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Abstract 

Securing Cloud Storage by Transparent Biometric Cryptography  

Leith Hamid Abed  

With the capability of storing huge volumes of data over the Internet, cloud storage 

has become a popular and desirable service for individuals and enterprises. The 

security issues, nevertheless, have been the intense debate within the cloud 

community. Significant attacks can be taken place, the most common being guessing 

the (poor) passwords. Given weaknesses with verification credentials, malicious 

attacks have happened across a variety of well-known storage services (i.e. Dropbox 

and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst 

today's use of third-party cryptographic applications can independently encrypt data, 

it arguably places a significant burden upon the user in terms of manually 

ciphering/deciphering each file and administering numerous keys in addition to the 

login password.  

The field of biometric cryptography applies biometric modalities within cryptography 

to produce robust bio-crypto keys without having to remember them. There are, 

nonetheless, still specific flaws associated with the security of the established bio-

crypto key and its usability. Users currently should present their biometric modalities 

intrusively each time a file needs to be encrypted/decrypted – thus leading to 

cumbersomeness and inconvenience while throughout usage. Transparent 

biometrics seeks to eliminate the explicit interaction for verification and thereby 

remove the user inconvenience. However, the application of transparent biometric 

within bio-cryptography can increase the variability of the biometric sample leading 

to further challenges on reproducing the bio-crypto key. 

An innovative bio-cryptographic approach is developed to non-intrusively 

encrypt/decrypt data by a bio-crypto key established from transparent biometrics on 

the fly without storing it somewhere using a backpropagation neural network. This 

approach seeks to handle the shortcomings of the password login, and concurrently 

removes the usability issues of the third-party cryptographic applications – thus 

enabling a more secure and usable user-oriented level of encryption to reinforce the 

security controls within cloud-based storage. The challenge represents the ability of 
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the innovative bio-cryptographic approach to generate a reproducible bio-crypto key 

by selective transparent biometric modalities including fingerprint, face and 

keystrokes which are inherently noisier than their traditional counterparts. 

Accordingly, sets of experiments using functional and practical datasets reflecting a 

transparent and unconstrained sample collection are conducted to determine the 

reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. 

With numerous samples being acquired in a non-intrusive fashion, the system would 

be spontaneously able to capture 6 samples within minute window of time. There is 

a possibility then to trade-off the false rejection against the false acceptance to tackle 

the high error, as long as the correct key can be generated via at least one successful 

sample. As such, the experiments demonstrate that a correct key can be generated 

to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% 

for fingerprint, face, and keystrokes respectively.   

For further reinforcing the effectiveness of the key generation approach, other sets 

of experiments are also implemented to determine what impact the multibiometric 

approach would have upon the performance at the feature phase versus the 

matching phase. Holistically, the multibiometric key generation approach 

demonstrates the superiority in generating the bio-crypto key of a 256-bit in 

comparison with the single biometric approach. In particular, the feature-level fusion 

outperforms the matching-level fusion at producing the valid correct key with limited 

illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the 

thesis proposes an innovative bio-cryptosystem architecture by which cloud-

independent encryption is provided to protect the users' personal data in a more 

reliable and usable fashion using non-intrusive multimodal biometrics.  
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Chapter One: Introduction   

1.1 Overview  

Cloud computing is an evolutionary paradigm in the scope of Internet-based 

computing providing services ranging from end-users applications, developers 

software platforms, to computing resources (Behl and Behl, 2012, Parekh and 

Sridaran, 2013). Amongst cloud computing services, cloud storage affords 

individuals and enterprises a free level of storage capacity for storing their own data 

on remote datacenters, aimed at abstracting away the complexity of hardware 

management and maintenance (Drago et al., 2012). In return for the immediate 

service provision, cloud storage providers charge the beneficiaries a very reasonable 

price per significant storage space (Ju et al., 2011). Customers also have ability to 

directly upload, download, update, remove, and share files via accessing their data 

from any-where at all times (Columbus, 2016). With the rapid increase in the amount 

of digital information, cloud storage has been a predominant service for storing data 

over the Internet (Phillipson, 2016). Therefore, this storage paradigm has become a 

very important topic in both academic and industrial communities (Behl and Behl, 

2012). Microsoft OneDrive, Google Drive, and Dropbox are examples of the most 

popular and widespread cloud storage providers (Griffith, 2014). The number of 

Google Drive, and Dropbox subscribers world-wide has increased exponentially as 

illustrated in Figure 1.1 (Gannes, 2013, Sullivan, 2015, Columbus, 2016, Gildred, 

2018).  
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Figure 1. 1 The Growth of Cloud Storage Subscribers (adopted from Gannes, 2013, Sullivan, 2015, 

Columbus, 2016, Gildred, 2018) 

According to the participatory-based study by Cloud Industry Forum (CIF), 88% of 

organizations in the UK utilized one of the cloud computing services, and the highest 

used cloud service was cloud storage (CIF, 2019). In the United States, business 

spent more than $13 billion on different cloud services in 2014 (McCue, 2014), and 

the majority of cloud consumers are expected to increase spending on storage 

services (Mellor, 2016). This shows that there is a very good sized market for the 

cloud computing services (Galibus et al., 2016) – and specifically for cloud storage 

services (Butler, 2013). 

The cloud storage paradigm can be regarded as less secure than local storage, 

where the latter benefits from logical and physical security countermeasures before 

being able to access data. The local storage information can be stored on a hard 

drive in a computer on an office within an entire building. Thus, they are protected by 

both physical and logical security controls, such as secure door systems and 

firewalls, aimed at hindering the malicious attempts to hack the stored information. 
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In this case, an adversary either has to attack the entire building, or logically fudge 

around the firewall to violate stored data. As a result, there will be more challenging 

threat vectors to breach the stored information. However, within cloud storage-based 

systems, such as Dropbox and Google Drive, potential attacks can simply take place 

through the web portals by which users log in to get access to their accounts. Of 

course, cloud systems have stronger security measures including fingerprint locks, 

and armed guards for protecting and monitoring the data storage centres preventing 

attackers from violating them (Dobran, 2019). Nevertheless, the access into the 

cloud storage data is still granted using password verification and guessing the 

potential weak password can leak the user account from single portal and this is not 

the case within the PC login. Millions of user accounts are also accessible via the 

same portal - providing a single point of attack. As such, the attacks on local storage 

technologies can be considered more difficult than cloud-based storage.        

There is no doubt that cloud storage provides subscribers highly advantageous 

attributes including scalability, flexibility, accessibility, usability and data backup (NT, 

2014). However, security issues have been the intense debate within the scientific 

communities (Parekh and Sridaran, 2013, Behl and Behl, 2012). Overall, cloud 

providers employ a number of security countermeasures, aimed at achieving robust 

security. Data in transit is secured by standard Internet security protocols, such as 

Transport Layer Security (TLS). Cryptographic techniques also encrypt data at rest 

to protect them from external attacks (Galibus et al., 2016). Accessing the stored 

data is granted by successful password verification (Azam and Johnsson, 2011). If 

an attacker can obtain a verification credential, neither the security controls in transit 

nor at rest can combat that attack. This results in breaching data confidentiality – 
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since the malicious access is considered to be genuine with successful verification. 

Even if two-factor authentication is used to mitigate this vulnerability, there are still 

simple passphrases can be hacked (Toorani and Beheshti, 2008). In addition, this 

approach is not universally adopted and providing further burden upon the user to 

have a second login using another piece of credential. Passwords techniques have 

been the topic of intense debate in academia, and are arguably manifested to be 

often poor (Uludag et al., 2004, Rathgeb and Uhl, 2011). Subscribers commonly 

access cloud services by simple passwords. As such, a number of recent attacks 

have had significant impact. For instance, approximately 7 million Dropbox accounts 

were leaked illegally (Kovach, 2014), and around 5 million Google Drive accounts 

were hacked in 2014 (Vonnie, 2014). The selection of poor passwords arises when 

users are struggling with recalling, managing, and using complex passwords. With a 

view to tackling the current security issues, many clients have sought to provide 

additional security through using third-party encryption tools to manually encrypt or 

decrypt data prior to putting it into the cloud (Bischoff, 2018). Illegitimate access to 

the cloud service will result in violating encrypted files which still require a secondary 

key – ideally for each and every file to breach them. However, these tools still bring 

usability issues in terms of having to manage a key for each file in addition to the 

login password. Subscribers also need to cipher/decipher each file manually – further 

exacerbating the usability issue. 

From the above presentation, it is clear that the current security approaches are not 

providing adequate security without introducing significant usability issues. Biometric 

cryptography produces reliable and usable bio-crypto keys from biometrics 

modalities (Kanade et al., 2009b) – where there is no need to remember complex 
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passwords/keys. In essence, the bio-crypto key can be established by constructing 

and storing public data from biometric on registration, and this data will be used on 

verification to reproduce the same key for cryptographic goals, such as encryption 

and authentication (Rathgeb and Uhl, 2011). Bio-cryptography accordingly ensures 

that sensitive information (i.e. biometric information, secret keys) will not be stored 

somewhere within bio-cryptosystem. Thus, bio-cryptographic approaches overcome 

significant security attacks that happen upon the storage component within 

cryptographic and biometric systems (Uludag et al., 2004). In addition, the traditional 

password authentication will no longer need to protect the secret keys. Given the 

characteristic of storing public data only, bio-cryptography can also revoke the 

security credentials (biometric templates, secret keys and passwords) in case of 

compromise (Rathgeb and Busch, 2012). As such, the application of bio-crypto keys 

within cloud storage can offer the capacity to manage the above-mentioned security 

and privacy issues without incorporating any auxiliary applications. That is, a file will 

be only decrypted by the bio-crypto key that is established using the biometric 

features of a genuine user as these features have a high level of uniqueness to a 

distinct person. The attacker who is attempting to hack the file will have no capacity 

to produce the same key as the presented biometric features are different. Even if 

an attacker had the ability of guessing a weak password, he cannot hack this file 

because it is encrypted by a key established from the biometric features of the cloud 

user. However, there are still some impairments related to the usability of the bio-

crypto key and its security in practice. Users currently need to present their biometric 

modalities intrusively each time a file needs to be encrypted or decrypted; thus, it still 

presents a usability issue. On the other hand, achieving a repeatable bio-crypto key 
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in a secure manner with the absence of storing biometric information can be 

considered very challenging as biometric features are inconsistent over time.    

Using the research area of transparent and continuous biometric verification, in 

which biometrical signals are collected in a non-intrusive fashion, offers the 

opportunity to remove many of the usability issues associated with traditional 

biometric cryptosystems – potentially enabling more usable and secure cryptography. 

However, an effective bio-crypto approach that can successfully compass 

transparent biometric in a secure manner needs to be identified.     

1.2 Research Goal and Objectives  

The aim of this research is to develop an innovative bio-cryptographic approach 

using transparent biometrics in order to reinforce the lack of security controls within 

cloud-based storage. A transparent encryption framework built upon this approach 

would maximize the level of protection and convenience – the user no longer needs 

to recall, or present complex credentials, and the encryption is seamlessly 

undertaken for the authorized identity.  

With a view to accomplishing the research goal, subordinate research objectives are 

established in order to:   

 Review the current state-of-the-art in the research area of biometric 

cryptography in terms of existing approaches, strategic schemas, issues and 

available solutions. 

 Conduct a number of investigations to explore whether a repeatable bio-

crypto key can be established from a single transparent biometric throughout. 
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 Perform a set of experiments to investigate the effectiveness of biometric 

fusion approaches for producing a superior repeatable bio-crypto key from 

multiple non-intrusive biometric modalities on a timely basis. 

 Design and develop an innovative transparent and multimodal bio-

cryptosystem architecture for cloud storage technology capable of providing 

a secure, robust and frictionless user experience.  

1.3 Thesis Organization  

In addition to this chapter, which presents the research problem, the overall aim and 

objectives, and the structure of the research, the thesis contains a further six 

chapters outlined as follows:  

Chapter 2 is titled “Biometric Systems”. This chapter introduces the theoretical 

background of the research. This mainly includes the basics of biometric systems, 

the concepts of continuous and transparent biometric authentication, and the 

principles of biometric cryptography. The biometric system fundamentals are 

elaborated in terms of biometric requirements, system components, and 

performance measurement. A devoted section is also presented to discuss 

multibiometrics and in particular the levels of fusion in which biometric modalities can 

be consolidated. Accordingly, a conceptual view of transparent biometric verification 

is illustrated with a concentration upon contextualizing its approaches toward the 

core of this work to handle security and usability issues. The principles of biometric 

cryptography are ultimately considered and explained with the purpose of 

understanding to what extent such an approach can robustly tackle the security and 

privacy issues of cloud storage.  
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Chapter 3 presents a critical analysis of the current state-of-the-art comprehension 

of biometric encryption. The review of biometric cryptographic approaches is broken 

down into several thematic sections, and the research is presented in a chronological 

order.  

Chapter 4 initially proposes a novel bio-cryptographic approach for enabling a more 

secure and usable cloud storage through transparent biometric modalities, given the 

lack of additional protection in place. Accordingly, a set of essential investigations 

are undertaken and carried out aiming to ultimately discover the potential 

contribution of the developed approach. The first series of experiments concentrates 

upon investigating how reliable the innovative bio-cryptographic approach in 

generating a bio-crypto key from transparent biometric modalities. Another set of 

experiments explores the potential of enhancing the performance of the bio-crypto 

key generation. The final experiments seek to investigate the capacity of generating 

different cryptographic key sizes through biometric features.                 

Chapter 5 is titled “Investigation into Transparent Multibiometric Cryptography”. This 

chapter seeks to develop an advanced bio-cryptographic model using the principle 

of multibiometric fusion, aiming ultimately at investigating to what degree it can 

improve the performance of the bio-crypto key generation over the single biometric 

modalities. Accordingly, two fundamental investigations are developed and 

conducted in order to explore the potential outperformance via multibiometric. The 

former experiment determines the key generation effectiveness at the feature level, 

while the latter explores the performance at the matching level.            

Chapter 6 presents the architectural framework of the innovative multibiometric 

cryptosystem. The essential system architecture requirements are primarily 
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identified depending upon the obtained knowledge and the experimental outcomes 

from the previous chapters. Then, a comprehensive clarification of the system 

components, and mechanisms is presented - with a concentration upon tackling the 

security and usability issues in order to ensure a convenient and reliable experience 

for cloud storage subscribers. A number of operational considerations are also 

addressed and conceptually explicated with a view to reinforcing the system 

operation in practice.        

Chapter 7 presents the fundamental conclusions arising from the research; the main 

contributions, achievements and limitations. It also poses a discussion on potential 

areas for future work.  
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Chapter Two: Biometric Systems    

2.1 Introduction 

For many years, human traits (biometrics) have been employed to identify people; 

for example, individuals can be recognized via their fingerprints, irises, and voices 

(Jain et al., 2007). In seeking a secure solution, biometrics modalities have been 

applied to achieve sophisticated authentication and identification systems. 

Biometrics approaches can provide a reliable protection for environments that 

require high level of security as biometric features are very unique to an individual 

(Clarke, 2011). Biometric identifiers can also prevent the person from having to 

remember/recall difficult credentials or carry and protect tokens (Jain et al., 2007). 

Biometrics approaches, therefore, have been adopted in a variety of applications, 

including border agencies and military organizations (Soutar et al., 1999). After five 

decades of research in biometric, its techniques have been widely developed in the 

last years – where they are built in various everyday technologies, such as mice, 

keyboards, laptops, smartphones, and ATMs. As a result, the biometrics store is 

expected to grow over 304% between 2016 and 2023 to exceed $34.60-billion 

(MarketsandMarkets, 2016).  

Traditional biometric authentication approaches verify the user at first of the session 

only not frequently (i.e. point-of-entry verification) which resulting in particular 

shortcomings. That is, when the genuine person has gone away from his active 

device after a successful verification, critical vulnerabilities can arise (Clarke and 

Furnell, 2005). Biometric techniques , on the other hand, can be exploited farther to 

authenticate the user frequently via capturing the biometrics traits in a non-intrusive 
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fashion without any inconveniences –  thus defeating the initial verification only at the 

beginning of the session and overcoming the flaws of traditional verification at point-

of-entry only (Clarke, 2011). In particular, the transparent approaches, such as face 

and voice afford users a more usable and secure way in practice, where there is no 

explicit interaction for the continuous verification against imposters. In addition, as 

the biometric samples are collected in a spontaneous manner, an adversary will have 

difficulties in spoofing the collective biometric signals (Clarke, 2011).  

From a cryptographic perspective, the existing encryption approaches lack the 

secure management of the secret keys. Fundamentally, the cryptosystems can be 

classified into two systems: symmetric key and asymmetric key systems (Soutar et 

al., 1999). Symmetric key systems use a symmetrical key for encryption and 

decryption, and it must be securely stored somewhere. Asymmetric key systems, 

however, use public and private keys. The public one is utilised for ciphering the 

secret information, and it is distributed amongst the communicative parties for 

verification aims. On the other hand, the private key is utilized to decipher the 

information, so it has to be stored in a secure place as well. On the whole, there are 

two issues with the above cryptographic systems. First, adversaries could attack the 

private key transmission from one party to another. Second, potential attacks may 

take place on the stored private key. Consequently, a mechanism is required to cope 

with these security issues. Whilst Date in transit can be protected via standard 

Internet security protocols (e.g. Transport Layer Security (TLS)) (Galibus et al., 2016), 

the access to the stored secret keys is permitted via traditional password 

authentication approaches (Chang, 2012). Overall, passwords are weakly selected, 

and often derived from personal information, and this will make the system 



12 
 

vulnerable to several attacks, such as password guessing attacks (Kanade et al., 

2008). In addition to this, cryptography does not ensure that an individual, who 

provides the password, is a legitimated user (Soutar et al., 1999). Consequently, 

Bodo (1994) innovated the idea of establishing robust encryption based on 

biometrics due to its capability of identifying human beings in a reliable way. Thus, a 

number of efforts in combining biometrics and cryptography have resulted in 

developing the field of biometric cryptography. In particular, bio-cryptographic 

techniques seek to establish secret keys from biometrics in a secure management 

in which nor keys neither biometrics would be stored somewhere. As such, the 

biometric keys can be revoked in case of compromise. Contrarily, password-based 

techniques need always to store the passwords at some location and accordingly, 

they cannot be cancelled if they have been hacked (Cavoukian and Stoianov, 2007). 

In addition, whilst bio-cryptography offers strong bio-crypto keys without forcing the 

users to remember them, weak passwords can be selected when users are 

struggling with recalling, managing, and using complex passwords. Table 2.1 

summaries the security criteria between bio-cryptographic techniques and 

password-based techniques.        

Table 2. 1  The Security Criteria of Bio-Cryptographic Techniques versus Password-Based Techniques 

(adapted from Cavoukian and Stoianov, 2007) 

Bio-cryptographic Techniques Password-Based Techniques 

Neither key nor biometric should be stored A password should be always stored  

A hacked key can be revoked A hacked password cannot be revoked  

Key is strong A password can be strong or weak 

From the above presentation, it is clear that the use of biometric encryption seems 

to be more robust than passwords for protecting secret keys and/or sensitive 

information. Employing transparent biometric could also present the capacity of 
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eradicating particular vulnerabilities and inconveniences relevant with traditional bio-

cryptosystems – probably providing more secure and usable bio-cryptographic 

framework for cloud-based storage. So as to introduce an insight into transparent 

bio-cryptography, this chapter states the biometric systems in terms of 

characteristics, performance metrics, advantages and disadvantages. Furthermore, 

the capacity of applying a number of biometric techniques in a transparent mode is 

discussed for tackling the usability issues within cloud-based storage. Biometric 

cryptography is also explained with regard to the overall concept, the approaches of 

bio-cryptosystems, system requirements and performance measurement.   

2.2 Biometric Characteristics 

The selection of biometric modalities for security purposes is dependant on a number 

of characteristics which are very important to be taken into account. Consequently, 

biometric modalities can be considered suitable for security applications, once they 

are met all of the requirements of universality, uniqueness, permanence, 

collectability, circumvention, performance and acceptability. An explanation for each 

characteristic is listed below (Jain et al., 2007):   

 Universality means that the exploitable biometric identifier needs to be 

available over the complete population of users. 

 Uniqueness refers to the level of distinctiveness of the biometric 

characteristic. That is, any two persons should be completely different with 

regard to their biometric traits for successful verification. 

 Permanence represents the capability to generate a stable biometric 

template over time. For instance, the iris is one of the most consistent 
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biometrics over very long periods of times, but gait behavioural recognition 

can be inconsistent since the person could be in hurry or tired.  

 Collectability indicates the flexibility to collect the chosen modality for a 

biometric system. Specific biometrics approaches can be regarded very 

intrusive where they require special devices and/or explicit user interaction, 

such as a retina scan. On the other hand, some biometric approaches can be 

captured easily with normal daily devices and interactions, such as gathering 

voice samples when having a phone call.  

 Circumvention implies to how difficult it is to attack the biometric system by 

imposters.    

 Performance refers to the scalability of the biometric features to meet the 

specific achievement of accuracy and reliability. The performance of the 

biometric system is increased whenever the biometric features are constant 

over time (Atah, 2011).    

 Acceptability indicates to what extent people that are willing to accept the 

biometric system.  

2.3 Components of a Biometric System   

A conventional biometric system mainly comprises of five components which are 

described as below (Jain et al., 2007, Clarke, 2011): 

1. Acquisition  

The biometric patterns are captured from an individual by a viable acquisition 

device. Some biometric technologies can use existing equipment such as 
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face recognition via webcam whilst others need sophisticated scanners (e.g. 

eye retina recognition). 

2. Feature Extraction  

Through this component, the biometric features are extracted from the 

captured samples using particular signal processing algorithms to generate a 

source biometric template.   

3. Storage  

The source biometric template is stored on a database or a smartcard in order 

to be used in the matching process.   

4. Matching or Classification  

With the purpose of achieving secure access for a genuine user, biometric 

features are extracted from live biometric samples to compare against the 

stored template by using a matching algorithm. Consequently, their degree of 

similarity is represented by a match score.       

5. Decision  

The degree of required similarity which results in a yes or no response is 

usually predefined in the system by a threshold. Depending on the response 

of the system the access will be granted or denied. Figure 2.1 shows the 

components of the common biometric system: 
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Figure 2. 1 The Components of the Biometric System (modified from Clarke 2011) 

On the whole, a biometric authentication is achieved through the enrolment and the 

verification stages. At the time of enrolment, biometric samples of the legitimate are 

acquired, and then a biometric template is generated by applying a number of pre-

processing and feature extraction algorithms. This biometric template will be stored 

for subsequent use – where it would be compared against future samples. The quality 

of biometric samples should be ameliorated to ensure that they are appropriate for 

successful verification. On authentication, the biometric system verifies the current 

identity of user with his/her stored identity. The access to the system will be granted 

to the user if the matching process results in a similarity score that is sufficiently high. 

The decision component determines what the threshold for acceptance is (Jain et al., 

2004). 

Biometric approaches fall into two groups: physiological and behavioural biometrics. 

Physiological approaches rely on the human being body, such as the shape of a face, 

or eye. Behavioural approaches, however, depend on the behaviour of users when 

they are doing specific tasks, such as walking or speaking (Ashbourn, 2004). Overall, 

physiological biometric techniques tend to be the more reliable and mature 

technology, and they are widespread used due to the tendency of their biometric 
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features to be invariant over time (Le and Jain, 2009). According to the participatory-

based research by Biometrics Institute Industry (BII), the form under which the 

biometric technologies are classed on the basis of the participant preference starts 

with fingerprint then face followed by iris (physiological approaches). However, 

speaker recognition (behavioural approach) comes at the end of the study list 

(BiometricsInstituteLimited, 2013). Behavioural biometric approaches, however, are 

typically more convenient than physiological biometrics in terms of collection (Clarke, 

2011). That is, the authentic user may not have to react with behavioural biometric 

system through the sample acquisition phase. The explicit interaction for biometric 

verification can normally take a while each time – leading to a tedious process. For 

instance, the voice samples can be captured in a passive manner when the user has 

a phone call.  

2.4 Performance Measurement of Biometric System 

As mentioned previously, a biometric system recognises the genuine person from 

others through the matching or comparison between the target biometric template of 

the current sample and the stored enrolment biometric template. During this time, 

several factors can impact the performance of biometric system. For instance, 

environmental noises can prevent legitimate users to access the system, and 

conversely allow impostors to get access when they should not.  

There are two error rates that can evaluate the accuracy of biometric systems. These 

error rates are the False Rejection Rate (FRR), and the False Acceptance Rate 

(FAR). FRR measures the rate of biometric system error in rejecting genuine users; 

however, FAR measures the rate of biometric system error in accepting forgers 
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(Ross et al., 2006, Jain et al., 2007, Clarke, 2011). Figure 2.2 shows the metrics of 

biometric system performance in terms of FRR and FAR as below: 

False Rejection Rate (FRR)

False Acceptance Rate (FAR)

Equal Error Rate (EER)

100

Rate 
(%)

0

Slack

Threshold Setting

Increasing User Rejection

Tight

Increasing Security  

Figure 2. 2 The Metrics Performance in terms of FRR and FAR (Clarke, 2011) 

The acceptable values of FRR and FAR are managed by the predefined threshold. 

Depending on this threshold, the requirements of the system security and usability 

can be determined. As shown in Figure 2.2, when the threshold is defined tight – 

requiring a significant level of matching, the access of authentic users to their 

accounts could be ignored (FRR) (Clarke and Furnell, 2005). In this case, the 

security level can be underpinned in terms of rejecting illegitimate access (i.e. the 

FAR will be decreased). However, this would not necessarily improve the overall 

biometric security. This can also result in user inconveniences due to the repetitive 

unsuccessful verifications - such systems may not get attracting to be adopted. On 

the other hand, when the threshold is defined slack – requiring a low level of matching, 
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the possibility of forger’s access to the biometric system will be raised (FAR). 

Although this would achieve a very convenient verification to valid users by reducing 

the likelihood of being refused (FRR), it will influence the security aspects negatively. 

Consequently, the aspects of security and usability should be cautiously balanced. 

As depicted in Figure 2.2, the accuracy of the biometric system can be also evaluated 

by another metric called Equal Error Rate (EER) in which the FRR and FAR are 

intersected. Whenever the EER value decreases, the performance of a biometric 

system increases and vice versa (Clarke, 2011).  

2.5 Multibiometrics       

Generally, all biometric approaches can be operated in a single or multimodal 

biometrics. There is no doubt that the system of multibiometric copes with certain 

shortcomings of single biometric systems. Single biometric systems have a number 

of weaknesses, such as low individuality, high forgery attempts, high error rate, and 

lack of universality. For instance, in face recognition, it is impacted by position, 

expressions and the amount of present illumination. Also, it has been evident for 

most contributors that around 2% of the population does not have a legible fingerprint. 

As a result, they cannot be registered into a fingerprint biometrics system (Congress, 

2012). Thus, unimodal biometric can be inadequate for some cases and individuals. 

The multibiometric system, however, can offer more secure and convenient aspects 

for particular populations and applications (Ross et al., 2006). For example, national 

border agencies require applications of high security that can be offered by multi-

biometric system. In this context, the AND bitwise fusion of two or more subsequent 

verifications are applied to be more difficult to tamper with by forgers (Cimato et al., 
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2009). Another instance is when users are incapable of providing a specific biometric 

sample either temporarily (e.g. a person with broken hand cannot have hand 

geometry samples) or permanently (e.g. a wheelchair person cannot have gait 

samples). In this situation, the OR bitwise fusion can increase the population 

coverage (Cimato et al., 2009). Consequently, multibiometric systems could offer a 

higher level of flexibility, convenience, and security over their single biometric 

counterparts (Ross et al., 2006). Whilst this could improve the system accuracy, 

robustness and reliability, considerations, such as processing load, cost, and 

vendor-services should be taken into account prior to deploying such a system. 

On the whole, multibiometrics systems can be developed by utilising one of the 

following sources (Ross et al., 2006):   

 Multimodal in which multiple biometric modalities are used, such as voice and 

face or iris and gait.  

 Multi-instance where more than one subtype of the same biometrics is 

utilised, such as the right and left iris biometrics.  

 Multi-sensor means that multiple sensors are exploited to acquire a single 

biometric of a person, such as using both optical and capacitive fingerprint 

sensors.  

 Multiple samples under which a single sensor is used to capture more than 

one sample of the same biometric with taking into account of their potential 

variations, such as face poses.  

 Multiple algorithms mean that more than one classification algorithm upon a 

single biometric is used to combine the resultant features (e.g. minutiae-

based and texture-based fingerprint classifier algorithms).  
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 Hybrid by where a subset of the above-mentioned categories is exploited, 

aiming at improving the recognition accuracy. For example, three face 

recognition algorithms can be incorporated with two iris recognition algorithms.  

The variety of information sources (multimodal, multi-instance, multi-sensor, multi-

sample, multi-algorithmic, and hybrid approaches) for a multibiometric system aims 

to improve the verification decision. Therefore, the way of combining the biometric 

features, which is termed fusion, should be employed carefully to reinforce the 

decision process. Overall, the fusion method can be applied during particular levels 

in the biometric system. These levels that are sensor, feature, matching and/or 

decision level are illustrated as below (Ross et al., 2006, Sim et al., 2007):  

 Sensor level fusion integrates the raw data of multiple biometric samples afore 

the feature extraction stage. The raw data can be captured by a single sensor 

or by multiple sensors (e.g. consolidating several iris images from one or 

several sensors). 

 Feature level fusion consolidates multiple feature vectors that are extracted 

from the samples of one or more biometric modalities by using several feature 

extraction algorithms. The fusion of multiple feature vectors will be used in the 

matching phase (e.g. consolidating the feature vectors of the fingerprint and 

iris). 

 Score level fusion in which the results of multiple biometrics matchers are 

combined to obtain a new stacked match score that will be exploited for the 

consecutive decision process.  

 Decision level fusion occurs when each associated biometric system has 

presented its own decision to provide a final decision.  
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2.6 Continuous and Transparent Biometric Authentication 

Most standard authentication approaches, such as biometric authentication 

establishes initial user verification at the beginning of the session only not frequently 

(i.e. point-of-entry authentication); accordingly, these approaches have particular 

shortcomings. That is, when point-of-entry authentication has been successfully 

achieved, and the genuine person has gone away from his active device for 

significant periods of time, critical issues can arise (Clarke and Furnell, 2005). 

Serious vulnerabilities under which an adversary can attack the device will take place 

after an initial genuine login only – where free and open abuse can be performed. 

The majority of the authentication approaches verify the valid user at the time of 

making the access control decision only not throughout as shown in Figure 2.3 

(Clarke, 2011): 
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Figure 2. 3 A Model of Conventional Authentication (Clarke 2011) 

As such, it is arguably advantageous to maximise the authentication of users beyond 

simple and standard authentication approaches. A possible direction of coping with 

the misuse issues is to apply sophisticated authentication techniques that can apply 

user reverification continuously and periodically without any inconveniences. Most 

of the applicable authentication techniques are built in an intrusive fashion. To say, 

there is an explicit interaction between the user and the system. For instance, the 

user should type the password to gain access to the system (Ceccarelli et al., 2015). 

Although biometric authentication is intrusively deployed, it can be developed in a 

more usable and secure manner. That is, biometrics can be collected in a 

spontaneous or non-intrusive way, aimed at verifying the legitimate users 

continuously. Therefore, transparent or non-intrusive biometric is an approach in 

which an active and continuous verification mechanism is provided over time by non-

intrusively collecting the biometric samples thus eradicating the inconveniences on 

having to explicitly interact with the system. This authentication presents the 

opportunity of immigrating a yes/no response to a more appropriate and reliable 
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decision where a non-intrusive authentication process is more closely stood up with 

the access control decision. Moreover, transparent biometric verification takes into 

account that the entire authentication techniques are unequal, and they have 

different levels of effectiveness as illustrated in Figure 2.4 (Clarke, 2011):  

 

 

 

 

 

 

 

 

Figure 2. 4 A Model of Continuous Authentication Confidence (Clarke 2011) 

However, the establishment of transparent authentication is still a challenging task. 

Although transparent authentication presents a continuous and flexible 

authentication over time, specific issues impede the verification process. These 

largely concentrate around the case of acquiring a person’s biometric sample in a 

non-intrusive way. For instance, in the case of capturing the face samples, external 

and environmental factors, such as the distance of the camera, face orientation and 

lighting considerably impact the accuracy of facial detection (Clarke, 2011). 

Furthermore, not all biometric techniques can be adapted to operate in a transparent 

manner. This chapter will concentrate in the next subsection on discussing biometric 
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techniques that are considered transparent-enabled approaches and appropriate 

with the context of this research.  

In spite of the abovementioned barriers and challenges of transparent authentication, 

its conception can offer potential benefit over traditional intrusive biometric in this 

research. Applying transparent biometrics within bio-cryptography can remove many 

of the usability issues of the existing cloud-based storage model and simultaneously 

introduce cloud-independent encryption layer. The cloud subscriber will no longer 

need to manually encrypt/decrypt each and every file prior to putting it into cloud 

storage through auxiliary encryption tools. In addition, the encryption key will be 

biometrically established on the fly without storing it somewhere to overcome 

potential attacks upon stored security credentials (biometrics, secret 

keys/passwords).     

2.6.1 Transparent Biometric Approaches 

A number of biometric modalities can be considered transparent-enabled 

approaches as they do not necessarily require an explicit interaction for sample 

collection. Transparent biometric techniques can be also classified into two 

categories: physiological (e.g. face, ear and fingerprint) and behavioural, such as 

keystrokes analysis, eye gaze or eye tracking and gait (Clarke, 2011). Of course, the 

features in both categories are established in non-intrusive manner without 

inconveniencing the user. A variety of physiological and behavioural approaches that 

could be transparently employed in the context of this research are debated in the 

following subsections. These subsections start with physiological biometrics of 
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fingerprint, face, eye geometry and ear, and then turn into behavioural biometrics of 

voice, keystrokes analysis and behavioural profiling.  

2.6.1.1 Fingerprint Recognition 

Fingerprint recognition is the oldest and popular biometric technologies that have 

been widely used in many computing and mobile applications for authentication 

purposes. The adoption of fingerprint technology become very prevalent around 

because profound studies have been experimentally proven that fingerprint 

recognition approach has high level of individuality to each finger (Jain et al., 2007). 

As a result, the applications of fingerprint biometric are exploited for both physical 

and logical access control. Overall, fingerprint recognition compares ridges, valleys 

and patterns of a person fingerprint via one of the three matching classification 

approaches: minutiae-based, correlation-based and ridge feature-based (Maltoni et 

al., 2009). It is evident that there are no two individuals (including identical twins) 

sharing the same fingerprints as the fingerprint patterns are part of an individual’s 

phenotype, and do not seemingly rely on genetics (Danielyan, 2004, Ross et al., 

2006).  

Fingerprints have been used to recognise human beings for a long time. During 1926, 

law enforcement in American cities had started submitting fingerprint cards to the 

Federal Bureau of Investigation (FBI) in an attempt to build a database of fingerprints 

from known criminals. In the early 1960s, fingerprint technology became automated 

with the Automated Fingerprint Identification System (AFIS) (Soutar et al., 1999). 

Later, the FBI developed the AFIS in 1999 with respect to response time and capacity, 

and at the same time included the ten fingerprints to become the Integrated 
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Automated Fingerprint Identification System (IAFIS). Despite the evidences of pre-

historic use of fingerprint technology for human recognition (Holder et al., 2011), the 

current applications of fingerprint technique earned wide prominence since the 

evolution of digital computer, and has continued to remain popular in forensics, 

commercial, civil and Government applications.  

From the unconstrained authentication perspective, fingerprint has the potential to 

be applied in a transparent fashion. There are some efforts that can reflect promising 

indications towards achieving mature transparent fingerprint techniques. Owing to 

the rush in the number of touch based smart devices, there is an increasing necessity 

for developing a convenient authentication framework via the fingerprint uniqueness 

of person’s identity. As such, fingerprint samples can be collected by using capacitive 

sensing techniques in touchable smart devices. In an interesting review, Koundinya 

et al. (2014) proposed an innovative integrated device using transparent electronics 

for both multi-touch interaction and fingerprint scan. Non-intrusive touch sensitive 

device and an input/output circuit which drives the capacitive sensor array for 

fingerprint sensing at higher resolutions and for touch interactions at low resolutions 

are discussed in an elaborate manner. The experimental results demonstrated that 

the proposed scheme can be recognised, and can present a highly efficient means 

for transparent user authentication. Furthermore, Apple Company has recently 

introduced the Touch ID fingerprint scanner on the iPhone 6 (Hattersley, 2016). 

Using this technology, a person should initially register his finger samples to the 

system. As such, whenever a person places his finger on the home button to unlock 

the mobile phone device, the hardware passively scans the finger, and the software 

establishes the genuine verification. Apple’s implementation of the Touch ID can 
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arguably reflect transparent and continuous authentication (Hattersley, 2016). It can 

be argued that the novel insights of employing the fingerprint modality towards 

unconstrained sample collection will undoubtedly present mature transparent and 

continuous fingerprint verification for enhancing the security and usability aspects.    

2.6.1.2 Face Recognition 

Facial recognition has been widely utilised in the computer security and surveillance 

applications since it can provide vital discriminative features for recognising human 

beings. (Jain et al., 2007). The face modality is deemed a passive biometric since it 

does not necessarily require the reaction of the user to achieve recognition as well 

as the unobtrusive nature of its technology makes it an attractive choice for many 

security applications. For example, an automated face recognition system can use a 

video camera to capture face images from a distance, and detect, track and finally 

recognize people, such as terrorists or drug traffickers (Solayappan and Latifi, 2006). 

