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Abstract 

The current research examined the effects of errorful generation on memory, focusing particularly 

on the roles of motivation and surprise. In two experiments, participants were first presented with 

photographs of faces and were asked to associate four facts with each photograph. On Generate 

trials, the participants guessed two of the facts (Guess targets) before those correct facts, and 

another two correct facts (Study targets), were revealed. On the remaining Read trials, all four facts 

were presented without a guessing stage. In Experiment 1, participants also ranked their motivation 

to know the answers before they were revealed, or their surprise on learning the true answers. 

Guess targets were subsequently better recognised than the concurrently presented, non-guessed 

Study targets. Guess targets were also better recognised than Read targets, and recognition of Study 

and Read targets did not differ. Errorful generation also increased self-reported motivation, but not 

surprise. Experiment 2 showed that the results of Experiment 1 can outlive a 20-minute delay, and 

that they generalise to a more challenging recognition test. Together, the results suggest that 

errorful generation improves memory specifically for the guessed fact, and this may be linked to an 

increase in motivation to learn that fact. 

Keywords: errors, motivation, surprise, memory, education  
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Tests play an important role in educational practices, in so much as they are routinely used 

to assess students’ abilities, and to identify areas to focus on in subsequent study (Karpicke, Butler, 

& Roediger III, 2009; Kornell & Bjork, 2007). It is now well established, however, that tests are not 

only useful for identifying knowledge gaps; the very act of testing can also substantially improve 

memory on subsequent tests. This benefit of testing is known as the testing effect (for reviews, see 

Kornell & Vaughn, 2016; Roediger & Karpicke, 2006; for recent meta-analyses, see Adesope, 

Trevisan, & Sundararajan, 2017; Rowland, 2014). The testing effect suggests that tests are not 

neutral events that are only useful for assessing current knowledge. Rather, tests can also have 

powerful effects on subsequent learning and memory. 

Although the overall effects of testing seem to be positive, there is some debate as to how 

memory is affected by any errors that are made when taking those tests. Advocates of the so-called 

errorless learning approach argue that errors will be reinforced during learning, leading to a 

perseveration of those errors on subsequent tests (e.g., Skinner, 1958; Terrace, 1963). Support for 

this view comes from studies showing that generating errors during learning sometimes impairs 

memory on subsequent tests (Baddeley & Wilson, 1994; Forlano & Hoffman, 1937; Kessels & De 

Haan, 2003; Squires, Hunkin, & Parkin, 1997). The more frequent finding in recent years, however, is 

that errors aid learning (Cyr & Anderson, 2015; Grimaldi & Karpicke, 2012; Hays, Kornell, & Bjork, 

2013; Huelser & Metcalfe, 2012; Kane & Anderson, 1978; Knight, Ball, Brewer, DeWitt, & Marsh, 

2012; Kornell, 2014; Kornell, Hays, & Bjork, 2009; Richland, Kornell, & Kao, 2009; Slamecka & 

Fevreiski, 1983; Tanaka, Miyatani, & Iwaki, 2019; Vaughn & Rawson, 2012; Yan, Yu, Garcia, & Bjork, 

2014; Yang, Potts, & Shanks, 2017; Zawadzka & Hanczakowski, 2018). In these cases, failed tests are 

beneficial, and they can even be as beneficial as successful tests (Kornell, Jacobs Klein, & Rawson, 

2015). Indeed, harder tests (which, by definition, are more likely to produce errors) appear to 

produce the greatest benefit to subsequent learning and retrieval (Carpenter & DeLosh, 2006; Kang, 

McDermott, & Roediger III, 2007; McDaniel, Anderson, Derbish, & Morrisette, 2007; Pyc & Rawson, 

2009). 
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Much of the evidence for the benefits of failed tests comes from the so-called “unsuccessful 

retrieval” paradigm, which was first established by Kornell et al. (2009). In this task, participants are 

asked to learn weakly associated word pairs such as pond-frog and whale-mammal. On some trials – 

Generate trials – the participants are first presented with the cue (e.g., pond) and they are asked to 

guess the target (frog) before it is revealed. Since the word pairs are weakly related and have not 

been presented previously during the experiment, the participants have no way of knowing what the 

correct target is, and so their guesses are usually wrong. These Generate trials are then compared to 

control trials – Read trials – in which the participants are simply asked to study each word pair for 

the full trial duration, without first guessing the target. The typical finding is that, in a subsequent 

cued recall test, the participants recall more targets from the Generate condition than the Read 

condition (e.g., Kornell et al., 2009). Most importantly, this effect remains even when the Read trials 

are compared to just the Generate trials in which the participants incorrectly guessed the target at 

encoding. Thus, taking a test can improve subsequent memory when compared against an 

equivalent period of pure study time, even if that test results in failure. This effect is known as the 

benefits of unsuccessful retrieval. 

Several recent experiments have used a variant of Kornell et al.'s (2009) unsuccessful 

retrieval task to provide especially strong support for the notion that failed tests can be beneficial 

(Potts, Davies, & Shanks, 2019; Potts & Shanks, 2014; Seabrooke, Hollins, Kent, Wills, & Mitchell, 

2019). In these experiments, the cues are unfamiliar words – either very rare English words or 

foreign vocabulary – and the targets are the corresponding common English definitions (e.g., roke-

mist or gazta-cheese). On Generate trials, then, the participants are given the task of guessing the 

definitions of words that they have never seen before. Their guesses are therefore inevitably 

incorrect on almost all trials. Nevertheless, the participants still show better memory for targets that 

they incorrectly guessed than targets that they simply studied at encoding. Following Potts and 

Shanks (2014), we refer to this novel vocabulary effect as an errorful generation effect.  
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Errorful generation effects appear to be robust, but it is also important to note that they 

only occur under certain test conditions. Errorful generation attempts have repeatedly been shown 

to improve performance on cue and target recognition tests that involve discriminating “old” items 

(those that were presented at encoding) from “new” foils that were not presented at encoding 

(Potts et al., 2019; Seabrooke et al., 2019). Comparable effects have also been observed with 

multiple-choice tests in which the participants have to identify the correct target for a given cue 

from among novel foils (Potts & Shanks, 2014; Seabrooke et al., 2019). These multiple-choice tests 

also assess target recognition because, since the foils are novel, the correct answer can be derived 

based on target familiarity. On the other hand, errorful generation attempts do not appear to 

improve performance on tests that assess associative memory, such as cued recall or associative 

recognition tests (Seabrooke et al., 2019). We note that this constraint contrasts with unsuccessful 

retrieval effects, where errors do typically improve subsequent cued recall of related word pairs 

such as pond-frog (e.g., Kornell et al., 2009). Thus, errorful generation effects concern the scenario 

where a participant generates an error when studying novel word pairs that do not have a pre-

existing association. Such errors appear to improve subsequent recognition of the cues and targets 

on their own, but not the association between them (Seabrooke et al., 2019). 

