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Understanding Biomechanical Constraints for Modelling 

Expressive UbiMus Performance: A Guitar Case Study 

Computer-generated musical performances – even in a ubimus context - are often 

criticized for being unable to match the expressivity found in performances by 

humans. Two approaches have been often adopted to research into modelling 

expressive music performance on computers. The first focuses on sound; that is, 

on modelling patterns of deviations between a recorded human performance and 

the music score. The second focuses on modelling the cognitive processes 

involved in a musical performance. Both approaches are valid and can 

complement each other. In this paper, we discuss the role of errors when 

modelling expressive music performance, which concerns the physical 

manipulation of the instrument by the performer. In addition, a study on the 

motor and biomechanical processes of the guitar performance is presented. Some 

findings on the speed, precision, and force of a guitarist´s left-hand are presented 

overarching questions regarded to the way a human body performs actions when 

playing the guitar, and the possibility to err in such context. 

Keywords: expressive music performance, biomechanical modelling, guitar 

performance; ubimus 

1. Introduction

Musical performance provides a rich domain for the study of both cognitive and motor 
skills (Palmer, 1997). In Western tonal music,  it is typically a means of communication 
involving three actors: the composer, the performer, and the listener (De Poli, 2004). 
The composer codifies musical ideas into a written notation (score); the performer 
transforms the score into an acoustic signal; and the listeners decode the acoustic signal 
back into ideas (Kendall & Carterette, 1990). Sometimes the role of these actors is not 
exactly this way: for example, in a free jazz improvisation the composer and the 
interpreter overlap. However, it is generally accepted that a performer enables the 
communication of such ideas between composer and listener at performance time. 

The vast majority of contemporary research on musical performance has focused 
on perceptual processes of the listener since this is the focus of all musical activity 
(Sloboda, 2000), after all, composition would have no purpose if it were not 
experienced.  The composer’s part, the score, has long been studied and scrutinized in 
terms of its structural aspects such as harmony, melody, form, and instrumentation, as 
well as studying the composer’s intention or the inherent emotional expression (Friberg, 
2006). However, the key in modelling music performance lies with the performer. 

The performer interprets the symbolic information on the score and produces the 
sound by using a musical instrument (Mion & De Poli, 2004).  The performing artist is 
an indispensable part of the communication process, shaping the music in creative ways 



by continually varying parameters like tempo, timing, dynamics (loudness), and 
articulation, in order to express a personal understanding of the music (Madsen & 
Widmer, 2006).  

To model music performance we must first understand the processes the 
performer carries out in order to ‘interpret’ the piece of music. Only then it will be 
possible to artificially recreate this ‘interpretational’ behaviour. Two main approaches 
have been taken in attempting to do this:  

(1) The first approach simply focuses on the outcome, the produced music,
searching for patterns of deviations between the information the performer is
given (the musical score) and the performance that is produced. The internal
processes of performer are not relevant and we will refer to this approach as
Psycho-Acoustics-Based Modelling;

(2) The second approach is concerned with the internal processes of the performer,
focusing on the source, the causal phenomena of the sound, such as instrument
control. It attempts to understand the reasoning behind the performance actions
either on a cognitive, physiological, or biomechanical level. This too searches
for pattern, however focuses on behavioural patterns. This second approach will
be referred as Performer-Based Modelling.

In this paper, these two approaches are briefly discussed but more emphasis is
given on Performer-Based Modelling, pointing out the importance of behavioural-based 
models, in particular on biomechanical models. Our idea is that physical manipulation 
of an instrument by the performer is often neglected in previous research 

 We present the findings of an ergonomic study of the guitar with estimation of 
forces needed to play correctly clean notes and chords, and a biomechanical study of 
errors made by guitar players. Some findings of experiments regarded to speed, force 
and precision of the guitarist left-hand are thus presented as well as results from an 
analysis of guitar performance errors. Combined, these results provide important 
insights for the development Expressive Music Performance Models, specifically for 
guitar performance.  In our point of view, such comprehension is essential for better 
proposing Digital Musical Instruments and EMP systems in line with ubimus concepts, 
specially improving the musical design interaction for non-musicians as discussed after 
this introduction.  The sections 3 and 4 respectively presents psycho-acoustics-based 
modeling and performer-based modeling approaches to model music performance. 
Section 5 discusses the role of errors in a music performance, which concerns the 
physical manipulation of an instrument by the performer. Section 6, 7 and 8 in 
dedicated the study of the guitar playing, respectively studding the ergonomics of the 
guitar, the biomechanics of the guitar players, and the pattern of performance errors 
found within this interaction. Section 9 presents the final considerations. 

2. A Biomechanical Approach to UbiMus Tools

We have proposed the adoption of the term Ubiuitous Music (Keller, Flores, Pimenta, 
Capasso, & Tinajero, 2011; Keller, Lazzarini, & Pimenta, 2014) - or simply Ubimus - 
to promote practices that empower participants of musical experiences through socially 
oriented, creativity-enhancing  tools (Keller et al., 2015). To achieve this goal, our 
group has been engaged in a multidisciplinary effort to investigate the creative potential 
of converging forms of social interaction, mobile and distributed technologies and 
innovative music-making practices. One of our goals is to develop tools which take 



advantage of these inclusive contexts, providing conditions to novices to participate in 
creative activities, ideally in any place and at any moment. One approach for this relies 
on repurposing everyday consumer mobile devices (devices they already own, and are 
familiar with) as ubiquitous music interfaces for use in musical activities, taking benefit 
from their distinctive capabilities of portability, mobility, and connectivity and above all 
from their availability to the average person (including novices in music). In this paper 
we take a rather different approach by investigating how the human body fits the task to 
manipulate a musical instrument in order to propose more intuitive, safer, comfortable 
interaction to music making. If Ubimus is indeed concern with the availability of its 
musical instruments to non-musicians, the findings reported by this paper must be in 
centre of the design of those.  

Digital Musical Instruments (DMIs), including those created within the ubimus 
paradigm, has been created disregarding the human motor abilities to deal with it. It is 
true that musical instruments (acoustic and digital) have evolved to provide a better fit to 
our body, even if it is still far from the ideal. Ergonomically-wise, musical instruments 
rarely change. For example, take one of the first musical instruments ever found: a bone 
flute (41000 BCE). Sumerians and Egyptians (3000 BCE) improved its design by adding 
three or four finger-holes to their bamboo flutes. The Ancient Greeks (800 BCE), who 
also had quite sophisticated flutes, blown at the open upper end and had six fingerholes. 
Romans (200 BCE) used traverse (side-blow, flute). Finally, the modern flute design 
was pretty much proposed in 1847 by Theobald Boehm: an improved flute with 
cylindrical tubing and a parabolically conical headjoint. Felt pads were added to the key 
cups to prevent the escape of air. The shape of the embouchure changed, which hitherto 
had been oval or round, to a rectangle with rounded corners. The material he chose was 
German silver, to which he ascribed the best acoustic properties (Sachs, 2006). One can 
argue that the Boehm is a great improvement over the bone flute, but the interaction 
design is the same: blow through a hole, stop the air from escaping with the fingers (or 
equivalent), and make the air vibrates producing the sound. This design makes sense 
because, presumably, we (humans) are good at controlling our breath and we can do that 
without compromising our fine motor skill, therefore we can block the holes of the flute 
with our fingers while we still control our breath. Surely it is a proven design but how 
good are we really in making music using such design pattern and what are the 
consequences in doing so? Using and respiratory system to make music will introduce 
constraints in the musical performance granting its distinctive aesthetics. It does makes 
sense biomechanically-wise since it is a simple mechanism in which humans can 
effectively shape the sound (the air) and get a responsive haptic feed-back. That said, if 
you have the chance to build a flute from scratch, in line with the ubimus key concepts, 
would you follow the same interaction design? 

Developing musical interaction is a complex and multidisciplinary task with 
some very interesting challenges. On a high level, these can be divided into two classes: 
a) Technology-related challenges; and b) Human-related challenges. Some examples of 
the first class include studying sensors required in ubicomp, building system software 
for interoperability and integration, and researching mobile ad hoc networking. As for 
the latter class, some examples include studying smart home usability, and tools for 
performing such studies. In this paper we focus on the class of human-related challenges 
by investigating the ergonomics and biomechanics aspects of a guitar performance. The 
reported findings can indeed contribute to the design of new ubimus DMI’s that are 
inspired in the same interaction pattern used in guitar playing (i.e. string manipulation). 
Moreover, this is done without disregarding the expressive aspect of musical 
performance that must be embedded in such technology.



