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SAMANTHA VANESSA ADAMS 

THE DEVELOPMENT OF BIO-INSPIRED CORTICAL FEATURE MAPS FOR 
ROBOT SENSORIMOTOR CONTROLLERS 

 

ABSTRACT 

This project applies principles from the field of Computational Neuroscience to 

Robotics research, in particular to develop systems inspired by how nature manages to 

solve sensorimotor coordination tasks. The overall aim has been to build a self-

organising sensorimotor system using biologically inspired techniques based upon 

human cortical development which can in the future be implemented in neuromorphic 

hardware. This can then deliver the benefits of low power consumption and real time 

operation but with flexible learning onboard autonomous robots. A core principle is the 

Self-Organising Feature Map which is based upon the theory of how 2D maps develop 

in real cortex to represent complex information from the environment. A framework for 

developing feature maps for both motor and visual directional selectivity representing 

eight different directions of motion is described as well as how they can be coupled 

together to make a basic visuomotor system. In contrast to many previous works which 

use artificially generated visual inputs (for example, image sequences of oriented 

moving bars or mathematically generated Gaussian bars) a novel feature of the current 

work is that the visual input is generated by a DVS 128 silicon retina camera which is a 

neuromorphic device and produces spike events in a frame-free way. One of the main 

contributions of this work has been to develop a method of autonomous regulation of 

the map development process which adapts the learning dependent upon input activity. 

The main results show that distinct directionally selective maps for both the motor and 

visual modalities are produced under a range of experimental scenarios. The adaptive 

learning process successfully controls the rate of learning in both motor and visual map 

development and is used to indicate when sufficient patterns have been presented, thus 

avoiding the need to define in advance the quantity and range of training data. The 

coupling training experiments show that the visual input learns to modulate the original 

motor map response, creating a new visual-motor topological map. 
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 1  Introduction 

 1.1  Research Topic 

 

An important goal in robotics is to create autonomous machines that can perform basic 

tasks related to their own maintenance and welfare without human intervention. In short, 

it would be desirable for them to have more sophisticated human-like capabilities. This 

raises some major challenges as traditional computing and engineering approaches can 

only achieve so much. They can be used to mimic human capabilities to some extent but 

it is difficult to make systems that work in the same way as natural ones do. As we do 

not fully understand all the neural processing which generates our own behaviour it is 

often difficult to translate the concepts into traditional approaches. Since the 1990s 

Artificial Intelligence researchers have advocated a ‘situated and embodied’ approach to 

robotics: they propose that more appropriate behaviours can be generated by the robot 

existing in and interacting with an environment (Brooks, 1990). This ties in with 

approaches inspired directly by human development where robots acquire capability 

gradually by learning in an environment (Developmental or Epigenetic Robotics). 

However, the sensory pre-processing and higher level cognitive processing that is 

required to achieve such human-like learning capabilities requires significant computing 

power which is in conflict with the limited energy resources available on an 

autonomous robot. It should be noted, however, that natural neural systems manage to 

achieve speed, fault tolerance and flexibility despite having very low power 

requirements! Therefore, it seems logical to explore in more depth bio-inspired 

approaches to robotics. In particular, where artificial neural systems are implemented 

using techniques inspired by greater understanding of how real neurons work. 

Computational Neuroscience has made considerable progress in recent years on spiking 

neuron based models of sensory and cognitive processes in the mammalian neo-cortex. 

Spiking Neural Networks (SNNs) are the ‘third generation’ of Neural Networks (Maass, 
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1997); the first generation being networks consisting of simple McCulloch-Pitts neurons 

(McCulloch and Pitts, 1943) with binary outputs and the second generation consisting 

of neurons with continuously-valued activation functions. Spiking neurons mimic how 

real neurons compute: with discrete pulses rather than a continuously varying activation. 

Depending upon the application and required level of biological detail, there are various 

types of spiking neuron model to choose from. However, there is also a trade-off 

between the level of biological detail and computational overhead (for a review and 

discussion see Izhikevich, 2004). 

The spiking neuron is, of course, still an abstraction from an actual neuron, but a much 

more biologically plausible one especially as models can incorporate spike-timing based 

learning. Thorpe et al. (1996) presented experimental evidence for fast processing 

(occurring within 100ms of an image presentation) in the human visual system which 

implies that spike–timing information may be more important than spike rates as there 

is not enough time to generate a meaningful spike rate in very short time intervals. 

Spike Timing Dependent Plasticity (STDP) is a currently favoured model for learning in 

real neurons. Experimental and modelling studies have shown that this form of Hebbian 

plasticity, where the relative firing times of pre and postsynaptic neurons influence the 

strengthening or weakening of connections, is the mechanism that real neurons use 

(Song et al., 2000). When firing times are causally related (i.e. the presynaptic spike is 

emitted before the postsynaptic spike) then the synapse is strengthened (Long Term 

Potentiation or LTP). When firing times are not causally related (i.e. the postsynaptic 

spike occurs before the presynaptic one) then the synapse is weakened (Long Term 

Depression or LTD). 

Advances in software and hardware over the last ten years or so have made SNNs an 

increasingly feasible option for robotics applications. On the software side several 

general purpose spiking neuron simulators are freely available which means that 
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researchers do not have to code a modelling framework from scratch, and they also 

benefit from a community of users using the same tool. Desktop computing hardware is 

now available that can perform parallel processing (e.g. GPU) at an affordable price. 

But this can only take us so far. The emerging field of Neuromorphic Engineering is 

making it possible to simulate large neural networks in hardware in real time. ‘Neural 

chips’ are massively parallel arrays of processors that can simulate thousands of neurons 

simultaneously in a fast, energy efficient way, thus making it possible to move neural 

applications on board robots. This technology is currently being employed in dedicated 

hardware devices to perform specific bio-inspired functions, for example, the 

asynchronous temporal contrast silicon retina (Delbruck, 2008) and the silicon cochlea 

(Chan et al., 2007). There have also been several larger-scale projects for general 

purpose brain modelling. For example, the CAVIAR project; a massively parallel 

hardware implementation of a spike-based sensing–processing–learning–actuating 

system inspired by the physiology of the nervous system (Serrano-Gotarredona et al., 

2009), the FACETS project (completed in 2010) delivering both neuromorphic 

hardware and software (FACETS website, 2012), and  the NeuroGrid project at Stanford 

which has developed a hybrid analogue-digital neuromorphic solution capable of 

modelling up to 1 million neurons (reviewed in Silver et al, 2007). More recently, the 

SpiNNaker project has delivered a state-of-the-art real-time neuromorphic modelling 

environment that can be scaled-up to model up to a billion point-neuron models (Jin et 

al. 2010). The Spinnaker project aims to use this technology to investigate both how 

massively parallel computing resources can accelerate our understanding of brain 

function and also how our growing understanding of brain function can point the way to 

more efficient parallel, fault-tolerant computation. 

These recent parallel advances in computational neuroscience and in the hardware 

implementation of large-scale neural networks, provide the opportunity for an 
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accelerated understanding of brain functions and for the design of interactive robotic 

systems based on brain-inspired control systems. 

However, currently there are very few practical robotics implementations using 

neuromorphic systems. Two notable works are Linares-Barranco et al. (2007) which 

developed a solution using both a silicon retina, an FPGA and neuromorphic hardware 

to enable a humanoid robot to point in the direction of a moving object, and, more 

recently Davies et al. (2010) which developed a line following robot using a silicon 

retina and a prototype 4-chip SpiNNaker neuromorphic board.  

More work needs to be done to develop practical applications that have a solid 

biologically-inspired theoretical basis and which can be scaled up and transferred 

seamlessly to run on neuromorphic hardware. For realistically large and effective SNNs 

to become possible in robotic hardware, ensuring that future neural models and 

simulations are actually implementable in neuromorphic hardware is important. It is 

also important to develop models which challenge the capabilities of such hardware and 

stimulate further developments. 

The present project aims to contribute to this research area by investigating principles 

from computational neuroscience research to develop systems that can realistically be 

implemented in neuromorphic hardware  for real robots in realistic environments: in 

particular to develop capabilities inspired by how nature manages to solve sensorimotor 

coordination tasks in an efficient way and to take advantage of some of the desirable 

features of real neural systems: low power consumption and real time operation but with 

flexible learning. The overall aim of the project is to build a self-organising, reflexive 

sensorimotor system using biologically inspired techniques based upon human cortical 

development.  

The current work takes a developmental approach from the point of view that natural 

systems do not spring into being fully formed but undergo considerable periods of 
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refinement and change, and in particular adapt in response to input from the 

environment. This crucial developmental process in both pre- and early post natal life 

sets the stage for later capability. Developmental approaches are not new to robotics and 

they are a main feature of the existing fields of Epigenetic Robotics and also to some 

extent Evolutionary Robotics. The importance of the developmental process, and in 

particular the gradual acquisition of capability, for robotics has been pointed out by 

previous researchers. For example, Gómez et al. (2004) concluded that an initial low 

resolution sensorimotor system which undergoes a developmental learning phase 

actually learns faster than when starting with a higher resolution.  

In the current work, the developmental process is seen as three phases which can be 

summarised as follows: 

1. Activity-Independent - establishment of an initial network  

2. Activity-Dependent – the first stage refinement of the network leading to 

organised, topological maps 

3. Lifelong Learning – later stage refinements where maps learn to coordinate to 

build up useful skills 

Figure 1 gives a graphical overview of the stages. 

Activity Independent development corresponds to an initial phase where neurons and 

connections between them are set up. The maps are random and unorganised at this 

stage. Activity Dependent development is an analogue of the early post-natal stage of 

synaptogenesis followed by pruning in the real human cortex. It involves significant 

reorganisation and refinement of the initial networks to develop individual visual and 

motor topographic maps. A very important aspect of this stage is that it is activity 

dependent: as in real biological development, the quality and variety of stimuli in the 

early stages of development will determine later capability. The last developmental 

phase represents the beginning of ‘lifelong’ learning where useful skills begin to be 
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acquired. Here the individual cortical maps can form associations to coordinate visual 

and motor experience. The aim of the current work has been to build a generic 

capability for visuomotor coordination rather than try to achieve a task-specific scenario. 

It concentrates on how direction of movement of objects in the visual field and direction 

of movements of the robot’s own body can be independently encoded into separate 

motor and visual maps, which, in later stages can be coupled to achieve a basic form of 

visuomotor coordination. Although the emphasis here is specifically on integrating 

visual and motor modalities, the techniques are generic enough to be used for other 

modalities as well. 

The underpinning concept of the work is the Self-Organising Feature Map (SOFM) 

which is an analogue of how biological brains manage to represent complex 

multidimensional information from their environment as a 2D map in the cortex. 

Experimental and computational modelling work, in particular with visual systems, has 

shown that neurons in the cortex naturally form 2D maps as a representation of many-

dimensional input information from the environment. (Dayan and Abbott, 2001). These 

maps are often called ‘feature maps’ as collections of neurons are specialised to detect 

certain features in an input signal (Grossberg, 1975). Such cortical maps are self-

organising in that they primarily develop their structure according to the input 

information they need to represent and the pattern of connectivity between neurons is 

activity dependent. 
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Figure 1- An Overview of the Developmental Stages 
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In the current work, the SOFM methodology is inspired by the Kohonen Self 

Organising Map (SOM) (Kohonen, 1995). The original Kohonen SOM is an 

unsupervised learning technique most commonly used for machine learning, for 

example, high-dimensional data clustering applications. 

SOMs have previously been used as abstract models of the mammalian cortex and much 

work has been done specifically with implementations of the visual cortex and also 

some sensory-motor tasks such as visuo-motor control (Willshaw and von der Malsburg, 

1976; Ritter et al., 1989; Goodhill, 1993; Miikkulainen et al., 1998; Metta et al., 1999). 

However, there have been relatively few implementations using spiking neurons. Of 

those that do exist, some use spike-rate based forms of learning (for example Choe and 

Miikkulainen, 1998) and some use spike-timing based methods (for example, Ruf and 

Schmitt, 1998; Sala et al.,1998; Panchev and Wermter, 2001; Bohte et al., 2002; Marian, 

2002; Alamdari, 2005; Pham et al., 2006). Although there have been several 

applications of SOMs to robotics tasks (for example, Krose and Eecen, 1994; Terada et 

al., 1998; Toussaint, 2004; Toussaint, 2006), biologically-inspired implementations 

using spiking neurons and spike-timing based learning are scarce. One example is the 

work of Alamdari (2005) who used a self-organising spiking neural network with spike-

timing based learning rules for robot path planning. Although SOM theory would seem 

to be a good choice for implementing a self-organising sensorimotor controller based 

upon real cortical processes, there are three main drawbacks to using this technique in 

autonomous robotics applications; all related to the fact that the process needs to be 

self-regulating as the robot needs to learn from the information available in its 

environment. Firstly, SOM network development is generally thought of in terms of two 

distinct phases: initial topological ordering followed by weight convergence and in 

computational models the phases are usually managed explicitly by the manipulation of 

neighbourhood size and learning rate parameters. Both of these parameters are normally 
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systematically reduced in a non-linear fashion during the course of training according to 

predefined schedules. In the case of an adaptive sensorimotor controller for a robot it is 

not ideal to have to predefine such schedules to control map development, instead the 

development should be self-controlling as it is in natural systems. Secondly, SOMs are 

very commonly used for high-dimensional data clustering applications due to their 

dimension reducing properties. Usually a long training phase is used to guarantee a 

precisely ordered map for the purpose of accurately representing the input data. The 

amount of training data is also usually defined in advance, either by generating it from 

existing empirical datasets or by creating specific training datasets. For a robot 

sensorimotor controller, a system that can regulate itself according to the input provided 

by its environment and determine for itself when the map is trained is much more 

desirable. Several previous works have created robotic learning systems where the data 

are generated ‘online’ from an environment (Krose and Eecen, 1994; Terada et al., 1998; 

Toussaint, 2004, Alamdari, 2005, Toussaint, 2006). Thirdly, traditional SOMs are not 

usually designed to be adaptive to changing input. For conventional data clustering 

applications the aim is to fully train the map with predefined input and the map structure 

after training is completely fixed for the purpose of classifying the data it was trained 

with. In the case of cortical modelling, the maps are also trained for a fixed purpose to 

represent some aspect of experimental findings (for example the development of ocular 

dominance stripes). Furthermore, if a SOM trained with standard techniques is then 

trained with different data it often experiences ‘catastrophic forgetting’ – i.e. previous 

map organisation is overwritten. For robotic systems it is desirable to have behaviour 

more like the real cortex where there is some balance between remembering previous 

associations but also being able to adapt to new input. One particular aspect of real 

cortical learning that may be very relevant but is usually omitted in both traditional 

SOM and cortical modelling applications is structural plasticity: synaptic creation and 
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pruning. There is experimental evidence that in real systems both functional plasticity 

(synaptic weight changes) and structural plasticity (synaptic creation and pruning) may 

work together both in early cortical development and in the adult brain (Chklovskii et 

al., 2004; Butz et al., 2009; Gilbert and Li, 2012). It is possible that structural plasticity 

may provide the means to create better adaptive learning in robotics applications. 

In summary, this research project has developed a software framework for creating 

visual and motor cortical maps using spiking neuron implementations of self-organising 

feature maps.  Adaptations to traditional SOM techniques have been made to address 

the majority of the issues mentioned in the previous paragraph, especially with respect 

to autonomous control of the training process. The framework also includes an adaptive 

coupling mechanism, also based on bio-inspired principles, which enables the 

association of separate visual and motor maps so that the visual input can control and 

modulate the motor response. The software implementations have been designed with a 

view to future implementation in neuromorphic hardware, in particular the SpiNNaker 

system (Jin et al., 2010), which in the future will be deployed on a medium-sized 

humanoid robot to provide basic visuomotor coordination for tracking a moving object. 

Another novel aspect of this research work is the use of the DVS 128 Silicon Retina 

camera (a specialised neuromorphic device) in the training of the visual directionally 

selective cortical map. 

 1.2  Research Contributions 

The major contributions that this research delivers are as follows: 

1. Previous research with self-organising maps has been extended to create a 

biologically-inspired developmental framework which encompasses both motor 

and visual cortical map creation as well as allowing coupling between the two 

types of map to achieve visuomotor coordination. 

 

2. A methodology has been developed that enables internal regulation of cortical 
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map development and dispenses with predefining traditional aspects of SOM 

training such as learning schedules, neighbourhood reduction schedules and the 

amount of training data. 

 

3. A methodology has been developed to use the DVS 128 Silicon Retina camera 

as input to train a directionally selective visual map.  

 

Several parts of the research described in this thesis have already been published, or are 

currently submitted for publication in peer-reviewed journals. See the declaration on 

page xii for details and copies of the publications at the end of the thesis. 

 1.3  Thesis Structure 

This thesis is divided broadly into four parts. Part I serves as the introduction to the 

work and includes Chapters 1 and 2. Part II contains the core theory and implementation 

details of the various elements of cortical feature map modelling and training and 

includes Chapters 3-5. Part III looks at specific extensions of the theory and methods in 

Part II with respect to robotics applications and ‘lifelong learning’ and includes 

Chapters 6 and 7. Part IV presents details of the experiments performed and results 

obtained for each stage of implementation and the final discussion and conclusions. It 

includes Chapters 8-11. 

A chapter-by-chapter summary is given below: 

Chapter 2:  Motivation and Background 

The main literature review of topics relevant to this research. Concludes with a 

summary of the main works which have provided inspiration and where they have been 

extended and improved upon. 

Chapter 3:  A Motor Cortical Feature Map 

Describes the theory and methods used in creating and training a directionally-selective 

motor map. 
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Chapter 4:  A Visual Cortical Feature Map 

Describes the theory and methods used in creating and training a directionally-selective 

visual map. 

Chapter 5:  Adaptive Plasticity 

Describes the theory and methods used to modify traditional SOM training to dispense 

with predefined parameters such as the learning rate and to make the training process 

autonomous and activity dependent. 

Chapter 6:  Sensorimotor Integration 

Presents an exploration of neural-motor integration in simplified environments in lieu of 

implementation on a real robot. In the first case the implementation of a simplified 

animal sensorimotor behaviour is described. Secondly, a simulated humanoid robot 

implementation using the motor map theory from Chapter 3 is described. 

Chapter 7:  Coupled Maps 

Describes the methods by which the visual and motor maps are coupled together. 

Chapter 8:  Cortical Feature Map Training 

Presents the experiments and results for the Motor and Visual map training  

Chapter 9:  Training with Adaptive Plasticity 

Presents the experiments and results for Motor and Visual map training including the 

Adaptive Plasticity methods of Chapter 5. 

Chapter 10:  Coupled Map Training 

Presents the experiments and results for the coupling of the visual and motor maps. 

Chapter 11:  Discussion 

The final discussion of the results and conclusions of the research as well as future work. 
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 2  Motivation and Background 

 2.1  Introduction 

 

This chapter covers the background literature which has provided motivation for the 

various elements of this research work. The following sections contain: a brief 

discussion of basic spiking neuron theory and options for simulation which have 

informed the choice of neuron model and simulator for this research work, a review of 

previous research works in robotics that have used theory from Computational 

Neuroscience, an overview of traditional Self-Organising Map theory including 

previous works that have adapted its principles for cortical modelling and finally a 

review of previous works that have looked particularly at sensorimotor applications. 

The chapter concludes with a summary of which elements have inspired the current 

work and what advances on previous work are proposed. 

 2.2  Spiking Neural Networks and Simulators 

The Spiking Neuron 

Artificial Neural Networks (ANNs) are now a common technique used in many 

computing applications. Maass (1997) distinguishes three generations of ANNs. The 

first is the simple threshold neuron of McCulloch and Pitts (McCulloch and Pitts, 1943) 

which can output binary signals and are universal for digital computations. The second 

generation improves upon the McCulloch and Pitts neuron by using an activation 

function allowing for continuously varying output and these are universal for analog 

computation. The third generation is the Spiking Neural Network (SNN) in which 

artificial neurons compute with pulses, much like real neurons do. As early as 1907, 

Lapique developed a model of a neuron which formed the basis of the Leaky Integrate 

and Fire neuron (LIF) which is still widely used today (Lapique, 1907; Abbott, 1999). 

The LIF model captures the essential behaviour of a spiking neuron: contributions from 
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connecting neurons increase the membrane voltage of a target neuron until the voltage 

reaches a threshold value and an action potential or spike is generated. The membrane 

voltage is then reset to a specified value and there is a refractory period during which 

the neuron cannot fire. In the absence of further action potentials the membrane voltage 

relaxes exponentially to a resting potential (Dayan and Abbott, 2001). Figure 2 

shows the behaviour of a typical simulated LIF neuron with a threshold potential of -

40mV, reset potential of -70mV and refractory period of 5ms. When many spiking 

neurons are combined together they can be used to study the properties of large neural 

networks and the implications of large numbers of synaptic connections in such 

networks (Abbott, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- The Leaky Integrate and Fire Neuron 

 

There are several options for information coding in spiking neural networks which are 

reviewed in Gerstner (1999). Basically these can be viewed as rate codes or pulse codes 

(although the distinction is not completely clear cut in some cases). Rate codes have 

been very popular and can indeed explain a lot of experimental results. The traditional 

neural network models of the first and second generation are effectively rate based. 
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However, drawbacks of this approach when considering biological plausibility are that 

it is assumed there is a long enough period of time for a meaningful rate to be defined 

and/or a population which acts homogenously (effectively that each neuron behaves in a 

similar way independent from the action of other neurons in the population) over which 

a rate can be taken. Experimental findings from visual object recognition tasks and 

some motor behaviours have shown that the response is much too fast for a rate coding 

scheme to have encoded the information (Thorpe et al., 2001). As an alternative, pulse 

coding (or spike-time encoding) is closer to how real neurons compute and allows many 

more options for encoding with spike times ranging from the time of individual neuron 

spikes, variations between the times of a group of neurons, and synchrony of firing 

between neurons. Another point in favour of using a spike-time coding method is that it 

has been established that spike timing is important in the mechanism of learning (Bi and 

Poo, 1998; Song et al, 2000; Froemke and Dan, 2002). 

When implementing an SNN there is a choice of neuron models depending upon the 

type of biological properties one requires. The table shown in Figure 2 of Izhikivich 

(2004) gives a summary of the types of model available, their properties and an 

indication of the computational overhead.  At one extreme is the Hodgkin-Huxley 

model which can represent many biological properties as it models down to the level of 

ion channels, but is computationally expensive. At the other end the simple Leaky 

Integrate and Fire (LIF) neuron model is computationally cheap but can only represent 

the most basic spiking behaviour. Izhikevich has proposed a model which combines the 

possibility of a rich range of behaviour with efficient computation (Izhikevich, 2003). 

Spiking Neuron Simulation 

It was noted in Chapter 1 that today there are several general purpose spiking neural 

network simulators available to researchers, and as is the case with choosing a neuron 

model, there is a trade-off: in this case speed of simulation versus functionality and 
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ease-of-use. ModelDB is a central, online repository for storing Computational 

Neuroscience models which can be searched by model type and also simulator type 

(Hines et al., 2004). A quick examination of the current models (as of June 2012) shows 

that a large proportion use bespoke simulations coded by the authors in languages such 

as C++, Java, Python and MATLAB but an equal number of models use general-

purpose simulators of which the most well-known are NEURON, NEST, PCSIM and 

Brian. The advantages of coding a simulation from scratch (say in C++) are that it is 

possible to code only the relevant functionality and such a simulation can be optimised 

to run as fast as possible. The disadvantage is that the researcher needs to write the code, 

unless he or she is lucky enough to find an existing solution that can be adapted. The 

advantage of using a general-purpose simulator is that one benefits from an existing 

framework and functionality which can be used to quickly construct models. In addition, 

there is (hopefully!) documentation, examples and support available. However, the 

learning curve required to master the features of a particular simulator needs to be taken 

into consideration. It is also likely that generic simulators may be less efficient in terms 

of run-time and memory usage as they have to include a large amount of functionality. 

From the point of view of applying Computational Neuroscience techniques to Robotics 

research, there are two other important factors which influence the choice of simulator. 

Firstly, if it is intended that the networks will be deployed to neuromorphic hardware at 

some point then it makes sense to (as far as possible) avoid the need for porting the code 

to a different language/simulator. Secondly, to consider what other functionality besides 

neural modelling might be required and how easy is it to integrate. For example, in a 

robotics scenario a physics simulation and visualisation of a robot may be useful as well 

as a means to communicate with real robot hardware. 

 2.3  Computational Neuroscience in  Robotics 

Arbib et al. (2008) define the field of Neurorobotics as 
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‘the design of computational structures for robots inspired by the study of the nervous 

system of humans and other animals’ 

Over the last twenty years or so there has been extensive work with bio-inspired ‘whole 

animal’ models of behaviour inspired by specific invertebrate and vertebrate organisms 

(for example Arbib and Liaw, 1995; Damper and French, 2003; Meyer et al., 2005; 

Alnajjar and Murase, 2008). This type of modelling falls under the umbrella of 

Computational Neuroethology which encompasses the modelling of real animal 

behaviour grounded in biologically realistic neural models (Cliff, 1991, Arbib et al., 

2008). An important component of Computational Neuroethology is to model situations 

where entire animal ‘behaviours’ are generated from interaction with the environment. 

In the words of Cliff (1991): 

‘closing the external feedback loop from motor output and sensory input’ 

There have also been research works not based upon any particular animal's behaviour 

but tackling generic concepts such as control and vision (for example Hagras et al, 2004; 

Wang et al., 2008; Stratton et al., 2009). The works which have used spiking neural 

networks manage to achieve robust behaviours and learning even with very simple 

architectures: for example, the Aplysia models of Damper and French (2003) and 

Alnajjar and Murase (2008). Such models are extremely useful as first steps in 

Neurorobotics research as they can provide insights into how nature has equipped 

animals with efficient survival strategies and moreover how it is possible to generate 

fairly complex behaviours with minimal neural architectures. Furthermore, actually 

implementing neuroscientific models onto robotic hardware enables validation of the 

biological theory in an embodied way (Arbib et al., 2008).  

There have been a few research projects aimed at creating more complex models and 

robotic implementations based upon human-like capabilities using spiking neural 
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networks. Two notable examples are the Darwin series of robots (Krichmar and 

Edelman, 2003; Edelman, 2007) and the humanoid CRONOS/SIMNOS project (Gamez 

et al., 2006; Gamez, 2008). To date, there appears to be little or no work using spiking 

neural networks to generate bio-inspired behaviours for autonomous small to medium 

size humanoid robots.  

In summary, it is only relatively recently that works using spiking neural networks for 

practical robotics applications have begun to emerge. This is most likely due to two 

main factors. Firstly, the type of software and hardware required to effectively 

implement spiking neural systems for autonomous robots has only recently become 

more accessible to robotics researchers. Secondly it has been necessary to wait for the 

required advances in Computational Neuroscience theory and modelling to become 

available for transfer across to the robotics field of research. 

 2.4  Modelling Cortical Feature Maps 

 

Biological Feature Maps 

Through computational modelling work, and validation from neuroscientific 

experiments it is accepted that neurons in mammalian cortex naturally form 2D maps as 

a representation of information received from the environment. These maps consist of 

distributed but often overlapping populations of neurons that respond preferentially to 

features in an input signal. Cortical maps are self-organising: they develop according to 

the information in the input they need to represent in an activity-dependent manner 

(Dayan and Abbott, 2001). An important feature of these maps is that they are 

dimension-reducing as they represent a range of many-dimensional salient information 

from the environment as a 2D map. These maps are often referred to as ‘cortical feature 

maps’ or Self-Organising Feature Maps (SOFMs). The most well-known maps are from 

the visual system, for example: 
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 Ocular dominance (OD) – neurons respond to input preferentially from either 

the left or right eye and groups of neurons with the same dominance properties 

form distinct bands or stripes (Hubel and Wiesel, 1977). Figure 3 shows part of 

an experimentally determined OD map. 

 

 

 

 

 

 

 

Figure 3- Ocular Dominance Map from Macaque Visual Cortex 

(taken from Fig 24(a) in Hubel and Wiesel,1977) 

 

 Orientation Selectivity (OS) – neurons are responsive to visual objects of a 

particular orientation and neurons with similar response properties are grouped 

together in cortical patches (Hubel and Wiesel, 1977). Figure 4 shows part of an 

experimentally determined OS map. 

 

 

 

 

 

 

 

    Figure 4- Orientation Selectivity Map from Shrew Visual Cortex 

           (adapted from Fig 1(B) in Bosking et al.,1997) 

 

_________________________________

Figure 3 has been  removed due to 

Copyright Restrictions 

______________________________ 

_________________________________

Figure 4 has been  removed due to 

Copyright Restrictions 

______________________________ 
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 Direction selectivity (DS) - neurons are responsive to visual objects moving in a 

particular direction and neurons with similar response properties are grouped 

together in cortical patches (Weliky et al., 1996). Figure 5 shows part of an 

experimentally determined DS map with arrows showing the preferred direction 

superimposed. 

