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ABSTRACT
The number of immigrants moving to and settling in Europe has increased over
the past decade, making migration one of the most topical and pressing issues in
European politics. It is without a doubt that immigration has multiple impacts, in
terms of economy, society and culture, on the European Union. It is fundamental to
policymakers to correctly evaluate people’s attitudes towards immigration when de-
signing integration policies. Of critical interest is to properly discriminate between
subjects who are favourable towards immigration from those who are against it.
Public opinions on migration are typically coded as binary responses in surveys.
However, traditional methods, such as the standard logistic regression, may suffer
from computational issues and are often not able to accurately model survey infor-
mation. In this paper we propose an efficient Bayesian approach for modelling binary
response data based on the generalized logistic regression. We show how the pro-
posed approach provides an increased flexibility compared to traditional methods,
due to its ability to capture heavy and light tails. The power of our methodology is
tested through simulation studies and is illustrated using European Social Survey
data on immigration collected in different European countries in 2016–17.

KEYWORDS
Bayesian Inference; Generalized Logistic Regression; Empirical Likelihood;
Immigration

1. Introduction

Human migration is a well-known phenomenon that dates back to the earliest periods
of human history and that continues to provide opportunities as to societies as well as
migrants. However, in recent times migration has proved to be a key political and pol-
icy challenge in matters such as integration, displacement, safe migration and border
management [25]. People migrate for many different reasons which can be classified
as economic, social, political or environmental. Some people voluntarily choose to mi-
grate, motivated by the attractiveness of higher wages and job opportunities. On the
other hand, some are forced to migrate, for reasons such as famine, natural disasters
and war. One of the biggest drivers of migration in recent years has been the Syrian
civil war, also known as Syrian crisis, which caused about 5.65 million people to leave
the country since the start of the conflict in 2011 [7, 39]. In addition, conflicts and per-
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secutions in other parts of the world, such as the ongoing violence in Afghanistan and
Iraq, abuses in Eritrea, political instability in Sudan as well as poverty in Kosovo, are
forcing people to migrate. Understanding migration is fundamental for policy makers
in order to effectively address evolving migration dynamics, while at the same time
adequately accounting for the diverse and varied needs of migrants.

Migration to Europe has recently emerged as a critical policy issue within the Eu-
ropean Union. Although Europe has always been characterized by large population
movements, in the past three decades many countries have experienced large inflows
of immigrants. An estimated 362,000 refugees and migrants risked their lives crossing
the Mediterranean Sea in 2016, with 181,400 people arriving in Italy and 173,450 in
Greece. In the first half of 2017, over 105,000 refugees and migrants entered Europe.
Germany is the main country of destination which accounted for 31% applicants reg-
istered in 2017, followed by Italy (20%), France (14%), Greece (9%), the UK (5%) and
Spain (5%) [15]. Immigration in Europe is currently a major topic of academic, policy
and public concern. Major debates have arisen over refugee inflows and the recognition
that many of these migrants will settle permanently in their host countries. The suc-
cessful integration of immigrants, who are identifiable as ethnically different from their
host countries’ inhabitants and who may hold different cultural and religious values,
is one of the major challenges for Europe. Opinions about migration and its effects are
becoming more divergent among Europeans, according on age, education, social class
and migrant heritage, and favourability towards immigration varies considerably by
country [23]. In particular, some of the countries that have seen the largest migrant
inflows have become more sensitive to threats from migration and this has caused an
increase in anti-immigration sentiments. In the UK, the widespread concern over the
numbers of people moving to the country under the EU’s freedom of movement rules,
was one of the main topics of discussion of the 2016 Brexit referendum.