3. Psycho-Acoustics-Based Modelling

Structure-expression relationships have been formalized in computational models that 
apply rules to input structural descriptions of musical scores (Sundberg, 2003). In fact, 
measuring the deviation of the music performance from what is actually written in the 
score is the most common technique to quantify the ‘expressiveness’ of the 
performance. 

Extensive work has been developed to identify relevant cues for musical 
expression in audio signals and then, with the aid of score-matching algorithms, 
compare them with the notated score. Such cues include: tempo, sound level, timing, 
intonation, articulation, timbre, vibrato, tone attacks, tone decays and pauses (Poepel, 
2005). This approach is referred to as analysis-by-synthesis and it typically starts with a 
hypothesized principle, realizes it in terms of a synthetic performance, and evaluates it 
by listening. If needed, the hypothesized principle is further modified and the process 
repeated (Sundberg, Askenfelt, Fryden 1983). 

Another approach referred to as analysis-by-measurement takes empirical 
evidence directly from measurements of human expressive performances. Both 
approaches use the musical notation (score) as a reference to quantify deviations. 

Whatever the source of the data, some computational techniques have been 
recurrently used in an attempt to model an expressive performance. These models serve 
to generalise the findings and have both a descriptive and predictive value (Widmer, 
2004). Some of these techniques and models are: Rule-Based approach (Gilden, 2001) , 
Mathematical Approach (Mazzola, 2002), Machine Learning Approach (Madsen & 
Widmer, 2006). However, since we are interested in isolating unintentional from the 
intentional actions that the performer executes, none of those approaches will be further 
discussed in this paper.  

4. Performer-Based Modelling

The act of interpreting, structuring, and physically realizing a piece of music is a 
complex human activity with many facets – physical, acoustic, physiological, 
psychological, social, and artistic (Widmer, 2004).  

According to Juslin (2003), performance expression is best conceptualized as a 
multi-dimensional phenomenon consisting of five primary components:  

(1) Generative rules;
(2) Emotional expression;
(3) Motion principles;
(4) Stylistic unintended local deviations; and
(5) Random variations.

From these five components listed by Juslin (2003), the first one – generative
rules - can be investigated using simulation-based approaches related to Psycho-
Acoustics-Based Modelling . To investigate the other four topics, a multi-disciplinary 
approach is required, typically involving areas such as psychology, musicology, and 
biomechanics.  As a consequence, computational models of music performance are 
often used for evaluation goals (usually to validate cognitive theories) rather than for 
predictive goals.  



4.1 (Hidden) Musical Structure Models 

Many findings have established a causal relationship between musical structure and 
patterns of performance expression (Clarke, 1988).  

The notated music score is just a small part of the actual music. Not every 
intended nuance can be captured in the formalism of a written musical notation 
(Widmer, 2004). Performers must not only decode the symbolic information written in 
the music score but also interpret its ‘hidden’ structural content in order to adequately 
communicate the composer’s ideas to the listener (Drake & Palmer, 1993). One of the 
most well documented relationships is the marking of group boundaries, especially 
phrases, with decreases in tempo and dynamics (Henderson, 1936).  

Bean (1939) however, pointed out a human characteristic acting upon the 
segmentation strategy: short-term memory capacity. Good sight-readers work with 
effective chunking (of the score) using short-term memory (Gabrielsson, 1999).  Sight 
reading is especially important in the first stage of the performance plan, that is 
acquiring knowledge of the music and developing preliminary ideas about how it should 
be performed. According to Gabrielsson (1999), it is also in this first stage that the 
structural analysis reveals the real meaning of the musical information. The final 
version of the performance is what the musician intends to replicate in front of the live 
audience. In order to investigate how the audience could be able to perceive the 
expression in this performance, perceptual models are usually adopted. 

4.2 Perceptual Models 

Since the rise of experimental psychology in the 19th century, psychology's 
understanding of perception has progressed by combining a variety of principles, 
theories, models and techniques. Perception has been studied and found in several 
domains of cognition, including speech (Perkell & Klatt, 1986), motor behaviour 
(Heuer, 1991) and object motion (Shepard, 2002). It has also been the topic of several 
studies in music perception. More than an ability to perceive sounds by detecting 
vibrations, music perception aims to explain and understand musical behaviour and 
experience, including the processes through which music is perceived, shifting the focus 
from the study of isolated sounds and elements to the perception of their inter-
relationships and human reactions to them. A perceptual model helps to predict the 
degree of expressive freedom a performer has in a music performance before the 
listener perceives a misinterpretation.  

 These models attempt to predict when, for example, the rhythm performed with 
some tempo and timing variations will still be recognizable as such by the listener. 
Pisoni (1977) found listeners to be able to distinguish temporal differences between two 
successive acoustic events (typically pure tones) between 500 Hz and 1.500 Hz signal at 
a minimum relative of 20 ms. Moore et. al. (1993) found that the ability of listeners to 
detect gaps in a signal was around 6 to 8 ms for signals in the range of 400 to 2.000 Hz.  

Whilst the technical component of a skilled music performance is related to the 
mechanisms of producing fluent outputs, the expressive component is derived from 
intentional variations in performance parameters chosen by the performer to influence 
the cognitive and aesthetic effect on the listener (Palmer, 1997). A performer’s 
intentional deviations generally correspond to change in the produced sound (e.g., 
changes of dynamics, tempo, articulation, and so on)  that even non-musical listeners 



can perceive fairly well, even when underlying acoustic changes are not identifiable 
(Palmer, 1997). 

Perceptual models have been the preferred approach to model expressive timing 
in music performance (Honing, 2006) but this is not the only way to do it. In addition to 
Perceptual Models, Kinematic Models have also been used in the domain of music 
cognition. The latter advocates an intimate relationship between musical motion and 
physical movement. 

4.3 Kinematic Models 

The relationship between musical motion and physical movements has been studied as a 
form of modelling music cognition and expression (Todd, 1995). It focuses on the 
identification of patterns that are commonly found in music performance, and 
establishes how these patterns conform to the laws of physical motion. In order to sound 
natural in performance, expressive timing must conform to the principle of human 
movement (Honing, 2006) that is based on an internal sense of motion. 

This principle reflects upon the notion that music performance and perception 
have their origins in the kinematic and dynamic characteristics of typical motor actions. 
For example, regularities observed in a sequence of foot movements during walking or 
running are similar to regularities observed in sequences of beats or note values when a 
musical performance changes tempo. 

An underlying principle of this school of thinking is that we (humans) 
experience and make sense of musical phenomena by metaphorically mapping the 
concepts derived from our bodily experience of the physical world into music. 
Accordingly, listeners hear the unfolding musical events as shaped by the action of 
certain musical forces that behave similarly to the forces behind our movements in the 
physical world such as gravity and inertia (Dogantan-Dack, 2006). Baily (1985) even 
argues that the performer’s internal representation of music is in terms of movement, 
rather than sound.  

Arguments against kinematic models suggest that physical notions of energy 
cannot be equated with psychological concepts of musical energy. Another criticism of 
the kinematic models is that they are insensitive of rhythmic structure of the musical 
material. There is no enough evidence  to stablish correspondence between the rules that 
cope with human motion and kinematical models of expressive timing (Honing, 2006). 

4.4 Internal Time-keeping System (Motor Control) Models 

In a music performance, the motor system of the performer assumes the role of planning 
the sequencing of movements to play a musical instrument on the basis of his or her 
internal body clock. The primary role of such internal clock is to regulate and 
coordinate complex time series such as those produced between hands (Povel & Essens, 
1985) but it also acts as timekeeper by controlling the time scale of movement 
trajectories (Shaffer, 1981).  

Fraises (1982) suggests that our internal clock operates at 600 ms at the level of 
tactus. For instance, people often generate beat patterns around 600 ms in spontaneous 
rhythmic tapping tasks. Time periods greater than or less than this primary timing level 
are achieved by concatenating or dividing beat periods (Shaffer, 1981). 

Naturally, most models based on internal-clocks represent at metrical level  a 
musical sequence (Parncutt, Sloboda, Clarke, Raekallio, & Desain, 1997). For instance, 



timing of musical notes in a piece changes according to different tempi in motor 
exercises as Gabrielsson (1999) reported: 

(1) Faster or slower tempi present a higher variability of inter-note intervals than
intermediate tempo;

(2) The velocity of the key-press (piano) increases with tempo;
(3) Left and right hands present different key-press (piano) velocities, note

durations, and overlap between consecutive notes.