 

 

 

 

 

 

 

 

Figure 5- Directional Selectivity Map from Ferret Visual Cortex 
          (adapted from Fig 2(a) in Weliky et al.,1996) 

As can be seen from the maps in Figure 4 and Figure 5 there is some overlap in 

response because the degree of selectivity or ‘tuning’ of individual neurons varies from 

being very specific to more broadly tuned. 

The Self-Organising Map 

The Kohonen Self Organising Map (SOM) is a well-known technique for modelling 

feature maps using an unsupervised learning process (Kohonen, 1995). A SOM network 

usually has two layers only: an input layer which passes in training data and does no 

processing and an output layer which forms the actual map. These two layers are 

usually fully interconnected.  Figure 6 shows a typical SOM network arrangement. The 

input layer has as many nodes (neurons) as there are dimensions of data and normally 

the output layer is chosen to be of an appropriate size to represent the number of input 

patterns: in a traditional SOM one output node responds to a particular pattern so the 

output layer must contain at least as many neurons as there are different types of input 
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Figure 5 has  been  removed due to 

Copyright Restrictions 

______________________________ 

 



33 

 

patterns. The Kohonen SOM learns to represent the range of input data available and in 

the final map the data is topologically arranged (similar inputs are mapped to similar 

spatial locations in the map). The weights between the input and output nodes store the 

information elements represented in an input pattern vector. Consequently, the number 

of connections to a neuron/node determines the maximum dimensionality of the map.  

 

 

 

 

 

 

 

 

 

Figure 6- The SOM Network Architecture 

(taken from the SDL Component Suite website, 2008) 

 

The SOM training process is as follows: 

1. Present an input vector (pattern) to the input layer 

2. Select the winning output layer node (the node with the highest activation) 

3. Determine a spatial neighbourhood around the winning node 

4. Adjust only the weights of nodes within the neighbourhood 

5. Decrease the neighbourhood size (N), and Kohonen learning constant (k) 

6. Repeat 1…5 until map has converged 

 

 

 

______________________________ 

Figure 6 has  been  removed due to 

Copyright Restrictions 

______________________________ 
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The weight adjustments at step 4 are calculated using the Kohonen learning Equation 

(1).  

      (      )     (1) 

Where: 

𝑤𝑖𝑗 is the weight between input node i and output node j 

𝑥𝑖 is the value of the input vector element applied to input node i 

𝑘 is the Kohonen learning constant 

Note that in the traditional SOM method described above, there is implicit activity 

dependence:  the ‘winner take all’ strategy for learning in step 2 ensures that only one 

output unit is active for a particular input pattern. Also, nodes whose weights never 

cause them to be activated because they do not match any input data closely enough are 

never reinforced and are thus redundant. 

In step 5 the decrease of the neighbourhood size N and the learning constant, k is 

normally not done linearly as map creation is thought of as having two phases which 

operate at different rates. Firstly, an initial topological ordering where there is the 

greatest amount of change and secondly, weight convergence where there is less 

disruption as the map is settling into its desired structure. There are various options for 

non-linear reduction rules, for example, simple exponential decay. Mulier and 

Cherkassky (1994) challenged the efficacy of traditional approaches to reduction 

schedules for learning rate. Their experiments found that the choice of learning rate in a 

traditional SOM can drastically affect how the data contributes to the ordering of the 

final map – in effect they found that up to 80% of the data could be wasted. This effect 

can be a particular problem when training data is ‘recycled’ (i.e. presented more than 

once) and even random presentation of training samples does not completely get rid of 

the problem. They proposed a new, statistically-based learning rate function which 
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ensures that each training pattern contributes equally to map formation. They also stated 

that the neighbourhood function has a contributory effect and the learning rate function 

they propose is independent of it. Keith-Magee et al. (1999) emphasised the importance 

of neighbourhood reduction and proposed a specific two-stage reduction scheme where 

the neighbourhood size is reduced by a factor of n/2 for n training epochs and thereafter 

reduced by R,  the resolving distance of the SOM which is the distance between peaks if 

every data point was distributed evenly over the map. Surprisingly, there is actually 

some evidence from previous work in generic SOM theory that reducing the 

neighbourhood size during training may not be crucial for map formation at all: the 

work of Raginsky and Anastasio (2008) demonstrated that the optimum neighbourhood 

size for best representation of input information is finite and small. Research works that 

have performed practical experiments which support this view include Alamdari (2005) 

and Pham et al. (2006). Both used a fixed, small Gaussian neighbourhood successfully 

in SOM implementations. 

The issue of defining learning rate and neighbourhood parameter reduction in relation to 

traditional SOMs has been noted by several previous researchers. For example, 

Berglund and Sitte (2006) and more recently in Berglund (2010) the Parameter-Less 

SOM or PLSOM is described. These works developed a method of controlling the 

learning in a SOM by using the ratio of the last error between the input vector and 

weight vector of the winning node to the largest previous error as a scaling factor 

(Berglund and Sitte, 2006). In later improvements, the ratio of the last error to the 

diameter of the input space is used (Berglund, 2010). Shah-Hosseini and Safabakhsh 

(2000; 2001) developed the TASOM or Time-Adaptive SOM. Here, each neuron has its 

own learning rate and neighbourhood parameters and these are changed according to the 

distance measure between the current input vector and the synaptic weight vector of the 

neuron. More recently, Shah-Hosseini (2011) has developed a variant called the Binary 
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Tree TASOM, which incorporates the removal and addition of neurons during training 

to allow adaptation in an environment where the inputs can change. Brohan et al. (2010) 

tackled the problem in a slightly different way by allowing the learning rate and 

neighbourhood parameters to reset to their initial values based upon the novelty of the 

input, but otherwise using linear reduction schemes for both. 

In step 6 of the Kohonen method, the training process is repeated until the map has 

converged. Miyoshi (2005; 2007; 2008) discusses some of the conventional methods for 

determining when a map has converged: usually either when the number of training 

cycles exceeds a threshold, or when the largest distance in all distances between 

learning data and its winning node becomes smaller than a threshold. Miyoshi proposes 

that both of these are somewhat deficient as they do not consider the actual learning rate 

or look at the convergence of a large enough amount of nodes. Miyoshi proposed a new 

method which keeps a track of the sum of ‘distance’ changes for all weights of all 

patterns in a training cycle. It is assumed that this should become constant when 

convergence is achieved. 

Cortical Feature Map Modelling 

This section looks at some previous research works over the last 20 years or so which 

have created computational models reproducing features of real cortical feature maps, 

and are relevant to the goal of modeling cortical feature maps with flexible, efficient 

learning.  

Goodhill (1993) proposed the first computational model of retinotopic map formation in 

visual cortex where Ocular Dominance stripes developed in the presence of correlated 

input from two ‘eyes’ without adding any special assumptions. The map learning 

mechanism is inspired by Kohonen (1982) and includes a winner take all mechanism 

whereby lateral inhibition suppresses the activity of all neurons in an area apart from the 

maximum responder. The maximum responder and its neighbourhood have their 
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weights increased by a Hebbian learning rule. Normalisation of weights is also required 

to ensure they do not increase unbounded. Following their proposed model of Spike 

Timing Dependent Learning (STDP) (Song et al., 2000), Song and Abbot applied STDP 

theory to generic cortical map development to establish if STDP alone can account for 

map development (Song and Abbott, 2001). They looked at various scenarios with 

learning on feedforward connections only, learning on feedforward and lateral 

connections and also the role of inhibitory lateral connections in map formation. Their 

experiments showed that STDP could indeed provide the competition mechanism 

between synapses needed for map development and furthermore that lateral excitatory 

and inhibitory connectivity were required for the map to be refined and preserved. This 

work was a significant advance in that it demonstrated that it was possible to model map 

development in a similar fashion to a Kohonen SOM but with spiking neurons and a 

biologically inspired learning method. More recently Dayan (2004) has proposed a 

model of Ocular Dominance stripe formation based upon activity dependent 

mechanisms and including a special ‘arbor function’ which controls the setup of the 

initial, unrefined map. Essentially the arbor function imposes a basic topography on the 

initial map. This model includes a simple Hebbian learning rule and normalization. 

Shon et al (2004) explored how directionally selective (DS) maps could form using 

STDP. Confirming the earlier results of Song and Abbott (2001) they found that lateral 

connections are vital for the development of maps and that the combination of lateral 

excitatory and inhibitory connectivity is required for robust directional selectivity. Their 

work used a LIF neuron model and ‘retinal’ input consisting of moving bars; the retinal 

activity was passed through a set of filters reproducing the ON/OFF activity of the 

Lateral Geniculate Nucleus (LGN). Their STDP method incorporated an asymmetric 

STDP time window which was important in the development of directional selectivity. 

A similar work looking at the development of directional selectivity in the Primary 
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Visual Cortex using STDP, Wenisch et al. (2005) also proposed that an asymmetric 

STDP time window is important and show that directional selectivity can arise by STDP 

even with only intrinsic spontaneous spiking activity. Unlike earlier works, they also 

consider the role of neuronal delays on the lateral connections (the larger the separation 

between pre and post neurons, the longer the signal takes to integrate) and find that 

these are possibly essential in the detection of moving objects. Unlike Song and Abbott 

(2001) and Shon et al. (2004) STDP learning is only on the lateral connections and 

feedforward connections play no role other than the relaying of the input data.  

The LISSOM (Laterally Interconnected Synergetically Self-Organizing Map) 

framework has been used to model many features of visual map development (for 

example, Bednar and Miikkulainen, 2000, 2003; Miikkulainen et al., 2005). These 

models incorporate learning on both afferent and lateral connections and through 

various experiments they demonstrate the important role of lateral connections in initial 

map development and adaptation during recovery from lesion. For example, the 

RLISSOM (Reduced LISSOM) variant is used to demonstrate how lateral connections 

are responsible for reorganisation in the visual cortex after a retinal lesion. More 

recently, Gilbert and Li (2012) have reviewed current thinking on plasticity in the adult 

visual system and support the view that adult perceptual learning and recovery after 

lesion may share the same underlying mechanism involving changes in lateral 

connections. The PGLISSOM (Perceptual Grouping LISSOM) variant is used to 

demonstrate the role of lateral connections in perceptual grouping. Unusually, for 

current thinking at the time of this work, the LISSOM models allow plasticity on 

inhibitory as well as excitatory connections. In most previous works inhibitory plasticity 

was rare due to a lack of strong experimental evidence for learning on inhibitory 

connections in the cortex. In LISSOM, Mikkulainen et al. (2005) justified it on the 

grounds of a modelling abstraction: an inhibitory connection is taken to incorporate a 
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plastic excitatory connection onto an inhibitory interneuron.  The LISSOM models 

demonstrated the important potential role of lateral inhibitory connections in providing 

competition in the response of the map: the long–range inhibitory connections suppress 

the activity of neurons in remote areas when a particular area of the map is active; hence 

neurons which develop similar response preferences are spatially collocated. The 

PGLISSOM model showed how the inhibitory connections perform the role of 

segmentation in perceptual grouping experiments. Bednar and Miikkulainen (2003) 

looked very specifically at the co-formation of both directionally selective (DS) and 

orientation selective (OS) maps. The HLISSOM variant used in these experiments 

included a specific model of LGN processing with a set of 4 layers in a temporally 

delayed hierarchy for both the ON and the OFF LGN components. Their conclusions 

were that a single map organisation system could be used for the development of two 

different visual maps and that the delayed LGN input was important for the 

development of directional selectivity. 

In a very recent work, Honda et al. (2011) investigated the mechanism responsible for 

the development of direction selectivity in the Xenopus (frog) retinotectal system using 

a neural circuit model with STDP. Their model used both feedforward and lateral 

learning and their conclusions emphasise the role of delayed feedforward inhibition. In 

their discussion they acknowledge that many previous works have developed successful 

directional selectivity models using different mechanisms! 

 2.5  The Sensorimotor Loop 

This section looks at some previous research works which have implemented 

sensorimotor learning and coordination systems. In particular, a review of previous 

works specifically related to the use of self-organising or developmental principles for 

robotics, either simulated or using actual robot hardware. 

Ritter et al. (1989) applied Kohonen SOM theory to visuo-motor coordination for a 
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simulated robot arm. Prior to the application described in this paper there had only been 

theoretical work done on motor maps for robot control. Furthermore, work on motor 

maps in general was scarce with the majority of self-organising map studies being for 

visual systems as described in Section 2.4. In Ritter et al. (1989) the map is learned 

from a random sequence of arm movements which are observed by a camera. Two 

methods are used:  learning arm kinematics (positioning the end effector at a specific 

location) and learning arm dynamics (regulating torque and speed for ballistic 

movements). This method is different from a standard SOM due to the fact that there are 

actually two maps: one from input to output layer and one from output layer to motor 

command. Training the network using arm kinematics proceeds by presenting a random 

location and selecting the winner neuron. A rough set of output joint angles are 

calculated which move the effector to roughly the correct vicinity. The output values are 

refined and a ‘fine’ movement is used to position the effector accurately. Approximately 

4000 learning steps were required to get a fairly accurate result and 20,000 learning 

steps to fully capture the desired input-output mapping. For learning arm dynamics the 

structure of the network is the same, but the output is a triple of torque values. Krose 

and Eecen (1994) also made use of Kohonen SOM theory, but for environment 

representation in the sensory domain for robot navigation. Prior to this work, most 

previous applications of SOMs for path planning represented the world space, but in 

this work a SOM is used to map sensor space and is constructed by exploration. The 

map is a 3D lattice but trained using the regular Kohonen SOM methodology. Once the 

sensory map has been constructed a path planning algorithm can be used to move the 

robot from a given state to a goal state. In their conclusions the authors stated that one 

drawback of this approach is that many training iterations (approximately 100,000) 

were required to construct the SOM and create the transition probabilities for path 

planning. Terada et al. (1998) have also used SOM theory for sensory motor mapping in 
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robot navigation. Their VSAM architecture (Visual State Action Map) used raw image 

data to firstly train a visual SOM. Then reinforcement learning (Q learning) was used 

offline to associate output from visual map with appropriate motor action. The end 

result was that each SOM node had a list of possible actions and resulting next states 

(sub nodes and links to next state). Similarly to Krose and Eecen (1994) a disadvantage 

for this approach is the overhead for computing all the possible transition states during 

Q learning.  

A significant advance over previous works was that of Metta et al. (1999) which looked 

at visually guided reaching, using an actual 10 Degree-of-Freedom robot arm/head setup. 

Of particular relevance to the rationale for the current work is the emphasis on 

applicability of biological developmental approaches to robotics and a discussion of 

why previous approaches have not resulted in robots with anything like human 

capabilities. Metta et al. (1999) perceived that previous attempts to model sensorimotor 

control have been based upon learning rather than development, and in their view 

biological systems do not spring into being as a ‘blank slate’ but instead undergo a 

developmental phase where capabilities develop within the context of an environment. 

One human developmental example they describe is the early presence of the 

Asymmetric Tonic Neck Reflex (ATNR) which plays a crucial role in allowing babies to 

see their hands and improve visual fixation of the hands (White, Castle and Held, 1964; 

Bushnell, 1981). The new-born’s own body motions are the means to establish a 

coupling between perception and action. The methods described in Metta et al. (1999) 

are not traditional SOM but instead based upon the ‘motor primitives’ work of Bizzi, 

Mussa-Ivaldi and collaborators (Mussa-Ivaldi, 1992; Mussa-Ivaldi and Giszter, 1992; 

Mussa-Ivaldi et al., 1994; Bizzi et al., 1995). A motor primitive can be described as a 

torque field which controls and coordinates one joint and motor primitives can be 

combined to move more than one joint simultaneously. In Metta et al. (1999) the goal is 
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for the system to learn which combinations of motor primitives place the arm at the 

correct location from the inputs of head control vectors and arm control vectors. Their 

experiments attempted to mimic early development of coordinated reaching by dividing 

the skill acquisition into two stages: firstly ballistic reaching to a static target is learned 

and secondly coordinated eye-hand movements towards moving targets are then 

required. The system copes with the latter even though it has not been trained on any 

moving target. It is also notable that only about 100 learning trials (5 minutes of real 

time) were required to get this performance.  

Marian (2002) specifically used a spiking neuron variant of a traditional SOM, 

including a biologically-inspired spike-timing based learning rule, applied to a 

theoretical investigation of visuomotor coordination. Marian’s work was directly 

inspired by the integrated Parieto-Frontal framework for visually-guided reaching 

proposed by Burnod and collaborators (Burnod et al., 1999). This work proposed that 

cortical control of reaching is distributed over a ’network of networks’ in the parieto–

frontal lobes. Although there are clearly distinct cortical areas for visual and motor 

processing, for tasks which require a combination of both (i.e. visually-guided reaching) 

there is no distinct area for the task. Burnod et al. proposed that coordination of the two 

cortical areas is achieved by recruiting populations of neurons from both areas. The 

Burnod model explains how the sensory-motor transformation is achieved using neural 

networks having a distributed representation of either position or direction and also how 

such networks can be combined to solve sensory-motor tasks. Since the publication of 

Burnod’s framework, several experimental works support the existence of separate but 

interconnected networks in the cortex. For example, Pulvermüller (2005) and Boulenger 

et al. (2009) describe how speech related to actions produces activity not only in speech 

areas but also in the motor cortex pertaining to the relevant body parts. More recently, 

Archamboult et al. (2011) studied the activation of cortical neuronal populations in 
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monkeys during visually guided reaching. They confirmed a sequential activation of 

neurons in the premotor, motor and parietal cortex. Marian (2002) used a simplified 

interpretation of Burnod’s theory to create a model of a coupled visual and motor map. 

The motor map was created using a spiking version of a SOM to develop directional 

selectivity. The development of visual directional selectivity was not modelled: instead 

a map was pre-created with directional selectivity already present. A separate coupling 

stage was then performed where connections between the two maps were refined using 

STDP finally allowing only visual input to generate a distinct motor response. Although 

a small-scale theoretical work, Marian (2002) is nonetheless important as it presented a 

biologically-inspired alternative to traditional methods of robotic control and solving 

the coordinate system problem. Since this time there have only been a handful of works 

which actually use the Burnod architecture in robotics applications (Carenzi et al., 2005; 

Zollo et al., 2005; Eskiizmirliler et al., 2005; Zollo et al., 2008). All of these are 

concerned with learning of initial ‘modules’ such as vision, proprioreception and then 

an accelerated second-stage learning which can combine the modules to learn new tasks 

such as reaching and grasping. Although the methods used in these works are bio-

inspired, they do not employ spiking neural models.  

Paine and Tani (2004) use a self-organising approach for navigation in a simulated 

wheeled robot based upon a hierarchy of Continuous Time Recurrent Neural Networks 

(CTRNNs). A lower layer learns basic motor primitives (in this case entire navigation 

actions such as turn left, go straight, etc.). A higher layer of control neurons develops a 

topologically ordered mapping of initial cell activation states to motor-primitive sequences 

and manage the selection of one primitive or another. The self-organising part of the 

system is provided by a Genetic Algorithm (GA) which is used to evolve the weights 

between layers. 

In another innovative take on self-organising maps Kikuchi, Ogino and collaborators 
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use optic flow to enable soccer playing humanoid robots to learn mappings between 

visual stimuli and motion (Kikuchi et al., 2004; Ogino et al., 2005). The use of optic 

flow is important as it encodes information about the motion in a visual signal. 

Similarly to Paine and Tani (2004) there is the concept of a basic motion primitive 

which represents a movement option in the robot (for example, ‘step left’ , ‘walk 

forward’)  but in this case encoded by an optic flow field.  More complex ‘motion 

actions’ can be represented by a specific combination of the primitives (for example, 

‘approach ball’). The football behaviour ‘passing the ball’ is used as an example. This is 

decomposed into three component actions (approach ball, trap ball, kick ball) which are 

in turn decomposed into several motion primitives. The robots learn mappings for each 

primitive using a traditional SOM. To achieve the behavior the individual components 

need to be integrated and this is done by a simple set of rules, for example ‘if ball is in 

front of foot then kick’ and ‘if ball is moving, trap it’. 

Like Marian (2002), Alamdari (2005) also used a spiking neuron with spike-timing 

based learning in a SOM but applied to simulated robotic path planning. In this work 

STDP is used to adapt both synaptic weights and delays. The inputs are locations in the 

environment and the network learns the clusters forming obstacle-free locations. Path 

planning is implemented using a form of the A* algorithm modified to work with the 

network representation of the map. 

Toussaint (2004; 2006) used a SOM applied for sensory motor mapping for a simulated 

robot navigating a maze. The architecture consisted of fixed motor and perceptual 

networks coupled to a growing SOM layer linking the two domains. Dynamic growing 

of the SOM layer is based on the Neural Gas (Fritzke, 1995) and FuzzyARTMAP 

(Carpenter et al., 1992) approaches. After 30,000 steps of exploration and learning a 

map which matches the structure of maze was obtained. Following this stage, planning 

was enabled and the robot given a goal position to navigate to. The planning dynamics 
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were based upon classical reinforcement learning and enabled the robot to learn to avoid 

blocked paths. 

More recently Morse and Ziemke (2009) have used a hybrid model consisting of a 

hierarchical system of cortical maps constructed from Echo State Networks (ESNs) 

(Jaeger, 2002) and SOMs to model sensory-motor learning in a simulated robot task. 

The ESNs are used to model cortical dynamics without implementing the finer details of 

cortical structure. Input information from the environment is passed in via the ESN 

where the cortical dynamics are emulated. The ESN response is then classified using a 

SOM. The SOM also provides an input back to the ESN and the location of the winning 

SOM unit in SOM space is provided as output. The model is validated by replicating 

some of the experiments of Held and Hein (1967) in which kittens raised in the dark, 

and unable to control their own movements during exposure to light, exhibit severe 

deficiencies in visually guided behaviour, thereby confirming the importance of self-

movement in acquiring visuomotor coordination. 

 2.6  Conclusions 

This chapter has shown that although much work has been done in the individual 

domains of biologically-inspired Spiking Neural Networks and Self-Organising Cortical 

Feature maps the combined application of the two for robotic applications is still fairly 

sparse. The current work aims to integrate these aspects into one framework which can 

be used as the basis of a sensorimotor (visuomotor) controller for an autonomous robot. 

The following paragraphs give an overview of which ideas have been borrowed from 

previous work and where improvements or extensions have been made. Full details of 

methodology and techniques are given in chapters 3-7. 

Methodologies 

With respect to the potential use of SOMs in robotics projects, Chapter 1 raised some 

issues to do with making map creation as autonomous as possible, which are briefly 
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repeated here in relation to the existing literature discussed in this chapter.  

Firstly, it is evident that previous researchers have recognised that it is important to 

investigate optimum ways to control SOM learning in terms of defining reduction 

schedules for the learning neighbourhood and rate, to try and get the fastest and best 

mapping of the input space possible (for example,  Mulier and Cherkassky, 1994; Keith-

Magee et al., 1999). Some researchers have also looked specifically at ways to control 

learning in a more adaptive fashion (Shah-Hosseini and Safabakhsh, 2000; 2001; 

Berglund and Sitte, 2006; Miyoshi, 2005; 2007; 2008; Berglund, 2010; Shah-Hosseini, 

2011). However, none of these works has applied such ideas to a spiking neuron 

implementation of SOMs. Furthermore, the methods used in these works also assume 

that the SOM input is in the form of a pattern vector from which a meaningful distance 

to a weight vector can be calculated. The current research project has developed an 

approach to autonomous training of a spiking SOM which is biologically inspired and 

uses an adaptive method of controlling the learning rate which does not require a 

predefined learning rate schedule. This method works in the case of motor map 

development where the inputs are pattern vectors and also in visual map development 

where the input is individual spike events from a DVS 128 silicon retina camera. With 

respect to the learning neighbourhood, the approach used in Alamdari (2005) and Pham 

et al. (2006) is used:  a small, fixed Gaussian neighbourhood is used throughout the 

training process and therefore a neighbourhood reduction schedule is not required.   

Secondly, in traditional SOMs, the amount of training data is also usually defined in 

advance, either by generating it from existing empirical datasets or by creating specific 

training datasets. There are some robotic works where the data has been generated 

‘online’ from an environment (for example, Krose and Eecen, 1994; Terada et al., 1998; 

Toussaint, 2004, Alamdari, 2005, Toussaint, 2006), and in the current work a method 

has been developed whereby the cortical maps are trained using inputs generated online 
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by random selection. Thus the composition and quantity of the input data is not defined 

and no assumptions are made about the amount of data needed to train a map. The 

adaptive learning mechanism described in the previous paragraph regulates the learning 

based upon the range and quantity of inputs seen and it is possible to use this 

mechanism to monitor whether a map is sufficiently trained or not. 

Thirdly, traditional SOMs usually learn in a stationary or static environment (the range 

and quantity of input data is predefined). Furthermore, as the traditional learning rate 

and neighbourhood reduction schedules decrease monotonically, there is no possibility 

of undoing previous training. This is not an issue in the case of data classification 

applications or replication of specific experimental cortical feature maps as it is clear 

from the outset what the map is expected to represent. However, for robotic brain 

systems it is important to eventually have behaviour more like the real cortex where 

there is some balance between remembering previous associations and also being able 

to adapt to new input – i.e. to learn in a non-stationary or dynamic environment. The 

new adaptive learning mechanism developed in the current work contributes to solving 

this problem: the effective learning rate at any stage of the training process is 

determined in an activity-dependent way by the inputs seen so far. Therefore, if the 

input data composition changes, thus causing activity in new areas of the network, the 

learning rate can change to accommodate it. Adaptation requirements are also addressed 

in the section of work dealing with map coupling. As described in Chapter 1, the main 

aim of the current work has been to produce a system of a coupled visual and motor 

map for visuomotor coordination. The motor and visual maps develop independently, 

and then a ‘lifelong’ learning phase enables the maps to coordinate their activity. The 

coupling learning uses biologically-plausible STDP learning as well as a rewiring 

(synaptic creation and pruning) scheme designed to work with spiking neurons. As 

mentioned in the project rationale in Chapter 1, this is a neglected aspect of real cortical 
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learning in traditional and spiking SOMs and cortical modelling, but a possible means 

to endowing SOMs with greater adaptivity. Although the rewiring methods developed in 

this work are used only for coupling connectivity here, they are applicable generally to 

spiking SOMs. 

From the discussion in section 2.4, Cortical Feature Map Modelling, it is clear that the 

majority of previous modelling work has been for visual system development, in 

particular Ocular Dominance (OD) and Orientation Selective (OS) maps. More relevant 

to the current work are models of Directionally Selective (DS) maps as for visuomotor 

coordination the visual objects will be moving. The work of Dayan (2004) and Shon et 

al. (2004) used 1D models with simplified visual input (e.g. manufactured Gaussian 

bars). The LISSOM models also included a variant for Directional Selectivity 

(HLISSOM; Bednar and Miikkulainen, 2003) which had a complicated architecture for 

ON/OFF processing and also used Gaussian bar input. The work of Wenisch et al. (2005) 

has inspired the visual system used in the current work as it is a 2D architecture, uses 

biologically plausible learning (STDP) and is a relatively simple setup (the LGN is not 

directly modelled). The current work also introduces a novel improvement over 

previous works by using visual input from a DVS 128 ‘Silicon Retina’ camera. 

Therefore the input is real, not manufactured and in a biologically plausible form 

(spikes). There has been some similar previous work, for example Elliott and Kramer 

(2002) used a neuromorphic silicon retina chip to study the development of topography 

in the visual system, but in this case the silicon retina was small (16x16 pixels) and full 

map development was not modelled: only the development of retinotopy from Retinal 

Ganglion Cells to target cells. More recently, Galluppi et al. (2012) have used a DVS 

128 camera as an input device to an orientation selective visual system implemented on 

SpiNNaker board. 

In terms of sensorimotor applications, both theoretical and in practical robotics 
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applications, previous works have been mainly in the area of visually guided reaching. 

Marian (2002) created a simple, but much more general visuomotor framework based 

upon the theories of Burnod et al. (1999) but other similar work to date still 

concentrates on visually-guided reaching applications rather than generic frameworks 

(Carenzi et al., 2005; Zollo et al., 2005; Eskiizmirliler et al., 2005; Zollo et al. 2008). 

The current work uses the same approach as Marian (2002), however, the development 

of both motor and visual directional selectivity are modelled using a similar framework 

and for larger sized maps. The coupling of the maps is achieved by a method using 

STDP learning and also synaptogenesis and pruning. 