In this climate, the political community is struggling to balance the needs of
refugees, the concerns of the native population and the demands of employers. The
public’s views towards migration have important implications for debates surrounding
the constitutional future of European countries, as states are trying to address public
concern about immigration. In democratic political systems, such as European coun-
tries, in which immigration is a salient issue, public opinion has an important role
in shaping immigration policy [5]. For example, in Britain, public preferences for less
immigration have been among the drivers of the British immigration policy, including
restrictions aimed at reaching a numerical target for estimated annual net migration.
The government has explicitly claimed that its motivation to reduce the number of
immigrants coming to Britain is a response to public opinion, tying its drive to reduce
net migration to public concern about immigration [37, 38]. In order to identify and
promote effective immigration laws and integration policies in European countries, it
is fundamental to capture the society’s attitude towards immigration and integration.
The lack of understanding of the public’s attitude towards immigration may be one
of the cause of the inability of some governments to fulfill public demands for specific
multicultural policy. The correct appraisal of individual sentiments towards refugees
and asylum-seekers in different European countries is essential for policy makers and
governmental bodies, in order to acquire a deeper understanding of social issues re-
garding immigration to improve laws and policies related to immigration. New research
aiming at developing statistical models accurately estimating and predicting public’s
views towards immigration is crucial.

The logistic regression model for binary and multinomial responses has been rou-
tinely used in applied works for estimating and predicting immigration-related data
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[2, 6, 20, 35, 41]. However, Bayesian inference for models with binomial likelihood
has been out of the radar for a long time, due to estimation difficulties for the an-
alytically inconvenient form of the likelihood function. In their seminal paper, [1]
developed an exact Bayesian method for modelling categorical responses using a data
augmentation algorithm applied to probit regression. This auxiliary variable approach
for Bayesian probit models has been widely employed both in political science and
in market research [26, 33]. Following this direction, many authors in the literature
applied the same strategy to logit models, using approximations or complex exten-
sions of the method proposed by [1] [17, 18, 21, 24]. However, Bayesian logit models
have been less popular among non-statisticians than their probit counterparts, due
their computational inefficiency and complexity, since they often rely on analytic ap-
proximations or numerical integrations, and are based on multiple layers of latent
variables. [32] overcame these issues by introducing a new approach based on the class
of Polya-Gamma distributions and by proposing a data-augmentation algorithm for
the Bayesian logistic regression. [9] proved that the Polya-Gamma Gibbs sampler for
Bayesian logistic regression is uniformly ergodic and it guarantees the existence of a
central limit theorem for Monte Carlo averages of posterior draws. [32] showed that
their method outperformed previous approaches, both in ease of use and in compu-
tational efficiency. The authors opened the door of Bayesian logit models in various
areas, such as network analysis, among others, leading to the publications by [11] and
[12], who applied Bayesian logit models to financial and brain networks.

In the literature of logistic regression, a prolific stream of research is devoted to the
introduction of flexibility into the model through the link function. [10] pointed out
the consequences of link misspecification, which may lead to increased mean squared
error and bias as of parameter estimates as well as predicted probabilities. In order
to address these issues, [36] proposed a two-parameter class of generalized logistic
models, that can approximate several symmetric and asymmetric link functions. How-
ever, in the Bayesian framework, this approach may lead to improper posteriors when
noninformative improper priors, such as the improper uniform prior, are used for the
regression coefficients. A different class of skewed links, yielding proper posterior dis-
tributions for the regression parameters with standard improper priors was proposed
by [8]. Other contributions following this line of reaserch include the works of [29], who
proposed generalized skewed-t link models using a latent variable approach; [40], who
introduced a generalized extreme value link function, producing an adaptable family
of models for binary data; [27], who proposed a class of symmetric power link func-
tions, by introducing an additional power parameter on the cumulative distribution
function corresponding to standard link functions; and [34], who illustrated an efficient
estimation approach for the link function parameters in a Bayesian robit model.

This paper proposes a novel Bayesian approach, based on the generalized logis-
tic regression, which introduces flexibility into the model through a new parameter of
interest. The proposed approach extends the standard logistic regression model includ-
ing an additional parameter, the tail parameter, which allows us to treat heavy and
light tails. According to our knowledge, this is the first paper analysing and discussing
the generalized regression model constructed as in [28]. Unfortunately, the likelihood
function of the proposed generalized logistic regression model inherits the analytic in-
convenient form of logistic models and has an additional source of complexity due to
the tail parameter. To overcome these issues, we propose a novel approximate Bayesian
approach that produces consistent and fast results, based on the empirical likelihood
[30]. This approach is particularly suitable to address problems of intractable and com-
plex likelihoods, such as the proposed generalized logistic model, and shows excellent

3



performance.
The rest of the paper is organized as follows. In Section 2, we describe the generalized

logistic distribution and the regression model related to it. Section 3 illustrates the
empirical likelihood strategy adopted in the paper. To validate the approach, simulated
experiments on different datasets are studied in Section 4. Then, we introduce the EU
immigration data and we motivate the choice of the model in Section 5. In Section
6 we fit the proposed model to the EU immigration data. Section 7 is left for final
remarks.