Performance timing can also exhibit stability at more abstract hierarchical levels,
such as entire musical pieces. The standard deviation of the total piece (35-40 min) 
duration is about 1% smaller than that of individual movements within the piece 
(Palmer, 1997). In simple terms, if one movement is shortened, another compensates in 
duration, which suggests temporal control at a level higher than the individual 
movements. 

Motor control is responsible for planning and synchronizing the movements of 
the musician but when it comes to physically performing the movement, biomechanical 
constraints take over. It is due to the muscles, joints and tendons that the performer is 
most exposed to failures and breakdowns either caused by internal (e.g. fatigue) or 
external (e.g. temperature) factors. 

4.5 Biomechanical Models 

Psychological studies of music performance have provided a wealth of information on 
musical expression and its relationship with the structure of a piece. However, these 
studies have largely ignored the physical manipulation of the instrument by the 
performer, even though the mechanics of the performer’s body is assumed to play a 
decisive role in shaping the sound (Sundberg, 2000).  

Performance is traditionally the means through which works of music reach 
audiences, and it is performance that makes the physicality of the body behind the 
music immediately evident to listeners (Dogantan-Dack, 2006). Yet, it is not common 
for music performance models to consider biomechanical constraints in the generation 
of music performances. 

More often biomechanical models are used in the understanding and prevention 
of possible injuries resultant of the accumulation of micro traumas when the human 
physiological limits are exceeded, a common problem for musicians (Ericsson, 1993). 
Nevertheless, Parncutt (1997) did use of biomechanical findings extracted from the 
literature to establish a set of rules that would find the most suitable fingering within a 
particular musical context in a piano performance. Parncutt’s rules considered the 
stretch of the fingers, displacements, the use of weak fingers (4 and 5) and the thumb.  

Although Parncutt’s model can predict some of the fingering choices and 
avoidances when confronted to the fingering preferences of human pianists, his results 
are questionable because his model ignored crucial cognitive aspects, such as the use of 
common fingerings for scales and arpeggio, register and style. More recently, Jacobs ( 
2001) identified a number of drawbacks in Parncutt’s model and successfully proposed 
some refinements, most of which were related to the weak-finger rules and a new 
scoring system based on physical distance range.  

Heijink and Meulenbroek (2002) also conducted a behavioural study to explore 
the biomechanical basis of the complexity of the left-hand movement in guitar playing. 
Three factors were analyzed in relation to the notions of postural comfort when playing 



a sequence of single notes:  a) the position of the left-hand on the guitar neck; b) finger 
span; c) hand repositioning; Their study protocol resorted in a performance-related 
definition of travel-cost of a movement, proposed by Rosenbaum (1996), which 
assumes that a guitarist is likely to choose the fingering that requires the least amount of 
physical effort when no other overriding cognitive or musical constraints need to be 
taken into account. A similar approach has been previously tested in an agent-based 
guitar performance system  (Costalonga et al. 2008). In either case, it was found that 
biomechanical factors played a secondary role in the performer’s choice of fingerings. 
Indeed, biomechanical constrains do limit the available options of possible fingerings, 
however musical style, personal preference, and other cognitive factors are more 
pertinent than biomechanical, as also observed by (Heijink and Meulenbroek 2002). 

5. The Role of Errors in a Music Performance

Performers have an impressive ability to replicate the expressive profile of a piece in 
performance, with a degree of variability in the timing properties of a performance of 
one percent or less  (Clarke, 1988). However, even expert performers will eventually err 
for variety of reasons (Palmer, 1997). 

Deviations from the musical notation are expected in Western classical music as 
part of a performer's artistic license, and it is often difficult to distinguish these artistic 
deviations from actual errors (Palmer, 1997). In fact, errors can lead to unexpected 
musical discoveries that ultimately improve the performer’s technique and, as a result, 
enrich the performance; this effect is known as serendipity. 

The problem of distinguishing deviation from errors was first noted by Desain et 
al. (1997) while he was attempting to produce a more robust score-matching algorithm. 
He mentioned three situations that led score-matching algorithms to perform poorly: 

(1) There may be events in the score that are not written out completely (e.g.,
certain kinds of ornaments);

(2) In the case of parallel voices, expressive timing may cause the order of events in
the performance to be different from the order specified in the score;

(3) Finally, the performer could omit, insert or change notes by mistake, often
resulting in many alternative interpretations, especially in the case of repeated
notes of the same pitch.

As Desain (1997) observed, performers never play equally. In all human
performance tasks, errors seem to be a frequent occurrence and they come from 
different sources: cognitive, motor or mechanical (Drake & Palmer, 1993).  

Although errors are a frequent occurrence in music performance, there is little 
documented evidence of this. Perhaps the most influential study of error in music 
performance is the work of Palmer and Van de Sande (1993). Nevertheless, it is a study 
of psychology that aims to investigate cognitive plans of music performance; for that 
reason, motor and biomechanical constraints are not contemplated.  

According to Wickens and Hollands (2000), errors can be classified as: 
mistakes, slips and lapses. In summary, errors of interpretation or of the choice of 
meaning are called mistakes and originate from cognitive processes. Slips are quite 
different from mistakes, in a slip the understanding of the situation is correct and the 
correct intention is formulated, but the wrong action is accidentally triggered due to a 
motor or biomechanical problem. Lapses overlap these categories; they are the failure to 



perform an action when a procedural step is missing which could originate at the 
cognitive, motor or mechanical level. 

In the field of psychology there is a belief that errors in skilled performance arise due to 
multiple internal representations of the desired behaviour (Norman, 1981). Articulatory 
properties (motor commands produced for a specified sequence of successive events) 
are believed to be a secondary cause in error production, merely influencing 
performance plans. Nevertheless, it is acknowledged that the mental plans underlying 
music performance must also consider constraints related to sound production using a 
musical instrument in addition to perceptual constraints. For instance, keyboard 
performances of musical scales suggest a greater range of articulatory control for the 
right hand than for the left hand (MacKenzie & Van Eerd, 1990). 

In their investigation of the cognitive errors in music performance, Palmer and 
Van de Sande(1993) adopted a similar error coding scheme to that used in speech error 
research (Dell, 1986) adapted for the musical domain. The classification only 
considered pitch errors surrounded in a musical context or not. The error types were: 
note addition, note deletion, note substitution, and note shift. A substitution involves a 
note event replacing a target; an addition involves a note event being added (without 
replacing a target); a deletion involves a target being deleted; and a shift involves the 
movement of a target to a neighbouring location. Finally, contextual errors can reflect 
the range of influence of different plans in the type of movement, including forward 
movement (an event performed too early; anticipations), backward movement (an event 
performed too late; perseverations), or both (events switching neighbouring locations; 
exchanges).

The results reported by Palmer and Van de Sande (1993) show that most errors 
(98%) involved one size unit (chord or note) and most errors (91%) involved single-
notes (whether from part of a chord or from a solitary notated event). Contextual errors 
made up 57% of the total errors, the greatest percentages of which were substitutions 
(31%) and contextual deletions (deletion of a repeating pitch, 31%). Of the movement 
errors (substitutions, additions, and shifts, which comprised 69% of the contextual 
errors), forward (early) movement was most frequent (52%), backward (late) movement 
second most frequent (37%), and bidirectional movement (exchanges) least frequent 
(11%).  

The ‘production errors’, as referred by Palmer and Van de Sande (1993) 
indicated different influences of conceptual (melody interpretation), compositional 
(across- and within-voice associations), and articulatory processes (hand and finger 
movements) in planning music performance. In addition, the size, harmonic dimension 
and diatonic dimension of production errors suggest that retrieval of musical elements 
from memory reflects multiple structural levels and units. 

Palmer and Van de Sande (1993) also reported that articulatory advantages are 
independent of conceptual processes of interpretation. Evidence shows reduced 
likelihood of error in the highest frequency voice, which are normally controlled by 
outer right-hand fingers; the authors accredited this fact to a consistent and well-learned 
mapping of the melody to outer right-hand finger movements in keyboard performance. 
Nevertheless, the authors also acknowledge to ergonomic and biomechanical 
implications in such behaviour. Bare in mind that, before the birth of human factors or 
ergonomics, emphasis was placed on ‘designing the human to fit the machine’ (Wickens 
& Hollands, 2000). Therefore, it is not unusual to find performers contorting themselves 
around musical instruments that were designed in the last century, when ergonomics 



and human factors were not formally taken into consideration when building a musical 
instrument. 