The present experiments were designed to examine the mechanism(s) that allow errorful 

generation attempts to boost target recognition. Our main aim was to explore why errorful 

generation attempts produce a benefit to recognition memory. Potts and Shanks (2014) suggested 

that attempting to guess the definitions of novel words in an encoding phase might boost motivation 

to learn those definitions, which could then improve processing of the correct answers. In initial 

support of this account, Potts et al.'s (2018) participants rated their curiosity to learn the definitions 

of rare English words more highly when they had previously (incorrectly) guessed the definitions 

than when they had just viewed the rare English words without guessing the definitions. In related 

experiments, Kang et al. (2009) found that participants’ self-rated curiosity to learn the answers to 

trivia questions predicted how well they would recall those answers after a 1-2 week delay. These 
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results suggest that the process of generating guesses for questions increases curiosity to learn the 

correct answers, which could then improve processing of those answers. 

Another possibility is that, after an errorful generation attempt, the presentation of the 

correct answer produces surprise. An increase in surprise might then serve to direct attention to the 

target more effectively than pure study trials (see also Brod, Hasselhorn, & Bunge, 2018; Carrier & 

Pashler, 1992; Kornell et al., 2009). This idea is consistent with influential theories of associative 

learning that suggest that learning is driven by prediction errors that arise from discrepancies 

between one’s expectations and the actual outcome (e.g., Rescorla & Wagner, 1972).  

Initial support for the “surprise” hypothesis comes from research showing that corrective 

feedback is processed more effectively following errors that are made with high confidence than 

errors that are generated with low confidence (the hypercorrection effect: e.g., Butterfield & 

Metcalfe, 2001, 2006; Fazio & Marsh, 2009; Griffiths & Higham, 2018). Brod et al. (2018) also 

recently reported that participants showed better memory for feedback that was inconsistent with 

their initial predictions than feedback that was consistent with their predictions. Inconsistent 

feedback also produced larger surprise-associated pupillary responses than consistent feedback, and 

the strength of these responses correlated positively with subsequent learning. Both of these 

findings are consistent with the idea that generating guesses that are followed by expectancy-

violating feedback produces surprise, which then improves memory of the correct answer by 

increasing attention to the feedback.  

A quite separate question addressed in the current experiments is whether errorful 

generation selectively boosts the processing (and consequently recognition) of the specific 

information that was guessed. One possibility is that errorful generation has a general effect, in that 

it may improve the processing of all information that is presented on Generate trials. Alternatively, 

errorful generation attempts could impair memory for other information. Previous research that has 

examined the specificity of errorful generation effects has typically used complex educational 
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materials, such as lecture videos or textbook passages. This research has produced mixed results. 

Some experiments have found that pretesting improves subsequent retrieval of the pretested 

material, but does not benefit other, non-pretested information (Carpenter, Rahman, & Perkins, 

2018; Pressley, Tanenbaum, McDaniel, & Wood, 1990; Richland et al., 2009; Toftness, Carpenter, 

Lauber, & Mickes, 2018). Other studies, by contrast, have found that pretesting improves memory 

for both pretested and non-pretested information (Carpenter & Toftness, 2017), or that pretesting 

does not significantly benefit retrieval at all (Geller et al., 2017). Indeed, some experiments have 

even found that testing can impair the learning of new information when it is presented alongside 

the tested material (Davis & Chan, 2015; Finn & Roediger, 2013). Given the mixed status of the 

literature, a key aim of the present research was to examine the specificity of pretesting effects in a 

controlled, laboratory experiment with reasonably simple materials. It is also worth noting that most 

of these studies did not differentiate between the effects of answering pre-questions correctly and 

incorrectly. Richland et al. (2009) provided one exception, but there were mixed findings across the 

experiments with respect to the specificity of the pretesting effect. The present experiments 

specifically examined the selectivity of the errorful generation effect, in which participants are asked 

questions about novel materials, and their initial guesses are therefore almost always incorrect. 

In sum, a number of recent experiments have shown that, in the context of novel vocabulary 

learning, errorful generation attempts can improve subsequent target recognition memory. A 

number of mechanisms have been proposed to explain the benefits of errorful generation. These 

mechanisms are not necessarily mutually exclusive, but their relative contributions are not well 

understood at present. In the current experiments, we therefore adapted the traditional errorful 

generation paradigm to assess the specificity of the errorful generation effect, and the role of the 

motivation and surprise. 
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Experiment 1 

Experiment 1 utilised a novel errorful generation procedure in which participants were first 

presented with photographs of unfamiliar people and were asked to learn four facts (a hobby, a 

name, a job and a food) relating to each person per trial. On Generate trials, two facts were 

designated as either “Guess” or “Study” facts each. The participants were asked to guess the two 

Guess facts before both the Guess and Study facts were revealed. On the remaining Read trials, the 

participants simply studied all four facts without guessing any of them. Some of the participants also 

ranked their motivation to learn the correct facts before they were revealed (Motivation group). The 

remaining participants ranked their surprise regarding the four facts after they were revealed 

(Surprise group). Memory of the Guess, Study and Read targets was then assessed in a final 

recognition test, in which the faces were presented with the correct facts and novel foils. Both 

groups had to select the correct facts for each face. 

