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Relativistic Charge Dynamics in Electromagnetic Fields
Lauren Elizabeth Ansell

Abstract

In this thesis we consider the motion of a charged particle in strong electro-
magnetic background fields, having in mind applications to state-of-the-art
high-power lasers. To find solutions of the Lorentz force equation of motion,
we make use of Noether’s theorem to identify conserved quantities of the
charge dynamics. We will explain how, given enough symmetries, a dynam-
ical system becomes integrable or, with a maximum number of conserved
quantities, maximally superintegrable. Beginning with charged particles in
vector background fields, we shall show that the relevant symmetry group is
the Poincaré group. The dynamics for constant and univariate fields is clas-
sified, and their integrability properties are clarified. We then move on to
the problem of a particle in a scalar background field and show that the sym-
metry group is extended to the conformal group. We then present examples
of fields which include Poincaré, dilation and special conformal symmetries
leading to varying extents of integrability.
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Chapter 1

Introduction

The Nobel Prize in physics this year (2018) was awarded for “groundbreaking

inventions in the field of laser physics” [1]. The prize was jointly awarded

to Gérard Mourou and Donna Strickland for their work in chirped pulse

amplification (CPA) [2]. This process creates ultrashort high-intensity laser

pulses by stretching the laser pulse to reduce the peak power, amplifying them

and finally compressing the pulse. The procedure increases the intensity of

the pulse as more light gets packed together as the pulse gets compressed in

time. Figure 1.1 below shows the method of CPA.
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Figure 1.1: The method of chirped pulse amplification. [3]

Before the introduction of CPA, the peak power of lasers was limited

to intensities in the range of terawatts per square centimeter as peak pow-

ers greater than this damaged the gain medium through nonlinear processes

such as self-focusing. This self-focusing leads to plasma formation, entailing

reduced beam quality. There is also the possibility of back-reflection which

could damage the lasers components. Using CPA, table-top amplifiers are

now able to generate pulses with peak powers of several terawatts and, in

larger facilities, ultrashort pulses can reach powers of the order of petawatts.

This allows for experiments to reach the relativistic regime, where the veloc-

ities involved approach the speed of light and intensities are larger than 1019

W/cm2. Figure 1.2 below shows the increase in focus intensity of lasers since

the creation of the first laser in 1960 to the present day.
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Figure 1.2: Development of laser intensity (adapted from [4]). CPA denotes
the breakthrough provided by chirped pulse amplification.

New facilities across the globe are undertaking projects to take laser pow-

ers to increased intensities. At the Central Laser Facility, the Vulcan 2020

project plans to upgrade the current one petawatt (PW) laser to a short pulse

beamline that will have a power of 20 PW [5]. The Nuclear Physics Facility

pillar of the European Extreme Light Infrastructure (ELI-NP) [6] will in-

volve two 10 PW ultra-short pulse lasers. These higher intensity beams will

be able to produce stronger electric fields which will, among other things,

allow for the creation of coherent x-ray sources. The other two pillars are the

Attosecond Light Pulse Source (ELI-ALPS) which will provide light in the

terahertz and x-ray frequency range in ultrashort pulses with high repetition

rate and the ELI-Beamlines, a high-energy beam facility for the development
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and use of ultra-short pulses of high-energy particles and radiation [7].

The typical field magnitudes reached by current facilities are shown in

the table below:

Power P & 1015 W ≡ 1 PW

Intensity I & 1022 W/cm2

Electric field E & 1014 V/m

Magnetic field B & 1010 G ≡ 106 T

Table 1.1: Typical laser parameters

Laser fields are typically modelled as alternating, pulsed and null fields.

A null field is one where the invariants S = (E2 − B2)/2 and P = E · B

are zero, for E and B refer to Table 1.1. A typical example of this would

be the plane wave. We assume that the laser is a classical electromagnetic

background field modelled as a plane wave. Our aim is to use a realistic

model of a laser field to solve for the charge dynamics. In addition to this,

one can also solve for the quantum charge dynamics and Compton scattering.

To study these intense fields, we use a probe created from charged parti-

cles. The probes have two invariant quantities, the laser frequency and the

laser energy density seen by the probe. From these quantities, we define two

12



invariant parameters, a quantum energy parameter b0,

b0 = K.p/mc2 = ~ωL/mc2 (1.1)

where K is the momentum of the laser, p is the probe momentum, ~ denotes

Plancks constant, ωL is the laser frequency, m is the mass and c represents

the speed of light, and a classical intensity parameter a0,

a0 = (pµT
µνpν)/m

4 = EeλL/mc
2 , (1.2)

where T µν is the energy momentum tensor, E is the electric field strength, e

denotes the charge of the particle and λL is the reduced wave length of the

laser.

Figure 1.3 below is a plot of energy versus intensity (b0 and a0), the red

line representing the boundary between the classical and quantum regime

where the “quantum efficiency parameter” χ = a0b0 = 1.
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Figure 1.3: Plot of the quantum energy parameter b0 against the classical
intensity parameter a0 with χ = 1 shown by the red line. Diamonds denote
the χ values achieved by experiments, red: SLAC E-144 (Stanford), blue:
HIBEF II (at European XFEL), purple: Station of Extreme Light (SEL,
Shanghai) and green: 10 PW, optical frequencies only.

An alternative probe of the laser field can be light itself. However, this is

a quantum process and will not be the focus of this work.

In this thesis will be investigating interactions in the classical regime,

at high intensity, a0 > 1, but at low energies, b0 � 1. We will show, for

both vector and scalar background fields, that a symmetry of the external

field implies a conserved quantity of the particle motion. Our method to

then find solutions of the equation of motion will be by way of symmetry

classification of the background field. We will show that for an external field

with sufficiently many symmetries, we can solve for the particle dynamics
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exactly. To find conserved quantities and solve the equations of motion we

will be using the Hamiltonian formulation. We will begin with studying

particles moving in vector background fields, starting with fields that are

constant in space and time before looking at examples that depend on a

single spacetime coordinate. We will investigate the integrability of each case

and solve the equation of motion. We will then move on to investigate the

integrability of particles moving in a scalar background field and show that

we now have an enlarged symmetry group, the conformal group, and present

examples that possess symmetries from the conformal group and solve the

resulting equation of motion.
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Chapter 2

Particle Motion, Symmetry and

Integrability

In this chapter we will discuss the free relativistic point particle and the

symmetries it possesses. We shall also review Noether’s first theorem which

relates symmetries and conservation laws. We will also be considering the

Hamiltonian formulations that we will be using and introduce the ideas of in-

tegrability and superintegrability. A brief outline of the conventions adopted

in this thesis are as follows; the speed of light, c, will be set to one, proper

time will be denoted as τ and the Minkowski metric will be represented by

η and has the trace (1,−1,−1,−1).
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2.1 Relativistic point particle

We shall be considering a relativistic point particle of mass m and charge e.

Our goal is to find the particle trajectory given by the 4-position, xµ = xµ(λ),

in Minkowski space. The parameter λ denotes the curve parameter such that

the tangent vector along the curve is ẋ := dx/dλ. A preferred parametrisa-

tion is given by arc length s, defined through the Lorentz invariant ds2 ≡

c2dτ 2 = dxµdx
µ, where we have introduced proper time τ .

The dynamics of the particle is described by the action, S, which is a

functional of the trajectory x(λ) that is proportional to its arc length,

S ≡ S[x(λ)] = −mc
∫
ds = −mc

∫
dλ
√
ẋ2 =:

∫
dλL(ẋ) . (2.1)

The action is thus the integral of a Lagrangian, L(ẋ) = −mc
√
ẋ2. Note that

parametrisation with proper time τ implies constraint on velocities,

ẋ2 = c2 , (2.2)

which leads to L = −mc2 with obvious dimensions of energy. As usual, the

equations of motion are obtained through the principle of least action, δS =

0. Following [8] we perform the variation of (2.1) immediately specialising

to λ = τ ,

δS = −mc2
∫ x2(τ2)

x1(τ1)

δ(dτ) = 0 , (2.3)

where the trajectory is assumed to connect fixed points x1(τ1) and x2(τ2).
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The boundary variations are thus assumed to vanish,

δx1 = δx2 = 0 , (2.4)

see Fig 2.1.

Figure 2.1: Two possible trajectories for a particle starting at the point x1
and ending at x2 and the associated actions S12(a) and S12(b) governing the
trajectories.

When calculating δ(dτ), we note that cdτ =
√
dxµdxµ, so that we can

write,

δS = −m
∫ x2(τ2)

x1(τ1)

dxµ δdxµ
dτ

= −m
∫ x2(τ2)

x1(τ1)

ẋµ δdxµ (2.5)

To gain the equations of motion, δxµ must multiply an object under the

integral, which must then vanish. As derivatives are still acting on δxµ,

we rewrite the integrand as the linear combination of a total derivative and

additional terms in which δxµ appears multiplicatively. This is achieved using

integration by parts and, defining the dot product between two vectors as

18



aµb
µ = a.b, we obtain

δS = −m
∫ x2(τ2)

x1(τ1)

dτ
d

dτ
(ẋ.δx) +m

∫ x2(τ2)

x1(τ1)

dτ ẍ.δx . (2.6)

The first term is a surface term and vanishes due to (2.4), so that (2.6)

reduces to

δS = m

∫ x2(τ2)

x1(τ1)

dτ ẍ.δx = 0 . (2.7)

For the variation to vanish, everything multiplying δxµ must vanish, which

gives the equation of motion in its simplest form as

ẍ ≡ u̇ = 0 . (2.8)

The absence of 4-acceleration immediately shows that a free particle moves

with constant 4-velocity,

uµ :=
dxµ

dτ
≡ ẋµ = uµ0 = const . (2.9)

A second integration yields the trajectory,

xµ(τ) = xµ0 + uµ0τ , (2.10)

which corresponds to the familiar uniform linear motion of a free particle

starting at initial position x0. Henceforth, we choose natural units and set

c = 1 for simplicity.
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2.2 Symmetry

The word symmetry derives from the Greek words ‘sym’, meaning ‘with’ and

‘metron’ meaning measure. Symmetry occurs commonly in nature such as

the reflection symmetry of a butterfly’s wings and the discrete rotational

symmetry of snowflakes. In physics “a symmetry or symmetry transforma-

tion of a geometric object in Euclidean space is an isometry which maps

the object onto itself” [9]. Symmetry is a form of invariance, which is a

mathematical property held by objects that remain unchanged when certain

transformations are applied to them. Symmetries can be classified as ei-

ther continuous or discrete. Examples of discrete symmetries include space

and time reversal (P and T) or charge conjugation symmetry, C. Continuous

symmetries of space-time correspond to invariance under translations and ro-

tations (homogeneity and isotropy of space-time). The associated symmetry

transformations are combined into Poincaré transformations which map

xµ → x′µ = aµ + Λµνxν . (2.11)

where Λ represents a finite Lorentz transformation. If proper orthochronous

(no space-time reflection), it is continuously connected to identity. Therefore

it makes sense to consider infinitesimal transformations close to the identity

by writing Λx = x+ ωx,

x′µ − xµ ≡ δxµ = (aµ + ωµνxν) δε , ωµν = −ωνµ . (2.12)

20



Thus, a Poincaré transformation depends continuously on the 10 parameters

aµ and ωµν representing four translations and six Lorentz transformations.

It is straightforward to show that the transformations form a group.

In the case of a particle trajectory, a symmetry will map a trajectory to

a trajectory,

x(τ)→ x′(τ) , (2.13)

which by the principle of least action implies that the action remains un-

changed,

S[x] = S[x′] . (2.14)

The Lagrangian of the free particle depends only on the velocity ẋ with ẋ′ =

Λẋ which is pure Lorentz and is therefore clearly invariant under translations,

for which ẋ′ = ẋ. Also we have constructed ds = (dx.dx)1/2 so that it is also

Lorentz invariant. Therefore it is clear that the free particle has full Poincaré

symmetry.

2.3 Noether’s First Theorem

This year marks the 100th anniversary of Noether’s theorem, a key element

in the formulation of new theories and the basis of the standard model of

physics. Noether’s first theorem states that “every differential symmetry of

the action of a physical system has a corresponding conservation law” [10],

and also that the converse, in particular circumstances, is true, that having
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a conservation law implies a corresponding symmetry. In the case where we

have topological conserved quantities, these do not always have a correspond-

ing symmetry.

Noether’s second theorem also concerns symmetries and it relates the sym-

metries of an action functional with a system of differential equations. This

theorem is often used in gauge theories, which are the basis of all modern

field theories.

For a symmetry transformation the boundary variations are nonzero,

δx1 6= 0 and δx2 6= 0, see Fig 2.2.

Figure 2.2: The original trajectory from points x1 to x2 translated to the
new points x′1 and x′2.