2. Generalized Logistic Regression

In this paper, we aim at accurately estimate people’s views towards immigration
proposing a flexible Bayesian generalised logistic regression model. We consider a
binary regression setup, in which we have n independent binary random variables
y1, . . . , yn distributed as Bernoulli with probability of success

Pr(yi = 1|β) = H(xTi β) (1)

where xTi = (xi1, . . . , xik) is a vector of known covariates associated to yi, β is a k× 1
vector of unknown regression coefficients and H : R → (0, 1) is a known cumulative
distribution function. Probit regression assumes H(x) = Φ(x) where Φ is the cumu-
lative distribution function of the Normal distribution. Logistic regression assumes
H(x) = S(x) where:

S(x) =
ex

1 + ex
, x ∈ R. (2)

The standard logistic distribution is described by the above cumulative distribution
function and the below density function:

s(x) =
ex

(1 + ex)2 , x ∈ R. (3)

Following [28], it is possible to generalize the distribution described in equation (3).
Let g(·) be the density function of a Beta distribution with parameters (p, p) where
p > 0. [28] considers the following transformation:

f(x) = g[S(x)]s(x) (4)

where S(x) and s(x) are defined as equation (2) and equation (3), respectively. It is
easy to see that

f(x) =
1

B(p, p)

epx

(1 + ex)2p x ∈ R. (5)

The above distribution is known in the literature as the Type III Generalized Logistic
Distribution (GLD). The cumulative distribution function is known up to an hyper-
geometric function. It could also be represented through an incomplete Beta function
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as:

F (x) =
1

B(p, p)
B

(
ex

1 + ex
; p, p

)
x ∈ R. (6)

where B(t; p, p) =
∫ t

0 x
p−1(1 − x)p−1dx, 0 < t < 1. Figure 1 shows the generalized

logistic distribution as in (5) for different values of p. In particular, when p = 1,
equation (5) is the logistic probability distribution of equation (3). For p ∈ (0, 1), the
GLD has heavy tails whilst for p > 1 it has light tails. The bottom panel of Figure 1
shows the generalised logistic cumulative distribution function. Note that for p ∈ (0, 1)
(the heavy tails case), the cumulative distribution function looks smoother, while for
p > 1 (the light tail case) the cumulative distribution function has a sharper shape.

0.0

0.1

0.2

0.3

0.4

−10 −5 0 5 10

x

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y
 F

u
n

c
ti
o

n

Values of p
p = 0.3

p = 0.7

p = 1

p = 2

p = 3

Generalized Logistic Probability Density Function

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10

x

C
u

m
u

la
ti
ve

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

Values of p
p = 0.3

p = 0.7

p = 1

p = 2

p = 3

Generalized Logistic Cumulative Distribution Function

Figure 1.: Probability density function (top panel) and cumulative distribution function
(bottom panel) of the generalized logistic for different values of p: p = 0.3 (purple line),
p = 0.7 (blue line), p = 1 (red line), p = 2 (orange line) and p = 3 (green line).

The distribution displayed in equation (5) implicitly assumes that the location is
µ = 0 and the scale is σ = 1. The density function of the GLD with location µ ∈ R
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and scale σ > 0 is

f(x) =
1

σB(p, p)

ep(
x−µ
σ )(

1 + e(
x−µ
σ )
)2p x ∈ R. (7)

To simulate from the above distribution is straightforward. The procedure is as follows.

(1) Generate Y ∼ Beta(p, p).
(2) Compute X = S−1(Y ) where S is the cumulative distribution function of the

standard logistic distribution in equation (2).
(3) Step 1 and 2 generate an observation from a GLD with µ = 0 and σ = 1. We

can obtain a GLD with different µ and σ by simply multiplying X by the scale
parameter σ and adding the location parameter µ.

