud. This process has been studied and 

evaluated in chapter 4. In this step, the generated point cloud is used to compute the 3D 

structure of the target and the probability of the grasping affordance. Because the 3D 

position of the target is known and the 2D position is known from the vergence controller, 

the point cloud is segmented based on these data to only retain the target of interest. 
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The iterative closest point (ICP) algorithm (Rusinkiewicz and Levoy, 2001) is used to 

compute the differences between the target point cloud and the ground truth point cloud. 

The ground truth point cloud is a 3D model of a tomato (note that the average tomato size 

was considered when generating the ground truth). The ICP algorithm computes the 

transformation between the target and the actual shape. The root mean square (RMS) is 

used to compute the difference between the two point clouds. The RMS describes how 

well the target matches an actual tomato. A smaller RMS indicates a higher similarity 

between the two objects. 

The size of the target and the total surface area of the target that is visible can be computed 

using the point cloud. This information is used to determine the grasping affordance and 

the actual position of the target by adding the radius of the target to the 3D position, 

because the vergence controller depth is estimated to the surface of the target, not to the 

centre of the target.  

7.2.4 Cognitive map 

The cognitive map is a dynamic map used to store the target data found by the feature 

maps. The cognitive map is updated with a target at every loop, where a loop starts with 

saliency map and ends when the system successfully computes the grasping affordance. 

Every target in the cognitive map contains three primary pieces of information: (I) the 2D 

probability computed by the saliency map, (II) the 3D position computed by the gaze and 

vergence controllers and (III) the grasping affordance computed from the point cloud. 

The target in the cognitive map has a lifetime for each specific cycle of the process. The 

lifetime is set based on the needs of the process. For example, the lifetimes of the targets 

in the cognitive map are sufficiently long for the manipulator arm to pick all the targets. 

The cognitive map is dsesigned to act as a brain for the robot by providing the required 
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information to reach the targets; this information helps the robot determine which target 

should be picked first, based on its location and probability of being a tomato. The robot 

limits are set within the cognitive map to process the targets and arrange them in order, 

from the easiest to pick to the hardest. For example, the workspace of the robot is defined 

to help determine whether the target is within reach.  

7.3 Experiment and evaluation of the system 

In general, there is no standard approach to evaluate these types of systems because there 

is no standard dataset. Frintrop (2006) identified four approaches to evaluate a model: (1) 

using human perception to compare the results, (2) comparing the results with other visual 

attention models, (3) testing the system under image transformations such as rotation and 

resizing, and (4) evaluating the performance in an application. Two approaches are used 

in this study to evaluate the performance of the system which (1) and (2). 

7.3.1 Saliency map evaluation 

The saliency map was evaluated by embedding it in the application; this is the best way 

to test the system. The saliency map is designed to detect tomatoes in a greenhouse. The 

input image size is 640 × 420. A dataset was collected consisting of 133 pictures taken 

from different views. The saliency map and FOA were computed for each picture. Figure 

7-11 shows a few examples from the dataset. These images were selected to show the 

performance of the system when detecting tomatoes under different light intensities and 

in different positions. As can be seen, the system manages to detect the tomatoes despite 

the intensity of the light, which changes the colour of the tomatoes (Figure 7-11(f) and 

(g)). Target detection based on colour is a challenging problem in computer vision and 

robotics due to the large variety in the colour spectrum and the illumination intensity (Ilea 

and Whelan, 2011); however, the saliency map algorithm manages to detect the tomatoes 

at different light levels. 
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In the saliency map, the light region (pixel value = 255) represents the MSR in the scene. 

Visual attention is a good method to use to track an object in a scene without specifying 

the features of the target, as long as the target can be differentiated from the rest of the 

scene. This is due to the mechanism used in visual attention to detect the MSR in the 

scene. Tracking the target of interest without specifying the feature to be tracked, or 

narrowing the search of the target in the scene to a few regions, is one of the advantages 

of using a saliency map. The saliency map saves time when searching for a target under 

different backgrounds and reduces the necessary tuning of parameters (e.g., the threshold 

values for RGB or HSV). 
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Figure 7-11: The result of the Saliency map with detecting tomato. Left input image, center Saliency map and right 
Focus of attention with probability the selected target is tomato. 
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In this study, the target is a mature tomato with a red colour. The saliency map manages 

to detect most of the tomatoes present in a scene that have a mature red colour (Figure 

7-11). However, in some cases, the system could not detect immature tomatoes (green–

red colours); this is due the nearly equal values of the red and green wavelengths, which 

leads to lower values in the red–green opponent feature map, because the saliency map in 

this study depends highly on the colour feature (the weight of the colour map is 𝑤𝑅𝐺𝐵 =

 60%, while those of the intensity and orientation maps are 𝑤𝑖 = 20% and 𝑤𝑜 = 20%, 

respectively). The immature tomatoes, therefore, do not appear as salient in the saliency 

map. However, this is not important because the system is designed to detect ripe 

tomatoes.  

Figure 7-12 shows an example where the effect of the environment produces a salient 

region due to the complexity of the scene, with some openings between the leaves leading 

to salient features. The output of the saliency map matches actual human perception 

behaviour; however, in this study, tomatoes are the targets of interest, and the pre-training 

model is designed to measure the probability of a target being a tomato or non-tomato 

using the colour feature map. Figure 7-12 (c) shows the FOA when activating the IOR 

and using the trained model to determine the presence of a tomato. The figure shows the 

region of interest with its probability, where higher probabilities are closer to the tomato. 



158 

 

 

Figure 7-12: Example of saliency map with salient region but not tomato. (a) input Image, (b) Saliency map with 
salient region that has equal value to the tomato but are not belong to tomato and (c) Focus of attention. 