The features of the face biometric can be the dimensions of the eyes, nose, mouth, 

ears, cheekbones, and the distance among most or all of them. The location and 

shape the face attributes (e.g. eyes, nose and lips) can be also used as facial 

features. These facial features are extracted by particular algorithms, and their 

effectiveness depend on several factors, such as the consistency of the extracted 

features over time, image resolution, surrounding lighting, and face distance and 

position from the camera (Clarke and Furnell, 2005). As a result, certain schemes 

have been presented in order to manage some of these factors in a transparent 

mode. Using a three-dimensional image modal could assist in mitigating the impacts 

of face orientation and illumination conditions. However, the need for 3D acquisition 
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device, such as camera or sensor would hinder its acceptance (Clarke, 2011) due to 

their tendency to be slower in response and more expensive (Jain et al., 2007). What 

is more, Clarke et al. (2008) transparently suggested an advanced composite 

paradigm in which a number of person’s face samples in different sizes, orientations 

and illumination are jointly stored as a biometric template. Accordingly, when a 

sample is captured, it will be compared with the stored composite template to 

accomplish user authentication. For example, if the taken sample is facing down, 

then it will be matched with the stored template under which that orientation exists 

and similarly for other instances. On the other hand, the trade-off between security 

and user friendliness is an issue because the possibility of rejecting a legitimate user 

decreases while that of accepting a forger increases. 

2.6.1.3 Eye Geometry  

As one of the distinctive facial features, human eyes specifically play a vital role in 

face recognition and facial expressions analysis. The eye geometry is mostly more 

prominent and consistent feature than the other facial features over time (Peng et 

al., 2005). As such, the landmarks of eye patterns are considered an important 

discovery for quick, convenient, and reliable pattern recognition since they are quite 

unique. As a result, the eye recognition technology could be close to the other 

biometric technologies in terms of performance, such as iris, voice and fingerprint 

recognition. However, it seems that there have been no independent trials of the eye 

geometry recognition technology (Panda and Ranjan, 2007). On the whole, eye 

recognition technique depends on the eye detection approaches (Peng et al., 2005). 

Various papers, therefore, have been published in the scope of eye detection in order 

to present the capacity of developing eye recognition.  
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Eye detection approaches in the literature can be divided into two groups: active 

infrared (IR) approaches and passive approaches. The detection approaches which 

depend on active remote IR illumination are simple and effective, where they utilise 

an active IR light source to obtain the bright or dark pupil impacts. That is to say, 

these methods can be only applied to the IR illuminated eye pictures. Of course, 

these methods are not widely used as the eye samples of real-time applications are 

apparently not IR illuminated (Peng et al., 2005). On the other hand, the passive 

methods can be divided into three types: template based methods (Xie et al., 1994), 

appearance based methods (Huang and Wechsler, 1999) and feature based 

methods (Feng and Yuen, 1998). In template based methods, a generic eye model, 

which is based on the eye shape, is designed first. Accordingly, template matching 

is used to find the nearest picture for the test samples. Whilst these methods can 

accurately detect eyes geometry, they are taking considerable period of time to 

process the eye detection (Peng et al., 2005). The appearance based methods can 

detect eyes based on their photometric appearance. However, these methods 

usually need to collect a large amount of training data, representing the eyes of 

various volunteers, under different facial orientations, and under different illumination 

conditions. So as to accomplish the eye detection process, these training data are 

used to learn a classifier, such as a neural network or the support vector machine, 

and depending on the matching score, the decision is made (Huang and Wechsler, 

1999). Feature based methods discover the eye features of edge and the intensity 

(i.e. the colour distributions of the sclera and the flesh of the eyes) to identify unique 

biometric features. Even though these methods are usually efficient, they lack 

accuracy for the pictures that have no high contrast. For instance, these techniques 

could mistake the eyebrows of eyes (Feng and Yuen, 1998). Therefore, multiple eye 
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detection approaches can be incorporated with the aim of increasing the 

performance of the eye recognition technique. Generally, the dimensions of the eyes 

and the distance between them are utmost incorporated with the other facial features 

to establish face recognition. However, it might be advantageous to treat the eye 

geometry modality as an individual biometric approach to underpin the performance 

of multibiometric.        

2.6.1.4 Ear Geometry  

Ear approach measures the shape of the ear and the structure of the cartilaginous 

tissue of the pinna. Generally, the ear recognition technology depends on matching 

the distance of prominent points on the pinna from a landmark location on the ear 

(Jain et al., 2004). Ear biometric technology is viable as the ear anatomy is unique 

to each person and features based on measurements of that anatomy are 

comparable over time. That is, each individual has his own ear anatomy that is 

significantly different from others. Ear biometrics is passive in nature as in face, 

where it does not require the active participation of the human being (Yan and 

Bowyer, 2005). It has been demonstrated that the distinctive features of the ear 

geometry are quite constant over time (Pflug and Busch, 2012). Furthermore, the ear 

features can be recognised from a distance, and they are not influenced by specific 

factors, such as lighting and aging (Abaza et al., 2013). Despite the appropriateness 

of the ear for achieving robust authentication, there are apparently no commercial 

launches regarding ear geometry technologies. For non-invasive applications, the 

specifications of the front camera on smart phones may be exploited to achieve 

transparent ear authentication where the samples can be collected in an unobtrusive 

manner  during a phone call interaction (Clarke, 2011).       
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On the whole, recognition performance of traditional ear biometric techniques is high, 

and could reflect encouraging indications towards the initiatives of transparent ear 

authentication. The common ear recognition performance for specific approaches 

according to Yan and Bowyer (2005) are tabulated in Table 2.2 as follows: 

Table 2. 2 Common Ear Recognition Performance (Yan and Bowyer, 2005) 

Approach Ear Image Ear Database Recognition Rate 

LABSSFEM 2D 
77 (training), 77 (test), 

USTB ear database 
85% 

Neural Networks 2D 
84 (training), 28 

(validation), 56 (test) 
93% 

Force Field 

Transformation 
2D 

252 (test) XM2VTS face 

database 
99.2% 

PCA 2D 

197 (training), 88 

(registrant) ND Human ID 

database 

71.6% 

Moment Invariants 2D 
120 (training), 60 (test) 

USTB ear database 
96% 

Local Surface Patch 2D 10 (training), 10 (test) 100% 

Two-step ICP 3D 30 (training), 30 (test) 93.3% 

Improved ICP 3D 
302 (training), 302 (test) 

ND Human ID database 
98.8% 

2.6.1.5 Speaker Recognition  

Speaker biometric is the unique representation of the traits which make up a user’s 

voice. The different physical components of a human mouth and throat produce a 

distinctive sound that can be analysed, measured and stored, and it is well-known 

as a voice print. Generally, speaker approach recognises the identity of human 

beings by the distinctive behavioural characteristics of their voice, such as word 

frequency, the way of speech, pronunciation and accent. Nonetheless, it also can 

identify people on occasion via physiological traits, such as lips, mouth, nose, glottal 

folds and larynx (Woodward et al., 2003). Speaker verification approach can be also 

termed voice recognition or voice authentication. However, it is noteworthy to 
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differentiate speaker recognition from speech recognition in which the concentration 

is on what is being said rather than the way of saying (Nanavati et al., 2002). In 

particular, speaker recognition can be developed in many practical telephony and 

mobile applications, and theoretically it could operate in the background without 

forcing individuals to go through a separate verification or identification process in 

order to provide more usable solutions. On the whole, speaker recognition can 

operate in two modes which are text-dependant (static) and text-independent 

(dynamic). In the text-dependant mode, the individual speaks a predefined phrase 

or given number(s), while the spoken input is free in the text-independent mode. 

Whilst both of them are viable, the text-dependent mode arguably can offer lower 

error rates, but with higher intrusiveness (Woodward et al., 2003).  

In the conventional methods of speaker recognition, a sample of speech is recorded 

and analysed as a part of a registration phase (Campbell, 1997). Subsequently, the 

voice biometric features are extracted by using a sophisticated feature extraction 

algorithm. The biometric features are then stored as a template in a secure manner. 

At the authentication phase, a new sample of the same user’s voice is recorded and 

analysed in the same way as above. If the result of calculating the features on 

verification matches the result obtained during the registration, then the identity is 

genuine. In order to overcome some security issues, such as ensuring that the pre-

recorded voice samples of a person is not replayed to achieve verification, a 

liveliness detection process can be added to the authentication process in which the 

caller is asked to repeat sequence of numbers or a random phrase (Toth, 2005). 
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2.6.1.6 Keystroke Analysis or Dynamics  

Keystroke analysis utilises the way in which a user types particular patterns on a 

keyboard or keypad to collect certain distinctive characteristics, and then to verify 

whether this user is legitimate or illegitimate. The distinctive characteristics could 

include the interval time between releasing and pressing a key, hold time of a key 

press, and the interval time between two subsequent keystrokes which is called inter-

keystroke latency (Clarke, 2011). From the perspective of verification, there are two 

ways can be applied in the keystroke analysis systems: dynamic and static ways. 

The dynamic technique is a text independant approach which is dependant upon the 

assessment of the overall users’ typing pattern, such as the speed of typing. The 

static approach is a text-dependant method that means a persons’ typing pattern can 

be examined when they type a pre-specified phrase or word (Banerjee and Woodard, 

2012).  

Numerous papers have explained that the distinctive actions of keystroke dynamics 

seem to be insufficient for user authentication (AK et al., 2007). What is more, using 

the keystroke analysis as a unimodal biometric authentication can be regarded 

unreliable (Jain et al., 2007). The rate of adopting this technique is also relatively 

slow (Jain et al., 2007, Clarke, 2011). However, keystroke analysis authentication is 

deemed quite a convenient modality for multibiometrics and transparent 

authentication owing to its flexibility in terms of user-friendliness and non-

intrusiveness. Moreover, the cost of deploying this technology is very low as there is 

no need for an additional hardware (Alves et al., 2014). Furthermore, keystroke 

dynamics approach can be performed as an auxiliary verification mechanism with a 

view to escalating the level of security. For instance, the Bank of Ireland implemented 
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the keystroke analysis verification as a second factor in order to enhance the security 

of the Internet banking services in 2005 (Usman and Shah, 2013). 

2.6.1.7 Behavioural Profiling 

Behavioural profiling or service usage can recognise an individual depending on the 

manner of communication patterns with a particular service or device, such as web 

applications and personal computers (Clarke, 2011). For example, it can build a 

behavioural profiling for a user who utilises web applications to determine certain 

attributes, such as duration, access time, date, location, and the sequence of actions. 

In addition to this, there is a possibility to distinguish the type of applications through 

tracking the websites that are visited. The performance of generating the initial 

behavioural template from the profiling attributes is highly likely to be poor. 

Nonetheless, the user verification via behavioural profile could become robust when 

communicating with a device or a service on a daily basis; thereby, a consistent  

profiling actions might be constructed during the period of time that is spent regularly 

on browsing Facebook every evening or answering emails every morning (Sultana 

et al., 2014). 

Yampolskiy (2008) claimed that there is a possibility to create various behavioural 

user profiles depending on a particular software interaction to verify whether the 

same user is interacting with that software environment or not. One example of that 

is a “web browsing behaviour” that can generate acceptable personal profile 

identifiers via monitoring a set of events during the user interaction with the online 

web application, such as using the web application at certain times, typing specific 

keywords and classifying the web browser type. Another example is an “operating 

system interaction behaviour” that can generate a behavioural user profile to store 
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some user behaviours at the time of performing some duties. With Windows 

operating system, the number of opened windows, the transition time between 

windows, and the number of the written words in the window title can be taken into 

account to build different behavioural templates (Yampolskiy, 2008).  

According to Tian et al. (2010), a web behavioural profile for user identification could 

be built by summarising information upon user behaviours and storing them in a 

database. This information can be gathered and accomplished in either an implicit 

or explicit way. The implicit information is established through analysing user 

activities via specific statistical approaches or via data mining. In contrast, the explicit 

information can be assembled from users through the enrolment stages or through 

participatory-based studies, such as a user name, address and phone number. In 

addition, this information can be explicitly collected through user hobbies, such as 

the number of the user’s visits to the favourite websites, the amount of money that 

spent on an online purchasing (Tian et al., 2010). As such, behavioural profiling can 

be considered an effective approach for the non-intrusive and continuous verification 

where it has been applied by some commercial companies for detecting a fraud on 

credit card and mobile calling devices. Within these technologies, research has 

shown that the detection rates are more than 90% with low rates of false alarm which 

may be up to 3% (Stormann, 1997, Clarke, 2011). 

To sum up, it is apparent from the above discussion that some transparent biometric 

approaches cab be taken into consideration for improving cloud-based storage 

technology. Table 2.3 shows the strengths and weaknesses of transparent biometric 

approaches according to some distinctive biometric characteristics (i.e. permanence, 

performance and acceptability) which can be arguably crucial in the context of this 
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work. Whilst some physical transparent biometric modalities can be superior in 

regard of permanence and performance, a behavioural transparent biometric 

technique can have higher acceptability (Jain et al., 2004, Clarke, 2011). 

Table 2. 3  A Brief Comparison of Some Transparent Biometric Approaches (Jain et al., 2004)   

Biometric Approach Permanence Performance Acceptability 

Fingerprint  High  Very High  Medium 

Face Medium High High 

Keystroke Dynamics Low Low Medium 

Speaker Low Low High 

Behavioural Profiling Low Low High 

On the other hand, a transparent biometric approach still needs to store some 

biometric features somewhere – thus potential attacks can target the storage 

component to hack the biometric system. With a view to coping with this vulnerability, 

research has stepped forward further by evolving the field of biometric cryptography 

to eliminate the need for storing such sensitive information.         

2.7 Biometric Cryptography  

With the spread of data communication across the Internet, and the storage of 

important information through the open networks worldwide, cryptography is 

increasingly becoming an important if not essential pillar of security. Cryptographic 

algorithms, such as AES and RSA are being utilised for assuring the authenticity and 

secrecy of information (Soutar et al., 1999). However, the security of these 

algorithms depends upon the presumption that the secret keys of the 

encryption/decryption process are known only to the authentic user (Nandakumar et 

al., 2007). On the whole, cryptography has no ability to determine whether the person 

is legitimate or illegitimate (Soutar et al., 1999). In addition, maintaining the secrecy 
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of these keys is the main challenge in practical cryptosystems (Chang, 2012). 

Typically, the keys are securely stored in electronic storage, and often protected by 

password authentication technique. However, passwords can be easily forgotten, 

stolen, lost, or guessed using social engineering and dictionary attacks (Clarke, 

2011). This results in exposing the privacy and confidentiality of the encrypted files. 

Biometrics can be more secure and usable than password authentication since 

biometric features could not be forgotten or lost as well as they are quite difficult to 

be forged or shared easily (Jain et al., 2007). Biometric systems, therefore, can afford 

a natural and robust solution to the problem of password authentication in 

cryptosystems (Nandakumar et al., 2007). However, there are also particular security 

concerns that could influence biometrics. As the source templates (the core of the 

biometric) are stored at some location within the system, potential attacks can take 

place upon the storage unit leading to breach the biometric system (Uludag et al., 

2004). Further, given encryption/verification credentials (i.e. biometrics, 

passwords/keys) being stored somewhere, revoking the hacked ones of them cannot 

be achieved. Consequently, it is apparent from the above arguments that there are 

still security issues within the biometric and cryptographic systems.  

Many authors since 1994 have researched the ability of applying biometrics within 

cryptography to establish reliable and usable secret keys for security applications 

(e.g. authentication and encryption). The core approaches of accomplishing bio-

cryptographic keys from biometric modalities are varied within the prior research. For 

instance, a relatively reasonable number of bits can be constantly extracted out from 

the fingerprint information of 960,000 bits as a biometric key, such as 128-bit. 

Alternatively, there is another possibility to bind an external key of 128 bits to this 
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biometric information of 960,000-bit (Cavoukian and Stoianov, 2007). Other 

approaches also exploited highly robust biometrics such as fingerprint to liberate or 

release a stored cryptographic key in a secure manner depending on successful 

biometric verification (Uludag et al., 2004). Consequently, the ideas of extraction, 

binding or liberation of a key by using biometrics have led to evolve the research 

area of Biometric Cryptography (BC). 

Biometric cryptography is a collection of evolutionary technologies which securely 

generate a cryptographic key from the biometric, or integrate a secret key into the 

biometric on enrolment. Instead of storing the biometric template which may be 

vulnerable to particular attacks, only helper or public data from biometrics are stored 

– thus facilitating to revoke the security credentials (biometric templates, secret keys, 

and passwords) in case of compromise. This data will be utilised to reproduce the 

cryptographic key on verification. Of course, the public data should not help 

imposters to obtain any information of biometric template or the key. Biometric 

cryptography can also release a stored cryptographic key in some location on the 

basis of successful biometric authentication if this location is protected strongly with 

robust security controls (Uludag et al., 2004, Rathgeb and Uhl, 2011). In all bio-

cryptosystems, the biometric key overall is established during the time of enrolment 

using the reference biometric features, and afterwards the same key should be 

offered on the verification phase by the test biometric data.   

It worth noting that bio-cryptography is not a cryptographic algorithm, such as AES 

and RSA. In addition, it is worth noting that the process of bio-cryptography is unlike 

the process of common key generation process in cryptography (Cavoukian and 

Stoianov, 2007). Biometric cryptography can establish reliable and usable bio-crypto 
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keys on the fly to overcome the issues of storing sensitive credentials (i.e. biometrics 

and secret keys with the latter being secured by poor passwords) (Cavoukian and 

Stoianov, 2007). On the other hand, bio-cryptosystems are still struggling to produce 

repeatable and constant biometric keys over time as the biometric features can differ 

each time. Therefore, the significant technical challenge of bio-cryptography is to 

reproduce the same bio-crypto key despite the natural variations that exist within the 

biometric feature vector (Cavoukian and Stoianov, 2007). Generally, bio-

cryptosystems fall into three basic systems: biometric key release, biometric key 

generation and biometric key binding (Uludag et al., 2004). These cryptosystems are 

discussed in the following subsections: 

2.7.1 Biometric Key Release  

The key release system consists of biometric subsystem and crypto-subsystem. The 

biometric verification subsystem authenticates the genuine user in order to gain 

access into the system, and the crypto-subsystem administrates the secrecy of 

information based on successful authentication. The objective of biometric key 

release is to reduce the user inconvenience and to cope with the problems of 

traditional passwords (Uludag et al., 2004). This approach is directly comparable to 

the existing password-based approach, in which a user password is utilised to 

protect the encryption keys. The user password is replaced with a biometric-based 

approach. As such, genuine users no longer need to memorise difficult passwords 

and strong passwords that cannot be broken via dictionary attacks. The process of 

biometric key release is illustrated in Figure 2.5: 
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Figure 2. 5 The Idea of Biometric Key Release (adopted from Maltoni et al. 2003) 

In the key release system, a biometric sample should be presented to the system 

when the authentic person needs to gain access to specific resources. When 

biometric matcher successfully matches between the biometric sample against the 

reference biometric sample, which is stored during the time of registration, a secret 

key is liberated to decipher the required resources (Uludag et al., 2004). Biometric 

key release introduces the good aspect that the cryptographic key will not differ over 

time as it has no direct relationship with the biometric samples. Although the stored 

sensitive information (the biometric template and the cryptographic key) are 

protected by cryptographic solutions, there are a number of security attacks that may 

impact the key release system negatively. Some of these attacks, which are inherited 

from the traditional biometric authentication, are discussed as follows (Cavoukian 

and Stoianov, 2007): 

1. Replay Attack: This kind of attack finds a way around the acquisition device 

via presenting a captured biometric sample into the key release system.   
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2. Substitution Attack: This attack takes place when an imposter can gain an 

access to the storage unite component of the key release system in which the 

biometric templates along with secret keys are stored, and thus the biometric 

template of the authentic person will be overwritten with the biometric 

template of the imposter. In addition, the secret key can be compromised. 

3. Modification Attack: Simply this attack means that the feature vector can be 

altered by an attacker with the purpose of obtaining high matching scores.      

4. Spoofing Attack: A biometric key release system can be hacked by presenting 

fake biometric samples. In particular, an adversary impersonates a genuine 

user identify; thereby, secure resources can be hacked. For instance, an 

imposter can breach a face authentication system using a picture, or a video 

recording bearing resemblance to an authentic person (Hadid et al., 2015). 

5. Masquerade Attack: This category of attack takes place when an adversary 

can illegitimately obtain biometric sample, and it widely associated with 

fingerprint and palm print readers. That is, the oils from sweat glands in the 

skin and residue from touching surfaces will leave a latent print on the surface 

of the biometric readers. Therefore, it is demonstrated that biometric 

templates can be typically generated through reactivating these latent prints 

into readable prints by using a range of techniques including powder, or 

placing a plastic bag of warm water over the print (Roberts, 2007).     

2.7.2 Biometric Key Generation 

The concept of this approach is presented to overcome the security issues 

associated with biometric key release in terms of storing both the biometric template 

and the encryption key that can lead to malicious attacks. This approach usually but 
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not necessarily derives public or helper data from the source biometric sample at the 

enrolment stage (Rathgeb and Uhl, 2011). So as to reconstruct the biometric key, 

this public data is stored in the storage unit of the key generation system. Afterwards, 

the bio-crypto key would be generated from the helper data and a live biometric 

sample depending on the successful verification process (Rathgeb and Uhl, 2011). 

The verification process is varied in literature, where this process can be 

accomplished by hash function, file decryption or Hamming distance-based specific 

threshold. Of course, the stored public data will not help imposters to leak the original 

biometric template. Thus, neither the biometric data nor the cryptographic key would 

be stored at some location. Helper data could be a hash value or a vector which 

indicates the most consistent locations on a template. (Juels and Wattenberg, 1999, 

Janbandhu and Siyal, 2001, Kanade et al., 2008). On the other hand, it is worth 

noting that there are other different approaches that can generate keys from 

biometric without deriving helper data. Figure 2.6 shows the process of biometric key 

generation by helper data as below:  
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Figure 2. 6 The Idea of Biometric Key Generation by Helper Data (adopted from Rathgeb and Uhl 

2011) 

2.7.3 Biometric Key Binding  

The idea of biometric key binding was firstly introduced by Tomko et al. (1996) to 

cope with the negative aspects of biometric key generation in which the key is not 

extracted from biometrics itself. In the key binding approach, an outer cryptographic 

key is tightly bound with the reference biometric template during the registration 

phase leading to a latch construction which is stored as public data (Rathgeb and 

Uhl, 2011). Of course, this latch cannot be broken by imposters to leak the original 

template as it is constructed via complex mathematical computations (Nandakumar 

et al., 2007). Additionally, the latch should be built by an irreversible operation, such 

as XOR bitwise operation. As such, the target biometric template of the valid user 

will be used to unlock the stored latch (public data) at the time of verification. The 

unbound key will be utilized for cryptographic goals when the matching process 
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between the source and query samples is successful (Rathgeb and Uhl, 2011). 

Figure 2.7 illustrates the process of biometric key binding as follows: 

 

 

 

 

 

 

 

 

 

 

Figure 2. 7 The Idea of Biometric Key Binding (adopted from Rathgeb and Uhl 2011) 

2.8 Bio-Cryptosystem Requirements  

The objective of the bio-cryptosystems is to provide a mechanism for key production 

by using a biometric, such as fingerprint, face or voice. Subsequently, this key can 

be used for cryptographic goals, such as encryption, authentication and data integrity 

(Soutar et al., 1999). In addition to the requirements of the common biometrics such 

a universality, uniqueness, and acceptability, there are a number of requirements 

that should be met first prior to employing the produced key into a specific goal. 

These requirements are explained as follows (Jain et al., 2008, Kanade et al., 2008):  
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1. Revocation: This characteristic refers to the capability to cancel the key in 

case of hacking and reissue another one. Whilst this property can be 

accomplished effectively in the key generation and binding systems, it can be 

problematic issue in the key release system.  

2. Security Management: This requirement ensures that insensitive data will be 

stored within the system in order to overcome the malicious attempts by 

attackers. This property could be flexibly achieved in the key generation and 

binding systems, but there are serious challenges to provide robust secure 

management in the key release system.     

3. Diversity: This requirement means that various keys should be produced for 

different applications via the same biometric modalities. This is very important 

to avoid the cross-matching processes across the databases of that 

applications. As a result, the user confidentiality will be ensured, and if one 

application is breached, the other one will not be affected. Arbitrary keys can 

be easily achieved within the key release and binding systems; however, this 

could be challenging within the key generation system.  

4. Performance: This requirement means that the bio-cryptosystem must 

accomplish a superior classification between legitimate individuals and 

forgers under which a correct key is established to authentic persons only, 

and thus enhances the performance. Accordingly, discriminating the biometric 

features and tolerating their variances should be handled appropriately in 

order to distinguish between the legitimate and illegitimate users (Soutar et 

al., 1999). On the whole, biometric variation can be classified into: inter-class 

and intra-class variations. The former is the variability amongst multiple 

subjects/users; however, the latter is variance of a single user. Thus, there is 
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a desirability to raise up the inter-class variations and raise down the intra-

class variations for better performance. Biometric variations can arise owing 

to the weaknesses of acquisition devices and the inherent differences in the 

biometrics (e.g. aging, poses, and expressions of the face modality). 

Environmental circumstances, such as illumination can also lead to biometric 

variabilities. The biometric variances can be reduced by pre-processing 

methods and/or error correction codes methods which are discussed in the 

following subsection. 

2.8.1 Dealing with Intra-Person Variations  

Due to the biometric variances, the effectiveness of the bio-cryptosystem is 

degraded. Generally, there are two well-known methods in the literature for treating 

these variations. These methods are explained as follows:  

1. Pre-processing: This aims to enhance the sample characteristics at the lowest 

level of abstraction where it either erase unwanted distortions from a sample, 

or ameliorate some features relevant for further processing and analysis task 

(Krig, 2014). In particular, pre-processing prepares the biometric sample for 

feature extraction, and can include the sample size alignment, normalization 

and noise reduction.  

2. Error Correction Codes: Ensuring the access of correct data over a 

communication channel is a challenging task. Data which are specifically 

collected from biometric modalities are inconsistent over time, where one or 

more bits could be changed (Wahdan et al., 2013). With the quick 

developments in technology, the correction of transmitted data become a 
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more problematic issue. In order to deal with the accidental errors over 

communication networks, various error correction approaches are proposed 

for determining if the received data is correct or incorrect without having a 

copy of the original message. These approaches are depending upon the 

concept of data redundancy (Kanade et al., 2009b, Shannon and Weaver, 

1949). Error correction approaches seek to insert additional redundant bits 

after converting data into a number of 1’s and 0’s with the purpose of detecting 

the bits that corrupted during the transit.  

There are two categories of errors within data transmission over network 

channels; these are single and burst errors. Single bit error means that only 

single bit has been changed, and it is likely to occur in serial transmission as 

the error should has a very short duration, but it also could be taken place in 

parallel transmission (Wahdan et al., 2013). This type of errors is illustrated in 

Figure 2.8 as below: 
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Figure 2. 8 Single Error Category (Wahdan et al., 2013) 

However, burst error means that two or more bits have been flipped. Whilst 

the incorrect bits do not necessarily happen in a consecutive order, the length 

of the burst error ranges from the first bit to the last bit, and it could include 

some bits in between which are correct (Wahdan et al., 2013). This type of 

errors is illustrated in Figure 2.9 as follows: 
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Figure 2. 9 Burst Error Category (Wahdan et al., 2013) 

Similarly, the variance in a biometric feature vectors is analogous to corrupt 

in the transmission of signals, with both single and burst errors possible. The 

single errors within biometrics can be arisen by the acquisition device impacts. 

The burst errors, however, can be happened by the inherent noises of the 

biometrics that can represent the physiological effects (e.g. face aging, and 

moisture content on fingerprint), behavioural effects (e.g. face poses and 

expressions, and sample deformation or positioning) and environmental 

effects (e.g. illumination, ambient temperature, and humidity) (Kanade et al., 

2009b). The majority of the biometric features could be stable, but there are 

also some features will be different. Therefore, Error Correction Codes (ECC) 

offer good opportunity to correct minor variations in that features. Whilst some 

of ECC methods can cope with the single errors, such as Reed-Solomon 

method, the others can deal with the burst errors, such as Hadamard method 

(Wahdan et al., 2013).   

2.8.2 Performance Evaluation of a Bio-Cryptosystem 

On the whole, the performance of the bio-cryptosystem is evaluated by set of well-

known metrics: FAR, FRR and entropy. As previously documented, FAR and FRR 

are widely utilised to evaluate the accuracy of biometric systems. While the FAR and 

FRR evaluation of the key release system is the same as in biometric systems, they 

can be different within the key generation and binding systems (Rathgeb and Uhl, 

0 0 0 0 0 0 1 0 Sent  
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2011). The FRR of key generation and binding defines the rate at which wrong keys 

unsuccessfully produced by the system. That is, the percentage of wrong keys 

returned to legitimate persons. In contrast, the FAR defines the rate of correct keys 

returned to illegitimate persons. Compared to the key release systems, key 

generation and binding overall reflect a noteworthy minimisation in accuracy 

performance owing to the problematic issue of templates alignment during matching. 

(Rathgeb and Uhl, 2011). 

The concept of biometric entropy determines the distinctiveness of the biometric 

features (Boulgouris et al., 2009). It provides a measure for the number of possible 

values a feature vector can take and provides a basis for understanding how well it 

can withstand a brute force attack. In particular, the entropy evaluation is important 

for identifying an appropriate biometric for a bio-cryptosystem, and simultaneously 

can reflect the strength of security (Adler et al., 2006). For instance, the security 

strength for the key generation system which extracts a biometric key of 50-bit will 

not be more than 50 bits. The entropy evaluation for a binary face image of 320×320 

is 102,400 bits, when all bits are statistically independent. Nevertheless, an authentic 

user will not be authenticated, if all these bits are inconsistent (Boulgouris et al., 

2009).   

A direct approach to measure entropy on a random variable X can be done by 

applying the standard formula (Lim and Yuen, 2016):  

H(X) = − ∑ Pi log2(Pi)n
i=1                                                                               . . . . . . . . (1)  

In the above formula, X is a random variable that represents a set of biometrics 

features, and pi denotes the occurrence probability of the ith possible value. 
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2.9 Conclusion 

The biometric and cryptographic systems individually are affected by several 

vulnerabilities and inconveniences. Therefore, the approach of biometric 

cryptography which combines the principles of biometric approaches and 

cryptographic algorithms together can deal with these vulnerabilities. Biometric 

cryptography can offer robust and usable bio-cryptographic keys on the fly to 

overcome the issues of storing sensitive credentials (biometrics and secret keys) that 

are secured by poor passwords. At the same time, it prevents users from having to 

recall, remember those security credentials. Critical key points associated with the 

bio-cryptosystem implementation should be taken into account. For example, the 

FAR and FRR evaluation of key generation and binding are different from key release 

as the key release and the verification processes are independent. As a result, the 

comparison within key generation and binding is a very challenging process because 

the key has to be consistent despite the existing biometric variabilities. So as to deal 

with variances of biometrics, pre-processing methods and error correction methods 

are utilised to produce the required keys over time.  

Transparent biometrics in which the specific biometrics samples are acquired in a 

non-intrusive fashion can cope with the usability issues that arise from its traditional 

counterpart. It also can provide an advanced approach through bio-cryptography for 

protecting information assets in a reliable way. Whilst transparent biometric 

modalities offer the opportunity to improve upon the usability, the high feature vector 

variability that is highly likely to result could be a key limiting factor in their application 

within bio-cryptography. 
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Chapter Three: Literature Review of Biometric 

Cryptography 

3.1 Introduction 

The necessity for an innovative, convenient, usable, and secure encryption solution 

for cloud storage has been established. Therefore, this chapter is devoted to posing 

and debating the prior research of biometric cryptography. As such, it establishes a 

comparison of biometric encryption schemes with the aim of analysing the extent to 

which these schemes can be applied in practice with transparent and multimodal 

biometrics. This chapter will ultimately discover the effective approach to the 

problems of biometric cryptography, and the reliable means for resolving the issues 

of cloud storage security.  

Biometric cryptography is the art of offering strong biometric keys for cryptographic 

goals, such as encryption/decryption and authentication, aimed at solving the 

problems of weak passwords (Kanade et al., 2009a). As shown earlier, the biometric 

encryption approaches can be divided into three categories: biometric key release, 

biometric key binding and biometric key generation. Using the biometric 

cryptography approaches, the biometric keys are offered via releasing keys, 

generating particular consistent features from the biometric sample, or binding 

secure random bits with constant biometric features on the basis of a successful 

verification (Uludag et al., 2004). Whilst some authors stated that releasing a stored 

secret key at some location should not be counted as a bio-cryptographic approach 

(Cavoukian and Stoianov, 2007), other studies considered it so due to its capacity in 

handling the weaknesses of password-based techniques (Mariño et al., 2012). Since 
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the core of this research aims to develop a novel bio-cryptographic approach for 

cloud-based storage in a more usable and convenient fashion, the literature review 

concentrates entirely and thoroughly on these three approaches.  

3.2 Literature Review Methodology 

With the purpose of analysing the current state of the art within biometric encryption 

in a thorough and robust manner, a particular methodology is employed in order to 

present a comprehensive review in terms of the issues, challenges, and available 

solutions resulting in a gap analysis. Biometric cryptography includes a number of 

terminologies, such as key release, key generation, key binding, fuzzy commitment, 

fuzzy extractor, secure sketch and fuzzy vault. Consequently, the methodology of 

the literature review was to search for the above keywords across a range of different 

academic databases that provide computing resources, such as ACM, Springer, 

IEEE, ScienceDirect and Google Scholar.  

The art of biometric encryption was firstly proposed by Bodo (1994) to overcome the 

problems involved in traditional passwords. Since 1994, a number of researchers 

have suggested approaches that utilise biometric characteristics to produce strong 

cryptographic keys with the capacity to improve security. Accordingly, the literature 

review will refer to 46 relevant papers that present the current state of the art and 

explore the research domain. The review is classified into three fundamental 

sections as shown in Table 3.1: 
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Table 3. 1 Classification of Literature Review 

# Section  Number of Papers 

1 Biometric Key Release 5 

2 Biometric Key Generation 27 

3 Biometric Key Binding 14 

The review will be presented with a thematic fashion in chronological order, where 

the conventional and the advanced approaches of biometric encryption which 

incorporate the characteristics of biometrics and the concepts of cryptography 

together are covered. 

3.3 Biometric Key Release Approaches 

The idea of biometric key release represents the exploitation of biometric 

authentication to release cryptographic keys in a secure fashion. This approach 

stores secret keys in a location, such as a database and then release them on the 

basis of successful biometric authentication, where the verification and the release 

processes are entirely separated (Kalsoom and Ziauddin, 2012). Biometric key 

release presents a positive aspect that the same cryptographic key will be released 

over time without any variations. However, there are also a number of weaknesses. 

One of these weaknesses is the potential attack on the stored biometric data, or on 

the stored cryptographic keys. Moreover, updating the cryptographic key in case of 

compromising the biometric template is infeasible since it is already hacked (Uludag 

et al., 2004).  

In the literature, there seems to be some confusion in considering biometric key 

release as a biometric encryption approach. Some researchers have pointed out that 

bio-crypto key release should not be misunderstood as a bio-cryptographic approach 

that stores a secret key in a storage unit, and then releases it on the basis of 
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successful biometric authentication (Cavoukian and Stoianov, 2007, Rathgeb and 

Uhl, 2011). On the contrary, other studies have categorised this approach as a 

biometric cryptosystem as it is one of the primary approaches that solve the problems 

of weak passwords, and present a convenient manner to prevent the user from 

having to recall complicated passwords (YEE, 2011, Mariño et al., 2012). Clearly, 

biometric key release approaches depend on the performance of the biometric 

recognition subsystem in releasing the cryptographic key. As such, few studies have 

specifically focused upon this as it fits into the wider body of research that seeks to 

improve the underlying performance of biometric modalities. Therefore, this section 

will present only the available papers that deal with the key release idea.  

The primary model of biometric key release was introduced by Soutar et al. (1999) 

who used the fingerprint modality because of its high recognition performance in the 

biometric authentication area. In a brief review, the source template along with a 

cryptographic key is stored in a secure storage unit. Subsequently, on authentication, 

the live fingerprint of the genuine user is verified with the stored the source template. 

Then, if biometric verification is successful, the cryptographic key will be released. 

On the whole, the separation between the biometric matching and the key release 

processes permits the security subsystem to revoke the privileges and the rights of 

the user. However, the presence of a biometric template for authentication causes 

specific vulnerabilities.  

Other papers presented a conceptual review of the existing systems of biometric 

template protection – particularly on biometric key release. Specifically, the authors 

addressed the properties of the key release system by two key points. Firstly, this 

system needs access to biometric templates to perform the matching process. 
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Secondly, the key release and the verification processes are wholly independent. At 

the same time, the writers claimed that these characteristics result in serious security 

issues. In simple terms, due to the local storage of important data, there are some 

problems that may occur when designing such system. Among these problems is the 

capability of adversaries to steal the stored biometric data from one application, and 

then utilising them in another application. In addition, as the matching process is 

totally separated from the key release process, the system will be vulnerable to 

attacks in which match or no match response can be hijacked and masqueraded 

(Uludag et al., 2004, Rathgeb and Uhl, 2011).  

As mentioned previously, the key release system relies upon the accuracy of the 

recognition subsystem. Therefore, a review by Kalsoom and Ziauddin (2012) 

discussed the concerns surrounding iris recognition systems. The authors claimed 

that the investigative effects upon reliable feature extraction would certainly improve 

the performance of iris-based key release system if they are handled appropriately. 

Some of these factors include the pupil dilation, the usage of contact lenses and the 

similarities between the irises of twins, where all these factors can influence the 

system. On average, iris recognition systems reported a very good recognition rates 

that ranged from 69% to 100%.  