Thus, from (2.6), the variation of action is reduced to a surface term,

δS = −m
∫ x′2(τ2)

x′1(τ1)

dτ
d

dτ
ẋ.δx+m

∫ x′2(τ2)

x′1(τ1)

dτ ẍ.δx = −m
∫ x′2(τ2)

x′1(τ1)

d(ẋ.δx)

(2.15)
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as the equation of motion term vanishes. Hence

δS = −m (ẋ2.δx2 − ẋ1.δx1) . (2.16)

Setting τ1 = τ and τ2 = τ + dτ , this becomes the infinitesimal statement

ẋ.δx = const . (2.17)

We now rewrite this in terms of the Lagrangian,

− ∂L

∂ẋµ
δxµ =: pµδx

µ = const , (2.18)

where pµ = mẋµ denotes the canonical momentum for the free particle. We

note that the mass-shell constraint follows from (2.2),

p2 = m2 . (2.19)

A general symmetry transformation is written as

δxµ = ξµi δε
i , (2.20)

where the index i labels the infinitesimal parameters. The advantage of

identifying conserved quantities is that it leads to the system becoming easier

to solve as they impose constraints on the particle motion, see below. We
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define a conserved Noether charge for each parameter, Qi, as

Qi :=
∂L

∂ẋµ
ξµi = p ξi , (2.21)

it then follows that a constructive way to find Poincaré symmetry is to cal-

culate the time derivative of Q = ẋ ξ:

Q̇ =
d

dτ
(ẋ ξ) = ẍ ξ + ẋ ξ̇ = 0 . (2.22)

Using the equation of motion, d/dτ = ẋ.∂ and symmetrisation this becomes

Q̇ = ẋµẋν∂νξµ =
1

2
ẋµẋν(∂µξν + ∂νξµ) = 0 . (2.23)

For this to vanish we require

∂µξν + ∂νξµ = 0 . (2.24)

This is the Killing equation for flat Minkowski space [11] and has the 10

parameter solution

ξµ = aµ + ωµνxν , (2.25)

which we recognise as the infinitesimal Poincaré transformation from (2.12).

So the Poincaré Noether charges are collected into

Q = p.ξ = p.a+
1

2
ωµν(xµpν − xνpν) ≡ pµa

µ +
1

2
ωµνMµν . (2.26)
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We can then expand aµ and ωµν in terms of basis vectors and this results

in the 10 Noether charges, pµ and Mµν where Mµν = xµpν − xνpµ. The

spacetime translations are generated by pµ, and Mµν generate the Lorentz

transformations. These obey the Poincaré algebra, which, if we think of pµ

and Mµν as operators, are given by the commutation relations as follows,

[pµ, pν ] = 0

1

i
[Mµν , pρ] = ηµρpν − ηνρpµ

1

i
[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ

(2.27)

where η is the Minkowski metric.

2.4 Hamiltonian Formulation

The equations of motion (2.8) are a set of second order differential equa-

tions. However, it is possible to express these instead as a system of first

order differential equations. To do this we introduce the Hamiltonian for-

mulation. To obtain the Hamiltonian, or Hamiltonian function, we try a

covariant Legendre transform of the Lagrangian,

H(x, p) ≡ pµẋ
µ − L(x, ẋ) , (2.28)

which requires us to trade velocities for momenta, ẋ → p. We thus move

to phase space, which is the space where we can represent all possible states
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of a physical system. By states of a physical system we refer to the posi-

tions and momenta of all objects in the system. These variables are treated

as independent variables over the 2n dimensional space. We exchange the

variables xµ and ẋµ for the phase space variables xµ and pµ, where pµ is the

canonical momentum defined in (2.18).

For the relativistic free particle we find employing constraint (2.2),

H = mẋ.ẋ−m = 0 , (2.29)

and we see that the Hamiltonian vanishes. This is because the action is

homogeneous of first degree in velocities,

L[λẋ] = λL[ẋ] . (2.30)

Euler’s homogeneous function theorem then implies

ẋµ
∂L

∂ẋµ
= ẋ p = L , (2.31)

which is (2.29). A vanishing Hamiltonian is characteristic for a parametriza-

tion invariant system, i.e. invariance of action under τ → f(τ), ḟ > 0. This

can be shown by a reparametrization of the world line

τ → τ ′ , xµ(τ)→ xµ(τ ′(τ)) , (2.32)
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where the mapping τ → τ ′ is one to one and dτ ′/dτ > 0, which conserves

the orientation. The Lagrangian then changes according to

L(dxµ/dτ) = L
(

(dxµ/dτ ′)(dτ ′/dτ)
)

= (dτ ′/dτ)L(dxµ/dτ ′) . (2.33)

This is then enough to ensure that the action is unchanged under (2.32)

and therefore parametrization invariant as long as the end points remain un-

changed.

A solution to this problem of a vanishing Hamiltonian is well known [12,13].

We use ‘gauge fixing’ by selecting a time coordinate T = T (x) instead of

the proper time τ and as a consequence lose the manifest Lorentz covari-

ance. Each of the time choices has a set of six phase space variables and a

Hamiltonian given by a particular component of the canonical momenta pµ,

found by rearranging the dynamical mass-shell constraint p2 = m2, which is

a constant. There are three choices for the time coordinate [12], all of which

give equivalent descriptions of the dynamics, but we will concentrate only on

the following two choices.
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2.4.1 Instant Form

For instant form, we choose Galilei time, T (x) = x0 = t, to parametrise the

particle world line. The Lagrangian for the free particle in instant form is

LIF = −m
√

1− v2 = −m
γ

, (2.34)

where we have introduced v = dx/dt and γ = 1/
√

1− v2. The canonical

momenta are

pi =
∂LIF

∂vi
= γmvi , (2.35)

if we compare this to (2.18), we see the reparametrization has introduced a

factor of γ.

The instant form Hamiltonian is then given by the Legendre transform

HIF = p.v − LIF = γ mv2 +
m

γ
= γ m(v2 + 1/γ2) = γ m . (2.36)

We need to trade v for p, so we rewrite,

HIF = γ m = γ m
√

v2 + 1/γ2 =
√

p2 +m2 = p0 , (2.37)

which is hence just a rearrangement of the mass-shell condition (2.19).

Using the example of the free particle we solve the Hamiltonian equa-

tions of motion and show that we obtain the same motion found from solv-

ing (2.8). The Hamiltonian equations of motion can be defined in terms of

28



Poisson brackets, a binary operation which also distinguishes a class of co-

ordinate transformations called canonical transformations. In instant form,

the Poisson bracket of two phase space functions X and Y is defined by

{X,Y } =
∂X

∂xi
∂Y

∂pi
− ∂X

∂pi

∂Y

∂xi
(2.38)

and the time evolution of a quantity X can then be written in terms of the

Poisson bracket as

dX

dt
=
∂X

∂t
+ {X,H} , (2.39)

where we have allowed for an explicit time dependence of X. We move to

using the canonical coordinates and find the Hamiltonian equations of motion

using (2.37),

dpi

dt
= 0 ,

dxi

dt
=
pi

p0
, (2.40)

and the solutions to these equations are,

pi = pi0 = const , xi(t) = xi0 +
pi0
p0
t . (2.41)

We see that the particle motion is linear in our chosen time coordinate. We

can check consistency of this solution with the covariant solution (2.10) by

eliminating τ from equation for x0 = t via

τ(t) = t/u00 ≡ t/γ0 , (2.42)
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setting t0 = 0. When this is substituted back into (2.10), we can express the

solutions for the remaining directions in terms of the parameter t,

xi(t) = xi0 +
ui0
u00
t . (2.43)

We can see that (2.41) and (2.43) are in agreement.

2.4.2 Front form

For the front form, we choose the time coordinate T (x) = x+ ≡ t + z. Here

the phase space is spanned by the ‘longitudinal’ coordinate x− ≡ t − z,

the ‘transverse’ coordinates xi, i = 1, 2, collected into the 2-vector x⊥ =

(x1,x2) ≡ (x, y), and the conjugate momenta, p+ = p0+p3 and p⊥ ≡ (p1, p2).

The Lagrangian for the free particle in front form is

LFF = −m

√
dx−

dx+
−
(
dx⊥

dx+

)2

=: −m
√
w− − w⊥w⊥ =: −m/η , (2.44)

which implies that the canonical momenta are

p+ = −2
∂LFF

∂w−
= ηm , p⊥ =

∂LFF

∂wi
= ηmw⊥ , (2.45)

such that

w− =
p2⊥ +m2

(p+)2
≡ p−

p+
. (2.46)
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The front form Hamiltonian is then given by the Legendre transformation

HFF = −p+w−/2 + p⊥w⊥ − LFF = p−/2 , (2.47)

which again can be obtained by rearranging the mass shell constraint (2.19),

p+p− − p⊥p⊥ = m2.

In front form, the Poisson bracket of two phase space functions X and Y

is defined by

{X,Y } = −2

(
∂X

∂x−
∂Y

∂p+
− ∂X

∂p+

∂Y

∂x−

)
+
∂X

∂xi
∂Y

∂p⊥
− ∂X

∂p⊥

∂Y

∂xi
, (2.48)

and the time evolution of a quantity X can then be written in terms of the

Poisson bracket as follows,

dX

dx+
=
∂X

∂x+
+ {X,H} , (2.49)

where we have allowed for explicit time dependence of X.

Using the example of the free particle we solve the Hamiltonian equations

of motion and show that we obtain the same motion as found from solving

(2.8). The Hamiltonian equations for the transverse and longitudinal phase
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space variables are

dp⊥

dx+
= 0 ,

dx⊥

dx+
=
p⊥

p+
,

dp+

dx+
= 0 ,

dx−

dx+
=
p−

p+
.

(2.50)

We note that these require p+ 6= 0. The solutions to these equations are

p⊥ = p⊥0 = const , x⊥(t) = x⊥0 +
p⊥0
p+0

x+

p+ = p+0 = const , x−(x+) = x−0 +
p−0
p+0

x+ .

(2.51)

We see that free particle motion is linear in our chosen time coordinate. We

can again check the consistency of the solutions by eliminating τ from the

covariant solution (2.10) for x+, setting x+0 = 0, which yields

τ(x+) = x+/u+0 . (2.52)

When this rearrangement is substituted back into (2.10), we can express the

solutions for the remaining directions in terms of the parameter x+,

x⊥(x+) = x⊥0 +
u⊥0
u+0

x+ ,

x−(x+) = x−0 +
u−0
u+0

x+ .

(2.53)

Once again we can see that the solutions (2.51) and (2.53) are in agreement

as expected.
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2.5 Integrability

A good definition of integrability is given by Bühler, who states that “a

mechanical system is called integrable if we can reduce its solution to a

sequence of quadratures” [14]. That is, we are able to express the solutions

in terms of integrals. In Hamiltonian mechanics, a more formal definition

of what is called Liouville integrability can be given as follows. Assuming

canonical Poisson brackets,

{pi, pj} = {xi,xj} = 0 , {xi, pj} = δij , ∀ i, j = 1...n , (2.54)

a dynamical system is Liouville integrable if there exist n independent con-

served quantities, Qi, that are in involution, i.e., their Poisson brackets van-

ish,

{Qi,Qj} = 0 ∀ i, j = 1...n . (2.55)

For integrability we also require that the conserved quantities are functionally

independent [15], that is, none of the Qi’s can be written in terms of the

others. To test if the conserved quantities are functionally independent we

follow [15] and define the set F as an N -vector, where N is the total number

of conserved quantities,

F ≡ [Q1(x, p),Q2(x, p), ...QN(x, p)] . (2.56)
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The conserved quantities, Qi, are functionally independent if the N × 2n

matrix, (
∂Fl
∂xi

,
∂Fl
∂pi

)
, (2.57)

has rank N in the region where the set of functions Qi are defined and

analytic. If we have N > 2n, more conserved quantities then the dimensions

of phase space, the set of functions is clearly functionally dependent. In

such cases there exist constraints on the conserved quantities which gives us

information regarding the independent quantities. In the cases where the

energy is conserved and therefore the Hamiltonian does not depend on the

chosen time coordinate, the Hamiltonian itself can be one of the quantities,

e.g. Q1 = H.

If these conditions are met then the Liouville theorem states that “the

equations of motion of a Liouville-integrable system can be solved by quadra-

tures” [16].

2.5.1 Example

As a simple example of integrability we shall consider a system with only one

degree of freedom. We write the Hamiltonian of this system as,

H(x, p) =
1

2
p2 + V (x) . (2.58)

34



The Hamiltonian equations for this system are

ẋ = p, ṗ = −dV
dx

. (2.59)

As the Hamiltonian in time independent, it is a conserved quantity,

1

2
p2 + V (x) = E0 , (2.60)

which we denotes as E0, a constant energy. We then rearrange to obtain the

expression for the momenta,

p =
√

2(E0 − V (x)) . (2.61)

Using the relationship, p = dx/dt, we are able to obtain the solution for the

particle trajectory in implicit form,

t =

∫
dx

1√
2(E0 − V (x))

. (2.62)

As long as we are able to evaluate the integral and invert the resulting re-

lationship so that we have x(t), we can recover the explicit solution. These

last two steps are not always possible and depend on the function V (x) but

we still consider this system integrable.

35



2.6 Superintegrability

A system that has further k conserved quantities is called superintegrable

[17]. If k = 1, the system is described as minimally superintegrable and

maximally superintegrable if there exist k = n − 1 additional conserved

quantities. One degree of freedom is left free to allow for the time evolution.