Based on the earlier work by Potts and colleagues (2014, 2019) and Seabrooke et al. (2019), 

we expected the participants to recognise more Guess targets than Read targets in the final 

recognition test. The primary question of interest was with respect to the Study targets (presented 

on Generate trials, but for which no guess was made). By pairing each cue (face) with multiple 

targets (facts), the task allowed us to assess the specificity of the errorful generation effect. If 

errorful generation produces a generalised increase in attention, then all facts that are presented on 

Generate trials (i.e., both Guess and Study items) should be better recognised than facts that are 

presented on Read trials. If errorful generation has a more specific effect, on the other hand, then 

the participants should show better recognition of just the Guess facts, and recognition of Study 

facts might even be impaired relative to the Read facts. Moreover, if errorful generation improves 

processing of the targets via an increase in motivation to learn the correct answers, or surprise when 

the answers are revealed, then Guess targets should receive higher motivation and/or surprise 

rankings than Study targets. 
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We adopted this novel errorful generation paradigm for several reasons. First, the use of 

novel faces as cues ensures that the cues do not have pre-existing associations with the targets (the 

facts). A picture of an unfamiliar person reveals nothing about their favourite food or hobby, for 

instance. Second, faces are ideal stimuli to use when exploring the specificity of errorful generation 

effects, because they can be paired with many unrelated facts. Learning that a person works as an 

accountant, for example, provides no information about their favourite food. Verbal cues such as 

pond, by contrast, have many associates (e.g., frog, lily, water), but they often have shared semantic 

features. By using faces that could be easily and realistically paired with multiple non-overlapping 

facts, it allowed us to examine the specificity of the errorful generation effect, without concern that 

the participants’ guesses would be related to both the Guess and Study targets. 

Third, pairing each cue with multiple unrelated facts allowed us to examine whether errorful 

generation attempts have specific or general effects on motivation and surprise. Errorful generation 

might have a general effect, in that it could increase motivation and/or attention to the cue and all 

related information. For instance, having to guess on a trial may reduce the likelihood of mind-

wandering, or attentional lapses during a Generate trial, relative to a Read trial. If this is the case, 

then all facts that are presented on Generate trials (i.e. both Guess and Study items) should be 

remembered better than the facts that are presented on Read trials, where no guessing occurs. 

Alternatively, errorful generation might increase motivation to learn the specific item that the 

participant guessed, without concurrently increasing motivation to learn the other facts. In this case, 

the Guess facts should be remembered better than both the Study and Read facts. Finally, the 

pairing of each cue (face) with multiple targets (facts) gives us more data per trial, and therefore 

provides a more powerful test of the effects of errorful generation on self-reported motivation and 

surprise. 
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Method 

 Design. Encoding condition was manipulated within-subjects, with Guess and Study facts 

presented on Generate trials, and Read facts presented on Read trials. One group of participants 

ranked their motivation to learn each fact during the encoding phase. A separate group of 

participants ranked their surprise regarding each fact at encoding. The key measures during the 

encoding phase were the number of correctly guessed facts on Generate trials, and participants’ 

mean motivation/surprise rankings for Guess, Study and Read facts. The primary dependent 

measure for the recognition test was the percentage of Guess, Study and Read facts that were 

correctly recognised. 

Participants. Forty University of Plymouth students (27 females, aged between 18 and 30 

years, mean [M] = 20.53 years, standard error of the mean [SEM] = 0.45 years) took part in the 

experiment on either a voluntary basis or in exchange for course credit. The participants were 

randomly allocated to either the Motivation (N = 19) or Surprise (N = 21) group at the start of the 

experiment. Both of the experiments reported here were approved by the University of Plymouth 

Psychology Ethics Committee. 

Apparatus and materials. The experiment was programmed in E-Prime 2.0 and was 

presented on a 22-inch computer monitor. Stimuli were presented on a white background, and 

responses were made using a standard keyboard and mouse. The cues consisted of 27 pictures of 

human faces (12 males, 15 females) from the Florida Department of Corrections (2002) database 

(http://www.dc.state.fl.us). For each participant, a randomly selected 24 photographs were 

presented during the main task, and the remaining three were presented on practice trials. The 

targets/foils were 54 facts from each of the four categories (occupations, hobbies, foods and 

names). In each category, 24 facts served as targets, another 24 facts served as foils, and the 

remaining six facts served as targets or foils for the practice trials. 

http://www.dc.state.fl.us/


Errorful Generation  11 
 

Procedure. Both groups of participants were first told that they would see faces of different 

people, and that they would learn about their jobs, their favourite hobbies, their favourite foods, 

and their best friend’s names. We used “best friend’s name” as a category rather than the name of 

the person shown in the photograph so that the names could be randomly allocated to the 

photographs for each participant, without concern for gender. The participants were told that for 

some of the photographs, they would need to provide one-word guesses for two of the facts before 

they were revealed. They were also informed that they should try to remember all of the facts, 

because they would be tested later on. Finally, they were told that they would be asked to indicate 

how surprised they were by each fact (Surprise group), or how motivated they were to learn each 

fact (Motivation group). 

Encoding phase. Both groups first completed three practice encoding trials, which consisted 

of two Generate trials and one Read trial. They then completed 24 proper encoding trials, which 

consisted of 16 Generate trials and eight Read trials. We chose to present half as many Read trials as 

Generate trials so that there were the same number of facts in each condition (each Generate trial 

produces two Guess facts and two Study facts, while each Read trial produces four Read facts, for a 

total of 32 facts for each of the Guess, Study and Read conditions). The trials were randomly 

intermixed and were separated by 1500ms intervals. The category facts were randomly assigned to 

the faces for each participant, and the faces were randomly allocated to the Generate and Read 

trials. The 54 facts for each category were randomly allocated to serve as Guess, Study or Read items 

during the main or practice encoding phases, or as novel foils in the final recognition test. Figure 1 

depicts an example Generate trial at encoding. 