In this paper, a generalization of the usual logistic regression is proposed by setting
H(x) = F (x) in equation (1), where F (x) is the cumulative distribution function
introduced in (6). This model is more flexible than the standard logistic regression
since it has an extra parameter p which controls the tails of the distributions. The
usual logistic regression can be recovered when p = 1. Summing up, we consider the
following Bayesian model:

yi|β, p ∼ Be(F (xTi β))

β ∼ N (v, B) (8)

p ∼ Ga(a, b)

where Be denotes the Bernoulli distribution, N denotes the Normal distribution, Ga
denotes the Gamma distribution, and v, B, a and b are suitable hyperparameters.
Posterior inference for this model is nontrivial due to the form of the cumulative
distribution function displayed in equation (6). The next Section will illustrate a com-
putational strategy for efficiently estimating the parameters of the newly proposed
model.

3. Inference Sampling Strategy: the Empirical Likelihood Approach

In this section, we describe a parameter estimation approach which is a recent proposal
in the literature and makes use of the empirical likelihood (EL). We found that this
method is reasonably fast and accurate.

In particular, we follow a novel approximate Bayesian approach for addressing pos-
terior inference proposed by [30] and based on the EL. The authors’ idea is to replace
the likelihood function with an approximation, called EL [31]. This EL-based approx-
imate Bayesian approach takes advantage of the approximation device provided by
the well-established EL to perform posterior inference. This approach is particularly
appealing in applications where the likelihood function is complicated or impossible
to evaluate. Along the same lines, many other similar algorithms were proposed, for
example by [42] and [22].

The empirical likelihood is a robust non-parametric alternative to classical likelihood
approach. Assume that we have i.i.d. data y = (y1, ..., yn) from a distribution F .
Starting by defining the parameters of interest θ as functionals of F , the empirical
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likelihood profiles a non-parametric likelihood through a set of constraints of the form

EF [h(y, θ)] = 0,

where the dimension of h sets the constraints unequivocally defining θ. The EL is
defined as

LEL(θ|y) = max
p1,...,pn

n∏
i=1

pi

for pi ∈ [0, 1] with constraints
∑n

i=1 pi = 1;
∑n

i=1 pih(yi, θ) = 0.
Here we describe the Bayesian EL algorithm briefly. Let Lel(θj |y), with j = 1, ...,M ,

denote the estimate of the empirical likelihood at the point θj given the observed data
y. The so-called Bayesian Computation with the empirical likelihood algorithm (BCel)
generates values θj , j = 1, . . . ,M, from the prior distribution of θ, and uses the values
Lel(θj |y) as weights in an importance sampling framework. The sampler works as
follows

BCel. Bayesian Computation with the empirical likelihood

for j = 1 to M do

(1) Generate θi from the prior distribution π(·)
(2) Set the weight wj = Lel(θj |y)

end for

The output is a sample of size M of parameters with associated weights, which operates
as an importance sampling output. This means that a posterior sample of simulated
parameters of size N is sampled with replacement from the M parameters with cor-
responding weights wj ’s [30].

For the generalized logistic regression, we set as constraint in the EL approach

that the sum of the score functions, namely
∑n

i=1
∂L(θ,yi)
∂θ , is restricted to 0. Since

the explicit expressions of the score functions are extremely difficult to obtain due to
the incomplete beta function involved, we resort to the R numerical approximation in
practice.

4. Simulation Studies

In this section, we analyse the performance of the proposed methodology for different
values of p. In particular, we choose three different values of the tail parameter p:
p = 0.1 (heavy tails), p = 1 (logistic regression) and p = 3 (light tails), and we
test the performance of the BCel algorithm on simulated data. For each value of p, we
simulated 20 different datasets of sample sizes n = 500 and n = 1, 000 respectively. We
focus on the five dimensional case, where k = 5 and the vector of unknown coefficients
β is a (5× 1) vector with both positive and negative values. In particular, we choose
the following values for β = (β1, β2, β3, β4, β5): β1 = 1, β2 = −1, β3 = −3, β4 = 1 and
β5 = 3.
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For the simulations, we consider vague priors for β and p. More precisely, for β we
choose a multivariate normal prior, N5(v, B), with mean vector v = 0 and covariance
matrix B = 5 · I5, and for p we choose a gamma prior, Ga(a, b), with hyperparameters
a = b = 1.