We are interested in finding maximally superintegrable systems because

they have many benefits. In particular, where we would usually have a system

of differential equations to solve, these are replaced by algebraic expressions,

and therefore the particle motion can be found analytically or by algebraic

means. There is also a conjecture proposed by Tempesta et al. [18] that for

maximally superintegrable classical systems, the associated quantum system

is exactly solvable. By quantum solvable we mean that it is possible to find

exact solutions to the quantum problem. However, there is currently no

proof or counter example that every superintegrable system is necessarily

quantum solvable. We also find that for classical systems that are both

maximally superintegrable and have finite trajectories, these trajectories are

closed and the resulting motion is periodic [19] as superintegrability restricts

the trajectories to a subspace of phase space of size n− k for 0 < k < n.

2.6.1 Example 1: The free relativistic particle

To investigate the integrability of the free relativistic particle we use the

instant form of the Hamiltonian. We know from above that there are 10
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conserved quantities that are given by the Poincaré generators H, pi, Li =

εijkM jk, Ki = M0i. The free relativistic particle is an integrable system

as any set of three of the momenta are involution. The free particle also

has additional Noether charges. However, the additional Noether charges

are not all independent and there are constraints on the conserved quan-

tities which reduces the number to five independent conserved quantities.

These constraints are, p.L = 0, K.L = 0 and W := HL − p ×K = 0, the

Pauli-Lubanski vector. So we have shown that altogether the free relativistic

particle has 5 independent Q’s and hence is a maximally super-integrable

system.

2.6.2 Example 2: The Kepler problem

The best known example of superintegrability presumably is the Kepler prob-

lem and its quantum equivalent system, the hydrogen atom [20, 21]. The

Kepler problem is also one of only two central force potential where all the

bounded orbits are closed [22], the other being the harmonic oscillator, which

is also superintegrable.

The Hamiltonian for the unit mass (m = 1) Kepler problem has the

nonrelativistic form

H =
p2

2
+ V (r) , (2.63)
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with Newton’s gravitational potential

V (r) = −α
r

, α = const . (2.64)

The equation of motion for the Kepler problem in terms of the position vector

r = (x, y, z) and unit vector er = r/r is

r̈ = − α
r2

er (2.65)

and we introduce the triad of unit vectors that correspond to the cylindrical

coordinates r, θ, z,

er =


cos θ

sin θ

0

 , eθ =


− sin θ

cos θ

0

 , ez =


0

0

1

 . (2.66)

The potential, V , for the Kepler problem is spherically symmetric and so we

find that the angular momentum L is conserved, L = const. This restricts

the motion to the xy plane and implies the constant magnitude

l := |L| = r2θ̇ = const . (2.67)

As a consequence we are able to trade the angular speed θ̇ for l which leads

to the relationship

er = −r
2

l
ėθ (l 6= 0) . (2.68)
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This means that the equation of motion can now be expressed as a total

time derivative if we exclude degenerate linear collision orbits (l = 0). We

therefore get an additional three conservation laws,

v − α

l
eθ ≡ V0 = const . (2.69)

The conserved quantity, V0, a velocity, is sometimes referred to as the Hamil-

tonian vector [23]. The result (2.69) can now be rearranged to give the Kepler

hodograph, the velocity locus v = v(t), or the first integral of the equations

of motion,

v(t) = V0 +
α

l
eθ(t) ≡ V0 + V eθ(t) . (2.70)

V0

V

- 1.0 - 0.5 0.5 1.0 vx

- 0.5

0.5

1.0

1.5

vy

Figure 2.3: Circular Kepler hodograph with center V0 and radius V .
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The central force is a potential force, hence the total energy of the system

is conserved and can be represented through V0 and V = α/l according to

E =
v2

2
− α

r
=

1

2
(V 2

0 − V 2) = const (2.71)

In total, this gives us seven conserved quantities but (2.71) expresses the

energy in terms of V0 and l. Furthermore, we see that from (2.70) that V0

is in the xy plane whilst L is along z, which implies another constraint,

V0 · L = 0 . (2.72)

As a result there are only five functionally independent conserved quanti-

ties of the system and therefore it is maximally superintegrable. The con-

served quantities of the Kepler problem are normally discussed in terms of

the Runge-Lenz vector, K, which is defined as

K ≡ V0 × L = const (2.73)

and is located in the plane perpendicular to Hamilton’s vector V0, see Fig. 2.4.

The conservation of the Runge-Lenz vector means that there is no precession

of the orbit.

As the Kepler problem is maximally superintegrable, the orbits can be

found algebraically. To do so we follow the discussion of Milnor [24] and

chose the coordinate system such that V0 = V0ey, so the hodograph (2.70)
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K a

b

Figure 2.4: Direction of the Runge-Lenz vector, K, relative to the Kepler
ellipse, where a is the semi-major axis and b is the semi-minor axis.

becomes

v = V0ey + V eθ . (2.74)

The angular momentum, L = r× v = lez, thus has magnitude

l = r(V + V0 cos θ) . (2.75)

The parametric representation of the Kepler orbit is then found by rearrang-

ing this expression using V = α/l,

r =
l2/α

1 + (V0/V ) cos θ
. (2.76)

This identifies the Kepler orbit as a conic section with eccentricity ε := V0/V .

The value of this parameter controls the shape of the orbit, either a circle,

ellipse, parabola or a hyperbola for ε = 0, 0 < ε < 1, ε = 1, or ε > 1, re-

spectively. As anticipated, we have obtained the orbit for the Kepler ellipse
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without performing any integration. The solutions to the equation of motion

were found using purely algebraic means through the use of the conserved

quantities.

We will now present further examples of integrable and superintegrable sys-

tems for a relativistic particle interacting with different background fields.

We shall investigate both vector and scalar background fields.
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Chapter 3

Vector Fields

In this chapter we will discuss the action and equations of motion for a

relativistic particle in a vector background field. We will investigate the

conserved quantities of different vector fields and classify the integrability of

the fields.

3.1 Introduction

A vector field is a field that at every point has a direction and magnitude.

The field is defined by a set of n ordered scalar functions. We can visualise the

field as a collection of arrows that are attached to a point in space-time with

a given magnitude and direction. We will define our 4-vector field as a gauge

potential Aµ = (A0,A1,A2,A3) = (A0, A). Under a Lorentz transformation,
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a 4-vector transforms as,

Aµ(x)→ Λµ
νA

ν(Λ−1x) . (3.1)

3.1.1 Gauge transformations and gauge invariance

In electrodynamics, we can express the electric field and the magnetic field

in terms of field strength tensor F µν = ∂µAν − ∂νAµ. These fields form our

gauge potential Aµ. The term gauge invariance refers to the property that

we can describe the same electromagnetic field F µν by many different gauge

potentials but the observables of the electric and magnetic fields remain the

same. This itself is a symmetry which allows us the freedom to choose a

coordinate system to work in. Therefore the dynamics of a charged particle

in an electromagnetic background field remain the same and do not depend

on our choice of gauge potential Aµ. This allows us to work with a more

convenient choice of Aµ.

To change from one gauge potential Aµ to another A′µ, we apply a gauge

transformation,

A′µ = Aµ + ∂µλ . (3.2)

We now calculate F ′µν ,

∂µAν + ∂µ∂νλ− ∂νAµ − ∂µ∂νλ = F µν + ∂µ∂νλ− ∂µ∂νλ . (3.3)

As the last two terms cancel we see that the observable electromagnetic field
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F µν remains unchanged. Hence the electric and magnetic fields are gauge

invariant.

3.1.2 Dynamics in a vector field

The dynamics of a relativistic particle of charge e and mass m, moving in a

background field Aµ are described by the action,

S = −
∫
dτ(m+ eA(x) · ẋ) . (3.4)

We vary the action according to the principle of least action and we

recover the Lorentz force equation of motion,

mẍµ = e(∂µAν − ∂νAµ)ẋν = eF µν ẋν , (3.5)

where F µν is the electromagnetic field strength tensor which is gauge invari-

ant. We can choose to give up this gauge invariance to rewrite this as

Ṗ µ = eẋν∂
µAν , (3.6)

where P µ is the canonical momentum P µ = mẋµ + eAµ.

For a free particle, the Poincaré symmetry is generated by the 10 ‘Noether

charges’, ξ.P = ξµP
µ. These gain a proper time dependence when in the

presence of the background field Aµ. This is found using the equation of
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motion (3.6),

d

dτ
ξµPµ =

m

2
ẋµ(∂µξ

ν + ∂νξ
µ)ẋν + eẋµLξAµ . (3.7)

The first term vanishes due to the Killing equation, reducing to

d

dτ
ξµPµ = eẋµLξAµ . (3.8)

where Lξ is the Lie derivative of the background field,

LξAµ ≡ ξν∂νAµ + Aν∂µξ
ν . (3.9)

If the background field Aµ is invariant under the action of the Lie derivative

up to a gauge transformation,Λ,

LξAµ = ∂µΛ , (3.10)

we say that it is a symmetric gauge field [25]. For symmetric gauge fields,

(3.8) is a total derivative which can be integrated directly to give the con-

served quantity

Qξ = ξ · P − eΛ . (3.11)

It follows that if the background field possesses a Poincaré symmetry then

there exists a corresponding conserved quantity in the particle motion. If we

can find a background field that has enough Poincaré symmetries then the
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particle motion will be (super) integrable. In addition to Poincaré symmetry,

the background field may also possess hidden symmetries or symmetries that

are of a higher order in the momenta P µ.

3.2 Simple examples

The first examples we shall consider are those where the background field are

constant in space and time. The trajectories for constant fields fall into four

distinct cases as shown in [26], and account for all possible forms of constant

field. Here we will investigate the integrability of each case.

3.2.1 Elliptic Motion

Elliptic motion arises from a particle moving in a constant magnetic back-

ground field. To model this we can choose the gauge

Aµ = (0,By, 0, 0) , (3.12)

where B is the constant magnetic field strength. The field strength tensor

has only two non-zero components, F 21 = −F 12, where F 12 = B. The

Hamiltonian for this system is then defined as

H =
√
m2 + P 2

2 + P 2
3 + (P 1 − eBy)2 . (3.13)

Dynamics in a magnetic field is an example of an autonomous system and
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therefore the Hamiltonian is a conserved quantity. In addition to this the

two spatial momenta P 1 and P 3 are also conserved. These three conserved

quantities are in involution and therefore we conclude that the constant mag-

netic field is integrable. We now show that this field also has an additional

two Poincaré symmetries, the boost M03 and the rotation about the z axis,

M12.

The boost M03 is trivially conserved due to the conservation of the Hamil-

tonian, P 0, and the momentum in the P 3 direction,

Ṁ03 = ẋ0P 3 + x0Ṗ 3 − żP 0 − zṖ 3 =
p0

m
p3 − p3

m
p0 = 0. (3.14)

The rotation about the z axis, however requires a modification, which we

can identify from taking the derivative with respect to the proper time τ ,

Ṁ12 = ẋP 2 + xṖ 2 − ẏP 1 − yṖ 1 =
eB

2m

d

dτ
(x2 − y2) . (3.15)

We rearrange this to give an expression that is equal to zero. The conserved

quantity, a modified rotation, is then given by integrating,

Lz = M12 − eB

2m
(x2 − y2), (3.16)

These five conserved quantities, {H,P 1,P 3,M03,Lz}, are independent

and we conclude that the constant magnetic field is maximally superinte-

grable.
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The solutions to the equations of motion are now as follows. The dynam-

ics in the trivial plane can be found from the conserved quantity M03,

z(t) =
tP 3 −M03

P 0
, (3.17)

and find that the dynamics for z are linear in t. For the dynamics in the non-

trivial plane, we use the relationship between the canonical and mechanical

momenta, P µ = pµ + eAµ, therefore we have,

ṗx =− eB

m
py ,

ṗy =
eB

m
px .

(3.18)

This coupled system describes a two dimensional harmonic oscillator, to

which the solution is,

px =px0 cos(ΩBτ)− py0 sin(ΩBτ) ,

py =py0 cos(ΩBτ) + px0 sin(ΩBτ) ,

(3.19)

where we have defined the Larmor frequency ΩB = eB/m. The particle

trajectory are then given by one further integration,

x− x0 =
px0
mΩB

sin(ΩBτ) +
py0
mΩB

(cos(ΩBτ)− 1) ,

y − y0 =
py0
mΩB

sin(ΩBτ)− px0
mΩB

(cos(ΩBτ)− 1) .

(3.20)

The trajectory of a particle in a constant magnetic background field is

49



shown below 3.1.

- 1.0 - 0.5 0.5 1.0 x
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Figure 3.1: Particle trajectory of a particle in a constant magnetic field where
the particle is initially at rest, with P 3 = 0 and B = m = 1.

Figure 3.1 shows the trajectory of a particle in a constant magnetic field.

In the xy plane the path of the particle follows a circle with radius R =√
p2x0 + p2y0/mΩB which is centered at,

~x⊥ =

(
x0 −

py0
mΩB

, y0 +
px0
mΩB

)
. (3.21)

3.2.2 Hyperbolic Motion

Hyperbolic motion arises from a particle moving in a constant electric back-

ground field. To model this we can choose the gauge,

Aµ = (0, 0, 0,−Et) , (3.22)
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where E is the constant electric field strength. The associated field strength

tensor has only the two non-zero components, F 03 = −F 30, where F 30 = E.