The Generate trials began with the presentation of a fixation cross for two seconds. A 

picture of a person’s face was then presented on the top center of the screen, above the four 

different categories, which were overtly labelled. The location of the four categories was randomly 

determined on each trial. We randomised the location of the categories to discourage the 
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participants from attending to some categories (e.g., the top two categories) more than others. On 

Generate trials, the four categories were also randomly allocated to the two Guess and two Study 

items. The category options were presented in bold text, and the first Guess category (randomly 

chosen from the two Guess items) was presented in red. All other text was presented in black. The 

participants had to guess the corresponding fact by typing it, using the keyboard. Their guesses 

appeared beneath the category as they typed, and they were able to use the Backspace key to 

change their answer up until they pressed the Enter key. Responses were not time limited. After a 

200ms inter-stimulus interval (ISI) in which the stimuli briefly disappeared, the second Guess 

category was presented in red. All other text was presented in black, including the participant’s 

guess from the first Guess item. The participants had to guess the corresponding fact in the same 

way as for the first Guess item. After another 200ms ISI, the Motivation group were then asked to 

rank their motivation to learn the four facts. At this point, the participants’ guesses disappeared and 

all of the category labels were presented in black. The question, “Which fact are you most motivated 

to learn?” was presented centrally, in between the picture of the face and the four category labels. 

The participants had to select a category label using the mouse, which then turned navy blue and 

was not available for further selection. The question changed to “Which fact are you [second/third] 

most motivated to learn?” for the second and third rankings, with the chosen categories changing to 

navy blue and becoming unavailable for further selection. The category that the participants were 

least motivated to learn was inferred. The participants had unlimited time to rank their motivation 

because (in contrast to the Surprise group), the motivation rankings were recorded before the 

correct facts were presented. After the ranking procedure was complete, the picture of the face was 

presented on the top-center of the screen, and the category labels were presented beneath, with 

the correct facts shown underneath each. The statement, “Please study the facts now” was 

presented centrally, between the face and the four facts. The category labels were all presented in 

navy blue; all other text was presented in black. The participants had eight seconds to study the 

facts. The Read trials were the same as the Generate trials, except that the participants did not 
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complete the generation component (the trials started with the motivation rankings). Hence, the 

facts were presented for eight seconds on both Generate and Read trials. 

The guessing phase of the Generate trials for the Surprise group was identical to that of the 

Motivation group. In brief, participants were presented with a face and the four category labels, and 

they had to guess two of the category facts in turn. After the second ISI (see Figure 1), all four 

correct answers were presented beneath the corresponding category options (the participants’ 

guesses were not presented hereafter). All text was now presented in black, and the participants 

had 12 seconds in total to rank their surprise about each of the four facts. We gave the Surprise 

group four seconds more than the Motivation group to view the facts, because the Surprise group 

were required to rank their surprise while the facts were presented, whereas the Motivation group 

were not. The question, “Which fact are you most surprised by?” was presented centrally, in 

between the picture of the face and the four category options. The participants had to click on one 

of the four category labels using the mouse. The chosen category was then presented in navy blue 

and was not available to be ranked thereafter. The question changed to “Which fact are you 

[second/third] most surprised by?”, and the participants had to click on one of the three remaining 

category labels (which also turned navy blue and was no longer available for further rankings). The 

category that the participants were least surprised by was inferred. All of the category options were 

then presented in navy blue, with the corresponding facts presented beneath each category, for the 

remainder of the 12 seconds. If the participants failed to rank all of the categories within the 12 

seconds, a “too slow” warning message and a reminder to rate their surprise by clicking on the 

categories was presented instead. No extra time was allowed if the participants failed to rank all of 

the items within the 12 seconds. 

The Read trials for the Surprise group followed the same format as the Generate items, 

except that the participants did not guess any of the facts (and hence the trial began with the 
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surprise rankings). Thus, the four facts were presented for 12 seconds on both Generate and Read 

trials. 

Final recognition test. The encoding phase was followed by a two-choice recognition test, 

which was identical for both groups. Four practice trials were administered to begin with. These 

trials followed the format of the main recognition test (described below), but used the faces and 

targets (one from each category) from the practice encoding trials (as well as randomly selected foils 

from the same categories as the targets). In the main recognition test, each trial began with the 

presentation of one of the faces from the encoding phase, along with a correct fact from one of the 

four categories and a randomly selected novel foil from the same category. The face was presented 

in the top-center of the screen, the target and the foil were presented side-by-side on the bottom 

half of the screen, and the question, “What is this person’s [category]?” was presented centrally. The 

text in brackets was replaced by the appropriate category (“occupation”, “favourite hobby”, 

“favourite food”, or “best friend’s name”). The location of the target and the foil was 

counterbalanced across trials. The participants had to select the target using the mouse (responding 

was not time limited). There were 96 trials, with 24 trials from each category. The faces from the 

encoding phase were presented four times each, once for each category. The trials were randomly 

ordered for each participant, and the facts associated with each face were randomly interleaved 

with other face-fact pairs. The trials were separated by one-second intervals.  

Results 

 The trial-level raw data are publicly archived at https://osf.io/tc976/. 

 Encoding phase. During the encoding phase, the participants were given unlimited time to 

guess the facts on Generate trials. On average, the participants spent 6656ms (SEM = 345ms) 

generating each guess in the Motivation group, and 6229ms (SEM = 346ms) in the Surprise group. A 

Welch two-sample t-test showed that the time taken to guess in each group did not significantly 

differ, t (37.9) = 0.87, p = 0.39, d = 0.28, although the Bayesian evidence for the null was 

https://osf.io/tc976/
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inconclusive, BF10 = 0.42. All Bayes Factors (BF10) were calculated using version 0.9.12.4.2 of the 

BayesFactor package (Morey, Rouder, & Jamil, 2015) in R (R Core Team, 2018).  

Across participants, 11 facts were correctly guessed on Generate trials. These consisted of 

six facts from the Motivation group, and five facts from the Surprise group.  When analysing the 

ranking data, we removed the trials involving correct generations from the Surprise group, since the 

correct generations would be likely to influence the participants’ ranking of the four facts. Trials 

involving correct guesses were not removed from the Motivation ranking dataset, however, because 

the rankings were recorded before the correct answers were presented. We also removed any trials 

in which the participants failed to rank all four categories in the Surprise group1 (14 trials total). 