Another contribution to biometric-based key release was published by Karovaliya et 

al. (2015). Face recognition subsystem by Principal Component Analysis (PCA) and 

One-Time Password (OTP) authentication were used for Automated Teller Machine 

(ATM) to improve confidentiality. The recognition by PCA will reduce the forgery risks 

associated with the theft of smartcards, and OTP will not oblige users to remember 

their long passwords. The enrolment process is carried out by the authorized 
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employee in the bank. The employee would acquire some face images of the 

genuine user by an advanced acquisition device in the bank, and store them in a 

database. On authentication, once the ATM smartcard is swiped, a face image is 

acquired via a camera installed upon the ATM, and matched with the stored images 

in the database. When verification is successful, an OTP code is sent to the 

recipient’s mobile number. So as to authenticate the user, the comparison operation 

between the forward OTP code from the bank to the user and the backward OTP 

code from the user to the bank is achieved via a one-way hash function. The 

transaction will be processed if the intended user has input the right OTP code within 

three trials. Otherwise, the account will tentatively sign out. One Time Password 

(OTP) is a conventional authentication technique which can authenticate the 

legitimate user via creating an OTP code for each session or transaction. This 

method is employed to cope with the concern of having to remember the long and 

complex passwords (Clarke, 2011). Therefore, One Time Password (OTP) can be 

arguably considered as a key release approach.         

However, specific criticisms which could affect the proposed system are noticed. 

One of these is that the loss of mobile/internet connection would not transmit the 

OPT code to the recipient user, and would interrupt the transaction process. 

Additionally, there is a rather inconvenient aspect in using the OTP technique, where 

the user should input different OTP(s) frequently. Another criticism is the lack of 

experimental works, where there is neither a rigorous security analysis nor accuracy 

tests in terms of FAR and FRR results that would manifest the ability to debase 

potential attacks and to make this scheme applicable in such realistic environment. 
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The approaches of biometric key release are summarised in Table 3.2 as below:  

Table 3. 2 Short Summary on Biometric Key Release Contributions  

# Authors Year Biometrics Security Recognition Verification Type 

1 Soutar et al. 1999 Fingerprint 

Cryptographic 

Algorithms 

such as DES   

NA NA Conceptual  

2 Uludag et al. 2004 Fingerprint ─ ─ ─ Review 

3 Rathgeb and Uhl 2011 

Fingerprint 

– Iris – 

Face 

─ ─ ─ Review 

4 
Kalsoom and 

Ziauddin 
2012 Iris ─ ─ ─ Review 

5 Karovaliya et al. 2015 Face 
One Time 

Password 
PCA MD5 Prototype 

As shown in Table 3.2, there is a lack of technical research in resolving the issues 

associated with the key release scheme. The majority of the related works 

concentrated upon the conceptual approaches of biometric key release. Whilst 

biometric-based key release has the capability of dealing with usability, the privacy 

of the stored data is considered the greatest obstacle for implementing and adopting 

these systems.  

3.4 Biometric Key Generation Approaches 

Numerous contributions have been published in the research area of combining 

biometric and cryptography to present a biometric key generation approach that 

securely generates keys for encryption and decryption, authentication and access 

control purposes. Biometric key generation approaches can be classified as either 

direct key generation or indirect key generation. Direct key generation can generate 

biometric keys directly from the source biometric template, and then discard them at 

the end of the session, such as encryption. For decryption, this approach should 

regenerate the same biometric key from the test biometric template of the same valid 
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user (Rathgeb and Uhl, 2011). However, indirect key generation approaches derive 

helper data from the reference template to generate indirect keys. Of course, for 

maintaining security, the storage of the helper data should not be useful to forgers to 

reconstruct the source biometric template. The negative aspect of the key generation 

scheme overall is the difficulty in regenerating the same key over time with high 

consistency and complexity (Uludag et al., 2004).  

The direct key generation approach is still an open to challenge due to the lack of 

helper data storage that hinders the generation of a constant key over time. However, 

there have been specific attempts that contribute to overcome this challenge. The 

prior proposal of generating biometric keys directly from biometric template was 

suggested by Bodo (1994) in a German patent; however, there was no practical 

implementation. Janbandhu and Siyal (2001) corroborated Bodo’s proposal and 

contributed to the generation of a private key by RSA and DSA algorithms through 

an iris biometric where the iris features are used as auxiliary means for the key 

generation process. With the purpose of obtaining a highly stable iris template, the 

authors used an off-the-shelf iris recognition product by Iriscan Company to generate 

a 512-byte iris code with a very good EER value of 1 in 1.2 million. The generated 

RSA key was 512-byte whilst the DSA key was 160-bit.   

In the same context, Hoque et al. (2008) enhanced the vector quantization method 

to explore the possibility of generating a biometric key squarely from handwritten 

signatures. This work was inspired by the idea of Yamazaki and Komatsu (2001) 

which stated that Vector Quantisation (VQ) is used to remove the variabilities of 

biometric samples, where the extracted features are partitioned into a specific 

number of cells, and each one is symbolized by using mean vectors. Subsequently, 
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the target samples will be compared with those vectors, and the closest vector in the 

codebook specifies whether the person is legitimate or illegitimate.  

The enhancement of the vector quantization method consisted of replacing the 

codebook with a group of partitions which are induced in the feature subspaces, each 

subspace being constructed by means of subset of features. The partitions 

determine the number of cells in those subspaces, where each cell is labelled with a 

certain identity. On key regeneration, the feature subspaces of the test sample which 

are symbolized by their own group of partitions are processed individually to 

regenerate the biometric key by concatenating them. Individuals do not need to 

introduce their identities to gain access to an encrypted document. The ability of 

providing a biometric sample that can decrypt the document is adequate evidence of 

verification. It is supposed that all biometric features were distributed normally.  

The analysis and evaluation of this investigation were conducted upon a database 

that included 144 respondents with 15 samples from each one. In addition, 133 active 

imposters were engaged to forge particular signatures. On the whole, a biometric 

key of 32 bits can be regenerated at 35.2% and 5.6% FAR and FRR respectively 

where the number of partitions was 5. Nonetheless, this biometric key was short, and 

could possibly be broken by brute force attack. Further, although the FRR result was 

rather acceptable, the FAR result defeated the system where more than quarter of 

imposters may be accepted incorrectly.  

In another work, Sheng et al. (2008) suggested a direct key generation schema from 

the statistical features of handwritten signatures, such as pen-down time, pen-up 

time, the overall duration of the signature and the number of strokes via specific 

statistical approaches. The researchers claimed that the methods of clustering 
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biometric data, such as fuzzy clustering and vector quantization are applied to limited 

and predefined code words or clusters, and are likely to be influenced negatively by 

suboptimal features. Consequently, fuzzy clustering was enhanced by applying 

genetic algorithm to identify the suitable and close-optimal features in the training 

handwritten signature samples. Accordingly, the stability of each feature, whether it 

is a subset or single, is quantified for each individual. At end, the biometric key is 

reliably generated when the most stable features are chosen. In order to conduct the 

analysis and the experimental results, 7430 handwritten signature samples of 359 

participants were gathered in public trials of an automatic signature authentication 

system. Overall, the authors generated a biometric key of 20 bits at 0% FAR and 

14.5% FRR recognition performance. However, the produced bio-crypto key was 

quite short that could be easily broken by brute force attack. In addition, there was 

no evaluation concerning the entropy of the generated biometric key.                    

The idea of analysing the biometric features comprehensively with the purpose of 

investigating the most consistent features that could reliably generate a constant key 

from biometrics squarely was proposed by Atah and Howells (2009). The authors 

explored the appropriate features of a speaker modality, such as maximum power 

spectral density and maximum amplitude by using the built-in facilities of a Microsoft 

feature extractor and the ‘wavread’ function in Matlab. The researchers claimed that 

the unsuitable normalisation methods for obtaining common distributions were 

feasible on a range of features. Consequently, in order to diminish the within-user 

(intra-class) variances, the resultant consistent features were normalised empirically 

by a min-max normalisation method to become limited into a common scale between 

0 and 1. Accordingly, the normalised features were multiplied by a constant variable 
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to become accurate in a decimal system, then transformed into binary values via a 

quantization criterion.  

The public database of VALID which included 106 participants was adopted to test 

this work. Each user had five sample recordings of the uttering “Joe took father’s 

green shoe bench out” in specific noisy environments. This work showed that the 

accuracy of reproducing the same direct key over time was 65%. However, this 

research did not demonstrate the recognition performance respecting the FAR and 

FRR results. In addition, the effective bit space was not provided.  

Regarding the research area of multibiometrics, a number of direct key generation 

approaches from multiple biometrics have been proposed. Among these approaches, 

Jagadeesan and Duraiswamy (2010) combined fingerprint and iris biometrics, while 

Abuguba et al. (2015) fused face and the iris modalities. Both studies utilized off-the-

shelf Daugman iris technology to generate the feature space of the iris modal; 

however, morphological transform and PCA were applied to the fingerprint and face 

biometrics respectively to extract their multidimensional features efficiently. For both 

contributions, the researchers sought to randomise the feature spaces for security 

purposes. Jagadeesan and Duraiswamy (2010) concatenated the fingerprint and iris 

vectors after a number of scrambling steps to obtain a uniform multibiometric 

template. Accordingly, a 256-bit bio-crypto key is constructed through taking the 

modulus two for each value over the constructive template.  

On the other hand, the face and iris fusion along with the key generation are 

simultaneously applied in the research of Abuguba et al. (2015). That is, the iris is 

represented by 256 integer values whilst the face by 256 bits. As a result, the i-th bit 

of the key is the summation of all the zero values in the binary system of i-th 
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normalized iris values modulus two if the i-th bit of face local binary pattern is zero. 

In contrast, the i-th bit of the key is the summation of all the one values in the binary 

system of i-th normalized iris values modulus two if the i-th bit of face local binary 

pattern is one.  

For both studies, the experiments were carried out by using public databases for the 

fingerprint, the CASIA database for the iris and the ROL database for the face. Both 

contributions succeeded in generating a 256-bit biometric key from the 

multibiometric templates. Abuguba et al. (2015) demonstrated an FRR result of 

12.51% which is a rather unacceptable value. This work does not state the 

accompanying error rate in terms of FAR and FRR. Jagadeesan and Duraiswamy 

(2010), however, did not perform empirical studies illustrating the recognition 

performance of FAR and FRR. In addition, although the contributors claimed that the 

biometric samples were pre-processed well by noise reduction algorithms to 

eliminate the emerging variances, there was no evaluation of intra-class variations 

to demonstrate the stability of reproducing the same biometric key over time. The 

authors also did not assess the effective bitlength of the bio-crypto key using the 

biometric entropy to show how strong it was vis-à-vis brute force attacks.  

In a follow-up research, Balakumar and Venkatesan (2011) replicated the proposed 

system by Jagadeesan and Duraiswamy (2010) on proprietary databases that 

included 100 participants. The authors succeeded in regenerating a biometric key of 

256 bits at an overall FAR and FRR of 0.2351% and 85.07% respectively. However, 

this accuracy figure of FRR reflects that the proposed system by Balakumar and 

Venkatesan (2011) may not recognise one third of the legitimate users.  
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On the other hand, indirect biometric key generation approaches are more tolerable 

to errors in the context that the generation or the extraction should be the same even 

whether the query biometric template has small variations. Among these approaches, 

fuzzy commitment can be considered as an indirect key generation that utilises error 

correction codes to eradicate the biometric variabilities. In this context, the term fuzzy 

refers to the fact that the source and the test templates are near or close to each 

other, and not entirely equal due to intra-class variances (Juels and Wattenberg, 

1999). Indirect key generation approaches are also proposed as a fuzzy extractor or 

secure sketch approach. The former generates public data from the source biometric 

sample that can create the key via the live sample of the same user. The latter, 

however, uses the helper data to construct fuzzy sketches from the reference and 

the live biometric samples for verification purposes (Li et al., 2006).  

There has been significant amount of research upon indirect biometric key 

generation. Nevertheless, their categorisation into specific areas is not easy because 

particular approaches can be equally applied to key binding and key generation, 

such as fuzzy commitment (Cavoukian and Stoianov, 2007). Consequently, a 

particular characteristic is required in order to decide whether these approaches are 

key binding or generation. Conceivably, the manner of producing the key can be 

adopted as a characteristic to differentiate between the key binging and generation 

approaches. As such, if the approach binds an outer key with the biometric signals, 

then this key binding; otherwise it is key generation. The review of indirect key 

generation approaches can be classified into: fuzzy commitment, fuzzy generator, 

and fuzzy or secure sketch. These approaches will be discussed in the following 

subsections:   
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3.4.1 Fuzzy Commitment Approaches 

On the whole, the fuzzy commitment approach handles the noises that exist in 

biometric samples via the methods of error correction codes. Hamming distance of 

specific threshold between the source and the target biometric templates decides 

whether or not these belong to the claimed user. Various error correction codes can 

be used to eradicate the biometric variations, such as Reed-Solomon (RS), Bose–

Chaudhuri–Hocquenghem (BCH), Low–density parity check (LDPC) and Hadamard 

(Wahdan et al., 2013).  

The fuzzy commitment approach was firstly introduced by Juels and Wattenberg 

(1999). In this approach, a biometric template which is represented as a binary string 

b, is added to a random codeword cw via an error correction approach in order to 

calculate the commitment function c by: 

 c = cw + b                                                                                                     . . . . . . . . (2) 

At the same time, the values of c and the hash value of cw are stored somewhere for 

authentication purposes. On decommitment, the codeword cw´ is regenerated via:  

cw´ = b´ - c                                                                                                     . . . . . . . . (3) 

where b´ is the binary string of the test biometric template, and the verification is 

successful if the hash value of cw´ equals the stored hash value of cw. Concerning 

the codewords with a minimum Hamming distance d, the authentication cannot be 

unsuccessful when the Hamming distance between b and b´ is lower than or equal 

to d/2. Noticeably, the commitment term refers to the fact that the error correction 

codes are committed to overcome the biometric variabilities on authentication. 

Figure 3.1 shows the block diagram of the fuzzy commitment idea: 
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Figure 3. 1 Block Diagram of Fuzzy Commitment Idea (modified from Juels and Wattenberg 1999)  

In a different review, Kanade et al. (2008) suggested a fuzzy commitment framework 

for smartcards by using the iris modality and a combination of Hadamard and RS 

codes. Of course, Hadamard codes can erase the inherited noises by the capture 

device from biometrics while RS can adjust the inherent changes in biometrics, such 

as placing the biometrics on the acquisition devise differently. In this research, a 

scrambling approach by using a password shuffles the iris codes to maximise the 

separability between legitimate individuals and forgers depending on a Hamming 

distance metric. In addition to ECC, a procedure of inserting and truncating extra 

zeros is utilised among the iris codes to raise up the error correction ability to over 

25%. Whilst XOR bitwise operation was exploited to increase the randomisation 

aspect of the iris code, the hush function was relied upon for verifying the authentic 

user. This work was performed on a public database Iris Challenge Evaluations (ICE) 

that included 124 users. The accuracy results were 1.04% FRR and 0.055% FAR, 

and the bitlength of the regenerated key was 198 bits with an 83-bit estimated 

entropy. The authors have recognized the difference between the bitlength of the 

regenerated key and its effective bitlength in combating brute force attacks where 

they evaluated the key entropy based on the fact that not all values had an equal 

contribution.  
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In the forth work of Kanade et al. (2009b) a weighted error correction schema was 

proposed by combining the RS and Hadamard codes. This combination aims to 

eliminate the biometric variances from the right and left iris modalities at the time of 

verification. That is, the Hadamard decodes can correct a specific capacity of errors, 

and these errors will be decoded wrongly if they are more than this capacity. As a 

result, the Hadamard decodes will input to the RS decodes to fix the errors which are 

incorrectly decoded via Hadamard error correction. Initially, the valid person will 

select a password to randomise the symmetric codes of RS by using scrambling 

approach for security purposes. At the same time, this password will reinforce the 

revocation requirement, where the hacked one can be simply cancelled to select 

another password. Accordingly, the resultant asymmetric codes of RS are encoded 

by the Hadamard codes to rise up the correction capacity, and this will obtain the 

pseudo code S. For the right iris code I1, a zero insertion and truncation manner is 

employed symmetrically, on registration and verification, to originate the modified 

version II1, and the latter is concatenated with the left iris code I2. At end, the iris 

codes concatenation (II1 and I2) is xored with the pseudo code S to produce the lock 

code ILock.  

Having established Hadamard error correction decoding at authentication; the right 

iris code produces a greater number of correct decodes than the left iris code. If the 

number of incorrect blocks is lower than or equal to ts, the error correction capacity 

of the RS, they are correctly decoded by the RS decoder to generate the bio-crypto 

key. While the number of correct blocks via the Hadamard method can be noticed as 

a similarity score, the error correction capacity of the RS (ts) can be considered as a 

threshold dependant classifier. Therefore, the variable error correction represents a 
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weighting approach for features consolidation, where the right iris code has a higher 

weight than the left iris code. The more the error is corrected for the right iris code 

the less the valid users are rejected by the proposed system. However, the less the 

error is corrected for the left iris code, the more the valid users are rejected. The 

composite impact of both iris modalities leads to enhance the system accuracy.   

The experimentation of the proposed system was implemented on the public 

database Iris Challenge Evaluations (ICE) that included 120 respondents. The 

bitlength of the reconstruct bio-crypto key was 147-bit and the recognition 

performance was 0.18 FRR and 0% FAR. However, selecting weak password will 

affect the system negatively when an attacker can guess the poor password. As a 

result, sensitive secure information will be hacked with the purpose of capturing the 

cryptographic key. Further, there is a particular criticism presented by Stoianov (2010) 

that the procedure of extra zeros insertion and truncation can be broken by a hacker. 

The author claimed that the locations of the extra zeros within the iris code are 

already known; therefore, an adversary could analyse them to regenerate the 

biometric key within a reasonable time. 

In further attempts at fuzzy commitment exploitation to remove biometric variances, 

Teoh and Kim (2007), Sutcu et al. (2008) and Wahdan et al. (2013) employed the 

error correction coding to assist in managing certain challenges. One of these 

challenges was how to deal with the biometrics of multiple dimensional features, 

such as face and fingerprint. The 2D representation of minutia features, fingerprint 

features, is large and complicated; therefore, the variations between the constructive 

templates will be high, and this will influence Hamming error calculation negatively 

(Sutcu et al., 2008). Teoh and Kim (2007) extracted the biometric features of 
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fingerprint by Gabor transform, after which these features are discretised/binarized 

into binary values using a randomized dynamic quantization transform. This 

transformation includes an irreversible process depending on random numbers that 

are generated via a user-specific token. Of course, this token should be stored on a 

secure device to generate the same random numbers at authentication. Accordingly, 

375-bit of binary distinct features is obtained with fairly uniform randomisation. 

Afterwards, with the purpose of removing the biometric variations, symmetrical RS 

codes are xored with those binary features to originate the locked codes. The 

researchers used the public fingerprint database DB1 from FVC2002 website which 

included 100 participants with 8 samples for each participant. The recognition 

performance of FAR and FRR were 0% and 0.9% respectively, with a biometric key 

of 375 bits. However, there was no evaluation with regard to the effective key entropy.    

Another study in the same context was conducted by Sutcu et al. (2008) who 

suggested probabilistic scheme based on statistic methods, called user-specific 

cuboid. This scheme extracts the minutiae points of fingerprint and their orientations 

to correspond with the LDPC codes for the binary symmetric channel (i.e. the 

communication channel for binary information). A user-specific cuboid scheme 

calculates the number of variations among the minutiae inside and outside the 

cuboids, and accordingly uses Bernoulli statistical approach to produce the binary 

values. The experiments of this research were conducted on a proprietary database 

that included 1035 respondents with 15 fingerprint samples from each respondent. 

This research reported accuracy results of 0.11% FRR and 1.0019% FAR. The 

statistical analysis illustrated that the scheme of user-specific cuboid can efficiently 

reduce the errors of binary symmetric channel via LDPC codes. In terms of good 
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aspects, the work of Sutcu et al. (2008) evaluated the intra-user variations by using 

a histogram approach. Nonetheless, the key bitlength was 30 bits which is fairly short 

and could be broken by brute force attack.                       

Whilst the previous two studies concentrated upon tackling the variances of unimodal 

biometrics, another investigative challenge involving the assistance of error 

correction codes is how to eradicate the variations of multi biometric feature space. 

Hypothetically, Wahdan et al. (2013) used a Reed-Solomon error correction scheme 

individually upon each biometric feature to solve this issue. In terms of feature 

extraction, Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) 

and cepstrum analysis methods were used to extract the features from the iris, face 

and voice biometrics respectively. Afterward, a binarization approach was used to 

transform the features of each modal into a binary string using the mean value of the 

resultant features. Accordingly, the multiple binary features are consolidated 

depending on the feature fusion level via an Advanced Encryption Standard (AES) 

algorithm. Apparently, the multi biometric features are input into AES as a plaintext, 

and then an outer cryptographic key is used to concurrently encrypt and combine 

those features in a secure fashion. Finally, the resultant binary features are used as 

a bio-crypto key for encryption and decryption purposes. The proposed system was 

carried out upon a proprietary database with 20 volunteers. The bitlength key 

generation was 192-bit with an overall recognition performance of 99.83%. 

Nonetheless, the drawback of this study was the lack of a security analysis. 

Furthermore, when outer cryptographic keys are used, the system may be hacked if 

the forger can attack the stored password at some location. What is more, there was 
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no evaluation concerning biometric variances – specifically for the biometrics of 

geometrical or multidimensional features, such as face modality.  

3.4.2 Fuzzy Extractor or Generator Approaches 

Generally, the fuzzy extractor approach can benefit from the fuzzy commitment idea 

in utilising the ECC to remove the biometric variations as well as it extracts helper 

data from the reference template that contributes to generate the biometric key via 

the test template of the same user. 

The primary paradigm of the fuzzy extractor was suggested by Dodis et al. (2004) to 

generate a biometric key with the ability to handle biometric variations. On key 

generation stage, both the bio-crypto key and helper data (the public data) are 

constructed from the reference template and only helper data are stored in the 

system to be used at the time of verification. Subsequently, the test biometric 

template and the public stored data are used to regenerate the key. Of course, the 

helper data storage must not help hackers to leak any information about the key and 

the train template. In order to verify the key, fuzzy extractor approaches use an error 

distance metrics-based specific threshold such as Hamming distance, Edit distance 

and Set distance to calculate the biometric variances between the source and test 

templates. Figure 3.2 illustrates the block diagram of the fuzzy extractor approach: 
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Figure 3. 2 Block Diagram of Fuzzy Extractor Approach (adopted from Li et al. 2015) 

In further studies, Li et al. (2012) and Feng and Yuen (2012) claimed that a fuzzy 

generator cannot be implemented for biometrics, such as fingerprint and face 

modalities since their features are high-dimensional geometric features. In this 

situation, distance metrics-based specific threshold cannot calculate the errors, 

variations, between the biometric templates. As a consequence, Li et al. (2012) used 

a combination of  RS and BCH, BCH, and LDPC codes to determine the optimal 

method for erasing the variances. Additionally, the probabilistic scheme of a user-

specific cuboid by Sutcu et al. (2008) was used appropriately to generate a 

discriminant binary key from the real-valued features of a fingerprint minutiae triplet. 

The authors claimed that the use of minutia triplet features does not require the 

implementation of the tricky alignment process that is applied among the biometric 

samples to become common versions as these features are fairly stable over time. 

As aforementioned, the probabilistic scheme of user-specific cuboid statistically 

calculates the differences between the minutiae inside and outside the cuboids 

among a number of fingerprint samples of the same user. However, Li et al. (2012) 

reduce the intra-user variabilities further by determining the biometric variances 

through these calculated differences, where their smallest values are reserved and 

indexed as a robust vector rv since they represent the most reliable regions on the 

fingerprint template. Moreover, the Liner Discriminant Analysis (LDA) method 
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contributes to eradicate the inter-user variabilities by its resultant Dimension 

Reduction Matrix DRM. Accordingly, mean and Bernoulli statistical methods where 

used to define a discretised vector Dv and to produce a fixed binary key Bk. Of course, 

the helper data of rv, DRM, and Dv are stored somewhere to be used in regenerating 

the same binary key during the authentication phase, using the test fingerprint 

template.       

For security purposes, the XOR operation is performed between the fixed binary key 

Bk and the resultant codeword cw from the error correction codes to obtain the locked 

data Ld. Simultaneously, the cw is secured through applying the hash function H(cw), 

and will be stored together with Ld. At the verification time, a refresh fingerprint 

sample is presented to generate fixed binary key Bkʹ by using the stored helper data. 

As such, the XOR operation is applied between Bkʹ and the stored Ld to obtain Ldʹ. 

Finally, the error correction codes are carried out on Ldʹ to produce codeword cwʹ. 

The authentication process will be successful if Bk and Bkʹ are from the same 

genuine user, and within a specific threshold of Hamming distance error.  

The experiments of this research were performed by using the public database 

FVC02 DB2 which included 110 volunteers. The empirical results demonstrated 

encouraging accuracy results of 0% FAR and 4.85% FRR. However, the bitlength of 

the generated key was 48 bits which is fairly short, and could be broken by brute 

force attack. Interestingly, the error correction coding of LDPC outperforms the other 

methods, BCH and the combination of RS and BCH. Figure 3.3 shows the block 

diagram of the registration and authentication processes: 
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Figure 3. 3 Block Diagram of Registration and Authentication (modified from Li et al. 2012)  

In the same context, that of investigating the challenge of multidimensional biometric 

features, a neural network algorithm was exploited by Feng and Yuen (2012) for 

identifying the discriminant features from a face modality. In this research, during the 

time of enrolment the neural perceptron trains the binary values to produce the most 

consistent bits and to set public data that assists in regenerating the same 

discriminant features later if necessary. Of course, the stored data should not help 

adversaries to recover any important information for the original template. At the 

verification stage, the neural network transforms the test face sample into the 

discriminant binary template by using the stored helper data. Concerning the feature 

extraction methods, random projection, Eigenface and Fisherface algorithms are 

used to investigate the best feature vector generation. Afterward, the error correction 

coding of BCH is appropriately used to eliminate the variances between the 

generated bio keys. Consequently, the test binary template will be same or near to 

the trained binary template. The experiments in this research were conducted with 

68 participants, and it encouragingly demonstrated that the recognition rate was 

96.38%. Moreover, the Fisherface algorithm powerfully generates the face template 

and outperforms the other methods, random projection and Eigenface. Furthermore, 
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various BCH codes do not impact the system performance badly. Moreover, the 

entropy of the produced key was 75 bits. However, the long execution time of system 

implementation probably may be considered as an inconvenient aspect to end-users. 

In other works, aimed at eliminating the variations of 2D dimensional features such 

as fingerprint minutiae Dodis et al. (2004) and Chang and Roy (2007) proposed fuzzy 

extractor approaches depending on biometric combination mechanism. Biometric 

combination was proposed by Dodis et al. (2004) for fuzzy extraction via embedding 

one metric space into another metric space, which is evaluated well based on error 

distance functions through subsequent biometric acquisitions, and then stored as 

helper data. The goal behind this embedding is to maintain relevant values for fuzzy 

generation. As a consequence, the fuzzy extractors in the source and target 

templates will be close to each other. Chang and Roy (2007) used PCA along with 

biometric combination to investigate the most consistent features among the 

minutiae of fingerprint biometric; therefore, the variations were further diminished. 

Accordingly, a binarization-based threshold method is applied to features in order to 

transform them into binary values. From the other perspective, with the purpose of 

maximising the security and performance, the XOR operation is applied between the 

binary values and the codes of ECC to generate the crypto-bio key. With regard to 

analysis and evaluation, the empirical work was performed upon 4000 fingerprints 

from the database NIST. The generated biometric key ranged between 8 to 10 bits 

with an accuracy result of FRR = 0.09%. This paper does not illustrate the 

accompanying error rate in terms of FAR and FRR. Given the weak entropy, the 

biometric key could be used in the environments that require low level of security, or 
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where access to the system is protected by other measures (i.e. that limit the 

opportunity of brute force being feasible). 

With regard to the research area of multimodal biometric and without using the ECC 

methods, Chin et al. (2014) presented a fuzzy generator approach using the 

fingerprint and palmprint biometrics. At first, once the biometric features are 

extracted via a number of Gabor transformations, the combination-based feature 

level is applied by rearranging these features to obtain a multimodal feature template. 

Subsequently, in order to achieve the revocability requirement for the bio-

cryptosystem, a random tiling transform-based specific key is used to generate the 

irreversible version from the multimodal template. Specifically, random tiling 

configures random rectangles with dimensions determined by a specific tokenized 

key. Consequently, the user should choose a new key to reissue another multimodal 

feature template in case of compromise. In the same context, another security issue 

is that the imposter could expect the binary bits by combining the 1’s and 0’s of the 

highest probabilities. So as to avoid this concern, the equal probable binarization 

technique splits the multimodal feature template into equal width intervals, and 

distributes the features equally among them by a statistical distribution approach. 

Each interval is indexed and labelled with an integer, and its features are transformed 

into 1 or 0 values based on their label. Finally, the biometric key is composed by 

concatenating all binary bits.  

During authentication, the same steps as those above are applied to generate a test 

binary key by using the stored helper data, the specific tokenized key of random 

tailing transform. At that time, the matching process compares between the test 
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binary key and the source binary key via a Hamming distance metric to decide if the 

test biometric belong to the claimed user.  

300 volunteers were involved to conduct the tests of the proposed system by 

collecting 8 samples from each volunteer. The recognition performance was roughly 

0.05% EER with feature length of 200 dimensions. These results demonstrated the 

effectiveness of the random tilling and the equal probable binarization methods 

where they are feasible in multibiometric fuzzy extractor. The only criticism of this 

research was that, in spite of the pre-processing stage which was applied to the 

biometric samples by noise reduction algorithms, there was no evaluation of intra-

class variations.     

In a different review, Chang (2012) proposed dynamic private key generation for 

public key cryptosystem. The author employed the keystroke recognition depending 

on the RSA algorithm to resolve the issues of key management. Principally, those 

issues involve the negative ways of protecting and storing the private key using 

password verification. The interesting idea behind this research is that a keystroke 

recognition approach gathers the keystroke features, and accordingly neural network 

algorithm trains these features to generate the private key. During the time of 

enrolment, keystroke actions are concurrently gathered by typing the valid password. 

Afterwards, specific keystroke features are learned by back propagation neural 

network to produce a target random private key of 2048-bit, which is already 

generated by RSA. When the learning process is completed, only the parameters of 

RSA and the back propagation, such as the public key, random integer and weights 

are stored as helper data in the user’s storage unit to reconfigure the neural network 

again if necessary. Figure 3.4 illustrates the block diagram of the key learning stage: 
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Figure 3. 4 Block Diagram of Key Learning Stage (modified from Chang 2012)   

On the key regeneration stage, the authentic users generate a private key as long 

as they input the valid password. The keystroke features are assembled at the test 

time and the neural network is reconfigured using the stored helper data (i.e. weights). 

Accordingly, the test features are trained by the neural network to regenerate/identify 

random private key of 2048-bit for encryption/decryption. For key verification. As a 

result, the stored public key will be used to verify the validity of the constructive 

private key and to ensure that they are a pair. Finally, the genuine user can decrypt 

or sign a ciphered document using an RSA algorithm. Figure 3.5 illustrates the block 

diagram of the key generation stage: 

 

 

 

 

 

 

Figure 3. 5 Block Diagrams of Key Generation Stage (modified from Chang 2012)    
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The experimental work was conducted with 23 respondents as authentic individuals 

using their strong passwords and 60 hackers to hack the users’ accounts. In terms 

of analysis aspects, the genuine users had 10 attempts to sign into their accounts 

while the adversaries had 20 trials to attack the valid key; therefore, the analysis 

sessions were 230 and 27600 respectively. FRR and FAR results were on average 

5.25% and 9.61% consecutively, and these are fairly acceptable rates. Nevertheless, 

there were unacceptable FRR and FAR results for some passwords. For instance, 

the FAR of the password “630404” was 72%, and the FRR of the password “still531” 

was 29%. The author claimed that these passwords were weak; therefore, the 

proposed approach is still unreliable as the features are extracted from typing poor 

passwords. There was also no evaluation about the biometric entropy; therefore, it 

is unknown if the presented approach can resist feature guessing attack.     

3.4.3 Fuzzy or Secure Sketch Approaches 

Overall, fuzzy or secure sketch can take advantage from the fuzzy commitment 

concepts in using ECC to eradicate the biometric variabilities as well as it 

biometrically forms secure or fuzzy entity which can be used for security aims.  

Conceptually, the elementary fuzzy sketch framework was introduced by Dodis et al. 

(2004) who claimed that a fuzzy sketch/entity can be extracted from the source 

biometric template of the genuine user without any leakage of this template. 

Subsequently, the test biometric template from the same user is presented to 

regenerate the same fuzzy sketch, and the verification process will be valid if these 

secure sketches are equal to a specific threshold.  



80 
 

Several researchers have published secure sketch frameworks depending on ECC 

to treat the biometric differences. Among these, Kanade et al. (2009a) presented a 

fuzzy sketch framework by using the iris biometric and the combination of RS and 

Hadamard codes. Of course, RS can adjust the inherent changes in biometrics, such 

as placing the biometrics on the capture device differently, whilst Hadamard codes 

remove the errors that are caused by the capture device. In this research, the binary 

iris codes are extracted using the Open Source Iris Recognition System (OSIRIS). 

Subsequently, the scrambling approach randomises the source iris code ϕsource by 

using a password to obtain the modified iris code ϕ′source, aimed at increasing the 

security aspects. For verification purposes, a random outer key K is hashed by one-

way hash function, and simultaneously encoded with the Hadamard and RS codes 

to produce the pseudo-iris code ϕps. In addition, with the aim of raising the rate of 

error correction over 35%, the procedures of additional zeros insertion and truncation 

is used to add 792 values in which two zeros are inserted after every three iris bits. 

Accordingly, the XOR bitwise operation is implemented between the modified iris 

code ϕ′source and the pseudo-iris code ϕps to maximise the security, where the locked 

iris code ϕlock is obtained via:  

ϕlock = ϕps ⊕ ϕ′source                                                                                       . . . . . . . . (4) 

At end, the AES cryptosystem ciphers the locked iris code ϕlock and the password of 

the scrambling approach for further security. These ciphered data as well as the 

hashed value H(K) are stored on a smartcard as helper data. 

On authentication, the same steps as at the time of registration are used to form the 

modified target iris code ϕ′target, and then the modified pseudo-iris code ϕ′ps is 

obtained by: 

ϕ′ps = ϕlock ⊕ ϕ′target                                                                                       . . . . . . . . (5) 
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Equation (4) can be substituted in (5) to conclude with the following: 

ϕ′ps = ϕps ⊕ ϕ′source ⊕ ϕ′target   

ϕ′ps = ϕps ⊕ e                                                                                                                     

The e value represents the difference between the iris codes. Of course, ϕ′ps is 

decoded using Hadamard and RS codes to recover the external key K′. If H(K) 

equals H(K′), then K′ will be processed further to reconstruct the source iris code. In 

the next step, the recovered external key K′ is encoded once again by Hadamard 

and RS codes to obtain the regenerated modified pseudo-iris code ϕ′′ps. This ϕ′′ps is 

used to unlock the ϕlock, and to retrieve the regenerated modified source iris code 

ϕ′′source via:  

ϕ′′source = ϕlock ⊕ ϕ′′ps                                                                                   . . . . . . . . (6) 

Since, H(K) = H(K′), K′ = K, and ϕps = ϕ′′ps then,  

ϕ′′source = ϕlock ⊕ ϕps = ϕ′source 

As mentioned previously, the ϕ′′source is compounded with additive zeros, so the 

truncation procedure is applied to erase these zeros. Finally, a descrambling 

approach is applied on ϕ′′source by using the stored password to obtain the 

regenerated reference iris code ϕreg.  

The experimental work of this research was performed on the public database Iris 

Challenge Evaluations (ICE) that included 244 respondents. The accuracy results 

were 0.76% FRR and 0.096% FAR and the total entropy was 94 bits where the 

entropy of the regenerated iris template was approximately 42-bit and the entropy of 

the password was 52-bit. The researches have realized the difference between the 

bitlength of the biometric key and its effective bitlength in resisting brute force attacks 
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where the entropy factor was evaluated reliant upon the fact that not all values had 

an equal probability. 

In the same situation, Sutcu et al. (2007) and Cimato et al. (2009) used ECC in 

secure sketch-based multibiometric mode to handle the biometric variances. The 

study of Sutcu et al. (2007) introduced a fuzzy sketch approach using the fingerprint 

minutiae and the face biometrics. Having established the features appropriately from 

the minutiae points and the face samples by using the geometrical transform and 

singular value decomposition methods respectively, normalization and binarization 

techniques were employed to transform them from the real time into normal 

distributions. Accordingly, a similarity relation-based error correction code which was 

experimentally determined between the source and test features was applied to 

produce a consistent fuzzy/secure construction (Li et al., 2006).  

In Sutcu et al.’s contribution, once the binarized feature vectors are established, the 

combination feature level based on AND bitwise operation is applied to them to 

obtain the multibiometric template. Subsequently, the secure sketch is constructed 

via calculating the difference between the error correction codes and the resultant 

multibiometric template. Respecting the analysis and evaluation, the databases of 

NIST for the fingerprint and Essex Faces94 for the face are used for empirical works 

(Garris and McCabe, 2000, Spacek, 2007). The NIST database included 258 

respondents, and Essex Faces94 database 152 participants. The researchers 

evaluated the effective bitlength of the biometric data where the lower entropy for the 

fuzzy sketch was 39 bits at recognition performance of 2% FAR and 1.4% FRR. The 

imperfection of this research was the lack of evaluations of within-class variations. 
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Likewise, Cimato et al. (2009) posed a multibiometric secure sketch system to 

increase the security and the accuracy purposes by multiple instances of the same 

biometric, right and left irises. On registration, the right iris template RI is encrypted 

by the AES cryptosystem, and concurrently hashed by using SHA-1 for verification 

goals in which H(RI) is obtained. Subsequently, the output of AES algorithm is 

encoded by RS codes to obtain the codewords cw that will be xored with the left iris 

codes LI to obtain the final template ϕ. At this time both H(RI) and ϕ are stored as 

helper data. On authentication, the refresh left iris template LIʹ is xored with the 

stored template ϕ to recover the codewords cwʹ. Of course, the codewords of cwʹ 

and cw should be in a tolerable range of error, where their changing should not affect 

the user’s biometric authentication. Consequently, both RS decoding and AES 

decryption are applied to cwʹ, which represents (RS encoding (AES encryption (RI))), 

to regenerate the reference right iris template RI. Accordingly, a comparison 

operation is carried out between the hashed value of the constructive and the stored 

iris templates. If they are equal, then the verification process has been successful. 