The Hamiltonian for this system is then defined as,

H =
√
m2 + P 2

⊥ + (P 3 + eEt)2 . (3.23)

The electric field is an example where the Hamiltonian depends explicitly

on the chosen time coordinate. Due to this, all three spatial momenta are

conserved. The three conserved components are in involution and therefore

the constant electric field is integrable. We now show that the field has an

additional two Poincaré symmetries, the boost M03 and the rotation about

the z axis, M12.

The rotation about the z axis, M12, is trivially conserved due to the

conservation of the momentum in the P 1 and P 2 directions,

Ṁ12 = ẋP 2 + xṖ 2 − ẏP 1 − yṖ 1 =
p1

m
p2 − p2

m
p1 = 0 . (3.24)

The boost M03 is not trivially conserved and requires a modification which

we once again identify by taking the derivative,

Ṁ03 = ṫP 3 + tṖ 3 − żP 0 − zṖ 0 = −eE
2

d

dτ
(t2 + z2). (3.25)

We rearrange this to give an expression that is equal to zero. The conserved
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quantity is then given by integration this expression,

T 03 = M03 +
eE

2
(t2 + z2) . (3.26)

The five conserved quantities, {P 1,P 2,P 3,M12,T 03}, are independent and

we conclude that the constant electric field is maximally superintegrable. The

particle trajectory is then found as follows. From the conserved momenta in

the transverse directions, we have linear dynamics in this plane,

~x⊥ = ~x⊥0 +
~p⊥0
m
τ . (3.27)

To solve for the dynamics in the non-trivial plane, we one again use the

mechanical momenta and the conservation of the canonical momentum in

the z direction we find,

p̈0 = ΩE ṗz = Ω2
Ep0 , (3.28)

where ΩE = eE/m. The solutions are then,

p0 =p00 cosh(ΩEτ) + pz0 sinh(ΩEτ) ,

pz =pz0 cosh(ΩEτ) + p00 sinh(ΩEτ) .

(3.29)

A further integration gives the particle trajectories,

t =
Pp00
mΩE

sinh(ΩEτ) +
pz0
mΩE

cosh(ΩEτ) ,

z =
pz0
mΩE

sinh(ΩEτ) +
p00

mΩE

cosh(ΩEτ) .

(3.30)
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The trajectory of a particle in a constant electric background field is

shown below 3.2.

0.0 0.5 1.0 1.5 2.0 z

0.5

1.0

1.5

2.0

t

Figure 3.2: Particle trajectory of a particle in a constant electric field, particle
initially at rest, at z = z0, no dynamics in the xy plane, E = m = 1.

We see from the figure that the field accelerates the particle until it asymp-

totically approaches the speed of light.

3.2.3 Loxodromic Motion

Loxodromic motion arises from a particle moving in a background field cre-

ated from a linear combination of the elliptic and hyperbolic cases. To model

this we may choose the gauge,

Aµ = (0,By, 0,−Et) . (3.31)
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For this case the gauge field is no longer univariate. The field is formed

by a magnetic field and electric field that are parallel to each other. The

field strength tensor now has four non-zero components, F 21 = −F 12, which

encodes the magnetic field and F 03 = −F 30 which encodes the electric field.

The Hamiltonian for this field is,

H =
√
m2 + (P 1 − eBy)2 + P 22 + (P 3 + eEt)2 . (3.32)

As a combination of the elliptic and hyperbolic cases, it inherits the two con-

served momenta, P 1 and P 3, that both the individual cases had in common.

The loss of one conserved momenta is connected to the gauge field no longer

being univariate. The parallel field also inherits the two modified Poincaré

symmetries,

Lz = M12 − eB

2
(x2 − y2) ,

T 03 = M03 +
eE

2
(t2 + z2) .

(3.33)

For a system to be integrable, we require there to be three independent

conserved quantities that are also in involution. Although this case has

four conserved quantities, no three of them are in involution and therefore

we cannot classify the system as integrable. Yet the system may still be

classed as minimally superintegrable as there is no know proof that every

superintegrable system is necessarily integrable. However, we are still able

to resolve the particle trajectory. The dynamics for the parallel field separate
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into the two planes, tz and xy. The trajectories in each of the planes are

given by those found in the individual field cases. In the tz plane we have

hyperbolic motion, (3.30), and in the xy plane we have elliptic motion, (3.20).

The trajectory of a particle in a constant parallel field background field is

shown below 3.3.

Figure 3.3: Particle trajectory of a particle in a constant parallel field, particle
initially at rest, at the origin, E = B = m = 1.

From the figure we see the circular motion inherited from the magnetic

field in the xy plane and the hyperbolic motion inherited from the electric

field in the z direction.
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3.2.4 Parabolic Motion

Parabolic motion arises from a particle moving in a constant crossed field. We

create this field from a constant magnetic field and a constant electric field,

of equal strength, that are orthogonal to each other. We can still express this

field using a univariate gauge potential by moving to light-front co-ordinates

and re-ordering the components so that it has the form,

Aµ = (A+,A1,A2,A−) = (0, 0,Fx+, 0) (3.34)

where F is the field strength and the associated field strength tensor has

two non-zero components, F+2 = −F 2+ = F . The Hamiltonian for this is

defined as

H =
m2 + P 2

1 + (P2 − e Fx+)2

P+
. (3.35)

As with the constant electric field, the Hamiltonian depends explicitly on our

chosen time parameter x+. This leads to the conservation of the momentum

in the P 1, P 2 and the P+ directions. The three conserved components are

in involution and thus the constant crossed field is integrable. We shall now

demonstrate that the crossed field has a further two Poincaré symmetries,

the two null rotations, M+i. The null rotation, M+1, is trivially conserved

due to the conservation of the P 1 momenta,

Ṁ+1 = ẋ+P 1 + x+Ṗ 1 − ẋP+ − xṖ+ =
p+

m
p1 − p1

m
p+ = 0 . (3.36)
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The second null rotation, M+1, is not trivially conserved and requires a

modification. We again identify this from taking the derivative with respect

to τ ,

Ṁ+2 = ẋ+P 2 + x+Ṗ 2 − ẏP+ − yṖ+ = − d

dτ

(
P+ eF

2m
x+

2

)
. (3.37)

We rewrite the gauge term as the integral of the derivative of the gauge term,

so that the conserved quantity is

T+2 = M+2 +
F eP+

2m
x+

2

. (3.38)

The five conserved quantities, {P+,P 1,P 2,M+1,T+2}, are independent and

we conclude that the constant crossed field is maximally superintegrable.

The solution to the Hamiltonian equations of motion are as follows. The

transverse trajectories can be obtained algebraically from the two null rota-

tions,

x(x+) =
P 1x+ −M+1

P+

y(x+) =
1

P+

(
P 2x+ +

FeP+

2m
x+

2 − T+2

)
.

(3.39)

In the x direction we have linear dynamics. In the y direction we see the

parabolic motion. The final direction, x−, is given by

x−(x+) =
1

P+
(m2x+ + P 2

1 x
+ + P 2

2 x
+ − F eP2x

+2

+
F 2 e2 x+

3

3
) (3.40)

57



The trajectory of a particle in a constant crossed field is shown below 3.4.

0.5 1.0 1.5 x
+

0.2

0.4

0.6

0.8

1.0

y

Figure 3.4: Transvere particle trajectory y(x+) of a particle in a constant
crossed field, particle initially at rest, at the origin, F = m = 1.

3.3 Further examples

The previous examples are all instances where our choice of gauge has led

to creating an F µν with no spacetime dependence, a constant field. The

next simplest case is to consider background fields that depend on a single

spacetime coordinate. Therefore, in general, the field has the form F µν =

F µν(l.x), where the vector l is one of the three choices, space-like (l2 > 0),

time-like (l2 < 0) or light-like (l2 = 0).

3.3.1 Plane Wave

The usual model of a laser in high intensity laser matter interactions is a

plane wave. This corresponds to the choice of l to be a light-like vector
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where l.x defines the wavephase ϕ. It is common in field theory applications

for the plane wave to depend on our choice of time, therefore, we choose the

gauge,

Aµ = (0, f ′1(x
+), f ′2(x

+), 0) . (3.41)

Due to the translational invariance of (3.41), we find that the following three

canonical momenta are conserved, P 1, P 2 and P+. These three components

of momenta are in involution and thus the plane wave is integrable [8]. In

addition to these, we can show that the plane wave has a further two Poincaré

symmetries, the two null rotations M+i [27]. These two null rotations are

not trivially conserved, therefore they include a gauge term,

T+i = M+i − eP i

m
fi(x

+) . (3.42)

The five conserved quantities, {P 1,P 2,P+,T+1,T+2} are independent and

and we therefore conclude that the plane wave is maximally superintegrable.

From here we are able to solve the Hamiltonian equations. The transverse

trajectories are found algebraically from the two conserved null rotations,

x(x+) =
x+P 1 − (eP 1/m)f1(x

+)− T+1

P+

y(x+) =
x+P 2 − (eP 2/m)f2(x

+)− T+2

P+
.

(3.43)
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The trajectory for the remaining direction, x−, is given by solving the Hamil-

tonian equation,

dx−

dx+
=
m2 + (P 1 − ef ′1(x+))2 + (P 2 − ef ′2(x+))2

P+2 . (3.44)

Maximally superintegrable systems have closed orbits [19]. For the plane

wave, we see these closed orbits in the average rest frame of the particle. The

average rest frame is defined as the frame in which the average momentum of

the particle is zero. For a plane wave, this implies that the particle does not

experience any longitudinal drift in the direction of the laser propagation. We

find this frame by firstly determining the average of the momentum which is

given by

qµ = pµ0 −
e2〈A2〉k2

2l.p0
, (3.45)

where the angled brackets denote the time average with respect to the me-

chanical momenta. We now require this quasi-3-momentum to vanish, ~q = 0.

Figure 3.5 below shows the particle motion in the average rest frame for both

linear and circular polarisation.
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(a) Circular polarisation
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(b) Linear polarisation

Figure 3.5: Particle trajectory in the average rest frame for a particle moving
in a plane wave

3.3.2 Plane Wave plus Constant Electric Field

We now consider an extension of the plane wave by adding a constant longi-

tudinal electric field, εE, where ε is the amplitude of the longitudinal electric

field and typically ε � 1. The parameter E is the laser field amplitude.

This can be used as a simplistic model for a laser propagating through a

plasma [28] which creates a space charge εE like seen in a capacitor. To

model this, we choose the gauge field with the same ordering as (3.34),

Aµ = (εEx+, f ′1(x
+), f ′2(x

+), 0) . (3.46)

The Hamiltonian is then given by,

H =
m2 + (P 1 − f ′1(x+))2 + (P 2 − f ′2(x+))2

P+ − εEx+
. (3.47)
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This field retains the translational invariance of the plane wave. This leads

to the conservation of the canonical momenta, P 1, P 2 and P+. As with

the plane wave, this system is integrable as these components of momentum

are in involution. The introduction of the longitudinal constant electric field

results in the loss of the two null rotations.

As the system is still integrable, the solution to the equations of motion

proceeds as follows. As the three components of momenta are conserved,

these can be integrated directly to give

P+ = p+0 − e(A+ − A+
0 ), P i = pi0 − e(Ai − Ai0) . (3.48)

We can adopt A+
0 = 0 without any loss of generality, so that the momenta

in the P+ direction is,

p+ = p+0 − eεEx+ . (3.49)

We see that in contrast to the plane wave, the mechanical momentum has a

linear dependence on the choice of time coordinate, x+. We can investigate

this further by taking the derivative with respect to the proper time,

ṗ+ = −e εEẋ+ =
−e εE
m

p+ . (3.50)

We find that hyperbolic motion is present. This is to be expected, due to

the addition of the constant electric field.

The most convenient method of resolving for the transverse directions is
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by way of the Hamiltonian equations,

dx⊥

dx+
=
P⊥

P+
=

p⊥0
p+0 − e εEx+

− A⊥(x+)

p+0 − e εEx+
. (3.51)

We choose f1 and f2 to be trigonometric functions, f ′1 = F sin(ωx+)/ω and

f ′2 = F cos(ωx+)/ω, the solutions to (3.51) are then given in terms of expo-

nential sine and cosine functions [29],

x(x+) = x(0) +
1

e εE ω

(
−p10 ω ln(ω[p+0 − e εEx+]) + e F S1

(
ωx+,ϑp+0

))
,

y(x+) = y(0) +
1

e εE ω

(
−p20 ω ln(ω[p+0 − e εEx+]) + e F C1

(
ωx+,ϑp+0

))
.