Modelling 

Based upon the discussion in Section 2.2, the Brian simulator has been adopted for the 

current work (Goodman and Brette, 2008). Brian is a general purpose spiking neuron 

simulator written in the Python
1
 scripting language and has all of the most popular 

spiking neuron models built in plus the facility to define custom models using 

differential equations. The full source code is freely available and Brian can be easily 

customised and extended to interface with other Python packages. Currently there are 

many useful and freely available Python packages which include features such as 

physics simulation, visualisation, plotting and statistics. Brian can be installed on 

Windows, Mac and Linux and code created on one platform will run on others so it is a 

good choice of simulator to facilitate repeatability of experimental results.  One 

disadvantage is that Python is not a compiled language, so with very large networks 

using STDP learning there will be an impact on run-time and memory usage. However, 

there are many options for optimisation in these cases which are well-explained in the 

                                                 

1
 http://www.python.org/ 

http://www.python.org/


50 

 

documentation on the Brian website
2
. Its capability has been found to be sufficient for 

the scale of modelling work done in this thesis. In terms of the potential for interfacing 

to neuromorphic hardware, the SpiNNaker system uses PyNN
3
 as a ‘front end’ to 

develop applications to be deployed on the SpiNNaker hardware.  PyNN is a simulator-

independent language for building neuronal network models which is written in Python 

and integrates with many of the most popular simulators including Brian. Therefore it 

will be straightforward to easily convert pure Brian code to PyNN code and thence 

deploy to a SpiNNaker board. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

2
 http://www.briansimulator.org/  

3
 http://neuralensemble.org/trac/PyNN  

http://www.briansimulator.org/
http://neuralensemble.org/trac/PyNN
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 3  A Motor Cortical feature Map 

 3.1  Introduction 

This chapter describes the features of the spiking neuron motor map architecture and 

SOM training process used to create a directionally selective motor map. The 

methodology for the motor map is based primarily upon three previous works which 

have developed self-organising maps using spiking neural networks: Ruf and Schmitt 

(1998), Marian (2002) and Pham et al. (2006). Essentially, the aim is to create cortical-

like maps which can self-organise to develop spatial and temporal selectivity to input 

patterns from an initially random state. Correlated (temporal and spatial) activity 

between neurons should strengthen both excitatory connections (‘cooperation’) and 

inhibitory connections (‘competition’) forming a topological map where neurons 

responding similarly to inputs are located together and those responding to different 

inputs are spatially separated. At this stage of the research the map development system 

does not have all of the desirable features mentioned in Chapters 1 and 2 with respect to 

adaptive learning. In the main only traditional SOM theory is used but applied to a 

spiking neuron scenario. Later improvements and additions for adaptive learning are left 

until Chapter 5.  

 3.3  The Neuron Model 

A simple Leaky Integrate and Fire (LIF) model based upon the well-known CUBA 

(CUrrent BAsed) model described in Vogels and Abbott (2005) and Brette et al. (2007) 

is used and is described mathematically in equation (2).  

  
  

  
      𝑖          (2) 

Where: 

V is the membrane voltage 

   is the contribution from excitatory synapses 

 𝑖 is the contribution from inhibitory synapses 
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   is the membrane time constant 

Note that here the reversal potential is taken to be zero so is omitted from the model.  

The neuron receives input from both excitatory and inhibitory synapses (represented by 

the terms ge and gi in equation 2) which are represented by the fast AMPA (α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) receptor model which assumes that the 

action potential generated by the presynaptic neuron is instantaneous and decays 

exponentially over time in between further action potentials (Dayan and Abbott, 2001). 

This behaviour is represented by equation (3). 

     τ𝑠
 𝑔

  
        (3)  

Where: 

  is the effective conductance for an excitatory or inhibitory synapse 

 𝑠 is the synaptic time constant  

When a presynaptic neuron fires the effective conductance for excitatory and inhibitory 

synapses ( ) is updated as shown in equation (4). 

     𝑛 𝑤   𝑜𝑙 ∗ 𝑤    (4) 

Where: 

 𝑜𝑙  is the original effective synaptic conductance 

 𝑛 𝑤 is the updated effective synaptic conductance 

w is the synaptic weight 

Table 1 gives a description of the neuron model parameters and their initialised values. 

 3.4  The Motor Map Architecture 

The prototype version of the motor map network follows a typical SOM setup. It has a 

16 neuron input layer and a 256 neuron output layer and is based directly upon that used 

in Marian (2002). Later in this chapter, section 3.7 describes how this network was 

scaled up to a larger size. 
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In the output layer 20% of the neurons are randomly assigned as inhibitory and 80% as 

excitatory as these appear to be the proportions of inhibitory to excitatory neurons in 

real cortex (Kandel et al., 2000).   

 

Parameter Value 

Neuron Model  

Vreset, reset voltage 0 mV 

VThresh, neuron threshold Randomly initialised as 3.9 mV plus noise normally 

distributed between 0 and 0.5 mV 

  , membrane time constant 5 ms 

 𝑠, excitatory/inhibitory synaptic time 

constant 

5 ms 

   , delay on afferent synapses 2 ms 

  𝑙 , delay on lateral synapses Set as distance between pre and postsynaptic neuron 

plus noise added by a Gaussian with mean 0 and 

standard deviation 0.5 

       , neuron refractory period 10 ms 

Network Architecture  

Nin, number of neurons in input layer 16 

Nout, number of neurons in output layer 256 

waff, afferent synaptic weights Randomly initialised between 0.4 and 0.5 

Wlat, lateral synaptic weights Randomly initialised between 0.3 and 0.4 (exc) and -

0.3 and -0.4 (inh) 

Exc_pconn, connection probability for 

lateral excitatory connections 

Calculated as exp(-dist/sigma) where dist is the Eu-

clidean distance between the neurons and sigma is 

3.5 (16x16 network) or 4.0 (48x48 network) 

Inh_pconn, connection probability for 

lateral inhibitory connections 

Calculated as exp(-sigma/dist) where dist is the Eu-

clidean distance between the neurons and sigma is 

8.0 (16x16 network) or 15.0 (48x48 network) 

Learning Rules  

 , the traditional SOM learning rate Initial value 0.5, decaying by 0.949 each cycle 

wmax, maximum allowed lateral synap-

tic weight 

1.0 for excitatory, -1.0 for inhibitory 

  

 , neighbourhood spread 3.0 

Ap, LTP rate Various values used – see Chapter 8 

Am, LTD rate -1.05 * Ap 

 𝑙  , LTP time constant 10 ms 

 𝑙  , LTD time constant 10 ms 

Run time   

Tint, the integration time 9 ms 

Tout, the time out parameter 30 ms 

 

Table 1- Summary of neuron model, network and run parameters 

 

The input layer is fully connected to the output layer with afferent (feedforward) 

connections. Afferent connection weights are set to a random value between 0.4 and 0.5 
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and there is a constant delay of 2.0 milliseconds on these connections. The output layer 

is recurrently connected and these lateral connections are sparse and follow a ‘mexican 

hat’ profile of short-range excitation and long-range inhibition for which there is 

experimental evidence in real cortex, and which has been used in many previous similar 

modelling studies (Kohonen, 1984, Miikkulainen et al., 2005).  Excitatory and 

inhibitory connectivity is determined by  probability functions based upon distance 

between the two neurons as given in equations (5) and (6) 

           
 𝑖𝑠 

𝑠𝑖𝑔  
      (5) 

 𝑖𝑛        
𝑠𝑖𝑔  

 𝑖𝑠 
      (6) 

     

Where: 

pexc is the excitatory connection probability (between 0 and 1.0) 

pinh is the inhibitory connection probability (between 0 and 1.0) 

dist is the Euclidean distance between the neurons 

sigma is the spread 

For excitatory connections a sigma of 3.5 is used which gives a significant chance of 

connection at distances up to 5 units. At distances greater than this the probability is 

forced to zero. For inhibitory connections a sigma of 8.0 is used and at distances less 

than 4 units the probability is forced to zero. Figure 7 shows the profile of connection 

probabilities generated by this method. 

Lateral connection weights are set to a random value between 0.3 and 0.4. The delays 

for the lateral connections are calculated according to the distance between the two 

neurons with added Gaussian noise (refer to Table 1 for details). Figure 8 shows a 

diagram of the network where afferent connections are shown from the input layer to 

one output neuron and lateral connections from one excitatory and one inhibitory 

neuron. 
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Figure 7- Connection probability profiles (16x16 output layer)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8- Motor Map Architecture 

 3.5  Motor Input Patterns 

For the motor system exemplar training patterns representing 8 directions of movement 

(N, NE, E, SE, S, SW, W, NW) similar to those used in Marian (2002) were used. The 

patterns are encoded as 16 element vectors of spike times (one time for each input 

neuron) which are a mixture of ‘salient’ and ‘noise’ data. The rationale for the encoding 

 

 



56 

 

is based upon the methods of Maass (1997) where the spike timing relative to a 

reference time determines the contribution to the postsynaptic potential (PSP) of the 

output neuron. In Marian (2002), the convention was that the more recent the spike time 

(shorter latency), the greater the saliency and the larger the PSP contribution. This is 

adopted in the current work and the conversion of spike time to PSP is calculated using 

equation (7). 

𝑥𝑗        
             

   
      (7) 

     

Where: 

𝑥𝑗 is the contribution to the PSP from input neuron j. 

𝑇𝑖𝑛  is the reference time (integration time) 

𝑡𝑗 is the firing time of input neuron j 

    is a transmission delay on afferent (input-output) connection 

  , is the membrane time constant 

The values used for the parameters 𝑇𝑖𝑛 ,    and    are given in Table 1. 

The parameter Tint  is a computational convenience rather than having a particular 

biological counterpart. According to Maass’ original formulation it is a constant that 

defines a small time window within which the relative timings of the input neurons t can 

be compared. Ruf and Schmitt (1998) also stated that Tint can be defined as a ‘reference 

spike’ provided by some other input to the neuron. 

In the patterns for the current work noise is characterised by early firing of neurons 

between approximately 0 and 3 milliseconds. Salient information is represented by later 

firing of neurons between approximately 7 and 9 milliseconds (i.e. close to the 

integration time of 9 ms). An example pattern is shown in Figure 9:  showing the burst 

of ‘noise’ data between 0 and 3 milliseconds and the ‘salient’ neurons firing closer to the 
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integration time Tint. Here the salient data makes the biggest contribution to the PSP.   

Under this scheme patterns that should be similar (for example directions N and NE) 

have been specifically created to encode some common salient information and patterns 

that are required to be dissimilar (for example directions N and S) do not encode any 

common salient information. To illustrate this, Figure 10 shows the encoding of 

example similar and dissimilar patterns. The patterns are composed of 12 noise values 

where neurons fire at early times with respect to the reference time Tint . The remaining 

values are salient and fire much closer to Tint. The patterns for N and S do not share any 

common salient information: the neurons which fire closer to Tint are completely 

different. However, the patterns for N and NE share 2 salient neurons: the firing times 

for neurons 12 and 14 are the same.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9- Latency coding of a 16 value input spike pattern  

(adapted from  Fig 4.7(a), Marian,2002) 

 

Appendix A gives full details on how the exemplar motor patterns were created and 
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verified. 

For initial prototyping, predefined datasets were used. A single training dataset 

consisted of 160 patterns: 20 instances of each of the 8 exemplar directional patterns, 

perturbed and randomly ordered. In the final system patterns are generated and 

presented randomly online. Full details of the process of creating the training datasets 

and the online generation process are given in Appendix A. 

 3.6  Learning 

Of the previous implementations of spiking SOMs described in Chapter 2, only a few 

have used some form of Spike Timing Dependent Plasticity (STDP) which is the 

currently favoured model for learning in real neurons. In addition, not many works have 

allowed plasticity on both afferent and lateral connections nor on inhibitory connections. 

Following the success of the LISSOM architecture (Miikkulainen et al., 2005) in 

demonstrating the important role of plastic lateral connections and inhibitory plasticity 

in explaining many features of visual map development, the current work uses both 

plasticity on afferent and lateral connections and allows plasticity on the inhibitory 

connections as they are an essential to provide the dual aspects of cooperation and 

competition required for the map development. 

Learning on the afferent connections is based upon the method originally created by Ruf 

and Schmitt (1998) and subsequently modified by Marian (2002). The form of the 

learning rule is given in equation (8). 

 𝑤𝑖𝑗   
       

    
( 𝑖𝑗  𝑤𝑖𝑗)      𝑤         (8) 
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Figure 10- Comparison of similar and dissimilar input patterns  

     (adapted from Fig 6.3(a), Marian,2002) 
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Where: 

𝑤𝑖𝑗 is the weight on the connection between input neuron i and output neuron j. 

  is the learning rate parameter 

𝑡𝑗 is the firing time of output neuron j 

𝑇𝑜𝑢  is a time out parameter 

 𝑖 is the PSP contribution from neuron i calculated as       
        

  
) where    is the 

membrane time constant, Tint is the integration time and ti is the firing time of the input 

neuron, i. 

d is a neighbourhood function =        
 𝑖𝑠  𝑛   𝑗 𝑤𝑖𝑛𝑛   2

2𝜎2  ) where distance() is a 

function calculating the Euclidean distance between output neuron j and the winner 

neuron for the current learning cycle and   is a neighbourhood spread parameter. 

See Table 1 for details of the parameter values. 

In the original Ruf and Schmitt (1998) implementation, the neighbourhood size was 

changed during training by manipulation of lateral connections and in Marian (2002) a 

traditional SOM neighbourhood with a reduction schedule was used. As the aim in the 

current work is to dispense with predefined reduction the learning rule is modified with 

a fixed, non-reducing spatial neighbourhood function implemented by a Gaussian 

function     𝑤       originally used by Pham et al. (2006).  

In summary, the magnitude of the afferent weight update is determined by the following 

factors: 

1. The value of  𝑖 which is determined by the presynaptic (input) neuron firing 

time 

2. The difference between the value  𝑖 and the current weight 𝑤𝑖𝑗  

3. A temporal neighbourhood: synapses where the firing time of the postsynaptic 
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(output) neuron in response to the input pattern are quickest get a larger update 

4. A spatial neighbourhood: synapses with firing postsynaptic (output) neurons 

located close to the current winner get a larger update 

5. A learning rate parameter   which is reduced gradually during training 

As discussed in the introduction to this chapter, equation (8) still employs a traditional 

learning rate parameter   which needs to be reduced gradually during training to control 

map development.  

For learning on the lateral connections, Marian (2002) used an amended version of the 

Ruf and Schmitt (1998) afferent learning rule with slightly different formulations for 

excitatory and inhibitory connections. In their original work, Ruf and Schmitt (1998) 

did not use plasticity on lateral connections but manipulated the weights directly.  

One problem with most kinds of Hebbian plasticity (including STDP) is that they are 

positive feedback systems. Correlated activity between a pre /post neuron pair 

strengthens the connection between them which makes further correlated activity much 

more likely. Without compensating adjustments, the weight increments will proceed 

unchecked. It is therefore usual to include some form of normalisation of all weights 

after a learning phase or apply hard limiting to a maximum / minimum value. For 

example, in Marian (2002) global normalisation was used to keep the lateral weights 

from getting too large.  Neither global normalisation nor hard limiting is particularly 

biologically plausible (although there is some experimental evidence that forms of 

normalisation may occur in biological systems). Another problem specific to STDP is 

that in the general formulation (Song et al., 2000) the resulting weight distribution is 

bimodal which does not match with experimental results (van Rossum et al., 2000).  

The lateral learning rule in the current work retains some elements of Ruf and Schmitt 

(1998) (e.g. the temporal neighbourhood) and has been modified to use STDP following 
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the basic method of Song et al. (2000) but incorporating weight dependent learning as 

suggested by van Rossum et al. (2000). Here the weight updates are dependent on the 

existing connection weight, with LTP updates being additive and LTD multiplicative. 

These rules results in a similar unimodal weight distribution to the experimentally 

observed one. In the original formulation of their rules van Rossum et al. (2000) also 

incorporate a weight dependent Gaussian noise term with a zero mean and standard 

deviation derived from experimental data. In the current work the noise term is omitted.  

The update rules for Long Term Potentiation (LTP) and Long Term Depression (LTD) 

are given as equations (9) and (10) respectively and are used for both excitatory and 

inhibitory connections. 

 𝑤𝑖𝑗   
       

    
(𝑤    𝑤𝑖𝑗)     𝑡          𝑤       ,  𝑤     𝑤     𝑤   (9) 

 𝑤𝑖𝑗      
       

    
    𝑡          𝑤      ,   𝑤     𝑤  ∗  𝑤   (10) 

  

Where: 

𝑤𝑖𝑗 is the weight on the connection between output neuron i and output neuron j 

𝑤    is the maximum allowed lateral weight 

  is the learning rate parameter 

𝑇𝑜𝑢  is a time out parameter 

   𝑡      is the standard exponential STDP function:  

                                      𝐴     ( 
       

 𝑙 𝑝
)                        (𝑡𝑗  𝑡𝑖) >  0 

                                        𝐴     (
       

 𝑙  
)                          𝑡𝑗  𝑡𝑖 <  0 

𝑡𝑖, 𝑡𝑗 are the firing times of presynaptic neuron i and postsynaptic neuron j respectively. 

Ap, Am are the STDP potentiation and depression rates respectively. 

 𝑙  ,  𝑙   are the time constants for potentiation and depression. 
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d is a neighbourhood function =        
 𝑖𝑠  𝑛   𝑗 𝑤𝑖𝑛𝑛   2

2𝜎2
) where distance() is a 

function calculating the Euclidean distance between output neuron j and the winner 

neuron and   is a neighbourhood spread parameter. 

See Table 1 for details of the parameter values. 

These rules avoid the need for either global normalisation or hard limiting and ensure 

that the connection weights cannot change sign. 

In summary, the value of the lateral weight update is determined by: 

1. Presynaptic and postsynaptic neuron firing times (using the exponential STDP 

equation of Song et al., 2000) 

2. The current weight (using update rules similar to van Rossum et al., 2000 but 

without noise) 

3. A temporal neighbourhood: synapses where the firing time of the postsynaptic 

neuron in response to the input pattern are quickest  get a larger update 

4. A spatial neighbourhood: synapses with firing postsynaptic neurons located 

close to the current winner get a larger update 

5. A learning rate parameter   which is reduced gradually during training 

As for the afferent rule, equations (9) and (10) still employ a learning rate parameter  . 

The LTP rule given in (9) also incorporates a wmax parameter which is used to ensure 

that as the weights increase they asymptotically approach a maximum value. Later on in 

this thesis, Chapter 5 describes how an adaptive plasticity method was used to dispense 

with the learning rate for both afferent and lateral rules as well as wmax. 

 3.7  The Training process 

The learning update cycle is based upon the methods used by Ruf and Schmitt (1998) 

and Marian (2002) and involves the following steps: 
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1. A direction pattern of 16 spike times is presented to input layer of the network 

and causes the input layer neurons to fire over an interval of 0ms up to Tint (the 

integration time) 

2. From  Tint up to Tout  (the time out) the activity is allowed to propagate through 

afferent and lateral connections 

3. After Tout, a ‘winner’ neuron is selected randomly from the group of output 

neurons that fired the quickest during the activity propagation period 

4. Afferent learning is applied using equation (8) 

5. Lateral learning is applied using equations (9) and (10) 

6. The network is reset for the next pattern 

7. The learning rate   for both afferent and lateral connections is decreased 

The concept of the winner neuron is borrowed from a standard SOM network, except 

that in the networks here the selection is based upon time, not activation. Although there 

is no specific biological analogue, the idea behind this is that neurons which respond 

fastest to an input are gradually recruited to only respond to that pattern. As there will 

likely be several neurons which respond at the same time, the selection of a single 

winner is made randomly which allows non-selected neurons to become active for 

another pattern. 

 3.8  Scaling Up 

The methods described previously in this chapter essentially replicate those of Marian 

(2002) with some amendments to the learning rules. The work described in this thesis is 

aimed at future implementation on robotic systems, particularly using the SpiNNaker 

neuromorphic hardware. As such, larger networks can be simulated and are likely to be 

required for autonomous robotics applications. Therefore it was important to 
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demonstrate that the motor map development system can work for a larger network. The 

scaling up amendments described in this section were actually done after the creation 

and testing of the visual map system (see Chapter 4) and prior to developing the map 

coupling (Chapter 5). However, the work is included in this chapter in order to keep all 

work on the motor system together. The amendments made are summarised as follows; 

 Network size – the output layer was increased to 48x48 

 Connectivity functions - for excitatory connections the amendment is 

straightforward. A slightly larger sigma value of 4.0 is used to ensure a higher 

probability of connections out to about a distance of 12 units. Further out than 

this the probability is clipped to zero. Due to the much larger size of network a 

more complicated method of assigning inhibitory connection probabilities was 

used in order to ensure a balance between enough inhibitory activity to ensure 

competition but also fairly sparse connectivity for performance reasons. This is 

summarised in Table 2 

 

Distance (neuron units) Probability (%) 

12 units < distance < 15 units exp(-sigma/dist) with sigma = 15.0 

15 units =< distance  < 30 units 0.7 

30 units =< distance  < 40 units 0.5 

distance > = 40 units 0.2 

 

Table 2 – Assignment of inhibitory connection probabilities for the 48x48 output layer 

 

Figure 11 shows the new profile of connection probabilities generated by this method. 
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Figure 11– Connection probability profiles (48x48 output layer) 

 3.9  Conclusions 

A full description of the experiments and detailed results for the motor map are 

described in Chapter 9, section 9.1 and a discussion of the results is given in Chapter 11. 

A summary of the results highlights is given below. 

 The training process results in a directionally selective map after approximately 

800 pattern presentations 

 The afferent connections between input and output layers learn the 

characteristics of the input pattern vectors 

 The majority of neurons in the output layer respond preferentially to one of the 

input patterns, although, as in real cortical maps there is some overlap 

 The output layer response to each pattern is distinct in terms of spatial (neuron) 

and temporal (firing time) 

 The output map is topographic – clusters of spatially located neurons respond to 

the same pattern 

 Qualitatively similar results are achieved with both the 16x16 and 48x48 neuron 

output layers. 
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 4  A Visual Cortical feature Map 

 4.1  Introduction 

This chapter describes the features of the spiking neuron visual map architecture and 

SOM training process used to create a directionally selective visual map. The 

architecture of the visual map is similar to that described in Chapter 3 for the motor map, 

but with amendments in order to use different input data which is provided by the DVS 

128 silicon retina capturing moving objects. A different learning method is also used 

specifically for developing directional selectivity from moving visual patterns and has 

been inspired by the work of Shon et al. (2004) and Wenisch et al. (2005).  Similarly to 

the motor map the aim is to create a cortical-like map which can self-organise to form a 

topological map. Again, at this stage of the research the map development system does 

not have all of the desirable features mentioned in Chapters 1 and 2 with respect to 

adaptive learning. Later improvements and additions for adaptive learning are left until 

Chapter 5. 

 4.2  The Visual Map Architecture 

The visual map network is similar to the SOM setup for the motor map but with an extra 

input layer that is required for the processing of visual data from the DVS 128 camera 

(see Section ‎ 4.4 for more details of the input data).  Figure 12 shows a diagram of the 

network architecture. The first layer consists of 128x128 neurons (referred to as the 

‘Input’ layer) and its purpose is merely to accept input spike data into the network 

without processing. The second layer consists of 64x64 neurons (referred to as the 

‘Retinal’ layer) and its purpose is to achieve a down-sampling of the raw input data by 

half. The Input layer is connected to the Retinal layer with excitatory connections with 

fixed weights of value 1. These connections are such that a 2x2 Receptive Field (RF) 

from the Input layer is connected topologically to 1 neuron in the Retinal layer. These 

RFs are not overlapping, thus each neuron in the Retinal layer averages the activity 
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from 4 pixels in the Input layer. The box marked 1 in Figure 12 shows an example of 

one such set of connections. The neuron time constant and refractory period for the 

Retinal layer neurons are set to ensure that there is no multiple firing in the Retinal layer: 

i.e. any activity in the 2x2 group of input neurons results in 1 spike in the Retinal Layer 

neuron (see Section 4.3 for more details).  

The cortical output layer consists of 116x116 neurons of which 20% are randomly 

assigned as inhibitory and 80% as excitatory. In contrast to the motor map setup, the 

Retinal layer is not fully connected to the output layer, but, in keeping with the approach 

of previous works modelling the visual system (e.g. LISSOM) each cortical neuron only 

‘sees’ a patch of the Retinal layer called the Receptive Field (RF). In the current work a 

7x7 square is used and so the RFs from each cortical neuron overlap: see the box 

marked 2 in Figure 12 for an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12- The Visual Map Architecture 
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 There is a cortical magnification (ratio of cortical to retinal neurons) of 2. Afferent 

connection weights are set to an initial random value between 0.4 and 0.5. The output 

layer is recurrently connected: there are sparse lateral connections and these follow a 

‘mexican hat’ profile of short-range excitation and long-range inhibition. Excitatory and 

inhibitory connections are determined by a probability function based upon distance 

between the two neurons as shown in equations (11) and (12). 

           
 𝑖𝑠 

𝑠𝑖𝑔  
      (11) 

 𝑖𝑛        
𝑠𝑖𝑔  

 𝑖𝑠 
      (12) 

            

Where: 

pexc is the excitatory connection probability (between 0 and 1.0) 

pinh is the inhibitory connection probability (between 0 and 1.0) 

dist is the Euclidean distance between the neurons 

sigma is the spread 

For excitatory connections a sigma of 3.5 is used which gives a significant chance of 

connection at distances up to 5 units. At distances greater than this the probability is 

forced to zero. For inhibitory connections a sigma of 8.0 is used and at distances less 

than 5 units and greater than 21 units the probability is forced to zero.  Figure 13 shows 

the profile of connection probabilities generated by this method. The profile for 

inhibitory connections used here is quite different to that used for the 48x48 motor map 

described in Chapter 3, Section 3.7 and the reason is because in the case of the motor 

map the input and output layers are fully connected therefore in order to achieve the 

competition required to make the topographic map the inhibitory influence needs to 

extend further. In the case of the visual map, the cortical layer is only connected to a 

subset of the Retinal layer, and thus the map that is form is more distributed in nature 

(for example, refer to Figs 4 and 5 in Chapter 2), therefore the inhibitory influence only 
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needs to extend a short way out. 

 

 

 

 

 

 

 

 

 

 

     Figure 13- Connection probability profiles for the output layer 

 

Lateral connection weights are set to an initial random value between 0.3 and 0.4. 

Lateral connections incorporate delays which are calculated according to the distance 

between the two neurons with added Gaussian noise (refer to Table 3 for details).  

 4.3  The Neuron Models 

A simple Leaky Integrate and Fire (LIF) model is used for the Retinal layer neurons to 

process the raw spikes from the Input layer and is given as equation (13) 

   
   

  
           (13) 

   

Where: 

Vr is the membrane voltage 

    is the retinal membrane time constant 

This is just a simple decaying voltage with spikes injected from connected neurons in 

the Input layer. When a presynaptic (Input) neuron fires the membrane voltage, Vr of the 

postsynaptic (Retinal) target neuron is increased as shown in equation (14). 
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      _𝑛 𝑤    _𝑜𝑙 ∗ 𝑤      (14) 

Where: 

Vr_old  is the original membrane voltage 

Vr_new is the updated membrane voltage 

w is the synaptic weight 

Synaptic weights are fixed at 1 for all connections. The membrane time constant is set at 

10ms and the refractory period for retinal neurons is also 10ms. This setup ensures that 

the first firing of any Input neuron in the 2x2 group connected to the Retinal neuron will 

cause the retinal neuron to fire but immediate firing of other Input neurons in the group 

within the refractory period will not cause additional spikes in the Retinal neuron.  

For the visual cortical neurons, the same basic Leaky Integrate and Fire (LIF) neuron 

model that was previously used for the motor model is used, but with one amendment. 

The model is described by equation (15). 

  
  

  
      𝑖           (15) 

   

Where: 

V is the membrane voltage 

   is the contribution from excitatory synapses 

 𝑖 is the contribution from inhibitory synapses 

N is exponential noise 

   is the membrane time constant 

Following the method used in Shon et al. (2004) the noise term N is added to the model 

in the form of an approximation to the positive half of a zero-mean Gaussian as 

represented by equation (16). 

  
   𝑡 

 𝑡
    𝑡  0     

 
    (√

 

  
)   𝑡     (16) 
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Where: 

N is the noise at time t 

 𝑛 is the mean of the noise 

 𝑛 is the standard deviation of the noise 

 𝑛 is the time constant 

  𝑡  is Gaussian white noise. 

Synaptic dynamics are represented by equation (17). 

τ𝑠
 𝑔

  
          (17) 

 

Where: 

   is the effective conductance for an excitatory or inhibitory synapse 

τ𝑠  is the synaptic time constant 

When a presynaptic neuron fires the effective conductance ( ) for excitatory and 

inhibitory synapses is updated as shown in equation (18). 