Considering that the dimensionality of the parameters is not low, we propose to
use the latin hypercube sampling strategy to sample from the priors, with the goal of
achieving the maximum inference by varying multiple parameters at the same time.
Essentially, the d-dimensional parameter probability space is divided into M = 20, 000
equally sized subdivisions in each dimension, and then M = 20, 000 random samples,
one from each sub-division, are sampled.

p β1 β2 β3 β4 β5

Real value 0.1 1 -1 -3 1 3
BCel, n = 500 0.0899(0.01) 0.9547(0.29) -1.0052(0.25) -3.1382(0.28) 1.0888(0.25) 3.2259(0.25)
BCel, n = 1000 0.0895(0.01) 0.9493(0.33) -1.1088(0.25) -3.0382(0.28) 1.1270(0.30) 3.0471(0.28)

Real value 1 1 -1 -3 1 3
BCel, n = 500 0.9004(0.13) 1.1542(0.17) -1.1546(0.14) -3.4051(0.25) 1.1834(0.17) 3.4388(0.22)
BCel, n = 1000 0.9886(0.34) 1.0681(0.25) -1.0456(0.35) -3.2263(0.49) 1.0426(0.26) 3.2398(0.51)

Real value 3 1 -1 -3 1 3
BCel, n = 500 2.1979(0.64) 1.2306(0.15) -1.2498(0.21) -3.6796(0.32) 1.1944(0.18) 3.6118(0.32)
BCel, n = 1000 2.2329(0.56) 1.2442(0.12) -1.2161(0.16) -3.7258(0.38) 1.2103(0.20) 3.7416(0.45)

Table 1.: Posterior means over the 20 different simulated datasets estimated by using

the BCel method compared with the true values of p = 0.1 (top), p = 1 (middle) and
p = 3 (bottom) and (β1, β2, β3, β4, β5) = (1,−1,−3, 1, 3). The values in brackets are the

standard deviations over the 20 different simulations.

Table 1 shows the posterior means over the 20 different simulated datasets, for the
three values of p and the 5-dimensional vector of unknown coefficients. The values in
brackets are the standard deviations over the 20 different simulations. As one can see
in Table 1, the posterior means of p estimated with the EL approach are very close
to the true values, particularly in the case of heavy tails. In addition, the posterior
means of the vector of unknown β converge quickly to the real values.

We then fitted the simulated data assuming both the standard logistic regression
and the generalized logistic regression, with the aim of showing the cost of ignoring the
tail behaviours of logistic distributions. The two candidate models are compared using
the Deviance Information Criterion (DIC) and the Log Pseudo Marginal Likelihood
(LPML) [19], where lower DIC or higher LPML values indicate a better-performing
model. The comparison in terms of DIC ad LPML is repeated for each one of the
20 simulated datasets and the best performing model is recorded each time. Table 2
shows the percentage of best performance of the generalized logistic over the standard
logistic model out of the 20 simulations. From Table 2, we clearly see the advantage
of the proposed generalized logistic model over the standard logistic regression. The
generalized logistic model performs best when the dataset is simulated with heavy and
light tails (corresponding to the scenarios p = 0.1 and p = 3), 95% and 75% of the
times in terms of DIC, and 90% and 80% of the times in terms of LPML, respectively,
with n = 500. When the sample size increases to n = 1, 000, the generalized logistic
model wins in both scenarios 100% of the times in terms of DIC, and 100% and 95%
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of the times in terms of LPML. The standard logistic regression model outperforms
the generalized logistic in slightly more simulations when p = 1. However, this is not
surprising due to the fact that the standard logistic distribution is a special case of
the generalized logistic distribution.

True p % Lowest DIC %Highest LPML

n = 500
p = 0.1 95% 90%
p = 1 40% 45%
p = 3 75% 80%

n = 1000
p = 0.1 100% 100%
p = 1 45% 45%
p = 3 100% 95%

Table 2.: Percentage of best performance of the generalized logistic model over the stan-

dard logistic model out of 20 simulations. The best performance is determined each time
by the lowest DIC value and highest LPML value.