(3.52)

We define the functions S1 and C1 as,

S1(ωx
+,ϑp+0 ) ≡ cos(ϑp+0 ) Si(u) + sin(ϑp+0 ) Ci(u) , (3.53)

and

C1(ωx
+,ϑp+0 ) ≡ cos(ϑp+0 ) Ci(u)− sin(ϑp+0 ) Si(u) , (3.54)

where we have defined the quantities ϑ = ω/e εE and u = ω(x+−p+0 /e εE) for

ease of notation. The remaining direction is found by solving the Hamiltonian

equation,

dx−

dx+
= − H

P+
. (3.55)

To integrate this expression, we make used of equation 2.641.2 in [30] and
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find the trajectory to be,

x−(x+) =x−0 +
m2 + p2⊥0 + E2F 2

e εE(p+0 − e εEx+)
− 2eF

e εE

[
ϑC1−

sin(ωx+)

p+0 − e εEx+

−
(

cos(ωx+)

p+0 − e εEx+
+ ϑ S1

)] (3.56)

Figure 3.6: Trajectory of a charged particle in a plane wave plus constant
electric field, p10 = p20 = 0, m = e = 1, ω = 1.5 and ε = 0.00001

We see from figure 3.6 that the particle has plane wave orbits at short

times and hyperbolic motion at large times. Varying the ratio ε of the lon-

gitudinal to laser electric field causes the onset of the hyperbolic motion to

move to earlier or later times.

3.3.3 Undulator

The previous two examples are both examples where our choice of the vector

l has been light-like. We now present an example where the choice of l is

space-like, the undulator.
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Planar Undulator

We shall first consider the planar or linear undulator which can be described

by a gauge with only a single entry,

Aµ = (0,
B0

k
sin(kz), 0, 0) , (3.57)

In instant form, the Hamiltonian is then given by,

H =
√
m2 + (P 1 − (B0/k) sin(kz))2 + P 2

2 + P 2
3 . (3.58)

As with the constant magnetic field, the undulator is an example of an au-

tonomous system and therefore the Hamiltonian is a conserved quantity.

In addition to the Hamiltonian, the two spatial momenta P 1 and P 2 are

conserved. The Hamiltonian and the two components of momenta are in

involution and therefore the undulator is integrable. The planar undulator

has an additional symmetry, M12, which makes the system minimally super-

integrable. The rotation about z is conserved but it requires a modification,

Ṁ12 = ẋP 2 + xṖ 2 − ẏP 1 − yṖ 1 =
d

dτ

∫
dz

e p2B0

mk
sin(kz) . (3.59)

We rewrite the gauge term as the integral of the derivative of the gauge term,

so that the conserved quantity is

Lz = M12 −
∫
dz

e p2B0

mk
sin(kz) . (3.60)
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To solve the equations of motion, we use the three conserved canonical

momenta, P 0,P 1 and P 2 and setting P 1 = 0 without any loss of generality,

we can immediately integrate these for the mechanical momenta,

p0 = γ0m

p1 = −(eB0/k) sin(kz)

p2 = p20

(3.61)

To find the remaining component of momenta, we use the mass-shell relation

and rearrange to find,

pz = [γ20m
22− e2A2

1 −m2]
1
2 . (3.62)

When evaluating the momentum here, the initial value of this component

is found to be

pz,0 = [γ20m
2c2 −m2c2]

1
2 = γ0mcβ , (3.63)

so we find the z component of momenta to be

p3 = p30
[
1−K2 sin2(kz)

]
(3.64)

where K is the undulator parameter K = eB0/km. The energy is conserved

in the undulator and we are able to trade the proper time τ for the parameter

t through the relationship,
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pz
m

=
dz

dτ
=
γ0dz

dt
. (3.65)

. This causes the equation of the z trajectory to become a separable ordinary

differential equation, with solution

z(t) =
am(B0kt,L)

k
(3.66)

where am is the amplitude of an elliptic function and L = K/γ0B0. The

gauge field can now be expressed in terms of the new time parameter t,

A1 = k sn(B0kt,L) , (3.67)

where sn is the Jacobi sine amplitude. The mechanical momentum for x is

now

p1 = −γ0B0mL sn(B0kt,L) (3.68)

which, when performing one further integration, gives the x trajectory as

x = x0 + γ0B0 (ln(1− L)− ln[dn(B0kt,L)− L cn(B0kt,L)]) (3.69)

where cn is the Jacobi cosine amplitude and dn is the delta amplitude.
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Figure 3.7: Trajectory of a charged particle in a planar undulator, red tra-
jectory is L = 0.2 and blue is L = 0.999.

Figure 3.7 above shows the motion in the xz plane for different values of

the parameter L.

Helical Undulator

A simple extension to the planar undulator is the helical undulator. In this

case both the transverse components of Aµ are non-vanishing,

Aµ = (0,
B0

k
sin(kz),

B0

k
cos(kz), 0) , (3.70)

with the corresponding Hamiltonian,

H =
√
m2 + (P 1 − (B0/k) sin(kz))2 + (P 2 − (B0/k) cos(kz))2 + P 2

3 .

(3.71)
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As with the planar undulator, the Hamiltonian, P 1 and P 2 are conserved,

so the system is integrable. We now follow [27] and show that this system

is maximally superintegrable. The helical undulator also possesses a fourth

Poincaré symmetry, the helical generator,

Lz = P 3 − kM12 . (3.72)

Although this conserved quantity is not in involution with the conserved

transverse components of momenta, the helical undulator is minimally su-

perintegrable. These four conserved quantities are the relativistic interpre-

tations of the integrals found in the non-relativistic limit [31]. We are also

able to describe the fifth integral by way of the equations of motion for x, z

and P 3,

x′ = − ∂H
∂P 1

= −P
1 − (B0/k) sin(kx)

H
,

z′ = − ∂H
∂P 3

= −P
3

H
,

P 3′ =
∂H

∂z
=

k

H
(P 1 cos(kz)− P 2 sin(kx)) ,

(3.73)

where the prime denotes the derivative with respect to t. We observe that

the only change between the relativistic expressions and the non-relativistic

limits lie in the inclusion of an additional factor of H, which is conserved, in
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the denominator. We amalgamate the equations in (3.73) to find,

dx

P 1 − (B0/k) sin(kz)
=
dz

P 3
=

dz√
2(B0/k)(P 2 cos(kz) + P 1 sin(kz) + u)

,

(3.74)

where u = H2 − P 2
1 − P 2

2 − 1 − (B0/k)2 = const. This suggests that there

is a fifth conserved quantity, however it is non-polynomial in the canonical

momenta, as seen in the non-relativistic limit [31].

This represents an undulator of infinite length, the canonical momentum

once again the most convenient starting point to investigate the individual

components of momenta. From these we are able to then solve the equations

of motion. Again, it is still possible to integrate directly for µ = 0, 1, 2 and

we find the results to be

p0 = const = γ0mc

px = px,0 −
e

c
[Ax(z)− Ax(z0)]

py = py,0 −
e

c
[Ay(z)− Ay(z0)]

(3.75)

We note that now the mechanical momentum is no longer conserved in

the y direction as it was previously. As for the previous case, the mass shell

relation is required to solve for the momentum in the z direction. So we have

that

p2z = p20 −m2c2 − 4(B0/k)2(1− cos(kz − kz0)). (3.76)
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If we define kz − kz0 = ∆z , then we can express the z momentum as

pz =
√
p20 −m2c2 − 8(B0/k)2 sin2(∆z/2). (3.77)

We find that this has a similar form to the simpler, linear case but the

argument of the sin function is now halved.

If it is assumed that the particle is initially at the origin for this case, then

we have

pz =
√
p20 −m2c2 − 8(B0/k)2 sin2(kz/2). (3.78)

Is it possible to equate the constant part of the square root with pz,0 from

the first formulation. So it becomes a similar expression to the simpler linear

case previously but with half the angle in the argument. So we would get

Jacobian sine and cosine functions for the x and y directions.

3.4 Conclusion

We have shown that a particle moving in a vector background field can

possess the symmetries of the Poincaré group. We began by investigating

electromagnetic fields that are constant in both space and time. These cases

can be split into four distinct cases, categorised by the motion they exhibit.

We showed that the motion of a particle in a constant magnetic, electric or

crossed field is maximally superintegrable. Although the constant magnetic
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field and constant electric field had different canonical momenta conserved,

both fields had the symmetries of the rotation about z and the boost along z.

For the magnetic field the rotation required a modification and the boost re-

quired a modification in the electric field case. In the case of the crossed field,

we showed that the orbits may be obtained algebraically from the conserved

quantities. The combination of magnetic and electric fields does not appear

to be superintegrable, as, although there exist four conserved quantities, no

three of them are in involution. The final examples that we investigated were

fields that were all of the form F µν = F µν(l.x). These fields only depended

on one spacetime coordinate. The first example of the plane wave was shown

to be maximally superintegrable and shared the same conserved quantities

as the constant crossed field, which is to be expected as the crossed field is

the low frequency limit of the plane wave. The addition of a longitudinal

constant electric resulted in the loss of the two null rotations and hence was

only integrable. However, we were still able to express the orbits in terms of

known functions. The final example, where l was space-like was the undula-

tor. The planar undulator is minimally superintegrable as in addition to the

three conserved components of momenta, a modified rotation about z was

also conserved. The helical undulator was shown to be maximally superin-

tegrable and included a symmetry that was non-polynomial in the momenta

that does not seem to be present for the planar undulator.
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Chapter 4

Scalar Fields

In this chapter we will discuss the action and equations of motion for a

relativistic particle in a scalar background field. We will once again show

that a symmetry of the background field implies a conserved quantity in the

particle motion and we will also show that the scalar field has an enlarged

symmetry group that includes dilations and conformal symmetry in addition

to the Poincaré symmetries.

4.1 Introduction

The vector structure of the field Aµ(x) imposes strict constraints which can

hinder the generation of conserved quantities, so we therefore turn our atten-

tion to the case of a particle moving in a scalar background field. The scalar

field differs from the vector field in that at every point in space-time there is
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only an associated magnitude, there is no associated direction. Scalar fields

are required to be independent of the choice of reference frame, therefore ob-

servers will agree on the value of the scalar field at the same absolute point

in spacetime, regardless of their respective points of origin. This feature of

scalar fields is due to scalar fields being invariant under Lorentz transfor-

mations. Mathematically, for a scalar field we have φ′(x) = φ(Λ−1x) under

Lorentz transformation Λ and for a vector field, A′µ(x) = Λµ
νA

ν(Λ−1x). We

see that there is an additional Λ in front for the vector field. A scalar field,

for instance, can be used to describe the potential energy associated with

a particular force, examples of this include the electric potential in electro-

statics or the Newtonian gravitational potential. The force, a vector field,

can then be obtained from taking the gradient of the potential energy scalar

field.

A particle moving in a scalar background field has been used as an early

model of gravity [32,33]. In quantum field theories, the scalar field is associ-

ated with spin-0 particles [34], with the Higgs field as the only fundamental

scalar field that has been observed in nature [35, 36]. However, scalar quan-

tum fields feature in effective field theory descriptions of certain phenomena,

an example of this is the pion which is actually a pseudoscalar [37, 38].

4.1.1 Averaged Motion

We shall now consider the averaged motion of a particle moving in an os-

cillatory field as a means to get from a vector to scalar background field.

74



We recall that the equation of motion, written in terms of the canonical

momentum, is

Ṗ µ =
d

dτ
(mẋµ + eAµ) = e ẋν∂µAν . (4.1)

To analyse the average motion, we first decompose the particle trajectory

into slow and fast components,

xµ(τ) = Xµ(τ) + Υµ(τ) . (4.2)

Xµ(τ) denotes the slow components and Υµ(τ) the fast. We can think of

X as a suitably time averaged motion around which we have a fluctuating

perturbation Υ. We substitute (4.2) into (4.1), such that the equation of

motion becomes,

d

dτ
(mẊµ +m Υ̇µ + eAµ) = e Ẋν∂µAν + eΥ̇ν ∂µAν . (4.3)

We first isolate the equation that governs the slow dynamics, Xµ(τ). From

this we recover the equation of motion for free motion,

mẌµ = 0→ Xµ = Xµ
0 + Uµ

0 τ , (4.4)

where X0 and U0 are the initial position and velocity respectively. The

equation of motion for the remaining fast dynamics is then,

d

dτ
(mΥ̇µ + eAµ) = eUν

0 ∂µAν(X) + eΥ̇ν∂µAν(X) . (4.5)
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By expanding the derivative on the left hand side, we are then able to re-

arrange the expression. We make use of the relationship between the gauge

and field strength tensor, Fµν = ∂µAν − ∂νAµ, to give,

mΫµ = eUν
0Fµν(X) + ... (4.6)

where the ellipsis denote the higher terms. We are interested in the time

averaged motion in an oscillatory field, which is found to be

m〈Ϋµ〉 = eUν
0 〈Fµν(X)〉 = 0 , (4.7)

as the average of F µν is zero and the angular brackets denote the time average.

We now follow [39] and adopt the gauge U0.A = 0. We are then able to

reconstruct, to the first order, the usual result that the canonical momentum

is constant,

d

dτ
(mΥ̇µ + eAµ(X)) ≡ Ṗ µ

(1) = e∂µ(U0.A) = 0 . (4.8)

Integrating this provides us with an expression for the canonical momentum,

which we rearrange to recover equation (5) in [39],

mΥ̇µ = mUµ
0 − eAµ(X) . (4.9)
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By also including the constraint that 〈A(X)〉 = 0, the average of the fast

dynamics is, to first order,

〈Υ̇µ〉 = Uµ
0 +

e

m
〈Aµ(X)〉 = Uµ

0 . (4.10)

We now take our rearranged expression for the canonical momentum (4.9)

and substitute into (4.1), and obtain the average, to second order,

〈Ṗ µ〉 = 〈mẍµ + eȦµ(X + Υ)〉 = e〈Υ̇ν∂µAν(X)〉 . (4.11)

Expanding the term on the right hand side and making the assumption that

〈Ȧ(X + Υ)〉 = 0 so that to the first order we have that the velocity is Uµ
0 ,

we finally obtain the averaged equation of motion to be,

〈ẍµ〉 = − e2

m2
∂µ〈Aν(X)Aν(X)〉 ≡ 1

2
∂µa20 . (4.12)

a20 is the intensity parameter [40] which is defined as

a20 ≡ 〈a2〉 = − e2

m2
〈A2〉 =

e2

m2Ω2
U0µ〈F µαF ν

α〉U0ν (4.13)

for the gauge field Aµ(x) = Re[aµ(x)eiφ(x)] with Ω ≡ U0.∂ φ(X).