Researchers working in the fields of Ergonomics and Human Factors have been 
working to understand the limitation of human abilities independently of its source, be 
that cognitive, motor, or biomechanical. The fundamental goal is to reduce error, 
increase productivity, and enhance safety and comfort when the human interacts with an 
artefact or system (Wickens & Hollands, 2000). Despite the extensive research that has 
been done to understand the causes of errors at the cognitive, motor and mechanical 
level, only a handful of studies have addressed music performance. Conversely, most of 
the motor control studies in music performance do recognize the relevance of the error 
(Juslin, Friberg, & Bresin, 2002; Sloboda, 2000) In order to exemplify the relevance 
that errors might have in a music performance context we can compare it with the 
findings of a similar motor task: typing in a word processor. The human error 
probability (HEP) is the basic unit of human reliability in discrete tasks and it is 
estimated from the ratio of errors committed to the total number of opportunities for that 
error (Freivalds, 2004). 
 Card and colleagues (1983) estimated that the typists make mistakes or choose 
inefficient commands on 30% HEP.  

The challenge is to establish when errors are caused by cognitive processes and 
when they are caused by mechanical and motor limitations of the body. Is the music 
piece demanding more than is humanly possible? If so, what are the consequences?   

6. An Ergonomic Study of the Guitar

A guitar can be classified by its acoustics, playability, fitness and aesthetics. Playability 
(or responsiveness) and fitness are interlinked parameters, and they are the focus of our 
investigation.  

Playability determines how much effort is required to achieve clear, well-formed 
individual notes, particularly during rapid and difficult passages. Fitness focuses on how 
well the instrument suits the performer’s characteristics to improve the instrument 
playability. The acoustic properties of guitars play a very significant role, if not the 
most significant, in the simulation by computers of a realistic music performance. 
However, the guitar’s acoustic properties are not the scope of this paper, with the 
exception of a particular type of sound: noises.  

The word ‘noise’ usually refers to an unwanted sound, which could arguably be 
considered unfair. Indeed, there is an obvious relationship between noise and error; and 
naturally, performers do try to avoid errors. Performance errors (slips) most certainly 
terminate in one of another form of noise. However, we believe that is through the 
perception of the noise that the audience identifies the imperfect human nature behind 
music performance; thus, noises should also be part of a computer-generated 
performance; but not all types of noises are useful. It is important to establish the right 
balance between noises and pure sounds. It is not any ‘random’ noise that will produce 
the desired ‘human-feel’ in a computer-generated performance. To do so, the correlation 
between the specific performance errors and the noises they produce must be found. 

Noise is also an important part of the sound signature of an instrument. For 
instance, the sound from the finger sliding along the guitar before it is plucked is very 
characteristic. If the finger noise is left out an important part of the tone is missing 
(Cuzzucoli & Lombardo, 1999). 

In guitar performances, there is yet another characteristic noise caused by the 
fingers rubbing along the string, known as pre-scratch. Pre-scratch is a term used to 



refer to the sound component that precedes the actual tone. It is caused by the fingers of 
the right-hand rubbing along the string before it is released. In the apoyando and tirandu 
techniques the finger is normally placed on the strings in such a way that both the 
fingernail and the fingertip touch the string, producing a noise of very short duration, 
lasting somewhere between 1 ms and 5 ms, just long enough to be audibly detectable 
(Valimaki, Huopaniemi, Karjalainen, & Janosy, 1996). 

The ‘finger slide’ and the ‘pre-stretches’ are the both type of noises that can be 
found in the modern physical modelling synthesis techniques (Cuzzucoli & Lombardo, 
1999; Valimaki et al., 1996). However, in order to make these noises sound realistic in a 
musical context, the moment they are used needs to be carefully selected. Finding the 
moment when noises (or errors) are likely to happen still demands more investigation.  

There are other noises, however, that have been largely ignored by most of 
synthesis techniques, even though they occur consistently in guitar performances. In 
fact, several different noises can be produced if not enough pressure is applied in order 
to stop the string properly. Two examples are: a) muffled/damped notes; and b) buzzed 
notes. 

We ran an experiment that was intended to find the force boundaries needed to 
produce clean, buzzed, and muffled notes, with the aid of an INSTRON 5582 Universal 
Test Machine All the six strings of the tested guitar (Antoria Archtop Jazz Guitar 
equipped with a set of strings D’Addario extra-light tuned (standard) with the aid of an 
Intelli Chromatic Turner IMT-500) were measured in three regions of the fretboard: 1st 
- 3rd frets, the 5th fret; and 12th fret. The values for the other frets were interpolated.
The analysis of the quality of the note generated was subjective to the personal
evaluation of the experimenter.

Figure 1 shows the results of the measurement. In summary, the experiment 
shows that the force range required to produce clean notes on the particular guitar tested 
stayed between 0.204 and 0.897, with an average of 0.423 kgf; this was considerably 
higher than initial calculations based on string action, gauge and tension had suggested. 
The calculated average force required was around 0.223 kgf  with [5th fret, 1st string] as 
the position that required the least amount of force (0.141 kgf)  and [1st fret, 3rd string] 
as the position that required the greatest amount of force (0.438 kgf).  

<<Insert Figure 1>> 

Figure 1: Measured forces to produce clean notes on a real guitar. The x-axis 
corresponds to the fret region and y-axis the real force (kilogram force).  

Normally, buzzed and muffled notes will often originate from a poor 
performance technique but it could also be due to a low-quality instrument. 
Nevertheless, we also compiled the force measurement required to produce ‘buzzed-
notes’ and, as expected, they are lower than those required to produce clean notes, 
ranging from 0.173 to 0.611, on average 0.353 kgf or 0.100 kgf less. For this work, any 
force value below the recorded for a buzzed-note is treated as muffled-note, even 
though this might not always be the case in the reality. 

<< Insert  Figure 2>> 

Figure 2: Calculated vs. Measured forces for string displacement. The outer circle (in 
blue) shows the measured force and the inner circle (in red) shows the calculated force. 
The fret regions are shown in the peripheral area of the chart.  



The graph in Figure 2 shows the radical difference between the expected 
(theoretical) and the real data measurement. The blue line is the measured value and the 
red line is the theoretically calculated values. Note that for the sake of clarity the only 
representative frets for this comparison are the 1st, 2nd, 3rd, 5th and 12th. The others 
are interpolations. As can be observed, the difference is greater in the strings with a 
higher gauge. The measured values are on average 0.144 kgf higher than those 
calculated but most of this difference comes from the 12th fret, especially on the 4th, 
5th and 6th strings. 

Based on these data, it is possible to conclude that the guitar setup, maintenance, 
and quality of construction can indeed play a significant role in some common errors in 
guitar playing mainly regarded to the generation of buzzed and muffled notes. However, 
would a guitar player be able to adapt and overcome such unforeseen difficulties during 
a live performance? 

7. A Biomechanical Study of Guitar Player

Normally, a musical performance is not a task that requires excessive force. In fact, in 
many skilled activities the skilled man is relaxed and economical in his movements, 
whereas the novice’s work is cramped and tiring (Grandjean, 1988). Parlitz et al. (1998) 
have shown that amateur pianists not only use more force on every stroke but also used 
it for longer.  

It is not in the context of this work discuss the details of the human physiology 
behind a musical performance.  So, in summary, consider that each muscle fibre 
contracts with a certain force, and the strength of the whole muscle is the sum of these 
muscle fibres. The maximum strength of a human muscle lies between 0.3 and 0.4 
N/mm² per the cross-section (PCSA); thus, a muscle with a cross-sectional area of 100 
mm² can support a weight of 3-4 kg (30-40 N) (Grandjean, 1988). The main force 
producer muscles in the flexion of the index, middle, ring are the Flexor Digitorum 
Superficialis (FDS) and the Flexor Digitorum Profundus (FDP). In a pinch  grip action, 
the tendon forces were found to be in the range of 25 to 125 N (12.74 kgf) for the FDP 
and 10 to 75N (7.6 kgf) for the FDS (Freivalds, 2004, p. 215). This power output is 
more than enough to produce clean notes on guitar (the measured force to generate 
clean notes on a real guitar ranged from 0.204 to 0.897 kgf). The straight forward 
conclusion is that, obviously, humans do have enough strength to play guitar but it does 
require strategy and technique in order to not err due to fatigue. 