5. The Immigration Dataset and Model Motivation

The aim of this paper is to correctly estimate public opinions towards immigration, via
the proposed Bayesian generalised logistic regression model. We consider data selected
from the European Social Survey (ESS), an academically driven cross-national survey,
which has been administered in over 30 countries since 2001. The data have been
collected following hour-long face-to-face interviews covering questions on a variety of
core topics. In this paper we consider data regarding attitudes towards immigration
from the ESS8 edition 1.0 published in October 2017, and collected in Great Britain
(GB), Germany (DE) and France (FR) between August 2016 and March 2017 [13,
14]. During that period, the above listed European countries’ citizens were heavily
exposed by media to news related to events concerning immigration, igniting discussion
among members of the government and the public. During the first half of 2017,
migrants made more than 30,000 illegal attempts to get into UK from Calais, by
crossing the Channel tunnel or by surreptitiously boarding the cargo area of lorries
heading for ferries crossing the English Channel [16]. In December 2016, a truck was
deliberately driven into the Christmas market in Berlin, leaving 12 people dead and
56 others injured. The perpetrator was a Tunisian failed asylum seeker [3]. In July
2016, a truck was driven into crowds in Nice, resulting in the death of 86 people and
injuring 434. The driver was a Tunisian resident in France [4]. Most likely these facts
affected public opinions towards refugees and asylum seekers and urged policy makers
to develop suitable immigration strategies. The correct appraisal of people’s attitude
towards migration in different European countries is essential and requires a flexible
methodological approach on carefully selected data.

From the ESS data, we considered 12 variables comprising subject-specific informa-
tion as well as individual opinions. Subject-specific variables include the highest level
of education (edulvlb), with 26 levels from not completion of primary education to
doctoral degree; the household’s total net income (hinctnta), from the first to the
tenth income decile; age (agea), from 15 to 100 years old, and the dichotomous vari-
ables rlgblg and blgetmg, indicating whether the interviewee belongs to particular
religion or to a minority ethnic group, respectively. Opinion variables include answers
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to questions ranging from 0 (most negative opinion) to 10 (most positive opinion),
such as: do you think that most people try to take advantage of you (pplfair)? Do
you trust your country’s parliament (trstprl)? Do you trust your country’s legal sys-
tem (trstlgl)? Do you trust the European parliament (trstep)? Do you trust the
United Nations (trstun)? In addition, to measure personal well-being, we considered
the variable (happy), where 0 corresponds to extremely unhappy and 10 corresponds
to extremely happy. The dependent variable is immig, indicating whether the respon-
dent would allow immigrants from poorer countries outside Europe, with immig = 1 if
the respondent is against immigration, and immig = 0 if the respondent is in favour of
immigration. The dependent variable was obtained by dichotomizing the ESS variable
impcntr.

The total number of observations for the three considered European countries is
5, 354. For individual countries the number of observations are: 1, 419 for GB; 2, 284
for DE and 1, 651 for FR.

Figure 2.: Cumulative distribution function of FR data fitted with the standard logistic

regression model (blue line) and the generalized logistic regression model (red line). The
data is categorized into 30 categories based on the linear predictor.

We modelled the probability of immig = 1 using the remaining 11 variables de-
scribed above as covariates, according to the standard and to the generalised logistic
regression. In order to demonstrate the plausibility of both models, we implemented
the Hosmer-Lemeshow test, categorizing the observations into 30 groups based on the
linear predictor. Both models pass the test, with a p-value of 0.5107 for the standard,
and 0.4398 for the generalized logistic regression. In addition, to compare the fitness of
both models to the data, in Figure 2 we plotted their cumulative distribution functions
against the linear predictor of the FR data. We display the outcomes obtained using
the FR data, since data from the other countries gave very similar results. The points
represent the observations, which are categorized in 30 subgroups, as explained before.
The blue line shows the cumulative distribution function of the Fr data fitted with the
standard logistic regression, while the red line shows the cumulative distribution func-
tion of the generalized logistic regression model. Unfortunately, the standard logistic
regression does ot fit the data well, due to its rather sharp shape. On the contrary, the
the generalized logistic regression models shows a good fit, thanks to its smooth shape,
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which is able to capture heavy tails, as illustrated in Section 2, Figure 1. Therefore,
the most suitable model for the immigration data is the generalized logistic regres-
sion, which is flexible enough to capture different tail shapes and it is able to provide
improved estimates and predictive power compared to the standard logistic model.