The suggested system was tested by using the public database CASIA which 

included 108 participants. The bitlength of the right iris template was 9600 bits. This 

bitlength accomplished good separability between the genuine user and the attacker 

where the EER value was 0.5%. In contrast, the bitlength of the left iris template was 

1920 bits, and this bitlength performed weakly in separating genuine and malicious 

users at 9.9% EER. On the whole, the EER value of the proposed multimodal secure 

sketch system was 0.96%. However, there was no empirical evaluation regarding 

the biometric entropy.   
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Apart from the above approaches, some contributions have used specific secure 

solutions to protect the extracted biometric key, whether it is stored somewhere in a 

storage unit or transmitted into a third trusted parity (Rathgeb and Busch, 2012). 

Among these contributions, Mohanavalli et al. (2014) suggested a bio-crypto key 

generation system for encryption and decryption facilities using the fingerprint 

biometric. This system dealt with the issues of multiple keys generation and 

randomisation, and intra-class variations from the same biometric. The authors 

claimed that if the biometric key is only extracted from the source biometric sample 

at both parties (i.e. sender and receiver), then the same key will be certainly 

produced without any differences. Firstly, the biometric features are created via 

Discrete Wavelet Transformation (DWT). Afterwards, Keccak hash function is 

applied on these features to generate the biometric key K which will be employed to 

cipher a particular document D. Accordingly, the receiver will need K to decipher D; 

therefore, the same features which are used to generate the key K will be encrypted 

by RSA algorithm, and transmitted to the other party. Keccak hash function will be 

applied upon the fingerprint features for multiple key generation and randomization 

to resolve the problem of key hacking. Of course, RSA will require a pair of keys; 

therefore, One-Time Password (OTP) is used as an input to the key generation 

process of RSA to generate these keys. However, this research does not 

demonstrate the key length and its entropy to illustrate the system feasibility in terms 

of security. 

Several works have been published to present conceptual and analytical 

understanding of the art of biometric encryption – particularly of biometric key 

generation. Merkle et al. (2012) presented a comprehensive approach to analyse 
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multimodal biometric fusions, which are feature level, score level and decision level 

fusions, in terms of their effects on recognition performance and security in biometric 

encryption systems. In addition, the authors proposed hash-level fusion as an 

efficient direction to combine the biometric features conceptually. Merkle et al. (2012) 

claimed that the multibiometrics consolidation of the bio-cryptographic approaches, 

such as the key generation could be applied depending on the hash level because 

the unimodal of bio-cryptosystems relies upon the successful verification of equality 

hash value. Hypothetically, the hash function is implemented individually upon the 

extracted features from the both biometric modals during the registration phase. As 

a result, two independent parts of public data P1 and P2 and two bit strings b1 and b2 

are produced where b1 and b2 are merged before the hashing process. On 

authentication, the stored hash value of H(b1|b2) is verified with the generated bit 

strings bb1 and bb2 from the target biometric modals.  

Another analytical work was introduced by Golic and Baltatu (2008) who claimed that 

the statistical independence of random variables cannot be gauged via the average 

min-entropy metric. They used as an alternative for measuring the entropy of the 

biometric key the conditional Shannon entropy criteria. Of course, conditional 

Shannon entropy and the average min-entropy can estimate the security of biometric 

cryptosystem from the viewpoint of information theory. Nonetheless, these 

assessments do not show the actual values of biometric data when drawing their 

probabilities only. As a result, these metrics should not be used only to analyse the 

security of biometric encryption systems as these systems could not be secure from 

the information theory aspects, but are mathematically secure. Alongside this work, 

Jain et al. (2008) introduced a conceptual review upon the schemes of biometric 
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template protection specifically on biometric key generation. The writers essentially 

elaborated the biometric key generation concepts in terms of advantages, 

disadvantages, open challenges, and main approaches. Further, the authors 

claimed that the lack of high discriminable biometric features will influence the 

performance of the key generation system with regard to key stability and key 

entropy. In particular, these concepts are defined by Jain et al. (2008) as:  

“Key stability refers to the extent to which the key generated from the biometric 

data is repeatable. Key entropy relates to the number of possible keys that can 

be generated.” 

An analytical and assessable work on the biometric key generation approaches is 

illustrated in Table 3.3 as follows: 
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On the whole, a significant research has been presented within the topic of biometric 

key generation. Although the direct key generation schemes are still open to 

challenge, the approaches of indirect key generation can introduce encouraging 

directions for novel developments. It is clear that the approaches of indirect key 

generation have concentrated upon the most reliable biometrics, such as fingerprint, 

and iris aimed at rising up the accuracy aspect. Furthermore, some approaches have 
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exploited off-the-shelf biometric products to extract the robust biometric features, and 

to generate the consistent biometric keys over time. Also, the key generation 

methods are applied depending on statistical approaches, Artificial Intelligence (AI) 

approaches, and randomisation approaches. From the perspective of verification, 

specific processes, such as hash functions, distance metrics and successful 

decryption are utilised to verify the valid biometric key. Particular error correction 

codes are employed to reduce the intra-person variances, such as RS, BCH, and 

LDPC, and the latter outperforms the others in maximising the performance of the 

proposed systems. It is noteworthy that the performance results with regard to FAR, 

FRR and ERR on average were fairly acceptable.          

3.5 Biometric Key Binding Approaches 

Significant amounts of research have jointly incorporated biometric and 

cryptographic principles to develop secure and complementary approaches. One of 

these is biometric key binding which binds an outer cryptographic key with the source 

biometric template to produce helper or public data during the registration stage (Jain 

et al., 2008). On verification, the reference biometric template and the secret key are 

unbound to employ the latter for cryptographic goals if the test and the source 

biometric templates are from the same genuine user (Rathgeb and Uhl, 2011). Of 

course, the computational complexity of the integration process does not reveal 

important information about the biometric template and the cryptographic key. 

Overall, biometric key binding poses some good attributes. One of these aspects is 

that the same cryptographic key should be regenerated at the verification phase 

because it is not derived from the biometric templates. Further, the use of an outer 

secret key leads to low FAR results, and certainly will achieve the revocability 
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requirement of the biometric cryptography where it is easy to revoke the 

compromised biometric template and reissue different one by choosing another 

secret key. On the other hand, there is an aspect which can be considered a 

challenge. This aspect is that the helper data should be generated cautiously to 

maximise the security and accuracy requirements. Once the attacker has analysed 

the helper data and guessed the key and the biometric data, the biometric key 

binding system will be useless (Uludag et al., 2004, Jain et al., 2008). 

The approaches of biometric key binding can be classified into conventional 

approaches, fuzzy commitment, fuzzy vault, and salting or BioHashing approaches. 

These approaches are discussed in the following subsections.  

3.5.1 Conventional Approaches 

The traditional approaches were the first attempts by biometric encryption scientists 

to comprehend the research area of biometric key binding. The first approach to 

biometric key binding was suggested by Tomko et al. (1996) who proposed a public 

key cryptographic system depending on the fingerprint biometrics. In a brief review, 

on registration, certain fingerprint signals are initially selected to compose a 

distinctive value which is exploited to construct random numbers by using a random 

number generator. Simultaneously, the biometric features are taken out from the 

fingerprint singles via Fourier Transform (FT). Thereafter, fingerprint features are 

bound with the random numbers by filtering approach. Accordingly, this integration 

will be stored on the smartcard of the authentic user. On the probe stage, the 

biometric features are also extracted from the query fingerprint sample by using FT. 

After feature extraction, a correlation mechanism is applied in order to compare 
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between the source and the query features. The random numbers will be valid to be 

utilised in the key generation phase of a public cryptosystem depending on the 

comparison operation.  

In a similar way, Soutar et al. (1998) applied a filter generator based on Discrete 

Fourier Transform (DFT) to extract biometric features from subsequent fingerprint 

acquisitions of the same user (i.e. 6 training samples). A mathematical formula is 

accordingly designed by utilising the correlation concepts to find the peak of 

distinctive features among them. The authors claimed that this procedure will cope 

with the discrimination and distortion of the fingerprint features. For further reducing 

the biometric variances, the researchers selected the core 64×64 of the features and 

converted them into binary values using a binarization-based threshold method. The 

binary features are then incorporated with an external secret key to constitute a 

secure entity using specific permutation approach. For key retrieval, a lookup table 

is constructed and stored in order to recover the same cryptographic key reliant upon 

the test fingerprint features. For verification purposes, the key ciphers N bits of the 

binary features using 3DES algorithm, and these encrypted N bits are hashed using 

a SHA-1 algorithm to construct a validation code vc1 which is also stored at some 

location. On authentication, the cryptographic key is extracted to generate another 

validation code vc2 to be compared with vc1. If vc2 ≠ vc1 then the cryptographic 

key is invalid; otherwise, it will be used for encrypting/decrypting data.  

Generally, Tomko et al.’s and Soutar et al.’s contributions pose a number of 

imperfections. One of these imperfections is that the contributors presumed that the 

fingerprints database was entirely rectified. Image rectification or image alignment is 

a transformation process to project two or more different images, one termed source 
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image and the others are termed the target images, into a common image version 

(Chung et al., 2005). In a realistic environment, the advanced sensors of the capture 

devices can contribute to acquire images of high quality; however, these high quality 

images contain on a number of negative attributes (Crisp, 2013). Consequently, the 

captured samples must be aligned to eliminate the emerging irregularities. Another 

imperfection is that the researchers did not illustrate a strict security analysis to 

provide conclusive evidence about the strength of the security and to convince the 

beneficiaries to adopt the proposed systems. What is more, there were no 

verification results to demonstrate the accuracy of the suggested schemes in terms 

of FAR and FRR to motivate stakeholders to distribute these technologies in the 

industrial world.  

3.5.2 Fuzzy Commitment Approaches  

Generally, fuzzy commitment uses the error correction codes to handle the variations 

of biometric. In addition, biometric key binding-based fuzzy commitment integrates 

an external key with the error correction codes and the biometric template to 

generate secure entity. Fuzzy commitment approaches need usable, accurate and 

fast recognition performance-based constant biometrics to tolerate as much as 

possible the differences between the source and the test biometric templates. The 

iris biometric seems the most appropriate modality to attain these characteristics 

(Janbandhu and Siyal, 2001).  

Particular fuzzy commitment schemas are proposed via iris, and among these are 

the approach that was introduced for smartcards by Hao et al. (2006). In this 

contribution, a 256-byte source iris template is formed by using 2D Gabor wavelet 
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transform, and then a 140-bit outer secret key is encoded with concatenated 

Hadamard and Reed-Solomon codes to obtain symmetric 256-byte codes for the iris 

codes. Accordingly, the integration process is applied between these codes via the 

xor bitwise operation to obtain the lock codes. During the authentication phase, the 

same steps as those described above are applied to the test iris sample. The 

cryptographic key will be recovered if the difference between the source and the live 

biometric templates is lesser than or equal to the Hamming distance divided by two. 

The suggested system was tested using a proprietary database that included 700 

iris samples of 70 participants, with 10 samples from each iris where all the iris 

samples were captured in standard settings via the same CDD camera at a fixed 

measurement distance. The authors demonstrated positive FAR and FRR results of 

0% and 0.47% respectively with a retrieval cryptographic key of 140 bits. 

In a follow-up approach, Sukarno et al. (2009) presented a fuzzy commitment system 

using the incorporation of Reed-Solomon and Hadamard error correction codes to 

maximise the Email security in mobile devices. The researchers constructed a 9600-

bit reference iris template ØRef via a Libor Masek algorithm. On the other hand, an 

external secret key K is randomly generated and hashed by the SHA-512 algorithm 

for verification purposes, and concurrently it is encoded with RS and Hadamard 

codes to obtain the pseudo iris template ØPS. Accordingly, the XOR bitwise operation 

is applied between ØRef and ØPS to produce the locked template ØL. Further, an AES 

cryptographic algorithm is used to encrypt the locked template E(ØL) in order to 

maximise the privacy. On verification, AES cryptographic algorithm decrypts the 

stored E(ØL). At the same time, the query iris template ØQuery is presented to unlock 

ØL using XOR bitwise, and this will contribute to obtain the pseudo iris template Ø′PS 



94 
 

once again. As such, Ø′PS is decoded by RS and Hadamard codes to retrieve the 

outer key K′. The key verification will be successful if the stored hashed value equals 

to the hashed value of the retrieved key H(Kʹ). The experiments of this research were 

carried out on proprietary database which included 70 participants with 10 samples 

from each one. The bitlength of the retrieval key was 408 bits and the FAR and FRR 

results were 0% and 1.5873% respectively. However, the key of AES will be stored 

somewhere; therefore, the security of this key will also depend upon traditional 

passwords.  

Interestingly, Ziauddin and Dailey (2010) suggested fuzzy commitment schema by 

utilizing the Bose–Chaudhuri–Hocquenghem (BCH) error correction codes. At the 

registration phase, three independent iris samples are captured to create three basis 

templates of 9600 bits, based on a Masek and Kovesi algorithm. Accordingly, with 

the purpose of improving the recognition performance and eliminating the iris 

variations, the authors empirically investigated the corrupted bits and the 

inconsistent positions within the basis templates. As a consequence, these 

inconsistencies are masked out via masking manners-based Hamming distance 

metric. Moreover, a 9600-bit indicator vector I is constructed to indicate into the 

locations of the most consistent bits amongst the basis templates, and then this 

indicator is stored to figure out the reliable bit locations upon the target iris template. 

Subsequently, 4095-bit uniform final template UFT is obtained from the stable bits 

which are not corrupted and identical over all the basis templates. Besides this, in 

order to further reduce the biometric variances, BCH error correction codes are 

encoded with a 260-bit external key K, and then the resultant codes O are xored with 

the UFT to originate the retrieval information RI that contributes to recover that outer 



95 
 

key. At the same time, the cryptographic key of 260 bits is hashed for verification 

purposes. At end, the indicator vector I, the hashed key H(K), and the retrieval 

information RI are stored on the smart card as helper data to contribute in verifying 

the genuine user. The experiments of this research were conducted using the iris 

database of Bath University. The free version of this database included 1000 iris 

images of high quality which are captured from 25 participants. 

Ziauddin and Dailey’s contribution introduces interesting aspects. One of these 

aspects is that the researchers enhanced the Masek and Kovesi algorithm of iris 

template creation by using image blurring to reduce the intra-person variations. 

Image blurring reduces the edge details and regulates the differences in curves and 

lines (Gonzalez and Woods, 2008). This perspective will minimize the capacity of the 

error correction codes that should be used to handle the biometric differences; 

therefore, the bitlength of the outer cryptographic key can be increased, and the 

bitlength of the recovered key which is 260 bits confirms this perspective. Another 

good aspect is that the combination of the consistent and masked bits presents the 

best accuracy results where the FRR and FAR rates were 0. What is more, the 

contributors avoid the issue of rotational inconsistencies which take place due to the 

acquisition of images by a rotation process. However, the stored hashed key on the 

smart card may be considered the security issue when the imposter has the ability 

to break the used hash function. Figure 3.6 shows the block diagram of the enrolment 

and verification processes: 
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Figure 3. 6 Block Diagram of Enrolment and Verification (modified from Ziauddin and Dailey 2010)  

3.5.3 Fuzzy Vault Approaches  

The fuzzy vault approach is the same as in fuzzy commitment, where it utilises the 

error correction codes to treat the biometric variabilities. Fuzzy vault, however, 

secures the biometric template and the cryptographic key mathematically against 

forgers. The primary approach was suggested by Juels and Sudan (2002) who stated 

that biometric can be bound with an outer key to generate a vault based on 

mathematical polynomial construction, where neither the biometric nor the key can 

be guessed easily by imposters. A set of biometric features x = {x0, … , xs-1} is created 

with error correction codes, and then an external secret key of k0 … km-1 is chosen to 

calculate a polynomial of p(x) = km-1xm-1 + … + k1x + k0 at each element in x to generate 

a set of authentic points {xi, p(xi)} where m-1 ≤ s-1. In addition, a set of chaff points 

is inserted onto a polynomial in order to camouflage the authentic points, and 
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authentication phase, the live biometric template should considerably overlap with 

the source template to reconstruct the polynomial structure via error correction codes 

and to recover the biometric template and the cryptographic key.  

On the second contribution in fuzzy vault, Clancy et al. (2003) presented the first 

clear fuzzy vault system practically by using the features of fingerprint minutiae 

where the authors statistically investigated the optimum parameters for fuzzy vault 

construction. At first, a pre-processing stage is applied to align the fingerprint 

samples into a normal distribution and to eradicate the biometric noises. The 

minutiae points are projected onto the polynomial construction to be integrated with 

128-bit outer secret key, and accordingly a set of chaff points are inserted at random 

to create the fuzzy vault paradigm depending on RS codes. Subsequently, on 

verification, the target fingerprint template is presented, where it should overlap with 

the reference template to reconstruct the polynomial structure and recover the 

secure elements, the biometric template and a 128-bit cryptographic key. The 

proposed approach is performed on a real fingerprint dataset to demonstrate the 

feasibility of this approach. The authors reported that the security of the primary fuzzy 

vault counstruction which is presented by Juels and Sudan (2002) cannot be 

visualized with reality. The recognition performance of FAR and FRR was 0% and 

around 25% respectively. However, this accuracy figure reflects that the suggested 

system may not recognise the quarter of the legitimate users. 

In more efforts, with the aim of dealing with the biometric variations prior to aligning 

each biometric sample, Nandakumar et al. (2007) suggested a fuzzy vault schema 

in which a post processing step is performed at the time of verification. The research 

claimed that because the fuzzy vault system stores the transformed version of the 
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source biometric template only, the alignment process with the transformed version 

poses a significant challenge. Therefore, a set of reliable curvature points of the 

fingerprint biometric is generated from their orientation and employed as helper data 

to align the reference and the test biometric templates, based on a statistical 

approach and geometrical transformation. Commonly, the appendage process 

between the orientations of curvature points and a 128-bit external key is applied by 

the mathematical polynomial structure with the assistance of the error correction 

codes and chaff points. The experiments for this research were conducted on a 

fingerprint database available publicly from FVC2002 website. The proposed system 

demonstrated promising results of performance, where FAR and FRR values were 

0.04% and 4% respectively with a retrievable key of 128-bit. 

In further attempts, Khalil-Hani et al. (2013) illustrated that although the 

meaninglessly creation of chaff points are used to camouflage the outer 

cryptographic key on the biometric template effectively, it is deemed the most 

complex process of fuzzy vault construction. The researchers enhanced the complex 

algorithm of Clancy et al. (2003) by using the fingerprint biometric. In this approach, 

the external cryptographic key is encoded by cyclic redundancy check codes for 

verification purposes, and then secured via simple randomisation method-based 

XOR bitwise. After the randomisation process, this key is divided into small variables 

of size n+1, and these variables V became the polynomial coefficients of a degree n: 

P(X) = V1Xn + V2Xn-1 + … + VnXn+1. Accordingly, fingerprint features of 16 bits are 

mapped onto the polynomial as x coordinate values to be used to calculate the y-

coordinate values. The x and y coordinate values are considered the valid points of 

the fuzzy vault. From the other perspective, the algorithm of Clancy et al. (2003) is 
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enhanced via specific ideas with the purpose of speeding up the chaff points 

generation.  

Amongst these ideas, the circle packing theorem is used to geometrically pack a 

number of circles in a surface according to a number of conditions. These conditions 

are that the circles of the same radius should not be overlapped and should be 

packed into a square, circle or triangular figure. That is, the new points are inserted 

into the vault template if their boundaries do not overlap the boundaries of the other 

present points. Another insight is that the subtraction, addition, and comparison 

operations are used only to simplify the process of chaff generation rather than the 

square root operators that add a computational complexity to the system. 

Subsequently, the query fingerprint template is compared with the members of the 

fuzzy vault as x-coordinates to obtain the closest vault members by using the steps 

of the integration process, where the Gaussian transform is used to recreate the 

polynomial structure.  

The empirical results via the circles with the boundaries of smooth edges reported 

negative results concerning the overlapping boundaries; therefore, the developers 

employed the squares to cope with the overlapping issue. There was, nevertheless, 

a need to test the boundaries of the new points to ascertain whether or not they 

overlap the other present points over time. In addition, the executed time of the 

presented chaff generation was 310 seconds which is faster than the execution time 

of the Clancy algorithm at chaff and minutiae points of 500 and 30 respectively. What 

is more, the bitlength of the outer cryptographic key was 128 bits which are 

appropriate for AES encryption. However, this research did not provide a strict 

security analysis as a conclusive evidence about the strength of the security so as 
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to convince potential beneficiaries to adopt the proposed system. There were also 

no results to demonstrate the accuracy of the suggested schemes in terms of FAR 

and FRR to motivate stakeholders to introduce these technologies to the industrial 

world.  

So as to cope with the imperfections in the works of Clancy et al. (2003) and Khalil-

Hani et al. (2013), Nguyen et al., (2013) introduced a quick chaff generation algorithm 

based on the ideas of Clancy et al. (2003). In the proposed algorithm, the fingerprint 

sample is separated into a number of cells (pixels) where each cell is located beside 

eight adjacent cells. Subsequently, a fresh chaff point is created at random according 

to a number of conditions. The first condition is that the unique chaff point for a given 

image cell is created at random; however, if the image cell includes a chaff point or 

genuine point then this cell should be ignored. Secondly, the Euclidean distance 

between the fresh chaff point and the existing eight points is greater than or equal to 

the given distance threshold. After the generation of chaff points, an image cell matrix 

is employed to investigate whether or not the correct points and chaff points exist. 

The experimental work was carried out on the public databases from FVC2002 

website, which included 100 respondents with eight samples for each respondent. 

The experiments confirmed that the average EER for database of FVC2002-DB1A 

was 2.4%, while the EER result for the other one of FVC2002-DB2A was 1.9% on 

average. Further, the authors succeeded to retrieve a 128-bit external cryptographic 

key from the vault construction. When creating 24 fingerprint minutiae points and 240 

chaff points, the Nguyen’s algorithm was quicker than the algorithms of Khalil-Hani 

et al. (2013) and Clancy et al. (2003) with 41.86 and 14.82 times respectively.   
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In more recent research, Li et al. (2015) presented an analytical paradigm to combine 

the computational complexity along with the entropy for comprehensive security 

analysis. Moreover, the contributors proposed a fuzzy vault system via multiple 

instances of the fingerprint biometric. Overall, the idea of this system is to add 

computational complexity to thwart attackers who attempt to hack the biometric key. 

A Delaunay triangulation transform based on Voronoi diagram is used to extract the 

fingerprint minutiae set. In this approach, the fingerprint image is divided into a 

number of small triangular regions via a Voronoi diagram, where the entire points of 

a region are placed at the close minutia. Subsequently, the minutiae in adjacent 

regions for the whole Voronoi diagram are connected to form the Delaunay 

triangulation net. Accordingly, the feature vector is extracted by using a number of 

geometrical transformations. With regards to the fusion manner, the templates from 

different fingerprints are securely fused through two levels. During the first level, 

each template is hashed individually by hash function, and then the fuzzy vault 

scheme-based polynomial construction is applied to bind each hashed template to a 

user-specific key that must be constant for all templates because it will be used in 

the next level of fusion. Also, the hash function is applied on these keys and then all 

the templates are jointly hashed for verification purposes. At the second level, an 

additional security control is added into the user-specific keys by the means of 

Shamir’s secret sharing approach, where each key is divided into a number of shares 

and combined based on the mathematical polynomial construction. In terms of 

analysis and evaluation, the fingerprint images were collected personally to construct 

a database of 150 participants. The researchers achieved a biometric key of 32-bit 

entropy with high computational complexity, which makes the system more secure. 
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Furthermore, the proposed fuzzy vault system demonstrated good recognition 

performance of 2.67% FRR and 0% FAR.  

3.5.4 Salting or BioHashing Approaches  

The main objective of the salting or BioHashing approach is to construct an 

irreversible biometric version with the purpose of protecting the source biometric 

template. In these approaches, Personal Identification Numbers (PINs) should be 

also introduced into feature extraction methods at the time of unbinding to construct 

biometric hashes (Rathgeb and Uhl 2011). In accordance with this, Song et al. (2008) 

proposed a biohashing approach applicable to smartcards using the biometric 

hashing method, i.e., one-way feature transformation. In this approach, the biometric 

hashing method extracts the fingerprint features as a vector by filtering method. 

Furthermore, a tokenized PIN is used to generate a random vector with the aim of 

accomplishing the requirements of revocability and key diversity. Subsequently, the 

inner product is applied between the feature vector of the valid user and the 

tokenized random number vector, and the result is binarized iteratively using 

particular criteria to generate irreversible binary features. Following this, Reed-

Solomon error correction codes are applied to correct the error between the source 

and the target fingerprint templates on verification. After RS coding, a 180-bit outer 

cryptographic key K0 is xored with the binary features to generate an irreversible 

template version called “Biocode”. During the validation process, the methods of both 

biometric hashing and Reed-Solomon are applied on the target fingerprint sample to 

construct a one-way target template which is xored with the “Biocode” to extract the 

key K1. Finally, the key recovery process is accomplished by comparing between the 

hash function the outer cryptographic key K0 and the extracted key K1.  
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The empirical tests were carried out using three databases from the FVC2002 

website, and all of them include eight different positions of one hundred various 

fingers. Also, the central area 128×128 of each image is determined by pre-

processing to diminish the potential variations. On the whole, the research of Song 

et al.'s may be deemed one of the most interesting papers due to particular 

characteristics. The authors demonstrated good accuracy results of FAR and FRR 

which were 0% and 0.827% respectively for all databases. In addition, the source 

fingerprint template was not stored on the smart card of the authentic user, and this 

significantly reinforces the security requirements. 

In other work, Inthavisas and Sungprasert (2013) presented a salting scheme by 

using the speech modality in which undesirable features from the frequency-domain 

are rejected to build an irreversible template; therefore, the forgers cannot recover 

the original template in case of compromise. The frequency-domain features are 

extracted by Discrete Fourier Transform (DFT), and one of the training utterances is 

stored as a keying signal. Subsequently, the Dynamic Time Warping (DTW) method 

is applied on the rest of the training utterances to produce the robust features where 

a mapping method-based cepstrum analysis is implemented on these robust 

features to create Descriptors D. Cepstrum analysis is used in mapping method to 

split up the speech components, which are the excitation source and the vocal tract 

system components, with the aim of analysing them individually. In addition, the 

mechanism of random thresholds generation is used in the mapping method to 

increase the entropy of the speech template in which a number of threshold values, 

T and TH, are determined empirically to meet operational conditions. As a result, a 

number of frequency-domain features are refused or accepted to configure an 
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irreversible template depending on these operational conditions. That is to say, the 

Descriptors D are constituted if D is lower than or equal to T. Also, the irreversible 

template will be constructed if the Distinguishing Descriptors DD are lower than or 

equal TH. DD are determined by applying the algorithm of sequential backward 

search on D. Accordingly, the smallest variances are selected from DD to generate 

the binary string S, and then an initial key K, which is picked up by the user, is 

encoded by BCH error correction codes to produce encoded key E(K). At end, the S 

and E(K) are encrypted by the xor bitwise operation to obtain the encrypted data ED. 

Of course, ED, the random thresholds, the hash function of the initial key H(K) and 

the irreversible template will be considered as helper data and stored in the storage 

unit. The helper data will be used during the authentication stage, which will be 

successful if H(K) equals the hash function of the recovered key H(Kʹ). Figure 3.7 

shows the main processes of the proposed system: 

 

 

 

 

 

 

 

 

 

Figure 3. 7 The Main Processes of the Proposed System (modified from Inthavisas and Sungprasert 

2013) 

48 volunteers participated in the experiments of this research using the public 

database of the Massachusetts Institute of Technology (MIT). The researchers 

manifested good performance results where the generated biometric key was 127 

bits, and the equal error rates for random legitimate users and forgers were 4.43% 
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and 13.14% respectively. The only criticism of this contribution is that only seven 

adversaries were engaged in the experiments.  

A chronological and comparative compilation on biometric key binding schemes is 

illustrated in Table 3.4 as below:  

Table 3. 4 Chronological and Comparative Compilation of Biometric Key Binding Schemes  
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As illustrated in table 3.4, the fingerprint and the iris modalities are widely exploited 

in applying key binding approaches because they are quite consistent throughout. 

As such, this would escalate the performance of retrieving the bound bio-crypto key 

from the fingerprint and iris features on the basis of successful biometric verification. 

Various feature extraction methods are utilised including digital signal processing 

approaches and statistical approaches. With regard to the binding process, the 

mathematical polynomial construction is mainly employed to integrate the biometric 

features with the outer cryptographic key. In addition to this, the one-way hash 

function mostly verifies the cryptographic key. Interestingly, some researchers 

incorporated the error correction codes and the pre-processing methods to diminish 

the intra-person variabilities. Overall, the space of the external secret key ranges 
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from 125-bit to 408-bit. The experiments of the proposed approaches were 

conducted on real data collection. Although there are technical research efforts, 

there is a lack in applying the multibiometric key binding approaches. Furthermore, 

there is a need to explore the role of the other biometric modalities, such as the face 

and the keystrokes within the biometric-based key binding mode. However, this 

needs to investigate fairly constant features over time of face and keystrokes 

modalities in order to maintain and support the secret key recovery process from 

those biometric features. Otherwise, the key will not be recovered as long as the 

constancy of the face and the keystrokes features have been significantly varied. 

Such biometric key binding techniques built upon different biometric modalities (i.e. 

fingerprint, face, iris and keystrokes) could possibly introduce positive indications 

towards developing mature and comprehensive multibiometric-based key binding 

approaches. Accordingly, these systems would be more robust and accurate in 

terms of resisting attacks and recovering a constant encryption key on a timely basis. 

That is, incorporating enormous biometric features from different biometric 

modalities would reinforce the biometric entropy – thus providing the potential of 

combating brute force attacks. In addition, if a biometric will be hindered in unbinding 

the secret key the other one can probably aid in doing so.       

3.6 Discussion  

With the aim of strengthening the security controls within cloud-based storage in a 

usable fashion, bio-cryptographic approaches are studied and analysed to develop 

and investigate a novel encryption approach using transparent biometrics. According 

to the literature, biometric cryptography can overcome the weaknesses of password 

verification in more secure and usable way. It offers strong approaches that can be 
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secure vis-à-vis forgers and the genuine users no longer need to remember long and 

difficult cryptographic credentials. Of course, a backup mechanism for providing a 

secure countermeasure should be considered and set in place if the bio-

cryptosystem has been defeated to do so. Generally, biometric cryptosystems are 

classified into three systems: key release, key generation and key binding. Core 

requirements of these systems are revocability, key variety, secure key management 

and performance. The revocability and key variety characteristics mean that various 

keys can be reissued for various applications by the same biometrics in case of 

compromise while secure key management indicates that the key should not be 

stored at some location. The performance refers to the ability of a biometric 

cryptosystem to distinguish amongst the genuine users. An incorrect biometric key 

should be produced when the imposter’s biometric template is presented to the 

system. Overall, the performance of biometric cryptosystems was on average 

acceptable since the researchers utilised ECC and the pre-processing, the alignment 

and noise reduction processes, in order to eliminate the biometric variabilities and to 

raise the accuracy of FAR and FRR. However, caution must be taken when those 

systems are directed towards implementing transparent multibiometric 

cryptosystems. The accuracy of FAR and FRR can be degraded as the biometric 

signals will be very noisy in case of non-intrusive acquisition. In addition to this, the 

selection of particular biometrics plays the vital role in maximising the performance 

in practise due to their nature. In particular, the fingerprint and the iris biometrics are 

very popular as they are quite consistent over time. Moreover, they can be easily 

converted in to binary representation.   
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Biometric key release might be appropriate to deal with the cloud storage security. 

Although this approach does not adequately fulfil the biometric cryptography 

requirements (see section 2.8) in terms of security, further countermeasures are 

required to reinforce the security characteristics. Certainly, the key release approach 

offers certain positive aspects in terms of performance and usability, but there is 

always the possibility of attacking the stored information in which the secret key can 

be released. Additionally, the biometric-based key release system does not support 

the revocability characteristic in case of biometric compromise. Nevertheless, the 

same secret keys in biometric key release would be liberated at all times without any 

variances as they are not directly derived from the biometric features. As Uludag et 

al. (2004) and Kalsoom and Ziauddin (2012) illustrate, the biometric key release 

system cannot cope with attacks on the sensitive stored information, the biometric 

template and the cryptographic key. Consequently, when the biometric template is 

leaked, there could be no point for updating the cryptographic key. This is because 

the key release approach does not provide cancellable biometric templates. Authors 

in the key release research area have justified the usage of cryptographic algorithms, 

such as DES and RSA, to protect the stored information (Soutar et al. 1998); 

however, these algorithms still use secret keys which must be stored. Recently, 

Karovaliya et al. (2015) have sought to resolve the issues of cryptographic key 

management-based biometric identifier through releasing a key via one-time 

password technique into mobile phones. However, the storage of biometric features 

with the purpose of recognising the legitimate user is again considered a significant 

concern vis-a-vis the attacks of imposters. What is more, the one-time password 

could reflect security and usability issues where the dependence on persons is 

existing because the code is still in the possession of the user – one-time password 
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authenticates the presence of that code only not the genuine user. Furthermore, the 

proposed system still needs to use a cryptographic algorithm with a secret key for 

secure communication. The context of this research could take advantage the 

capability of private storage organizations, such as the hard disks to protect the 

important information within the biometric-based key release. In addition, the 

cancellable biometric approach can be employed to support the revocation property.  

Biometric key generation approaches can be classified into direct and indirect key 

generation. The former can generate biometric key from the reference template and 

regenerate it from the test template if necessary. The latter, however, drives helper 

data/secure sketches from the source template aiding in achieving security 

applications via the target template. Direct key generation entirely supports the 

secure key management characteristic. Nonetheless, the reliance upon it for 

improving the cloud storage security seems to be not suitable solution in terms of 

usability because of the difficulty of regenerating the same biometric key directly from 

biometrics throughout. That is, this approach is likely to be inapplicable for encryption 

and decryption aims as if one bit within the generated key is changed over time, the 

file will not be decrypted. What is more, direct key generation cannot reissue other 

keys in case of compromise because it does not store helper data. This opinion is 

confirmed by Rathgeb and Uhl (2011) with the claim that biometrics perhaps cannot 

provide robust features to consistently generate long and updatable keys in the 

absence of public data storage. Further attempts by Hoque et al. (2005), Sheng et 

al. (2008) and Atah and Howells (2009) improved the extraction of the same 

biometric key each time directly from biometrics. Their experimental results, however, 
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were not highly optimistic to replicate these attempts for boosting a more secure and 

usable bio-cryptographic framework.  

Biometric key binding and indirect key generation, in which the key is bound with the 

template and recovered through successful matching, or created by storing public 

data from the template, could not introduce a promising solution for protecting the 

cloud data transparently. According to Uludag et al. (2004), there is no capacity to 

apply the biometric fuzzy matching specifically in the encryption-decryption scope 

for particular reasons. One of these reasons is that the biometric features are often 

noisy and inconsistent over time; therefore, eradicating their variations can be 

considered very difficult in the encryption-decryption scope. Another reason is that 

the fuzzy matching of biometrics may not be applied in the encrypted domain as it 

could be difficult to engineer a meaningful similarity metric in the encrypted 

representation. This refers that successful fuzzy matching, either it is fuzzy 

commitment, fuzzy extractor, fuzzy sketch, bio-hashing, or fuzzy vault (i.e. fuzzy 

approaches) might be inapplicable when the biometric cryptosystem is implemented 

within a non-intrusive mode for encryption and decryption purposes. This is because 

the variances in the intra-sample will be too high. As a result, the similarity between 

the source and query biometric templates cannot be calculated – especially to those 

biometrics of multiple dimensional features such as the face (Feng and Yuen 2012). 

Additionally, fuzzy commitment, fuzzy sketch, bio-hashing, and specific fuzzy 

extractor approaches present a security issue in applying the verification process via 

hash function. The integrity checking of hash function between the stored hash and 

the other one at the time of authentication decides whether or not the biometric key 

is valid for cryptographic applications. Using hash function for verification might 
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possibly lead to serious security breaches representing in compromising the stored 

hash, and thus will minimise the security of biometric key management. This view is 

supported by Stevens (2012) who illustrated that hash functions, such as SHA-0, 

SHA-1, MD4, and MD5 are not collision-free. This means that it could transform two 

messages into the same hash values; therefore, security issues will probably take 

place by masquerade attack. As such, strong cryptographic hash function should be 

selected carefully to overcome such attacks. For revocation goals, some fuzzy 

approaches can cancel the compromised instances to reissue other versions as the 

researchers generated irreversible or locked biometric versions in which the source 

templates cannot be expected by imposters (Song et al. 2008, Juels and Wattenberg 

1999). Nevertheless, other approaches combined the arguably simple passwords 

with the biometric templates to easily revoke the hacked credentials and reissue new 

ones. In contrast, this combination will impact the security management in negative 

aspect because of the need to use the traditional passwords. This opinion is 

confirmed by Chang (2012) with the claim that there is a negative influence upon the 

passwords that are used to generate cryptographic keys through password guessing 

attacks.       