To exemplify the level of effort that can be encountered in a guitar performance, 
consider an F major chord executed as shown in Figure 3. If we consider the data 
collected from the Antoria Guitar and calculate all the force required for producing a 
clean note in all the positions of this chord, we would end up with the cumulative force 
of 2.28 kgf to perform this chord shape in the first fret. The same chord shape in the 
10th fret would require a force of 3.52 kgf to be performed.  Normally, an additional 10-
40% of extra-force is unintentionally used as a safety margin (Wing, Haggard, & 
Flanagan, 1996) which would increase the force to 4.92 kgf.  

<< Insert Figure 3>> 

Figure 3: F (Barre) Chord Shape 



A barre-chord is a type of palmar pinch grip. The average maximum force of a 
palmar-pinch grip of the left-hand of male adults stays around 10.4 kgf (Mathiowetz et 
al., 1985) hence a 47.3% MVC (Muscle Voluntary Contraction) is required to perform 
this chord. Danion and Galléa (2004) propose that steady force output by the fingers can 
only be maintained at a level 30-40% MCV, meaning that anything above this range can 
only be maintained for a short period of time usually bellow 6 seconds before the 
muscles get fatigued. So, in short, 6 second is the amount of time that an average person 
would be able to perform this chord-shape on the Antoria Guitar.  

 Now, if the primary muscles suffer fatigue, an unintended contraction of other 
muscles induces a change in posture to alleviate the primary fatigued muscles. This 
means that the task will be performed by muscles that are not the most effective to the 
task, inducing loss of precision and, again, increasing the risk of errors. This 
phenomenon is known as contralateral activation and it is more evident in highly 
repetitive tasks or tasks that require awkward postures, such as guitar playing.   

In physiology, muscular fatigue is a phenomenon that reduces the performance 
of a muscle after a stress, not only reducing its power but also slowing the movement 
(Grandjean, 1988).  

While muscle force is proportional to physiological cross-section area (PSCA), 
muscle speed (or excursion) is proportional to fibre length (Wing et al., 1996, p. 69). 
Wickiewicz, Roy, Powell and Edgerton ( 1983) suggests the maximum speed for 
contraction of human muscles is about 8 lengths/s for slow-twitch and 14 lengths/s for 
fast twitch. These values however need to be treated with some reservation because they 
were extrapolated from mixed fibre muscles experiments. The fibre type composition of 
the finger flexor muscles (FDP and FDS) is also mixed, with a slightly lower proportion 
of type I fibres (Maurer, Singer, & Schieber, 1995; Mizuno, 1994). Considering the 
FDP (index finger) fibre length of 61 mm (for FDS is 31 mm), a full contraction would 
take around 70 to 125 ms.  As seen a full contraction of the muscle would, theoretically, 
produce more force than is actually necessary to play a clean note, which is on average 
around 0.423 kgf. The question is how fast the flexor muscles can produce just the 
sufficient force to play a clean note. 

To answer that, let us suppose the FDP is the only force producer for the flexion 
of the index finger. The FDP has cross-sectional area (PSCA) of 177 mm²  (Doyle et al., 
2003, p.107), meaning its maximal isometric force F0 = 177 x 0.3N/mm² = 53.1N/mm² 
(5.41 kgf). Because the FDP is a mixed composition fibre type with slightly less 
proportion Type I, we will consider its V0 = 10 lengths /s. The constants are given by:  
a = F0 x 0.25 =13.275N/mm² (1.35 kgf); and b = V0 x 0.25 = 2.5 length/s. Based on 
that, it is possible to estimate that the FDP would need to contract just 2% of its fibre 
length in order to produce the 0.81 kgf required to play a clean note in virtually any 
position of the fretboard. In a time measuring unit, 0.2 length/s corresponds to 20 ms, 
the exact same time amount that Pisoni (1977)  argued that listeners would need to 
distinguish temporal differences between two successive acoustic events, in other 
words, to perceive an error. Thus, in summary, an average person requires 20ms to be 
able to produce enough force to play a clean note on a guitar but listeners also require 
20ms to perceive temporal errors. So, how is it possible to play a clean note on time? 
 Wargo (1967) estimates that delays originating from the cognitive difficulties 
(disorders affecting abilities including learning, memory, perception and problem 
solving) ranges from 113 to 528 ms and  it can only be reduced with training and 
anticipation of the movement. In other words, a musician needs a lot of training to 



master the playing technique to overcome its body’s limitations. All in all, it is safe to 
infer that musical performance is unlikely without any type of error.  

8. Guitar Performance Errors

In the field of ergonomics, performance measurements are generally associated with 
one of four categories: measures of speed or time, measures of accuracy or error, 
measures of workload or capacity demand (how difficult is to use the product), and 
measures of preference (Wickens & Hollands, 2000, p. 13). In biomechanics, 
performance is mostly characterised in terms of endurance, strength, speed, and 
accuracy (Sanders & McCormick, 1993, p. 215). Our research focused on measuring 
only the attributes that we believed would have the greatest impact on the computer 
models for the guitar performance. These are: precision/accuracy, speed, strength/force, 
and posture. Also, this paper will be limited to report only the results that that could 
potentially lead to some sort of performance error.  

Even though biomechanical musical experiments should be very simple in both 
cognitive and musical terms (Heijink & Meulenbroek, 2002), which probably favours 
the decision to use single notes on the experiments, it has been decided to use chords 
(resulting from integrated movements of several digits) instead due to the fact that most 
finger movements made by primates (including humans) are not isolated movements of 
a single digit (Wing et al., 1996, p. 81).  

The chord’s fingering/shape was based on system known as CAGED and EDAm 
(Edwards, 1983). The selection of well-known chord shapes, that are movable and are 
usually taught on the early stage of guitar training, contributes to the extrapolation of 
the results to other chords with similar chord shapes. This is possible because the brain 
works in a similar fashion. Instead of storing all possible body positions, the brain 
derives new postures from a few basic ones (Wing et al., 1996). 

<< Insert Fig. 4>> 

Figure 4: Chord shapes used in the experiment. The 6x4 matrix objects seen in the 

image (also named chord diagrams) represent a guitar fretboard; the black circles inside 

the matrix a show the positioning for the fingers. The horizontal line linking two points 

represent a ‘barre’. The hollow circle on top of the matrix indicates an open string and 

the ‘x’ mark indicates the string should not be played.  

Three male right-handed guitarists, aged between 19 to 30 years old, took part in 
the experiments. All of them have had at least two years of classical training but just 
one actually considers himself a classical guitarist. The others sought specialization in 
more popular genres such as jazz, rock and blues. The subjects have between 6 and 20 
years of guitar playing experience. 

8.1 Force and Posture Data Measurements 

The amount of pressure exerted by the guitarist’s finger on the strings in order to stop 
them against the fretboard could impact the quality of the note produced as previously 
explained. To measure the isometric force exerted by the guitarist’s left-hand fingers we 



have developed an equipment capable of recording, coping with (a) multiple hand grips 
(b) dynamic conditions scenarios, and (c) changes in body postures.  The equipment
built is dummy guitar equipped with 18 Tekscan Flexiforce sensors A201-25 (0-
25lbs/11.3kgf) sensors, strategically placed, that were ‘played’ by the subjects while
wearing a Animazoo Gypsy6 Torso motion capture exo-skeleton that records their
movements. Figure 5 shows a subject trying out the setup for the experiment.

<< Insert Fig. 5>> 

Figure 5 : Subject trying the force measuring apparatus. Setup composed of a Gypsy6 

exo-skeleton and FoGu – a custom made guitar that records the coordinate finger’s 

force production. 

The force readings were taken by 18 sensors glued in four moveable plates that 
slide along the fretboard locking into pre-established positions equivalent to the inter-
fret spacing of the classical guitar. The distribution of the sensors was optimised to use 
the fewer possible number of sensors to perform all ten chord shapes (Figure 4).  
The dimensions of the plates were calculated based on 9th to 12th fret dimensions of a 
guitar with the same scale length, respectively: 20.5 mm, 19.5 mm, 19 mm, and 18.5 
mm. In the lower frets, an empty space was left between the plates to simulate the
normal inter-fret spacing. The detail of this sensor distribution can be seen in

<< Insert Fig. 6>> 

Figure 6. 

<< Insert Fig. 6>> 

Figure 6: Close up view of distribution sensors in FoGu. 

The electrical output from the sensors was sent to an analog-to-digital converter 
- IRCAM Ethersense Interface - through a series of individual circuits built using 100k
resistors to maximize its sensitivity. The Ethersense interface converts the analogical
signal to digital and sends it to a Max/MSP patch. This patch generates an OSC (Open
Sound Control) message that is captured by custom-built Max/MSP patch. The custom-
built patch analyzed the input, mapped the sensors’ output to the chord shapes/fingers
and then recorded the force per finger.  The settings used for the Ethersense interface
was:  Bit Resolution = 8, Sampling period = 500 ms and no average filter. To eliminate
possible fluctuations caused by external factors, all sensors were recalibrated (3
measurements) before every session using weights of 102, 204, 306, 510, 0714, 1000
and 1.510 grams.