Alternatively, following [39], let us start with the gauge field,

Aµ(x) = Re[aµ(x)eiφ(x)] , (4.14)
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where the function φ(x) is real and the complex amplitude function aµ(x)

varies slowly in space and time. aµ(x) also satisfies the gauge condition,

k.a = 0, where kµ = ∂µφ. We may then approximate the time average of

gauge to be,

a20 =
1

2
(e/m)2[−a∗(x).a(x)] , (4.15)

the ∗ denoting the complex conjugate. As long as the relative variations

in the propagation vector and the amplitude function in a period of a few

oscillations is small, the function a20 may legitimately be regarded as a scalar

function of x that is independent of the constant four-velocity U0. In general,

the norm of the velocity, the time average of the velocity is not equal to one,

however, v2 = 1 is always true. Adopting the boundary condition, 〈v〉2 = 1

when a20 = 0 gives,

〈v〉2 = 〈ds/dτ〉2 = 1 + a20 , (4.16)

where s denotes the proper time of an observer moving with the averaged

velocity of the particle. The observer’s velocity is

d〈xµ〉
ds

=
〈vµ〉√
〈v〉2

=
〈vµ〉√
〈1 + a20〉2

. (4.17)

It is more useful to express these in terms of the particles average momenta,

〈pµ〉 = m〈vµ〉 = m∗
d〈xµ〉
ds

, (4.18)
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where we have introduced m∗ which is the effective mass,

〈p〉2 = m∗2 = m2(1 + a20) . (4.19)

This form of the effective mass was also recovered for the semi-classical plane

wave case [41] and quantum-mechanical calculations [42].

For a relativistic particle that has variable rest mass m∗, the equation of

motion is given by varying the following action,

S = −
∫
dsm∗(x)

√
ẋµẋµ . (4.20)

The parameter s is an arbitrary parameter, not necessarily proper time. By

imposing the constant ẋ2 = 1, which is consistent provided that m∗ 6= 0, the

equation of motion takes the form,

d

ds
(m∗(x)ẋµ) = ∂µm

∗(x) . (4.21)

Equivalently, using equations (4.16) and (4.18), the equation of motion (4.12)

may be written,

d

ds
〈pµ〉 =

m〈v̇µ〉
〈ds/dτ〉

=
1
2
m∂µa

2
0√

1 + a20
= ∂µm

∗ . (4.22)

The consistency between equations (4.21) and (4.22) reveals that the aver-

aged motion of the particle is exactly that of a classical relativistic particle
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that has variable rest mass m∗.

4.1.2 Dynamics of a particle in a scalar field

We define the scalar field m(x) to be

m(x) ≡ m0 + V (x) . (4.23)

We see that the scalar background field couples to the particle like a mass and

due to this we shall we refer to m(x) as a dynamical mass from here on. If we

compare this to the effective mass defined in (4.19), we see that the function

V (x) = m0 a
2
0, a “ponderomotive potential”. For a recent investigation of

non-relativistic superintegrable systems with dynamical mass see [43]. From

here we shall now follow [44].

The action of a relativistic particle that has rest mass m0 in a scalar

background field V (x) is, see e.g. [45],

S = −
∫
dτ m(x)

√
ẋµẋµ , (4.24)

where xµ ≡ xµ(τ), where τ is the proper time parameterising the worldline

and the dot denotes the derivative with respect to the proper time. This is

the same as (4.20) with the effective mass m∗ replaced by the scalar field

m(x).
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We vary the action (4.24) to get the Euler-Lagrange equations,

d

dτ
(mẋµ) = ∂µm , (4.25)

from these equations we find that ẋ2 = constant and therefore the particle

is on-shell, we shall fix ẋ2 = 1 from here. Equations (4.25) may be regarded

as a force law,

mẍµ = (gµν − ẋµẋν)∂νm , (4.26)

where the expression on the right hand side replaces the Lorentz force in

(3.6) and the tensor structure guarantees the orthogonality of velocity and

acceleration, ẋ · ẍ = 0, and so the constancy of ẋ2.

As we did in the vector case, we want to show that a symmetry of the

background field, or dynamical mass, implies that there is a conserved quan-

tity in the motion of the particle.

For the scalar background field we find that from (4.25), the canonical

momentum P µ is

Pν = m(x)ẋν . (4.27)

In contrast to the canonical momentum for a vector field, where the gauge

field appeared as an additional term, here the scalar fields interacts directly

with the mechanical momentum ẋν .

As before we define ξµ(x) to be a vector field that defines the infinitesimal

form of some coordinate transformation and a conserved quantity asQ = ξ·P .
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From the equations of motion (4.25), we can show that

2m(x)
dQ

dτ
= Lξm2 + P µP ν(∂µξν + ∂νξµ) , (4.28)

where Lξ = ξ ·∂, is the Lie derivative of a scalar quantity. If Q is a conserved

quantity, then the right hand side of (4.28) must vanish due to the properties

of the field and the transformation, not due to the orbit. The equation (4.28)

has essentially the same right hand side as the vector case (3.8), the difference

being an extra power of P in the Lie derivative term. In the scalar case, to

kill the right hand side, the most general method is to contract P µP ν with

the metric tensor so we can replace it with m2(x) and therefore only the sum

of the two terms needs to vanish. So ξ must obey

∂µξν + ∂νξµ ∝ ηµν =⇒ ∂µξν + ∂νξµ =
1

2
ηµν∂ · ξ . (4.29)

This is just the conformal Killing equation that has the 15 parameter solution

ξµ(x) = aµ + ωµνx
ν + λxµ + cµx

2 − 2(c · x)xµ , (4.30)

which describes translations, Lorentz transformations, dilations and special

conformal transformations respectively. Therefore ξ · P is a conserved quan-

tity in the particle motion when the dynamical mass obeys

Lξm2 +m21

2
∂ · ξ = 0 . (4.31)
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The dynamical mass must be symmetric for translations and Lorentz trans-

formations and must transform with a weight for dilations and special con-

formal transformations.

4.1.3 Hamiltonian formulation

As previously with vector fields, the Hamiltonian that corresponds to (4.24)

vanishes due to Euler’s homogeneous function theorem. Once again, we solve

this problem by selecting a time parameter from one of the physical coor-

dinates of xµ [12]. Due to relativistic covariance, there is no unique choice,

however a particular choice may be more advantageous in particular situa-

tions. Each choice has its own set of six phase space variables and a Hamilto-

nian that is given by a particular component of the canonical momenta that

is found by rearranging the dynamical mass-shell constraint p.p = m2(x).

Again, here we shall require the “instant form” and “front form”, for deriva-

tions and references see [27] and the review [13].

In “instant form”, we take the coordinate t as our time parameter and

the six-dimensional phase space is then spanned by the coordinates x =

(xi) = (x, y, z) and their conjugate momenta, P = (P i) = (P 1,P 2,P 3). The

Hamiltonian is

H ≡ P 0 =
√

P +m2(t, x) , (4.32)

which may be explicitly time-dependent due to m2. The time evolution of

83



any quantity Q is determined by

dQ

dt
=
∂Q

∂t
+ {Q,H}, (4.33)

where the Poisson bracket of two phase space functions is

{X,Y } =
∂X

∂xi
∂Y

∂Pi
− ∂X

∂Pi

∂Y

∂xi
. (4.34)

In “front form”, we take the coordinate x+ ≡ t+ z as our time parameter

and the six-dimensional phase space is then spanned by the ‘longitudinal’

coordinate x− ≡ t − z, the ‘transverse’ coordinates x⊥ = (x⊥) = (x, y) and

their conjugate momenta, P+ and P = (P⊥) = (P 1,P 2). The Hamiltonian

is and Poisson bracket are,

H ≡ P− =
P⊥P⊥ +m2(xµ)

P+
, (4.35)

{X,Y } = −2

(
∂X

∂x−
∂Y

∂P+

)
− ∂X

∂P+

∂Y

∂x−
+
∂X

∂x⊥
∂Y

∂P⊥
− ∂X

∂P⊥

∂Y

∂x⊥
, (4.36)

where the summation convention is used through out for the index ⊥. The

time evolution of any quantity Q is determined by

dQ

dx+
=

∂Q

∂x+
− {Q,H}. (4.37)
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4.2 Simple Examples

We wish to first consider scalar fields that correspond to the three choices of

the vector nµ in the vector case. There are only three individual choices for

the vector n, these are that the vector is space-like, time-like or light-like.

4.2.1 The space-like case

We first consider the case where the vector nµ is space-like, this case can

be thought of as the scalar analogy of the position-dependent magnetic field

case [27,31] due to both fields only depending on a space-like vector. In this

case the scalar field is defined as a function of one spatial coordinate, say

n.x = z, and we consider the simple choice

m2(x) = m2
0 +Bz , (4.38)

linear in z. We can think of the constant B as the magnetic field strength.

The Hamiltonian for this system is then defined as

H =
√

P2 +m2
0 +Bz . (4.39)

The system is autonomous and therefore the Hamiltonian is a conserved

quantity in addition to two of the spatial momenta P 1 and P 2. To find

further conserved quantities that do not relate to Poincaré symmetries, we
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make the following ansatz:

Q = f1(x, y, z,P 3)P 1 + f2(x, y, z,P 3)P 2 + f3(x, y, z,P 3) , (4.40)

and when calculating the derivative with respect to time, we demand that

each term vanishes by solving the resulting series of algebraic or differential

equations that arise from equating the powers of momentum to determine

the functions f1, f2 and f3. Following this method, we find that for the

magnetic field with a linear dependence on z, a linear ansatz is sufficient and

the system has the following two conserved quantities that do not relate to

Poincaré symmetries, but are ‘hidden symmetries’ on phase space,

Qx = 2P 1P 3 +Bx Qy = 2P 2P 3 +By . (4.41)

The rotation, M12, is also conserved. However, the rotation can be expressed

as a linear combination of the two conserved momenta and the quantities Qx

and Qy and therefore is not an independent conserved quantity. Our set of

five independent conserved quantities is given by, {H, P 1, P 2, Qx, Qy}, where

{H,P 1,P 2} are in involution which gives integrability. For the system to be

maximally superintegrable, the conserved quantities need to be independent.

To verify this we define F = (Q1, ...,Q5) and following [15], our five conserved
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quantities are functionally independent if the 5× 6 matrix

M =

(
∂Fl
∂xa

,
∂Fl
∂P a

)
, (4.42)

for a ∈ {1, 2, 3}, has rank 5. The set of conserved quantities that we shall

use to calculate M is F = (Qx/B,Qy/B,H/B,P 1,P 2), then

M =



1 0 0 2P 3

B
0 2P 1

B

0 1 0 0 2P 3

B
2P 2

B

0 0 1 2P 1

B
2P 2

B
2P 3

B

0 0 0 1 0 0

0 0 0 0 1 0


, (4.43)

which is upper triangular with rank 5 and therefore the system is maximally

superintegrable.

We now solve the Hamiltonian equations for the particle trajectory and we

find that we have trivial dynamics in the x and y direction due to the conser-

vation of the respective momenta. The canonical momentum in z direction

is

P z(t) =
Bt

2H
+ P z

0 . (4.44)

To find the trajectory in the z direction we use the conservation of the Hamil-

tonian and rearrange this to give

z(t) =
H2 − (P 1)2 − (P 2)2 −m2

0 − (P 3)2

B
. (4.45)
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To have a physical ‘scattering’ boundary conditions, we consider the case

where the field ‘switches on’. The dynamical mass is redefined to obey

m2(t, x) =


m2

0 z < 0

m2
0 +Bz z ≥ 0

, (4.46)

and we consider the motion of particles which reaches the interface z = 0

at t = 0, without any loss of generality. We are able to specify the initial

momentum at t ≤ 0 as the motion is free at t < 0. The initial momentum at

t = 0 then fixes the values of the conserved quantities and P z
0 .

2 4 6
t

-1.0

-0.5

0.5

1.0

1.5
z

Figure 4.1: Trajectories in the autonomous system (4.39) with dynamical
mass m2 = m2

0 +Bz with P⊥ = 0 and m0 = B = 1.

Figure 4.1 shows the trajectory of the particle entering the field (shaded)

at x = 0 at time t = 0. The trajectory shows the particle moving through

the field to a certain distance in the region z > 0 before it is then turned

around and pushed out of the field.
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4.2.2 The time-like case

The next case we shall consider is the case where the vector nµ is taken

to be time-like. In the previous chapter we saw that an electric field was

generated by a gauge which was time dependent, A = −Et. The entries

of the electromagnetic fields tensor, F µν , are then given by −Ei = F 0i =

∂0Ai − ∂iA0. If we replace the gauge field Aµ(t) with the function φ(t), we

can consider the time-like case as the analogue to the vector electric field.