The system manages to detect the tomatoes in clusters (Figure 7-12(c)), where the 

saliency map takes into account the edge detection and combines it with the colour feature 

to provide a stop line for the shape of the object; this result is combined with the watershed 

algorithm. This is advantageous for a system harvesting tomatoes because tomatoes grow 

in clusters, not separately. In some of the results, the saliency map identifies a cluster of 

tomatoes as one object; however, the watershed algorithm works to separate them. 

However, the implementation of the watershed algorithm in the saliency map adds an 

extra parameter to tune the output; unlike the work of Draper and Lionelle (Draper and 

Lionelle, 2005), which eliminated a tuning threshold, in this study, a threshold was set to 

improve the tracking of the region of interest. This difference is due to the embedded 

application, which is outside and affected by sunlight, therefore making the problem more 

complex than the indoor problem. 
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Figure 7-13: List of FOA from different images from the dataset. FOA is depend on the size of the tomato and the 
surrounding. 

The saliency map generates a list of targets in the images along with their probability of 

being a tomato; this is used in the subsequent feature maps. The cropped images are 

cropped by adding 10 pixels to the overall size provided by the saliency map. Figure 7-13 

shows the output used in the gaze and vergence controllers. 

The saliency map was run on 120 images of tomato plants with different quantities of 

tomatoes. Each image was manually checked to assess the detected tomatoes and the 

number of the tomatoes in each image. The accuracy of the saliency map is 82.94%.  

7.3.2 Cognitive map experiment and result 

The visual attention model integrated with the platform was evaluated in a greenhouse. 

Different scenes were set up for the evaluation process (Figure 7-14). The scenes differ 

in the quantity of tomatoes and the position of the platform inside the greenhouse (e.g., 

the position relative to the sunlight). The distance between the platform and the tomato 

plants was between 80 cm and 120 cm.  
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Figure 7-14: Visual attention model evaluation experiment in a greenhouse. 

Table 7-1 shows the cognitive map output for the evaluation experiment. The table shows 

the number of the tomatoes in each scene that are ripe or unripe. The output of the system 

is shown in the table as well, indicating the detected tomatoes, the false detections, and, 

in the last column, the corrected verge on the tomato.  

Table 7-2 and Table 7-3 shows the individual target data for scene 1 and scene 2 

(Appendix B contains the complete list of all 8 scenes output). The data is the 2D 

probability computed by the saliency map, the affordances of grasping in RMS and the 

successful of the vergence controller to verge on the target.  
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Table 7-1: Cognitive map experiment output. 

Scene Ripe Unripe Detection 
False 

detection 
verged 

1 5 5 5 0 5 

2 3 1 3 1 2 

3 6 5 5 0 4 

4 5 5 5 0 3 

5 6 4 5 0 3 

6 5 4 4 0 3 

7 5 4 5 0 3 

8 6 3 5 1 5 

Ripe: red tomato in the scene ready to be pick. 
Unripe: green-red tomato in the scene still required 
some time to get mature. 
Detection: the detected tomato by the system. 
False detection: the wrong detection by the system that         
is not tomato. 
Verged: describe the successful verge on the detected 
targets.  

 

Table 7-2: Scene 1 individual targets output.  

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 73.2% 10.07 success 

1 63.3% 0.08 success 

2 75.0% 0.05 success 

3 89.5% 0.15 success 

4 90.1% 0.23 success 
 

Table 7-3: Scene 2 individual targets output. 

Target  
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 78.9% 0.62 fail 

1 84.6% 0.47 success 

2 75.9% 5.23 fail 

3 47.6% 1.02 success 
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Figure 7-15: The output of the cognitive map for a full cycle of the saliency map for Scene 1: (a) the computed 
saliency map, (b) the focus of attention, where the green box is the template size, and (c) a visualization of the targets 

and their data. 

 

 

Figure 7-16: The output of the cognitive map for a full cycle of the saliency map for Scene 2: (a) the computed 
saliency map, (b) the focus of attention, where the green box is the template size, and (c) a visualization of the targets 

and their data. 
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7.4 Discussion 

Figure 7-15 and Figure 7-16 show a completed cycle of the cognitive map for two 

different scenes. The two scenes differ in the position of the platform. In Scene 1 (Figure 

7-15), five tomatoes were detected by the system, while four tomatoes were identified in 

Scene 2 (Figure 7-16). A summary of these scenes is shown in Table 7-1 (note that the 

correspond to the run number is the scene number).  

Table 7-2 and Table 7-3 shows the data if individual target in the scene. 

The FOA shows the tomatoes with their centroids and the size of the template used in the 

gaze and vergence maps (Figure 7-15 (b) and Figure 7-16 (b)). However, when computing 

the FOA of Tomato (a) in Scene 1, a larger template size than the actual tomato was used; 

this is because the saliency map also detects the small opening above the tomato as a 

salient area and identifies both the tomato and the opening as one region (Figure 7-15 

(a)). Furthermore, the watershed algorithm counts both the tomato and the opening as one 

object. This frequently occurs, especially if the plant has few leaves. However, a closer 

look at the output of the FOA confirms that the centroid of the template is always on the 

tomato. This is due to the methods used to choose the centroid of the target, i.e. selecting 

the maximum pixel in the scene and then applying the watershed algorithm to detect the 

contour of the target. To avoid this problem, the orientation feature map weight can be 

increased to produce more edges. Conversely, an erosion operation can be applied to the 

saliency map to erode the boundaries of the regions and separate them. However, this will 

cause another issue, where the contour of the target will become smaller. 

In Scene 2 (Figure 7-16 (b)), the FOA shows that there are two tomatoes (Tomatoes (b) 

and (d)) within the same region, which should not occur when applying the watershed 

algorithm. However, this is due to noise, which affects the watershed algorithm during 
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the selection of the area, and the method used to produce the rectangle of the target by 

measuring the maximum height and width. Indeed, Tomato (d) is the thin line beside 

Tomato (b). 