      𝑛 𝑤   𝑜𝑙 ∗ 𝑤              (18) 

Where: 

 𝑜𝑙  is the original effective synaptic conductance 

 𝑛 𝑤 is the updated effective synaptic conductance 

w is the synaptic weight 

Table 3 gives a description of the neuron model parameters and their initialised values.  
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Parameter Value 

Neuron Model  

Vreset, reset voltage (retinal and cortical) 0 mV 

VThreshR, neuron threshold (retinal) 0 mV 

VThreshC, neuron threshold (cortical) Randomly initialised as 1.0 mV plus noise nor-
mally distributed between 0 and 0.3 mV 

   , membrane time constant (retinal) 10 ms 

  , membrane time constant (cortical) 5 ms 

 𝑠, excitatory/inhibitory synaptic time con-
stant  

5 ms 

 𝑛, noise time constant 5 ms 

 𝑛, noise mean 0.7 

 𝑛 , noise standard deviation 0.5 

  𝑙 , delay on lateral synapses Set as distance between pre and postsynaptic 
neuron plus noise added by a Gaussian with 

mean 0 and standard deviation 0.5 

        , neuron refractory period (retinal) 10 ms 

       , neuron refractory period (cortical) 5 ms 

Network Architecture  

Nin, number of neurons in Input layer 16384 (128x128) 

Nr, number of neurons in Retinal layer 4096 (64x64) 

Nout, number of neurons in output layer 13456 (116x116) 

waff, afferent synaptic weights Randomly initialised between 0.4 and 0.5 

wlat, lateral synaptic weights Randomly initialised between 0.3 and 0.4 (exc) 
and -0.3 and -0.4 (inh) 

Exc_pconn, connection probability for lateral 
excitatory connections 

Calculated as exp(-dist/sigma) where dist is the 
Euclidean distance between the neurons and 
sigma is 3.5 

Inh_pconn, connection probability for lateral 
inhibitory connections 

Calculated as exp(-sigma/dist) where dist is the 
Euclidean distance between the neurons and 
sigma is 8.0 

Learning Rules  

wmax, maximum allowed lateral synaptic 
weight 

1.0 for excitatory, -1.0 for inhibitory 
 (used in experiment 1 only) 

Apa, Afferent LTP rate Various values used (see Chapter 8) 

Ama, Afferent LTD rate -1.05 * Apa 

Apl, Lateral LTP rate Various values used (see Chapter 8) 

Aml, Lateral LTD rate -1.05 * Apl 

 𝑙  , LTP time constant 11 ms 

 𝑙  , LTD time constant 20 ms 

 

Table 3- Summary of neuron model, network and run parameters 
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 4.4  Visual Input Patterns 

In the main, previous works have used artificially generated moving bar input to create 

directionally selective feature maps (for example, Bednar et al., 2003; Wenisch et al., 

2005).  A novel feature of the visual system in the current work is that the input is 

provided by real data from a DVS 128 silicon retina camera (Delbrück, 2008; iniLabs 

website, 2010). See Figure 14. This device has been developed within the domain of 

neuromorphic engineering and has only very recently begun to be used in specific 

biologically-inspired machine vision applications. For example, the work of Davies et al 

(2010) which developed a line-following robot using the DVS camera and a prototype 

4-chip SpiNNaker neuromorphic board and also the more recent work of Galluppi et al. 

(2012) which used the camera as an input device to an orientation selective visual 

system also implemented on SpiNNaker. The benefits of such a device in robotics 

applications are manifold. Firstly, the input is frame-free:  it consists of individual 

packets which hold an address (encoding the spatial position) and a timestamp for a 

spike event. Therefore it is not necessary to process whole image scenes at a time, only 

events. Secondly, for our purposes, minimal pre-processing is required as the input 

directly encodes spike events and so they are in a form which can be directly applied to 

the visual network. Thirdly, an event is only generated when something changes and so 

no time or resources are wasted processing visual information when nothing has 

actually happened. Lastly the DVS 128 output is illumination independent as the 

triggering of a spike event is based purely upon pixel-level changes in the input. This is 

an extremely important issue for vision systems in autonomous robotics as they need to 

be robust to changing light levels. The camera outputs raw events in AER (Address-

Event Representation) format which consist of a 4-byte address and a 4-byte timestamp. 

The address encodes a spatial x, y position (in the range [0,127] [0,127] for the event 

and also an event polarity of 1 or -1 signifying ON or OFF events respectively. 
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Therefore the camera can register both when a pixel is activated and deactivated. 

 

 

 

 

 

 

 

 

 

Figure 14- The DVS128 Camera  

 

In the current work the bulk of the experimentation was done with logged data from the 

camera: pre-recorded sequences of objects moving in one of 8 directions (N, NE, E, SE, 

S, SW, W, and NW). The recordings were made using the  jAERViewer interface which 

allows live visualisation, playback and logging of AER data from the camera (jAER 

SourgeForge wiki, 2012). The data are saved as version 2.0 AER files with an .aedat 

extension and consist of a text header and event data written in binary format as int32 

address, int32 timestamp (8 bytes total). The timestamps are recorded with a 1 

microsecond resolution. Figure 15 shows an example screen capture from a recorded 

sequence of an object moving in the North direction. ON events are white/light grey and 

OFF events black/dark grey. The medium grey pixels are where there has been no 

change from the previous timestep. 

In order to convert the DVS 128 AER events into spikes in the Input layer of the visual 

system, some (currently experimental) features of the Brian simulator have been used.  

 

 

_____________________________

Figure 14 has  been  removed due to 

Copyright Restrictions 

_____________________________ 

(iniLabs Website, 2010) 
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Figure 15-Example DVS 128 recorded AER data 

 

The Brian module experimental/neuromorphic/AER.py has functions for reading the 

contents of an entire .aedat file and converting the events to Python lists of integer 

addresses and timestamps (load_aer()) and also for extracting the x, y coordinates and 

polarity of an event from its address (extract_DVS_event()). These features are used in 

the current work to load and process an .aedat file into lists of x coordinate, y coordinate, 

polarity and timestamp. The DVS camera produces a very large number of spike events, 

even for a simple object such as that shown  in Figure 15– approximately 70,000 spikes 

over a duration of about 1.5 seconds. Handling this quantity of spikes is less of a 

problem for purely software implementations (although there are performance hits in 

run time), however for future deployment onto neuromorphic hardware there are 

limitations to consider as the hardware has an upper limit to the number of neurons that 

can be modelled and limitations on the bandwidth for handling input data. This issue 

was raised in Davies et al. (2010). Their solution to this problem was space subsampling 

on the raw ‘image’ from 128x128 down to 16x16 for both the ON and OFF events. The 

recent work of Galluppi et al. (2012)  has used an FPGA board as an intermediary to 

sample the DVS data prior to injecting spikes into the SpiNNaker network. 
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The method employed in the current work is also a form of space subsampling but 

implemented as part of the neural network (as described in sections 4.2 and 4.3). Also it 

was decided to only use ON events as the OFF events would contribute no extra 

information in the current setup. Once the ON spike events have been passed through 

the Input layer and down-sampled in the Retinal layer to a resolution of 64x64, the 

number of spikes has been reduced to approximately 20% of the original. Figure 16 

shows comparison raster plots of raw spikes in the Input layer (Figure 16a) and spikes 

generated in the Retinal layer (Figure 16b) for the North pattern sequence. It can be seen 

here that the down-sampling does not affect the character of the information. Tests have 

also been done sampling down even further to 32x32 and the characteristics of the input 

are still preserved. Note that in visual training there is no predefined sequence of 

patterns and instead patterns are selected randomly from the 8 exemplar sequences. 

 

 

 

 

 

 

Figure 16- Comparison of a) 128x128 and b) 64x64 spike events for North sequence 

 

Although the experiments with the visual system were performed using logged DVS 

128 data, it was important to establish potential methods for dynamic input live from the 

DVS camera and so during the course of the research a system was prototyped for this. 

As this work is not directly used in the experiments, but is likely to be of interest to 

readers it is presented separately in Appendix B. 
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 4.5  Learning 

The review of previous works in Chapter 2, Section 2.4 highlighted the fact that, even to 

date there is debate as to what features are required to develop directional selectivity. 

Many works have achieved DS maps using various combinations of afferent 

(feedforward) and lateral learning either with or without LGN ON/OFF mechanisms. In 

the current work both afferent and lateral learning are used, and the methods are 

inspired by the work of Shon et al. (2004) and Wenisch et al. (2005) which both 

proposed an STDP learning regime with an asymmetric time window. Wenisch et al. 

(2005) showed how robust cortical directional selectivity could arise using such a 

learning regime combined with distance dependent delays between cortical neurons and 

their methods are used in the current work as they fit well with the cortical architecture 

that has been used. that has been used. The STDP functions for the LTP and LTD 

elements are given as equations (19) and (20). 

   𝑥 ( 
  

 𝑙 𝑝
)      (19) 

    
  

 𝑙  
 𝑥 (  

  

 𝑙  
)    (20) 

   

Where: 

y is the magnitude of the weight change 

 𝑡 is (firing time of the presynaptic neuron –firing time of the postsynaptic neuron) 

 𝑙   is the LTP time constant 

 𝑙   is the LTD time constant 

See Table 3 for details of the parameter values. 

These equations result in an asymmetric STDP window where the LTP part is an 

exponential curve as usual (equation 19) , but the LTD part is represented by an alpha 

function (equation 20).  
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Figure 17 shows a plot of the functions. This means that the LTD part of learning is 

deeper and persists for longer than LTP, and according to Wenisch et al. (2005) is an 

important mechanism for causing directional selectivity. The rationale for this is 

explained in Figure 18. Figure 18 shows a scenario where activity is moving left to right 

across a row of cortical neurons. The vertical red arrows indicate inputs from 

connections which get strengthened as they contribute to a spike in the central 

postsynaptic neuron within the LTP time window (10ms). The black arrows in the lower 

half of the figure show the effects of synaptic delays: as the wave of activity gets closer 

to the postsynaptic neuron, there is a shorter delay and a stronger contribution to the 

Postsynaptic Potential. Once the activity has passed over the postsynaptic neuron the 

stronger, longer LTD comes in to play as later inputs spike after the postsynaptic neuron 

and are thus weakened (vertical blue arrows). 

 

 

 

 

 

 

 

 

 

 

Figure 17- The Asymmetric STDP  time window 
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Figure 18- How the asymmetric time window causes directional selectivity 

(reproduced from Fig 4. In Wenisch et al., 2005) 

 

If the same directional input is repeated over time, the weights of inputs coming from 

the direction of the moving wave (the ‘preferred’ direction) will get strengthened and 

those on the opposite side will decrease even further, resulting in a directionally 

selective response. Activity coming in from the opposite direction (the ‘null’ direction) 

is less likely to cause a spike in the postsynaptic neuron as the weights on that side are 

weakened. 

The weight update rules for Long Term Potentiation (LTP) and Long Term Depression 

(LTD) used in the current work are given as equations (21) and (22) respectively and are 

used for both afferent excitatory and lateral excitatory and inhibitory connections. 

 𝑤𝑖𝑗    (𝑤    𝑤𝑖𝑗)  𝐴  ,  𝑤     𝑤     𝑤    (21) 

 𝑤𝑖𝑗       𝐴  ,   𝑤     𝑤  ∗   𝑤    (22) 

   

Where: 

______________________________ 

Figure 18 has  been  removed due to 

Copyright Restrictions 

______________________________ 
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𝑤𝑖𝑗 is the weight on the connection between presynaptic neuron i and postsynaptic 

neuron j 

𝑤    is the maximum allowed weight 

𝐴  and 𝐴  are the LTP and LTD learning rates 

  is a learning rate parameter 

These rules use the same weight dependent update methods (due to van Rossum et al, 

2000) as used for the motor map learning and avoid the need for either global 

normalisation or hard limiting and ensure that the connection weights cannot change 

sign. 

In summary, the value of the weight updates is determined by: 

1. Presynaptic and postsynaptic neuron firing times (using the asymmetric STDP 

equations of Wenisch et al., 2005) 

2. The current weight (using update rules similar to van Rossum et al., 2000 but 

without noise) 

3. A learning rate parameter   which is reduced gradually during training 

Equations (21) and (22) still employ a learning rate parameter  , and the LTP rule given 

in equation (21) also incorporates a wmax parameter which is used to ensure that as the 

weights increase they asymptotically approach a maximum value. Chapter 5 describes 

how an adaptive plasticity method was used to dispense with both of these. 

 4.6  The Training process 

The learning update cycle involves the following steps: 

1. A direction is randomly selected 

2. The corresponding  .aedat file is loaded and the AER events processed to 

lists of x,y coordinates and timestamps 

3. ON events are selected out and applied to the Input layer 

4. Neural processing begins 

5. Spikes are processed through the Retinal layer and propagate into Output 
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layer 

6. Afferent and Lateral learning is applied continuously using equations (19) 

and (20) 

7. Once all spikes in the sequence have been processed, the network is reset for 

the next pattern 

In keeping with the dynamic nature of the input, the training sequence is quite different 

to that used for the Motor map. Instead of separate pattern presentation and learning 

segments, STDP learning is applied during the entire time the spikes are moving across 

the network. 

 4.7  Conclusions 

A full description of the experiments and detailed results for the visual map are 

described in Chapter 9, section 9.2 and a discussion of the results is given in Chapter 11. 

A summary of the main features of the results is given below. 

 The method of development of directional selectivity is validated by 

demonstrating a difference in response after training to preferred and null 

directions  

 A full map representing 8 directions of motion is formed  

 The changes in both the afferent and lateral weights are directionally selective 

 It was found that a visual map is present even before training. The initial map 

has responses that are similar to maps produced from experimental results, but 

with a lot of overlap between responses to different patterns. Repeated training 

with random presentations from the set of exemplars refines and reorganises the 

response so that it is sparser (action of the asymmetric rule plus competition 

mediated via lateral inhibition) and more distinct. This fits well with 

experimental findings that rudimentary maps are present at birth / eye-opening 

and are subsequently refined by experience. 
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 5  Adaptive Plasticity 

 5.1  Introduction 

A central aim of this research was to introduce amendments to traditional Self-

Organising Feature Map (SOFM) methods in order to make them more useful for 

training sensorimotor controllers for autonomous robots. Chapter 1 outlined three main 

drawbacks of the commonly used SOM method: control of training by direct 

manipulation of learning rate and neighbourhood parameters; the use of predefined 

datasets; the general lack of adaptivity in the trained map. An important requirement for 

use in a robotics application (particularly a bio-inspired one) is that the process needs to 

be self-regulating as we want the robot to learn autonomously from the information 

available in its environment, and, as far as possible not influenced by human decisions. 

Chapters 3 (motor system) and 4 (visual system) described the basic SOFM 

methodology (based upon existing techniques but adapted for use with spiking neurons) 

which used some elements of traditional SOM training. The current chapter describes 

work that was done to develop a method of ‘adaptive plasticity’ which has been used 

primarily to improve the autonomy of map training. Subsection 5.2 describes how a 

‘plasticity resource’ (PR) is modelled as a global parameter which expresses the rate of 

map development and is related directly to learning on the afferent (input) connections. 

This is used to control map training in both the motor and visual maps in place of a 

traditional learning rate parameter. Subsection 5.3 addresses the point raised in Chapter 

1 regarding the general lack of structural plasticity (synaptic creation and pruning) in 

previous SOFM works and proposes a training process incorporating both functional 

and structural plasticity. Section 5.4 concludes the chapter by summarising the main 

points and results. 
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 5.2  The Plasticity Resource 

Rationale 

In the current work a bio-inspired replacement for traditional learning rate reduction 

schedules has been inspired by considering the type of process that might determine 

when a particular map refinement phase is ‘finished’ in a real cortical map. In a study of 

the formation of the retinotectal map in goldfish, Schmidt (1985) noted that there was a 

correlation between the rate of synaptogenesis and the amount of disruption to map 

organization: as time goes on there is less synapse refinement and thus less potential for 

disruption. Schmidt explained this by a change in arbor size (spread of dendritic 

projections) of the retinal ganglion cells. Reduction in arbor size over time means that 

there are effectively less potential connections available to be made. In very general 

terms regulation of plasticity in development can be viewed in terms of a 'resource' 

being consumed over time where the level of the resource influences how much 

plasticity is allowed. Van Ooyen (2001) reviewed the theory behind competitive 

synaptogenesis and various models that existed at the time. The majority of the 

reviewed models are based upon the concept of ‘consumptive’ competition, i.e. there is 

a limited resource (a Neurotrophic Factor or NTF) which is consumed when 

connections are made thus limiting the potential for further connections. Such processes 

involve both electrical and chemical regulation.  

Modelling the Plasticity Resource  

In the current work, a Plasticity Resource (PR) model was developed based upon some 

of the above concepts but initially considered only in relation to functional plasticity 

(weight changes).  Subsection 5.3 discusses a methodology for structural plasticity 

(synapse creation and pruning) into which the PR was easily incorporated. 

Network development is monitored and controlled by a ‘Plasticity Resource’ (PR) 

parameter which can be viewed as an abstraction of an NTF. The PR is based upon a 
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simple model where global network activity (i.e. the LTP/LTD processes stimulated by 

input patterns) directly controls the level of the plasticity resource which in turn is used 

to regulate weight changes over the course of training. The method used here is quite 

different to those developed by previous researchers which used various ways to 

measure the progress of learning based upon distances between input and weight 

vectors (Shah-Hosseini and Safabakhsh, 2000; 2001; Berglund and Sitte, 2006; Miyoshi, 

2005; 2007; 2008; Berglund, 2010; Shah-Hosseini, 2011). An important feature of the 

current method is that as it is based upon the levels of LTP/LTD, it is easily applied to a 

spiking neural network and furthermore, does not require the training inputs to be in the 

form of pattern vectors. This will be demonstrated by its later application to visual 

system training where the input is in the form of spike events (see Chapter 9). The 

inspiration for using the levels of LTP/LTD to monitor training comes from the work of 

Harris et al. (1997) which implemented a consumptive scheme to specifically model 

Ocular Dominance map formation and included Hebbian LTP/LTD processes controlled 

by the consumption of an NTF-like resource.  In the Harris model synaptic weights 

change as a consequence of Hebbian LTP and LTD processes. Each individual neuron 

has an allocation of NTF spread amongst its synapses. There is positive feedback 

between LTP on the afferent synapses and uptake (i.e. consumption) of the NTF thus 

causing competition between the synapses to use the NTF held by the neuron. The rate 

of LTP is also increased as the amount of NTF acquired increases. In the current work a 

simpler scheme is used whereby there is one global NTF pool or Plasticity Resource 

(PR). Also the PR can both increase and decrease by the direct action of LTP and LTD 

on the afferent connections. 

In considering how to model this new Plasticity Resource it was hypothesised that the 

amount of weight change in response to input patterns should level off once a sufficient 

number of the input patterns had been presented. Early on in the map development 
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process the network activity is high (the map is learning novel features in the input). 

When the network has learned the range of patterns in the input, the activity should 

level off. To verify this for the motor map scenario an experiment was run for 10 

training cycles (1600 patterns) using the methods described in Chapter 3, and data was 

collected on the LTP/LTD changes on all connections. Figure 19 shows the total 

cumulative weight updates per cycle for afferent connections only.  The weight updates 

for lateral LTP and LTD showed a similar but much less distinct pattern which can be 

explained by the fact that it is the direct response to the input patterns which is the main 

driver for learning. The lateral activity is an indirect response to the activity coming in 

on the afferent connections. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19- Relationship between LTP and LTD on Motor Map Afferent 

Connections 

 

Figure 19 shows that at the beginning of training the amount of afferent LTP relative to 

LTD is quite different, but as training progresses this balances out and by cycle 10 they 

are more or less equal.  To better express the stabilisation of afferent learning in terms of 

the relationship of LTP and LTD processes, Figure 20 shows the proportion of LTP to 
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LTD weight updates over the 10 training cycles which exhibits a distinct pattern of 

exponential increase and levelling off.  

 

 

 

 

 

 

 

 

 

Figure 20- Ratio of LTP to LTD on Motor Map Afferent Connections 

 

The ratio of LTP to LTD is calculated using equation (23). 

 

     𝑡 𝑜𝑙  _𝑙   
m n   𝑏𝑠 ∑𝐿     𝑏𝑠 ∑𝐿    

max   𝑏𝑠 ∑𝐿     𝑏𝑠 ∑𝐿    
       (23) 

Where: 

  𝑡 𝑜𝑙  _𝑙   is the calculated ratio  

Σ𝐿𝑇𝑃 is the current sum of LTP weight changes 

Σ𝐿𝑇𝐷 is the current sum of LTD weight changes 

Absolute values of Σ𝐿𝑇𝑃 and Σ𝐿𝑇𝐷 are taken, with the minimum of the two as the 

numerator and the maximum as the denominator to ensure that the ratio is positive and 

less than 1.0. A similar process was performed to establish if the same behaviour 

occurred in visual map development. Using the methods described in Chapter 4. An 

experiment was run presenting 100 patterns and data was collected on the LTP/LTD 

changes on all connections. Figure 21 shows the proportion of LTP to LTD weight 
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updates over the 100 patterns. This also shows a pattern of exponential increase and 

levelling off although it is not as distinct as that shown in Figure 20. However, it was 

discovered that normalising the ratio so that the values lie between 0 and 1.0 gives 

similar behaviour to that shown in Figure 20. 

 

 

 

 

 

 

 

 

 

 

Figure 21- Ratio of LTP to LTD on Visual Map Afferent Connections 

 

The normalisation is calculated using equation (24). 

     𝑥𝑛𝑜   
    𝑖𝑛  

   0  𝑖𝑛  
         (24) 

Where: 

x is the value to be normalised 

𝑥norm  is the normalised value  

minx is the minimum possible value of the ratio   𝑡 𝑜𝑙  _𝑙   

The value of minx is updated by checking if the current value of   𝑡 𝑜𝑙  _𝑙   is less than 

the previous lowest value. In the early stages of training minx tends to fluctuate but 

settles into a stable minimum value after a few training iterations. 
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Equation (25) shows how the global ‘plasticity resource’ (PR) is calculated for both motor 

and visual training. 

  𝑃𝑅    0   𝑜 𝑚   𝑡 𝑜𝑙  _𝑙            (25)   

                                   

Where: 

PR is the plasticity resource value 

  𝑡 𝑜𝑙  _𝑙   is the LTP-LTD ratio as calculated by equation (23) 

nor𝑚 is the normalisation applied as per equation (24) 

The final PR value is taken as 1.0 minus the normalised   𝑡 𝑜𝑙  _𝑙   so that the PR value 

decreases over time and its action is to reduce the amount of learning. The PR value is 

updated using this calculation after presentation of each individual pattern once the 

weight updates have been completed.   

Adjustments to Motor Map Learning Rules 

In order to dispense with the learning rate parameter ( ) used in both the afferent and 

lateral weight update rules and also the 𝑤    parameter used to keep the lateral weight 

updates in check, new learning rules were created incorporating the PR value. These are 

given as equations (26) (afferent updates), (27) and (28) (lateral updates). 

 𝑤𝑖𝑗  𝑃𝑅  
       

    
( 𝑖𝑗  𝑤𝑖𝑗)      𝑤           (26) 

 𝑤𝑖𝑗  𝑃𝑅  
       

    
    𝑡          𝑤       ,  𝑤     𝑤        (27) 

  𝑤𝑖𝑗     𝑃𝑅  
       

    
    𝑡          𝑤      ,   𝑤     𝑤  ∗   𝑤  (28) 

  

Where: 

PR is the plasticity resource value as calculated by equation (25) and the other 

parameters are as described for the original learning rules in Chapter 3, Section 3.5. 
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Adjustments to Visual Map Learning Rules 

In order to dispense with the learning rate parameter ( ) used in both the afferent and 

lateral weight update rules and also the 𝑤    parameter used to keep the lateral weight 

updates in check, the original weight update rules were modified to incorporate the PR 

value. These are given as equations (29) and (30) which are used for both afferent and 

lateral updates. 

 𝑤𝑖𝑗  𝑃𝑅  𝐴   ,  𝑤     𝑤     𝑤     (29)  

 𝑤𝑖𝑗      𝑃𝑅 ∗ 𝐴 𝑜𝑠  ,   𝑤     𝑤  ∗   𝑤   (30) 

   

Where: 

PR is the plasticity resource value as calculated by equation (25) and the other 

parameters are as described for the original learning rules in Chapter 4, Section 4.5. 

 5.3  Structural Plasticity 

 

Rationale 

Rewiring plasticity should be an important area of study in the development of self-

organising maps, particularly in the case of autonomous robotic applications which are 

trying to mimic the features of real brain development and strike a balance between 

adaptivity and persistence. Few previous studies specifically include full rewiring. A 

notable example are the various works by Elliott and Shadbolt (1998a; 1998b; 1999) 

which created models of activity-dependent synapse formation and pruning based upon 

competition for an NTF-like resource. A later work implemented their model in a 

controller for a Khepera robot and demonstrated that allowing activity-dependent 

rewiring enabled the robot to recover its initial obstacle avoidance behaviour when 

sensory input was partially disabled (Elliot and Shadbolt, 2001). 

The LISSOM models of Miikkulainen and collaborators (for example, Miikkulainen et 
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al., 2005) included pruning (but not creation) of connections once they reached a 

threshold weight. The recent work of Bamford (2009) included a model of the 

development of ocular dominance maps and included full rewiring where both 

synaptogenesis and pruning were allowed. The main focus of Bamford’s work was to 

develop a rewiring methodology for implementation in neuromorphic hardware, but part 

of the experimental work included a small software modelling study of ocular 

dominance formation demonstrating the benefits of rewiring in allowing the network to 

retain some previous learning if the input changed.  

In the current work the aim is to use rewiring to both improve adaptivity and also 

network efficiency. It is a feature of real biological development that there is a peak 

phase of synaptogenesis where many connections are formed, followed by a phase of 

massive pruning leaving only connections which serve a useful purpose. Most self-

organising map studies, even if they do incorporate pruning, do not include any results 

to show if the final network is representing the input in a more efficient way: i.e. that 

the pruning results in sparser connectivity compared to a network without it. Although 

there is no particular rationale why biological systems would be more efficient having 

pruned unused connections, in the case of autonomous robotic applications 

implemented in neuromorphic hardware it is a very important feature to be able to 

create self-organising maps with the capability to retain only useful connections and 

where possible, reduce the initial connectivity whilst still achieving the desired result. 

The Rewiring Model 

In the model developed for the current work, lateral connections can be created and 

pruned as well as undergo weight changes. Applying rewiring to afferent connections 

has not been considered here, although the methods would be equally applicable. 

Each cortical neuron has the potential to synapse with many neighbouring neurons, 

however, all-to-all connectivity is not possible due to geometric constraints as suggested 
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by Chklovskii et al. (2004). This is based upon the notion that the dominant form of 

rewiring plasticity is the forming of connections between neurons that are already close 

rather than significant axonal growth. Initial connectivity is determined using the same 

methods described in Chapters 3 (motor system) and Chapter 4 (visual system). 

Probabilistic connectivity functions which take into account the distance between 

neurons are used resulting in sparse connectivity. For the formation of new connections 

later in the learning process, the Euclidean distance between neurons is used as the 

geometric constraint. In addition each neuron has the capacity to sustain only a fixed 

number of actual synapses with other neurons. This is similar to the implementations of 

Jun and Jin (2007) and Bamford (2009). In an early model of synaptogenesis and 

pruning, Changeux and Danchin (1976) introduced the concept of connection states 

which change during the course of network development. Similarly, in the current 

implementation, connections are considered as being in one of three states: 

Potential – a connection is possible but has not been activated yet 

Active – a connection undergoing plasticity by STDP 

Regressed – a connection which was once active but which has been pruned due to 

insufficient activity. 

During the course of learning, the allowed transitions between states that can occur are: 

Potential  Active – The rationale for this is based upon Chklovskii et al. (2004) 

which discussed the scope for rewiring without involving large amounts of axonal or 

dendritic growth. They estimated that the potential connectivity of this type between 

neurons in a cortical column is practically all-to-all and that the connection between 

these close neurons could be made by extending a spine or synaptic bouton. In the 

current work this scenario is modelled by checking the connectivity between all neurons 

firing during a pattern presentation. If they are not already connected and have both 

fired within the STDP time window and they meet the geometric constraints used to set 
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up the initial connectivity (as described in Chapter 3, section 3.4 for the motor map and 

Chapter 4, section 4.2 for the visual map) and the presynaptic neuron has not reached the 

maximum number of connections allowed, then a new connection is formed.   

New connections are created with a random weight and delay in exactly the same way as 

for initial network setup. 