For this experiment, the subjects were required to wear the skeleton, which 
demands individual adjustment and the calibration to the subject’s body. This means 
that the value recorded for a particular joint, for example wrist flexion, is relative to the 
flexibility of the subject for that movement (wrist flexion/extension) and a direct 
comparison between subjects is not possible. The purpose of using the skeleton was to 
understand the upper-limb configuration when performing the chords.   

The subjects, wearing the skeleton, were asked to perform the same ten chord 
shapes used in the previous interaction with the FoGu device (see figure 5). They were 



instructed to apply the force they believed to be right to make the all notes of chords 
sound clear. The position and force should be kept for 30 seconds. This process was 
repeated three times to every chord shape with a 2 minutes interval between the trials. 
In order to avoid any effect of fatigue, the chord shape was randomized across 
participants. 

The use of the 30 second blocks was proposed by Shan and Visentin (2003) to 
improve the reliability of their experiment which aimed to understand the kinematics of 
violin performance. Three recordings were recommend by (Mathiowetz et al., 1985) 
because measurements in strength studies are usually not reliable and are subject to 
several external inferences. The 2 minutes interval is the estimated time required to 
recover from the 30 seconds sub-maximal muscle contraction (up to 70% MVC). 

The subjects could not rely on tactile or auditory feedback as they would 
normally do when performing on a normal guitar. The idea was to record the force the 
performers were used to apply and not the maximal force they were capable of. Any 
feedback could lead them to adjust the pressure, applying more or less force than 
normal. 

The results of our force experiments have shown that, for the particular task of 
performing chords, the index finger is actually the strongest finger, contributing on 
average 32% of the force generated in a combined pinch grip. Kong and Freivalds 
(2003) reported that the individual fingers do not contribute equally to force production. 
In their experiment, they found that the middle finger is the strongest at 28.7% of the 
grip force, followed by the index, ring, and little fingers, with percentage contributions 
of 26.5, 24.6, and 20.2% respectively.  

Note, however, that the resulting value has been pushed up by the barre-chords, 
using a different type of grip (palmar pinch grip) in which the index finger is highly 
stressed. The middle, ring and little finger contributed 30, 21 and 17% respectively, as 
seen in Figure 7.  

<< Insert Fig. 7>> 

Figure 7: Finger average force distribution performing the chords. The image on the left 
shows the average force of the fingers (y-axis) in kilogram force per subject (x-axis). 
The image on the right shows the percentage per finger of average force produced.  

The average forces the guitarists believed was necessary to produce a clear 
chord is around 147 grams/f, which is 35% of the actual forced required to produce a 
clean note with the previously tested guitar. Obviously, that could be a significant cause 
of potential errors on guitar performance.  Subject 2 has once again distinguished 
himself from the other subjects by applying double the force, on average 218 grams/f 
while subjects 1 and 3 have applied 120 and 105 grams/f respectively. This is the same 
subject that used the guide-finger as a strategy to perform the chords, a jazz guitar 
player. Even if the tested guitar is an acoustic jazz guitar, this professional guitar 
player’s muscle memory indicates that only 51% of the force is required to produce a 
clean chord. This is something to be very aware of when modelling guitar 
performances. 

The supposed correlation of the fret location and force production could not be 
verified for the non-barre chords. For the barre-chords, Subjects 1 and 3 presented 
significantly higher force production in the higher frets. Whatever the reason leading to 
this behaviour, it did not seem to affect Subject 2. Although merely speculative at this 
point, we are convinced that the extra-force used by Subject 1 and 3 was an attempt to 



overcome any difficulty originating from an awkward posture, but we were not able to 
check this hypothesis from the measurements made with the Gypsy6 exo-skeleton 
system. 

Another interesting observation is that the force produced per finger on the 
barre-chords is lower than on the non-barre chords. In summary, barre-chords are not 
only slower and less-precise but also it is more likely to produce muffled and buzzed 
notes. Once again, it was observed a difference in the technique of Subject 2 when 
compared to the others; Subject 2 manages to apply less force on the lower strings to 
focus on the bass note. Meanwhile, Subject 1 and 3 apply more force on the lower 
strings. A possible explanation to this behaviour may be related to their musical 
background and right-hand techniques. Considering that the 6th and 5th strings (bass) 
are under more tension than 1st and 2nd strings, the overall technique of Subject 2 may 
be more efficient. If the computation considered the maximum force generated by the 
index finger regardless of its position in the barre, then the average accumulated force 
production for Subjects 1 and 3 would be considerably greater, as seen in Figure 8. 

<< Insert Fig. 8>> 

Figure 8: Accumulated average force. The image shows the force participation of the 

finger in chords per Subject, where S1 = Subject 1, S2 = Subject 2, S3 = Subject 3. The 

‘real force’ considers the index finger maximum force in the barre as to calculate the 

average, whereas the normal force considers the uppermost position in the barre. 

8.2 Speed and Precision Data Measurements 

Music performance is a skilled activity that demands very fast and precise movements 
from the performer. Thompson and Dalla Bella  (2006) have shown that pianists may be 
required to play up to 30 sequential notes per seconds over extended musical passages. 
Like an athlete, a ‘virtuoso’ instrumentalist is the result of years of exhaustive training 
in which his body and mind goes under continuous adaptation to maximize his genetic 
pre-disposition to the task. According to Wickens et al. (2004), one of the ways to 
improve the speed of the movements is to anticipate them, reducing the number of 
possible alternatives when the time to act comes . A less obvious strategy is to use body 
members closer to the cortex to reduce neural transmission times that could vary from 
100 m/s to 25 m/s, respective to the larger and smaller (more precise) type of neurons 
found in the Central Nervous System.  

Rosenbaum (1996) has already proven that motions can be made more rapidly in 
certain ways and directions because of the nature of human physical structures. This 
theory was formalised in a travel-cost function for the motor behaviour implies the use 
of basic ‘stored’ postures to create new ones; the selection of which ‘stored’ postures to 
use is based on the effort to move from one posture to the other.  Of course, a travel 
function implies a departure and arrival point or posture. In our experiment, two frames 
of reference were proposed: one in the top (6th) and another in bottom (1st) string of the 
guitar (Figure 9). The use of frames of reference in different regions of the fretboard 
serves two purposes. Firstly, it establishes a common ground for comparison between 
the subjects by setting an initial posture for reference. Secondly, it will allow us to 



understand the influence that the initial hand position has in the overall time taken to 
perform the transition. 

<< Insert Fig. 9>> 

Figure 9: Frames of Reference developed for the experiments. The horizontal lines 

represent the guitar strings; the vertical lines represent the frets. The black circles with a 

numeral inside indicate the positioning for the fingers, where 1 = index, 2 = middle, 3 = 

ring, 4 = little finger. 

The equipment we use to acquire the speed data was a guitar-like MIDI 
controller Yamaha EZ-AG that simulates the dimensions of electric guitar but, instead 
of strings, the controller has buttons on the fretboard. When pressed, these buttons 
trigger MIDI messages that are sent to the Sound Generation Unit. A bespoke real-time 
MIDI recorder was developed to interpret these messages and record not only the speed 
but also any (precision) error occurred during the experiment. 

After a 5-10 minutes of warm-up, the experimenter asked the subject to set the 
bottom reference at the 1st frame (1st fret - 1st fret - 4th fret) and ‘jump’ to the first chord 
shape as fast and as precisely as he possibly could using a previously agreed fingering. 
The procedure was repeated until last frame (9th fret – 12th fret) was reached, for all 10 
chord shapes, from the bottom, and top references, three times each. The chord shape 
recording order was: C, A, G, E, D, Am, Dm, F, B, and Bm.   

Figure 10 summarize the results found. The overall speed of the chord shape 
was calculated as the mean of all chords for all three subjects. The same rationale was 
used to calculate the speed of the individual fingers. The average time for the subjects to 
perform a chord was around 350 ms. The D chord was the fastest at 248 ms and B chord 
was the slowest taking more than twice as long at 559 ms. 

<< Insert Fig. 10>> 

Figure 10 Average speed to perform a chord. The x-coordinates represent the time in 

milliseconds and the y-coordinates the chords measured. 