We choose n.x = t and the scalar field is then

m2(x) = m2
0 + E(t) (4.47)

for t ≥ 0. The Hamiltonian for this system is

H(t) =
√

P2 +m2
0 + E(t), (4.48)

and we can see here that in this case the Hamiltonian depends explicitly

on the time and is therefore not conserved. However as the Hamiltonian

depends only on the chosen time coordinate, all three spatial momenta are

conserved. In addition to these, the three components of angular momenta

are also conserved. The set of five conserved quantities is then the three

conserved momenta, that are in involution and two of the three conserved

components angular momentum. Due to the angular momenta, Li, obeying

the relationship PiLi = 0, this implies that not all three components of
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angular momentum are independent, which renders the system maximally

superintegrable. Owing to the conservation of the three spatial momenta,

the equations of motion for the particle trajectories all take the same form,

dxi

dt
= − P i

H(t)
, i = 1, 2, 3 , (4.49)

which have the trivial solution,

xi(t) = xi0 −
∫ t

t0

ds
P i
0√

P2 +m2
0 + E(s)

, i = 1, 2, 3 . (4.50)

These equations give an implicit solution where the choice of the function

E(s) will determine whether the integration can be performed analytically.

In principal, as all three components of angular momentum are conserved,

only the one integral needs to be performed and from this the coordinates

for the remaining directions can then be found algebraically, as can be seen

from (4.50). To illustrate, take the simplest case where the the function E(t)

is linear in t, so that the Hamiltonian is

H(t) =
√

P2 +m2
0 − Et, (4.51)
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where we can think of the constant E as the electric field strength. The

particle trajectories are then

x(t) = x(0) +
2P1

√
P2 +m2

0 − Et
E

,

y(t) = y(0) +
2P2

√
P2 +m2

0 − Et
E

,

z(t) = z(0) +
2P3

√
P2 +m2

0 − Et
E

.

(4.52)

The trajectory of a particle in the tz plane is shown in Figure 4.2 below.

-3 -2 -1 1
t

-1

1

2

3
z

Figure 4.2: Trajectories for time-like system (4.48) with dynamical mass
m2 = m2

0 − Et with P⊥ = 0 and E = m2
0 = 1.

The field is switched on for z = 0 and we consider the motion of particles

that reach the interface z = 0 at t = 0, without any loss of generality. Here,

the particle starts in the field where it decelerates and leaves the field after

which it then experiences free motion. This appears to have the opposite ef-

fect to its vector analogy where we saw that the field accelerated the particle.
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In autonomous Hamiltonian mechanics, the Hamiltonian itself is one of

the conserved quantities. However, in this case we see that the Hamiltonian

depends on the time parameter explicitly and the system is non-autonomous.

We can create an autonomous system by enlarging the phase space to eight

dimensions. We now require the system to have seven conserved quantities for

the system to be maximally superintegrable. In this enlarged phase space, our

time parameter t is an additional coordinates with its conjugate momenta P 0

and our new Hamiltonian is define as K = H −P 0 [46]. The time-derivative

of any quantity Q is now

Q′ = −{Q,K}∗ where {X,Y }∗ =
∂X

∂xµ
∂Y

∂Pµ
− ∂X

∂Pµ

∂Y

∂xµ
,µ ∈ {0, 1, 2, 3} .

(4.53)

The new time now does not appear explicitly and t′ = −∂K/∂P 0 = 1.

We can verify that in addition to the five conserved quantities found in the

non-autonomous system, we have an additional two, one of which is the

new Hamiltonian by construction, which is quadratic in the momenta and

encodes the dynamical mass-shell constraint. The final conserved quantity

is the initial value for one of the spatial coordinates. For example, we could

take the set of conserved quantities to be,

P 1, P 2, P 3, M23, M31, K, x+P1

∫ t

t0

ds
1√

P2 +m2
0 + E(s)

= x0 .

(4.54)

The set of conserved quantities depends on which of the two components of
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angular momenta we take to be our conserved quantities which determines

the direction to take as the seventh conserved quantity due to the constraint

on the momentum p.L = 0. In total we have seven globally defined and

independent conserved quantities that are polynomial in the momenta and

the set {K,P 1,P 2,P 3} is in involution. Therefore the we have a polynomial

maximally superintegrable system [15].

4.2.3 The light-like case

The final case we shall consider is the case where the vector nµ is taken to

be light-like. We consider this as the scalar analog to the plane wave as any

field of this form is a solution to the wave equation. For the scalar field, with

field strength F , we choose the field to dependent on the choice n.x,

m2(x) = m2
0 + F n · x . (4.55)

In front form, the Hamiltonian is

H =
P 2
⊥ +m2(n.x)

P+
. (4.56)

We have two choices for the variable, either n.x = x− or n.x = x+, which

will create either an autonomous or non-autonomous system.

For an autonomous system we choose n.x = x−, so that the Hamiltonian

and the two transverse momenta, P 1 and P 2, are conserved and in involution
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so we have at least integrability. These conserved quantities correspond to

translation invariance in three dimensions. Plane waves are also invariant

under null rotations [27,47], giving the corresponding conserved quantities

Q⊥ = Hx⊥ + x−P⊥ . (4.57)

In field theory applications, it is often more convenient for the depen-

dence of the plane wave to coincide with the choice of time, n̄ · x = x+. Now

the system is non-autonomous as the Hamiltonian depends explicitly on the

time parameter, however now all three momenta are conserved and in invo-

lution. As we have previously done in the time-like case, we can create an

autonomous system by extending the phase space to eight dimensions and

create a new Hamiltonian, K = H − P−. The time derivative of a quantity

Q is given by (4.53). From here we can verify that the five conserved quan-

tities following from the invariance of the plane wave under translations and

rotations are

Q1 = P 1, Q2 = P 2, Q3 = P+, Q4 = xP++x+P 1, Q5 = yP++x+P 2 .

(4.58)

The additional two conserved quantities involve the extended phase space

variables. By construction one of these is the new Hamiltonian,

Q6 = P+P− − P⊥P⊥ −m2(x+), (4.59)
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which is quadratic in the momenta and encodes the dynamical mass-shell

constraint. The final conserved quantity is

Q7 = P+2

x− − P⊥P⊥ −
∫
dx+m2(x+) , (4.60)

which, in the original phase space, immediately gives the solution to the

equations of motion for x−. In total we have seven globally defined and

independent conserved quantities that are polynomial in the momenta and

the set {Q1,Q2,Q3,Q6} is in involution. Therefore the we have a polynomial

maximally superintegrable system [15]. The solution to the equations of

motion are as follows. The solutions to the transverse directions are given

by the two null rotations,

x(x+) =
Q4 − x+P 1

P+
,

y(x+) =
Q5 − x+P 2

P+
,

(4.61)

and the final direction is given by Q7.

To illustrate, we shall consider two choices of background field, one that

is sinusoidal and models a monochromatic plane wave and the second that

is linear in x+ which models the low frequency limit of the plane wave. For

the sinusoidal choice of background field, the dynamical mass is redefined to
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obey

m2(t, x) =


m2

0 x+ < 0

m2
0 + F sin(ωx+) x+ ≥ 0

, (4.62)

and consider the motion of particles which reach the interface x− = 0 at

x+ = 0, without any loss of generality. The dynamics in the non-trivial

plane are given by

x−(x+) =
Q7 +m2

0 x
+ − (F/ω) cos(ωx+)

P+2 . (4.63)

2 4 6
x
+
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10
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-

Figure 4.3: Trajectories for dynamical mass m2
0 + sin(x+/ω) with P⊥ = 0,

P0 ∈ {1, 1.25, 1.5}, Q7 = F/ω and m0 = ω = F = 1.

From Figure 4.3 we see that the particle experiences free motion until it

enters the field where the behavior then becomes sinusoidal and oscillates in

the field. The strength of the oscillation appears to be inversely proportional

to the initial momentum. The greater the initial momentum is we find that

the oscillations are less pronounced.
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In the low frequency limit, the dynamical mass is redefined to obey

m2(t, x) =


m2

0 x− < 0

m2
0 + Fx+ x− ≥ 0

, (4.64)

and again, we consider the motion of particles which reach the interface

x− = 0 at x+ = 0. The dynamics in the non-trivial plane are now given by

x−(x+) =
Q7 +m2

0 x
+ + (F/2)x+

2

P+2 . (4.65)
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Figure 4.4: Trajectories for dynamical mass m2
0 + Fx+ with P⊥ = Q7 = 0,

P0 ∈ {1, 1.25, 1.5} and m0 = F = 1.

As shown in Figure 4.4, the particle motion is free until it enters the

field where the motion becomes parabolic. Interestingly, we recall that the

motion of a particle in a constant null field, the vector equivalent of the low

frequency limit, was also parabolic in a particular plane.
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4.2.4 Boost invariant example

The previous examples have all been examples where the scalar field depends

on a single coordinate. We shall now consider a scalar field that depends on

a combination of both light-front coordinates. We define the scalar field to

be

m2(x) = φ(x+x−) . (4.66)

This system is invariant under translations in the transverse directions, thus

P 1 and P 2 are conserved. For a particle moving in any background field of

this form, we also find the the rotation M12 and the boost M+− are also

conserved. The set {P 1,P 2,M+−} are in involution and all four quantities

are functionally independent so we have minimal superintegrability.

For a field of this form, the equations of motion are solved with the aid of

the conserved quantities. We write the boost as M+−
0 ; using these we then

get an expression for P+ in terms of the field variable,

P+(x+x−) = − 1

2x−

(
M+−

0 ±
√

(M+−
0 )2 + 4x+x−(P 2

⊥0 +m2)

)
. (4.67)

To simplify this expression, we make a special choice of m2,

m2(x+x−) =
P 4
⊥0x

+x−

(M+−
0 )2

, (4.68)

which is linear in our choice of field variable x+x−. This choice completes the

square in (4.67), however it is restrictive as this only works for a particular
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choice of initial conditions. We also use the constraint (4.68) to simplify the

Hamiltonian equation for x−,

dx−

dx+
=
x−

x+
+

(M+−
0 )2

P 2
⊥0 x

+2 . (4.69)

This can now be integrated and yields the trajectory for x−,

x−(x+) =
x−0
x+0

x+ +
(M+−

0 )2

2P 2
⊥0

(
x+

x+
2

0

− 1

x+

)
. (4.70)
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Figure 4.5: Trajectories for dynamical mass m2(x+x−) = P 4
⊥0x

+x−/(M+−
0 )2

with the lightcone shown in grey, x−0 = 0, (M+−
0 )2/P 2

⊥0 = {1, 0.5, 0.25}

Figure 4.5 shows that the particle enters the background field at the time

x+ = x+0 , and that the field initially accelerates the particle. After the initial
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acceleration the particle motion then becomes linear.

The constraint on m2 also means that the expression for P+ simplifies to

P+ =
P+
0 x+

x+0
where P+

0 =
x+0 P

2
⊥0

M+−
0

, (4.71)

where the right hand side no longer depends on the product x+x−, but only

on the time coordinate x+. The Hamiltonian can then be expressed

P− =
P⊥0x

+
0

P+
0 x+

+
P 4
⊥0x

+
0 x
−

P+
0 (M+−

0 )2
. (4.72)

The transverse trajectories are

x⊥(x+) = x⊥0 +
P⊥0
P 2
⊥0

ln

(
x+

x+0

)
. (4.73)

4.3 Beyond Poincaré

The advantage of working in a scalar field background is that the group of

symmetries is extended to include dilations and special conformal symme-

tries. We shall now present examples of fields that have these additional

symmetries.

4.3.1 Dilations

The first example we shall investigate is one that involves dilation symmetry.

Dilations with ξµD yields a conserved quantity ξD · P when m2(x) obeys the
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following,

x · ∂ m2(x) = −2m2(x) , (4.74)

thus m2(x) is an eigenfunction of the dilation operator x.∂ with eigenvalue

or “weight” 2. The symmetry is generated by

D = −ixµ∂µ , (4.75)

where the scale transformations are given by the exponentiation of

exp(i λD)φ(x) = φ(λx), (4.76)

so that xµ → λxµ, where λ is the scale factor. Equivalently, we can write this

in terms of the “unperturbed” mass m0, and the scalar background φ(x), so

we have the relationship,

x · ∂ φ(x) = m0 − φ(x) . (4.77)

To illustrate, we choose an example which has full Lorentz invariance such

as m2 ≡ m2(x · x), then equation (4.74) fixes the function to have the form

m2 =
C2

x · x
=

C2

x+x− − x2 − y2
, (4.78)

where C is a constant. Thus, including a dilation symmetry and insisting on

Lorentz invariance limits the possible choices for the function m2 to a single
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choice (4.78). We can show that this choice has four Poincaré symmetries,

two null rotations, a rotation about the z axis and a boost along z. The fifth

conserved quantity is

Q5 = x+H + x−P+ + xP x + yP y . (4.79)

The set of conserved quantities of the two null rotations and the dilation

symmetry are in involution and functionally independent as the matrix M

has rank 5, therefore the system is maximally superintegrable.