Active  Regressed – If there is uncorrelated pre and post synaptic activity the 

connection is weakened by STDP until it falls below a threshold and is pruned. 

Regressed  Active – If the input activity changes regressed connections can be 

reactivated. Again this is subject to the maximum connection constraint. Although it is 

considered as a separate state, in fact a regressed connection is treated no differently to a 

potential connection.  

All Active connections undergo STDP as normal.  

Table 4 gives a summary of the parameters and initial values for the rewiring model in 

the case of the prototype motor system (16x16 cortical map layer) and visual system 

(116x116 cortical map layer). An important point to note about the current model is that 

rewiring is completely activity dependent and is controlled only via the action of STDP. 

Synapse creation and destruction are not probabilistic and there is no specific schedule 

for rewiring, as used, for example by Bamford (2009). Instead, only the dynamics of the 

weight changes influence the creation and destruction of synapses: the action of 

correlated pre and postsynaptic firing can create a new synapse but unless the correlated 

activity is sustained the connection will be pruned. Likewise, connections made at 

initialisation that do not exhibit correlated activity will be discarded. The precise 

interaction between weight changes and rewiring in biological systems is not well 

understood, but it is believed that the two processes work together but operate on 

different timescales with weight changes being on a faster timescale than rewiring 

(Chklovskii et al., 2004).  Nothing was added to the rewiring scheme to enforce a 
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difference in timescale. 

Parameter Value 

 (16x16 Motor System) 

Value 

 (116x116 Visual System) 

MaxConnE  

(max connections exc) 

30 30 

MaxConnI  

(max connections inh) 

120 800 

Wlat, lateral synaptic 

weights 

Randomly initialised between 0.3 

and 0.4 (exc) and -0.3 and -0.4 

(inh) 

Randomly initialised between 

0.3 and 0.4 (exc) and -0.3 and -

0.4 (inh) 

Exc_pconn, connection 

probability for lateral 

excitatory connections 

Calculated as exp(-dist/sigma) 

where dist is the Euclidean dis-

tance between the neurons and 

sigma is 3.5 

Calculated as  

exp(-dist/sigma) where dist is 

the Euclidean distance between 

the neurons and sigma is 3.5 

Inh_pconn, connection 

probability for lateral 

inhibitory connections 

Calculated as exp(-sigma/dist) 

where dist is the Euclidean dis-

tance between the neurons and 

sigma is 8.0 

Calculated as exp(-sigma/dist) 

where dist is the Euclidean 

distance between the neurons 

and sigma is 8.0 

PruneThresh  < 0.3 (exc) , > -0.3 (inh) < 0.3 (exc) , > -0.3 (inh) 

Table 4- Summary of rewiring model parameters 

 

 5.4  Conclusions 

A full description of the experiments and detailed results are described in Chapter 9 and 

a results discussion is given in Chapter 11.  A summary of the main features of the 

results is given below. 

 The Plasticity Resource works as required for both motor (16x16 cortex and 

48x48 cortex) and visual map learning and achieves its purpose of a more 

autonomous monitoring and control of map development. 

 Using online random pattern presentation plus the Plasticity Resource allows 

monitoring and control of learning for a new dataset where the number and 

composition of input patterns required is unknown. 

 The rewiring scheme is tested with both motor and visual map development and 

shows that the map results are qualitatively similar to the original systems and 
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the connectivity in the final networks is sparser than without rewiring. 

 Although the overall effect of rewiring is to reduce connectivity, the 

experimental results showed a high level of both pruning and creation during the 

course of training, which is in agreement with what has recently been found 

experimentally. 
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 6  Sensorimotor  Integration 

 6.1  Introduction 

The core content of this thesis has been presented in Chapters 3-5: a framework for the 

development of separate motor and visual cortical maps plus adaptive, autonomous 

control of the map development process. This chapter takes a slight digression to 

consider how it might be possible to achieve embodied neural-motor integration in a 

simplified environment in advance of implementation on a real robot. In particular, 

asking such questions as what the practical issues are for integration, how is the training 

process performed and how might at least part of a sensorimotor loop be implemented, 

i.e. sensory input neural learning motor action. Section 6.2 describes a preliminary 

modelling study following the Computational Neuroethology ethos: how a real animal 

sensorimotor behaviour system has been created by combining a neural model with a 

motor simulation. Section 6.3 builds on this by considering how the motor cortical 

feature map development system described in Chapter 3 has been integrated with a 

humanoid robot simulation, both to provide a training environment and as a means to 

test how the response of the trained motor map can be used to produce a motor 

movement. Section 6.4 concludes the chapter by summarising the main points and 

results.  

 6.2  Prototyping Sensory,  Neural and Motor Integration 

 

Rationale 

Chapter 2 noted the importance of  Computational Neuroethological modelling in that it 

can provide stepping stones to achieve more complex bio-inspired models on robots 

(‘Neurorobotics’). In the current work it has not been possible to attempt a full 

implementation on board a robot due to the time needed to develop the theory and 

computational models. However, it was considered essential to do at least some general 
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work in the area of sensory-motor integration. To this end a small Computational 

Neuroethological modelling study was done using the software packages employed in 

this research to demonstrate a practical integration of spiking neural network modelling 

and physics simulation of motor action. The main aim was to better understand the 

issues involved in translating signals generated from a simple spiking neural network 

into movement of a simulated robotic agent. This work has been published in Adams et 

al. (2010; 2011) and copies of the papers are included at the end of this thesis. 

Modelling prey orientation detection in arachnids 

The work of Brownell and collaborators examined the orientation behaviour of the 

Desert Scorpion, Paruroctonus Mesaensis which is nocturnal and able to orient towards 

prey purely by detection of vibrations carried by the sand substrate (Brownell, 1977; 

Brownell and Farley, 1979). The vibrations are picked up by detectors called basitarsal 

compound slit sensilla (BCSS) which are present on the tarsi of the scorpion’s eight legs. 

A mathematical model described in Stürzl et al. (2000) and Brownell and van Hemmen 

(2001) was based upon the findings of this experimental work and was able to 

reproduce similar results to those seen in the real animal. The neural model consists of a 

ring of eight sensory spiking neurons representing the basitarsal compound slit sensilla 

(BCSS) mechanoreceptors present on each of the arachnid’s legs. In the real animal the 

legs are held in a ‘ready’ stance at specific orientations relative to the body (+/- 18˚, +/- 

54˚, +/- 90˚, +/- 140˚). These sensory neurons are linked with excitatory connections to 

eight command neurons that represent control structures in the Sub-Oesophageal 

Ganglion (SOG), a major component of the nervous system in arachnids. Each BCSS / 

command neuron pair is linked to an inhibitory interneuron. Figure 22 illustrates the 

arrangement and connectivity of neurons. For clarity, only connections through three 

legs and one interneuron are shown.  
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Figure 22-The Arachnid neural Network 

(reproduced from Fig 1, Adams et al., 2011) 

Command neurons connect in ‘triads’ to inhibitory interneurons ( Figure 22 illustrates 

one such triad), which are in turn connected to a command neuron on the opposite side 

of the network. The placement of legs, and thus sensors at intervals around the body 

determines the information available to the arachnid to enable it to estimate the prey 

orientation: the crucial information is actually the delay between activation of the 

sensors of each leg as the wave signal arrives. As shown in Figure 22 each command 

neuron receives both excitatory and inhibitory signals from BCSS sensory neurons. 

Excitatory signals come from the BCSS neuron directly linked to a command neuron 

and inhibitory signals come from the inhibitory triad on the opposite side of the network. 

The time-window for activation of a command neuron depends upon the delay between 

activation and inhibition and the number of spikes generated depends upon the length of 

the time window in which the signal is received. Command neurons at or near the prey 

orientation will in general receive more spikes as excitatory signals from the command 
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neurons are not inhibited by the opposing interneuron quickly enough. Similarly, 

neurons on the opposite side to the prey will be inhibited more quickly by the firing 

command neurons on the side of the prey and so produce less spikes. According to 

Brownell (1977) and Brownell and Farley (1979) the BCSS mechanoreceptors in the 

real animal are specifically activated by Rayleigh (surface) waves travelling through the 

sand. Using the physical characteristics of Rayleigh waves in sand from Brownell (1977) 

the neural model represents the wave signal mathematically as a discrete Gaussian 

distribution of cosine waves. The simulation output is a vector of spike counts from the 

neurons corresponding to the eight legs and this information can be used to estimate the 

prey orientation by using a standard population vector decoding technique such as 

described in Georgopoulos et al. (1986). The orientation neural model of Stürzl et al. 

(2000) had previously been implemented in the Brian spiking neuron simulator 

(available for download as a code example) and was used as the basis of the neural 

model in the current work. 

Modelling a Robotic Arachnid 

In reality, the arachnid leg is complex and has several segments and joints. For the 

purpose of the current work this has been simplified and only two segments and two 

joints per leg were used to control the ‘swing’ (forward-backward) and ‘stance’ (up-

down) phases of locomotion. The walking gait used by real arachnids is described in 

Shultz (1987) and Root (1990) and can be approximated by a tetrapod walk where 

exactly four legs are on the ground and four off at any one time. This is usually an L1, 

L3, R2, R4 / R1, R3, L2, L4 pattern.  

For implementing the arachnid in simulation freely available software has been used 

which interfaces easily with the Brian Python code. For initial prototyping, PyODE (a 
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Python interface to the physics simulator Open Dynamics Engine)
4
 and VPython, a 

Python visualisation module
5
 were used to create the robotic arachnid simulation. 

However there were some issues with the performance of the motor parts of this model 

which were attributed to the physics simulation implementation. Although the PyODE 

wrapper was easy to use it transpired that ODE required careful parameter tuning to get 

a stable simulation. Even though some tuning was subsequently done, it was not 

possible to get completely satisfactory motor behaviour. The results of this initial work 

are described in Adams et al. (2010). The motor model was subsequently improved by 

using a different physics simulation based upon the commercial physics engine Nvidia 

PhysX with the JPhysx Java wrapper
6
 (see Adams et al., 2011 for details). 

The legs have been modelled in the physics simulation with simple 1 Degree Of-

Freedom (DOF) hinge joints. Movement is controlled by sinusoidal generators which 

calculate the ‘set point’ or angle for each 1 DOF joint at each time step. These are of a 

form similar to that used in Crespi et al. (2005) for biologically inspired snake robots. 

The amplitude of the sinusoid controls the extent of swing of the joint up and down or 

side to side and is measured in degrees. The frequency sets the number of swing cycles 

executed per second. These parameters are set at predefined values that give a 

reasonable height of step and speed of movement. The phase parameter is an offset to 

control how each joint executes the swing cycle relative to the other joints and is 

measured in cycles. To implement the tetrapod gait pattern, the phase parameter for 

swing and stance joints is set so that adjacent legs cycle out of phase. Legs on the left 

and right sides of the body also operate out of phase. Figure 23 shows a diagram of the 

simulated arachnid body and leg arrangement. The main body consists of four spheres 

                                                 

4
 http://pyode.sourceforge.net/  

5
 http://vpython.org/  

6
 http://developer.nvidia.com/page/home.html and http://sourceforge.net/projects/jphysx/  

http://pyode.sourceforge.net/
http://vpython.org/
http://developer.nvidia.com/page/home.html
http://sourceforge.net/projects/jphysx/
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linked by rigid joints with a pair of legs attached to each sphere. The ‘head’ end of the 

arachnid is the sphere holding legs 1 and 8.  

 

 

 

 

 

 

 

 

Figure 23 – The Arachnid Model 

(reproduced from Fig 2, Adams et al., 2011) 

Figure 24 shows a snapshot of the constructed arachnid at its starting point in the 

simulated world. The arachnid starts the simulation aligned along the positive x axis and 

with the head placed at the centre of the world (0,0,0). The x axis is designated to be 0˚ 

with movements clockwise from this point being positive angles and those 

anticlockwise being negative angles. In the simulation 1 distance unit is taken to be 1 

cm.  The prey is constructed as a simple white sphere and is positioned at a random 

angle up to +/- 180 degrees with respect to the initial arachnid position. Please note that 

here the term ‘prey angle’ or ‘prey orientation’ refers to this angle of the prey with 

respect to the arachnid. The prey is not able to move during the simulation. 

Integration of the Neural and Motor Systems 

The original orientation neural model successfully generates a prediction of the prey 

angle with accuracy comparable to the performance of real arachnids (see Stürzl et al., 

2000; Adams et al., 2011 for a discussion). However, there is little or no precise 

information in the literature about how this information might be used in real animals to 
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cause orientation towards the prey, or how the mechanism might be used to generate an 

orientation sensing behaviour for a robot. Likewise there has not been any previous 

work which attempts to model the motor control of arachnid prey localisation. 

 

 

 

 

 

 

 

 

 

 

Figure 24 – The Simulated World Showing Arachnid and Prey 

 

Consequently, a main aim of this study was to extend the arachnid prey orientation 

neural model to include motor behaviour. In particular, to demonstrate how sensory 

input (vibration waves caused by moving prey) could be linked to motor output 

(predator orients and moves towards prey) via a biologically realistic spiking neural 

network.  

Although a motor model was not developed in their work, the final discussion section of 

Brownell and Farley (1979) considers the turning behaviour of spiders and mentions the 

results of some previous work in Land (1972) which examined walking and turning 

behaviour in real spiders. This work showed that turning is a very simple modification 

of the standard walking gait. Legs that move in phase and in the same direction on 

opposite sides of the body during walking (i.e. the L1, L3, R2, R4 / R1, R3, L2, L4 

pattern described in Section 6.2.3) stay in phase but step in opposite directions during 

turning. It also confirmed that stepping frequency and amplitude on both sides remain 
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the same during turning as for normal walking. Given this situation, it is likely that there 

is a Central Pattern Generator (CPG) system governing the basic gait, but this can 

receive an overriding tonic signal that temporarily changes the pattern to produce the 

turning movement. Such systems are ubiquitous in nature and have been extensively 

studied in the field of biologically inspired robotics; for an example see Ijspeert et al. 

(2007). Therefore this approach was used in the current work. The basic tetrapod gait 

described in Section 6.2.3 is used as the default walking pattern and is modified by a 

‘tonic signal’ to change to turning behaviour. In this work the sign and magnitude of the 

angle calculated by the neural processing are used as the tonic signal. 

The integrated system is setup such that the neural processing is initiated first (from the 

random generation of a prey angle) and runs on its own processing thread. Concurrently, 

the motor simulation runs and the arachnid assumes the ‘ready’ stance. Once the neural 

processing has generated the result (an angle specified as a value + or – from the 0˚ 

position) it communicates this to the motor thread. The sign of the angle is used to 

directly modulate the sign of the signal generated by the sinusoidal controllers and sets 

the turning direction. The magnitude of the angle is translated into a number of time 

steps of the physics simulation that should be spent turning. This involves simply 

multiplying by a factor that was determined by tests with the simulator to determine 

how many time steps were needed to achieve a turn of a specified angle. It should be 

noted that once the sensory processing has communicated back its information there is 

no mechanism for feedback from the motor behaviour to the sensory processing. The 

simulation ends once the motor behaviour has been completed.  

Rationale for an arachnid distance estimation model 

According to Brownell and van Hemmen (2001) the desert scorpion has two distinct 

behaviours, which involve an orientation response. These are the Defensive Orientation 

Response (DOR), where the animal orients only and the Predator Orientation Response 
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(POR) that involves orientation and movement towards the prey. The latter behaviour 

allows real scorpions to accurately catch prey in one movement if it is within 20 cm 

radius. It is reasonable to assume that distance estimation must be an important element 

of this behaviour in order to vary the amount of forward movement with prey distance. 

Although distance sensing is mentioned in some of the orientation sensing works there 

does not seem to have been any research investigating the neural mechanism in real 

scorpions or any theoretical or software models of such a process. Therefore, an original 

contribution of this modelling study was to propose a possible mechanism, involving a 

simple modification of the existing orientation neural model.  

A prey animal moving along on the ground produces both surface transverse travelling 

waves (Rayleigh waves) and longitudinal travelling waves (P waves). The P waves 

travel approximately three times faster than the surface waves according to Brownell 

(1977). In theory then, an arachnid that can detect both of these types of wave could 

judge the distance of the prey by detecting the difference in arrival time for the two 

waves (Stürzl et al., 2000; Brownell and Farley, 1979; Kim, 2006).  Brownell and 

Farley also proposed that the varying amplitude of P waves across leg sensors could be 

used as P waves dissipate more quickly than Rayleigh waves over distance. Results 

from the experimental work with the Desert Scorpion suggested that hairs present on the 

bottom of the tarsi which are directly in contact with the sand are the main 

mechanoreceptors for detecting P waves; the basitarsal compound slit sensilla (BCSS) 

appear to perform only surface (Rayleigh) wave detection. In the orientation model of 

Stürzl et al. (2000) an approach was used where command neuron activation is 

determined by the balance between excitation from BCSS sensors in the direction of 

prey and inhibition from BCSS sensors on the opposite side. A similar principle can be 

used to estimate the prey distance by using the interaction between P and Rayleigh 

waves reaching the BCSS and tarsal hair sensors respectively. For instance, as the P 
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waves are fastest they should arrive first and activate the tarsal hair sensors of all legs. 

Upon later arrival of Rayleigh waves, activation of the BCSS sensors could be used to 

inhibit tarsal sensors thus closing the ‘window’ of activity. The amount of tarsal hair 

sensor activity during this window would thus encode the distance to prey and govern 

the strength of the forward response. According to Brownell (1977), the P wave sensor 

mechanism in scorpions is fairly short range and operates best up to about 10 cm 

whereas the Rayleigh waves can be detected up to 50 cm. In the current study this 

distinction is not made, and both waves are assumed be detectable over the same range. 

The distance estimation neural model 

Following on from the ideas discussed in the previous subsection, the original neural 

orientation model was extended to include eight tarsal hair sensor (THS) neurons and 

their corresponding command neurons. These have the same synapse connection 

structure between them as the BCSS sensory and command neurons shown in Figure 22. 

In addition the THS and BCSS sensory neurons in each leg are connected by strong 

inhibitory connections so that as soon as BCSS neurons fire they drastically reduce the 

activity of the THS neurons. The P wave has been modelled using the same method as 

the Rayleigh wave (a discrete Gaussian distribution of cosine waves) but instead using 

information about P waves obtained from Brownell and van Hemmen (2001). As the 

wave signals over time are generated by a computational model and do not actually 

travel, the speed difference between P and Rayleigh waves has been simulated by 

altering the time constant of the model equations for the tarsal hair sensors and their 

command neurons so the response compared to the BCSS sensors is proportionately 

faster dependent on the distance between arachnid and prey. It has been estimated 

elsewhere that the time difference is of the order of 1.3 ms per 10 cm distance  

(Brownell and Farley, 1979) and so this factor is used in the current work.  

The arachnid model already had a basic walking mechanism so it was necessary to 
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complete the motor model by creating a mechanism to predict the prey distance and 

convert this to a walking motion. In contrast to the orientation sensing model, which 

uses a population vector decoding method to estimate the prey direction, the distance 

neural model uses the total activity generated by the tarsal hair sensors (i.e. the sum of 

spikes from all legs) over a simulation time of 500 ms. Using a standalone version of 

the extended neural model, test runs were done to establish the quantitative relationship 

between the THS activity and distance to prey so that this could be used to predict 

distance based upon neural activity. The total numbers of THS and BCSS spikes 

generated during a 500 ms run were collected for a range of distances from 0.1-0.6 

metres. Figure 25 shows a plot of activity (total spike count over 500ms) vs. distance for 

both BCSS and THS sensors. 

 

 

 

 

 

 

 

 

Figure 25 – BCSS and THS sensor activity with prey distance 

(reproduced from Fig 4, Adams et al., 2011) 

 

This graph shows that the total activity of BCSS sensors in this model (dashed line) is 

not distance sensitive (the orientation sensing relies only on timing differences in 

activity between legs). However, there is a distinct relationship between prey distance 

and THS activity (solid line). The greater the distance between the arachnid and prey, 
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the bigger the time window for fast travelling P waves to activate the THS sensors and 

so more spikes are generated. At close distances, THS activity is almost instantaneously 

suppressed below the activity of BCSS sensors due to the inhibitory nature of the 

connections between them.  

The relationship shown by the solid line in Figure 25 is used to estimate the prey 

distance based upon the THS spike count returned from the neural processing. The 

distance prediction is then translated into a number of physics simulation time steps to 

be spent walking. This involves simply multiplying by a factor that was determined by 

tests in the simulation measuring how many time steps were needed to walk a fixed 

distance. In the extended motor model, the turning and walking behaviours are 

combined in a simple way. Turning behaviour is executed first to face the direction of 

prey and then walking behaviour is executed to walk towards it, i.e. turning/walking 

behaviour is not concurrent. Although this was done for simplicity, it was later realised 

that according to Brownell and Farley (1979) this kind of separation of the two 

behaviours has actually been observed in real arachnids! 

Validating the Models 

Once the orientation neural model had been extended with the distance sensing 

mechanism and motor behaviours added via the physics simulation, 100 trials of the 

software were run recording the turning and walking behaviours in response to a prey 

placed randomly at an angle up to +/- 180 degrees orientation and 8 – 20cm distance 

with respect to the arachnid starting position. The orientation and distance performance 

are discussed separately in the following subsections. 

Orientation Performance 

The actual prey angle, estimated prey angle from the neural model and final angle of the 

simulated arachnid were collected over 100 trials. Figure 26a shows a comparison of 

actual prey angle against the prediction of the neural model thus giving an indication of 
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the performance of the neural model only. Figure 26b shows a comparison of the neural 

prediction against the final arachnid angle and so indicates the performance of the motor 

component of the system in executing the required turn. Both graphs show a clear 

straight-line relationship with data points spread evenly across the linear regression line. 

In terms of the neural model alone (Fig 26a) the average absolute error (with respect to 

the actual prey angle) over the 100 trials is 6.52 degrees. In terms of the combined 

neural and motor model (Fig 26b) the absolute average error (with respect to the actual 

prey angle) is 15.47 degrees. Therefore, the neural model is capable of a very accurate 

prediction of prey orientation but some accuracy is lost during actual movement. 

According to the graph in Fig 3. (a) in Stürzl et al. (2000) the error in the real scorpion 

is in the region of +/- 12 to 15 degrees. Therefore the integrated system behaviour is 

close to the performance expected of the real animal.  

Distance Sensing Performance 

The actual prey distance, estimated prey distance from the neural model and final 

distance travelled by the simulated arachnid were collected over 100 trials. Figure 27a 

shows a comparison of actual prey distance against the prediction of the neural model 

thus indicating the performance of the neural component only. Figure 27b. compares the 

neural prediction against the final arachnid distance and so indicates the performance of 

the motor component of the system in executing the walk to reach the prey. Again, both 

graphs show a clear straight-line relationship with data points spread evenly across the 

linear regression line. In terms of the neural model alone (Fig 27a) the average absolute 

error (with respect to the actual prey distance) over the 100 trials is 1.00 cm. In terms of 

the combined neural and motor model (Fig 27b) the absolute average error (with respect 

to the actual prey distance) is 1.25 cm. Although there are no results from a real animal 

to compare to in this case, this seems a reasonable level of performance given the 

distance over which the prey can be sensed (20 cm) and the size of the scorpion (2.5 
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cm). 

 

 

 

 

 

 

 

 

 

Figure 26 – Performance of the neural and motor orientation models 

(reproduced from Fig 5, Adams et al., 2011) 

 

 

 

 

 

 

 

 

 

Figure 27 – Performance of the neural and motor distance models 

(reproduced from Fig 6, Adams et al., 2011) 

Conclusions 

As well as being a successful independent study in its own right, the work described in 

this section prototyped several aspects of neural-motor integration that were fed into the 

subsequent work integrating motor cortical feature map training with a humanoid 

 

 



110 

 

simulation (see Section 6.3). The relevant points are summarised below: 

 As envisaged in Chapter 2, it has been demonstrated that it is straightforward to 

integrate Brian spiking neural network code with other Python packages to make 

use of spiking neural processing in hybrid applications. In this case 

VPython/PyODE for physics simulation and visualisation. It was also useful to 

discover that it is also possible to integrate Python with other languages in a 

straightforward way: The JPhysX physics simulator used in the improved 

version of the arachnid simulation is implemented in Java. 

 It became clear that physics simulation tuning can be a problem and it should be 

expected that some effort and time is required to get robust simulations when 

creating from scratch. In this study the initial implementation significantly 

affected the accuracy of the motor system despite the fact that the neural 

predictions of angle and distance were accurate. In this case switching to a 

commercial simulator did substantially improve performance.  

 Using threading to handle the management of Neural and Motor processing was 

a technique that worked well as it enabled an existing module (the original 

neural model) to be encapsulated inside its own process and work alongside 

other new modules (the physics simulation of the arachnid) whilst still 

exchanging information. 

 In terms of handling the transfer of information from the Neural to the Motor 

domain, two methods were used. Firstly a population decode whereby a 

consensus decision from a population was used for the orientation prediction as 

this was a feature of the existing model. Secondly, a spike rate generated by an 

entire population over a fixed time was used for the distance prediction. In both 

cases the prediction was converted to a number of time steps to be spent either 
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turning or walking for execution directly by the motor simulation. 

 6.3  Motor Map Learning in a Humanoid Robotic Simulation 

 

Rationale 

The study described in Section 6.2 involved a simple hardwired ‘brain’ with no learning 

so the next step was to apply some of the knowledge gained from the exercise to 

integrate the motor cortical feature map development system that forms part of the core 

of this thesis with a humanoid robot simulation. In particular to explore how to use the 

output from a trained map to produce a motor movement in response to an input signal 

based upon the learned repertoire of directions. 

CLrobotsim: a Python robot simulator 

Fortunately, it was not necessary to create a humanoid robot simulation from scratch. 

ClrobotSim (Cheung, 2008) is a freely available Python based robotic simulator which 

comes with a few model examples. One of these implements a model of just the legs of 

a humanoid robot, similar to the actual servomotor arrangement of a Robotis Bioloid 

(Robotis website, undated). See Figure 28. 

This software has been created using PyODE and VPython and although some issues 

were found with PyODE in the work described in Section 6.2, in this case it appears that 

a lot of effort has gone into making this simulator robust with all the simulation 

parameters being tuned appropriately. The core of the software is the physics simulation 

loop which contains calls to continuously update objects in the environment. The 

method of modelling the robot legs has been done in a detailed and modular way. The 

legs are constructed from simulated servomotors and various types of joints. 
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Figure 28 – The Robotis Bioloid Humanoid Robot 

(picture taken from the Robotis website) 

 

Other functionality includes a Servo Manager which gives a continually updated display 

of the readout of all the servomotors in the simulation. Robot movement sequences can 

be effected by inputting commands in a simple scripting language. When a movement 

sequence is executed it runs on a separate thread to the main simulation loop. See 

Figure 29 for a screenshot of the servo manager and movement sequence input panel. 

Due to the modular and Object Oriented design of the core software it was 

straightforward to create a new simulation model of a complete humanoid robot by 

adding extra servomotors to make arms, a torso and a head as well as other environment 

objects for it to interact with. See Figure 30 for a screenshot of the extended robot 

simulation. Other amendments were made to the software to develop an orientation 

behaviour for the robot. Basic left and right turn sequences were created whereby one 

turn moves the robot one compass direction either left or right of its current orientation.  

______________________________ 

Figure 28 has  been  removed due to 

Copyright Restrictions 

______________________________ 
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Figure 29- The CLrobotsim Servo Manager Panel 

 

 

 

 

 

 

 

 

 

 

Figure 30 – Simulation of the Full Humanoid Robot 
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The existing movement generator was amended to be able to make an orientation by 

passing the left / right sequence  plus a number of turns to make. This process is used 

during testing of the motor map in simulation – see Chapter 8, section 8.4. 

Integration of the Neural and Motor Systems 

Guided by the information gained from the prototype study of Section 6.2, the neural 

code developed for the motor map development (see Chapter 3) was treated as an 

independent module and encapsulated in a separate class in keeping with the Object 

Oriented implementation of CLrobotsim. The neural object is designed to run as a 

separate thread from the existing ones in CLrobotsim so that neural processing can 

happen alongside the normal physics simulation and movement. The humanoid robot 

model is also a class in its own right and when it is instantiated within the simulation, an 

instance of the neural class is also created and associated with it. 