Figure 7-15 (c) and Figure 7-16 (c) show a visualisation of the cognitive map, where the 

targets are shown in the red spheres relative to the platform. This information is also 

plotted on the side of the tomatoes in rviz. The cognitive map is used to represent the 

information that is computed based on the saliency map, and the 3D data are used to 

enable the robot to decide which targets should be picked first ( 

Table 7-2 and Table 7-3). Therefore, the cognitive map contains the fundamental data 

concerning the targets, i.e., the probability of being a tomato in 2D and the 3D appearance 

and position relative to the platform. 

The grasping affordance describes the distance to the target based on shape matching. In 

other words, the generated point cloud is compared to a ground truth tomato, where first, 

the point cloud is transformed to match the ground truth position, and then the Euclidean 

distance is computed between the ground truth and the point cloud. Calculating the 

probability of the target being a tomato in this step has drawbacks due to the modifications 

made on the platform. The tilting joints for each motor contribute to the epipolar error. 

The original algorithm for the online epipolar geometry update is performed on the first 

version of the platform (a platform with a fixed tilt), where the error from the tilt angle is 

constant; however, in the second version, the tilt of the motor changes based on the target 

position. The tilt motor has an 8-bit encoder (0.29°). However, in this study, the ground 

truth is a 3D model in which the size is set based on an average, which affects the 

accuracy. In future studies, a more robust algorithm needs to be used for comparisons to 

actual tomatoes. 
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Computing the grasping affordance provides valuable data about the targets that help 

determine if they are tomatoes. For example, in Scene 1, Tomato (a) is hidden by leaves 

and only a small portion of the tomato is visible. The result of the grasping affordance for 

Tomato (a) (in the visualisation this tomato has ID 0) is 10.03, which is large compared 

to those of the other tomatoes (below 1.0). This large value is due to the presence of the 

leaves surrounding the tomato and is an effect of the corresponding process. Note that 

Tomato (a) has a large template, but the point cloud process detects the tomato using the 

contour found in the saliency map. 
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Figure 7-17: The output of the completed cycle of the cognitive map by verging on all targets of scene one. 
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Figure 7-18: The output of the completed cycle of the cognitive map by verging on all targets of scene two. 

The output of the saliency map is a list of the tomatoes (i.e., their 2D positions and sizes 

in the images). The system starts with the target with the largest probability using the 

PNCC algorithm. The PNCC controller requires the correct size of the target to verge on 

it precisely, as explained in chapter 5. Figure 7-17 and Figure 7-18 show the system 

completely verged on all targets detected by the saliency map. As can be seen, the system 

successfully verges on most of the targets in both scenes. Table 7-1 shows the result of 

the experiment done in the greenhouse using the cognitive map. 
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However, in some cases, the system fails to verge on the targets. For example, Figure 

7-18 shows the result of the complete verge for Scene 2 (Table 7-3), where Figure 7-18 

(b) and Figure 7-18 (d) show where the system fails to verge on the target and leads to an 

incorrect 3D position estimation; this is shown in Figure 7-16 (c), where the visualisation 

of the cognitive map is shown. There are two targets that have incorrect positions: one is 

out of the scene and the other (the target with ID 1) is farther from the two identified 

tomatoes and closer to the platform. Note that the target with ID 1 still has a 3D 

probability; this is because the system is using an independent algorithm to compute the 

point cloud and the master camera already has a correct gaze for the target. 

Running the gaze and vergence controllers in parallel causes a major issue for the 

performance of the system. This issue occurs when the gaze controller moves from one 

target to another. This leads to confusion in the vergence controller, which tracks the 

centre of the master camera. The vergence controller sweeps left and right without 

tracking the actual centre of the master camera until the gaze controller completes the 

gaze process. To prevent this, the vergence controller was run in serial after the gaze 

controller. 

The cognitive map can be extended with extra data using the three main feature maps. 

For example, extra information can be computed using the point cloud. These data tell 

the robot from which direction it is the best to approach the fruit based on the intensity 

and the direction of the point cloud. The generated point cloud represents the tomato and 

removes all other objects (e.g. leaves). The centre of the tomato is computed by taking 

the average of these points. Using the centre of the points and assuming that the points 

represent vectors from the centre of the tomato, these vectors are summed and the 

direction is computed. As another example, using the saliency map output as extra data, 
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we can compute, via an analysis, contour features, such as how the contours close to form 

a circle. 

One additional concern that affects the performance of the system is that the cameras have 

a low dynamic range; this can be seen in Figure 7-17 and Figure 7-18, when the system 

verges on the highest tomato in the scene, the sun faces the camera, and the images 

darken. This also could be one of the reasons why the system could not verge on some 

tomatoes in the scenes. However, this limitation shows the strength of the propose 

detection algorithm.  

7.5 Conclusion  

This chapter presents a proposed visual-based attention model for the harvesting process. 

This is the first attempt to apply a visual attention model to the harvesting process. The 

model was divided into three main feature maps: (I) the saliency, (II) the gaze and 

vergence controllers, and (III) the grasping affordance. The saliency map is a bottom-up 

model based on the work of Itti et al. (1998). The model was modified to focus on 

detecting tomatoes in outdoor environments. The FOA was based on a watershed 

algorithm to detect the most salient region and determine the contour of that region. A 

Bayes’ model was integrated with the saliency map to determine the output of the FOA 

region from the tomato and non-tomato regions. The other two feature maps have been 

studied in detail in the previous works (Mohamed et al., 2018b, 2018a). The vergence 

controller estimates the position of a target and the epipolar online geometry that 

generates a point cloud. 

The saliency map was tested and evaluated on a dataset of 120 images taken of tomato 

plants and shows an accuracy of 82.94%. The saliency map shows potential for detecting 
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tomatoes and computing their contours, especially for clustering tomatoes. Moreover, the 

model performed very well under different lighting conditions. 