In particular, fuzzy vault may not be efficient and effective to be applied within 

transparent multiple biometric approaches. A possible reason is that the polynomial 

reconstruction problem alongside the chaff points generation within the traditional 

fuzzy vault approach can commonly complicate the pre-processing methods for 

removing the biometric variances (Nandakumar et al. 2007). As a result, the difficulty 

of applying noise reduction steps might be exacerbated in the case of directing the 

fuzzy vault towards a non-intrusive bio-cryptosystem development as the biometric 
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variances will be highly increased. Additionally, the entire complex process of fuzzy 

vault construction is the creation of the chaff points. These points are used to conceal 

limited biometric features (Nguyen et al. 2013). Therefore, exploiting limited 

biometric features in constructing the fuzzy vault may hinder the application of 

mature, comprehensive and robust transparent multibiometric cryptosystem where 

the feature vector is expected to be extended. Accordingly, further research would 

be required to manifest the capability of fuzzy vault approach to achieve non-

intrusive bio-cryptography using transparent biometrics.  

From the aspect of entropy, this factor is associated with the uniqueness of the 

biometric modalities, and in particularly evaluates the number of possible feature 

combinations for the biometric cryptosystem. In simple terms, the entropy factor 

predicts how difficult a given biometric features would be against brute force cracking. 

Whenever the entropy of biometric features is increased, the biometric cryptosystem 

will be strong enough against the efforts which are required to leak the biometric key 

by adversaries. Consequently, the entropy is a very important factor that should be 

taken into account when developing and investigating a bio-cryptographic approach. 

Some of previous research discussed the entropy concept, and evaluated their bio-

cryptosystems with regard to entropy. However, other studies did not take the 

entropy evaluation into consideration (Hoque et al., 2008, Atah and Howells, 2009, 

Jagadeesan and Duraiswamy, 2010, Chang, 2012, Abuguba et al., 2015). What is 

more, for the authors who took the entropy into account, they apparently measured 

the possible values in which a biometric feature vector can have on the presumption 

that all values had equal probability. Specifically, the majority of contributions tend 

to reduce the intra-person variances, aimed at coping with the fuzzy matching by 

http://whatis.techtarget.com/definition/password-entropy
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disregarding significant biometric features. As a result, this would probably affect the 

entropy factor leading to minimise the number of combinations from the feature 

vector. Accordingly, the biometric cryptosystem will be vulnerable to brute force 

attack.  

Interestingly, the literature review illustrated that the approach of biometric key 

generation-based recognition can reflect promising and reasonable indication 

towards developing a novel bio-cryptosystem. This approach exploits a neural 

network technique to recognise the secret key depending on fresh biometric features 

and training parameters which are determined and stored at the enrolment stage 

(Chang, 2012). Such an approach can be possibly adopted to generate a constant 

and non-intrusive bio-crypto key from transparent biometrics for ensuring data 

privacy within cloud storage on a timely basis.  

3.7 Conclusion 

Numerous bio-cryptographic approaches are reviewed and analysed in order to 

explore the effective solution for coping with the security and usability issues of cloud 

storage. Essentially, there are three biometric cryptosystems: biometric key release, 

biometric key generation, and biometric key binding. These systems have sought to 

cope with a number of serious challenges, such as dealing with the hacked biometric 

templates, establishing bio-cryptographic keys, and overthrowing the need of using 

the traditional password. Some researchers succeeded to resolve these issues and 

to achieve secure solutions. In particular, some papers illustrated that considerable 

biometric features could be removed in order to eliminate the biometric variances. 

However, this will probably influence the biometric entropy concept which is 
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considered very vital factor for a bio-cryptosystem. Consequently, there is a crucial 

need in order to improve these approaches – specifically making them as secure and 

usable as possible.  

There are a number of approaches that can be exploited for a non-intrusive bio-

crypto key generation. At this particular stage of research, it is unclear which 

approach would be feasible for employing a transparent biometric of more variable 

features in which a robust entropy and a good accuracy would be accomplished. 

There is no strong evidence showing that there is a single approach better than 

another. However, the analysis of the prior research illustrates that Chang's work 

(Chang, 2012) could reflect a tangible indicator for developing a non-intrusive bio-

cryptosystem in a more secure fashion. In Chang’s approach, the bio-crypto key is 

not directly derived from biometrics; thereby, the fuzzy key generation is achieved 

without disregarding considerable biometric features. As such, it can possibly 

reinforce the biometric entropy with acceptable accuracy to resist the potential brute 

force attacks. Although Chang’s research reflects a good way for ciphering and 

deciphering data, the application of single biometric modality, in particular, the 

keystroke dynamics approach will definitely affect the system with regard to security 

and accuracy. Therefore, Chang’s approach would be taken forward with the aim of 

enhancing the existing weaknesses and investigating the potential of generating a 

bio-crypto key from transparent biometrics to develop a viable innovative encryption 

framework for cloud-based storage. 
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Chapter Four: Investigation into Transparent Bio-

Cryptography  

4.1 Introduction  

It is evident from Chapter 3 that the prior research of biometric cryptography has 

presented various approaches to overcome the issues of biometric and encryption. 

However, there are still specific flaws associated with the security of the resultant 

bio-crypto key and its usability in practice. Significant research consulted in this 

project tends to eradicate the biometric variabilities by ignoring considerable 

biometric features to elevate the system performance. This clearly would impact the 

biometric entropy factor resulting in reducing the number of possible feature 

combinations, thus exposing the bio-cryptographic approach within cloud storage to 

brute force attack. From the usability standpoint, the application of bio-cryptographic 

keys within cloud-based storage currently poses significant inconveniences 

throughout. The subscribers will have to present their biometric credentials 

intrusively each time a file needs to be encrypted or decrypted. This will consequently 

lead to cumbersome and inconvenient issues while using the cloud storage service 

each time. The research area of transparent biometric approach offers the 

opportunity to eliminate the usability issues associated with traditional biometric 

cryptosystems – potentially enabling more usable and secure cryptography. 

However, the use of transparent biometrics would likely increase the variability of 

feature vectors thereby exacerbating the same issue that has always existed for bio-

cryptography solutions. 



117 
 

The approach of a biometric key generation based on pattern recognition presented 

by Chang (2012) could present the potential towards employing transparent 

biometrics to cope with security and usability issues of cloud storage. Despite this, 

there are specific issues within Chang’s contribution that have to be overcome. That 

is, Chang’s approach is only applied upon the conventional keystroke biometric in 

which the features, particularly the ones collected intrusively from typing a simple 

password, will be insufficient for improving cloud-based storage in terms of security 

and usability. The researcher also did not take into consideration the fact of 

maximizing the feature vector length with the purpose of strengthening the biometric 

entropy and combating the potential brute force attack. Furthermore, the correlation 

between the key size (e.g. 128-bit, 256-bit, 512-bit, etc.) and the accuracy of 

reproducing the intended key has not been experimentally examined within Chang’s 

research. 

It is clear from the above arguments that there is a necessity to resolve the existing 

weaknesses Chang’s work in terms of security and usability in practice. Accordingly, 

this chapter presents an innovative bio-cryptographic approach based on Chang’s 

scheme to enhance cloud storage service using a number of transparent biometric 

modalities. In addition, it takes into account the maximum number of possible feature 

combinations to support the biometric entropy factor in resisting potential brute force 

attacks. Such an approach needs to be empirically investigated from different 

perspectives (i.e. security, accuracy and usability) to evaluate its practicality. As a 

result, three experiments are designed to investigate the effectiveness of the 

approach. Prior to thoroughly presenting the methodological approach of each 
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investigation, the core proposed approach is described in the following section in 

order to appreciate the need for conducting those experiments. 

4.2 A Novel Bio-Cryptographic Approach   

The proposed approach seeks to develop a convenient and secure user-oriented 

cryptographic solution to further protect the data privacy of cloud storage by the 

subscribers themselves. This approach handles the shortcomings of the password 

login and removes the usability issues of the third-party cryptographic applications. 

According to Chang (2012), the pattern classification can be exploited to generate a 

multi binary output as a key using the live biometric features and helper data that is 

specified and stored on enrolment. As such, the novel approach applies a 

transparent biometric technique to create repeatable bio-crypto key on the fly via a 

pattern recognition approach without storing sensitive data (i.e. biometrics and key).  

In the machine learning field, a long binary key can be established via employing the 

multi-label classification problem. One of the methods to technically solve the 

problem of multi-label classification is an adapted algorithm approach. 

Backpropagation neural network is widely used to solve complex problems in pattern 

classification and achieved good performance (Chang, 2012). Therefore, the 

approach of backpropagation algorithm is adapted for generating a long binary key 

from a transparent biometric technique. The innovative bio-crypto key generation 

scheme is depicted in Figure 4.1. 
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Figure 4. 1 The Innovative Bio-Crypto Key Generation Scheme  

In the presented approach, a Transparent Collector (1) will at first capture a number 

of biometric samples such as fingerprint, face, and keystrokes, and subsequently a 

Feature Extractor (2) will take out the biometric features. As such, the reference 

features would be trained by backpropagation neural network (i.e. NN Classifier (3)) 

to identify a multi-label random key. Then, only the weights in addition to the hashed 

key on training are stored as a Helper Data (3A) to reconfigure the network once 

again when generating the same key (master key) on encryption/decryption via the 

fresh features. To this end, a fully-interconnected 3-layer feed forward neural 

network is configured including input, hidden and output layers. Fundamentally, the 

input layer is the biometric feature vector, and the output layer is the desired binary 

key – the master key can be generated on training by using any random key 

generation approach. Each neuron/node at the hidden and output layer is connected 

to a bias and equipped to an activation/transfer function according to the goal of the 

neural network. In backpropagation, the transfer function at the hidden layer either 

can be tan-sigmoid or log-sigmoid where the former produces [-1, 1] values, and the 

latter [0, 1] values. In addition, the output layer commonly utilizes any linear 
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activation function to produce limited outputs of small ranges.  As the target of the 

neural network is a binary random key of a k-bit length, the activation function of log-

sigmoid is set at the output layer to produce a binary secret key and the tan-sigmoid 

at the hidden layer. As a result, the 1’s labels would be ranked higher than the 0’s 

labels reliant upon a specific threshold. Of course, the master key will be correct if 

its hash value (4) equals to the stored hashed key on enrolment (4A). With numerous 

samples being acquired in a non-intrusive fashion, this verification procedure would 

allow to trade-off the FRR against FAR to generate the correct key. Within minute 

window of time, it is spontaneously possible to capture 6 samples. By applying the 

key verification, only one key is needed to be correct per minute. If the valid key is 

produced via one successful sample within that time window, the innovative 

approach would be effective even with 5 samples being rejected. Consequently, 1-

minute key generation process is adopted to tackle the high error caused by the 

transparent collection. The last aspect of the approach is that an individual file seed 

(5A) stored also as a helper data is entered alongside with the generated master key 

on encryption into a random Key Generator (5) to produce document keys. 

Eventually, each document key is used to seamlessly encrypt/decrypt each file within 

the cloud storage using a sophisticated Cryptographic Algorithm (6) such as AES. 

4.3 Research Methodology  

As a result of experiencing security and usability problems caused by poor or 

cumbersome credentials within cryptography, the generation of a constant 

repeatable bio-crypto key from transparent biometric is investigated. The 

cryptographic key creation using transparent biometrics can be very challenging as 

the non-intrusive collection of a sample will result in a higher degree of biometric 
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variations. In accordance with this, a number of research questions are addressed 

to be experimentally investigated by the following: 

 What is the reliability of regenerating key material from a transparent biometric 

approach?  

 What are the potential factors of classification that might affect the key 

generation performance?  

 What is the correlation between the key size generation and the accuracy of 

reproducing the required key through biometric features?  

Therefore, three experiments were developed to be carried out with the purpose of 

exploring the derived research questions as below: 

Experiment 1 – An investigation into transparent bio-crypto key generation: a 

baseline set of experiments to investigate how reliable the proposed bio-

cryptographic approach at generating a timely constant and non-intrusive key via 

classification from transparent biometric modalities.      

Experiment 2 – An Investigation into improving key generation performance: a series 

of experiments upon each biometric modality to investigate the factors that could 

impact classification with a view to enhancing the key generation effectiveness. 

Experiment 3 – An investigation into generating different key sizes through features: 

a set of experiments upon each biometric modality to determine the correlation 

between the key size (e.g. 128-bit, 256-bit, 512-bit, … etc.) and the accuracy of 

reproducing the intended key by the biometric features. 
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The above experiments are all related to each other where the outcome of the first 

experiment is fed to the second one and the latter to the third experiment. Once 

experiment one explores the reliability of generating a bio-crypto key from each 

selective transparent biometric modality, experiment two will seek to enhance the 

key generation performance by modifying the classification factors of a 

backpropagation neural network. Experiment three accordingly would investigate the 

correlation between the key length (e.g. 128-bit, 256-bit, 512-bit, … etc.) and the 

accuracy of generating the desired key based upon the superior classification 

approach which is determined by experiment two. Figure 4.2 summaries the 

methodological approach of the experiments as follows:  

 

 

 

 

 

 

 

 

Figure 4. 2 The Methodological Approach of the Experiments 
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4.3.1 Datasets  

With a view to validating the core contribution of this research, functional and 

practical biometric data collected in a transparent and unconstrained manner was 

required. Such a collection, however, will produce a more variable feature vector thus 

complicating the same problem of which bio-cryptography is always struggling to 

cope with. As a result, a well-established feature extraction technique was needed 

to tackle those variances. Commercial algorithms can offer an effective approach in 

extracting a fairly consistent feature vector over time. These algorithms are designed 

in a reliable way after years of research and development in biometrics. Being a 

commercial algorithm also includes a number of image analysis and pre-processing 

methods by which the best quality of feature vector can be obtained 

(NEUROTECHNOLOGY, 2016). 

To the best of the author’s knowledge, whilst some commercial vendors enable the 

developers and integrators to take advantage the entire biometric system only, few 

of them break the system down into components, such as feature extractor and 

matcher for a sought goal. In addition to this, these components can be separately 

utilized in particular within fingerprint and face technologies (physiological biometric 

modalities only). On the other hand, a behavioural biometric modality needs also to 

be considered in this research to explore the potential contribution of generating a 

bio-crypto key from such an approach. Selecting a variety of physiological and 

behavioural modalities would offer a better insight about the system performance in 

practice and its potential improvement further on. Accordingly, three biometric 

modalities including physiological (fingerprint and face), and behavioural (keystrokes 
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analysis) were selected to determine their contribution within the proposed bio-

cryptographic approach.  

Collecting biometric data of a sufficient number of users over an appropriate number 

of samples in a transparent fashion was required. This perspective would reveal a 

tangible indication with regard to the potential of applying the proposed approach in 

the real world. The acquisition of transparent biometric samples, however, is not an 

easy task. Having done an exhaustive search of biometric datasets online, the 

majority of them was captured in very controlled conditions where they are typical for 

normal biometric evaluation and do not reflect the characteristics of transparent 

biometric data. These characteristics represent the acquisition of biometric samples 

in a non-intrusive manner without the user's explicit interaction in order to incorporate 

a realistic range of biometric variances. There was a choice to make about whether 

to carry out a process of capturing transparent biometric data or ultimately employ 

available datasets that could probably represent the transparent sample collection. 

Some authors contributed to the research area of biometrics in presenting real 

biometric datasets consisting of a reasonable reflective population. They also took 

into consideration the fact of incorporating various biometric variations for 

experimenting the possibility of developing sophisticated security applications in 

reality. Using such datasets in these specifications can reflect the sample collection 

in a transparent and unconstrained manner. As such, it is believed that there was no 

apparent need to pragmatically undertake the data collection phase in this study.   

In seeking the datasets in which a considerable population of biometric samples 

were captured in a fairly noisy fashion, Yin et al., (2011) introduced a realistic 

database (SDUMLA-HMT) for a various range of biometric modalities, such as 
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fingerprint and face. This database was considered very appropriate for the research 

area of unconstrained biometric in real world environments where diverse conditions 

of biometric variabilities were incorporated (Yin et al., 2011). As such, the fingerprint 

and the face datasets of the SDUMLA-HMT were adopted for experimentation. On 

the other hand, given the absence of the keystroke dataset within the SDUMLA-HMT, 

another one was needed to suit the others in terms of variability and popularity. 

Having checked a number of available keystroke datasets online with regards to their 

protocol for data acquisition, a realistic scenario for typing was set in GREY dataset 

(Giot et al., 2009) thus triggering real biometric variances to occur. Therefore, this 

dataset was satisfactorily adopted in order to reflect the non-intrusive sample 

collection as close as possible. The details of the above-mentioned datasets are 

described in the following subsections starting with the physiological biometrics of 

fingerprint and face and then turning into the behavioural biometric of keystrokes 

analysis.   

4.3.1.1 Fingerprint Dataset  

The SDUMLA-HMT fingerprint dataset comprised 106 respondents. Each one 

presented 6 fingers of both hands (i.e. thumb, index and middle fingers) to acquire 8 

samples per finger via 5 different scanners – totally 5 sub-datasets (Yin et al., 2011). 

In a real-time scenario, an application would often capture a single finger for security 

purposes; therefore, only the index finger (the typical instant) was taken into 

consideration in this research. The fingerprint dataset which was collected by the 

AES2501 swipe scanner, was arguably considered more variable than the other 

datasets since the picture sample size clearly differed in various swiping processes 

(i.e. there is no fixed size for fingerprint images). Furthermore, while checking some 
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participants' samples of the same dataset, they were obviously collected by placing 

a finger in an irregular manner on the capture device, see Figure 4.3. The AES2501 

dataset was accordingly employed in this research for experimentation purposes. 

Figure 4.3 shows some samples of the fingerprint dataset acquired by the AES2501 

swipe scanner as below: 

 

  

 

Figure 4. 3 Sample Images of Fingerprint Dataset Captured via the AES2501 Scanner (Yin et al., 2011)  

Table 4.1 depicts the core fundamental properties of the adopted dataset as follows: 

Table 4. 1 The Characteristics of the Fingerprint Dataset  

Number of Users 106 

Number of Samples  8 Samples for a Finger 

Image Size  Not Fixed  

Image Type  256 Gray-Level   

Image File Format  Bmb 

Once the fingerprint dataset was selected and identified in line with the context of 

this research, a feature extraction approach was needed to extract distinctive values 

for the biometric key generation process. With the purpose of extracting reliable 

fingerprint features, a commercial algorithm was sought in order to take advantage 

of consistent features over time. Having checked a number of commercial 

technologies, Neurotechnology fingerprint software development technology 

(NEUROTECHNOLOGY, 2016) was one of the commercial biometric venders that 

can individually perform the feature extraction process. The feature extraction 
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approach of Neurotechnology forms up the features in a fashion that allows 

researchers to understand what a feature dose truly really mean in addition to its 

start and end in order to experimentally determine if it is useful or not. Therefore, this 

approach would offer the opportunity of evaluating the biometric entropy based on 

the actual feature values. The extracted feature vector is also compatible with 

biometric standards, such as ISO/IEC and ANSI/INCITS standards. Furthermore, 

Neurotechnology fingerprint demonstrated reliable results in significant evaluations 

and competitions (e.g. National Institute of Standards & Technology, and Fingerprint 

Vendor Technology Evaluation for the US Department of Justice) 

(NEUROTECHNOLOGY, 2016). This confirms that Neurotechnology supplies 

effective algorithms and credible software development technologies for developing 

sophisticated secure information technology solutions. Accordingly, the feature 

extraction algorithm of Neurotechnology fingerprint technique was utilised in this 

research to extract the fingerprint features. It is worth noting that Neurotechnology 

does not disclose any details concerning the applied proprietary algorithms in terms 

of how the fingerprint features are extracted.    

Having implemented the feature extraction approach of Neurotechnology, the 

features of fingerprint minutiae were extracted from 102 users whereas they cannot 

be extracted from the other four participants due to considerable biometric 

variabilities. As a result, the feature extraction approach of Neurotechnology flailed 

to obtain the feature vector for those users. Further, each minutiae-based feature 

has a set of six values. The feature set of fingerprint minutiae is described in Table 

4.2 as below: 
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Table 4. 2 The Description of Fingerprint Features  

Feature Set Description Standard Range 

Minutiae X 

The X coordinate of where this 

feature is on the fingerprint 

sample 

0-dimenssion of the 

vertical pixels 

Minutiae Y 
The Y coordinate of where this 

feature dose exist upon a sample 

0-dimenssion of the 

horizontal pixels 

Minutiae Angle 

The angle between the horizontal 

axis and the direction of the 

fingerprint minutiae 

0-360 

Minutiae 

Quality 

A value which determines how 

bad/good the quality of the 

fingerprint minutiae (i.e. the 

higher the value, the better the 

quality of the minutia. If quality 

of the minutia is unknown, it 

must be set to zero)    

0-100 

Ridge Density 

The fingerprint ridge count 

corresponding to a defined 

fingerprint area 

0-255 

Curvature The level of a ridge near minutia  0-255 

The following figure 4.4 explains the minutiae-based feature set – it is worth noting 

that Neurotechnology does not disclose any illustrations about the features of ridge 

density and the curvature as they are their own intellectual property:    

 

 

 

Figure 4. 4 Fingerprint Minutiae-Based Feature (Bansal et al., 2011)  

Given samples of different quality, a number of features’ sets were varied from one 

sample to another. As such, presenting various number of minutiae points reflects 

an indicator about the quality of the feature vector. Even with the commercial 

approach, there is a difference across acquired samples of participants in terms of 
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how many minutiae points were extracted in the meantime.  As a consequence, this 

argument demonstrates that the selected fingerprint dataset included high degree of 

variability amongst samples which could represent a transparent fingerprint 

collection. Figure 4.5 shows the difference amongst a number of a user’s samples 

as follows: 

 

 

 

 

Figure 4. 5 The Difference Minutiae amongst a Number of a User’s Samples (Yin et al., 2011)   

In light of the varying minutiae points from one sample to another, it would be 

improper to compare one point from the sample 1, for instance, with another point 

from sample 2 of the same user as they are unaligned points. Therefore, there is an 

apparent need to apply an alignment approach in order to obtain the same number 

of features among samples across all individuals – thus legitimizing like for like 

comparison. The problem of fingerprint alignment via the minutiae axises 

fundamentally falls into a 2D point pattern matching. Accordingly, an approach was 

implemented with the aim of aligning the minutiae points to be into a common version 

reliant upon the distance between two point sets of features.  

4.3.1.2 Face Dataset  

The SDUMLA-HMT face dataset included 106 users, where literally 84 facial 

samples were gathered from each respondent (Yin et al., 2011). Table 4.3 lists the 

main attributes of the adopted dataset as follows:  

43-Point 64-Point 36-Point 
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Table 4. 3 The properties of Face Dataset 

Number of Users 106 

Number of Samples  84 Samples per User 

Number of Images 8904 Images 

Image Size  640×480 Pixels 

Image Type  Colour  

Image File Format  Bmb 

Total Size of Dataset 8.8 GB 

During data collection, a variety of facial variances (i.e. poses, lightings, face 

expressions and accessories) were captured to reflect a real-life scenario. Therefore, 

this dataset was considered very challenging in the research area of unconstrained 

face recognition. As such, it would be evidently appropriate for experimenting the 

transparent bio-cryptographic approach using the face biometric. With regard to the 

pose condition, three instances of pose (i.e. looking forward, upward, and downward) 

were incorporated. Then, 7 samples were taken for each instance to totally obtain 21 

samples from each participant as shown in Figure 4.6. 

 

 

 

 
 

Figure 4. 6 Face Pose Samples (Yin et al., 2011) 

For facial expressions, four expressions were identified including smiling, surprising, 

frowning and closing eyes. Then, 7 samples were captured for each expression thus 

resulting in 28 samples of face expressions as depicted in Figure 4.7:  
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Figure 4. 7 Facial Expression Variations (Yin et al., 2011)  

From the accessories perspective, a pair of glasses and a hat were utilised as two 

instances of accessories to collect 14 samples from each individual (7 samples for 

each instance) as illustrated in Figure 4.8. 

 

 

 

 

Figure 4. 8 Facial Accessories (Yin et al., 2011)  

Regarding the lighting variances, three lamps were set to make different lighting 

angles. Accordingly, 7 samples were captured by illuminating a single lamp only 

each time - thereby obtaining totally 21 samples of different lighting conditions. The 

face samples of different illuminations are shown in Figure 4.9 (Yin et al., 2011). 
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Figure 4. 9 Face Samples of Different Illuminations (Yin et al., 2011)    

The facial software commercial technology of Luxand has been considered an 

advanced technology within the research area of face recognition as it has made 

significant contributions within academic research and development during the 

recent years (Luxand, 2016). In particular, Luxand components were applied and 

referenced in over 200 papers published in renowned scientific journals. Therefore, 

Luxand was adopted in this research to extract the discriminative facial features 

where the coordinates of 70 interpretable feature points (including eyes, eyebrows, 

mouth, nose and face contours) can be detected from a face sample (Luxand, 2016). 

The features in this manner present a tangible indication regarding how reliable the 

biometric entropy would be against the potential brute force attack. That is, the 

biometric entropy can be assessed reliant upon the actual feature values. In addition, 

each facial feature would be formed up individually in a fashion that determines its 

start and end in order to experimentally explore if they it is effective or not. Having 

taken out the coordinates of 70 facial feature points via the feature extraction 

approach of Luxand, the feature vector extracted for 50-83 samples of 105 users 

only owing to the huge facial variabilities. As a result, the feature extraction approach 

of Luxand flailed to obtain the feature vector for those samples. The description of 

the coordinates of 70 facial feature points is illustrated in Figure 4.10 as below:  
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Figure 4. 10 Facial Feature Points (Luxand, 2016) 

4.3.1.3 Keystroke Analysis Dataset   

On the whole, the GREYC keystroke dataset included 133 users with different 

number of samples for each (Giot et al., 2009). Table 4.4 illustrates the essential 

characteristics of the GREYC keystrokes dataset: 

Table 4. 4 The Attributes of Keystrokes Dataset 

Number of Users 133 

Duration of Collection   2 Months  

Number of Sessions  5 (1-2 Sessions per Week) 

Number of Keyboards   2 

Time of Typing Passwords   12 Times per Session 

Number of Samples  12-60 samples  

Password  greyc laboratory 

Number of Total Features  60 
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Whilst 100 participants presented the highest equal number of samples (i.e. 60 

samples per user), the other 33 users had a smaller number of samples – where only 

12 samples were captured. Due to the need for sufficient samples, only 100 users 

having the 60 samples were selected. The features of the keystroke dynamics 

approach were determined at the same time of data collection; therefore, four 

keystroke features were identified as follows: 

 Difference between two press actions 

 Difference between two release actions 

 Difference between one press and one release actions 

 Difference between one release and one press actions 

The keystroke dynamic features were assembled during two months across five 

sessions, where one or two sessions were performed per week. Prior to gathering 

features, a data collector asked the participants to log in to the system to practise 

how to type a uniform password (i.e. greyc laboratory). During the collection stage, 

the volunteers were asked to type the password 6 times by using two different 

keyboards in order to assemble realistic features acquired in a real-time scenario 

with variances. That is, 12 samples were gathered per session, and totally 60 

samples per user were obtained during five sessions (Giot et al., 2009).  

4.3.2 Investigation into Transparent Bio-Crypto Key Generation  

The primary purpose of this experiment was to investigate the reliability of generating 

a non-intrusive bio-crypto key material on a timely basis by using a number of 

transparent biometric approaches. Those transparent biometric approaches were 

physiological modalities (fingerprint, face) and behavioural modality (keystroke 

dynamics). The challenge represents the ability to generate a reproducible secret 
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biometric key using a transparent biometric which is inherently noisier than its 

conventional counterpart. In a non-intrusive biometric mode, the samples would be 

collected in a different way in comparison with the traditional biometric mode – where 

there is no obvious interaction between the capture device and the person. This 

would present more variable biometric feature vector leading to a higher error. As a 

consequence, there is an essential need to explore how reliable the approach was 

at generating a transparent bio-crypto key over time to be employed for a seamless 

cryptographic framework. 

In accordance with the proposed bio-cryptographic approach discussed in 5.2, a 

number of methods were applied to carry out various tasks, such as feature 

extraction, and the generation of the neural network. These methods are briefly 

outlined in the following:   

 Feature Extraction: extracts the feature vectors of fingerprint and face by 

using commercial algorithms, whereas the features of the keystroke actions 

are determined at the same time of data collection.    

 Data Manipulation: normalises the biometric features into the range of 0-1. 

As Snelick et al., (2003) illustrated that it is necessary to normalise input 

features into the same range as the output in order to reduce the complexity 

of the resulting target and the performance.  

 Dataset Splitting: divides the samples of the selective datasets into two 

groups: the first was used for training the neural network classifier, and the 

other was utilised to validate the performance of the classifier. 
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 Neural Network Configuration: configures a fully-interconnected 3-layers 

feedforward neural network structure by setting its parameters in terms of 

inputs, hidden neurons, and outputs.            

 Helper Data Construction: constructs and stores important data (i.e. the 

weights of the neural network – disadvantageous to attackers) at the time of 

training in order to generate a repeatable secret key on time.    

 Bio-Crypto Key Generation: generates bio-crypto keys on training to facilitate 

in constructing helper data and on validation by using the live biometric 

features and the stored helper data.  

 Evaluation: evaluates the performance of the neural network classifier by 

calculating the accuracy of generating a consistent key each time.  

In this experiment, each biometric modality was individually experimented in order 

to determine the reliability of generating a transparent bio-crypto key from each 

modality. Having extracted and normalised the biometric features, the classification 

of a dataset should be fundamentally developed on training data and then applied to 

test data. Consequently, a split-sample approach was needed to divide a dataset 

into two groups: registration group and key generation group. The former 

(registration group) included a number of reference samples for building a user 

profile and training the classifier to construct an indispensable public/helper data to 

generate a key in the meantime. However, the latter (key generation group) 

comprised the fresh samples that were arguably acquired in a non-intrusive and 

unconstrained fashion to validate the performance of the classifier in generating a 

constant bio-crypto key on a timely basis. In line with a standard methodology, the 

splitting approach of 50/50 was performed upon the selective datasets aiming at 
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dividing each one into registration and key generation groups in order to provide an 

equal amount of data for each group - thus leading to a realistic evaluation. 

With a view to measuring the system accuracy, two metrics of error at rejecting the 

valid user or accepting a forger to create the required key are considered (i.e. False 

Rejection Rate (FRR) and False Acceptance Rate (FAR)). Thus, an individual was 

considered a legitimate user, while all the others were assumed the adversaries who 

were targeting the valid key of the legitimate user. This process was performed 

consecutively with the aim of assuring that all individuals had the opportunity to be 

treated as genuine users, and the results averaged across the population. Table 4.5 

demonstrates the genuine user’s samples against imposters’ samples during the 

registration and key generation stages reliant on the selected splitting data approach 

for all modalities. 

Table 4. 5 Experimental Settings of the First Investigation   

Modality 

No. 

of 

Users 

No. of 

Samples 

Splitting 

Sample 

Approach 

Registration  Key Generation 

Fingerprint 102 8 50/50 
Genuine=4 

Imposters=404 

Genuine=4 

Imposters=404 

Face 105 50-83 50/50 
Genuine=42 

Imposters=4368 

Genuine=41 

Imposters=4264 

Keystrokes 100 60 50/50 
Genuine=30 

Imposters=2970 

Genuine=30 

Imposters=2970 

A backpropagation neural network is widely used to solve complex problems in 

pattern classification and achieved good performance (Chang, 2012). The Feed 

Forward Multi-Layer Back-Propagation (FF-MLBP) neural network was 

consequently employed for key generation/identification. As Hagan et al., (1996) 

illustrated, (Input + Output)1/2 neurons would be used in the hidden layer of the neural 

network in order to achieve acceptable classification performance, where the input 
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represents the number of elementary features for each biometric modality and the 

output represents the desired key. With regard to the iterations/epochs number of 

the neural network, a set of tests were performed to determine a satisfactory figure 

for an effective classification (i.e. the number of epochs was 1000). Table 4.6 

accordingly shows the parameters of the FF-MLBP neural network. 

Table 4. 6 FF-MLBP Classification Parameters  

Modality Futures/Input  
Output 

(Key) 
Hidden  Weights  

Fingerprint 516 256 386 200204 

Face 140 256 198 28372 

Keystrokes 60 256 158 10052 

For helper data construction, two target random keys were created and labelled for 

the feature vectors of the reference samples at the time of training, one for the 

legitimate user and another (inversed the first) for the remaining presumed imposters 

with the aim of evaluating the FAR and FRR rates later on validation. A random 

programming function was exploited to create these keys by seeding the subject 

number within a dataset. Table 4.7 reveals the creation of a number of genuine users’ 

keys against the imposters’ key dependent upon the subject number in a dataset.  
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Table 4. 7 Generated Keys on Enrolment    

Subject 

No. 
Genuine User Key (256-bit) Imposters’ Key (256-bit) 

0 

1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 

0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 

0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 

1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 

1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 

0 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 

1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 

1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 

0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 

0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 

1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 

1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 

0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 

1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 

1 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 

0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 

0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 

1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 

0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 

0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 

1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 

1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 

0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 

0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 

1 

0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 

0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 

0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 

0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 

1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 

0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 

1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 

0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 

0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 

1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 0 

1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 

1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 

1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 

1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 

1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 

1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 

1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 

1 1 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1 

0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 

1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 

1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 

0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 

Accordingly, the feature vectors were learned by the configured backpropagation in 

order to identify/recognize the target keys. Afterwards, the training parameters in 

particular the predetermined weights in recognising the valid key were stored only 

as a helper data at some location. During the phase of key generation, the helper 

data (weights) re-configured the neural network structure once again to produce the 

same established key on training by using the feature vectors of the fresh samples. 

The non-intrusive sample collection presents more variable feature vector leading to 

a higher error. The key generation process, therefore, was designed to create a key 



140 
 

through a fixed period of time. In this case, the correct key can be produced reliant 

upon the trade-off between the FRR and the FAR. As the encryption/decryption pro-

cess is undertaken in a transparent fashion, enormous samples can be taken without 

inconveniencing the user. This allows the system to result in a high tolerable FRR, 

as long as the genuine user can generate the desired key via at least one successful 

sample within a predefined period of time. As such, a threshold was precisely 

determined on the basis which obtained the lowest FAR to ensure a valid key 

generation. Therefore, a correct secret key is generated once a minute as soon as 

the genuine user would continuously interact with his/her device. On that basis, the 

proposed system can non-intrusively collect 6 samples per minute, and one sample 

at least should correctly create the required key. This argument accordingly 

interprets that the FRR rate of 83% is fairly acceptable within one minute time of 

window in generating the non-intrusive key of 256-bit length, and simultaneously the 

FAR would be as minimal as possible. As such, a number of tests were undertaken 

upon different threshold ranges (i.e. 1 to 0.01 and 1 to 0.001) in order to specify the 

best accurate threshold for each user. Empirically, the most successful threshold 

range for the FAR and FRR values across the whole population was the range from 

1 to 0.01. For the experimental purposes, the keys of a genuine user on registration 

and validation are compared with each other in order to calculate the FRR value. 

However, the key of an imposter on validation is compared with the key of genuine 

user on registration to measure the FAR value. The FRR value is evaluated when 

the genuine user cannot utilise the desired key. As a result, if the system does not 

create the bio-crypto key to the valid user via his/her features, the false rejection 

number was counted as 1. Accordingly, the FRR rate is obtained by dividing the total 

false rejection number by the total endeavours of the genuine user to generate his 
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key, and then the result is multiplied by 100%. Contrarily, the FAR value is evaluated 

when the presupposed imposters can illegitimately utilise the genuine user's key. 

Thus, if the system generates the bio-crypto key to the imposters by their features, 

the false acceptance number was counted as 1. As such, the total false acceptance 

number is divided by the entire number of forgers, and then the result is multiplied 

by 100% in order to calculate the FAR rate. 

4.3.3 Investigation into Improving the Key Generation Performance 

In view of potential weaknesses from the first investigation, influential aspects upon 

the key generation process were explored in order to escalate the performance. One 

of those influential aspects can be the imbalance learning of the legitimacy and 

illegitimacy instances. Training small normal/legitimate samples (minority class) 

opposite large abnormal/illegitimate samples (majority class) can impact the 

effectiveness of the classification approach in generating the desired key. In this 

case, the applied classification algorithm (FF-MLBP) would tend to recognise all 

samples as a majority class, and mostly lose the capacity to identify the minority 

class. With the previous methodical approach, whilst the training data of fingerprint 

included 4 genuine samples against 404 imposters’ samples, the reference data of 

face contained 42 legitimate samples versus 4368 forgers’ samples. On the other 

hand, the populations of a real-time application-based biometric are quite often 

organised on valid categories against a small percentage of invalid categories 

(Chawla et al., 2002). Thus, it is believed that the overall performance of each 

biometric modality degraded because of using inaccurate or biased parameters in 

classification. Accordingly, it would be broad to re-examine the previous experiments 
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depending on acceptable insights in order to determine the potential performance in 

practice.  

In seeking the methods of coping with imbalance learning, oversampling technique 

can improve the classification performance for most imbalanced distributions (He 

and Garcia, 2008). According to the prior studies, the oversampling approach is 

considered an effective solution to handle imbalanced spaces in which categories 

are unequally represented on the order of 100 to 1, 1000 to 1, or 10000 to 1 (Chawla 

et al., 2002). Given similar categorical representations within the last experiment, the 

random oversampling technique was adopted to deal with imbalance training. By 

applying the principle of this method, random samples from the legitimate set were 

duplicated to be equal to the illegitimate set. In this investigation, the random 

oversampling technique treated the imbalanced classes at the training time only; 

otherwise, it would be unrealistic and unfair to be conducted on validation/key 

generation. Table 4.8 demonstrates the genuine user’s samples against imposters’ 

samples via the split-sample approach of 50/50 during the registration and key 

generation stages for all modalities. 