Interestingly, although this is a maximally superintegrable system, we are

only able to make analytical progress to obtain the solutions if we make an

additional assumption about at least one of the conserved quantities. We

consider the case where Q5 = 0. Thus we have that x.x = u0, a constant,

following from this the equation of motion for P+ can then be solved. We

take u0 > 0, and hence m2 > 0 and so P+ > 0, and find

P+ =

√
4u20P

−2

0 − C2x+2

2u0
. (4.80)

Using the conditions that Qi = constant, i ∈ {1, .., 5} as a system of five

algebraic equations, we find the remaining five momenta and coordinates,

{P⊥,x⊥,x−}. By eliminating four of the variables from the system this leaves

a quadratic equation determining the remaining variables. However, these

expressions are complicated and unrevealing.
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4.3.2 Special conformal transformations

In addition to dilation symmetries, scalar fields can also possess special con-

formal symmetry. If we take m2 to be of the form

m2(x) =
1

x+2
f

(
x− − x⊥x⊥

x+

)
, (4.81)

this will by invariant under the special conformal transformation,

ξµc = cµx2 − 2xµc.x , (4.82)

that is generated by c− = 1 and all other components vanish. This transfor-

mation is generated by

Kµ = −i(2xµxν∂ν − x2∂µ) , (4.83)

and can be viewed as a translation that is both preceded and followed by an

inversion xµ → xµ/x2.

A function of the form (4.81) is also invariant under three Poincaré symme-

tries, two null rotations and a rotation about the z axis. We can once again

move to an enlarged phase space where we can identify the following five

conserved quantities,

Q⊥ = 2P+x⊥ + x+P⊥, Q3 = ξc.P , Q4 = xP 2 − yP 1, Q5 = K . (4.84)
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These are independent and the set {Q1,Q2,Q3,Q5}, are four quantities in

involution. To solve the equations of motion we define u = x− − x⊥x⊥/x+,

then using the conservation of the null rotations and the special conformal

symmetry, we are able to write P+ in terms of u,

P+ = −Q
2
⊥ + f(u)

4Q3

. (4.85)

The conserved quantity Q3 must be greater than zero. The Hamiltonian

equation for the new variable u is

du

dx+
= − Q3

P+x+2 =
4Q2

3

Q2
⊥ + f(u)

1

x+2
=⇒

∫ u

u0

ds
Q2
⊥ + f(s)

4Q2
3

=
1

x+0
− 1

x+
.

(4.86)

This then gives us an implicit expression for u ≡ u(x+), with initial conditions

that u = u0 when x+ = x+0 . From this we can identify an expression for P+,

P+ ≡ P+(x+) using (4.85). We next identify the particle motion in the x⊥

directions from the Hamiltonian equations,

dx⊥

dx+
= − P⊥

2P+
=
x⊥

x+
−Q⊥2x+P+ , (4.87)

that we can integrate. We then use this to write our expression for x− as

x− = u+ x⊥x⊥/x+.

As an example, we choose the background field to be an exponential
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function and the field is defined as,

m2 =


m2

0 x+ < L

m2
0L

2

x+2 e−k
2(x−−x⊥x⊥/x+)2 x+ ≥ L

, (4.88)

where k is a parameter with units of inverse length. If we set the trans-

verse momenta to zero so there are no transverse dynamics, the non-trivial

part of the orbit is

1

x+
= 1− κErf(x−) (4.89)

with dimensionless variable κ = 2
√
π/k (P−/(m0x

+
0 ))2 in terms of the initial

P−.
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Figure 4.6: Trajectories for dynamical mass m2 =
(m2

0L
2/x+

2
)e−k

2(x−−x⊥x⊥/x+)2 , with the lightcone shown in grey and
x⊥ = P⊥ = 0, orbits are plotted for κ = {0.9, 0.5, 0.3}.

As seen in Figure 4.6, the particle enters the background field at the

105



time x+ = L. For larger x+ the particle approaches the speed of light as

the dynamical mass drops to zero. This makes the Hamiltonian equivalent

to that of a massless particle. The coordinates x+ and x− are measured in

units of L and 1/k respectively.

4.4 Conclusion

We were able to move from a vector background field to a scalar field through

the averaging of the vector dynamics. By considering a particle moving

in a scalar background field, we have shown that the symmetry group is

extended from 10 parameters to 15. The symmetry group now includes

dilations and conformal symmetry in addition to Poincaré symmetries. We

began by investigating scalar fields created from the three distinct choices

for the vector n and found these all resulted in maximally superintegrable

systems. In the cases where the vector n was time-like and light-like, we could

extend the phase space to create autonomous systems. We found there to be

an additional two conserved quantities in the extended phase space so that

these examples remained maximally superintegrable. When we compared

these cases to their vector counter parts we find that the null case has the

same five conserved quantities in both settings and that the space-like and

time-like cases differ from their vector counterparts. We observed that the

particle motion in null scalar fields is similar to that seen in the null vector

field case and the field has the opposite effect on the particle motion for the
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time-like case to that found in the constant electric field case. It is interesting

to note that although the space-like case is maximally superintegrable, two

of the symmetries did not correspond to Poincaré symmetries. We have

seen that the scalar plane wave is a maximally superintegrable system and

that it has the same conserved quantities as the vector case, however there

is no longer a gauge modification required. The boost invariant example

was found to be minimally superintegrable. However, to make progress in

solving the equation of motion, we had to make a simplification. By fixing

the form of m2, we were able to simplify the expression for P+, which in turn

made it possible to solve for the particle trajectory. We also had to make a

restricting assumption in the example which included a dilation symmetry.

This example is maximally superintegrable and the trajectories could be

obtained algebraically once we assumed that the conserved quantity relating

to the dilation symmetry was equal to zero. Our final example was one which

included a special conformal symmetry and was found to be only minimally

superintegrable. To obtain the particle trajectories we defined a new variable

u = x− − x⊥x⊥/x+ and solved the equations of motion in terms of u.
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Chapter 5

Summary and Outlook

5.1 Summary

Our aim in this thesis was to determine the trajectory of a relativistic particle

moving in a background field. In the classical regime, we solve the Lorentz

force equation of motion and ideally we wish for the choice of external field

to model a laser.

In Chapter 2, we showed that a symmetry of the background field relates

to a conserved quantity in the motion of the charged particle. To solve for

the particle trajectory we introduced the concept of integrability. For this,

we turned to the Hamiltonian formulation with a phase space of dimensions

2n. A system is then described as integrable if there exist n independent

conserved quantities that are in involution, that is their Poisson brackets

vanish. We then extended the concept of integrability to superintegrability,
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where we now have a further k conserved quantities where 1 ≤ k ≤ n − 1.

A system that has k = 1 additional symmetries is minimally superintegrable

and maximally superintegrable when k = n− 1.

We first considered examples of a particle in vector background fields

described by the gauge field Aµ(x). In the simplest case, where the back-

ground field, F µν = ∂µAν − ∂νAµ, is taken to be constant in space-time, the

resulting motion falls into four distinct cases; hyperbolic, elliptic, parabolic

and loxodromic. For the first three cases we were able to identify five in-

dependent conserved quantities, where three are in involution, and therefore

classify these cases as maximally superintegrable. The final case, loxodromic

motion, was an interesting one, as although it had four conserved quantities,

no three of them are in involution, so it could not be classed as integrable.

We then went on to investigate fields that had a space-time dependence on

one coordinate only. We showed that the standard model of a laser, the

plane wave, was maximally superintegrable. In this case, the orbits can be

solved algebraically. When we extended this to include a longitudinal con-

stant electric field, we found that we lost the two null rotations and the

system was only integrable. The last example we considered was the undu-

lator. We showed that the planar undulator was minimally superintegrable,

with four conserved quantities. Extending this to the helical undulator, the

system became maximally superintegrable and included a symmetry that was

non-polynomial in the canonical momenta.

We then went on to consider a particle moving in a scalar background
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field. We began by showing that we can obtain the scalar equation of motion

by considering the averaged motion of a particle moving in an oscillatory

vector field. We found that by taking the average momentum, this gave rise

to an effective mass. The equation of motion for the averaged motion of

a particle is exactly that of a classical relativistic particle with a variable

rest mass. We then showed that, in a scalar background field, the symmetry

group is extended from the 10 parameter Poincaré group to the conformal

group of 15 parameters.

The first examples we investigated corresponded to each of the three

choices of the vector nµ. Each of these cases were found to be maximally

superintegrable. In the space-like case, the scalar analogy of the position-

dependent magnetic field, the field has three conserved quantities that related

to Poincaré symmetries. The final two conserved quantities did not relate

to Poincaré symmetries and were found by making an ansatz for the form

of the conserved quantity and demanding that its time evolution was zero.

This was also our only autonomous example. For the time-like and light-like

cases, we extended the dimension of phase space to 2n+ 2 and defined a new

autonomous Hamiltonian K. Interestingly, in the time-like case, there was

no unique set of conserved quantities. The set is defined by which of the two

conserved angular momenta we decide to take as our conserved quantities.

This then fixes the final conserved quantity, an initial position. For the light-

like case, we found that the conserved quantities were the same as those

found in the vector counter part. The next example we considered was boost
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invariant. This example was minimally superintegrable with four Poincaré

symmetries. In this case, to make progress solving the equation of motion,

we had to make a special choice for m2(x).

Our final examples were those that included a symmetry from the ex-

tended symmetry group. The first example included a dilation symmetry in

addition to four Poincaré symmetries making it a maximally superintegrable

system. To make progress solving the equations of motion, we had to make an

assumption regarding one of the conserved quantities. Following from this,

we were then able to solve the equation of motion for one of the components

of momenta. The remaining coordinates and momenta could then be found

algebraically. The second example included a special conformal symmetry

as well as three Poincaré symmetries making it minimally superintegrable.

We were able to solve the equations of motion with the aid of defining a new

variable and solving in terms of this new variable.

5.2 Outlook

5.2.1 Towards the quantum problem

Moving forward, it would be interesting to extend these ideas to a quantum

setting, especially in light of the conjecture made by Tempesta [18] that all

maximally superintegrable systems are exactly solvable. To study the quan-

tum mechanical analogues of classical superintegrable systems, we replace

the Poisson brackets with commutators [31]. As relativistic quantum me-
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chanics is problematic [48], we instead use relativistic quantum field theory.

The ‘first quantised’, quantum mechanical, approach still has a role to play.

For scalar fields, the solutions to the Klein-Gordon equation give asymptotic

particle wave functions which are used as the basis of scattering amplitudes.

These solutions will typically contain physics which cannot be captured by

single particle dynamics, such as pair production. Therefore it is not obvious

how the superintegrability of a relativistic particle system translates to its

field theory analogue.

5.2.2 Radiation reaction

When a charged particle is accelerated it emits electromagnetic energy in

the form of electromagnetic waves and the energy the particle loses in this

process is proportional to the square of the acceleration according to Larmor’s

formula. This process produces a self force that acts on the particle that is

being accelerated and the force is known as radiation reaction force, or just

radiation reaction. Radiation reaction was first discovered by Abraham [49]

and his work was extended by Lorentz [50]. It was then re-derived by Dirac

[51]. Radiation reaction is then described by the Lorentz- Abraham- Dirac

(LAD) equation,

ṗµ =
e

m
F µνpν + τ0Pµν p̈ν , (5.1)

where τ0 is a parameter defined as τ0 = e2/6πε0, with the dimensions of time

and Pµν is a projection perpendicular to p to guarantee p.ṗ = 0. However,
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there are two issues with this equation in that it has runaway solutions, these

are solutions that diverge exponentially and preacceleration which breaks the

rule of causality. An attempt to avoid these issues was made by Landau and

Lifshitz by approximating the LAD equation [8] with

ṗµ =
e

m
F µνpν + τ0

e

m
Pµν(Ḟα

ν pα +
e

m
FναF

αβpβ) +O(τ 20 ) , (5.2)

known as the Landau- Lifshitz (LL) equation. The LL equation has been

solved for particular background fields such as constant electromagnetic fields

[52, 53] and plane waves [54]. It would be interesting to investigate the role

that symmetry plays in solving the LL equation and if all maximally super-

integrable systems have an analytical solution for the LL equation.
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Appendix A

Properties of Poisson brackets

The Poisson bracket of two functions X(x, p) and Y (x, p) on phase space is

given by

{X,Y } =
n∑
i=1

(
∂X

∂xi
∂Y

∂pi
− ∂X

∂pi

∂Y

∂xi

)
. (A.1)

Given functions X,Y and Z on phase space and constants a and b the Pois-

son brackets obey the following properties:

Anti-symmetry:

{X,Y } = −{Y ,X} . (A.2)

Bilinearity:

{X, aY + bZ} = a{X,Y }+ b{X,Z} . (A.3)
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Jacobi identity:

{X, {Y ,Z}}+ {Y , {Z,X}}+ {Z, {X,Y }} = 0 . (A.4)

Leibniz rule:

{X,Y Z} = {X,Y }Z + Y {X,Z} . (A.5)

Chain rule:

{f(X),Y } = f ′(X){X,Y } . (A.6)
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