The three feature maps were integrated into a cognitive map containing the data of the 

tomatoes. These data represent the basic data of every target, including the 3D position 

and the probability of that target being a tomato based on 2D image processing and the 

point cloud. Table 7-1 shows the output of an experiment performed in a greenhouse. The 

affordance of grasping in this system was not as reliable as the result in chapter 4 (i.e. the 

projection error is ±10 pixels comparing to platform version 1 ±2 pixels). This due to 

the platform upgrade. 

In some situations, the system failed and detected non-tomato objects due to the noise in 

a scene, especially when the presence of only a few leaves on the plant led to an increase 

in the number of salient regions in the saliency map. Moreover, the vergence controller 

failed to track the master camera during target changes where the background is most 

cover by leaves. To avoid this issue, the gaze and vergence controllers needed to be run 

in series. In the future, one improvement to the saliency map will be to classify the 

maturity of the tomato by implementing a top-down model in the system. The system can 

be used in detecting different fruits/vegetable with a minor modification in the system. 
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Chapter 8 

8 Conclusion 
 

8.1 Summary  

In this thesis, a new active binocular vision platform has been researched, developed and 

tested, for efficient and robust detection and 3D localization a tomato fruit outdoor. The 

approach regards tomato fruit detection as a three step process: (I) the visual attention 

subsystem detects the most salient region in the image which is the mature tomato (II) 

localize the interest tomato fruit using vergence vision and (III) compute the affordance 

of grasping using depth map. The final design was a five degree of freedom (DOF) 

system: four DOFs to control the pan and the tilt of each camera independently, and one 

DOF to control the size of the baseline. A variety of experiments were performed to assess 

the performance of the platform. The error associated with various components of the 

platform was deduced and improvements made accordingly. 

The system has been tested in situ in a greenhouse where the system detects and estimates 

the position of the tomato fruit. The strength of the system is the robustness of the 

detection algorithm under variety of lighting condition outdoor using a saliency map with 

just few training data. In other words, the detection system is mimicking human behaviour 

in the sense that it does not require a special parameter tuning to operate on a specific 

application like the other machine learning or vision systems applications. Where the 

detection algorithm operates in many different scenes, for example, indoor, outdoor, 

greenhouse etc. without the need to re-tune the parameters. Another strength in the 

detection system, is that the detection system is not only work to detect tomato fruit, it 

can be used to detect different fruits that has a salient feature in the scene with a slightly 

change in the saliency map few training data. 
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However, human has the ability to notice many salient regions in the scene which the 

system inherits this capability from human. This is a limitation in the system where many 

salient features in the scene is detected that are not belong to the target which increase the 

time of the focus of attention process to determine the tomato only. 

Furthermore, the accuracy of the system in estimating the 3D position of the target using 

vergence controller showed a good performance, experiments show no more than ±3 cm 

within the range of 2 meter . The thesis has shown that the system is applicable to 

harvesting application. Where the result in the body of the thesis shows that the system 

has a good performance in computing the position of the detected tomato fruits. However, 

the system is computing the position of the target one by one which make the system is 

not suitable for some applications, but in general for a manipulator robot with one arm is 

enough to work at a commensurate speed to the gummi-arm, allowing fruit to be picked 

at full actuator speed, with no slow-down due to the camera system controller and 

vergence control.  

Finally, the system used an updated epipolar geometry to compute the point cloud of the 

tomato. In the initial experiment (with version 1) the system shows a reliable rectification 

process that leads to a good depth map. The projection error in the system increase after 

using version 2 (i.e. the projection error increase from ±1.24 to ±9.3 pixels). However, 

to minimise the error in the depth map a large window size (15 × 15 pixels) and a post-

filter was used which was suffusion to produce a good result in the final application of 

the system. The advantage of using a correspondence algorithm in the platform is 

minimise the disparity range and focus on the actual target especially in a harvesting 

environment where the scene is highly complex scene.  
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8.2 Contribution to knowledge  

The author's knowledge, the problem of using an active binocular vision in harvesting is 

unique and no prior published work exists. The gaps in the literature are twofold: on one 

hand, the problem of integrating an active stereo vision system for depth estimation in 

harvesting has not been explored. On the other hand, using a visual attention based 

saliency map to identify fruits/vegetables. Therefore, the system would potentially be of 

interest to the research community in the fields of both computer vision and robotics. 

More specific contribution is present in the following subsections. A list of publication 

was published from this work (Mohamed et al., 2018c, 2018a, 2018b, 2016). 

8.2.1 Online epipolar geometry to active stereo vision 

In orthogonal stereo vision, the calibration done once to compute the epipolar geometry. 

In this research, the epipolar geometry of the system is updated based on the change in 

the motor encoder. This problem was taken from two published work Dankers et al. 

(2004) and Sapienza et al. (2013). Both ideas have been combined into one. The method 

use in this work is split into two part an offline process (Sapienza et al., 2013) and online 

process (Dankers et al., 2004). In the offline process, a linear equation between the motor 

angle and image angle was found by calibrating the system over varying geometry 

configurations. For each change in the verge angle a projection matrix was computed 

using the calibration process. The projection matrix contains the camera matrix, the 

rotation and translation matrix between the left and right camera. By decompose the 

projection matrix the raw data of the geometry is produces (e.g. the baseline size, rolls, 

pitch, and yaw rotating angle).  

The propose algorithm, was evaluated by measuring the projection error between both 

images. The projection error in the rectified images was ±1.24 pixels when the system 

verge on the target which compare to ±2.38 pixel in Hart et al. (2008). The platform and 
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the algorithm were tested further by computing the point cloud of three diameter spheres 

and comparing it with the actual shapes. The Iterative closest point (ICP) algorithm was 

used to compute the differences between the computed point cloud and the ground truth 

point cloud. The result was an average standard deviation of 0.0142 m and a margin of 

±0.0039 m. This result can be compared to the orthogonal stereo vision system like Intel 

D415 with accuracy of ±0.005 m and the ZED camera ±0.01 m  There is one issue in 

this algorithm which is the size of the image getting smaller when the verge angle 

increase.  