Figure 2a shows the mean rankings given Guess and Study facts on Generate trials for the 

Motivation and Surprise group2. Rankings of four reflect the highest degree of motivation/surprise; 

rankings of one reflect the lowest degree of motivation/surprise. Higher motivation rankings were 

given to the Guess facts than the Study facts, t (18) = 6.26, p < .001, dz = 1.44. Surprise rankings, by 

contrast, did not significantly differ for Guess and Study facts, t (20) = 0.78, p = .44, dz = 0.17, BF10 = 

0.30. 

Final recognition performance. Figure 2b shows the mean percentage of correct responses 

per group in the final recognition test. All facts that were presented on trials in which a participant 

generated a correct guess at encoding were removed from the test dataset. Facts that were 

presented on trials in which the participants failed to rank all four categories in the Surprise group 

were also removed. An encoding condition × group mixed ANOVA3 revealed a significant main effect 

of encoding condition, F (2, 76) = 6.62, p = .004, generalised eta squared (ɳg
2) = 0.04, but not of 

                                                           
1 The Motivation group had unlimited time to rank their motivation of the four facts, so there were no trials in 
which the Motivation group failed to rank all four facts. 
2 Although our primary interest was with respect to the motivation and surprise rankings that were given to 
Guess and Study facts, we also report the mean rankings given to each category (name, job, food, and hobby) 
on Read trials in the Supplementary Materials for completeness.  
3 Here and in all subsequent relevant cases, Greenhouse-Geisser corrected p-values are reported to correct for 
violations of sphericity. 
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group, F (1, 38) = 1.61, p = .21, ɳg
2 = 0.03. The encoding condition × group interaction was not 

significant, F (2, 76) = 0.80, p = .44, ɳg
2 = .005. The Guess targets were better recognised than both 

the Study targets, t (39) = 3.36, p = .002, dz = 0.53, and the Read targets, t (39) = 3.45, p = .001, dz = 

.55. No difference was observed for targets that were allocated to the Study and Read conditions, t 

(39) = 0.65, p = .52, dz = 0.10, with Bayesian evidence for the null, BF10 = 0.21. 

We also computed the Goodman-Kruskal gamma correlation for each participant to examine 

the relationship between motivation/surprise rankings and final recognition performance. We did 

not include the Generate trials in this analysis, since these trials were affected by the experimental 

manipulation (Guess versus Study facts). Particularly with the motivation rankings, the Guess facts 

received higher rankings than the Study facts. This limits the range of scores that the participants will 

have used within both the Guess and Study condition, which in turn reduces the capacity to detect a 

correlation between motivation rankings and final recognition performance for Generate trials. We 

therefore looked only at the facts that were presented on Read trials, which did not incorporate an 

experimental manipulation. Gamma correlations could not be calculated for two participants (one 

from each group), because they correctly recognised all of the Read targets. For the remaining 

participants, one-sampled t-tests showed that the mean gamma correlations were significantly 

greater than zero for both the Motivation (M = 0.32, SEM = 0.08), t (17) = 3.96, p = .001 d = 0.93, and 

Surprise (M = 0.26, SEM = 0.11), t (19) = 2.44, p = .02 d = 0.54, group. 

Discussion 

 The results of Experiment 1 complement the previous literature, in that we demonstrated 

that errorful generation attempts improve subsequent recognition memory, compared with pure 

study trials that do not involve errorful generation. Participants were asked to guess two facts that 

were presented alongside a photograph of an unfamiliar person (Generate trials). These facts were 

subsequently more likely to be recognised than facts that were presented on trials in which no 

guesses were made (Read trials). Thus, we demonstrated that the previous errorful generation 
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effects that have been observed with novel word pairs (Potts et al., 2019; Potts & Shanks, 2014; 

Seabrooke et al., 2019) generalise to unfamiliar face-fact materials. Errorful generation attempts 

also produced a specific improvement to the guessed facts, rather than conferring a more general 

benefit to all facts that were presented on those trials (memory was worse for studied facts than 

guessed facts presented on Generate trials). Furthermore, the participants ranked their motivation 

to learn the guessed facts more highly than the studied facts that were presented alongside those 

guessed facts. Surprise rankings, by contrast, did not differ between the guessed and studied facts. 

Finally, in the absence of any errorful generation manipulation on Read trials, both motivation and 

surprise rankings were positively related to final recognition memory. This suggests that both 

motivation and surprise are related to recognition memory, but that errorful generation attempts 

only affect motivation. It is possible, then, that guesses serve to increase motivation to learn the 

correct answers, which then improves processing of those answers. 

Experiment 2 

 Experiment 2 primarily aimed to provide an extension of the key effects that were observed 

in Experiment 1. In Experiment 1, motivation to learn the facts was assessed using rankings. This 

procedure provided a useful initial test of the role of motivation, because the participants had to 

give different rankings to each fact. This encouraged them to think carefully about each fact, rather 

than giving the same answer to all facts on each trial. Rankings do not, however, allow the 

participants to express their overall levels of motivation. For instance, the participants had no way of 

expressing that they felt similar levels of motivation to learn all facts on any given trial. They also had 

no way to say if they had different overall levels of motivation to learn the facts on Generate and 

Read trials. In Experiment 2, we therefore asked the participants to freely rate, rather than rank, 

their motivation to learn the facts during the encoding phase. We did not measure surprise in 

Experiment 2 since the data from Experiment 1 provided evidence for the null hypothesis in this 

respect.  
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 The participants also performed very well on the two-alternative forced-choice recognition 

test in Experiment 1. Indeed, it could be argued that performance approached ceiling levels of 

performance, particularly in the Guess condition. It should be noted that, if performance was at 

ceiling in the Guess condition, it did not prevent us from detecting an effect of errorful generation. It 

is still possible, however, that a ceiling effect led us to underestimate the size of our recognition 

effects in Experiment 1. In Experiment 2, we therefore took two approaches to reduce overall 

recognition performance. We first inserted a delay between the encoding and test phases. Thus, the 

participants completed an unrelated distractor task for approximately 20 minutes after the encoding 

phase and before the test phase. The final test also took the form of a four-choice multiple choice 

test (for similar procedures, see Potts & Shanks, 2014 and Seabrooke et al., 2019, Experiment 5). We 

expected this test to be more difficult than the two-choice test used in Experiment 1 and should, 

therefore, reduce overall performance levels. 