Table 4. 8 Experimental Settings of the Second Investigation   

Modality 

No. 

of 

Users 

No. of 

Samples 

Splitting 

Sample 

Approach 

Registration Key Generation 

Fingerprint 102 8 50/50 
Genuine = 404 

Imposters = 404 

Genuine = 4 

Imposters = 404 

Face 105 50-83 50/50 
Genuine = 4368 

Imposters = 4368 

Genuine = 41 

Imposters = 4264 

Keystrokes 100 60 50/50 
Genuine = 2970 

Imposters = 2970 

Genuine = 30 

Imposters = 2970 

With the potential of further improving the key generation effectiveness being 

accomplished via the balance training, another set of experiments were conducted 
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to determine the influence of the classification parameters upon the FF-MLBP. In 

essence, these experiments were carried out using the same methods within the last 

experiment, whereas the classifier parameters (e.g. rounds, number of hidden 

neurones and number of hidden layers) were modified to determine their effect upon 

the key generation performance. As such, the input and output layers (i.e. the 

features and the secret key) were constantly set reliant upon the selective biometric 

modality, where the feature vector will be different from one modality to another. 

Then, two neural network structures were configured with different settings: the first 

with one hidden layer and the other with two hidden layers. The rounds/epochs of 

both network structures were at the figures of 100, 500, 1000, and 2000. With regard 

to the one hidden layer network, the hidden layer size of 140 and the other of 280 

were examined for each round respectively. However, within the two hidden layers 

network, the number of neurons comprising each hidden layer of 80-80 and another 

of 120-120 were undertaken for each epoch successively.   

4.3.4 Investigation into Generating Different Key Sizes through 

Features 

Given the potential of generating different bio-crypto keys, the correlation between 

the key length (e.g. 128-bit, 256-bit, 512-bit, … etc.) and the accuracy of reproducing 

the intended key by the biometric features was investigated. A challenge could be 

occurred upon the neural network if varying key lengths are needed to be generated. 

The more the number of neurons (i.e. the desired key) increases, the greater the 

likely effort upon the network for producing that key. Biometric variations also play a 

critical role in degrading a key generation. For instance, 40 features could only 

produce 64-bit key, whilst 80 biometric features may have the capability to generate 
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64-bit, 128-bit keys or so. Expanding upon this, a number of experiments were 

developed and carried out to explore the most effective set of features. Then, those 

effective features would be applied in creating different keys without undermining the 

biometric entropy. Had the key generation process established using limited set of 

features, this would probably affect the entropy factor leading to the minimization of 

feature vector combinations. As a result, the biometric cryptosystem will be 

vulnerable to the brute force attack.   

Fundamentally, this investigation was performed by incorporating additional 

methods into the methodological approach of the experiment 2. The superior 

parameters of the neural network in terms of epochs and hidden nodes which were 

explored in the experiment 2 were also used within this methodology. With the aim 

of demonstrating the most effective features, an approach for identifying the most 

important features (feature ranking approach) was required. Having sought a number 

of feature ranking approaches, random forest algorithm was amongst the most 

common classification methods that can be employed for effective feature ranking 

(Louppe, 2014). Therefore, the random forest approach was adopted in this 

experiment to identify the more discriminative features.  

For feature ranking process, the random forest algorithm can determine the 

important contribution of each feature in successfully identifying a target label during 

the time of training only and prioritised them accordingly. Therefore, the binary 

classification problem (1/0) was employed in order to have a target label for each 

sample. Accordingly, the target labelling procedure was performed by regarding one 

participant as genuine (1), and the remaining participants as imposters (0). This 

procedure was successively repeated to ensure that each individual had the 



145 
 

opportunity of acting as the authorised user. As such, the random forest technique 

ranked the entire biometric features of the reference samples only for each 

participant on training.  

Technically, the random forest derived feature sets called bagging or bootstrap 

samples by randomly sampling from a feature vector with potential repetitive 

instances (Louppe, 2014). This was respectively applied to all users' samples to 

gather multiple bootstrap samples for each user. Subsequently, a forest of base 

learning algorithms trained the bagging samples of each user (i.e. decision trees) to 

predict outcomes. As Oshiro et al., (2012) illustrated, tuning the number of trees over 

2000 does not additionally improve the random forest accuracy, and might be worse. 

Therefore, the number of decision trees in this investigation was 2000; the other 

parameters of the random forest implementation were set as default. Eventually, the 

priority of each feature was evaluated amongst all trees by summing the number of 

splits which include that feature proportionally to the number of samples it splits. 

Thereby, the features were ordered according to their indispensable role in 

recognising the target – the more the feature importance, the higher the rank 

awarded.  

Having prioritised the features of each biometric modality, a feature selection 

procedure was performed across a series of validations to examine the capacity of 

particular significant features in generating the key using the FF-MLBP network. 

Thus, the feature selection procedure was set out by selecting the first 20 top 

features, and thereafter the feature selection was progressively escalated by 20 at 

each run (i.e. 20, 40, 60, 80, 100, 120, 140 ... etc.). This procedure was individually 

implemented upon the feature vectors of 516, 140, and 60 for fingerprint, face and 
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keystrokes respectively. While experimenting a set of features, the key of 256-bit 

length was set at the output layer. At the same time, the effective entropy of particular 

feature sets from each biometric modality was evaluated to determine which effective 

feature set can be applied with a reliable entropy figure for generating different keys. 

For entropy evaluation of a feature set, a possible value was calculated for each 

feature from each modality. The possible value is the difference between the 

maximum and the minimum values a biometric feature can have. Then, the log2 is 

taken for the product of those possible values to calculate the entropy of a biometric 

modality in an effective bitlength.  

Having demonstrated the biometric features effectiveness in producing the key of 

256-bit, another set of experiments was performed to investigate the accuracy of 

generating different bio-crypto keys (e.g. 128-bit, 256-bit, 512-bit, … etc.) from each 

biometric approach individually. Accordingly, the effective biometric features were 

set at the input layer of the FF-MLBP classifier. Balancing the training classes 

alongside the superior classification parameters were also adopted. Then, the output 

layer size was changed at each test to accommodate a different desired key of n-bit 

length (i.e. 128-bit, 256-bit, and 512-bit). This would demonstrate the capability of 

the novel approach in producing stronger secret keys. The longer the cryptographic 

key size is established, the high effort upon the attacker to crack that key.  

4.4 Results and Analysis 

Having implemented the previous methodological approach, the performance of the 

transparent biometric key generation via the fingerprint, face and keystrokes 

biometric modalities is evaluated. The implementation of experiments was 
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accomplished via python programming language. A number of python programming 

scripts was written and generated on a Windows 7 Enterprise 64-bit Operating 

System with Intel Core i5-4310 CPU, 2.7 GHz and 16 GB RAM. The following 

sections are devoted to presenting and analysing the results of each experiment: 

4.4.1 Experiment 1: Transparent Bio-Crypto Key Generation 

The experimental results and analysis of this investigation demonstrate how reliable 

the proposed approach at generating a bio-crypto key material from the contributory 

biometric techniques in this research. On the whole, the results of this investigation 

reveal that a fairly reliable repeatable key of 256-bit length can be generated by 

fingerprint and keystroke dynamics modalities to encrypt/decrypt data in reality. 

However, the bio-crypto key cannot be reliably produced from the face biometric 

modality. 

It can be observed that the proposed bio-crypto key generation approach presented 

in section 4.2 can be effective by particularly using the transparent fingerprint 

modality. Figure 4.11 illustrates the performance of the transparent key creation from 

fingerprint technique as below: 
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Figure 4. 11 The Performance of the Transparent Key Creation from Fingerprint 

It is clear from the chart that the majority of participants generated the key with very 

limited forgery attempts, where the FRR and FAR rates ranged between 25%-75% 

and 0%-1.5% respectively. As the 1-minute key generation approach was proposed 

to establish a key by at least one sample of the collected six ones, the FRR rate of 

83% is pretty acceptable in generating the non-intrusive key of 256-bit length. This 

interprets why the obtained FRR rates (i.e. 25%-75%) were considered fairly 

acceptable.  

On the other hand, well under quarter of the population (15 users) failed to generate 

the key with a 100% FRR (entirely unacceptable). A possible interpretation about 

this might be because of training noisy fingerprint samples. As explained in section 

4.3.1.1, the fingerprint features were evidently highly variable – where a different 

number of minutia points were extracted amongst the samples of each user. 

Furthermore, there was a limitation within the fingerprint dataset in the sense that the 

number of samples were small - totally 8 samples for each user. By applying the 

sample splitting approach of 50/50, the entire training set were only 4 reference 
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samples. It is worth noting from another aspect that while evaluating the 

performance, the selection of the definitive thresholds between the FAR and FRR 

rates occupy a discrete range of values rather than a continuous basis. This is due 

to the limited number of the fresh samples. This could explain why the FAR and FRR 

results occur in a distinct/separate representation.     

With regard to the face biometric, the accuracy of generating the non-intrusive bio-

crypto key from the face modality is unexpectedly very poor. Figure 4.12 shows the 

effectiveness of the transparent key generation approach via the face biometric by 

the following:  

 

 

 

 

 
 
 
 
 

Figure 4. 12 The Effectiveness of the Transparent Key Generation Approach via Face 

According to the chart, the whole population (except 2 users) was unable to generate 

the key of 256-bit length (i.e. FRR was 96.05% on average) – obviously exceeding 

the acceptable FRR rate of 83%. On the contrary, the significant majority of 

respondents achieved a minimal figure of FAR (i.e. 0.001), although it is worthless 

with the accompany FRR rate being accomplished by the same users. This could be 
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because of training highly inconsistent facial samples – where those samples 

covered a significant range of face variabilities to reflect various real-life scenarios. 

In addition to this, the imbalance training classes (42 legitimate samples versus 4368 

forgers’ samples) could probably have a negative impact upon the key generation 

performance. This interprets that the classifier tended to generate an invalid key to 

the minority samples of the legitimate class. Another explanation is that a biased 

classification might be happened because of using inaccurate number of epochs 

and/or number of hidden neurons. 

The key generation approach by keystroke analysis modality positively 

accomplishes encouraging accuracy in generating the key of 256-bit length. Figure 

4.13 describes the performance of the transparent key generation: 

 

        

               

 

 

 
 
 

Figure 4. 13 The Performance of the Transparent Key Generation via Keystrokes 

It can be seen from the chart that the majority of participants generated the bio-crypto 

key, where the FAR and FRR figures ranged between 0%-0.13% and 10%-80% 

respectively. A possible interpretation is that the training of fairly acceptable 30 
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legitimate samples against 2970 illegitimate samples might be sufficient to 

accomplish a successful key generation. On the other hand, 91.66% FRR rate (very 

negative) on average was achieved by well under quarter of the population (18 users) 

due to the potential of collecting pretty variant keystroke actions within overlapping 

intervals. 

4.4.2 Experiment 2: Improving the Key Generation Performance 

The empirical results and analysis of this investigation determine the impact of the 

imbalance training and the classification parameters upon the key generation 

accuracy. The experiments’ findings generally highlight that the imbalance learning 

and the improper classification parameters have a negative influence upon the key 

generation performance. The effectiveness of generating the bio-crypto key (256-bit 

length) from the selective biometric modalities is clearly improved, when balancing 

the legitimate and illegitimate spaces on training.  

All in all, the performance of the fingerprint key generation is relatively ameliorated 

as outlined in Figure 4.14.  
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Figure 4. 14 The Performance of the Fingerprint Key Generation 

It is obvious from the results that the vast majority of participants achieved 

acceptable FRR and FAR figures via the balanced training – where the FAR and FRR 

rates were around 0.9% and 70% respectively. However, only 8 users cannot 

generate the key with 100% FRR due to the possibility of learning noisy fingerprint 

samples in addition to the deficiency of the training samples – merely four source 

samples. In comparison with the imbalance training outcomes, the FAR and FRR 

results evidently confirm that the balance learning does enhance the performance of 

the classifier in correctly generating the key of 256-bit length. 

The accuracy of generating the key from the face biometric modality is positively 

improved on balance training as shown in Figure 4.15.  
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Figure 4. 15 The Accuracy of Generating a Key from the Face Biometric Modality 

According to the results, the majority of users succeeded to create the key with 

0.02% FAR and 64.6% FRR on average. A possible explanation is that the balanced 

learning of 4368 valid face samples against 4368 invalid samples can improve the 

key generation effectiveness. On the contrary, a quarter of the participants did not 

succeed to generate the key, where unsatisfactory FRR rates were accomplished – 

higher than 83%. This can be possible owing to the extreme variabilities of the face 

samples as explained in section 4.3.1.2. 

The performance of producing the bio-crypto key of 256-bit length by the keystroke 

dynamics technique is enhanced on balance training as demonstrated in Figure 4.16. 
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Figure 4. 16 The Performance of Producing the Bio-Crypto Key of 256-Bit Length by the Keystroke 

It is evident from the chart that the entire population had the capability to generate 

the key through the keystrokes biometric modality with a minimal illegitimacy access. 

The experimental results reported very positive FRR and FAR rates on average 

which were 35.3% and 0.06% respectively. A possible interpretation is that the 

accurate classification improved the key generation process overall – especially to 

those 18 users who failed to create the correct key during the time of training on 

imbalanced instances. Of course, whenever the FAR and FRR rates decrease, the 

reliability of the key generation process would be elevated. 

The other experiments’ findings also show that the key generation performance is 

overall enhanced by varying the classifier parameters (i.e. number of epochs, 

number of hidden neurones and hidden layers). The key generation performance of 

a 256-bit through the fingerprint biometric approach (516 features) using the single 

and the double hidden layers is depicted in Tables 4.9 and 4.10 as follows: 
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Table 4. 9 Fingerprint Key Generation Using Single Hidden Layer 

Epochs Hidden Nodes FAR FRR 

100 140 0.906% 73.04% 

500 140 0.953% 67.89% 

1000 140 0.975% 65.44% 

2000 140 0.958% 62.99% 

100 280 0.955% 73.04% 

500 280 0.955% 67.16% 

1000 280 0.965% 65.2% 

2000 280 0.953% 62.25% 

Table 4. 10 Fingerprint Key Generation Using Double Hidden Layer 

Epochs Hidden Nodes FAR FRR 

100 80-80 0.91% 70.1% 

500 80-80 0.94% 62.75% 

1000 80-80 0.96% 62.01% 

2000 80-80 0.94% 59.56% 

100 120-120 0.96% 73.53% 

500 120-120 0.95% 67.16% 

1000 120-120 0.96% 66.67% 

2000 120-120 0.94% 64.71% 

In Table 4.9, the results reveal that there is apparently no difference in the key 

generation accuracy using the one hidden layer of 140 and 280 nodes. A possible 

reason is that the learning based upon a few fingerprint samples (totally 4 samples 

for each user) could probably need a reasonable number of nodes at the hidden 

layer. However, as Table 4.10 shown, the two-hidden layer achieved a superior 

accuracy in creating the biometric key depending upon the fingerprint data. In 

particular, the double hidden layer of 80-80 outperforms the other layer of 120-120 

in generating the secret key of 256-bit. The results of creating a more reliable key 

using the two hidden layers of 80-80 nodes with 2000 epochs are depicted in Figure 

4.17 reliant upon individual FAR and FRR for each user:  
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Figure 4. 17 Fingerprint Key Generation Using the Two Hidden Layers of 80-80 Nodes  

It is clear from the chart that the whole population (except two participants) was able 

to create the bio-crypto key of 256-bit, where the FRR value was 59.8% on average 

- lower than the tolerable FRR figure of 83%. At the same time, the results of this 

experiment reveal that limited illegitimacy attempts were taken place (i.e. the FAR 

rate was 0.94%). This might be because the 80-80 neurons within the two hidden 

layers fit the limited samples of the fingerprint modality to tune the neural network for 

creating the bio-crypto key. Given the deficiency in the fingerprint samples, this 

experiment showed that the neural network size does not need to be huge. 

Furthermore, equalizing the genuine samples versus the adversary samples can 

have a positive impact in enhancing the key generation performance.           

The key creation effectiveness of a 256-bit by the face biometric technique (140 

features) using the one and the two hidden layers is presented in Tables 4.11 and 

4.12 as below: 
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Table 4. 11 Face Key Generation Using Single Hidden Layer 

Epochs Hidden Nodes FAR FRR 

100 140 0.07% 84.4% 

500 140 0.08% 76.26% 

1000 140 0.09% 69.97% 

2000 140 0.14% 67.24% 

100 280 0.07% 81.2% 

500 280 0.07% 73.92% 

1000 280 0.08% 65.81% 

2000 280 0.09% 64.89% 

Table 4. 12 Face Key Generation Using Double Hidden Layer 

Epochs Hidden Nodes FAR FRR 

100 80-80 0.02% 86.03% 

500 80-80 0.04% 71.09% 

1000 80-80 0.06% 65.13% 

2000 80-80 0.07% 63.27% 

100 120-120 0.02% 83.9% 

500 120-120 0.04% 68.74% 

1000 120-120 0.06% 62.69% 

2000 120-120 0.07% 60.2% 

The experimental results reveal that there is an improvement at producing the bio-

crypto key using the one hidden layer of 280 nodes over 140 nodes as outlined in 

Table 4.11. With numerous facial samples being used in those experiments, the 280 

nodes within the single hidden layer apparently have the capacity to achieve a better 

performance. On the other hand, the double hidden layer in this investigation 

outperforms the single layer in generating the secret key reliant upon the applied 

facial data. As illustrated in Table 4.12, the double hidden layer of 120-120 

accomplished the superiority in producing the bio-crypto key of 256-bit in comparison 

with the other layer of 80-80. The empirical results of generating a more effective key 

via the two hidden layers of 120-120 nodes with 1000 epochs are illustrated in Figure 

4.18 depending on individual FAR and FRR for each user. Although there were other 
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experiments relatively achieved more accurate FAR and FRR results than the above-

mentioned basis using the two-hidden layer, the number of users that succeeded in 

generating the key within those experiments is less.  

  

  

 

 

   

 

Figure 4. 18 Face Key Generation Using the Two Hidden Layers of 120-120 nodes 

It is obvious from the chart that the vast majority of users correctly generated the key 

of 256-bit length, with 0.06% FAR and 60.2% FRR values on average being 

positively accomplished. On the other hand, only 9 users failed to generate the bio-

crypto key, where FAR and FRR rates were 0.03% and 88.33% (i.e. FRR was greater 

than 83%) respectively. This could be possible because fairly proper classification 

parameters can fit the facial data in this experiment to identify/generate the correct 

key besides the positivity of the balance training.    

The key generation accuracy of 256-bit via the keystroke biometric modality (60 

features) using the single and the double hidden layers is compared in Tables 4.13 

and 4.14 as below: 
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Table 4. 13 Keystroke Dynamics Key Generation Using Single Hidden Layer 

Epochs Hidden Nodes FAR FRR 

100 140 0.16% 58.39% 

500 140 0.19% 32.48% 

1000 140 0.2% 30.45% 

2000 140 0.25% 28.61% 

100 280 0.29% 53.92% 

500 280 0.49% 35.16% 

1000 280 0.55% 29.73% 

2000 280 0.59% 27.86% 

Table 4. 14 Keystroke Dynamics Key Generation Using Double Hidden Layer 

Epochs Hidden Nodes FAR FRR 

100 80-80 0.05% 38.58% 

500 80-80 0.06% 33.27% 

1000 80-80 0.06% 33.4% 

2000 80-80 0.06% 32.87% 

100 120-120 0.06% 36.35% 

500 120-120 0.06% 32.4% 

1000 120-120 0.06% 32.53% 

2000 120-120 0.06% 31.13% 

According to the results, using the single hidden layer of 140 nodes based upon the 

keystrokes data reported pretty good results on the whole. Considering both the FAR 

and FRR rates from those experiments seem to show a promising reliability and 

usability. In contrast, the experimental results show that the two-hidden layer 

outperformed the single layer in generating the cryptographic key. In particular, the 

experiment of using the double hidden layer of 120-120 nodes with 2000-epoch 

demonstrated a superior performance, with 0.06% FAR and 31.1% FRR on average. 

Generalizing the results from this experiment seem to be more effective because a 

minimal FAR rate is achieved and simultaneously the FRR rate does not exceed the 

tolerable figure (lower than 83% FRR). The empirical results reveal that all users 

were capable to create the secret key with a very limited forgery access via the 
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keystroke analysis technique as depicted in Figure 4.19. A possible interpretation 

concerning such encouraging results is that expanding the neural network size into 

120-120 fits the training keystrokes data – thus decreasing the error rate in terms of 

the FRR values. 

 

 

 

 

 

 
 

Figure 4. 19 Key Generation Using Double Hidden Layer of 120-120 Nodes via Keystrokes 

4.4.3 Experiment 3: Key Length versus Feature Length 

The results and analysis of this investigation reveal the correlation between the key 

length (e.g. 128-bit, 256-bit, 512-bit … etc.) and the accuracy of regenerating the 

desired key by the biometric features. Prior to undertaking this hypothesis, a set of 

experiments preliminarily explored the potential effectiveness of the biometric 

features in generating the bio-crypto key of 256-bit in order to demonstrate a proper 

trade-off between accuracy and entropy aspects.  

Figure 4.20 depicts the key generation performance via examining different ranges 

of the top-ranked fingerprint features using the random forest technique: 
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Figure 4. 20 Key Generation via Different Ranges of Top-Ranked Fingerprint Features 

According to the chart, the accuracy of the key generation overall does appear to be 

affected when increasing the top-ranked feature set; especially with the feature sets 

from 260-516. On the other hand, the fingerprint feature sets of 40, 120, 200 and 220 

achieved fairly positive results in terms of accuracy with 53.3% FRR and 0.07% FAR 

on average. Accordingly, there is an evident improvement in the key generation 

performance of a 256-bit length. The FFR figure is within the tolerance for this 

research (lower than 83% FRR), and the FAR rates were overall low.  

From a different aspect, the effective entropy of a feature set should be also taken 

into consideration to reinforce the security of the bio-cryptosystem. Table 4.15 

reveals the effective fingerprint entropy for particular feature sets as follows (see 

section 4.3.4 for entropy evaluation):   

Table 4. 15 The Effective Entropy (Bitlength) versus Different Fingerprint Feature Sets 

Feature Set 20 120 200 220 512 

Effective Entropy  120 290 1498 1652 3817 
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It is clear from Table 4.15 that adopting only 40 or even 120 feature set is apparently 

inappropriate for real-life application as they cannot adequately boost the biometric 

entropy - where the effective bit-length of entropy is 290 and 881 respectively. In 

contrast, with entropy figures of 1498 and 1652 respectively, the fingerprint feature 

sets of 200 or 220 might be sufficiently robust against feature guessing attempts. 

However, it is believed that applying those subsets of features within the bio-

cryptosystem would impact the biometric entropy. The 200/220 feature sets would 

minimize/diminish the number of combination values of the feature vector, thus 

essentially undermining the entropy factor. On the other hand, the entire feature set 

of 512 with an effective entropy of 3817 obviously would reinforce the biometric 

entropy, and can be more reliable in resisting potential brute force attacks. Therefore, 

in terms of the trade-off between security and accuracy, taking into consideration the 

performance results via the 516-feature set seems to be more crucial in reinforcing 

the biometric entropy. 

Table 4.16 compares the key generation accuracy through partitioning the top-

ranked facial features into a number of different ranges utilizing the random forest 

approach: 

Table 4. 16 Key Generation via Different Ranges of Top-Ranked Face Features 

Feature Set 20 40 60 80 100 120 140 

FRR 63.15 62.21 62.31 62.26 62.26 62.31 62.69 

FAR 0.048 0.054 0.078 0.064 0.08 0.063 0.065 

Generally, the experimental results show that the FAR and FRR rates do not reveal 

a huge difference by increasing the top-ranked feature set. The feature ranking via 

the random forest technique clearly showed that the small feature vector carries the 

most discriminative information. With significant facial variabilities being applied in 
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this research, the extracted features via holistic-based coordinates could not be 

highly distinctive. The results show that using the most discriminative features from 

the classification perspective is efficient; however, the biometric entropy should also 

be considered to combat the brute force attack by incorporating numerous features. 

Table 4.17 shows the effective bitlength of entropy for particular feature sets as 

below: 

Table 4. 17 The Effective Entropy ((Bitlength) versus Different Face Feature Sets   

Feature Set 20 40 60 100 140 

Effective Entropy  163 327 491 819 1144 

According to the results, the effective entropy of the feature set 40 is 327, whereas 

the entropy of the feature set 140 is 1144. As such, applying the entire feature vector 

(140 features) is more desirable to make sure that an attacker would be unable to 

guess what the notable features are.      

Table 4.18 compares the key generation accuracy through partitioning the top-

ranked keystroke features into a number of different ranges using the random forest 

method: 

Table 4. 18 Key Generation via Different Ranges of Top-Ranked Keystrokes Features 

Feature Set 20 40 60 

FRR 33.87 30.17 31.13 

FAR 0.078 0.77 0.06 

On the whole, the experimental results reveal that the effectiveness of generating 

the bio-crypto key is very slightly ameliorated when increasing the top-ranked feature 

subset size. The feature subset of 60 in particular achieved better performance, 

where limited illegitimacy attempts are demonstrated by the FAR value, and at the 
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same time the FRR value is less than acceptable figure of 83%. Simultaneously, 

using the whole feature vector (60 features) with no doubt would resist the potential 

brute force attack, where the effective bitlength of the feature set 60 is 1504. On the 

other hand, the results of this experiment overall do not show a significant difference 

in the key generation accuracy by the keystroke features. A possible explanation 

might be because of gathering keystroke actions within the same concurrent times.   

The previous experimental results confirm that using the entire feature vector across 

the contributory biometric modalities is crucial, where it supports the security, and 

would not significantly impact the accuracy. As such, the empirical results of different 

key lengths creation are presented and analysed based upon adopting the wholly 

biometric feature vector. 

Table 4.19 demonstrates the accuracy of different key lengths generation via the 

selective biometric approaches (fingerprint, face and keystroke) as follows: 

Table 4. 19 The Capacity of Generating Different Key Lengths   

Modality Epochs Hidden Nodes Features Key Size  FAR FRR 

Fingerprint  2000 80-80 516 128-bit 0.938% 58.08% 

Fingerprint  2000 80-80 516 256-bit 0.948% 59.56% 

Fingerprint  2000 80-80 516 512-bit 0.943% 59.803% 

Face  1000 120-120 140 128-bit 0.061% 62.1% 

Face 1000 120-120 140 256-bit 0.065% 62.69% 

Face 1000 120-120 140 512-bit 0.07% 62.74% 

Keystroke  2000 120-120 60 128-bit 0.064% 30.95% 

Keystroke 2000 120-120 60 256-bit 0.067% 31.13% 

Keystroke 2000 120-120 60 512-bit 0.07% 31.64% 

It is apparent from the tabulated results that there is no difference in the key 

generation performance when creating varying key lengths. This demonstrates that 

the back-propagation neural network had the capability to reliably map/represent the 
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biometric data in generating a bio-crypto key. A possible interpretation is that the 

neural size (i.e. hidden layer size) across all the selective biometric modalities was 

big enough (see Table 4.19). Thus, the neural network could probably have sufficient 

memory capacity to represent a particular feature vector quite well for identifying a 

target bio-crypto key no matter how long that key is. Of course, the longer the bio-

crypto key size is generated, the high effort upon the adversary to attack that key.  

4.5 Discussion 

Generally, the study findings confirm that a robust repeatable cryptographic key of 

256-bit length can be positively generated from the selective transparent biometric 

modalities to encrypt/decrypt the data in reality. The classification conception is 

exploited to generate constant cryptographic keys through transparent biometric by 

using the stored classification parameters (weights) and the test features. 

Consequently, high variations caused by the non-intrusive collection would not 

overly impact the performance as the key is not directly driven from the noisy 

features. At the same time, this approach accomplished the necessity of including 

many features to reinforce the biometric entropy.  

With numerous samples being collected transparently in the meantime, the usability 

aspect would not affect the performance leading to eventually generate the required 

key as well as would allow the possibility of trading-off the FRR against the FAR. As 

such, the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and 

keystrokes respectively. At the same time, the average FRR value for each selective 

transparent biometric approach in this study was under the tolerable figure of 83%. 

On the whole, the key generation performance appears to be impacted by the 
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imbalance training. In contrast, the effectiveness of the bio-crypto key production is 

clearly ameliorated on the balanced learning. On imbalance classes, 15 users of the 

entire population (i.e. 102 individuals) were unable to generate the cryptographic key 

from the fingerprint modality. On the other hand, the accuracy is evidently improved 

when balancing the legitimate and illegitimate fingerprint samples, where only 8 

users did not succeed to create the key. In terms of generating the transparent bio-

crypto key through the face biometric approach reliant upon the imbalance training, 

the performance is unexpectedly fallen down – where 103 users of the whole 

population (105 individuals) were incapable to generate the key of a 256-bit (very 

negative). However, the effectiveness of the key generation based on balancing the 

facial instances is positively enhanced, where merely 25 users failed to generate the 

biometric key. Respecting the key generation performance by the keystrokes 

approach through the imbalanced training, 18 users of the entire population (i.e. 100 

individuals) were unable to generate the key. On the contrary, the accuracy is clearly 

improved when balancing the valid and invalid keystrokes samples, where all users 

had the capacity to create the bio-crypto key. With further improvement being 

accomplished via amending the classification parameters, it seems that expanding 

the neural network size tends to represent the selected biometric data quite well to 

generate a more effective bio-crypto key. As such, all users (except two) succeeded 

to generate the key from the fingerprint and keystrokes, whilst only 9 users failed to 

create the secret key by the face biometric approach. On the other hand, this could 

not be the case in reality as the biometric data would be different. 

The key generation from the keystrokes modality is somewhat more effective than 

the other modalities (fingerprint and face). It is believed though that the effectiveness 
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of the keystrokes could be improper to generalize. This opinion is corroborated by 

Monrose and Rubin, (2000) with the claim that the keystrokes features are inferior 

compared to the transformational features of fingerprint and face. To clarify, the 

keystroke features are gathered simply by calculating the time difference between 

the press actions which are pretty variable. In contrast, the feature of fingerprint and 

face could be possibly extracted as a geometrical/structural feature or holistic-based 

coordinates. The former is extracted by engineering certain relations between the 

attributes besides applying additional transformations to eliminate the variances and 

derive the most discriminative feature – resulting in reducing the feature vector. The 

latter, however, is taken out by determining the coordinates of a distinctive location – 

leading to many features (Monrose and Rubin, 2000, Mohammadzade et al., 2018). 

As illustrated in the literature review, reducing the features would impact the 

biometric entropy factor and minimize the number of combination values of the 

feature vector. In this context, the bio-cryptosystem can be vulnerable to brute force 

attack. As such, this research adopted the holistic feature extraction within the finger-

print and face approaches which can be slightly less effective than the keystrokes to 

develop a robust trade-off between the security and accuracy.  

By incorporating considerable features within the system, there would be a 

problematic issue to guess them by forgers. The experimental results demonstrate 

that using the whole feature vector would escalate the number of combination values 

resulting in boosting the entropy to combat the brute force attacks. The effective 

entropy for each biometric modality is demonstrated in Table 4.20. 
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Table 4. 20 The Effective Entropy (Bit-length) from each Biometric  

Modality Fingerprint Face Keystrokes 

Effective Entropy  3817 1144 1504 

The empirical results also interestingly reveal that different secret key lengths can 

be generated via the back-propagation classifier. This can be due to the possibility 

of having adequate capacity to map the biometric data to shape a pattern capable of 

producing a desired key. Creating a longer bio-crypto key would be undoubtedly 

more resistant vis-à-vis the attacker attempts to crake the cryptographic key.  

4.6 Conclusion  

This chapter has proposed and demonstrated through experimentation a novel 

transparent bio-crypto key generation approach to handle the shortcomings of the 

password login and removes the usability issues of the oriented cryptographic 

means. The results have empirically shown that a reliable non-intrusive 

cryptographic key can be generated on the fly without storing it anywhere from the 

selective transparent modalities. Although the training of imbalanced legitimate and 

illegitimate classes has experimentally affected the key generation process, the 

results of balance learning have positively improved the performance in creating a 

reliable secret key. The experimental results show that the size of the neural network 

in addition to the number of epochs can influence the key generation performance. 

With superior key generation performance being achieved by amending the 

classification parameters, the double hidden layer neural network in this study 

outperforms the other the single layer configurations. The two-hidden layer can 

fit/map the experimental biometric data quite well to generalize/model a pattern 

aiding ultimately in generating the bio-crypto key. There is also an impact upon the 
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key generation performance when modifying the number of epochs – mostly 

whenever the number of iterations is increased, the FRR is decreased with slight 

escalation in the FAR value. As a result, the classification parameters must be 

chosen carefully to fit the applied biometric data in reality to generate the desired 

key.  

Employing numerous biometric features is desirable in order to support the biometric 

entropy and to combat guessing biometric feature attempts. What is more, 

generating the required key as more reliable as possible is also very necessary. 

Accordingly, the following chapter will seek to investigate a potential effective 

solution aiming at coping with the above-mentioned implications and eventually 

reinforcing the security and accuracy aspects.  
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Chapter Five: Investigation into Transparent 

Multibiometric Cryptography  

5.1 Introduction 

Given the desirability to further reinforce the effectiveness of the proposed key 

generation approach in terms of security, accuracy, and usability, a reliable solution 

has to be considered. This represents the guarantee of generating the correct key 

and simultaneously maximizing the biometric entropy against the guessing feature 

attack. There is no doubt that the application of multiple biometric approaches can 

aid in generating the correct bio-crypto key reliant upon more than one biometric 

modality. The problem of unsuccessful key generation could be alleviated by 

incorporating two or more biometric modalities in order to improve the accuracy and 

concurrently reinforce the security. For example, those users who cannot create the 

cryptographic key through the face biometric they might be able to produce it by the 

fingerprint and/or keystroke dynamics techniques and vice versa. At the same time, 

this incorporation would reinforce the security aspects in terms of escalating the 

entropy of biometric features and resisting the forgery attacks. The biometric entropy 

will be strengthened via accumulating numerous features from all biometric 

modalities. The spoofing attacks will be also difficult if not impossible where a forger 

will need to spoof all three biometric samples. From the usability perspective, the 

multi-biometric approach would additionally reduce the user inconveniences caused 

by generating the incorrect key. As enormous samples will be collected in a non-

intrusive fashion from multiple biometric modalities, the opportunity of creating the 

correct valid key will be escalated. On the other hand, a multibiometric fusion 

approach should be effectively applied in order to introduce a constructive manner 
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rather than destructive. That is, the multibiometric fusion approach must outdo the 

single biometric technique with regards to security and accuracy. Thereby, the 

transplant multi-bio-cryptosystem would overcome the illegitimacy and inaccuracy 

issues owing to the presence of multiple independent pieces of evidence (i.e. 

applying more than one biometric). 

As discussed in 2.5, a source should be provided to fuse some data and thereafter 

develop a multiple biometric system. Since numerous biometric samples can be non-

intrusively collected from more than one biometric modality, the following sources 

are adopted in this research – where one or set of them is implemented as 

appropriate:  

1. Multi-Modality Source: applying a single sample of more than one modality to 

tackle the weaknesses of some biometric techniques or acquisition devices.  

2. Multi-Sample Source: implementing multiple inputs of the same modality to 

have a well-informed identity and to offset the existing samples of low quality.  

3. Hybrid Source: non-statically applying single or multiple samples from 

different modalities. This could probably fine-tune the approach in generating 

the required bio-crypto key, crafting a more multi-layered method.  

According to the discussion in 2.5, these samples have to be incorporated effectively 

at a certain phase (i.e. sensor, feature, matching score, and/or decision level) within 

the biometric system. For instance, the feature vectors from multiple biometric 

modalities can be appropriately fused to correctly generate the constant key in a 

more secure fashion. Another example is that the classification results from multiple 

modalities could be incorporated with the purpose of successfully enhancing the key 

generation process. As such, this chapter considers the principle of multibiometric to 
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combine the fingerprint, face and keystroke dynamics modalities aiming at improving 

the overall performance.  

5.2 Methodological Approach 

Having demonstrated the generation of a timely reliable bio-crypto key from the 

contributing single modalities, the multibiometric fusion was experimented to 

determine whether the key generation performance would be improved. As referred 

earlier, a fusion method can take place at any stage within the biometric system. 

However, there are a number of issues associated with the development of the 

multibiometric system including the source of information, selective biometric, 

information fusion, cost-benefit, sequential processes and level of reliability 

(Nandakumar, 2008). Therefore, there is apparently no conclusive evidence 

revealing that there is a fusion method overwhelmingly better than another at a 

specific point (Monwar, 2013). As such, fusion methods were carried out to 

determine what impact the multibiometric approach would have upon the key 

generation performance at the feature phase versus the matching phase.    

In order to develop a multi-biometric approach, it is necessary to incorporate the 

samples of the biometric modalities together. Unfortunately, there was a limitation 

within the size of the fingerprint dataset, where it included the minimum number of 

samples for each user. As a consequence, a standard procedure was performed by 

taking into account the lowest common number of samples across all modalities. On 

the other hand, there would be a significant number of face and keystrokes samples 

being ruled out aside. Had the methodological approach performed by using the 

lowest common number of samples only, there would be an unreliable insight about 
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the multibiometric performance. In order to cope with this issue, another procedure 

was conducted by using the oversampling technique to duplicate the samples of the 

fingerprint modality into a reasonable figure. In accordance with this, a number of 

research questions are derived to be addressed and explored experimentally as 

follows: 

 What is the performance of the multi-biometric key generation approach via 

feature-level fusion reliant upon:  

A- Minimum number of samples across all selective modalities (fingerprint, 

face, and keystrokes)? 

B- Oversampling technique? 