The first requirement was to extend the simulation software to make a training 

environment for the development of a motor map. A ‘motor babbling’ process was 

implemented whereby the robot is made to orient randomly to one of 8 possible 

directions (N, NE, E, SE, S, SW, W, and NW as for the original motor training). A 

direction is selected randomly and translated into a sequence of left or right turns 

needed to orient to that direction which are then executed by the thread responsible for 

robot movement. When a movement is initiated the neural processing thread is started 

which results in learning of the corresponding direction. This happens using exactly the 

same process as described in Chapter 3, Section 3.6. Once the neural processing and 

movement sequence have been completed the system is allowed to generate another 

random movement. Once the required number of patterns have been presented the 

simulation terminates. Various experiments were done with this setup to replicate the 

basic motor map learning and also with the Adaptive Plasticity methods of Chapter 5. A 

summary of the highlight results is given at the end of this chapter in Section 6.4 and 
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the full results are presented in Chapter 8, Section 8.3. 

A second requirement for the simulator was to use it as the basis for a testing system 

whereby the humanoid simulation was instantiated with a trained motor map and is 

presented with random patterns produced by perturbing exemplars which have not been 

used for training. The response of the motor map is decoded and the corresponding 

movement sequence initiated. For example, if the motor map response for pattern 

‘North’ is generated then the robot will turn to face North. Data can then be collected on 

the actual pattern presented, what was decoded from the motor map response and what 

movement sequence was executed. 

Decoding the Motor Response 

So far the issue of how to make use of a trained cortical feature map response has not 

been discussed. For the motor map, it has been established from plots of the entire maps 

and of individual responses that there is map organisation and a distinct spatiotemporal 

response to each pattern after training (see Chapter 8). However, similarly to the 

Arachnid prototype of Section 6.2, to make use of cortical map responses to produce a 

specific motor response on presentation of a stimulus pattern requires a decoding of the 

neural response and translation to a motor behaviour. Therefore a quantitative method of 

identifying which pattern the cortical response was generated by is required. It is also 

worth noting that in the current work, the motor input patterns were specially created to 

have distinctly similar and dissimilar patterns and so it is fairly easy to visually see if 

the responses are distinct by examining plots of the response. It is unlikely that for ‘real 

world’ data there would be such a distinct response. The method used in the current 

work is based upon the van Rossum metric. Usually this is used in in-vivo work to 

compare two different spike trains from the same neuron, from different experimental 

runs and determine if it is in fact the same response within a certain tolerance (van 

Rossum, 2001). To calculate the metric, firstly the delta function associated with each 
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spike is replaced with an exponential function as shown in equation (31). 

  𝑡  ∑  (𝑡   𝑡𝑖) 
       

   
𝑖       (31) 

   

Where: 

f(t) is a spike train 

M is the number of neurons in the spike train 

ti is the spike time for neuron i 

tc is a time constant 

H is the Heaviside step function (H(x) = 0 if x < 0 and H(x) = 1 if x >= 0).  

The integral of the difference squared between two spike trains gives a distance measure, 

as shown in equation (32). 

𝐷      
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     (32) 

 

Where: 

D
2
 is the van Rossum distance metric 

f(t) and g(t) are two spike trains 

tc is a time constant which defines the tolerance  

Figure 31 graphically illustrates the method. In the top half of the figure, two spike 

trains f and g are convolved with the exponential function and aligned. The tc parameter 

controls how much overlap is generated between individual pairs of spikes. In the 

bottom half of the figure the graph produced by taking the difference squared of f and g 

is shown and the area under this curve gives the van Rossum  metric. Low scores 

indicate that the distance between spike trains is short and there is a close match while 

high scores indicate a bigger difference. 
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Figure 31 – A Graphical Representation of the van Rossum Metric 

(taken from Fig 1. Van Rossum, 2001) 

 

In the current work a modified version of the van Rossum metric is used to compare 

sets of spikes generated by the cortical map in response to different patterns, and in 

particular to take into account both temporal and spatial aspects. The procedure is 

summarised as follows: 

1. An input pattern is presented to the trained motor map to generate the response 

(a set of neurons firing at particular times) 

2. The response is compared to a typical response from each of the 8 exemplar 

patterns 

3. For every cortical neuron check whether it has fired in either or both responses: 

a. If it has fired in either or both of the responses then the regular van 

Rossum metric is calculated using M=1.  

b. If it has not fired in either response it is ignored 

______________________________ 

Figure 31 has  been  removed due to 

Copyright Restrictions 

______________________________ 

 



118 

 

4. The scores from step 3a are totalled and averaged  

5. The lowest score produced over all the exemplar patterns is determined and this 

indicates which pattern caused the response 

This method implicitly takes into account spatial and well as temporal aspects of the 

responses as in step 3a the smallest score contributions will come from matching 

neurons (i.e. the same spatial location and close firing times). In contrast if a neuron 

fires in only one response the score generated will be high. 

 6.4  Conclusions 

A full description of the experiments and detailed results are described in Chapter 8, 

Section 8.3 and a results discussion is given in Chapter 11. A summary of the main 

features of the results is given below. 

 Motor map training using the humanoid simulation environment gives 

qualitatively similar results to the original experiments, although run times are 

longer due to the simulation overhead. 

 Likewise, a version with the Adaptive Plasticity method to control learning gives 

similar results to the original experiments for the motor map. 

 The amended version of the van Rossum metric successfully distinguishes 

between motor map responses and can be used to make a sensible decision when 

a pattern is presented that is between two exemplar patterns. 

 A training version of the simulation with the van Rossum analysis included 

demonstrates how accurately the system predicts what the sensory input was and 

that it executes the correct motor movements. Specific experiments using input 

that is noisy (i.e. a pattern that is between two exemplars) show that the system 

makes a reasonable decision and selects a movement that corresponds to the 

closest exemplar. 
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 7  Coupled Maps 

 7.1  Introduction 

Chapters 3-5 have described the basic SOFM methodology for the creation of separate 

motor and visual directionally selective maps and also a method of autonomous control 

of map training. This chapter describes a methodology for coupling these maps together 

to achieve a simple form of visuomotor coordination which is based upon the methods 

described in Marian (2002) but with larger maps and visual input from the DVS 128 

silicon retina. Section 7.2 describes how the coupling between the two maps is set up 

and 7.3 the learning regime which includes rewiring plasticity as described in Chapter 5, 

Section 5.3. Section 7.4 describes the training sequence for coupling and section 7.5 

concludes with a summary.  

 7.2  Coupling Setup 

In Marian (2002)  a 18x18 visual cortical layer was coupled to a 16x16 motor layer with 

full connectivity so that the visual neurons had access to the representation of all the 

directions encoded in the motor map. In the current work a 116x116 visual layer and a 

48x48 motor layer are used. See Figure 32 for an overview of the architecture of the 

coupled system. As the maps here are considerably scaled up from Marian’s work initial 

full connectivity between the maps is not computationally efficient, and actually not 

necessary as a learning method employing rewiring is used  which ensures that new 

connections can be made as required, dependent upon the correlation of activity in the 

two maps (see Section 7.3).  

For coupling, visual and motor network setup is done exactly as described in Chapters 3 

and 4, except that previously saved weight matrices from individual map training 

experiments are loaded in to set the connection weights and delays. Connectivity 

between the two cortical layers is assigned randomly with a probability of 0.4, and 

connection weights are set at random values between 0.4 and 0.5. A summary of the 
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network and learning parameters are given in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32- Coupling Architecture 

 

 7.3  Learning 

 

Functional Plasticity 

Weight changes are controlled by the standard exponential STDP following Song et al. 

(2000) and the weight dependent methods of van Rossum et al. (2000).  

The update rules for Long Term Potentiation (LTP) and Long Term Depression (LTD) 

are given as equations (33) and (34). 

 𝑤𝑖𝑗   𝑤𝑖𝑗     𝑡      ,  𝑤     𝑤     𝑤     (33) 

 𝑤𝑖𝑗        𝑡     ,   𝑤     𝑤  ∗   𝑤    (34) 

  

Where: 

𝑤𝑖𝑗 is the weight on the connection between presynaptic neuron i and postsynaptic 

neuron j 
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   𝑡      is the standard exponential STDP function:  

                                      𝐴     ( 
       

 𝑙 𝑝
)                        (𝑡𝑗  𝑡𝑖) >  0 

                                        𝐴     (
       

 𝑙  
)                          𝑡𝑗  𝑡𝑖 <  0 

𝑡𝑖, 𝑡𝑗 are the firing times of presynaptic neuron i and postsynaptic neuron j respectively. 

Ap, Am are the STDP potentiation and depression rates respectively. 

 𝑙  ,  𝑙   are the time constants for potentiation and depression. 

See Table 5 for details of the parameter values. 

 

Parameter Value 

Network Architecture  

Nv, number of neurons in visual layer 13456 (116x16) 

Nm, number of neurons in motor layer 2304 (48x48) 

Wcpl, synaptic weights Randomly initialised between 0.4 and 0.5 

pconn, connection probability 0.4 

STDP Learning  

Ap, LTP rate 0.1 

Am, LTD rate -1.05 * Ap 

 𝑙  , LTP time constant 10 ms 

 𝑙  , LTD time constant 10 ms 

Rewiring  

MaxConn (max connections ) 850 

PruneThresh < 0.4 

Table 5- Summary of coupling network and learning parameters 

 

Structural Plasticity 

Rewiring forms an important part of map coupling as it provides an adaptive system 

that can produce connections where needed and remove unused ones and thus avoids 

the need for full connectivity between the cortical maps. The rewiring scheme is exactly 

as described in Chapter 5, Section 5.3 with slight differences in the values for maximum 

connectivity and pruning threshold as shown in Table 5. 
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 7.4  Putting it All Together 

In Marian (2002), the process of visuomotor association was inspired by the ‘motor 

babbling’ approach of Kuperstein (1998) which developed a method of achieving 

visuomotor arm coordination using unsupervised learning.  There are two important 

concepts, firstly: 

‘representations of postures emerge out of the correlation between posture sensation 

and target sensation’ (Kuperstein, 1998) 
 

And secondly: 

‘motor signals are first generated to explore a large range of arm postures. During each 

posture, with object in hand, topographic sensory information about the object, projects 

to a target map through modifiable gating factors, called weights, producing computed 

motor signals. Differences between the actual motor signals generated for each posture 

and the computed motor signals are used to change the weights so that these differences 

are minimized. These weight changes, for all possible motor postures, constitute the 

sensory-motor correlation and allow the system to become self-consistent.’ 

(Kuperstein,1998) 

 

Essentially what this means is that the random presentation of a ‘posture’ (motor input) 

is concurrently presented with the appropriate sensory information (visual input) so that 

associations between the two are made. In the current work a motor babbling learning 

cycle similar to that described in Marian (2002) is used, but with amendments to 

incorporate the spiking visual input from the DVS 128 camera. The sequence is initiated 

by a random motor movement which activates a population of neurons in the motor 

cortex. After a short delay the corresponding retinal input commences and the motor 

cortical response is maintained concurrently at a specific rate. During this period spike-

timing dependent learning is applied to the plastic connections between the visual and 

motor maps. The coupling learning cycle involves the following steps: 

1. A direction is randomly selected 

2. The appropriate motor input is applied and the motor cortical response is 

generated 

3. The corresponding visual input sequence is applied  
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4. Motor cortical response is maintained at a rate of 30Hz during step 3. 

5. Learning is applied continuously during step 3. 

6. On completion of the visual input sequence, the network is reset for the next 

direction. 

 7.5  Conclusions 

A full description of the experiments and detailed results for coupling are described in 

Chapter 10 and a results discussion is given in Chapter 11. A summary of the main 

features of the results is given below. 

 Coupling of visual and motor maps results in the visual input modulating the 

motor response 

 Before coupling training the motor output (when controlled solely by visual 

input) is not particularly directionally selective – there is a lot of overlap in the 

response to different input patterns. After training a new motor topographic map 

is established with a distinct spatiotemporal response. In particular the temporal 

component reflects the temporal characteristics of the visual input that produced 

it. 

 Allowing rewiring results in sparser connectivity than the original setup. 
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 8  Cortical Feature Map Training 

 8.1  Overview 

This chapter presents the results of the motor and visual map training. Section 8.2 

describes the validation of what is termed the motor map ‘benchmark’. This is the first 

version of the map training methodology (16x16 cortical size) described in Chapter 3, 

i.e. the process uses a conventional learning rate parameter and the inputs are predefined 

training files. The purpose of this experiment was to confirm that a topological map 

representing the 8 motor directions would be formed and furthermore that the response 

of the map to different input patterns after training was distinct. This experiment also 

serves as a control/comparison for later versions of the map training, for instance with 

the Adaptive Plasticity methods of Chapter 5. Section 8.3 describes a similar validation 

done for the scaled up 48x48 motor map. Section 8.4 again follows a similar process but 

this time for validating the training of the 16x16 motor map using the humanoid 

simulation described in Chapter 6. These latter two experiments are to confirm that 

changing the scale of the map and the training environment does not affect the results. 

Section 8.5 validates the development of basic directional selectivity in the Visual map, 

in particular aiming to reproduce some of the results of Wenisch et al. (2005) and 

confirm the use of their asymmetric STDP rule but using input from the DVS 128 

silicon retina camera. Section 8.6 describes the validation of what is termed the visual 

map ‘benchmark’. This is the first version of the map training methodology described in 

Chapter 4, i.e. the process uses a conventional learning rate parameter. The purpose of 

this experiment was to confirm that a topological map representing the 8 visual 

directions would be formed and furthermore that the response of the map to different 

input patterns after training was distinct. This experiment also serves as a 

control/comparison for later versions of the visual map training. 

Full discussion of the results is left until Chapter 11. 
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 8.2  Experiment 1 - The Motor Map Benchmark 

 

Experimental setup 

The setup as described in Chapter 3 was used. Therefore the learning rules incorporated 

a traditional learning rate parameter reduction and used predefined input datasets. Table 

6 gives a summary of the relevant experimental parameters. A training cycle consisted 

of the presentation of 1 training dataset. A training dataset consisted of a file containing 

20 examples of each of the 8 directional patterns (160 patterns per file) as described in 

Chapter 3, Section 3.4 and Appendix A. These were generated by randomly perturbing 

the exemplar patterns. The order of the patterns within the file was also randomised. A 

different, independently created training dataset was used for each training cycle.   

Parameter Description Value 

Ap LTP rate 0.1 

Am LTD rate -0.105*Ap 

N Number of training cycles 10 

P Total number of patterns 1600 

  Initial learning rate 0.5 

   Learning rate reduction 0.949 

Table 6 - Parameters for Experiment 1 

 

Representation of input vectors by afferent weights 

Following the training, two aspects of the afferent learning were investigated. Firstly, 

whether there had been ordered change in the weights compared to the initial random 

state. Secondly, to confirm that the afferent weights have learned to represent the input 

patterns. To get a broad overview of the weight changes a clustering analysis on the 

afferent weight vectors was performed using the visual tool ggobi
7
 which is designed 

for easy visualisation of high-dimensional data.  

Figure 33a shows the results of clustering the 16-dimensional afferent weight vectors 

                                                 

7
 http://www.ggobi.org/  

http://www.ggobi.org/
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before training and Figure 33b shows the situation after training.  Note that these 

screenshots were taken from a 3D animation rotating through many different views of 

the data so are only a 2D representation of one view of the structure.  

 

 

 

 

 

 

 

 

Figure 33 – Expt 1: Clustering Analysis on the Afferent Weights 

 

It is clear from these pictures that the initial random weights have developed some sort 

of structure after training and moreover that the structure consists of about 7 or 8 related 

groups. However it is not clear yet that the structure represents anything meaningful 

with respect to the input patterns. In order to verify this aspect directly portions of the 

afferent weight matrices were plotted and compared to the input patterns.  Figure 34 

shows patches from two completely different parts of the afferent weight matrix before 

and after training. The box on the right of the figure gives an extract of only the salient 

portions of some of the input patterns (the parts that make the highest contribution to the 

PSP – see Chapter 3, Section 3.4). On the left of this figure the weight matrices show no 

discernible pattern, with all weights falling between their initial values of 0.4 and 0.5. In 

contrast the weight matrices after training (middle of the figure) show how selected 

connections have been strengthened and weakened in order to represent the input 

patterns. The middle plots have been annotated to show where the afferent weights in 
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these patches have learned to represent specific input patterns. 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 – Expt 1: Representation of the Input Patterns by Afferent Weights 

 

Characteristics of lateral weight training 

During training, updates to the lateral weights also occur in response to the spreading of 

activation amongst neurons in the output layer. The lateral connections are recurrent 

connections between neurons in the cortical layer and consist of a mixture of short-

range excitatory and long-range inhibitory synapses with delays set according to the 

distance between neurons. Strengthening of excitatory lateral connections results in 

clusters of neurons located together firing for the same or similar input. Strengthening 

of inhibitory lateral connections results in clusters of neurons with similar preference 

inhibiting the action of clusters with a different preference. Figure 35 shows extracts 

from the excitatory and inhibitory lateral weight matrices before and after training. 
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Figure 35 – Expt 1: Lateral Weights Before and After Training 

 

The left hand column (Fig. 35a) shows the case before training and here all weights are 

at their initial values of between 0.3 and 0.4 (excitatory) or -0.3 and -0.4 (inhibitory). 

The right hand column (Fig. 35b) shows the changes that have occurred during training. 

The plot at top right indicates strengthening (orange-red) and weakening (dark blue) for 

the excitatory connections and there is some evidence of a distance dependent pattern. 

Neurons in clusters have increased their connection strengths between one another, but 

moving further out, connections have weakened. The plot at bottom right shows some 

strengthening (dark blue) and weakening (orange-red) of inhibitory connections. 

Spatiotemporal response  

In the analysis of regular SOM maps, usually it is the afferent weights that hold all of 

the information about the learned patterns and moreover the response to a particular 
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pattern is the activation of single node in the output layer. In the case of real cortical 

maps, the response to a stimulus is more complicated. They exhibit a distributed 

response of a population of neurons and also individual neurons may have a preference 

that is finely or quite broadly tuned. In the case of the current work the cortical map 

layer has a more complicated response than a traditional SOM due to the fact that there 

is lateral connectivity, the neurons are spiking neurons and thus convey information by 

their time of spiking: the learning rules described in Chapter 3, Section 3.5 include a 

temporal neighbourhood which rewards neurons that fire close to the time of the winner. 

Therefore it was expected that after training the map layer should have organised its 

responses topologically but also temporally. Figure 36 shows a plot of the 

spatiotemporal response of the output layer following the presentation of two patterns 

expected to be dissimilar (North and South) before and after training.   

 

 

 

 

 

 

 

 

 

 

 

Figure 36 – Expt 1: Cortical layer response to two different patterns before and after 

training 

 

The untrained network (left hand column) is fairly equally responsive to both patterns 
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with a large proportion of the neurons firing at various times over almost the whole 

output period (which is up to 30ms). After training (right hand column) the majority of 

neurons are silent (due to lateral inhibition from the responding neurons) and a spatially 

distinct patch of neurons respond to each of the patterns.  The ranges of firing times of 

the responding populations are also different to the initial state. For example, in the 

response to pattern North the cortical neurons fire between 20 and 25ms whilst for 

pattern South they fire around 8ms. 

The Final Map Topography 

Finally, it remains to confirm whether there has been a topological ordering during 

training, i.e.  if a cortical ‘map’ has formed which represents the 8 directions in the input 

patterns. Figure 37 shows the composite response of the motor map before and after 

training in spatial terms only for clarity.  

 

 

 

 

 

 

Figure 37 – Expt 1: 16x16 Motor Map Topography 

 

In Figure 37a (map before training) the responses to all the patterns overlap 

considerably showing no particular spatial ordering. However, in Figure 37b (map after 

training) over 90% of the cortical neurons have developed a preference for at least one 

of the 8 directions (there is still some overlap in the response) and neurons with the 

same preference are mainly grouped in the same spatial location. In the main, 

neighbouring patterns are also located near to each other, for instance patterns W 
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(purple) and SW (red) are next to each other as are patterns E (green) and SE (yellow). 

 8.3  Experiment 2 - The Scaled Up Motor Map 

 

Experimental setup 

Table 7 gives a summary of the relevant experimental parameters. Essentially these 

were the same as for Experiment 1, but less training cycles were used due to the fact 

that training time was longer with a larger map. 

Parameter Description Value 

Ap LTP rate 0.1 

Am LTD rate -0.105*Ap 

N Number of training cycles 5 

P Total number of patterns 800 

  Initial learning rate 0.5 

   Learning rate reduction 0.949 

Table 7 - Parameters for Experiment 2 

 

Representation of input vectors by afferent weights 

As before a clustering analysis on the afferent weight vectors was performed using 

ggobi. Figure 38a shows the results of clustering the 16-dimensional afferent weight 

vectors before training and Figure 38b shows the situation after training. The results are 

similar to those for the 16x16 motor map shown in Figure 33 (except there are more 

data points) and again show that some sort of non-random organisation of the weights 

has occurred during training. 

Characteristics of lateral weight training 

Figure 39 shows extracts from the lateral weight matrix for the excitatory and inhibitory 

connections for the scaled up motor map before and after training. Qualitatively, the 

results are the same as for the 16x16 version. Figure 39a shows the case before training 

and here all weights are at their initial values of between 0.3 and 0.4 (exc) or -0.3 and -

0.4 (inh). After training, Figure 39b shows differential strengthening (orange-red for 
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excitatory connections cyan-blue for inhibitory) and weakening (dark blue for excitatory 

and orange-red for inhibitory). 

 

 

 

 

 

 

 

Figure 38 – Expt 2: Clustering Analysis on the Afferent Weights 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39 – Expt 2: Lateral Weights Before and After Training 
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The Spatiotemporal Response 

Figure 40 shows a plot of the spatiotemporal response of the 48x48 output layer 

following the presentation of two dissimilar patterns before and after training.  Initially, 

the network is nearly equally responsive to both patterns with the majority of the 

neurons firing at about 9ms (which is the integration time). After training about half of 

the neurons are silent and a spatially distinct patch of neurons respond to each of the 

patterns and the range of firing times of the responding populations are also different to 

the initial state. For example, in the response to pattern East the cortical neurons fire 

between 9 and 14ms whilst for pattern South they fire between 9 and 10ms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40 – Expt 2: Cortical layer response to two different patterns before 

and after training 

 

Final Map Topography 

The situation is qualitatively the same as for the 16x16 map, except there are more 

neurons available to represent each pattern. Figure 41shows the composite response of 
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the motor map before and after training. In Figure 41a, similarly to the smaller scale 

map, the responses to all the patterns overlap considerably and there is no indication of 

spatial organisation. 

 

 

 

 

 

 

  

Figure 41– Expt 2: 48x48 Motor Map Topography 

 

In Figure 41b, over 98% of the cortical neurons have developed a preference for at least 

one of the 8 directions during training (although there is still some overlap in the 

response) and neurons with the same preference are mainly grouped in the same spatial 

location(s). In the main, neighbouring patterns are also located near to each other, for 

instance patterns S (orange), SW (red) and W (purple) are next to each other as are 

patterns NW (cyan), E (green) and SE (yellow). At this scale, the map shows 

characteristics similar to the real directional map shown in Chapter 2, Figure 2.4. 

 8.4  Experiment 3 - Motor Map Learning in the Humanoid Simulation 

 

Experimental setup 

The same parameters as for the benchmark Experiment 1 (Section 8.2) were used except 

that the number of training cycles was reduced due to the extra time taken to run under 

the humanoid physics simulation. See Table 8 for a summary. 
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Parameter Description Value 

Ap LTP rate 0.1 

Am LTD rate -0.105*Ap 

N Number of training cycles 5 

P Total number of patterns 800 

  Initial learning rate 0.5 

   Learning rate reduction 0.949 

Table 8 - Parameters for Experiment 3 

 

Main Results  

In order to confirm that the motor map development process is not affected by running 

under the robot simulation, plots were produced similar to those of Figures 36 and 37. 

Figure 42 shows that the spatiotemporal response has qualitatively similar 

characteristics to those in Experiment 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 – Expt 3: Cortical layer response to two different patterns before 

and after training 

 

Initially the response is spread over the whole of the map for both patterns and the range 

of firing times is within the same interval. After training both the spatial extents of the 
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responses has reduced and the range of firing times has changed. Figure 43shows the 

motor map before and after training. In Figure 43a, the results before training are very 

similar to those in Experiment 1: the responses overlap and there is no distinct spatial 

organisation. Figure 43b shows that after training the map is spatially organised with the 

responses to particular patterns grouped in patches.  

 

 

 

 

 

 

 

Figure 43 – Expt 3: 16x16 Motor Map Topography (from Humanoid Simulation) 

 

Quantification of the Spatiotemporal Response  

From the results so far, it has been established that there has been the appropriate kind 

of learning on both the afferent and lateral weights, that a topographic map representing 

the 8 directions is formed and that the cortical responses are at least visually distinct. 

However, do the spatiotemporal responses really identify the patterns distinctly? 

Chapter 6, Section 6.3 proposed an application of the van Rossum metric (van Rossum, 

2001) to decode the motor map response in a quantitative way so that it could be used to 

implement sensorimotor integration and also testing with the humanoid simulation.  

In order to verify this, a new ‘test’ dataset was created consisting of 160 patterns (using 

the same methods that were used to create the training datasets). The humanoid 

simulation was initialised using the map generated from the benchmark (Experiment 1, 

16x16 motor map). The simulation was then run in a testing mode which does the 

following: 
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1. A pattern is read in from file 

2. Neural processing is run to apply the pattern as input to the map 

3. The map response is analysed using the van Rossum metric and a prediction of 

the pattern number is generated 

4. The pattern number is converted to a turn direction (Left or Right) and a number 

of turns to execute 

5. The movement sequence is initiated 

6. Data on the actual pattern presented, the van Rossum scores, the neural 

prediction and the movement executed is collected 

It was found that there was approximately 13% error between the actual presented 

pattern and the pattern predicted from the van Rossum metric scores, with the most 

common fault being pattern S classified as SW. There was no error in movement 

execution. 

To verify how the system would cope with ambiguous inputs a small dataset was 

created with patterns deliberately midway between exemplars – i.e. 1/2, 3/4, 5/6, 7/8. 

Ideally the system should make a reasonable decision by choosing the best match. 

Running the testing process showed that the system does make reasonable decisions. In 

all cases the van Rossum metric scores are low for both exemplars and the system picks 

the lowest score, as expected. 

 8.5  Experiment 4 - Demonstration of Visual Directional Selectivity 

 

Experimental setup 

The setup as described in Chapter 4 was used. Therefore the learning rules incorporated 

a traditional learning rate parameter reduction. Table 9 gives a summary of the relevant 

experimental parameters. The purpose of this experiment was to replicate part of the 

work in Wenisch et al. (2005) which showed how the lateral weight changes developed 
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in response to repeated presentations of a ‘preferred’ pattern due to the action of the 

asymmetric STDP learning rule. The training phase consisted of presenting 20 instances 

of pattern ‘East’ keeping the learning rate at 1.0.   

Parameter Description Value 

Apa, Afferent LTP rate 0.005 

Ama Afferent LTD rate -0.105* Apa 

Apl Lateral LTP rate 0.0005 

Aml Lateral LTD rate -0.105* Apl 

P Total number of patterns 20 

  Learning rate 1.0 

Table 9 - Parameters for Experiment 4 

 

Characteristics of afferent and lateral weight training 

Wenisch et al (2005) demonstrated that directional selectivity had developed by 

showing an extract of the lateral weight matrix before and after learning indicating how 

asymmetric strengthening had occurred on the side of the preferred direction. Here both 

afferent and lateral weights are examined for evidence of directional selectivity. Figure 

44 shows a composite plot of the difference in the afferent weight matrix before and 

after training, calculated as (after-before) to show weight increase as positive and 

weight decrease as negative. The weight changes show a definite West to East pattern of 

strengthening on the preferred direction (West  East) and weakening on the null 

direction (East West).  Figure 45 shows the same type of plot for 4 cortical neurons 

and their lateral (excitatory) connections. Whilst the W E and EW asymmetry is 

not as strong as for the afferent weights there is evidence for asymmetric 

strengthening/weakening in broadly these directions (in particular Figs 45a and c). It is 

likely that Wenisch et al (2005) were able to show this more clearly in their work as the 

input was a solid bar spanning the map extent and in this work the input is individual 

spike events from the DVS camera. Furthermore Wenisch et al. did not include afferent 

connections in their work, but instead fed the inputs directly into the cortical layer. 
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              Figure 44 – Expt 4: Difference in afferent weights after training 

           

 

 

 

 

 

 

 

         Figure 45 – Expt 4: Difference in lateral weights after training 

 

Response to Null/Preferred directions 

In order to test the overall response of the map to the null/preferred directions, learning 

was disabled and 15 instances each of pattern East (preferred direction) and pattern 

West (null direction) were presented to the trained and untrained versions of the maps. 

Table 10 shows the average of the map responses to the null and preferred patterns 

before and after training. 