Finally, the motivation condition in Experiment 1 was underpowered to detect medium-

sized effects (power = 67% at dz = 0.5). We increased the sample size in Experiment 2 to address this.  

Method 

 Design. A within-subjects design with encoding condition (Guess vs. Study vs. Read facts) as 

a single variable was employed. During the encoding phase, the primary measures were the accuracy 

of the participants’ guesses on Generate trials, and motivation ratings for the Guess, Study and Read 

facts. During the recognition test, the primary dependent measure was the percentage of Guess, 

Study and Read facts that were recognised correctly. 

Participants. Thirty-two University of Plymouth students (24 females, aged between 18 and 

31 years, M = 20.31 years, SEM = 0.40 years) completed the experiment for course credit. This 

sample size was chosen because it provided good power to detect recognition (Guess > Study and 

Guess > Read) and motivation (Guess > Study) effects at the sizes seen in Experiment 1 (90% at dz = 
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0.53, 92% at 0.55 and over 99.5% at 1.44, respectively). Power calculations were performed using 

the pwr package (Champely, 2017) in R (R Core Team, 2018).  

Apparatus and materials.  We used a new set of photographs in Experiment 2 to allow 

greater generalisation of our findings. Thus, twenty-seven face stimuli (14 females, 13 males) were 

selected from the “smiling_front” archive from DeBruine and Jones' (2017) database of adult face 

stimuli. These stimuli were reduced in size to 405x405 pixels. These stimuli also have the benefit of 

being from an open-source database, which should make them readily accessible for future 

experiments. The targets/foils were 108 facts from each of the four categories (occupations, 

hobbies, foods and names). In each category, 24 facts served as targets, another 72 facts served as 

foils, and the remaining 12 facts served as targets or foils for the practice trials. The facts were 

randomly allocated to serve as targets and foils for each participant. All other aspects of the 

apparatus and materials were as in Experiment 1.  

Procedure. Participants completed the same encoding phase as the Motivation Group from 

Experiment 1 (see Figure 1), except that the participants were asked to rate (rather than rank) their 

motivation of the four facts. Thus, before the correct facts had been revealed, the four categories 

were highlighted (in blue) in a random order and the participants were asked to rate their 

motivation to learn the highlighted fact by choosing a number between one (“Not at all motivated”) 

and five (“Very motivated”). Once motivation ratings had been collected for all four facts, the four 

facts were presented together with the face stimulus for 12 seconds. All other aspects of the 

encoding phase were the same as the Motivation group in Experiment 1. After the encoding phase, 

the participants completed a filler task that involved rating pairs of green dot-filled rectangles for 

similarity. On average, this unrelated task took 24.70 minutes (SEM = 0.22 minutes) to complete. 

The distractor task was followed by a multiple-choice test that, as in Experiment 1, assessed 

target recognition memory. Four practice trials were administered to begin with. These trials 

followed the format of the main multiple-choice test (described below), but used the faces and 
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targets (one from each category) from the practice encoding trials (as well as randomly selected foils 

from the same categories as the targets). On each test trial, the participants were presented with 

one of the face stimuli from the encoding phase, plus four possible facts from the same category 

(e.g., “Hobby”). One of those facts was the correct fact for that face stimulus, and the rest were 

novel foils that were not presented during the encoding phase. The foils were presented only once 

each on test. The location of the target and the foils were randomly determined on each trial. All 

other aspects of the test were as in Experiment 1. 

Results 

 The trial-level raw data are publicly archived at https://osf.io/5ne72/. 

Encoding phase. During the encoding phase, the participants spent an average of 8141ms 

(SEM = 370ms) guessing each fact on Generate trials. In total, four facts were correctly guessed on 

Generate trials. As in Experiment 1, these trials were not removed for the analysis of motivation 

ratings, because the correct answers were only revealed after the motivation ratings had been 

taken. Figure 3a shows the mean motivation rankings given to Guess, Study and Read facts. A one-

way ANOVA revealed a main effect of encoding condition, F (2, 62) = 15.26, p < .001, ɳg
2 = .09. 

Pairwise comparisons showed that the participants gave higher motivation rankings to Guess facts 

than both Study facts, t (31) = 4.29, p < .001, dz = 0.76, and Read facts, t (31) = 3.97, p < .001, dz = 

0.70. Motivation ratings for the Study and Read facts did not differ, t (31) = 0.37, p = .71, dz = 0.07, 

BF10 = 0.20.  

Final multiple-choice test performance. Figure 3b shows the mean percent correct for each 

encoding condition in the final recognition test. As in Experiment 1, all facts that were presented on 

trials in which a participant generated a correct guess at encoding were removed from the test 

dataset. A one-way ANOVA revealed a main effect of encoding condition, F (2, 62) = 6.86, p = .002, 

ɳg
2 = 0.05. Pairwise comparisons revealed that the Guess facts were better recognised than both the 

Study facts, t (31) = 2.70, p = .01, dz = 0.48, and the Read facts, t (31) = 3.37, p = .002, dz = 0.60. 

https://osf.io/5ne72/
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Recognition of the Study and Read facts did not differ, t (31) = 0.32, p = .75, dz = 0.06, BF10 = 0.20. 

These results are consistent with those of Experiment 1. 