6. Data Analysis

In this Section, we further demonstrate the suitability of the generalized logistic model
compared to the standard logistic regression and we examine the effects of the co-
variates on the attitude towards immigration for people living in the three different
European countries under consideration. As discussed earlier, we first modelled the
probability of the respondents being against immigration, that is, immig=1, using all
the 11 remaining variables from ESS data. In order to select the most informative
covariates, we adopted a simple variable selection procedure, by fitting all the three
countries’ data with a standard logistic regression and excluding the variables giving
posterior support to zero. The remaining 7 variables are pplfair, trstep, trstun,

happy, agea, edulvlb and hinctnta. Then, we fitted the remaining covariates for
each country with the generalized logistic regression. We chose vague priors for the
regression coefficients, that is, normal priors centered around the maximum likelihood
estimators and with a standard deviation 5 times bigger than the one estimated with
the standard logistic regression. A Ga(1, 1) prior is selected for the parameter p. We
adopted the BCel algorithm with the same prior settings on the coefficients, and with
M = 20, 000, to estimate both the generalized logistic and the standard logistic re-
gression.

The results are summarized in Table 3, which shows, for each European country
subset, the DIC and LPML values, the parameter estimates given by the posterior
means and the associated 95%-credible intervals. The analysis of the posterior means
obtained with the two different models reveals some differences in the estimation of
covariate effects on the immigration attitude. In general, there is much more posterior
support for zero in the parameters estimated with the standard logistic regression,
indicating that this approach is not flexible enough to model the immigration data.
The generalized logistic model suggests that the higher the level of education the
higher the probability that people are favourable towards immigration, especially in
UK and France. This is confirmed by the standard logistic regression, but only for the
French subset. In addition, the generalized logistic model indicates that people who
trust the European parliament, particularly those living in Germany and France, tend
to be in favour of immigration. Another important effect, according to the generalized
logistic model, is pplfair, since trustful people generally show a more positive attitude
towards immigration, as shown by the results of the German subset. Therefore, the
determinants of public opinions towards immigration change in different European
countries. The generalized logistic approach allows us to obtain insights about the
determinants of immigration’s attitude, that would not be possible using the standard
logistic regression.

The proposed generalized logistic model outperforms the standard logistic regression
for all countries, always showing the lowest DIC and highest LPML. This result is
confirmed by the estimated values of the tail parameters p, that are lower than 1 for
all countries, denoting heavy tails and suggesting that the standard logistic regression
is not a suitable model for the immigration data. However, we note that the 95%
credible intervals for the p parameters include the value one, due to the effect of

11



the prior variance. The results demonstrate the flexibility of the generalized logistic
approach, that, thanks to the additional tail parameter, is able to capture non-standard
tail behaviours.

7. Conclusions

This paper introduces a novel generalized logistic regression model to correctly esti-
mate the opinions on immigration of citizens belonging to European countries. The
model can accommodate heavy and light tails in the distribution of the predictors,
while including the standard logistic approach as a special case. Despite the complex
form of the likelihood, due to the additional parameter, we obtain fast and accurate
results adopting a Bayesian empirical likelihood strategy. Simulation results show that
the proposed approach outperforms the standard logistic model under various tail sce-
narios. The EU immigration data show non-standard tail behaviour, demonstrating
the need for the proposed model. The estimates of the covariate effects obtained with
the generalized logistic approach reveal insights about the determinants of public opin-
ions towards immigration that would not be available adopting the standard logistic
model. The results show that the determinants of people’s views on immigrants vary
between European countries. The proposed approach allows an accurate estimation of
people’s attitude towards migration, that is fundamental for developing suitable social
and political immigration strategies.
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