 

 

 



140 

 

 

 

Pattern Direction Response  
(total spikes produced) 

Before Training   

East W  E 1404000 

West EW 2012498 

After Training   

East W  E 1406010 

West EW 776713 

Table 10 – Expt 4: Responses to Null and Preferred Directions 

 

This is 0.14% increase in response for the preferred pattern and 61% decrease for the 

null pattern. This clearly shows the existence of directional selectivity which is 

operating through inhibition of the null direction rather than enhancement of the 

preferred direction. As Wenisch et al. did not perform this analysis in their work it is not 

possible to compare these results with theirs. 

 8.6  Experiment 5 - The Visual Map Benchmark 

 

Experimental setup 

The setup as described in Chapter 4 was used. Therefore the learning rules incorporated 

a traditional learning rate parameter and learning rate reduction.  Table 11 gives a 

summary of the experimental parameters. 

Parameter Description Value 

Apa, Afferent LTP rate 0.005 

Ama Afferent LTD rate -0.105* Apa 

Apl Lateral LTP rate 0.0005 

Aml Lateral LTD rate -0.105* Apl 

P Total number of patterns 100 

  Initial learning rate 1.0 

   Learning rate reduction 0.995 

Table 11 - Parameters for Experiment 5 

 

Training consisted of presenting patterns randomly from the set of 8 exemplar 

sequences recorded from the DVS 128 camera. Having looked closely at the directional 
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selectivity training as regards afferent and lateral weight changes in Experiment 4, this 

section concentrates on overall map development and the characteristics of the 

spatiotemporal response to individual patterns. 

The Spatiotemporal Response 

In analysing the spatiotemporal response for the visual map, as there is considerably 

more activity than in the case of the motor map, only neurons which have fired more 

than 20 times are selected and only their last firing time is plotted. Figure 46 shows the 

response to two patterns (North and South) before and after training. Here the 

characteristics of the spatiotemporal response are very different to those seen for the 

motor map due to the fact that there is now a strong temporal component already 

present in the input patterns. In fact it was discovered that there is actually a distinct 

spatial and temporal response to each pattern even before training: the left hand side of 

Figure 46 shows that many neurons fire in a SN sequence for pattern North and the 

opposite direction for pattern South. In the right hand side of  Figure 46 the 

characteristics of the responses after training are similar except that the overall response 

is reduced and there is less noise: there is a clearer sequence of activation over time in 

the preferred direction. Experiment 4 showed that the direction selectivity arises mainly 

from inhibition on the null direction and this fits with these results. 

Final Map Topography 

In analysing the topographic visual map only neurons which have fired more than 20 

times are plotted. Figure 47 shows the composite response of the visual map before and 

after training. In Figure 47a, the case for the map before training it can be seen that 

there are actually features of a directionally selective map in the initial state (for 

example compare the experimental map shown in Chapter 2, Figure 2.4) which is 

somewhat surprising considering previous modelling works (to the author’s knowledge) 

have not shown this to be the case. However the map responses before training do have 
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a considerable overlap. In Figure 47b after training, the map is still directionally 

selective in that it represents all 8 patterns, but as the activity has been reduced the 

response is much sparser. 

 

 

 

 

 

 

 

 

 

 

 

Figure 46 – Expt 5: Cortical layer response to two different patterns before 

and after training 

 

 

 

 

 

 

 

 

Figure 47 – Expt 5: Visual Map Topography 
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Quantification of the spatiotemporal response 

The previous subsection showed that, at least by visual inspection, there appeared to be 

a selective response to the 8 exemplar patterns both before and after training. However, 

as with the motor map analysis it was necessary to do a quantitative analysis to see how 

well the map responses actually identified the patterns. In view of the unexpected result 

of a directionally selective response before training it was of interest to see how 

selective this was also. The van Rossum metric analysis was done comparing the 

response to each pattern to the response for all other patterns for both the before and 

after maps. The scores between each pair of patterns are given in Table 12. Note that in 

this analysis (and the training) perturbed versions of the inputs are not used, therefore a 

‘match’ is perfect, i.e. a score of 0. The non-match scores are around 0.6 which is the 

same as for the motor map analysis. In the top half of Table 12, the scores for the ‘after 

training’ case show that the perfect matches are between patterns and themselves. There 

is also some variation in scores indicating that similar patterns have lower scores. For 

example, in the row for NE, the second lowest score (of 0.4908) is with its neighbouring 

pattern, E. In the bottom half of Table 12, the scores for ‘before training’ show that apart 

from the perfect matches between patterns and themselves, all of the other scores are 

high and do not indicate similarity between neighbouring patterns at all. In a more 

applied scenario, it would be necessary to train with a better input pattern repertoire – 

i.e. many different instances of the same pattern (created by multiple recordings of the 

same direction with the DVS camera). In this case there would be much more ambiguity 

about the identity of patterns and it is likely that the results of a van Rossum analysis 

would show that the classification is more flexible after training. 
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After Training 

 N NE E SE S SW W NW 

N 0 0.5219 0.5514 0.5426 0.6117 0.5369 0.5349 0.5036 

NE - 0 0.4908 0.5708 0.6189 0.5774 0.5892 0.5485 

E - - 0 0.5928 0.5832 0.5123 0.5520 0.5161 

SE - - - 0 0.5357 0.4503 0.5030 0.5054 

S - - - - 0 0.5265 0.5772 0.5762 

SW - - - - - 0 0.4574 0.4752 

W - - - - - - 0 0.5056 

NW - - - - - - - 0 

Before Training 

 N NE E SE S SW W NW 

N 0 0.5996 0.5928 0.5914 0.6172 0.5925 0.6039 0.6044 

NE - 0 0.5691 0.5965 0.6323 0.5887 0.6027 0.5875 

E - - 0 0.6260 0.6261 0.5831 0.5719 0.5835 

SE - - - 0 0.5982 0.5890 0.6091 0.6094 

S - - - - 0 0.5875 0.6173 0.6236 

SW - - - - - 0 0.5712 0.5704 

W - - - - - - 0 0.5901 

NW - - - - - - - 0 

 

Table 12 – Van Rossum Metric Analysis for Visual Map Responses. 
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 9  Training with Adaptive Plasticity 

 9.1  Overview 

This chapter presents the results of training the motor and visual maps using the 

Adaptive Plasticity methods described in Chapter 5. Section 9.2 firstly describes the 

results of incorporating the Plasticity Resource to the motor map ‘benchmark’ (16x16 

cortical layer) to replace the conventional learning rate parameter. The purpose of this 

experiment was to confirm that qualitatively the same results are achieved but with the 

added benefit of autonomous control of training. Secondly, an experiment is done with a 

new set of data to show how the Adaptive Plasticity methods can be used to control 

training when the data has not been seen before and so the quantity and composition of 

the training data required is unknown. Section 9.3 confirms that the Adaptive Plasticity 

methods work for the scaled up motor map (48x48 cortical layer) and, for completeness, 

Section 9.4 confirms that using Adaptive Plasticity within the humanoid training 

simulation again gives similar results. 

Section 9.5 describes the results of incorporating the Plasticity Resource to the visual 

map ‘benchmark’ to replace the conventional learning rate parameter. As for the motor 

map, the purpose of this experiment was to confirm that qualitatively the same results 

are achieved but with the added benefit of autonomous control of training. Sections 9.6 

and 9.7 describe the results of applying the rewiring methodology described in Chapter 

5 to the motor (16x16 cortical layer) and visual maps to establish whether the same map 

results can be achieved with a sparser final connectivity. Full discussion of the results is 

left until Chapter 11. 
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 9.2  Experiment 6 – The Motor Benchmark with Adaptive 
Plasticity 

Experiment 6a - Experimental Setup 

This experiment was performed incorporating the Plasticity Resource (PR) with 

modifications to the motor learning rules as described in Chapter 5, Section 5.2 but with 

the same predefined datasets as used in the original benchmark. Table 13 gives a 

summary of the relevant experimental parameters. 

Parameter Description Value 

Ap LTP rate 0.02 

Am LTD rate -0.105*Ap 

N Number of training cycles 20 

P Total number of patterns 3200 

Table 13 - Parameters for Experiment 6a 
 

In this experiment the rate of map training was controlled solely by the plasticity 

resource. As the scaling to a maximum synapse weight had been removed from the 

learning equations a lower STDP learning rate was used to ensure that the final 

maximum excitatory and inhibitory weights did not end up too large. Due to the action 

of the constantly decreasing plasticity resource twice as many training cycles were 

required compared to the benchmark. 

Experiment 6a - Main Results 

In order to confirm whether the training setup qualitatively matched the results of the 

benchmark experiment, plots of the output response for patterns North and South were 

produced for comparison with those in Chapter 8, Figure 36. These are shown in Figure 

48. It can be seen that there is indeed similar behaviour. Before training the responses 

are difficult to distinguish as there is activity from a large proportion of the neurons. 

After training the responses are spatially distinct. Figure 49 shows a graph of the 

plasticity resource (PR) value as measured at the end of each of the 20 training cycles. 

This confirms that the PR trace behaves as expected: an initial high value which 
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decreases gradually as the network learns the range of input patterns. In the final few 

cycles the trace levels off and changes remain around 0.01 which indicates when 

training is complete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48 – Expt 6a: Cortical layer response to two different patterns before 

and after training 

 

 

 

 

 

 

 

 

 

 

Figure 49 – Expt 6a: Plasticity Resource trace 
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Experiment 6b - Experimental Setup 

Up to this point the same set of directional input patterns had been used for all motor 

map experiments and presented in the form of predefined datasets with a fixed number 

and range of input patterns. In order to see the real benefit of using the PR trace to 

control learning it was necessary to create some new patterns where the amount of 

training required was unknown.  A set of four new exemplar patterns were created from 

data generated from the humanoid robot simulation previously described in Chapter 6. 

The patterns consisted of 16 values taken from joint angles required to make specific 

robot poses: left and right leg kick and left and right arm point. The values were 

converted into spike times using the Linear Temporal Encoding method described in 

Maass (1997). The patterns naturally contained a mixture of noise and salient data as 

not all joints are involved in all poses. More details of the creation of these input 

patterns are given in Appendix A. The training setup was also changed to select a 

training pattern randomly from the four exemplars and perturb the values thus 

simulating a sequence of random robot movements. Training was run in blocks of 160 

patterns purely for the purpose of capturing the state of the network during the course of 

training, but there was no plan to run a specific amount of patterns. Apart from these 

changes to the input, the other experimental parameters were the same as for 

Experiment 6a.  

Experiment 6b - Main Results 

In this experiment the training duration was guided entirely by the PR trace, which is 

shown in Figure 50. Training was stopped after 2080 patterns, when the PR trace value 

changed by only 0.01 units. Figure 51 shows the network response to ‘Right Kick’ and 

‘Right Arm Point’ patterns before and after training. As seen in previous experiments, 

the before case (left hand side of plot) shows no significant distinction between the 

patterns: the majority of neurons are firing together at about the same times. The final 
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response (right hand side) is very much sparser and a spatiotemporally distinct response 

for the new patterns has developed.  After training, the majority of neurons do not 

respond and both the spatial range and firing times of the responding neurons has 

become more distinctive for each pattern. 

 

 

 

 

 

 

 

 

Figure 50 – Expt 6b: Plasticity Resource trace  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51 – Expt 6b: Cortical layer response to two different patterns before 

and after training 
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 9.3  Experiment 7 - The Scaled Up Motor Map with Adaptive 
Plasticity 

Experiment 7- Experimental Setup 

The same setup as given in Table 6 for experiment 6a was used, except that patterns 

were presented randomly online until the PR trace indicated that training had completed. 

Experiment 7- Main Results 

Training was stopped after 500 patterns when the PR trace value changed by only 0.01 

units. The PR trace is shown in Figure 52 and exhibits the same pattern of reduction as 

previous experiments in this chapter. 

 

 

 

 

 

 

 

 

Figure 52 – Expt 7: Plasticity Resource trace 

 

In terms of the map response to different patterns,  Figure 53 shows the network 

response to ‘East’ and ‘West’ patterns before and after training. Comparing this to the 

experiment without Adaptive Plasticity (Chapter 8, Fig 40), the results are qualitatively 

similar. Before training, both patterns elicit a response from the majority of the neurons 

across the area of the map around the integration time of 9ms. The final response is very 

much sparser and a spatiotemporally distinct response for the patterns has developed. 
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 9.4  Experiment 8 - Adaptive Plasticity in the Humanoid 
Simulation 

Experiment 8 - Experimental Setup 

The same setup as experiment 6a was used except that the training patterns were 

presented  randomly from the 8 directional exemplar patterns. Training was run in 

blocks of 160 patterns purely for the purpose of capturing the state of the network 

during the course of training but there was no plan to run a specific amount of patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53 – Expt 7: Cortical layer response to two different patterns before 

and after training 

 

Experiment 8 - Main Results 

Training was stopped after 2080 patterns when the PR value changed by only 0.01 units. 

The PR trace is shown in Figure 54 and exhibits the same pattern of reduction as seen in 

previous experiments in this chapter. The output response for the final network for 

patterns North and South is shown in Figure 55. Comparing this to the same response 

from the network in the benchmark (Chapter 8, Figure 42) there is similar behaviour in 

that the response after training is spatiotemporally distinct from that of the initial 
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network and the response to the two dissimilar patterns is quite different. 

 

 

 

 

 

 

 

 

 

Figure 54 – Expt 8: Plasticity Resource trace 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55 – Expt 8: Cortical layer response to two different patterns before 

and after training 
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 9.5  Experiment 9 - The Visual Benchmark with Adaptive 
Plasticity 

Experiment 9 - Experimental Setup 

This experiment was performed incorporating the Plasticity Resource (PR) with 

modifications to the visual learning rules as described in Chapter 5, Section 5.2. Table 

14 gives a summary of the relevant experimental parameters. 

Parameter Description Value 

Apa, Afferent LTP rate 0.003 

Ama Afferent LTD rate -0.105* Apa 

Apl Lateral LTP rate 0.0003 

Aml Lateral LTD rate -0.105* Apl 

Table 14 - Parameters for Experiment 9 
 

In this experiment the rate of map training was controlled solely by the plasticity 

resource. As the scaling to a maximum synapse weight had been removed from the 

learning equations lower STDP learning rates for both afferent and lateral learning were 

used to ensure that the final maximum weights did not end up too large. As before 

training consisted of presenting patterns randomly from the set of 8 exemplar sequences 

recorded from the DVS 128 camera. 

Experiment 9 - Main Results 

Training was stopped after 100 pattern presentations, as the PR trace value had changed 

by only 0.01 units. The results showed that the self-regulating learning regime can 

qualitatively reproduce the results of the visual benchmark experiment. The output 

response for the final network for patterns North and South is shown in Figure 56. 

Comparing this to the same response from the network in the benchmark without 

Adaptive Plasticity (Chapter 8, Figure 46) the results are qualitatively similar. 
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Figure 56 – Expt 9: Cortical layer response to two different patterns before 

and after training 

 

As in the case without Adaptive Plasticity, there is a strong spatiotemporally distinct  

response before as well as after training. After training, the number of responders has 

reduced but the characteristics of the response are the same. Figure 57 shows a graph of 

the plasticity resource (PR) value as measured at the end of each of the training cycles. 

Here we see that the PR trace behaves in the same way as for previous experiments in 

this chapter. 

 9.6  Experiment 10 - The Motor Benchmark with Rewiring 

Experiment 10 - Experimental Setup 

This experiment was performed using the same setup as Experiment 6a (motor 

benchmark plus Adaptive Plasticity) with the addition of the rewiring regime described 

in Chapter 5, Section 5.3. Table 15 gives a summary of the parameters. 
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Parameter Description Value 

Ap LTP rate 0.02 

Am LTD rate -0.105*Ap 

MaxConnE  Max exc connections 30 

MaxConnI Max inh connections 120 

PruneThresh Pruning weight threshold < 0.3 (exc) , > -0.3 (inh) 
N Number of training cycles 10 

P Total number of patterns 1600 

 

Table 15 - Parameters for Experiment 10 

 

As in the original benchmark, predefined datasets of motor input patterns were used. 

 

 

 

 

 

 

 

 

Figure 57 – Expt 9: Plasticity Resource trace 

 

Experiment 10 - Main Results 

The results showed that a learning regime with full Adaptive Plasticity (the Plasticity 

Resource to control training plus rewiring) can qualitatively reproduce the results of the 

motor benchmark experiment. The output response for the final network for patterns 

North and South is shown in Figure 58. Comparing this to the response from the 

network in the benchmark without Adaptive Plasticity (Chapter 8, Figure 36) the results 

are qualitatively similar: the response after training is spatiotemporally distinct from 

that of the initial network and the response to the two dissimilar patterns is quite 

different.  
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Figure 58 – Expt 10: Cortical layer response to two different patterns before 

and after training 

 

Figure 59 shows a graph of the plasticity resource (PR) value as measured at the end of 

each of the 10 training cycles. Here we see that the PR trace behaves in the same way as 

for previous experiments in this chapter. 

 

 

 

 

 

 

 

 

Figure 59 – Expt 10: Plasticity Resource trace 
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Experiment 10 – Rewiring Analysis 

The main aim of adding a rewiring regime to the learning was to improve the adaptivity 

and efficiency of the map. So far it has been established that adding rewiring does not 

disrupt the results achieved from the benchmark motor map using the Plasticity 

Resource (PR) to control training. As part of experiment 10 the total number of 

connections (excitatory and inhibitory) created and pruned was collected after each 

training cycle. Figure 60 shows the total number of active connections per neuron 

before and after training. 

 

 

 

 

 

 

 

Figure 60 – Expt 10: Connection Counts per Neuron Before and After Training 

 

Figure 60a shows the state of the connectivity in the initial network for all cortical 

neurons. The minimum values are around 30 connections (excitatory neurons) and the 

maximum around 120 connections (inhibitory neurons). Figure 60b shows that after 

training, the maximum count is a lot lower (around 90) and the minimum count is also a 

lot lower (less than 10). Table 16 shows some summary rewiring statistics. In terms of 

overall connectivity, the total number of connections is reduced by over 30%. It is also 

notable that the amount of pruning and creation ongoing during is high: many 

connections are pruned/created repeatedly but the core connections which maintain the 

response are obviously being kept as the results are qualitatively similar to the 

benchmark without rewiring. 
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Starting connection count 11597 

Finishing connection count 7779 

Total pruned over 10 cycles 41784 

Total Created over 10 cycles 39008 

Table 16 – Expt 10: Rewiring statistics 

 

This indicates that using rewiring potentially increases the ability of the network to 

respond rapidly to changes in the input. It should be noted that it is considered that in 

real systems synaptogenesis and pruning operates on a different (slower) timescale than 

weight plasticity (Chklovskii et al., 2004).  Nothing has specifically been done in this 

model to enforce a difference in timescale and it seems that rewiring here is actually 

operating on at least as fast a timescale as the normal plasticity. 

 9.7  Experiment 11 - The Visual Benchmark with Rewiring 

Experimental setup 

This experiment was performed using the same setup as Experiment 9 (visual 

benchmark plus Adaptive Plasticity) with the addition of the rewiring regime described 

in Chapter 5, Section 5.3. Table 17 gives a summary of the parameters. 

Parameter Description Value 

Apa, Afferent LTP rate 0.003 

Ama Afferent LTD rate -0.105* Apa 

Apl Lateral LTP rate 0.0003 

Aml Lateral LTD rate -0.105* Apl 

MaxConnE  Max exc connections 30 

MaxConnI Max inh connections 800 

PruneThresh Pruning weight threshold < 0.3 (exc) , > -0.3 (inh) 

Table 17 - Parameters for Experiment 11 

 

As in the original benchmark, patterns were presented randomly from the set of 8 

exemplar inputs pre-recorded from the DVS 128 camera. 
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Experiment 11 - Main Results 

The results showed that a learning regime with full Adaptive Plasticity (the Plasticity 

Resource to control training plus rewiring) can qualitatively reproduce the results of the 

visual benchmark experiment. The output response for the final network for patterns 

North and South is shown in Figure 61. Comparing this to the response from the 

network in the benchmark without Adaptive Plasticity (Chapter 8, Figure 46) the results 

are qualitatively similar. The initial state of the network shows a distinct spatiotemporal 

response which is refined by training to give a sparser, clearer sequence of activation 

over time in the preferred direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 61 – Expt 11: Cortical layer response to two different patterns before 

and after training 

 

Figure 62 shows a graph of the plasticity resource (PR) value as measured at the end of 

each of the 10 training cycles. Here we see that the PR trace behaves in the same way as 

for previous experiments in this chapter. 
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Figure 62 – Expt 11: Plasticity Resource trace 

 

Experiment 11 – Rewiring Analysis 

From the plots in the previous sections, it has been established that adding rewiring does 

not disrupt the results achieved from the benchmark visual map using the Plasticity 

Resource (PR) to control training. As part of experiment 11 the total number of 

connections (excitatory and inhibitory) created and pruned was collected after each 

training cycle. Figure 63 shows the total number of active connections per neuron 

before and after training. Figure 63a shows the state of the connectivity in the initial 

network for the first 1000 cortical neurons. The minimum values are around 30 

connections (excitatory neurons) and the maximum values around 500 connections 

(inhibitory neurons). Figure 63b shows that, after training there is little different in the 

minimum and maximum values, and the changes are very small. Table 18 shows the 

rewiring statistics. 
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Figure 63 – Expt 11: Connection Counts per Neuron Before and After Training 

 

Starting connection count 2737451 

Finishing connection count 2701603 

Total pruned over 10 cycles 35848 

Total Created over 10 cycles 194452 

Table 18 – Expt 11: Rewiring Statistics 

 

In terms of overall connectivity, the total number of connections is reduced by only 

around 1%. The amount of pruning and creation going on during training is again high: 

many connections are pruned/created repeatedly but the core connections which 

maintain the response are obviously being kept as the results are qualitatively similar to 

the benchmark without rewiring. 
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 10  Coupled Map Training 

 10.1  Overview 

This chapter presents the results of coupling pre-existing motor and visual maps using 

the methods described in Chapter 7. Section 10.2 describes the main experiment 

coupling a 48x48 motor map with a 116x116 visual map. The motor map analysis of 

Chapter 8 is repeated for this ‘new’ motor map to discover how allowing visual input to 

control the motor map modulates the response, and whether a recognisable topographic 

map is still produced. As rewiring also plays an important part in the coupling some 

analysis is done on the balance of synapse pruning and creation and whether the final 

connectivity is reduced compared to the initial state. Full discussion of the results is left 

until Chapter 11. 

 10.2  Experiment 12 – Coupling the Motor and Visual Maps 

Experiment 12 - Experimental setup 

 Table 19 gives a summary of the parameters used in this experiment 

Parameter Description Value 

Ap LTP rate 0.1 

Am LTD rate -0.105*Ap 

MaxConn Max connections 850 

PruneThresh Pruning weight threshold < 0.4 

P Total number of patterns 50 

              Table 19 - Parameters for Experiment 12 

 

Motor and visual input patterns were presented randomly according to the training 

process described in Chapter 7, Section 7.4. 

Experiment 12 - Spatiotemporal response 

To examine the way that the visual input alone affects the motor response via coupling, 

plasticity was disabled as well as the motor input. Recordings of the motor map 
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response to only input from the visual cortical layer were then taken using a map setup 

in an initial (untrained) and trained state. Figure 64 shows the spatiotemporal response 

of the motor map to the patterns East and West before and after training. The first thing 

to note is that the responses are not similar to the case of the pure motor map response 

(compare Chapter 8, Fig 40), in particular the time period over which the neurons fire 

has now expanded to fit the range of firing times of the visual neurons. In the case 

before training, there is a lot of noise in the response (characterised by early firing of 

many neurons in the motor cortical layer). After training, the responses are less noisy,  

more spatially localised and in some cases have actually picked up some characteristics 

of the visual input pattern: see especially the response for pattern East after training 

which shows a stepped activation west to east. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64 – Expt 12: Motor Map Response to Visual Input Before and After Training 
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Experiment 12 - Final Map Topography 

Figure 65 shows the composite response of the motor map before and after training in 

spatial terms only. The results of training are qualitatively similar to those found for the 

motor map (compare Chapter 8, Figure 36). In Figure 65a (map before training) the 

responses to all the patterns overlap considerably. However, in Figure 65b (map after 

training) 68% of the cortical neurons have developed a preference for at least one of the 

8 directions (there is some overlap in the response) and neurons with the same 

preference are mainly grouped in distinct patches. In the main, neighbouring patterns 

are also located near to each other, for instance patterns W (purple) and NW (white) are 

next to each other as are patterns S (orange) and SE (yellow). 

 

 

 

 

 

 

 

Figure 65– Expt 12: 48x48 Motor Map Topography 

 

Experiment 12 - Rewiring Analysis 

It was stated in Chapter 7, that rewiring was an essential part of the coupling process in 

order to ensure that, despite the initial random connectivity, the visual and motor 

cortical layers had access to the whole of each other’s map and couple as and where the 

current activity required it.  Rewiring is also important in ensuring that only useful 

connections are maintained and so as part of experiment 12 the total number of 

connections (excitatory and inhibitory) created and pruned was collected during the 

coupling training process. Figure 66 shows the total number of active connections per 
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neuron before and after training. Figure 66a shows the state of the connectivity in the 

initial network for the first 1000 visual cortical neurons. These have a count of between 

850 and 1000. Figure 66b shows that after training, the maximum count is about the 

same but a large proportion of the neurons have counts a lot lower. Table 20 shows the 

rewiring statistics. 

 

 

 

 

 

 

Figure 66 – Expt 12: Connection Counts Before and After Training 

 

 

Starting connection count 12399499 

Finishing connection count 10456077 

Total pruned over 10 cycles 1943422 

Total Created over 10 cycles 444117 

Table 20 – Expt 12: Rewiring Statistics 

In terms of overall connectivity, the total number of connections is reduced by about 16% 

although both creation and pruning occurred throughout training. The amount of 

pruning and creation relative to the overall number of connections is not as high as that 

found for the standalone motor map (see Table 16, Chapter 9, Section 9.6). 
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 11  Discussion 

 11.1  Overview 

This chapter presents the final discussion and conclusions of the research work. Firstly, 

Section 11.2 gives a summary and evaluation of the key results from Chapters 8-10, 

with emphasis on comparison to previous work especially where extensions and/or 

improvements have been made. Section 11.3 states how the research contributions 

stated in Chapter 1 have been met. Lastly, Section 11.4 summarises potential 

improvements to the current work and suggests directions for future work. 

 11.2  Evaluation of Results 

Cortical Map Development 

The motor system architecture was based upon the work of Marian (2002) which 

extended SOFM theory,  previously almost exclusively used for visual map modelling, 

to the motor domain using spiking neural networks. In fact, Marian’s work was quite 

generic as the inputs were manufactured and designated as directions around a compass, 

but could have represented any modality. In the current work, the first version of the 

motor system (16x16 cortical layer) was a replication of the work of Marian (2002) with 

several improvements with respect to making map training more autonomous. Firstly, 

the incorporation of a fixed, Gaussian neighbourhood function (originally due to Pham 

et al., 2006) to replace the normal SOM neighbourhood which requires a reduction 

schedule. Secondly, a common set of plasticity rules for both lateral excitatory and 

inhibitory connections based upon standard STDP with a weight dependent component 

to avoid the need for hard limiting or global normalisation. The benchmark experiment 

for this first version of the motor map (Chapter 8, Section 8.2) confirmed that a 

directionally selective, topographic map was produced after approximately 800 pattern 

presentations. As in a regular SOM, the afferent connections between input and output 

layers learned the characteristics of particular input pattern vectors, so the output 
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(cortical) neurons developed a preference for that pattern. In addition, analysis of the 

entire cortical layer response after training showed that the majority of neurons in the 

output layer responded preferentially to at least one of the input patterns,  and the 

overall response to each pattern is distinct in both spatial (responding neuron) and 

temporal (neuron firing time) terms. These results were also confirmed in several other 

versions of the motor map: the scaled up version (48x48 cortical layer), the humanoid 

simulation version and the version with adaptive plasticity.  