 What is the accuracy of the multibiometric cryptography approach by 

matching-level fusion dependent on: 

A- Minimum number of samples amongst all modalities? 

B- Oversampling method? 

Consequently, two fundamental experiments were developed to be performed 

aiming at resolving the derived research questions as below: 

Experiment 1 – An investigation into transparent multi-biometric key generation at the 

feature phase: set of experiments to explore the potential of improving the key 

generation accuracy by combining the feature vectors of the applied biometric 

modalities depending upon appropriate procedures. 

Experiment 2 – An investigation into transparent multi-biometric key generation at the 

matching phase: a number of experiments to investigate the likelihood of elevating 

the bio-crypto key generation performance by integrating the matching scores from 
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each classifier being utilized within the individual biometric approach based on an 

effective fusion technique.     

The following subsections describe the nature of the applied multi-biometric dataset 

with the context of this research, and then turn into illustrating the methodological 

approach of the experiments. 

5.2.1 Datasets  

In order to validate the potential of improving the key generation process via the 

fusion principle, a realistic multi-biometric dataset including the selective transparent 

modalities was needed. To the best author’s knowledge, there is apparently no 

existing multi-biometric dataset incorporating an adequate range of biometric 

variations in which the fingerprint, face and keystrokes samples are gathered from 

the same person. This is a common issue within the topic of this research. With a 

view to handing this problem, a possible experimentation can be applied via 

integrating biometric modalities from different datasets; thus, they can belong to the 

same individual – relying upon so-called virtual user configuration. However, the idea 

of virtual users is only justifiable in approaches which can be manifested to be 

independent. From an experimental standpoint, the selected biometric datasets in 

the previous chapter can be possibly fused to create virtual users as they are 

arguably independent. Whilst the fingerprint and face datasets were collected from 

the same participants, the keystrokes dataset was captured from different 

volunteers. Accordingly, virtual users were configured by using these datasets. With 

a virtual user being the combination of a user from the fingerprint, face and 

keystrokes datasets, each individual from the fingerprint dataset was associated with 
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the others from the face and keystrokes datasets. Combining the subjects in this 

fashion produces a multi-biometric dataset where the number of the virtual users is 

equal to the smallest number of users within the individual biometric datasets. As 

such, the ultimate multi-biometric dataset of 100 virtual users (i.e. each one having 

his fingerprint, face and keystrokes samples) was configured to be utilized in the 

experiments.  

5.2.2 Investigation into Transparent Multibiometric Key Generation 

by Feature-Level Fusion 

Given the availability of the core biometric identity at the feature extraction stage, the 

feature-level fusion is sought to investigate the potential for outperformance in 

generating the secret key of a 256-bit length. The primary objective was to combine 

the feature vectors amongst the contributing biometric modalities. An investigative 

issue, however, was encountered during the experimentation. The number of 

samples in between the fingerprint, face, and keystrokes datasets were unequal (i.e. 

8 samples for fingerprint, 50-83 samples for face, and 60 for keystrokes). With the 

presence of a different number of samples across modalities, two procedures were 

performed in order to unify them. The first procedure was implemented by setting the 

minimum number of samples across the selected biometric datasets. As the 

fingerprint dataset included the minimum number of samples (i.e. 8 samples for each 

user), the foremost procedure unified the number of samples by randomly picking 8 

samples from the other modalities. Therefore, an experiment was conducted to 

investigate the performance of the key generation by feature level fusion among the 

fingerprint, face and keystrokes on the basis of setting 8 samples for each user.  
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On the other hand, another procedure was applied based on oversampling technique 

via randomly resampling with replacement (i.e. a sample can be duplicated multiple 

times within a user samples set). Accordingly, the oversampling technique was 

performed upon the fingerprint dataset only to produce 50 samples; thus, the latter 

procedure unified the number of samples by randomly picking 50 samples from the 

other modalities. Regarding the second procedure in which the fingerprint samples 

were duplicated into 50 sample, it is believed that duplicating the entire fingerprint 

samples once could lead to an inaccurate validation. So as to cope with this issue, 

the fingerprint samples were equally divided into training and testing groups and then 

the sample duplication was performed at each group individually. As such, another 

experiment was carried out to determine the effectiveness of multibiometric 

cryptography approach via feature level fusion on the basis of setting 50 samples for 

each user. The former standard procedure adopted few samples; however, the latter 

provided the opportunity for eliminating the limitation of applying few samples via 

including significant biometric samples. Whilst neither one of the procedures would 

be alone sufficient in resolving the research question, both of them were performed 

to provide reliable insight about the multibiometric key generation performance. 

Therefore, it is believed that conducting these approaches only would be appropriate 

enough to accomplish this investigation. They would rule out the downside of having 

to duplicate the facial samples as well – the face samples of the entire population 

ranged between 50-83 samples and the majority of users had only 50 samples. From 

the feature dimensionality viewpoint, since it is demonstrated that there was no high 

impact upon the key generation performance by applying the feature selection 

approach, the entire feature vectors were utilized in this investigation. Accordingly, 

the feature vectors of the biometric modalities were concatenated in the form of 
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[FingerprintFV, FaceFV, KeystrokesFV] to obtain the final multi-biometric feature 

vector. 

Similarly to previous experiments of Chapter 4, a number of methods were applied 

including dataset splitting, neural network configuration, helper data construction, 

key generation and error evaluation to carry out the feature fusion experiments. The 

sample-splitting approach of 50/50 was also used in this investigation. The first 50% 

of samples utilized for developing a user profile and training the classifier to construct 

a helper data. The other 50% of samples used to test the performance of the 

classifier in generating a constant bio-crypto key. The balance training demonstrated 

the capacity of improving the key generation process within single biometric 

techniques. As such, the experiments would be also carried out reliant upon 

balancing the valid and invalid instances. The neural network of double hidden layer 

was also applied in this experiment as particular experiments of Chapter 4 showed 

that it tends to be more superior in generating the bio-crypto key than the single 

hidden layer. The experimental settings and the classification parameters of this 

investigation are presented in Table 5.1 and Table 5.2 as below:  

Table 5. 1 Empirical Settings of Feature-Level Fusion  

Modalities 
No. of 

Samples 

Sample 

Splitting  
Registration  

Key 

Generation 

Fingerprint + Face + 

Keystrokes 
8 50/50 

Genuine=396 

Imposters=396 

Genuine=4 

Imposters=396 

Fingerprint + Face + 

Keystrokes 
50 50/50 

Genuine=2475 

Imposters=2475 

Genuine=25 

Imposters=2475 

Table 5. 2 Classification Parameters of Feature-Level Fusion 

Modality Futures  Key Hidden  Weights  Rounds 

Fingerprint + Face + Keystrokes 716 256 250-250 349204 1000 
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The generation of a non-intrusive, continuous and secure cryptographic key is 

dependent upon the availability of the collected biometric modalities. However, one 

or more biometric modalities may or may not be present as samples can only be 

captured transparently if they are available to capture. As such, having performed 

the biometric fusion of three modalities, other experiments were also implemented 

based on different combinations of two biometric techniques including fingerprint and 

face, fingerprint and keystrokes, and face and keystrokes for further analysis. 

5.2.3 Investigation into Transparent Multibiometric Key Generation 

by Matching-Level Fusion 

With the capacity for developing a highly modular approach being offered at the 

biometric matching stage to combine multiple modalities, an investigation was 

conducted to explore the key generation performance via the matching-level fusion. 

This experiment was literally carried out by replicating the same methods of the last 

investigation without using the feature fusion strategy. A matching fusion method 

aimed to accumulate the scores from each classifier being utilized within the 

individual biometric modality triggering to triple the outputs. As a result, a 

normalization technique was needed to rescale the scores into [0, 1]. This technique 

can be simple sum, median, min, max, or majority voting. However, the security 

aspect needs more consideration – particular biometric modality should not have 

much value than another; especially the behavioural biometric (keystroke dynamics). 

A consideration should be given to the matching fusion method to generate the 

correct bio-crypto key in a more robust way. As such, the majority voting technique 

was performed in order to rigorously take the proportional different key generation 

performance of the contributing biometric modalities into account. In matching 
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fusion-based majority voting mechanism, the final correct key of a 256-bit will be 

established if it has been predicted most frequently via the classifiers being used 

within the single biometric technique (i.e. hard voting). If the prediction of the samples 

is a correct key from the fingerprint biometric, correct key from the face, and a wrong 

key from the keystrokes technique, then the final key would be correct. In this case, 

the matching fusion would have been constructive; otherwise, it will be destructive. 

Table 5.3 demonstrates the final key generation based on combining the fingerprint, 

face, and keystrokes techniques at the matching stage using the majority voting 

mechanism as follows:   

Table 5. 3 The Final Key Generation by Majority Voting Mechanism 

Generated Key 

by Fingerprint  

Generated Key 

by Face  

Generated Key 

by Keystrokes  

Final 

Key  

Wrong  Wrong Wrong Wrong 

Wrong Wrong Correct Wrong 

Wrong Correct Wrong Wrong 

Wrong Correct Correct Correct 

Correct  Wrong Wrong Wrong 

Correct Wrong Correct Correct 

Correct Correct Wrong Correct 

Correct Correct Correct Correct 

The majority voting technique averaged the probabilities of classifiers (i.e. soft 

voting) for fusing two biometric techniques at the matching stage. One significant 

challenge that can encounter the matching fusion approach is the manipulation of 

the score from each individual biometric modality classifier (neural network). 

However, as each of the three biometric modalities was designed utilizing the same 

classifier, the scores of the three approaches were already in the same form – 

enabling their direct use within the majority voting technique. Likewise in the last 

investigation, a number of methods were applied including sample splitting, neural 
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network configuration, helper data construction, key generation and error evaluation 

to carry out the matching fusion experiments. The same empirical settings of the 

feature level fusion were also used in this investigation. Figure 5.1 describes the 

matching fusion process of the selective biometric modalities using the majority 

voting technique as below:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 1 Matching Fusion Process of Selective Biometric Modalities Using Majority Voting   
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5.3 Results and Analysis 

Having implemented the presented investigations into multibiometric fusion 

approaches, the performance evaluation is presented in this section. The 

experiments were implemented and accomplished by writing and generating a set of 

python programming scripts. The following subsections are devoted to interpreting 

and analysing each experiment individually as follows: 

5.3.1 Experiment 1: Transparent Multibiometric Key Generation by 

Feature-Level Fusion 

The results and analysis of this experiment reveal the reliability of generating the bio-

crypto key material by combing the selective biometric modalities using feature-level 

fusion. On the whole, the experimental results of this investigation demonstrate that 

the multibiometric approach at the feature stage has the capacity to create a more 

reliable and consistent bio-crypto key on a timely basis. 

Table 5.4 shows the performance of the key generation by fusing all biometric 

modalities according to the sample unification procedures as follows: 

Table 5. 4 Key Creation Performance via Combining All Biometric Approaches at Feature Level  

Modalities 
Sample Unification 

Procedure 
FAR FRR 

Fingerprint + Face + Keystrokes 8-Sample 0.09% 61% 

Fingerprint + Face + Keystrokes 50-Sample 0.02% 34.48% 

Generally, it is evident from the tabulated results that both sample unification 

procedures amongst biometric modalities can generate a reliable and reproducible 

cryptographic key using the feature level fusion. The overall FAR rate indicates that 
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limited forgery attempts were taken place, and simultaneously the average FRR 

value is within the acceptable FRR figure of this research – less than 83%. On the 

other hand, incorporating the biometric modalities using the 50-sample unification 

procedure superiorly improves the key generation process. In comparison with the 

key generation accuracy on the basis of 8-sample unification, the FRR rate reduces 

by half, and the FAR value decreases by seven times. This can be explicated due to 

the limitation of incorporating few numbers of samples amongst the biometric 

modalities (only 8 samples). 

Table 5.5 shows the performance of the biometric key generation by fusing a number 

of transparent biometric modalities reliant upon their availability over time (i.e. the 

key generation accuracy via combing all permutations of biometric approaches) as 

below: 

Table 5. 5 Key Generation Performance by Incorporating Different Permutations of Biometric 

Modalities Using Feature Level Fusion   

Modalities FAR FRR 

Fingerprint + Face + Keystrokes 0.02% 34.48% 

Fingerprint + Face 0.01% 67.69% 

Fingerprint + Keystrokes 0.01% 67.02% 

Face + Keystrokes 0.004% 64.29% 

Fingerprint 0.94% 59.56% 

Face 0.06% 62.69% 

Keystrokes 0.06% 31.13% 

As shown in Table 5.5, the experimental results describe that the combination of all 

three transparent biometric techniques outperforms the single biometric approaches 

in creating a bio-crypto key of 256-bit length. In accordance with this, whilst the FAR 

rate diminishes by four times versus the FAR rate of the individual approaches of 

face and keystrokes, it minimizes by seven times versus the FAR rate of the single 
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fingerprint technique. Simultaneously, the FRR figure of 34.48% on average 

confirms that all users had the capability to generate the bio-crypto key – evidently 

the FRR rate nearly decreases by half in comparison with the single modalities of 

fingerprint and face. 

With regard to a combination of two biometric techniques, the empirical results 

overall demonstrate that a lower FAR rate is achieved in comparison with the FAR 

rates of all other permutations (i.e. single modality and three-biometric fusion). With 

0.008% FAR rate on average across all two-biometric combinations, the minimal 

illegitimacy access was occurred. On the other hand, it would be expected that using 

a combination of two biometric modalities would outperform a single biometric 

approach in producing the bio-crypto key, but this was not the case. The FRR rate is 

rather higher than other single biometric techniques. This can be because one or two 

of the biometric feature vectors is very noisy resulting ultimately in producing the 

wrong bio-crypto key. Therefore, capturing the two quite consistent biometric 

samples would be ideal to increase the key generation accuracy. As shown in 4.2, 

this perspective would be achieved within the proposed approach as numerous 

samples can be transparently collected and the bad samples can be ruled out based 

on the key verification approach using a strong hash function. Despite this, the entire 

population succeeded to create the bio-cryptographic key of a 256-bit size as the 

FRR values are less than the tolerable figure of 83%. Using a unimodal biometric in 

particular the keystrokes would be insufficient for security purposes. Even if the FRR 

rates of combining two biometric techniques slightly increases without hindering the 

generation of a timely correct key, the FAR rates demonstrate that the 

encryption/decryption would be undertaken in a more secure manner.  
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It is also worth noting that there is no significant difference in the FRR rates across 

all combinations of two biometric approaches. A possible explanation is that the 

duplication of fingerprint samples in addition to ruling out a number of face and 

keystrokes samples (i.e. 33 facial samples and 10 keystroke samples) might be 

leading to the fixity in the FRR results. 

Figure 5.2 comperes the individual FAR and FRR rates for each user in generating 

a bio-cryptographic key of 256-bit by combining all biometric modalities on the basis 

of 50-sample unification as follows:    

    

 

 

 

 

 

Figure 5. 2 Feature Fusion Performance of Three-Biometric Modalities via 50-Sample Unification for 

All Users 
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0%-0.16%, 1962 samples of imposters failed to compromise the valid secret key (the 
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incorporating multiple biometric approaches. On the other hand, just under a quarter 

of population (20 users) utilized less than half of the biometric samples to produce 

the correct secret key – the FRR rate are 63% on average. At the same time, the FRR 

rate of 0.05 shows that only one sample of the invalid class samples which were 19 

imposters ˣ 25 samples = 475 samples can hack the correct key. However, 

regardless how many samples were effective in generating the cryptographic key, 

the multibiometric via feature-level fusion demonstrates that all users succeeded to 

produce the key of a 256-bit length. 

5.3.2 Experiment 2: Transparent Multibiometric Key Generation by 

Matching-Level Fusion 

The empirical results and analysis of this experiment determine the robustness of 

producing a biometric key of 256-bit via integrating the contributory biometric 

approaches using matching-level fusion. Generally, the experimental outcomes of 

this investigation confirm that some users yet cannot generate a transparent secret 

key on time using the multibiometric approach at the matching phase. 

Table 5.6 reveals the effectiveness of generating a key by combining all biometric 

techniques according to the sample unification procedure as below:  

Table 5. 6 Key Generation Performance by Incorporating All Biometric Approaches at Matching Level 

Modalities 
Sample Unification 

Procedure 
FAR FRR 

Fingerprint + Face + Keystrokes 8-Sample 0% 97.4% 

Fingerprint + Face + Keystrokes 50-Sample 0% 81.91% 

Based on the FAR and FRR figures, the above-tabulated results describe that the 

matching approach utilising the 50-sample unification procedure is superior in 
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creating a bio-crypto key of a 256-bit length. With the multibiometric fusion being 

applied on the basis of 50-sample unification, the FRR rate indicates that the correct 

keys were produced to the significant genuine users (80 users), and concurrently the 

FAR rate reveals that the wrong keys were produced to all imposters. On the other 

hand, combining the biometric modalities on the basis of the 8-sample unification 

negatively affect the key generation process. Just under a quarter of the whole 

population (13 users) had the ability to encrypt/decrypt data in a non-intrusive and 

continuous fashion; however, the vast majority of participants did not succeed to do 

so on a timely basis. This might be because of unifying poor quality of samples in 

between the fingerprint, face and keystrokes techniques in addition to the limitation 

of consolidating few samples (i.e. 8 samples from each biometric). In addition, 75 

and 52 facial and keystrokes samples were respectively excluded which might be 

the effective ones in generating the desired bio-crypto key of 256-bit length.  

Table 5.7 compares the performance of the biometric key generation by fusing a 

number of transparent biometric modalities reliant upon their availability over time 

(i.e. the key generation accuracy via combing all permutations of biometric 

approaches) as follows: 

Table 5. 7 Key Creation Effectiveness through Combining Different Permutations of Biometric 

Modalities Using Matching Level Fusion     

Modalities FAR FRR 

Fingerprint + Face + Keystrokes 0% 81.91% 

Fingerprint + Face 0.002% 77.37% 

Fingerprint + Keystrokes 0.0008% 74.71% 

Face + Keystrokes 0.0047% 67.98% 

Fingerprint 0.94% 59.56% 

Face 0.06% 62.69% 

Keystrokes 0.06% 31.13% 
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It is clear from the results that the incorporation of all selective biometric modalities 

do appear to be less effective in generating the key of a 256-bit amongst all 

permutations of biometric approaches, with 81.91% FRR rate on average. A possible 

explication is that balancing the legitimate and illegitimate classes based on the 

replication of only 4 fingerprint samples could have a negative impact upon the key 

generation process. Another possible reason is that the 33 face samples and 10 

keystrokes samples which are excluded might be the successful ones in generating 

the correct key under which the FRR rate could be fallen down. On the other hand, 

the multibiometric approach of all three modalities accomplishes the superior 

performance in overcoming the illegitimate key generation by forgers among all 

biometric permutations. Evidently, the FAR rate of 0% demonstrates that no imposter 

can hack the cryptographic key.  

In terms of two-biometric fusion, the key generation performance is pretty 

encouraging in comparison with the single biometric. The FAR rates reveal that the 

minimal forgery attempts were taken place. At the same time, whilst a far lower 

proportion of the entire population (2 users only) cannot generate the correct key, 11 

individuals failed to create the same valid key from the single fingerprint and face 

techniques. Although the FRR rates are rather higher, the number of users that were 

able to generate the bio-crypto key is lower. This could be interpreted due to the fact 

that one of the biometric modalities gave a negative accuracy and degraded the 

incorporation of two biometric techniques. Therefore, ensuring that the effective 

biometric samples from both modalities are concurrently presented to the 

multibiometric approach is quite crucial to escalate the key generation accuracy.              
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Figure 5.3 comperes the individual FAR and FRR rates for each user in producing a 

bio-cryptographic key of 256-bit by incorporating all biometric modalities on the basis 

of 50-sample unification as below:   

    

 

 

 

 

 

Figure 5. 3 Matching Fusion Performance of Three-Biometric Modalities via 50-Sample Unification for 

All Users 
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the bio-crypto key of a 256-bit to cipher/decipher data in a realistic approach. 

Evidently, the experimental results reveal that the stored data of all 100 users within 

cloud storage would be protected in a more reliable way without any inconveniences. 

This means that the key generation accuracy has been positively escalated. At the 

same time, the security aspects in terms of combating the forgery attacks and 

features guessing attacks would be surely underpinned. 

With regards to the multibiometric performance, the feature level fusion overall 

outperforms the matching level fusion at producing the valid correct key with limited 

illegitimacy attempts. By incorporating the three biometric modalities on the basis of 

50-sample unification, the FRR rate of the multibiometric approach via feature level 

fusion decreases 47 times approximately in comparison with the FRR rate of doing 

so by the matching level fusion. In addition to this, whilst the entire population (100 

individuals) had the ability to create the bio-cryptographic key through the biometric 

combination at the feature phase, 20 users did not succeed to do so at the matching 

stage. In terms of the biometric incorporation reliant upon the 8-sample unification 

procedure, the feature level fusion has been also more superior to generate the bio-

crypto key than the matching level fusion. In accordance with this, all users succeed 

to create the correct key at the feature stage; however, the whole population failed 

to establish the same valid key at the matching point.   

Regarding the two-biometric fusion, the empirical results demonstrate that the 

feature-level fusion accomplishes the superiority in creating the secret key of a 256-

bit in comparison with the matching-level fusion. While all 100 participants can 

generate the cryptographic key by combining any two biometric modalities at the 
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feature phase with approximately 66% FRR rate on average, 98 users can do so at 

the matching stage with nearly 72% FRR rate on average.   

From the security perspective, the multibiometric approach on the whole whether 

three-biometric fusion or two-biometric fusion reduces illegitimacy instances in 

compromising the valid bio-crypto key. With three-biometric approach being applied 

at the feature level on the basis of 50-sample unification, the average FAR rate was 

0.02%. On the other hand, by combining all the three biometric techniques at the 

matching level, the FAR rate was 0% on average using the same sample unification 

procedure. As such, the FAR rate of the multibiometric key generation approach 

evidently outperforms the single biometric modalities in which the average FAR rate 

was 0.94%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. The 

multibiometric key generation approach would be able to resist the potential spoofing 

attacks. Furthermore, the multiple biometric incorporation underpins the entropy 

factor where more than one feature vector is employed to generate the bio-crypto 

key. Accordingly, the number of possible combinations from each particular feature 

vector is increased; thereby, the feature guessing attacks can be overcome. The 

effective entropy of a multibiometric approach is measured by determining the 

difference between the maximum and the minimum values a biometric feature can 

have. Then, the log2 for the product of those values is taken to evaluate the entropy 

for a biometric technique in an effective bitlength. Accordingly, the entropy values 

from each biometric approach are multiplied to evaluate the entropy of a 

multibiometric key generation approach. Table 5.8 shows the effective entropy of 

biometric features of all approaches (i.e. single biometric, two-biometric, and three-

biometric). 
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Table 5. 8 Effective Entropy (Bitlength) of Single, Two, and Three Biometric Approaches        

Approach  Effective Entropy 

Fingerprint + Face + Keystrokes   6567438592 

Fingerprint + Face 4366648 

Fingerprint + Keystrokes   5740768 

Face + Keystrokes   1720576 

Fingerprint 3817        

Face 1144 

Keystrokes   1504 

5.5 Conclusion     

This chapter has demonstrated through the experimentation the outperformance of 

generating the bio-crypto key of a 256-bit from the transparent multibiometric 

approach. Using the multibiometric encryption approach would increase the 

reliability of cloud storage technology where more usable and secure framework will 

be enabled with no doubt. In general, the empirical outcomes show that the 

multibiometric key generation using the feature level fusion is better than the 

matching level fusion in generating the cryptographic key. In addition, the 

experiments revealed that the deficiency of biometric data has a huge impact upon 

the key generation performance; especially within the multibiometric approach via 

the matching level fusion. Although there was a limitation regarding experimenting 

few biometric samples, numerous samples would be spontaneously collected in 

reality leading to the opportunity of enhancing the key generation performance. 
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Chapter Six: Transparent Bio-Cryptosystem Architecture 

6.1 Introduction 

Having successfully demonstrated the empirical foundation for generating a robust 

non-intrusive cryptographic key via transparent biometric approaches, this chapter 

is devoted to proposing and designing an innovative bio-cryptosystem framework. 

Whilst the bio-cryptosystem presented in this chapter has applicability to any stored 

data, it is particularly relevant for cloud‐based storage given the lack of additional 

security controls in place. In order to lay out the architectural framework, a number 

of fundamental requirements would be identified – with specific issues in mind 

regarding security, usability, scalability and efficiency aiming at developing a well-

considered platform. As a result, appropriate components, processes and 

mechanisms would be employed to manage and maintain a reliable key generation 

solution and to ultimately provide a seamless intelligent encryption. In addition, a 

number of operational aspects that a real-time system would require will be also 

taken into consideration and accordingly discussed in an analytical view for 

approaching an effective scenario.         

An innovative cryptographic technology would be non-intrusively undertaken by 

generating a bio-crypto key using the stored helper data on enrolment and the live 

biometric features. In view of storing local helper data, there would be an issue in 

accessing the online storage service from multiple devices – as the local helper data 

would be only stored on a single device. With the promising characteristics being 

offered by cloud computing in terms of universality, connectivity, scalability and 

flexibility, it would be possible to tackle the issue of the helper data storage. As such, 
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this public data can be stored centrally within the Cloud to provide a universal access 

for all users’ devices and then undertake the encryption service. The proposed bio-

cryptosystem architecture presents an advanced secret key generator – that is 

capable to create a key on the fly without storing it anywhere in a transparent fashion. 

Nonetheless, using such an innovative system will also introduce issues ranging 

from security, privacy to automation that have to be addressed and overcome.     

The subsequent sections start with identifying the system architecture requirements 

dependant upon the analysis and the experimental outcomes from the previous 

chapters. Then, a comprehensive explanation of the system components, processes 

and mechanisms is presented - focusing upon the security and usability aspects with 

a view to ensuring a robust and convenient cryptographic framework. A number of 

operational considerations are also addressed and conceptually resolved with the 

purpose of reinforcing the system operation in reality. 

6.2 System Requirements 

Prior to the architectural design, a number of system requirements should be 

specified in order to offer an effective solution. Based upon the critical analysis of the 

literature review presented in Chapter 3 in addition to the results of the 

experimentation phase conducted in Chapters 4 and 5, the transparent bio-

cryptosystem requirements have been identified by the following:  

1- Advanced measures of security management 

Secure management procedures are needed with the aim of lowering the 

sensitivity of the helper/public data that has to be stored at some location to 

facilitate the key regeneration for encryption or decryption. Of course, the 
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storage of the public data should not help imposters to reveal any information 

to breach the system. As shown within the experimental phase (Chapters 4 

and 5), the methodological approach exploits the conception of biometric 

recognition by driving the multilabel classification problem to cope with this 

requirement in a secure manner. As such, a pattern classification technique 

(i.e. a neural network algorithm) is taken advantage to create the 

cryptographic key without storing sensitive data. From a different perspective, 

it is also evident from the experiments of Chapter 4 that the dependence upon 

one biometric approach can be deemed as an unsatisfactory in terms of 

security in addition to the performance (which is discussed in requirement 3). 

Single biometric modality can be defeated easily because of low individuality, 

high forgery attempts and lack of universality. For example, face biometric 

system is vulnerable to be hacked by spoof attacks. Another instance is that 

using the keystroke dynamics technique alone is fairly fragile. As discussed 

in 2.6.1.7, the distinctive actions of keystrokes seem to be insufficient for 

verifying a person, and they are an inadequate to be applied for security 

purposes. As demonstrated from the experiments of Chapter 5, the 

multibiometrics fusion can arguably contribute to overcome or at least 

alleviate these shortcomings. From another viewpoint, in a bio-cryptosystem 

under which the feature vector in particular acts (directly or indirectly) as an 

encryption enabler, the capacity of the approach to overcoming brute force 

attack is essential. The biometric entropy is a measure of the number of 

possible combinations a particular feature vector can have. It can reflect an 

indication in determining the effort required to brute force a biometric feature 

vector by an attacker. As such, the biometric entropy reinforcement is a very 
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important requirement that should be taken into account when designing a 

bio-cryptographic system. This requirement can be achieved by incorporating 

significant biometric features to reinforce the biometric entropy. The 

multibiometric cryptographic approach in Chapter 5 has accomplished a 

robust biometric entropy (bitlength) reaches up to 6567438592.      

2- High level of transparent and continuous operation    

Relying upon third-party cryptographic applications to provide an additional 

user-oriented level of protection can be arguably cumbersome. The 

cumbersomeness issue is posed when each file needs to be 

encrypted/decrypted manually in addition to administering many keys. As a 

consequence, there is apparently a need for a transparent, continuous and 

convenient approach for generating a robust cryptographic key to accomplish 

seamless encryption. Accordingly, the concepts of biometric cryptography 

and transparent biometrics are incorporated with one another to remove the 

usability issues in terms of having to present biometric credentials each time 

a file needs to be encrypted/decrypted or recalling long complex keys. 

Therefore, the application of transparent biometric cryptography would enable 

the generation of a non-intrusive timely cryptographic key and prevent the 

person from having to present cryptographic credentials (e.g. secret keys, 

passwords and biometrics).      

3- Acceptable degree of performance  

The system capacity for generating a valid reproducible cryptographic key to 

the genuine person only is a crucial requirement. Referring back to the 

requirement 1, using one biometric technique will be obviously unreliable. In 

addition to the downsides of the single biometric modality with regard to 
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security, it can simultaneously impact the system effectiveness in a negative 

manner owing to poor uniqueness, high error rate and lack of universality. For 

instance, face biometric modality is affected by position, expressions and the 

amount of present illumination; thus, the face biometric system can be easily 

defeated. According to the experiments of Chapter 5, the multiple biometric 

integration would certainly improve the key generation performance. On the 

whole, the key-findings from the empirical results (Chapter 5) demonstrate 

that a valid repeatable cryptographic key to the legitimate person of 256-bit 

length can be optimistically generated to encrypt/decrypt the stored data in 

reality. 

4- Diverse key generation approach  

This requirement means that various cryptographic keys have to be produced 

for encrypting or decrypting each document within the cloud storage paradigm. 

The key diversity requirement is fairly important characteristic by which the 

confidentiality and privacy aspects are boosted – thus if one document is 

hacked, the other one would not be influenced as it is encrypted by a different 

key. The random key generation approaches can handle this requirement to 

ideally create numerous keys for each document. On the other hand, 

additional security mechanisms should be given in place in order to provide 

an acceptable protection to the assets of a random key generation approach.    

5- Robust revocation procedure 

The revocability refers to the capability of cancelling the generated key in case 

of hacking and reissue another one. Referring to the previous requirement, 

due to the generation of diverse cryptographic keys, a comprehensive and 

tactical revocation procedure should be considered with a view to revoking 
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any key in case of compromise. Fortunately, the bio-cryptographic domain 

supports the key revocability characteristic where neither the biometric data 

nor the key will be stored at some location. Instead of that, public data are 

stored to aid in generating a timely cryptographic key thus facilitating to 

accomplish the revocation requirement within the proposed system 

architecture.      

6- Universal and interoperable solution for cross-platform usage 

Given the necessity to access the cloud storage service from multiple devices, 

universal and interoperable solution is required to undertake the encryption 

technology on different personal devises. The existing cloud paradigm 

already supports universality and interoperability characteristics that allow 

wide range of technological devices (e.g. desktop computer, laptop, tablet 

and/or mobile phone) to be connected to the storage service. Accordingly, this 

requirement is very important to achieve; otherwise, the system architecture 

will be incomplete from a usability perspective – such deficiency could badly 

impact the system acceptability and adoptability. The cloud commuting can 

be introduced as a solution with a view to fulfilling this requirement. Thus, the 

entire core techniques that are applied to facilitate in generating the bio-crypto 

key would be placed within the Cloud to achieve transparent encryption. 

Another solution can be used by conducting a registration session upon each 

device. That is, while signing up, there would be collector agents to capture 

the biometrical signals transparently once for enrolment. Then, a user profile 

would be used to construct helper data and create the desired key on a timely 

basis in the meantime.  
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6.3 System Architecture 

Having identified the system requirements and characteristics, the bio-cryptosystem 

architecture has been proposed accordingly with the aim of maximizing the security 

and usability aspects. The innovative architecture system aims to offer a convenient 

user-oriented cryptographic framework to additionally secure the data privacy and 

confidentiality within cloud storage. The core approach of the proposed system 

overcomes the poor and cumbersome secret keys and eradicates the inconvenience 

issues of the third-party cryptographic tools – via applying the transparent biometrics 

modalities within biometric cystography. Thereby, the cloud storage subscribers 

would be in charge of protecting their data in a more usable fashion – where a 

transparent repeatable bio-crypto key would be generated for encryption/decryption. 

At the same time, this key would be reliably and consistently generated on the fly via 

employing public data without storing it at some location to reinforce the security 

factor.  

The bio-cryptosystem architecture implements a multibiometric topology using a 

variety of transparent biometric modalities, such as fingerprint, face (physiological) 

and keystroke dynamics (behavioural). The framework is devised reliant upon a 

hybrid approach – using an integration of multi-modality and multi-sample sources. 

In particular by applying multiple transparent biometric techniques, the proposed 

system architecture would be capable to robustly perform encryption or decryption 

process in a seamless fashion. In addition to this, the presented bio-cryptosystem 

can be highly modular – where a wide range of physiological and/or behavioural 

biometric approaches can be also applied as appropriate with a view to elevating the 

system security and accuracy. 



199 
 

 

Figure 6.1 depicts the architectural bio-cryptosystem which fundamentally includes 

processing engines and agents situated within the parties of the client and the 

provider.  

 

 

 

 

 

 

 

 

 

 

   

 

  

 

 

Figure 6. 1 An Innovative Model of Multi-Biometric Cryptography Undertaken at the Cloud Side 
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In order to understand the presented architectural system, the scenario of the cloud 

data protection is described. At first, the authentic cloud user should log in to the 

service via the standard verification protocol. Authentication is the frontline 

countermeasure of ensuring that only the genuine user is granted access into the 

cloud storage, and accordingly a robust authentication technology should be 

provided in order to accomplish a confidential cryptographic framework. Given 

encouraging outcomes from transparent biometric verification in terms of accuracy 

and usability being demonstrated, it can be combined with two-factor authentication 

with a view to ensure a trusted, secure and reliable access. In the meantime, while 

the cloud user undertakes particular cloud storage service activities, his/her 

biometric data, which does not require the explicit interaction with the system, are 

collected in a non-intrusive manner. Cloud-based storage activities can be Add, 

Delete, Edit, Download, Update, Rename, Read, Write, or any other activity that 

could be undertaken by the cloud subscriber. The biometric modalities are acquired 

via the Biometric Collector Agent and then directed into a number of input sampling 

channels. Following this, a number of the feature extraction techniques are applied 

to generate the optimal feature vector – this stage represents the Feature Extractor 

Agent. Both the Biometric Collector Agent and the Feature Extractor Agent belong 

to the Biometric Engine. Subsequently, the Communication Engine sends over the 

feature vector into the cloud provider which undertakes all remaining processing and 

responsibilities with the aim of setting out the key generation process for multiple 

users’ devices. 

The cloud provider party, being the backbone of the transparent biometric key 

generation process, fundamentally consists of three engines: Key Generation 
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Engine, Key Management Engine and Cryptographic Engine. The Key Generation 

Engine includes the classification approach which is used to generate/identify the 

bio-crypto key (i.e. master key) reliant upon the live features and the training 

parameters (i.e. weights). The Key Management Engine is responsible for managing 

and maintaining the master key – leading ultimately to the launch of numerous valid 

bio-crypto keys on the basis of successful key verification. In the Cryptographic 

Engine, each valid bio-crypto key is used to seamlessly encrypt/decrypt each 

document within the cloud storage in a non-invasive way. Eventually the cloud 

storage provider will be responsible for storing the secured document. 

In view of potential impacts upon the previous innovative system architecture (Figure 

6.1) in terms of security and scalability, another bio-cryptosystem architecture for 

cloud-based storage is presented. The use of the Communication Engine to transmit 

the biometrical signals to a Trusted Third Party (TTP) with a view to undertaking a 

secure transit to the cloud provider might raise security issues related with trust. In 

addition, storing helper data for each user subscribed with the cloud storage service 

could pose a burden upon the cloud provider – resulting in negatively affecting the 

scalability characteristic. In order to cope with the above-mentioned issues, another 

system architecture is designed concentrating upon storing the helper data, which 

would aid in generating the bio-crypto key, at the client side. Such a bio-cryptosystem 

would eradicate the need of using a communication engine that hands in the 

biometric features from the user side to the cloud provider through a Trusted Third 

Party (TTP).    
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Figure 6.2 shows the architectural bio-cryptosystem that encompasses processing 

components located only at the client party as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 2 An Innovative Model of Multi-Biometric Cryptography Undertaken at the User Side 
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As illustrated in Chapter 1, the local storage units can be regarded more secure than 

cloud storage - where the former employs physical and logical security controls 

before granting access to the stored data. As such, the framework of the above bio-

cryptosystem offers the local storage solution with the aim of lowering security 

vulnerabilities (i.e. the exploitation of personal storage units, such as hard drives) 

whereas the existing cloud paradigm lacks the potential afforded to local storage 

strategies. Figure 6.2 describes that the client party, being the heart of the 

transparent key generation process, comprises all the previous processing engines 

except the Communication Engine. These are the Biometric Engine, Key Generation 

Engine, Key Management Engine and Cryptographic Engine. As the biometrical 

signals would be treated at the user side, there is no actual need to utilize the 

Communication Engine. The tasks of these processing engines are as same as in 

the former presented architecture. In the latter proposed system architecture, the 

user would sign up an account on cloud storage, for instance, from his laptop. Then, 

the transparent encryption would be normally undertaker on the client party as in the 

former architecture without transmitting the biometrical singles to the cloud provider. 