Importantly, the raw data generated in the offline calibration provides an information 

about the accuracy and the repeatability of the platform’s hardware. For example, the 

pitch and roll angles miss-alignment is −0.433° ± 0.015° and 0.526° ± 0.047° 

respectively. This information is essential for improvements made to the algorithm in 

subsequent chapters and also lays the foundation for studying the error in the platform 

and how the result based on the pixels (image) is different to the actual hardware. based 

on this work two paper was published Mohamed et al. (2018b) and Mohamed et al. 

(2017). 

8.2.2 Vergence controller  

In this part of the system, depth estimation based on the vergence controller was studied. 

A Gaussian pyramid normalized cross-correlation was applied to control the verge on the 

fixation point. The controller implemented was based on the exponential function where 

to allow smooth movement of the camera. The error associated with the vergence 

controller was analysed. Depth estimation was computed via simple triangulation using 

the motor angle and baseline distance when the system fully verged on the fixation point. 

The result shows that the size of the baseline has a direct effect on the quality of the depth 

estimation, with the depth error being directly proportional to the baseline.  Overall, the 
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proposed system produces a robust result for depth estimation with a standard deviation 

of  ±2.06  cm accuracy at a depth of 200 cm. The actual working distance is between 

80cm to 140cm where the standard deviation is  ±1.5 cm with baseline equal to 200 cm. 

Moreover, for the large objects, the system result compares favourably with exciting 

stereo vision system such as ZED and Intel Realsense D415, lying between the two 

systems in term of the accuracy of the measurement. However, the three systems have 

been tested to estimate the depth of small targets (diameter from 1.2 to 2.5 cm at 150 cm). 

The major advantage of the system is the stability to detect small object at distance where 

the propose system out preform the other two systems, for example ZED cannot measure 

the depth of these objects at 150cm whereas the propose system manage to measure the 

depth of all these objects. 

The system has been tested in the field where this is the first attempt to use a vergence 

controller in the harvesting process. The field experiments showed similar trends in depth 

estimation and verge on the fixation point to those conducted in the lab, where  the 

standard deviation ±1.32 cm at a depth of 85 cm which is 1.5 times bigger than the result 

of the lab. This part of thesis is publish as journal paper Mohamed et al. (2018a). 

8.2.3 Visual attention model 

In this part of the dissertation, a cognitive map was designed based on a visual attention 

model to detect the tomato fruit. The model used three main features maps: (I) saliency 

map, (II) gaze and vergence map, and (III) affordance of grasping map. Each feature map 

yields certain information regarding the target that help the robot to decided which target 

should go for. For example, check the target position if it within the reach of the gripper. 

The system was tested and evaluated in a greenhouse with natural light that challenged 

computer vision.  
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The proposed model is based on bottom-up visual attention model, where the saliency 

map estimates the tomato using the master camera (i.e. the saliency map finds the interest 

region by applying a local contrasts and determine the unique features). A Bayes’ 

approach was integrated with the focal of attention in order to determine the peak 

probability that corresponding tomato fruits in the scene. The result of the saliency map 

model shows the robustness of detecting the tomato fruit in outdoor environment (e.g. in 

a complex lighting condition) using a few datasets. Where comparing this to other 

machine learning that required a hundreds of images and a complex algorithm. The 

accuracy of the saliency map in detecting the tomato is 82.94%. Applying saliency map 

to tomato detection help to fast detection the tomato as the tomato is a salient in the scene 

compare to the ground and the trees. One of the limitation in the saliency map is that when 

the system at close distance to the tomato trees and there are many tomatoes in the scene 

which leads to fail in the detection as a result of that the tomato taken a large amount that 

make them not salient. 

The gaze and vergence controller is used to compute the location of the fruit and finally, 

the afforces of the grasping is computed using point cloud (see Table 6-1, Table 6-2 and 

Table 6-3). The system generates a cognitive map that contain the data of the targets in 

the scene that link to the robot. However, the vergence controller has two type of fails, 

where when the master camera center is not within the field of view of the slave camera 

where the system verge on the wrong target if there was a high percentage of similarity 

(e.g. the minimum value of matching was set to 80%) or the system stay without moving 

due to there is no matching to the target. The second case is when the visual attention 

system run both the gaze and the vergence controller in parallel where when the gaze 

moves from one target to other the vergence controller get loss until the gaze controller 

focus on the target. This is due to the high similarity in the tree leaves where the PNCC 
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fail to determine the actual focus point. This part of thesis was published in Mohamed et 

al. (2018c). 

8.3 Future improvement and development 

One of the main advantages in the propose system is the ability to compute the depth of 

small objects that the traditional stereo vision could not detect (chapter 5). The system 

should be extending and examining to detect small targets such as cherry and raspberry. 

Moreover, the propose algorithm is based on bottom- up visual attention model which 

can be extended into top-down model that detect the maturity of the fruit. The model can 

also be uses to detect different type of fruits/vegetable as long as the fruit/vegetable are 

salient in the scene. Furthermore, visual attention model has been under research for many 

years and there are many models that can be integrated with the propose detection system 

that will improve the use in harvesting.  

There are two aspects required for further improvement that were identified during the 

experiments and analysis of the result. The improvements are required in both (I) 

hardware and (II) software. The results of the experiment done on both epipolar geometry 

update and vergence controller depend on the resolution of the encoder. Where the higher 

resolution encoder will improve the depth estimating based vergence controller (chapter 

5) and improve the online epipolar geometry (chapter 4).  