The visual system was based upon the previous works of Shon et al. (2004) and 

Wenisch et al. (2005) which had developed directionally selective visual maps using 

spiking neural networks. A crucial element present in both these works was the use of a 

particular form of asymmetric STDP rule which contributed to the development of 

directional selectivity. A novel addition in the current work is the use of the DVS 128 

silicon retina camera as input which represents real moving images directly as spike 

events. In Shon et al. and Wenisch et al. (and in fact in the majority of previous works) 

the input was solid, rectangular moving bars either presented as a sequence of images or 

generated mathematically. The results of Wenisch et al. (2005) showed that directional 

selectivity in the lateral weights develops after training with repeated presentations of a 

single pattern and these results were reproduced to some extent in the current work in 

Experiment 4 (Chapter 8, Section 8.5). This experiment also showed that directional 

selectivity develops in the afferent weights. In addition, the analysis was extended by 

investigating the overall cortical response to presentations of the preferred and null 

patterns. This showed that the directional selectivity in the response manifests as a 

suppression of the activity from the null direction. A visual benchmark experiment 

(Chapter 8, Section 8.6) showed that, after training with the full pattern set, a 

topographic, directionally selective map representing 8 directions of motion was formed 

with the majority of neurons responding preferentially to at least one direction. 
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Surprisingly, it was found that with this setup a visual map reminiscent of the direction 

selective and orientation selective maps shown in Chapter 2, Figures 4 and 5 was 

present even before training. The training process appears to merely refine the response 

to represent the patterns actually seen and the overall cortical response is reduced 

resulting in a sparser response with less overlap. Plots of the spatiotemporal response 

for individual patterns showed that the reduction in activity allows the response to 

represent the characteristics of direction of movement more clearly. These results fit 

well with the previous observation that the directional selectivity arises by a reduction 

in response to the null direction as a result of the action of the asymmetric learning rule. 

The findings of Shon et al. (2004) also noted the role of inhibition in learning to allow 

representation of more than one direction of motion, however their model was confined 

to one dimension and only learned two directions of motion. To this author’s knowledge 

no other works have noted the phenomenon of a pre-existing map before any training 

has occurred. However, it is known from experimental work that rudimentary visual 

maps are indeed present at eye-opening/birth to various degrees in different mammalian 

species. Their existence has been attributed to development via spontaneous activity 

(Rochefort et al., 2011; Espinosa and Stryker, 2012; Hunt et al., 2012). Several previous 

researchers have successfully modelled the creation of visual maps using only 

spontaneous activity, for example, Wenisch et al. (2005) and Miikkulainen et al. (2005). 

It should be noted however, that in real cortical visual maps the spontaneous activity is 

working in conjunction with molecular signalling to establish connectivity between the 

LGN and V1 (Espinosa and Stryker, 2012) which could imply that it is the connectivity 

that is important for the existence of  the initial map, and the process of making this 

connectivity is facilitated by spontaneous activity. The discussion section of Hunt et al. 

(2012) cites the work of Kaschube et al. (2010), which looked at orientation selectivity 

from an evolutionary perspective across several mammalian species and found  that 
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intrinsic network self-organisation may be important in the development of similar 

orientation maps across different species. Hunt et al. also propose that the self-

organisation may somehow predefine the receptive field organisation which is then 

refined by both intrinsic spontaneous and external activity. In the current work it is not 

clear whether it is solely the initial connectivity (in terms of the receptive field size or 

organisation from the Retinal to Output layers and the lateral recurrent connection 

profiles) or the nature of the input (spatio-temporal pattern of individual spikes) that is 

responsible for the pre-existing map. Comparing the methods used here to previous 

works the major difference is indeed the nature of the visual input and a possible 

explanation for the map is that the input spike events coupled with the lateral recurrent 

activity result in small, sequential bursts of activity which break the symmetry of the 

randomly initialised network to cause a directionally selective response. 

Adaptive Plasticity 

The Plasticity Resource (PR) was introduced in Chapter 5 as an alternative to a 

tradtional SOM learning rate reduction. Its purpose was to monitor and control map 

training autonomously, guided only by the input activity. Previous researchers have 

already noted the inconvenience of defining reduction schedules for the traditional SOM 

learning rate and  proposed various schemes for an adaptive learning rate rather than a 

predefined schedule (Shah-Hosseini and Safabakhsh, 2000; 2001; Berglund and Sitte, 

2006; Miyoshi, 2005; 2007; 2008; Berglund, 2010; Shah-Hosseini, 2011). However, 

none of these previous works used spiking neural networks or considered the possibility 

that the training input could be other than a vector of values which directly modify 

afferent connection weight vectors. In the current work the motor input is a vector of 

spike times but the visual input is a stream of spike events from the DVS camera. A bio-

inspired approach suitable for both types of input has been used and views the input 

activity in terms of the LTP / LTD occurring globally over the afferent connections. It 
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has been inspired by the notion of consumption of Neurotrophic factor (NTF) in the 

development of biological cortical maps. Experiments were done for both the 16x16 and 

48x48 motor map and also the visual map (Chapter 9, Sections 9.2-9.5) which showed 

firstly that the basic characteristics of the benchmark results were not affected by the 

addition of the PR to the learning rules. In addition an experiment using a new dataset 

and online random pattern presentation, where the number and composition of input 

patterns required to train the map was unknown demonstrated  that the PR allows 

monitoring of the training and indicates when the training should be stopped. The 

second aspect of Adaptive Plasticity used in the current work was synaptic rewiring. 

The rewiring scheme described in Chapter 5, Section 5.3 was incorporated into the 

motor map and visual map training to work alongside the Plasticity Resource. It was 

found that the map results were qualitatively similar to those produced without rewiring 

but the connectivity in the final networks is sparser. but the connectivity in the final 

networks is sparser. This is important as it shows that rewiring can help the network 

adapt to the current activity better and only preserve connections which really matter in 

representing the input, thus reducing the number of connections which need to be 

maintained: a very important benefit when implementing such systems in neuromorphic 

hardware. Despite the overall reduction in connectivity the results collected during the 

training process showed a high level of both pruning and creation ongoing throughout 

training. Recent reviews of adult structural plasticity (Butz et al., 2009; Gilbert and Li, 

2012) confirm that there is experimental evidence for constant forming or breaking of 

synapses in the adult brain and that the forming and breaking of synapses is directly 

influenced by the action of LTP and LTD. Moreover, synapses can be in semi-stable or 

unstable states which form and break on relatively short timescales. The issue of the rate 

of rewiring as compared to weight changes was raised in Chapter 9. In the current work 

using only the temporal correlation of firing, STDP controlled weight changes and a 
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hard pruning threshold results in functional and structural plasticity operating at 

comparable rates. However, the relatively fast fluctuations in creation and pruning may 

not reflect the rate of permanent creation and pruning (i.e. connections which are 

pruned and stay pruned or created and persist): more modelling work would need to be 

done to establish what this rate is and whether it is slower than the rate of weight 

changes as suggested in the review of Chklovskii et al., 2004. 

Simulation 

Although it has not been possible to fully realise the cortical map training on a real 

robot some useful work has been done in simulation which should help to inform future 

implementation. In particular the issue of ‘sensorimotor integration’ or how the neural 

processing can be integrated with a motor system to generate behaviour. Two quite 

different modelling studies were done in simulation. The first a Computational 

Neuroethological model of arachnid prey localisation which extended an existing neural 

model to make turning and walking motor behaviours based upon the predictions of the 

neural processing. This relatively simple prototype system relied upon a hardwired 

neural architecture but set the scene for the next step which was the integration of the 

cortical motor map training with a humanoid robot simulation.  Motor map training 

(with and without Adaptive Plasticity) using the humanoid simulation as the 

environment gave qualitatively similar results to the original experiments, although run 

times were longer due to the simulation overhead. More importantly, the humanoid 

simulation also provided a testing environment and helped to answer the question of 

how the motor map response could be used to generate an orientation behaviour for the 

robot. 

Analysis of map responses as spike trains 

Chapter 2, Section 2.5 discussed some previous works which had investigated 

sensorimotor coordination / control using SOMs. Of the two which had actually used 
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spiking neural networks (Marian, 2002; Alamdari, 2005) neither had really considered 

how the trained map response could be used to directly generate a behaviour. In the case 

of Marian, the analysis of the resulting maps was only taken as far as necessary to 

establish that motor and visual topographic maps had been created and that they could 

be coupled together to coordinate the visual and motor activity.  In Alamdari, the SOM 

learned to represent obstacle locations, but a traditional path planning step was required 

to make use of this information. In the current work, plots of the spatiotemporal 

responses of the trained motor and visual maps appeared to indicate that the maps had 

learned a distinct response for each input pattern. A method incorporating the van 

Rossum metric (van Rossum, 2001) was used to compare the spatial (neuron ID) and 

temporal (neuron firing time) aspects of the responses in a quantitative way.  This novel 

application of the van Rossum metric treated a map response as a collection of  spike 

trains over all the cortical neurons and allowed comparison to the responses of the 

exemplar patterns.  The method worked efficiently for a range of response sizes (up to 

as many as 2000 responders in the case of the visual map). Experiments with the 16x16 

motor map showed that the method could distinguish between the cortical responses of 

the trained map to the 8 different input patterns. In the case where deliberately 

ambiguous input was presented (i.e. midway between two directions), as the measure is 

distance based it would naturally select the closest pattern. The most successful 

application of the response classification was demonstrated with motor map testing in 

the humanoid simulation as it showed how the map response could be used to generate a 

behaviour. Experiments using the simulation with the van Rossum analysis 

demonstrated that the motor map response could be decoded to predict what the sensory 

input was and execute the correct motor movements. Specific experiments using 

ambiguous input showed that the system was able to make a reasonable decision 

resulting in an orientation movement that corresponded to the closest exemplar direction. 
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For the visual system the van Rossum analysis method was not tested as thoroughly as 

only one set of patterns were used without any perturbation. Nonetheless the method 

was shown to work correctly as it could distinguish unambiguously which input pattern 

had generated a particular map response. 

Coupling 

An important advance delivered by the work of Marian (2002) was to suggest a method 

for learning coupling of cortical maps using STDP and the motor babbling learning 

sequence of Kuperstein (1998). This was quite a different approach to other visual-

motor coordination works before this time which usually involved  directly learning the 

kinematics or dynamics of the motor system (for example Ritter et al., 1989; Metta et al., 

1999). The current work has used the same approach as Marian and extended it by using 

larger sized maps (48x48 motor and  116x116 visual cortices) and more realistic visual 

spiking input provided by the DVS 128 silicon retina. Another important extension has 

been the use of synaptic rewiring in the coupling learning. In Marian’s work the maps 

were small enough that full visual to motor connectivity was possible (16x16 motor and 

18x18 visual cortices), however in the current work with larger maps this was not 

feasible. In the coupling process it is necessary that the visual cortex has access to all 

areas of the motor directional map and so, in keeping with the thread of autonomous 

activity dependent development and learning in this work, the solution was to allow the 

coupling process to create and prune connections as required dependent upon the co-

activation of the two cortical maps. The experimental results (Chapter 10) showed that 

in the initial coupled state before training, the motor output when stimulated solely by 

visual input is not particularly directionally selective and there is a lot of noise in the 

response. After training a directionally selective topographic map has developed and in 

some cases, the motor response has picked up the temporal characteristics of the 

moving visual input. Comparing the motor topographic map produced via coupling to 
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the original (48x48) map one can see that the maps are quite different.  In the coupled 

version there is more overlap and some patterns are not distinguishable in purely spatial 

terms. However the temporal characteristics are much more important here than in the 

original motor map as the visual input has very specific temporal characteristics which 

influence the motor response. Comparing the coupling results to those of Marian (2002) 

there are some major differences. Her results indicated that the visual input learned to 

directly reproduce the original motor response, in the sense that the responding 

population of neurons is similar. However, in the discussion section of this work it is 

mentioned that in the coupled case the neurons response tuning is much broader 

(neurons respond to more directions than in the pure motor case) and also that neurons 

become responsive in the visual input case which were previously silent in the motor 

only case. It is difficult to make a proper comparison to the current work as Marian’s 

analysis only shows the response for one pattern and does not include a topographic 

map. Differences in the results are most likely due to changes made in the current work, 

which can be summarised as follows: 

 In Marian (2002) the visual input was manufactured Gaussian bars presented in 

a very controlled way in the coupling learning procedure. In the current work the 

input is sequences of real spike data from the DVS camera which vary in the 

number of neurons they activate and the duration of the movement  

 In Marian the visual map was pre-created so would have been an ‘ideal’ map, 

whereas in the current work the visual map was developed using the random 

presentation of inputs 

 The maps in the current work are considerably larger 

 The current work included rewiring 

In the current work the results can be interpreted as the visual modality modulating the 

motor rather than directly reproducing it. In this point of view the initial uncoupled 
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motor map can be seen as still relatively coarse (for example, in an infant would 

represent inaccurate and ballistic movements). The visually coupled motor map is 

different because the motor response is actually changed by the visual input producing a 

coordinated response (refer back to Chapter 1, Figure 1.1 for the developmental stages 

envisaged in this work). It should be noted that in the motor map the original motor 

response is in some sense still present and can be reproduced by stimulation from the 

motor modality only. The coupling to the visual modality is also only one possible 

modulation: there is the possibility of different responses due to modulation from other 

modalities or even concurrent input from more than one modality, for instance visual 

and auditory.  

As well as allowing coupling of much larger maps, the benefit of including rewiring in 

the coupling learning is that it results in a lower final connectivity between the cortical 

maps, which is in agreement with the results of allowing rewiring within individual 

maps. It is likely to also be of benefit in allowing ‘recovery from lesion’ studies with 

coupled maps, although that avenue of work has not been pursued here. 

 11.3  Summary of Research Contributions 

The first contribution has been the creation of  a biologically-inspired developmental 

framework encompassing both motor and visual cortical map creation as well as 

allowing coupling between the two types of map to achieve a basic visuomotor 

coordination.  

Section 11.2 summarised the methods that have been used to achieve this which are 

based upon previous work with several extensions and novel additions. The results have 

shown that in both the motor and visual cases the training process produces 

directionally selective maps which exhibit distinct responses to the different input 

patterns. 

The second contribution has been the development of a methodology that enables 



176 

 

internal regulation of cortical map development and dispenses with predefining 

traditional aspects of SOM training such as learning schedules, neighbourhood 

reduction schedules and the amount of training data. This is particularly important for 

the future application of these methods to learning in autonomous robots. Section 11.2 

summarised this methodology, which is based upon features of real biological 

development and improves upon previous works by using spiking neural networks and 

an activity-dependent process based directly upon the action of LTP and LTD. The 

method is demonstrated to work for both motor and visual maps which have quite 

different input data formats. 

The last contribution is the use of a bio-inspired neuromorphic device in visual cortical 

feature map training. A methodology has been developed to use the DVS 128 Silicon 

Retina camera as input which provides real-world input directly as spike events. Section 

11.2 described how the experiments confirmed that the map development system with 

this input could produce basic directional selectivity mediated by asymmetric afferent 

and lateral weight changes and also that, with no extra mechanisms, a full topographic 

directional map was produced.  

 11.4  Future Work 

From the previous discussion, there are several aspects of the current work that could be 

improved. With respect to the visual system, one major deficiency is the limited number 

of training sequences that were used: only one for each exemplar direction. Ideally, 

several different sequences for the same direction of movement should have been 

captured from the DVS camera and when a direction was selected, one of these 

instances should have been randomly presented. Having a bigger range of visual inputs 

and also test sequences which represented directions in between the exemplar directions 

would also strengthen the van Rossum metric analysis. The work done with the 

humanoid simulation did not incorporate any visual input although this could have been 
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technically possible, either using logged DVS sequences or even live camera input (see 

Appendix B which discusses additional work feeding live camera into neural system). 

However, it was felt that it was perhaps more useful to defer this until at least the visual 

system was implemented in neuromorphic hardware. 

In the coupling work, the results did not exactly reproduce those of Marian (2002) and 

several possible reasons have been proposed in Section 11.2. It is likely that the 

introduction of rewiring may be significant here but it has not been possible to test the 

coupling without rewiring due to the size of maps used. This could possibly be 

remedied by repeating the work using similar sized maps to Marian in scenarios with 

and without rewiring. 

In terms of future extensions to the work, the most important is undoubtedly some form 

of hardware implementation. Although the ultimate aim is to implement these bio-

inspired methods on board a robot, it would not be particularly useful to just use the 

work on a PC communicating with a robot. Instead, a neuromorphic implementation 

using the SpiNNaker technology is planned and this research has been done with this in 

mind at the outset. The software development has been done in Python, mainly in the 

Brian spiking neural simulator and as such is already fit to transfer to a PyNN 

implementation and then a PyNN-SpiNNaker implementation. The basic neural models 

and network architectures used present no issues with respect to SpiNNaker 

implementation. The use of the DVS camera as input to the visual system does present 

some problems, as the rate of data generated is too much for the SpiNNaker system to 

cope with. Therefore modifications to the current work would require downsampling or 

preprocessing of the DVS spikes before they are applied to the network. This is a known 

issue and one successful solution has been to use an FPGA board as an interface to 

process and downsample the spikes (Galluppi et al., 2012). 

As mentioned elsewhere in this thesis, rewiring plasticity is still a relatively unexplored 
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area in the domain of Neurorobotics. The current work has shown some benefits of 

using rewiring, in the case of ensuring that connectivity is a sparse as possible, but there 

is substantial room for taking this further, particularly in robustly showing that allowing 

it makes a map better able to respond to changing input than without it. Rewiring 

plasticity could be an interesting avenue to explore in neuromorphic implementations. It 

has obvious benefits with respect to achieving optimum sparseness so that only a 

minimal number of connections need to be maintained. There could also be a possibility 

of using the ‘recovery from lesion’ properties to improve fault tolerance. For instance if 

a processor or chip malfunctions the network would in theory be able to prune defunct 

connections and create new ones to still active cores/chips. Some recent work has also 

shown that rewiring may play a part in homeostatic processes (Butz et al., 2009) which 

could be another of avenue for exploration in neuromorphic modelling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



179 

 

APPENDICES 

 A  Creation of the Motor Input Patterns 

 A.1  Overview 

Chapter 3, Section 3.4 introduced the form of the input patterns used for the motor map 

training. This appendix gives more details of how the 8 directional patterns were 

constructed and how the pattern set was validated before training. The process of 

training dataset creation is also described. Chapter 9, Section 9.2.3 described an 

experiment that was done to validate the Adaptive Plasticity methods by training with a 

‘new’ pattern set which consisted of robot poses from the humanoid simulation, and the 

design, creation and validation of these data are also documented here. 

 A.2  Design of the directional patterns 

The form of the input patterns was guided by those described in Marian (2002). 

However, as a full description of how the patterns were constructed is not given in that 

work, the method of construction for the current work is inferred based upon the 

description given, and later validated (see section A.4). 

The directional pattern set consists of 8 exemplars (N, NE, E, SE, S, SW, W, NW) and 

each pattern consists of two vectors consisting of 16 elements. The first vector holds 

neuron IDs and the second neuron firing times. Of the 16 elements, 4 are ‘salient’ (i.e. 

they provide actual information) and the rest are ‘noise’. Salient neurons have firing 

times close to the base (integration) time which is 9 milliseconds, whilst noise neurons 

fire at much earlier times. Patterns that are ‘adjacent’ (for example, directions N and 

NW) share 2 out of 4 salient bits of information (i.e. the same neuron firing at the same 

time) whilst patterns that are opposite (for example, directions N and S) do not share 

any salient information. In the current work the following process was used to create the 

8 exemplar patterns: 
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1. Generate 8 sets of 4 ‘salient’ firing times in the range 7-9 ms (i.e. they fire close 

together near t = 9ms).  

2. Generate 8 sets of 12 ‘noise’ firing times in the range 0-3 ms (i.e. they fire closer 

to t=0ms with times that do not overlap with salient values) 

3. Assign neuron IDs (in the range 0-15) to the firing times and ensure that 

adjacent directions have two elements in common and that opposite directions 

do not have any information in common. 

Note that in the generation of the firing times in steps 1 and 2 the precision of the values 

is 0.1ms to match the timestep used in the Brian simulations. 

 A.3  Creating training datasets 

For training with the initial version of the motor map predefined datasets were required. 

These were created by making 20 instances of each of the 8 exemplar directional 

patterns perturbed from the original values. Perturbing of the exemplar patterns is 

performed as follows: 

1. Only spike times are perturbed 

2. Noise values are adjusted by a random value within the range (-1.0,1.0). Minus 

values are clipped to 0ms 

3. Salient values are adjusted by a random value within the range (-0.5,0.5). Values 

greater than 9.0 are clipped to 8.9ms 

A total of 160 patterns were written in a random order to the training dataset. 

 A.4  Validation of the directional patterns 

It was important to establish that the exemplar patterns did actually reflect the 

characteristics of motor directions that they were supposed to represent, especially that 

the patterns were similar/dissimilar in the correct way and that they were separable so 
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the SOM training process would be able to represent them as a 2D map. This was done 

in two ways. Firstly, the Euclidean distance was calculated, using the spike times for 

each neuron, between each pair of patterns. This was then normalised so the distances 

were in the range 0-1. This data is given in Table 21. 

 

N NE E SE S SW W NW 

N 
0.00 0.42 1.00 0.92 0.91 0.92 0.61 0.30 

NE 

 

0.00 0.45 0.92 0.86 0.88 0.57 0.63 

E 

  

0.00 0.40 0.84 0.93 0.87 0.85 

SE 

   

0.00 0.32 0.98 0.62 0.59 

S 

    

0.00 0.37 0.64 0.66 

SW 

     

0.00 0.43 0.65 

W 

      

0.00 0.00 

NW 

       

0.00 

Table 21 – Normalised Distances Between Exemplar Motor Patterns 

 

Table 22 summarises the distances, and average distance between patterns 
1
/8 , ¼, ¾ and 

½ a compass turn apart. This indicates that, as required, patterns that are closer to each 

other in terms of compass directions are more similar (lower scores) and patterns that 

are opposite are less similar (higher scores). 

The second validation was a Fisher’s Linear Discriminant Analysis (FDA) performed on 

one training dataset (i.e 160 patterns perturbed from exemplars as described in Section 

A.3) using the SPSS software. Figure 67  shows the final graphical clustering of the data 

which indicates (with perhaps the exception of exemplars 7 and 8) that the classes are 

well separated. 
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1
/8  turn apart ¼ turn apart ¾ turn apart Opposite 

N-NE 0.42 N-E 1.00 N-SE 0.92 N-S 0.91 

NE-E 0.45 E-S 0.84 SE-W 0.62 E-W 0.87 

E-SE 0.40 S-W 0.64 W-NE 0.57 

  SE-S 0.32 W-N 0.61 NE-S 0.86 

  S-SW 0.37 NE-SE 0.92 S-NW 0.66 

  SW-W 0.43 SE-SW 0.98 NW-E 0.85 

  W-NW 0.00 SW-NW 0.65 E-SW 0.93 

  NW-N 0.30 NW-NE 0.63 SW-N 0.92 

  Average 0.34 

 

0.78 

 

0.79 

 

0.89 

Table 22 – Summary of Distances Between Patterns for Fixed Compass Turns 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 67 – Clustering of the Motor Directional Patterns using FDA 
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 A.5  Pose patterns from the humanoid simulation 

For one of the Adaptive Plasticity experiments (see Chapter 9, Section 9.2) a new 

pattern set was created using 4 robot poses from the humanoid simulation (Left Leg 

Kick, Left Arm Point, Right Leg Kick, Right Arm Point).  In this case the starting point 

was 16 servomotor angles which represented the changes that needed to be made for the 

simulated robot to make the relevant pose from a base standing position. These values 

naturally contained salient and noise data as the poses involve a different subset of the 

servomotors. In order to convert these angles into spike times the Linear Temporal 

Encoding of Maass (1997) was used with the assumption that large movement  large 

angle change  smaller latency. The conversion is done using equation (35). 

     

𝑡  𝑇𝑖𝑛 ∗  𝑥   𝑥         (35) 

 

Where: 

𝑇𝑖𝑛   is a reference time marking the end of arrival of all of the inputs. 

𝑥 is the input angle 

 

MaxVal is the largest angle to be encoded 

 

𝑡 is the resulting spike time 

 

This equation ensures that all of the input angles are mapped to the range 0-Tint.  

 

One difficulty was that, as with the motor patterns, the spike times needed to have a 

precision of 0.1ms and it is possible that the method generates the same spike time for 

different angles at this precision. To deal with this, non-unique spike times are accepted 

if the original data values are, in fact the same (to 2 d.p.) , but where they are not, extra 

work is needed to allocate unique spike times based upon the rank order of original data 

values. The method used is as follows: 

1. Sort the input data values in ascending order  
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2. Assign a ‘rank’ with identical data values taking the same rank. 

3. Iterate through the list of values calculating t to 1 d.p. using Equation (32) 

4. Check the generated spike time against that of the previous item. Where the time 

and the rank are the same as the previous item, leave the spike time as is, 

otherwise ensure spike time is different from previous item (increment by 0.1). 

 A.6  Validation of the pose patterns 

The same analysis as described in Section A.4 for the directional patterns was done. 

Table 23 shows the normalised distances between the exemplar pose patterns. 

 Left Kick Left Point Right Kick Right Point 

Left Kick 
0.00 0.58 0.08 0.77 

Left Point 

 

0.00 1.00 0.00 

Right Kick 

  

0.00 0.89 

Right Point 

   

0.00 

Table 23 – Normalised Distances Between Exemplar Pose Patterns 

 

These data show that kick and point patterns are viewed as being quite dissimilar, 

whereas left and right point and left and right kick are similar. This situation is not quite 

as good as for the directional patterns but is to be expected as the directional patterns 

were specially manufactured to be similar/dissimilar in specific ways, whereas the pose 

data has been taken as is from the simulation. The Fisher’s Linear Discriminant 

Analysis (FDA) was performed on a set of 100 patterns (25 of each of the 4 exemplars 

randomly perturbed as described in Section A.3) using the SPSS software.  

Figure 68 shows the final graphical clustering of the data which indicates that the 

pattern classes are well separated. 
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Figure 68 – Clustering of the Motor Pose Patterns using FDA 

 A.7  ‘Online’‎training 

In the experiments described in Chapter 9, Sections 9.2, 9.3 and 9.4 predefined training 

datasets were not used. Instead patterns were randomly selected and presented as the 

point here was that the Adaptive Plasticity methods would control the training and 

indicate when it had completed. In this case, the method used was to generate a random 

integer in the range [1-8], select the relevant exemplar pattern and perturb the spike 

times using the same method described in Section A.3. 
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 B  Dynamic Training with the DVS 128 Silicon Retina 

 B.1  Overview 

Chapter 4, Section 4.4 explained that whilst the main experiments with visual map 

training were done using pre-recorded sequences from the DVS camera, a mechanism 

had been created to take input directly from the live camera and this is described in this 

Appendix. Section B.2 describes the method of obtaining and processing the raw 

camera events using the jAER Java API. Section B.3 describes the system architecture 

that was created to handle the continuous input of camera events and is based upon the 

Visual Map training process described in Chapter 4, Section 4.6. 

 B.2  Processing Raw Camera Events 

The handler for the camera has been written as a Java program which uses the following 

classes from the jAER API (jAER SourgeForge wiki, 2012): 

net.sf.jaer.aemonitor.AEPacketRaw 

net.sf.jaer.eventio.AEUnicastOutput 

net.sf.jaer.hardwareinterface.HardwareInterfaceFactoryInterface 

net.sf.jaer.hardwareinterface.usb.cypressfx2.CypressFX2DVS128Har

dwareInterface 

It takes raw camera events and outputs them as UDP packets by the following process: 

1. Get an interface to the first camera device found  

HardwareInterfaceFactoryInterface instance = 

USBIOHardwareInterfaceFactory.instance(); 

CypressFX2DVS128HardwareInterface dvs128interface = in-

stance.getFirstAvailableInterface(); 

 

 

2. Get event packets as type AEPacketRaw 

AEPacketRaw events = 

dvs128interface.acquireAvailableEventsFromDriver(); 

 
 

3. Open a UDP Socket 

unicastOutput = new AEUnicastOutput(); 

unicastOutput.setPort(portnum); 

unicastOutput.setSequenceNumberEnabled(false); 

unicastOutput.setBufferSize(buffsize); 
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unicastOutput.open(); 

 

4. Write the events to the UDP socket 

unicastOutput.writePacket(events); 

 B.3  The Dynamic Training Process 

Figure 69 gives an overview of the process of supplying events from the live DVS 

camera to the training process. Once the Java camera interface is running, events are 

sent as UDP packets to a designated port. The Brian neural code was extended to 

incorporate a UDP server class which is started first and runs on a separate thread from 

the neural processing. The UDP server has two functions: 1) to continually poll for 

camera events coming in on the designated port and decode them into lists of neuron 

IDs and spike times, 2) to send these lists of events to the Neural class which executes 

on a separate thread. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69 – An Overview of the Training System Using a Live DVS Camera 

 

Decoding the UDP packets uses the same methods as described in Chapter 4, Section 

4.4 (code from the Brian module experimental/neuromorphic/AER.py) and as for the 

logged data, OFF events are filtered out. Modifications were made to the original neural 

processing code to accept a list of spike times when it is called from the UDP server. 
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The neural code calculates the required run time from this list and from then on operates 

in the same way as if the input had been a logged aedat file. Once neural processing has 

completed its thread is terminated. The UDP server monitors whether the neural thread 

is running or not and waits for it to complete before reading more camera events. 
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