We also computed the Goodman-Kruskal gamma correlation for each participant to examine 

the relationship between motivation ratings and final recognition performance. As in Experiment 1, 

the gamma correlations were restricted to the Read trials. Gamma correlations could not be 

calculated for two participants, because they gave the same motivation rating for all Read facts. In 

contrast to Experiment 1, the gamma correlations (M = 0.01, SEM = 0.09) for the remaining 

participants did not significantly differ from zero, t (29) = 0.11, p = .91, d = 0.02, BF10 = 0.20. We 

suspected that this null result might have arisen because the participants used a small range of 

ratings during the encoding phase, which would have limited the capacity to detect a significant 

correlation between motivation ratings and recognition memory. This contrasts with Experiment 1, 

where the participants had to use the full range of scores because they gave rankings rather than 

ratings. To test this idea, we directly compared the standard deviation of rankings/ratings given on 

Read trials in each experiment. In Experiment 1, the average standard deviation of rankings (across 

motivation and surprise groups) was 1.14. In Experiment 2, the comparable rating score was 0.81, 

which suggests that the participants did indeed use a smaller range of motivation scores in 

Experiment 2 than in Experiment 1. A Welch two sample t-test confirmed that this difference was 

significant, t (31) = 5.15, p < .001, d = 1.37. We note that the participants used a significantly smaller 

range of scores in Experiment 2, even though they were able to use a larger range of scores than in 

Experiment 1 (ratings in Experiment 2 were on a five-point scale, whereas ranking scores in 

Experiment 1 varied from one to four).   

Discussion 

 Experiment 2 extended the pattern of results observed in Experiment 1. When participants 

freely rated their motivation to learn each fact during the encoding phase, they gave higher ratings 

to the facts that they had previously guessed (Guess facts) than facts that they had not guessed 
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(Study and Read facts). Consistent with Experiment 1, the participants recognised more Guess facts 

than Study and Read facts on the multiple-choice test. This latter result shows that the errorful 

generation benefit seen in Experiment 1 is robust, and can survive a 20-minute retention interval 

and a change in test format. 

General Discussion 

 Two experiments examined the effect of errorful generation on recognition memory in a 

novel paradigm that paired novel cues with multiple targets. There were several noteworthy 

findings. First, both experiments revealed a benefit of errorful generation on recognition memory. 

That is, the participants recognised more facts that they had incorrectly guessed (Guess facts) at 

encoding than facts that were presented on Read trials, in which those facts were simply presented 

for study without any guessing period. This finding is consistent with previous work with novel word 

pairs (Potts et al., 2019; Potts & Shanks, 2014; Seabrooke et al., 2019), and it reiterates that errorful 

generation can improve target recognition (relative to an equivalent period of time spent studying) 

for cues and targets do not have pre-existing semantic associations. 

The two experiments also showed that errorful generation attempts produce a specific 

benefit to the guessed item. That is, errorful generation attempts did not improve subsequent 

recognition of Study facts that were presented alongside the Guess facts (relative to Read facts). The 

experiments therefore provide two well-controlled laboratory demonstrations of an errorful 

generation effect that cannot be explained by changes in overall attention at the trial level. That is, 

our errorful generation effect cannot result from guessing increasing attention to all information on 

that particular trial, because every Generate trial included both Guess and Study targets, and yet the 

Guess targets were better recognised than the Study targets. This can be contrasted with previous 

errorful generation experiments, where the effect was assessed for single targets that had been 

either guessed or not guessed on any given trial (Potts et al., 2019; Potts & Shanks, 2014; Seabrooke 

et al., 2019). The effect also cannot be explained by appealing to differences in attention to the cue, 
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because the same face stimuli served as cues for both Guess and Study targets. Thus, the results 

provide unique evidence to suggest that errorful generation attempts produce a selective 

enhancement of processing of the guessed item, rather than improving recognition for all 

subsequent feedback more generally. This pattern was apparent in both experiments, suggesting 

that our effects are robust and can outlive at least a 20-minute retention interval. 

The current experiments also allow us to say something about the possible effects of errorful 

generation with respect to Guess facts on other material (Study facts) also presented on Generate 

trials. We might have expected that, if errorful generation improves subsequent processing of the 

corrective feedback, it might hinder processing of other information that is presented alongside such 

feedback (the Study targets) – perhaps via a process of reallocation of attention. This might be 

especially likely given recent evidence to suggest that errorful generation increases participants’ 

curiosity (Potts et al., 2019) and motivation (in the present experiments) to learn the true answers. 

However, we found no evidence to support this claim. Although Read facts were less well recognised 

than Guess facts, the participants showed similar recognition performance for Study and Read 

targets. 

In both experiments, we also found that errorful generation attempts affected participants’ 

self-reported motivation to learn the correct answers. When the participants were asked to report 

their motivation to learn each fact during the encoding phase, the guessed facts were ranked 

(Experiment 1) and rated (Experiment 2) more highly than the non-guessed facts. This result is akin 

to Potts et al.'s (2018) recent demonstration that guessing the definition of unfamiliar words can 

increase participants’ curiosity to learn those definitions (see also Gruber, Gelman, & Ranganath, 

2014; Kang et al., 2009). More broadly, our findings also accord with studies demonstrating that 

participants choose to restudy information that they previously guessed more than information that 

they have simply studied (Yang et al., 2017). Together, the data are consistent with the hypothesis 
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that generating guesses increases motivation to learn the correct answers to the questions posed, 

which then facilitates encoding of those answers when they are revealed. 

Unlike the motivation data, we saw no evidence in Experiment 1 to suggest that errorful 

generation increases participants’ self-reported surprise when corrective feedback is presented. It is 

possible that more sensitive assays of surprise (e.g., eye-tracking; see Brod et al., 2018) would reveal 

evidence of an effect of errorful generation on surprise. It is also possible that our face-fact materials 

limited our capacity to detect differences in surprise. When participants were asked to guess a fact 

(e.g., favourite food) for a novel face photograph on Generate trials, they had no real basis on which 

to make a guess (because the face-fact pairs were novel and arbitrarily paired). This is the nature of 

the errorful generation paradigm, in which participants are asked to generate guesses (or study) 

when there is virtually no chance that those guesses will be correct. Hence, it is possible that our use 

of an errorful generation paradigm, in which participants study novel associations, limited our 

capacity to detect differences in surprise. The participants might not have had any great expectation 

that their guesses would be correct on Generate trials, and this could have reduced the potential to 

detect differences in surprise for guessed and non-guessed facts. It is possible that we would have 

obtained greater differences in surprise with an unsuccessful retrieval paradigm, where participants 

generate guesses for familiar materials that they have prior knowledge of (although see Zawadzka & 

Hanczakowski, 2018). While this would be an interesting avenue for future research, it would not, of 

course, shed light on the mechanisms that underlie errorful generation effects (which was the 

purpose of the present experiments). We also note that the absence of a difference in surprise 

ratings for Guess and Study facts was seen in the context of a robust errorful generation effect. 