One of the main part that required to upgrade in the new platform is adding a neck pan 

joint. The neck pan joints will extend the working space and in the same time will help to 

avoid the larger perspective distortion in the images, where the result shows that when 

the motor rotate more than 40° the PNCC algorithm (chapter 5) the error on the fixation 

point is increase. Also in the online epipolar geometry update (chapter 5) will the rectified 

image size is drop to small size. The neck pan joints will help maintain the error as low 

as possible in vergence controller and large image size in the rectification process.  
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The second improvement in the platform is replacing the motor with a DC motor and 

more accurate encoder 14-16 bits. Where this encoder will improve the depth estimating 

based vergence controller (chapter 5) and improve the online epipolar geometry (chapter 

4). The vergence depth will be smoother using this encoder where it will be smoother. 

The DC motor is replaced in order to match the new encoders. 

One of the major issue in the proposed platform was the cameras. Where the selection of 

the cameras to meet the requirement of the initial aim of the PhD project where it was 

indoor. The new cameras should have a high dynamic range (HDR) and wide field of 

view enough to cover the working space of the platform. Finally, there are methods that 

can be used such as FPGA or GPU to accelerate the computation speed of the system.  

Based on the software development, the software developed in this thesis was based on 

two programming languages which are C++ and python. The main reason of using these 

two languages was due to the computation speed of C++ and the easy debugging with 

python. The code was written in python, is to accelerate the prototyping and meet the 

deadline of the PhD. Due to this the speed of the system was scarify in order to provide a 

working prototype at the end of this projects. Therefore, one of the main improvement in 

this system is to re-write the code in C++ to accelerate the speed of the system. Or re-

write the code to work with a FPGA. Furthermore, the code still is not yet optimized.  

Based on the software development, the software developed in this thesis was based on 

two programming languages which are C++ and python. The main reason of using these 

two languages was due to the computation speed of C++ and the easy debugging with 

python. The code was written in python, is to accelerate the prototyping and meet the 

deadline of the PhD. Due to this the speed of the system was scarify in order to provide a 

working prototype at the end of this projects. Therefore, one of the main improvement in 
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this system is to re-write the code in C++ to accelerate the speed of the system. Or re-

write the code to work with a FPGA. 

Nowadays, deep learning is one of the future use in all sort of work. In future the platform 

will be developed using deep learning approach where the verge controller can be 

improving to verge on the target with high accuracy even improve the speed of the system. 

This can be implemented using reinforcement learning approach where the training will 

be offline and then run outdoor with more real views. 

 





182 

 

Appendix A 

A. Camera Specification 
 

The camera used in this work is PointGrey Flea3 8.8MP (FL3-U3-120S3C-C) The 

specification is listed below. This was taken from https://www.ptgrey.com/flea3-88-mp-

color-usb3-vision-sony-imx121-camera . 

Table A- 1: Camera configuration. 

Resolution 4096 x 2160 

Frame Rate 21 FPS 

Megapixels 8.8 MP 

Chroma Colour 

Sensor Name Sony IMX121 

Sensor Type CMOS 

Readout Method Rolling shutter with global reset 

Sensor Format 1/2.5" 

Pixel Size 1.55 μm 

Lens Mount C-mount 

ADC 12-bit 

Quantum Efficiency Blue 
(% at 470 nm) 

63 

Quantum Efficiency Green 
(% at 525 nm) 

73 

Quantum Efficiency Red (% 
at 640 nm) 

49 

Temporal Dark Noise (e-) 3.06 

Saturation Capacity (e-) 5966 

Dynamic Range (dB) 64.49 

Gain Range 0 dB to 24 dB 

Exposure Range 0.021 ms to 1 second 

Trigger Modes Standard, bulb, multi-shot 

Partial Image Modes Pixel binning, ROI 

Image Processing 
Gamma, lookup table, hue, saturation, and 

sharpness 

https://www.ptgrey.com/flea3-88-mp-color-usb3-vision-sony-imx121-camera
https://www.ptgrey.com/flea3-88-mp-color-usb3-vision-sony-imx121-camera
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Image Buffer 32 MB 

User Sets 2 memory channels for custom camera settings 

Flash Memory 1 MB non-volatile memory 

Opto-isolated I/O Ports 1 input, 1 output 

Non-isolated I/O Ports 2 bi-directional 

Serial Port 1 (over non-isolated I/O) 

Auxiliary Output 3.3 V, 150 mA maximum 

Interface USB 3.1 Gen 1 

Power Requirements 5-24 V via GPIO or 5 V via USB3 

Power Consumption 
(Maximum) 

<3 W 

Dimensions 29 mm x 29 mm x 30 mm 

Mass 41 grams 

Machine Vision Standard USB3 Vision v1.0 

Compliance 
CE, FCC, KCC, RoHS. The ECCN for this product is: 

EAR099. 

Temperature (Operating) 0° to 45°C 

Temperature (Storage) -30° to 60°C 

Humidity (Operating) 20 to 80% (no condensation) 

Humidity (Storage) 20 to 95% (no condensation) 



184 

 

Appendix B 
 

B. Cognitive Map Output Tables 
 

This appendix contains the output tables of the cognitive map experiment. There are 8 

table for 8 scenes. The scenes vary by the position of the platform in relate to the trees.  

Table B- 1: Cognitive map for Scene 1. 

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 73.2% 10.07 S 

1 63.3% 0.08 S 

2 75.0% 0.05 S 

3 89.5% 0.15 S 

4 90.1% 0.23 S 

 
Table B- 2: Cognitive map for Scene 2. 

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 78.9% 0.62 F 

1 84.6% 0.47 S 

2 75.9% 5.23 F 

3 47.6% 1.02 S 

 
Table B- 3: Cognitive map for Scene 3. 

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 67.0% 1.03 s 

1 71.9% 0.25 s 

2 72.4% 0.016 s 

3 77.3% 0.22 s 

 
Table B- 4: Cognitive map for Scene 4. 