However, when the subscriber wants to log in to the service from another device 

such as a mobile phone, he/she must either submit the biometric data to the system 

or the system should capture the biomedical data transparently during an enrolment 

session for only once - as same as in Apple iPhone. It is worth noting that the Apple 

iPhone user can turn into using the fingerprint biometric as a passcode to unlock the 

device (see section 2.6.1.1). Having collected biometric samples on enrolment, they 

would be utilized for building another user profile and training the classifier to 

construct an indispensable public/helper data which will be stored on the mobile 

phone this time. This data would be used alongside with the fresh biometric samples 
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to generate the bio-crypto key on encryption/decryption. The same scenario would 

occur with other new devices. Although the second architecture tackles the security 

and scalability issues, it yet presents a potential security concern in terms of storing 

multiple helper data upon different personal devices. Given the cons and pros from 

both architectures, one of them would be adopted depending upon the user 

desirability and the provider initiatives. 

The following section explains in detail the architectural system components in order 

to fulfil its requirements thereby maintaining security and minimising inconvenience. 

6.4 System Architecture Components  

The presented architectural systems consist of common processing engines 

cooperating to ultimately enable more usable and secure cryptography, albeit the 

first system architecture included another component – the Communication Engine. 

With the framework of each proposed system being taken into account, the 

processing engines are explained by the following:    

1. Non-Intrusive Biometric Engine  

The Non-Intrusive Biometric Engine basically comprises two agents: the 

Collector Agent and the Feature Extractor Agent. The primary task of the 

Collector Agent is to detect and collect the biometric information of a user both 

physiological and behavioural (e.g. fingerprint, face, voice, keystrokes, and 

behavioural profiling). However, it is not possible to ensure that all of the 

biometric modalities will be always acquired because biometric samples can 

be only captured if they are available in a non-intrusive manner. Despite this, 

the Collector Agent will highly likely collect some biometric data as long as the 



205 
 

 

user would interact with the cloud storage account through reading, writing, 

or editing files. In this context, the system would have the possible biometric 

samples to generate the bio-crypto key. On the other hand, the Feature 

Extractor Agent is responsible for pre-processing the collective biometric data 

and extracting the biometric features. Figure 6.3 depicts the non-intrusive 

biometric engine bloke diagram as follows: 

 

 

 

 

 

 

 
 
 
 

Figure 6. 3 Non-Intrusive Biometric Engine  
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For fingerprint and face, a number of analysis, enhancement, and alignment 

approaches can be used to ameliorate the quality of the biometric image 

samples and to transform them into a common version. On the other hand, 

the pre-processing task of input data obtained by the keystroke dynamics 

technique involves calculating the duration time, performing outlier removal 

and normalisation of the timing vector. The feature extraction process then 

extracts the biometric features from the processed samples and converts 

them into feature vectors.  

The literature review conducted in Chapter 3 indicates that significant amount 

of research tends to remove numerous biometric features with a view to 

overcoming the biometric variations. Whilst this perspective could improve the 

biometric key generation performance, it can badly affect the biometric 

entropy leading to feature guessing attack. As a consequence, incorporating 

numerous independent biometric features would present many combination 

values from a feature vector which cannot be guessed by an attacker in the 

meantime. As such, supporting the biometric entropy is a crucial requirement 

that should be fulfilled. The experimental phase within Chapter 4 and 5 

demonstrates an effective biometric entropy by applying a number of 

commercial feature extraction techniques.  

On enrolment, the extracted source feature vectors are used for building a 

user profile and training the classifier to construct an indispensable 

public/helper data. However, the extracted fresh feature vectors on encryption 

are utilized to generate a constant bio-crypto key on a timely basis in the 

meantime. There is no doubt that the performance of a biometric key 

generation system is directly related to the quality of the biometric samples, 
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and this could be positively handled by the pre-processing phase. However, 

it would be very efficient to check the quality of the sample within the Collector 

Agent prior to undertaking the pre-processing. The Collector Agent can have 

the capacity to check the quality of the captured sample in advance by seeking 

a proper procedure. For instance, The Collector Agent for the fingerprint and 

face can utilize predefined image resolution threshold to check the quality of 

the collective samples. Furthermore, the Collector Agent for the keystroke 

analysis modality could be capable to check the quality of the captured 

sample by determining the event duration thus indicating if it is normal or 

higher than normal, for instance. This illustrates that the user might be 

interrupted while typing data. Nevertheless, the issue of how to measure the 

quality of the biometric samples is the topic of considerable discussion and 

research within the design of biometric modalities, rather than a wider 

architectural issue. 

From the multibiometric perspective, the system architecture is not confined 

to the selective biometric approaches in this research only; thus, it can adapt 

any new potential biometric modalities that can be acquired while using cloud 

storage. Accordingly, the Biometric Engine would be flexibly and adaptably 

mechanized seeking to incorporate other transparent biometric techniques. 

To this end, using biometric standards such as ISO (Standardization, 2005) 

is required. This means that other existing or emerging transparent biometric 

approaches can be applied within the proposed system architecture as long 

as they compile with ISO standards (i.e. ISO 19794, 19785, 19784). What is 

more, with the possibility of having classification and encryption being 

undertaken by the cloud provider, a wide range of devices can use such a 
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compatible system built upon using biometric standards. That is, the cloud 

user would have the capability to log in to his/her account from any device. 

These devises vary in regard of their hardware configuration and operating 

system (e.g. desktop, laptop smartphone, tablet, and so on). Therefore, 

utilizing ISO biometric standards would allow to undertake a resilient, modular, 

and compatible framework.  

2. Communication Engine 

Given the potential of having encryption being undertaken by the cloud 

service provider, the Communication Engine will be utilized as a secure 

communication channel to communicate between the client and the cloud 

parties for an agreeable objective. That is, the user needs to trust the service 

provider based upon the available agreements and policies. The 

communication process occurs in a trusted framework to a Trusted Third 

Party (TTP) and via the Secure Sockets Layer (SSL) security technology. As 

such, whenever the cloud side encrypts/decrypts the users’ files, the 

Communication Engine would be activated on that basis. The Communication 

Engine will specifically transmit the biometric features, which have been 

collected, pre-processed and extracted by using the Non-Intrusive Biometric 

Engine, into the cloud provider. The service provider will subsequently 

undertake the cryptographic framework in a secure and usable manner (see 

figure 6.1). It is worth noting that the Communication Engine will not be used 

if the encryption/decryption is undertaken at the client side.   

3. Key Generation Engine 

The essential functionality of the Key Generation Engine is to establish a 

master bio-crypto key for the legitimate user only. When the encryption 
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framework is undertaken at the cloud side, this engine will apply the biometric 

key generation process via receiving the pre-processed feature vectors being 

handled within the Non-Intrusive Biometric Engine and transmitted by the 

Communication Engine. On the other hand, if the encryption framework is 

undertaken at the user side, the biometric key generation process will create 

the master bio-crypto key on the user’s device itself only (as presented in 

Figure 6.2). On the whole whether the encryption would be applied at the 

client party or at the cloud side, this engine has to have the capacity to deal 

with single or multiple biometric modalities. This would ensure that the key 

generation process can be performed even if all of the selective biometric 

modalities are unavailable. As such, the Key Generation Engine generally 

comprises several agents. These agents are fundamentally classified into 

Biometric Key Agent and Multibiometric Key Agent. The former (Biometric 

Key Agent) creates a bio-crypto key via single biometric approach; however, 

the latter (Multibiometric Key Agent) generates a biometric key by using 

multiple biometric approaches as depicted in Figure 6.4. With the contributing 

biometric modalities being applied in this study, the Key Generation Engine 

would be capable to totally operate 7 types of key agents. These types are 

explained by the following: 

 Fingerprint biometric key agent 

 Face biometric key agent  

 Keystroke dynamics biometric key agent 

 Multibiometric key agent based on fingerprint, face and keystroke 

dynamics 

 Multibiometric key agent based on fingerprint and face 
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 Multibiometric key agent reliant on fingerprint and keystroke dynamics  

 Multibiometric key agent depending on face and keystroke dynamics 

As illustrated in Chapter 2, a source should be provided to combine some data 

and thereafter develop a multiple biometric system. Since many biometric 

samples can be collected in a transparent fashion from one or more than one 

biometric modality, the following sources are adopted on the core proposed 

system framework – where one or set of them would be implemented as 

appropriate:  

 Multi-Modality Source: building a single sample of more than one 

modality to tackle the potential weaknesses of some biometric 

techniques or acquisition devices.  

 Multi-Sample Source: building multiple inputs of the same modality to 

have a well-informed identity and to offset the existing samples of bad 

quality.  

 Hybrid Source: dynamically building single or multiple samples from 

different modalities. This could probably fine-tune the approach in 

generating the desired bio-crypto key, crafting a more multi-layered 

method.  

According to the discussion in Chapter 2 section 2.5, these samples have to 

be incorporated effectively at a certain phase (i.e. sensor, feature, matching 

score, and/or decision level) within the biometric system. In this context, the 

biometric fusion overall aims to reinforce the capacity of generating a timely 

repeatable bio-crypto key for a seamless encryption. The experiments 

conducted in Chapter 5 investigated two approaches of biometric fusion. 
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These are feature level-fusion and matching-level fusion. The former can 

have the capability to escalate the accuracy and security of the biometric key 

generation. In addition to this, the latter has the merit of encompassing any 

other biometric modalities/classifiers without the need to re-train the system 

from the scratch. The experimental results, however, demonstrate that the 

feature-level fusion is more robust than the matching-level fusion based on 

the experimental data. As such, it is recommended that the applied biometric 

fusion method within the design of the Multibiometric Key Agent would be the 

feature-level fusion, although such a research finding could not be 

generalized. This is because the biometric data in reality would be different, 

but at least there is a tangible and promising basis.  

From another aspect, the Multibiometric Key Agent can possibly generate the 

correct key even with a potential number of rejected samples. Whist the 

rejected biometric samples might be presented by an imposter, constructing 

temporary helper data via re-training the suspicious samples would aid the 

system to have a good indication about the real interactions of the legitimate 

user resulting in ameliorating the key generation performance. Contrarily, 

those sample will be removed from the local storage unite if the overall 

accuracy had indicated that the samples belong to an adversary. Figure 6.4 

shows the block diagram of the Key Generation Engine as follows:  
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Figure 6. 4 Key Generation Engine  
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local storage units benefit from logical and physical security countermeasures 

before being able to access data; therefore, they can be considered more 

secure than cloud-based storage. On the other hand, the existing cloud 

paradigm lacks the potential afforded to local storage solutions. On 

encryption/decryption, the classifier structure would be reconfigured once 

again to generate the master key by using the classification parameters (i.e. 

the weights in the context of this research) and the live biometric features. In 

a Multibiometric Key Agent, the same previous procedures would be applied 

in addition to a fusion method as shown in Figure 6.4.            

4. Key Management Engine  

The Key Management Engine represents the central processing unit of the 

system architecture where it generally controls the biometric key generation 

in an effective way. This would in particular be accomplished via liaising 

between both the Key Generation Engine and the Cryptographic Engine. To 

this end, the Key Management Engine undertakes a number of crucial 

procedural tasks to manage and maintain a successful bio-crypto key 

generation. The fundamental tasks/procedures of this engine are outlined by 

the following:  

 Key Verification: The Key Management Engine would perform a 

key verification procedure in order to verify whether the generated 

master key is valid or not. This would be applied at the 

encryption/decryption time when the created master key is 

delivered by the Key Generation Engine. For this achievement, a 

strong cryptographic hash function would be used in a secure 

way to hash the identified biometric key on registration – the 
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hashed key will be stored at some location. Then, the master key 

that is generated on encryption will also be hashed by the same 

cryptographic hash function which is applied on training. 

Accordingly, the master key will be correct if its hash value on 

validation equals the stored hashed key on enrolment. The hash 

function of SHA-3 can be used to reinforce the security aspect. 

The hashed key on training would be either stored at a local 

storage unite or on the Cloud depending on at which side the 

encryption will be undertaken.     

 Encryption Assets Production: The Key Management Engine also 

will undertake another procedural task to produce the encryption 

assets. These assets would accomplish the requirement of 

generating diverse keys to underpin the privacy and 

confidentiality of the stored files. That is, each and every single 

file within the cloud storage account has to be 

encrypted/decrypted by its own cryptographic key. Thereby, if 

one file has been hacked the other one would not be affected as 

it is protected by a different key. Therefore, there is a need to 

input random seed values along with the valid/correct master key 

into a reliable random key generator to establish numerous-file 

keys. As such, a database will be created to index each and every 

stored file name within cloud storage alongside its seed value. 

This would be used as a reference to cipher or decipher that file 

once again by its file key (i.e. unique attribute for each stored file).  
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 Key Revocation: This procedural task generally refers to the 

capability to cancel a key in case of compromise and reissue 

another one. Different final bio-crypto keys would be produced by 

feeding a random key generator approach with a random seed 

and the correct master key. Accordingly, the Key Management 

Engine includes two levels of revocations. The former is related 

with revoking the correct master key in case of compromise. The 

latter, nevertheless, associates with revoking the final bio-crypto 

keys generated by the Key Management Engine. In the foremost 

revocation scenario, when the master key is leaked, this means 

that the Non-Intrusive Biometric Engine has been hacked. 

Accordingly, the master key will be cancelled from the bio-

cryptosystem. Then, the classification techniques within the Key 

Generation Engine would regenerate another helper data via 

identifying a new master key on an additional enrolment. In the 

latter revocation scenario, if any of the final bio-crypto keys is 

compromised, this could indicate that a random seed has been 

guessed/revealed. Therefore, the current random seed will be 

revoked from the system. Following this, another seed would be 

simply determined and entered into the random key generator 

along with the master key to produce a new final secret key to 

tackle this attack. For both revocation scenarios, each file should 

be encrypted once again by using its own new final secret key. 

With a view to managing and maintaining secure encryption 

framework, the master key would be updated on a regular basis. 
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Using the master key for so long time such as years will certainly 

present the potential of hacking the biometric data. As such, the 

Key Generation Engine would re-train the classification 

approaches to recognize different master key and to establish a 

new helper data on an annually basis or every six months. As 

explained earlier, in case of keys compromise, the Key 

Management Engine will liaise with the Key Generation Engine 

and the Cryptographic Engine to revoke the existing keys and 

reissue new ones.    

5. Cryptographic Engine 

The Cryptographic Engine is responsible for ciphering or deciphering the 

cloud storage data. In order to achieve this, a number of algorithms can be 

applied for a robust encryption/decryption goal. The cryptographic algorithms 

of course can be classified into symmetric and asymmetric cryptographic 

algorithms, and both of them can achieve secure solutions reliant upon the 

required application. Amongst cryptographic algorithmic, AES is a reliable 

symmetric encryption technique; especially AES-256 which has not been 

broken yet. On the other hand, RSA can be considered a powerful asymmetric 

encryption algorithm for network security. Whilst symmetric mode is fast and 

convenient for protecting data at one party, asymmetric mode can be 

considered slow, but it eradicates the negativity of the latter in terms of sharing 

the secret key amongst parties. Hence, the asymmetric mode does not clearly 

represent the core framework in the context of this research. Symmetric 

encryption then will be employed to resolve the privacy issues within the 

cloud-based storage. Therefore, the cryptographic engine will receive the final 
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secret key from the Key Management Engine. Accordingly, each file-key is 

used to seamlessly encrypt each file within the cloud storage by a 

sophisticated cryptographic algorithm, such as AES-256. At end, the cloud 

storage provider will be responsible to store the encrypted files.   

6.5 Operational Considerations  

The core innovative framework introduces a transparent and continuous encryption 

approach to solve the privacy and confidentiality issues of the stored data within 

storage service. The design of such architectural system fulfills the fundamental 

requirements; therefore, it has the foundation for enabling secure and usable 

encryption in a seamless fashion. Nevertheless, whether the encryption is 

undertaken at the cloud or at the client side, the presented framework would need 

further considerations to cope with specific issues that must be put in place for 

effectively reinforcing the system operation in reality. These considerations are 

explained and discussed by the following:  

 Privacy and Confidentiality  

Given the potential of occurring privacy and confidentiality issues regarding 

the use of biometrical signals, further secure countermeasures are a key 

factor to be consider. The application of biometric techniques must be 

achieved in a secure way under which the attempts of attacking the biometric 

data can be combated. The innovative transparent bio-cryptosystem must 

provide strategic mechanisms in terms of storing, using, and transmitting the 

biometric features against potential attacks. This will ensure that the 

biometrical signals are delivered to the authorized entities only. With regards 
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to the biometric storage, the biometric samples/features will never be stored 

anywhere within the core system framework. However, helper/public data is 

stored at some location to facilitate in creating the bio-crypto key (i.e. neural 

network weights are not sensitive). This data would be updated on a regular 

basis to avoid potential attacks.  

On the other hand, with the General Data Protection Regulation (GDPR) 

having gone in effect, cloud providers need to introduce a number of 

mechanisms aiming at strengthening the privacy of personal data (i.e. 

collective biometric data) while undertaking the biometric encryption. On the 

whole, GDPR affords users the control over their data and unifies personal 

data protection legislation across all Europe no matter where this data is 

processed (Albrecht, 2016, Tankard, 2016). On that basis, cloud provider has 

to be committed in contracts, for example, to comply with the GDPR in terms 

of processing the collected biometric features to undertake Cloud-enabled 

biometric encryption. A number of standard security protocols would be also 

set in place with a view to securing the transmission of the biometric signals 

through the Internet. Accordingly, biometrical signals will be transmitted to the 

cloud provider by utilizing the Secure Socket Layer (SSL) in a secure fashion 

(William, 1999). 

 Scalability and Elapsed Time 

On Cloud-enabled encryption, there are particular issues need to be taken 

into consideration operationally. That is, the elapsed time of generating a valid 

bio-crypto key by a legitimate biometric sample (especially the lag of the 

network communication among the communicative parties) and the storage 

of helper data have to be considered in a sensible way. The last aspect can 
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be tackled via the cloud provider where additional storage capacity would be 

easily scaled/risen up (Han et al., 2012). On the other hand, incorporating 

additional time lags in a networked solution over a device-centric paradigm 

may diminish the level of adaptability. Therefore, an attention has to be given 

with a view to ensuring that the network delay does not have a critical 

influence upon the entire system operation. The elapsed time is not expected 

though to be a problematic issue, since the principle of network-based 

encryption already exists for devices in different network domains (William, 

1999). Also, a considerable number of active users are increasingly 

subscribing on remote services. More importantly, as the cryptography will be 

undertaken in a non-intrusive and continuous fashion throughout the use of 

the storage service, the user would not be left waiting. 

 Trust  

With the issue of having to trust a third-party on an encryption being enabled 

at the Cloud, the transmission of sensitive biometric features over the Internet 

could be considered unreliable procedure. At present, the need for users and 

organizations to trust a third-party provider do not represent an ideal 

expectation, and might become a security concern afterwards. On the other 

hand, clients and organizations already trust service providers with 

credentials of different security purposes such as verification and encryption. 

In addition, the user data currently is transmitted to the cloud provider via 

standard Internet security approaches (e.g. Transport Layer Security (TLS)) 

(Galibus et al., 2016). Whilst the existing cryptographic solutions protect the 

stored data, they can defeat to do so against the weak passwords. Access to 

the data itself is secured via verification passwords approach (i.e. username 
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and password) (Azam and Johnsson, 2011). With the correct credentials, 

neither of the security countermeasures managing data at rest or in transit 

provides any protection – as the system considers the legitimate customer is 

accessing the data. Accordingly, the novel bio-cryptosystem would offer an 

effective solution to prevent such attacks without any inconveniences. Despite 

this, a strong countermeasures should be set in place prior to accessing the 

service via intrusion detection, for example. Cloud providers at present seek 

at identifying when an imposter tries to break an account. Thereby, regular 

levels of detection ensure that cloud providers can prevent intruders who 

bygone break the network’s initial defences (Dobran, 2019). As a result, it can 

be argued that subscribers and organizations would not be taking any risks 

within the presented solution - it would be just more of the same type of service 

as always. Strict statements of service level agreement in addition to 

continuously monitoring the granted access to the cloud storage would 

provide a baseline level of trust. 

 Helper Data Maintenance  

With cryptography-based biometric being undertaken in a transparent and 

continuous manner, the biometric registration and renewal stages should be 

taken into consideration. In view of collecting the biometric samples in a 

spontaneous manner, the application of transparent biometric techniques can 

result in a higher degree of feature vector variability. This would significantly 

impact the behavioural biometric modalities that have time-variant features 

(e.g. keystroke dynamics) (Clarke, 2011). As such, potential attacks can be 

overcome by renewing the helper data. It is worth noting that the enrolment 

maintenance consideration is more related with the processing infrastructure 
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(i.e. helper data construction is a far more relevant with memory processing 

than encryption). However, understanding the implication of doing so on a 

regular basis (i.e. weekly, monthly, or annually) would support the 

implementation of the transparent bio-cryptosystem in an effective way. For 

instance, dynamic profile update can be performed to produce helper data via 

the most biometric samples of the last x sessions as they have been 

successfully verified in generating the wanted bio-crypto key via the key 

verification procedure. As such, the entire correct verified samples will be 

included within the new enrolment phase at the end of the identified period; 

however, those rejected samples will be used to construct imposter data with 

a view to re-training the applied classifiers. In this context, clients will have 

true and robust interactive profile including their up to date biometric features. 

Another example is that a profile update can be adopted reliant upon 

biometrics performance. The profile update will retrospectively consider the 

samples of each biometric approach, if the decisions apart of the fusion 

method will have been positive with high confidence. On the other hand, the 

profile update could undertake profile refinement and classification re-training 

instead, if the decisions will have been negative. A biometric technique of a 

low accuracy can be also taken into account for a profile update. That is, a 

biometric modality that could not generate a key for some users can be 

exploited for profiling update. Whilst this poor biometric approach was fused 

with other effective biometric approaches, it does not surely mean that the 

bio-crypto key is generated by the genuine user. Consequently, that biometric 

technique could be suspended and/or trigger the multibiometric approach for 
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another training session until gathering the more valid samples to reach a 

better performance.   

 Multiple Local Storages 

On local encryption being undertaken at the user side, the helper data storage 

at different locations might lead to potential vulnerabilities. Currently, this 

might be perceived as an inappropriate perspective by individuals and 

enterprises and may become a security issue in the meantime. On the other 

hand, users and companies are yet storing very important data on different 

devices ranging from desktop computers, laptops, mobile phones to smart 

cards. In this context, the service subscribers can understand how sensitive 

the stored data is and accordingly they would look after the data protection 

(Chin et al., 2012). The local storage solution exploits logical and physical 

security controls. As such, the attacks upon particular organizations are 

clearly not easy. The stored information that could be locally stored in a 

computer on an office within entire building is protected by secure doors 

(physical countermeasure) and firewalls (logical countermeasure). 

Consequently, there are reliable security controls by which threat vectors will 

be diminished. 

From another perspective, the stored classification parameters in addition to 

the encryption assets (i.e. the files’ names and their random seeds) beyond 

the biometric features or the master key would be arguably insensitive. The 

identified biometric key on enrolment/training also will be hashed via strong 

cryptographic hash function using SHA-3 (Preneel, 2010) to overcome 

potential attacks. In order to cope with the vulnerabilities that are associated 

with the biometric features compromise, the helper data construction 
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alongside the encryption asserts would be updated on a regular basis (i.e. 

every six months or annually).   

 Cost  

The transparent encryption framework presented within this research would 

improve the cloud-based storage without changing the existing model – 

enabling more secure and usable cryptography. In return of such an intelligent 

technology, the provider can sell the cryptographic service to the beneficiaries 

with a sensible cost instead of the zero-cost strategy which is wrongly 

perceived to be the cost of many secret-knowledge approaches (Clarke, 

2011). As such, the subscriber who transparently takes advantage of the 

encryption service could be charged a reasonable price per perhaps specific 

sessions or on a regular basis (e.g. weekly or monthly). On the other hand, 

the seamless cryptographic service has to be more than viable; thus, the 

paying conception would be perceived or regarded by subscribers. Incurring 

cost on encryption is not odd consideration as the cloud providers are 

currently charging subscribers a fee in exchange for their online storage 

services. In this context, the cost deems an instrumental factor for adopting 

the presented service within cloud-based storage where the transparent 

encryption will prevent the user from having to remember, recall or present 

difficult and/or tedious cryptographic credentials. These can be secret keys 

and/or biometric modalities. It also introduces an additional robust user-

oriented level of protection to boost the privacy and the confidentiality aspects. 
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6.6 Discussion 

The innovative bio-cryptosystem presents a more secure and usable encryption 

framework based upon transparent multi-biometric. Accordingly, the biometric 

samples in the context of this work need to be captured in an entirely non-intrusive 

manner without having to explicitly interact with the bio-cryptosystem. In particular, 

whilst the facial and the keystrokes samples will be transparently collected without 

the constrained interaction of the user, the insight of employing fingerprint towards 

unconstrained verification (see section 2.6.1.1) will undoubtedly offer mature 

transparent fingerprint sampling to support the operation of such a novel encryption 

in reality. On the other hand, incorporating additional transparent biometric 

modalities into the innovative bio-cryptosystem can possibly boost the reliability of 

generating a bio-crypto key at all times. For example, voice and gait biometric 

samples can be collected in a fully non-intrusive fashion while walk or having a call. 

Although their samples might not be acquired on a timely basis in comparison with 

the fingerprint, face, and keystrokes samples, they can be considered auxiliary 

means for eliminating the weaknesses of other biometric techniques sometimes. 

Therefore, the accuracy of generating the bio-crypto key would be escalated – 

whereas single biometric approach can impact the effectiveness in terms of high 

error rate and lack of universality. On that basis, a usable and convenient experience 

would have been afforded for the cloud storage subscribers by applying multiple 

transparent biometric modalities, where they no longer need to provide their 

credentials (e.g. biometrics and secret keys) to encrypt/decrypt the stored data. The 

multi-biometric approach would also reduce the user inconveniences caused by 

generating the incorrect key. That is, with numerous samples being collected 
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transparently form various biometric modalities, the opportunity of creating the 

correct valid key will be offered as well as this aspect would allow the possibility of 

trading-off the FRR against the FAR. For further improvement, a number of dynamic 

profile update procedures would be performed (as explained in section 6.5) to 

minimize the degree of feature vector variability in particular to those biometric 

approaches which are behavioural in nature and accordingly have time-variant 

features, such as keystroke dynamics. As a consequence, the key generation 

performance will be improved. 

With a view to eliminating the potential attacks on biometrics, the biometric features 

are never stored anywhere at all. Public data (disadvantageous to adversaries) 

derived from the biometrical signals, however, are stored either at a remote location 

(i.e. the Cloud) or at some local locations to facilitate in generating the desired bio-

crypto key on time. The encryption assets (the files' names and the random seed 

values for each file) which are arguably insensitive are also stored for producing 

numerous-file keys to encrypt/decrypt each file within the storage. As a result, the 

helper data storage in addition to the encryption assets ensure good secure 

management where an attacker still need the fresh features or the master key to 

hack the system. Additionally, the identified key on training would be hashed via 

SHA-3 and stored for key verification purpose afterwards. For revocation, two levels 

for cancelling leaked keys including the master key and the final-file secret key are 

presented. In case of compromise, the former will be revoked, and a new master key 

will be identified via re-training the classification approach. The latter, however, will 

be cancelled and a fresh final-file secret key will be generated by determining 

another random seed. With the purpose of resisting brute force attacks, the biometric 
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entropy has been strengthened by incorporating considerable features from a variety 

of biometric approaches; therefore, there would be a problematic issue to guess 

them by forgers. The experiments of Chapter 6 demonstrate a very effective entropy 

by biometric fusion where the effective bit-length of the multibiometric feature vector 

reaches up to 6567438592. 

Regarding the issues of having to trust a third-parity, users and organisation currently 

trust service providers with credentials for security aims, and in particular, cloud user 

data are already transmitted to the cloud provider and vice versa. Whilst current 

security framework within cloud storage service can be defeated against poor 

passwords, the innovative cryptographic solution escalates the security and usability 

of the protection framework within cloud storage. Therefore, clients and 

organizations arguably wound not be taking any risks by using the proposed 

transparent encryption – it will be merely more of the same type of service as always. 

What is more, a reliable standard security protocol can be used in order to protect 

the transmission of the biometrical signals through the Internet towards the trusted 

third party.  

From the spoofing attack perspective, the forgers will have difficulties in spoofing the 

transparent biometric samples – hacking the samples which are acquired in a 

spontaneous fashion is a tricky attempt to take. In addition to this, the transparent 

bio-cryptosystem architecture implements a multibiometric topology in order to 

combat the biometric spoofing attack – ruling out the reliance upon single biometric 

approach that can be considered as an unsatisfactory in terms of low individuality 

and high forgery attempts. Thereby, the imposter will have no clear capacity to forge 

all numerous biometric samples collected from different modalities. Furthermore, 



227 
 

updating the user profile as discussed earlier would establish renewed helper data 

from time to time with a view of representing the true interaction of the valid user with 

the cloud service and concurrently mitigating the invalid access caused by forging 

the biometric samples. This will decrease the revocation of the master key as the 

public data will be updated on a monthly or an annually basis – thus strengthening 

the security aspect.        

For cyberattacks resistance, robust intrusion detection techniques built upon 

advanced AI developments would be given in place in order to overcome the 

potential malware attacks which have been hijacking the legitimate biometric 

samples through the scam of a malicious but masqueraded software on the user’s 

computer. More importantly, genuine users who are quite familiar with technology 

may be offered cybersecurity education for awareness and compliance in order to 

have digital secure behaviour. Hence, the cloud-based providers could be in charge 

of educating their subscribers for having digital secure awareness and compliance 

against the potential malware attacks.       

From the user privacy perspective, using such a transparent bio-cryptographic 

technique will necessitate the real-time capture of numerous biometric signals 

across different transparent biometric modalities when the user would continuously 

interact with his device. Whilst the non-intrusive bio-cryptosystem would reinforce 

security and usability, it is also recognized that the system will have privacy 

constraints. This is related to that fact that some users might not be willing their 

biometric data to be collected by the proposed system. As such, users need to be 

comfortable with the context of capturing and processing their biometric information 

if they are seeking for a secure and usable cryptographic framework. However, the 
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manner of undertaking the transparent bio-cryptographic technique at the user side 

or at the cloud side has been considered. Thus, the flexibility of undertaking the 

transparent encryption-based biometric locally at the user side might meet with the 

perception of those users who have privacy issues in terms of capturing their 

transparent biometric samples on a regular basis. Despite this, having gone the 

General Data Protection Regulation (GDPR) in effect (Voigt and Von dem Bussche, 

2017), the cloud-based providers must also provide a number of strategies in order 

to improve and maintain the security and the privacy of personal data which is the 

collected biometric data in the context of this work. Therefore, the cloud-based 

providers must comply with the laws of the GDPR with regards to processing the 

collected biometric features to undertake a bio-cryptographic framework at the cloud 

side.       

From another point of view, the elapsed time of establishing a valid bio-crypto key by 

a valid biometric sample – in particular the lag of the communicative parties over the 

network in addition to the scalability helper data storage could impact the 

acceptability and adaptability of the technology. The former aspect does not appear 

to be a problematic issue. As the cryptography will be undertaken in a non-intrusive 

and continuous fashion throughout the use of a service or device, the user would not 

be left waiting. The latter aspect can be handled by the cloud provider in scaling up 

further storage capacity.  

6.7 Conclusion 

The innovative system architecture has offered a non-intrusive and continuous 

cryptographic framework based upon multiple transparent biometric techniques that 
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enable a high level of protection and convenience. Despite the fact that the system 

architecture is not a risk-proof framework, a number of operational aspects have 

been addressed and critically resolved to be taken into consideration when 

developing and operating such a bio-cryptosystem in reality. Implicatively, the more 

the re-enrolment sessions are undertaken on a regular basis, the highly likely the 

system security and accuracy would be escalated. The profile update techniques 

discussed in section 6.5 (i.e. helper data maintenance) would also maximise the 

reliability of generating a timely constant biometric key in a smoothly manner. These 

techniques would construct new helper data periodically for reflecting the true 

interaction of the authentic user with the storage service and at the same time would 

alleviate the illegitimacy attempts in spoofing the biometric samples. From another 

perspective, whenever the seamless encryption service within the cloud storage 

technology has been more than viable, the paying cost conception would be 

perceived or considered by subscribers – resulting in accepting and adopting the 

innovative framework. This can be evidenced by tracing the sale figures over time. 
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Chapter Seven: Conclusions and Future Work  

7.1 Introduction 

The study effectively demonstrates through experimentation a transparent 

multimodal bio-cryptographic approach for reinforcing the current security framework 

of cloud-based storage with a high level of convenience. The application of 

transparent biometrics within bio-cryptography enables more usable and secure 

encryption. Transparent biometrics eliminates the need of having to remember or 

present difficult and tedious cryptographic credentials (i.e. secret keys and 

biometrics). 

The implications of this study are presented by highlighting the key contributions and 

achievements along with the limitations and obstacles encountered during the 

research; followed by outlining the potential areas that can be investigated in future 

work.  

7.2 Contributions and Achievements  

The research overall has accomplished all the objectives which are originally set out 

in Chapter 1. The core contribution of this work concentrates upon undertaking a 

series of experimental studies to investigate the concept of the innovative bio-

cryptographic approach leading ultimately to the development of transparent bio-

cryptosystem architecture. The research establishes the following key contributions 

and achievements:    

 Establishing a comprehensive understanding upon the topics of transparent 

biometrics and bio-cryptography and in particular contextualizing a number of 



231 
 

transparent biometric approaches with a view to employing the appropriate 

ones within bio-cryptography for improving the cloud storage technology.  

 Critically analysing the prior research of biometric cryptography with regards 

to existing approaches, strategic schemas, issues, and available solutions.  

 Designing and conducting a baseline set of experiments to investigate how 

reliable the developed bio-cryptographic approach at creating a constant and 

non-intrusive bio-crypto key from the selective transparent biometric 

techniques (i.e. fingerprint, face, and keystroke dynamics) on a timely basis. 

 Modelling and performing a series of experiments to investigate the influential 

factors upon the neural network classifier with the aim of improving the key 

generation accuracy.  

 Developing and implementing a number of experiments to explore the more 

effective biometric features in generating a bio-crypto key of 256-bit length 

without undermining the entropy factor and accordingly investigating the 

correlation between the key length (e.g. 128-bit, 256-bit, 512-bit, … etc.) and 

the accuracy of reproducing the desired key. 

 Undertaking and carrying out a set of experiments to explore the potential of 

improving the key generation accuracy by combining the feature vectors of 

the applied biometric modalities. 

 Designing and conducting a number of experiments to investigate the 

likelihood of elevating the bio-crypto key generation performance by 

integrating the matching scores from each classifier being utilized within the 

individual biometric approach. 

 Proposing an innovative transparent bio-cryptosystem architecture based on 

multibiometric aiming to offer a convenient user-oriented cryptographic 
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framework to additionally secure the data privacy and confidentiality within 

cloud storage.   

Several papers related to the research have been presented and published in 

refereed journals and conferences (provided in Appendix A). As a result, the 

research is deemed having made positive contributions to the domain of cloud 

storage security and specifically to field of biometric cryptography.           

7.3 Limitations of Research 

The aim and the objectives of this research have been fulfilled. However, a number 

of issues associated in particular with the experimentation of this study have been 

identified under which limitations may have imposed upon the empirical findings in 

one way or another. These limitations are illustrated by the following: 

 There was a limitation existed in experimenting the cryptographic key 

generation from the fingerprint modality. The limited number of the fingerprint 

biometric samples prevented a more thorough evaluation of the innovative 

bio-cryptographic approach. In the experiments of uni-biometric and multi-

biometric, there were only 8 samples in total from each respondent. This might 

have restricted the overall outcomes within the scope topic. Although there 

was a limitation regarding experimenting few fingerprint biometric data, 

numerous samples would be spontaneously collected in reality leading to the 

opportunity of enhancing the key generation effectiveness. 

 The selective biometric modalities (fingerprint, face and keystroke dynamics) 

were combined into the multibiometric secret key generation. Whilst the 

fingerprint and face datasets were collected from the same participants, the 
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keystrokes dataset was captured from different volunteers. As a result, the 

collective samples across the applied biometric databases was not 

completely from the same user; thus, the data does not present a true 

reflection of a real user. On the other hand, from a statistical point of view, the 

incorporative biometric data can be considered valid with a view to validating 

the proof-of-concept.     

 In particular, there was a limitation in conducting the multibiometric approach. 

In order to set up the experiments, a number of facial and keystroke samples 

were excluded (i.e. around 33 face samples from some users and 10 

keystroke samples from all users) aiming at totalizing them into 50 samples 

for each modality. At the same time, the 8 fingerprint samples were duplicated 

into 50 samples to meet the other biometric approaches. However, had the 

multibiometric approach performed by using the lowest common number of 

samples only, there would be an unreliable insight about the multibiometric 

performance. Therefore, this approach is applied to reflect the key generation 

effectiveness by employing significant biometric samples.          

7.4 Future Work  

The contribution of this research has enhanced the security and usability issues of 

cloud storage technology. On the other hand, further research suggestions related 

to the current scope of the study can be taken into consideration for future work. 

These suggestions are shown by the following: 

 Given a limited number of samples across the selective biometric modalities 

in general and small number of fingerprint samples in particular, further 
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research can be undertaken by collecting a considerable number of fingerprint, 

face, and keystrokes samples in a non-intrusive manner to investigate the 

transparent key generation from the innovative bio-cryptographic approach 

within a realistic environment.      

 Additional work can be also performed via capturing enormous data of 

different spectrum of transparent physiological and behavioural biometric 

modalities in reality to explore the effectiveness of generating the bio-crypto 

key from the proposed bio-cryptosystem. 

 Using alternative pattern classification algorithms within the proposed 

approach instead of the neural network technique to determine the accuracy 

of generating the bio-crypto key by such algorithms.   
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