One possible explanation for the slower performance of the B chord is the 
palmar pinch used in the barre technique, since it requires a different set of muscle that 
is stronger and slower. In addition, the B chord also requires an awkward upper-limb 
configuration in contrast to Am and E which are anatomically very comfortable to the 
subjects. Another possible explanation is related to the use of the little finger. 

According to Freivalds  (2004) the little finger is the slowest digit and the 
experiment have also showed that. It must be remembered that the overall speed of the 
chord is equal to the speed of the slowest link (digit) of this system. Evidence 
suggesting the retardant effect caused by the use of the little finger can be found when 
analysing the fingering used by the Subjects to perform the G-chord (on average the 
slowest of the non-barre-chords). While subjects 1 and 3 used the little finger in the 
position (1, 3), Subject 2 preferred to use the ring finger instead. Proportionally to the 
readings of the other chords of the same subject, the G Chord was performed much 



faster by Subject 2 than Subjects 1 and 3. Figure 11 shows the average speed per subject 
making it possible to compare and identify some patterns. 

 
<< Insert Fig. 11>> 

Figure 11: Average speed to perform a chord per subject. In the barre chart (left) the x-

coordinates represent the chords and the y-coordinates the time in milliseconds. The 

radar chart (right) allow another comparison highlighting the patterns of speed per 

chord between the subjects 

 
<< Insert Fig. 12>> 

 
 

Figure 12: Average speed of the fingers when performing the proposed chords. The x-
coordinates represent the finger, where 1 = index, 2= middle, 3 = ring, and 4 = little; the 

y-coordinates show the time in milliseconds. 

Figure 12 shows the average speed per finger. As previously suspected, the little 
finger was indeed the slower one. Surprisingly, the ring finger has shown similar values 
for all the subjects, being the fastest finger for Subjects 1 and 3. As an obvious 
conclusion, there is a greater chance to err (time-related) when preforming chords that 
make use of the little finger. 

Through analysis of the speed of the digits we could observe a pattern in the 
strategy of positioning the finger on the fretboard. While Subject 2 seems to have made 
constant use of the index finger as a guide, Subject 3 preferred to group his fingers 
before positioning them. To help us understand these strategies, the overall time to 
perform a chord shape was decomposed into: a) Reaction Rime (RT): the time it takes 
to configure and move the hand to the region where chord shape must be performed; 
and b) First-To-Last note time interval (FTL): the time elapsed from the moment the 
first and last finger was actually put into place. 

The FTL is an especially important measure because it helps to reveal trends in 
the use of the fingers. If the FTL time is small in comparison to the overall performance 
time then it suggests that the fingers are being grouped and then the buttons pressed 
together. Conversely, if the FTL time is high in comparison to RT then one finger may 
have been used as a guide to set a reference to the fingers. Figure 13 shows the RT and 
RTL for all 3 subjects. 
 

<< Insert Fig. 13>> 
 

Figure 13 : RT and FTL speeds. The percentage shown in the y-axis is related to the 
subject average time to perform the chord shapes. FTL = First to Last and RT – 

Reaction time. 

The guide-finger strategy is something that the classical technique strongly 
recommends avoiding. Carlevaro, in 1984, already considered the use of a guide finger 
obsolete (Carlevaro, 1984, p. 79), but this still seems to be common practise among Jazz 
guitarists who adopt a less strict performance technique to match the interpretational 
freedom characteristic of the Jazz style. In this technique, the guide-finger searches for a 



note of the chord (usually the fundamental note) and only then are the rest of the fingers 
laid to form the chord.  

For instance, Subject 2 constantly placed the index finger firstly at all the non-
barre chords. In the case of the barre-chords, the middle finger was placed first.  Using a 
radically different approach, Subject 3 has consistently positioned all the fingers on the 
fretboard in a very short period of time, a technique considered to be more refined. In 
summary, the finger’s placing strategy may lead to performance error if combined to 
right-hand plucking/strumming techniques introducing unwanted notes or supressing 
important ones even if for a just noticeable period of time. It could also indicate that 
Subject 2 would be less prone to precision errors once, from the perspective of the 
motor control system, the use of a more precise digit as the guide-finger could help the 
performer to build an imaginary image of the fretboard in which the guide-finger sets a 
spatial reference for the other (less precise) digits as well as providing tactile feed-back 
that later can be verified by the auditory or visual senses.  In order to verify that 
assumption, the accuracy/precision errors of the subjects were classified using a dart 
target-like system, as seen in Figure 14. 

 
<< Insert Fig. 14>> 

 

Figure 14: Error coding system. ‘S’ =String, ‘F’ = Fret, ‘+’ = Above or Right, '-' = 

Bellow or Left. 
 

In this target-like strategy of classification every error receives a code indicating the 
distance from the target. In the code system [S] stands for string, [F] for fret, ‘+’ for top 
or right-hand side, and ‘-’ for bottom or left-hand side. As an example, suppose that the 
target is the position [2, 3].  If the finger hits the positions [3, 3] and [2, 3] at the same 
time, this error is classified as ‘S+’. If there is no hit for a particular position, then this 
error is classified as ‘N-’.  In the unlikely event of a hit outside the immediate peripheral 
area then a numeral is added (i.e. ‘S+3’).  Of course, this system is only possible if the 
fingering used by the performer is known beforehand. The choice of fingering was up to 
the subject to decided and recorded by the experimenter for later analysis.  

 Fitts (1954) was one of the first researchers to look into this multi-variable 
correlation proposing an equation which later became known as Fitt’s law. According to 
the Fitt’s law, faster movements are less accurate, whereas precise moments are slower 
(C. D. Wickens & Hollands, 2000, p.387). This reciprocity between time and errors has 
been well documented across different areas and constitute one of the fundamental 
tenets of ergonomics, referred to as the index of difficulty of the movement (C. D. 
Wickens, Gordon, Liu, & Gordon-Becker, 2004, p.263). Indeed, the data collected did 
reveal evidence that Fitt’s law also applies to guitar performance. As can be observed in 
Figure 15, the fastest subject was also the least precise whilst the most precise was the 
slowest. Moreover, the guide-finger strategy did not prove itself very effective 
 

<< Insert Fig. 15>> 
 

Figure 15: Speed and Error correlation. The x-axis represents the number of errors and 

the y-axis the time in milliseconds 



 
According to our results, the B chord was not only slower but it was also the 

most difficult to play. From the total errors 51% were generated during the performance 
of the B chord, followed by Bm and F chords, with 41% and 8% respectively.  

It is well established that acquiring barre techniques is a difficult stage in 
learning to play the guitar. The strings dig into the joints and the softer parts of the 

index finger causing discomfort (Chapman, 1994, p.78). Discomfort, however, seems 
not to be the only factor that could lead to errors. The Yamaha EZ-AG guitar has 

buttons instead of strings and yet the errors only happened during the performance of 
the barre-chords (<< Insert Fig. 16>> 

 

Figure 16).  
<< Insert Fig. 16>> 

 

Figure 16: portion of the recorded errors per type. ‘S+’ =hit string above the target, ‘N-’ 

= note missing, ‘F-’ = hit in fret left to the target, ‘SF+’ = hit string above and fret in the 

right to the target, ‘S-’ = hit string bellow the target. 

 
From total recorded errors, 41% were from the ‘S+’ type meaning the subjects 

hit a string above the target. Analysing this figure further we can find that 87.5% of 
these errors were on the Bm and B chords, both using a barre that cover from the 1st to 
5th string.  

If the subject applies a barre from the 1st to 6th string but does not pluck the 6th 
string, this will have little impact in a produced sonority. Some performers may not 
even consider it an error at all. For our system however, this still counts as an ‘S+’ 
error. In reality, 78.5% of the ‘S+’ errors in these two chords were caused by the index 
finger, used in the barre technique. 

 
<< Insert Fig. 17>> 

Figure 17: Subject 2 probability error rate. The x-axis shows the percentage of the type 

errors type per chord. 

 
Figure 17 shows the probability (HEP) of Subject 2 incurring an error when 

performing the barre-chords. Note that Subject 2 recorded the highest number of errors. 
Bm and B have the same statistical probability of performance errors but the repertoire 
of errors found in B chord is much more diverse. A profile of the error can be drawn 
based on its location and the finger used.  

Overall, the index finger was responsible for 43% of errors, followed by the 
middle, little and ring fingers with 28, 10, and 2% respectively. It is important to 
remember that these errors were related to barre-chords, therefore the index finger had 
the highest probability of erring, having to press 5 or 6 buttons at the same time. 
 