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 68.1% 0.036 f 

1 70.7% 0.069 s 

2 - - f 

3 86.1% 0.308 s 

4 68.6% 0.212 s 
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Table B- 5: Cognitive map for Scene 5. 

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 86.2% 1.17 s 

1 87.4% 0.137 s 

2 - - f 

3 74.2% 0.15 s 

4 57.8% - f 

 
Table B- 6: Cognitive map for Scene 6. 

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 77.4% 0.251 s 

1 70.3% 0.062 s 

2 81.4% 0.023 s 

3 86.1% 0.39 f 

 
Table B- 7: Cognitive map for Scene 7. 

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 91.0% 0.019 s 

1 93.4% 0.928 s 

2 100.0% 0.055 f 

3 80.2% 1.83 s 

 
Table B- 8: Cognitive map for Scene 8. 

Target 
2D 

probability 
Affordance 

RMS 
Verge 

success 

0 89.3% 0.32 s 

1 100.0% 0.15 s 

2 92.3% 0.2 s 

3 88.6% 1.8 s 

4 - - f 
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Appendix C 
 

C. Integration with Manipulator Robot 
 

In this appendix, the integration between the platform and a manipulator arm is presented. 

This integration is suit any manipulator arm as long as the robot work based on ROS.  

GummiArm is a robot arm with seven DOFs based on the mechanisms of human and 

animal sensor motor systems (Stoelen et al., 2016)11. GummiArm can be considered soft 

robotics owing to the joint mechanisms that use agonist–antagonist actuators connected 

with a flexible tendon (artificial muscle) that controls the stiffness of the joints during 

operation (Figure C-1). GummiArm is a 3D-printed arm and uses the Dynamixel digital 

servo.  

 

Figure C- 1:  GummiArm robot 

The environment during harvest can be unpredictable, and detecting all hazards in the 

environment using perception sensors can be difficult (e.g. in most fruit plants, a thin 

                                                
11 The GummiArm system is entirely open source and can be found in 
http://mstoelen.github.io/GummiArm/.  

http://mstoelen.github.io/GummiArm/
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string is used to support the plants). Hence, the GummiArm is a good option to employ 

in various types of environment owing to its flexibility and robustness when it encounters 

hazards. GummiArm has different types of gripper for fruit harvesting, including a 

gripper for tomato fruits. Its software is based on ROS. In this work, the stereo vision 

platform was integrated with the robot by linking the cognitive map to the robot to 

perform the picking process.    

Appendix C.1 Integrate the platform with a robot 
The cognitive map is linked to the GummiArm in order to pick the target. The 

GummiArm is based on Robot Operating System ROS and has its own state machine12 

for picking process. In general, the state machine came with GummiArm is a cycle of 

different processes as shown in figure where the cycle starts by (1) locating the 3D 

position of the fruit, (2) command the arm to move closer to the target, (3) a visual 

servoing to close the gripper to the fruits, (4) close the gripper and pull the fruits to 

separate it from the tree, and (5) place the fruit in a tray (Figure C- 2). In this thesis, the 

exciting software provided by GummiArm is used with a minor modification in the 

process (1) to work with the proposed system. 

                                                
12 GummiArm is designed for harvesting different fruits and vegetables. GummiArm already came with its 

own software for grasping cycle which is based on a state machine that was design in order to simplify the 

modification in the harvesting steps or integrate different sensors. note that this work used the exciting state 
machine came with the robot and modified the detection node to work with the platform. 
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Figure C- 2: GummiArm state machine flowchart. The detection process was replaced with the propose cognitive 
map. 

Figure C- 1 shows the setup between the platform and the GummiArm where the platform 

fixed on the top of GummiArm. A calibration process was done between the GummiArm 

and the stereo vision platform to ensure the correct transformation when the GummiArm 

process to pick the targets.  The calibration process is based on the work Tsai and Lenz 

(1989)13. The output of the calibration process is a transformation matrix.  

The cognitive map is an independed node that store targets data and list them depend on 

the priority. The cognitive map required parameters to priorities the data. These 

parameters are (I) the transformation matrix between the robot link and the platform link 

(i.e. targets in the cognitive map transform to robot base_link) (II) Robot workspace (i.e. 

define the limits of the robot by define the work space), and (III) priorities the parameters 

(i.e. pick the closest target first or pick the target with large probability etc.).  Finally, the 

cognitive map is publishing the target that most suitable for the input parameters.  

                                                
13 The work of Tsai and Lenz (1989) was re-written into ROS packages with a generic structure to work 
with any manipulator arm and camera. 
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To sum up, the propose platform and system follow the standard procedure to integrate 

any vision system with a manipulator arm. In this work, the integration uses an exciting 

package to calibrate the vision system with the manipulator arm.  
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Appendix D 
 

D. Computer Vision 
 

This appendix presents the analysis of a fixed stereo vision system that consist of two 

cameras observing the same scene. First, a single pinhole camera model is discussed then 

the stereo model is presented. 

Appendix D.1 Single Camera Model 

 

Figure D- 1: Pinhole camera model. 

Figure D- 1shows the simple camera model, where the camera coordinate (0,0,0) C is the 

center of the camera and the image plane has its own coordinate (𝑢, 𝑣). (𝑢0, 𝑣0) is the 
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point intersects with the Z axis of the coordinate of the camera and the image plane. f is 

the distance from the center of camera to the image plan which called the focal length. p 

is a point in front of the camera plane with attached coordinate (𝑋, 𝑌, 𝑍). In the image 

plane, this point p is present in 2D coordinate (𝑢𝑝 , 𝑣𝑝). Applying a right triangle 

trigonometry analysis, the following Eq. (D.1) and (D.2) are established. 