Hence, errorful generation led to a clear improvement in subsequent target recognition, even 

though participants’ surprise ratings for Guess and Study targets did not differ. 

We are not the first to use face-fact pairs when exploring the effect of generating errors on 

learning and memory. Kessels and De Haan (2003) presented younger and older adults with 
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unfamiliar faces and either presented a name for the participants to study, or asked the participants 

to guess the name before it was revealed. Both younger and older adults showed worse recall of the 

names that they had previously guessed than those that they had simply studied. McGillivray and 

Castel (2010), on the other hand, found that both older and younger adults showed better recall of 

face-age pairs that they had guessed than face-age pairs they had studied. Notably, this benefit of 

generating guesses was only seen when the face cues were consistent with the target ages. 

McGillivray and Castel therefore suggested that generating guesses might only be beneficial when 

the cues are informative; a face provides useful information about a person’s age, but does not give 

any information about their name. The current results suggest that the picture may be more 

complex. In our experiments, the cues (unfamiliar faces) did not provide any information about the 

targets (facts), and yet errorful generation improved subsequent target recognition. The question 

then is, why did we see a benefit of errorful generation with non-informative cues, while Kessels and 

De Haan (2003) and McGillivray and Castel (2010) did not? One notable difference concerns the final 

test procedures. Both Kessels and De Haan (2003) and McGillivray and Castel (2010) administered 

cued recall tests, whereas we assessed target recognition performance. This distinction has been 

shown to be crucial in a related set of studies that used simple word pairs. In particular, generating 

errors aids cued recall for related word pairs such as pond-frog (Grimaldi & Karpicke, 2012; Huelser 

& Metcalfe, 2012; Knight et al., 2012), but only boosts subsequent target recognition (not cued 

recall) for unrelated word pairs (Potts et al., 2019; Potts & Shanks, 2014; Seabrooke et al., 2019). 

Taken together, both the studies that used face-fact pairs and those that used simple word pairs are 

consistent with the idea that generating errors only aids subsequent cued recall when the cues 

provide information that is useful for informing the participants’ guesses, or when the participants’ 

guesses are likely to provide information that is useful for retrieving the correct answer. 

To conclude, the current experiments extended previous work by demonstrating a clear 

benefit of errorful generation in a novel paradigm that involved pairing cues (faces) with multiple 

targets (facts). Errorful generation had a selective effect, in that its benefit on subsequent 
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recognition memory did not extend to other targets that were presented alongside guessed targets. 

Furthermore, participants rated their motivation to learn facts more highly when they had 

previously guessed those facts, and those facts rated most highly for motivation were also those that 

produced the best recognition memory. Surprise ratings, by contrast, did not significantly differ for 

guessed and studied facts. The findings therefore add to a growing body of literature suggesting that 

errorful generation improves subsequent recognition, possibly by increasing motivation to attend to 

and process corrective feedback. 
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Figure 1 

 

Figure 1. Schematic of an example Generate trial during the encoding phase for the Motivation and 

Surprise groups in Experiment 1. Participants were presented with a face and four category options, 

and were asked to first guess two facts. For the Surprise group, the four facts were then revealed 

and the participants had 12 seconds to rank their surprise and study all of the facts. For the 

Motivation group, the participants ranked their motivation to learn the four facts before they were 

presented for study for eight seconds. During the fixation period, a fixation cross (+) was presented 

for two seconds. During the inter-stimulus interval (ISI) periods, the stimuli disappeared for 200ms 

before reappearing. The Read trials were the same as the Generate trials, except that the 

participants did not guess any of the facts. Note that the photograph shown is from the open source 

database used in Experiment 2.  
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Figure 2 

 

 

Figure 2. Results of Experiment 1. (a) Mean motivation and surprise rankings given to Guess and 

Study targets on Generate trials during the encoding phase. Rankings of four represent the highest 

level of motivation/surprise; rankings of one represent the lowest level of motivation/surprise. (b) 

Mean percent correct per encoding condition on the final recognition test. Error bars represent 

difference-adjusted within-subject 95% confidence intervals (Baguley, 2012). 
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Figure 3 

 

Figure 3. Results of Experiment 2. (a) Mean motivation ratings given for Guess, Study and Read facts 

during the encoding phase. Ratings of one and five represent “Not at all motivated” and “Very 

motivated”, respectively. (b) Mean percent correct on the final multiple-choice test. Error bars 

represent difference-adjusted within-subject 95% confidence intervals (Baguley, 2012).  
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Supplementary materials 

Mean rankings (Experiment 1) and ratings (Experiment 2) given to each category on Read trials.  

 Experiment 1  Experiment 2 

 Motivation rankings Surprise rankings  Motivation ratings 

Name 1.47 [1.25, 1.68] 1.57 [1.42, 1.71]  2.70 [2.56, 2.85] 

Food 2.21 [2.05, 2.37] 2.47 [2.35, 2.59]  2.98 [2.87, 3.08] 

Job 3.49 [3.24, 3.74] 3.04 [2.88, 3.19]  3.26 [3.08, 3.43] 

Hobby 2.83 [2.67, 2.99] 2.92 [2.80, 3.05]  3.20 [3.07, 3.32] 

Note. Numbers in parentheses denote difference-adjusted within-subject 95% confidence intervals 

(Baguley, 2012). 

Time taken to provide motivation rankings (Experiment 1) and ratings (Experiment 2). 

The participants had unlimited time to give motivation rankings in Experiment 1 and ratings in 

Experiment 2. On average, the participants took 5256ms (SEM = 92ms) to complete the ranking task 

in Experiment 1. In Experiment 2, the participants took, on average, 6576ms (SEM = 110ms) to 

complete the rating task. 

 

 