<< Insert Fig. 18>> 



 

Figure 18: Fingers participation on errors. The x-axis shows the percentage of the 

finger’s participation in the particular error types where S+’ =hit string above the target, 

‘F-’ = hit in fret left to the target, ‘N-’ = note missing 

 
Although the little and ring fingers have a smaller contribution to the total of 

errors, they were more consistent in a particular type of error, as seen Figure 18. All the 
errors ‘caused’ by the little finger were from the ‘N-’ type, which one could assume is 
related to its lower strength if compared to the other digits. This shows that errors 
cannot be analysed merely by quantitative terms. In order to truthfully model precision 
errors, qualitative aspects of the error must also be considered. 

9. Conclusion 

As Sundberg (2000) observed,  psychological studies of music performance have 
provided a wealth of information on musical expression but they have largely ignored 
the physical manipulation of the instrument by the performer. The interaction between 
humans and artefacts has been studied in disciplines such as ergonomics, biomechanics, 
and human factor sciences even though these studies rarely focus on music performance 
modelling. In reality, just a few studies actually consider the influence of the body in 
models for musical performance. However, it is at the physical level that accidental 
errors happen, known as slips. It is a well-known fact in the field of biomechanics that 
motions can be made more rapidly in certain ways and directions because of the nature 
of the human physical structures (Rosenbaum, 1996). These physical structures can 
limit the movement speed which would eventually induce errors.  

It was demonstrated that muscle strength, speed, and endurance can indeed 
affect a music performance. For instance, we have shown that the index finger needs at 
least 20 ms to generate enough power to produce a clean note in a guitar. Curiously, this 
is the same amount of time that Pisoni (1977) reported for listeners to be able to 
distinguish temporal differences between two successive acoustic events.  

The forces required to deflect a string in a real guitar were both calculated and 
measured; the average calculated force to produce a clean note was found to be 223 
grams and the average measured force was 423 grams. If not enough force is applied to 
stop the string, a muffled or a buzzed note is likely to be produced instead. De facto, we 
have found that a buzzed-note requires on average 75% of the force necessary to 
produce a clean note.  

Muffled and buzzed notes are especially relevant to this work because they are 
the direct result of the finger’s inappropriate use of force. Unfortunately, these two 
particular ‘noises’ have not yet been supported by modern synthesis techniques (not 
even those based on physical modelling techniques). Even if currently available 
synthesizers were able to support noise in musical performances, there would still be the 
problem of controlling it; for instance, when and how they should occur. By ‘noise’ 
here we mean the result of those unintentional actions originating from motor and 
biomechanical forces. 

 In an attempt to understand unintentional actions in performance due to 
biomechanical constraints we have designed a set of experiments to measure not only 
the force produced in a multi-finger task (playing a guitar chord), but also its speed and 



precision.  The speed results have shown that certain chords can be performed twice as 
fast as others, with the average speed required for a chord to be performed around 350 
ms. As expected, chord shapes that better suit the hand’s anatomy, such as A and E 
chords, presented a smaller speed variation between the subjects, respectively at 36 and 
24 ms. This evidence contributes to the belief that biomechanical constraints can indeed 
delay some actions in music performance. The force results have shown that the average 
force distribution among the fingers is slightly different from what is found in the 
literature, where the middle finger is usually the main force producer. In our 
experiment, the index finger was the main contributor with 32% of force produced, 
followed the middle, ring and little fingers with 30, 21 and 17% respectively. The 
average forces the guitarists believed was necessary to produce a clean note was around 
147 grams/f. The posture and motion analysis revealed surprising results. From the 
three articulations measured (wrist, elbow and shoulder), the elbow was the one which 
presented the highest level of motion, although initially it was expected that the wrist 
would have the higher degree of motion. These results seem interesting, but since they 
are very preliminary, they are not discussed in the core of this paper and must be 
handled with care because the equipment used was very limited to measuring just a few 
degrees of freedom of articulation, especially the wrist movements.  

Although the results of the experiments have disclosed interesting evidence to 
support the notion that biomechanical constraints indeed interfere with music 
performance, we have decided not to translate these findings straight to production rules 
that could be used to simulate music performance. Instead, a machine learning approach 
was adopted as it will be discussed in future work.  

In regard to the Ubimus, much work is still needed in order to extend the scope 
of current research to cope with many well-known performance issues. We are 
convinced that a better understanding of performance issues and models in Ubimus 
research (and ubimus development ) is a good starting point, not only to identify the 
capabilities and limitations of future work, but mainly to establish a common ground for 
discussing several interesting questions that are still open. 

Obviously, lots of experiments are necessary to obtain more evidence to support 
the notion that biomechanical constraints indeed interfere with music performance.  
Even with positive results, we think sometimes it would be not possible (or desirable) to 
translate preliminary findings straight to production rules that could be used to simulate 
music performance, but we are convinced a machine learning approach could be 
adopted taking such knowledge in account. Perhaps it will be investigated in our future 
work.  
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Figure 1: Measured forces to produce clean notes on a real guitar. The x-axis 
corresponds to the fret region and y-axis the real force (kilogram force).  

 



 

Figure 2: Calculated vs. Measured forces for string displacement. The outer circle (in 
blue) shows the measured force and the inner circle (in red) shows the calculated force. 
The fret regions are shown in the peripheral area of the chart.  

 

 



 

Figure 3: F (Barre) Chord Shape 

 

 

 

Figure 4: Chord shapes used in the experiment. The 6x4 matrix objects seen in the 

image represent a guitar fretboard; the black circles inside the matrix a show the 

positioning for the fingers. The horizontal line linking two points represent a ‘barre’. 

The hollow circle on top of the matrix indicates an open string and the ‘x’ mark 

indicates the string should not be played.  

 



 

Figure 5 : Subject trying the force measuring apparatus. Setup composed of a Gypsy6 

exo-skeleton and FoGu – a custom made guitar that records the coordinate finger’s 

force production. 

 
 

  

Figure 6: Close up view of distribution sensors in FoGu. 

 
  

 



Figure 7: Finger average force distribution performing the chords. The image on the left 
shows the average force of the fingers (y-axis) in kilogram force per subject (x-axis). 
The image on the right shows the percentage per finger of average force produced.  

 

 

Figure 8: Accumulated average force. The image shows the force participation of the 

finger in chords per Subject, where S1 = Subject 1, S2 = Subject 2, S3 = Subject 3. The 

‘real force’ considers the index finger maximum force in the barre as to calculate the 

average, whereas the normal force considers the uppermost position in the barre. 

 

Figure 9: Frames of Reference proposed for the experiments. The horizontal lines 

represent the guitar strings; the vertical lines represent the frets. The black circles with a 
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numeral inside indicate the positioning for the fingers, where 1 = index, 2 = middle, 3 = 

ring, 4 = little finger. 

 
 

 

Figure 10 Average speed to perform a chord. The x-coordinates represent the time in 

milliseconds and the y-coordinates the chords measured. 

. 

 

Figure 11: Average speed to perform a chord per subject. In the barre chart (left) the x-

coordinates represent the chords and the y-coordinates the time in milliseconds. The 

radar chart (right) allow another comparison highlighting the patterns of speed per 

chord between the subjects 
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Figure 12: Average speed of the fingers when performing the proposed chords. The x-

coordinates represent the finger, where 1 = index, 2= middle, 3 = ring, and 4 = little; the 
y-coordinates show the time in milliseconds. 

 

 
Figure 13 : RT and FTL speeds. The percentage shown in the y-axis is related to the 

subject average time to perform the chord shapes. FTL = First to Last and RT – 
Reaction time. 

 

Figure 14: Error coding system. ‘S’ =String, ‘F’ = Fret, ‘+’ = Above or Right, '-' = 

Bellow or Left. 
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Figure 15: Speed and Error correlation.The x-axis represents the number of errors and 

the y-axis the time in milliseconds 

 

  

Figure 16: portion of the recorded errors per type. ‘S+’ =hit string above the target, ‘N-’ 

= note missing, ‘F-’ = hit in fret left to the target, ‘SF+’ = hit string above and fret in the 

right to the target, ‘S-’ = hit string bellow the target. 

 



 

Figure 17: Subject 2 probability error rate. The x-axis shows the percentage of the type 

errors type per chord. 

 
 



 

Figure 18: Fingers participation on errors. The x-axis shows the percentage of the 

finger’s participation in the particular error types where S+’ =hit string above the target, 

‘N-’ = note missing, ‘F-’ = hit in fret left to the target 

 
 