 
𝑢𝑝
X
=
𝑓

𝑍
 (D.1) 

 
𝑣𝑝
Y
=
𝑓

𝑍
 (D.2) 

Let us re-write Eq. (D.1) and (D.2)to represent the equations in the image coordinate. 

Note that, the image coordinate start from the top left of the image plane for Adrian and 

Gary (2008). The results are in (D.3) and (D.4) 

 
𝑢𝑝 − 𝑢

X
=
𝑓

𝑍
 (D.3) 

 
𝑣𝑝 − 𝑣

Y
=
𝑓

𝑍
 (D.4) 

The above equations show that only X and Y coordinates can be estimated as a scalar 

while Z cannot be calculated. Eq. (D.3) and (D.4) can be written in matrix form eq.(D.5). 

 [
𝑢𝑝
𝑣𝑝
𝑤
] = [

𝑓𝑥 0 𝑢0
0 𝑓𝑦 𝑣0
0 0 1

] [
𝑋
𝑌
1
] (D.5) 

Or  

 𝑝 = 𝑀𝑃 (D.6) 

𝑀 contain the internal parameters of the camera, 𝑝 is the point in image coordinate and 𝑃 

is the world coordinate of the point. 
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Appendix D.2 Stereo camera Model 

Understanding the sources of error in the stereo vision system is important to implement 

improvements. In this section, the sources of error are presented, starting with the 

geometrical errors and then the errors generated by the image processing derived from 

the stereo model (Figure D- 2). The errors are classified into two categories, namely, 

geometry coordinate and image coordinate. The geometry coordinate error is the error 

that leads to differences in the geometric size of the system, such as the baseline or yaw 

angle. Meanwhile, an image coordinate error is the error generated within the pixel 

dimensions, such as the pixel size and focal length. Generally, these two types of error 

directly affect the output of the system with regard to the 3D reconstruction of objects’ 

shapes and the measurement distance of the targeted objects (Kanatani, 2005). 

Figure D- 2 shows the model of the stereo system cameras. Point P refers to an object that 

is located in front of the system and has a coordinate of (𝑋, 𝑌, 𝑍 ), which is related to the 

origin of the system. Each camera has an origin of 𝑂𝑟 and 𝑂𝑙 ; these origins lie on the 

same axis (i.e. x-axis), separated by distance b. The plane in front of the z-axis of each 

camera is where the image projection is formed, and the distance from the cameras’ origin 

to this plane is referred to as the focal length 𝑓. The right and left planes have their own 

coordinates (𝑥𝑟 , 𝑦𝑟) and (𝑥𝑙, 𝑦𝑙), respectively. 

In Figure D- 2, two triangles (𝑜𝑙, 𝑜𝑟 , 𝑃) and (𝑥𝑙, 𝑥𝑟 , 𝑃) are formed, which are similar 

triangles, 

 
𝑥𝑙 − 𝑥𝑟
𝑏

=
𝑓

𝑍
  . (D.7) 

Hence, 

 𝑍 = 𝑓 × (
𝑏

𝑥𝑙−𝑥𝑟
). (D.8) 
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Equation (D.8) shows how to calculate the depth of point 𝑃 based on the focal length and 

the baseline, where (𝑥𝑙 − 𝑥𝑟) refers to the disparity 𝑑, which is the difference between 

the left and right points with regard to image coordinates. Replacing (𝑥𝑙 − 𝑥𝑟) with 𝑑 

yields 

 𝑍 = 𝑓 ×
𝑏

𝑑
. (D.9) 

 

 

Figure D- 2: Stereo vision mode of the two cameras. 

The errors in 𝑑 are related to the errors in various measurement quantities, thus allowing 

for an error in 𝑑 as 

 𝑑 =  𝑑𝑜 ± 𝛿𝑑. (D.10) 

Hence, Equation (D.9) can be written as 

 𝑍 = 𝑓 ×
𝑏

𝑑𝑜±𝛿𝑑
. (D.11) 

The result of depth 𝑍 will be affected owing to the errors in Equation (D.11). Thus, we 

write 
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 𝑍 = 𝑍𝑜 ± 𝛿𝑍. (D.12) 

A Taylor expansion is applied to solve the depth error 𝛿𝑍 in Equation (D.11):  

  𝛿𝑍 = 𝑓 ×
𝑏

𝑑𝑜2
 𝛿𝑑 (D.13) 

or equivalently  

 𝛿𝑍 =
𝑍2

𝑓×𝑏
× 𝛿𝑑. (D.14) 

Equation (D.14) represents the error in measuring the depth of the object. The error in 

estimating the distance to the object is the formation of a quadratic relation to the depth 

error, but the depth error is inversely proportional to the baseline and focal length. As 

shown in Figure D- 3, each camera can be associated with two imaginary projection lines 

that are generated from one pixel. These lines intersect with that from the other camera 

in the intersection area, thereby forming a diamond shape. The height of the diamond 

represents 𝛿𝑍. Generally, as shown in Figure D-2, 𝛿𝑍 increases as the baseline decreases.  

 

Figure D- 3:Depth error based on the baseline, where the diamond height is equal to the error in depth. (a) Short 
baseline with large error and (b) twice the baseline in (a) with smaller depth error 

The above analysis has shown that error in depth measures can be related to the geometry 

of the platform. 
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The error analysis in this section was extended to identify the errors in different variables 

of the stereo system. Table D- 1 shows the error source of different variables in the system 

and how these errors can affect the geometrical and image coordinate and the 3D 

reconstruction (Thao Dang et al., 2009).  

If the yaw angle is determined as the source of error, then the depth error will increase 

proportional to the depth in the scene. The yaw angle has large negative effects on the 

wider field of view of the cameras rather than on the narrower field of view; these effects 

cause an increment in the vertical misalignment (Thao Dang et al., 2009).  

Table D- 1: Error source and its effects on the stereo vision system [source: Thao Dang et al. (2009)]. 
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