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ABSTRACT

Radial frequency (RF) patterns can be combined to construct complex shapes. Previous studies have suggested that
such complex shapes may be encoded by multiple, narrowly-tuned RF shape channels. To test this hypothesis,
thresholds were measured for detection and discrimination of various combinations of two RF components. Results
show evidence of summation: sensitivity for the compounds was better than that for the components, with little effect
of the components’ relative phase. If both RF components are processed separately at the point of detection, they
would combine by probability summation (PS), resulting in only a small increase in sensitivity for the compound
compared to the components. Summation exceeding the prediction of PS suggests a form of additive summation (AS)
by a common mechanism. Data were compared to predictions of winner-take-all, where only the strongest component
contributes to detection, a single channel AS model, and multi-channel PS and AS models. The multi-channel PS and
AS models were modelled under both Fixed and Matched Attention Window scenarios, the former assuming a single
internal noise source for both components and compounds or different internal noise sources for components and
compounds respectively. The winner-take-all and single channel models could be rejected. Of the remaining models,
the best performing one was an AS model with a Fixed Attention Window, consistent with detection being mediated
by channels that are efficiently combined and limited by a single source of noise for both components and compounds.

1. Introduction

Historically, subthreshold summation experiments have been suc-
cessfully employed to demonstrate the existence of multiple spatial fre-
quency (SF) tuned channels (Campbell & Robson, 1968; Graham &
Nachmias, 1971; King-Smith & Kulikowski, 1975; Kulikowski & King-
Smith, 1973; Sachs, Nachmias, & Robson, 1971) and to measure their
orientation bandwidths (see Graham, 1989, for review). For example,
Campbell and Robson (1968) and Graham and Nachmias (1971) mea-
sured contrast sensitivity for sinusoidal gratings with different SF (e.g.
one grating with SF of 3c/deg and the other 9c/deg). The two gratings
were then superimposed to form a compound pattern, and thresholds
measured again. The rationale was that if both gratings were processed
by a common broadband channel one would expect a substantial
threshold reduction for the compound as their signals would combine
additively. On the other hand, if the grating components were processed
by separate channels, their signals would combine probabilistically re-
sulting in only a marginal increase in sensitivity. The results from these
experiments supported the existence of several narrowly tuned SF
channels (Campbell & Robson, 1968; Graham & Nachmias, 1971).

Radial Frequency (RF) patterns, which are closed quasi-circular

* Corresponding authors.

contours defined by sinusoidal modulations of their radius in polar co-
ordinates, have frequently been used to investigate intermediate stages of
shape processing (reviewed by Loffler, 2008 & Loffler, 2015; see also
Schmidtmann & Fruend, 2019). Examples of RFs are shown along the
horizontal and vertical axes of Fig. 1. In a typical RF experiment, subjects
are presented with two patterns, one a circle, the other an RF with
varying amplitude, and are required to detect the non-circular, RF shape.
The minimum shape difference, measured as the amplitude of the sinu-
soidal modulation (see methods), at which observers can reliably dis-
criminate between the circle and the RF pattern is the measured
threshold. Several studies have suggested that different mechanisms are
responsible for processing different RF shapes (Bell & Badcock, 2009;
Bell, Badcock, Wilson, & Wilkinson, 2007; Bell, Wilkinson, Wilson,
Loffler, & Badcock, 2009; Loffler, Wilson, & Wilkinson, 2003; Poirier &
Wilson, 2006). For example, Bell et al. (2007) measured thresholds for
combinations of RF patterns comprising low and high radial frequencies
(e.g. RF3/RF24). They argued that if there are two independent chan-
nels, one for the low and one for the high RF, detection of one component
should not be affected by the presence of the other, analogous to the
rationale employed by the early studies on SF channels. Results sup-
ported this prediction. In a related experiment, Bell and Badcock (2009)
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Fig. 1. Fraction of a theoretical shape space spanning between individual (‘pure’) RF3 and RF5 pattern (referred to as ‘components’ in this paper) and various
combinations of them (‘compounds’). In this shape space the circle in the green box represents the origin. The vertical and horizontal axes show respectively pure RF3
and RF5 patterns with increasing modulation amplitude (e.g. circle: A = 0; smoothed pentagon: RF5 with A = 0.05; five-pointed star: RF5 with A = 0.15).
Combining two RF components with different weights (w;,2) results in various compound ‘morphs’ as seen along the red arrows. The weights define the relative
contribution of the two RF components to the compound pattern. In the experiments presented here, thresholds were determined for the pure RF components as well
as for various weighted compounds. Weights of 100%/0% (pure RF3), 75%/25%, 50%/50%, 25%,/75% and 0%,/100% (pure RF5) were employed. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

applied a subthreshold summation paradigm to investigate the existence
and nature of individual RF channels. They measured thresholds for
isolated RF patterns and compared them to thresholds for compound RF
patterns in which a second component, at half its threshold amplitude,
was added. They argued that if both components were processed by a
common channel, the signal from one RF component should be increased
by the presence of the other component and overall thresholds should
decrease even if the second component itself is presented at subthreshold
levels. On the other hand, if the two components were processed by in-
dependent RF channels no such threshold reduction should occur. The
results for low RFs (=10) supported the latter prediction of independent
RF channels. All these and other results (Bell et al., 2009) were taken as
evidence for multiple RF channels.

Dickinson, Bell and Badcock (2013) explored RF pattern detection
and identification at threshold. Their rational was that if subjects were
able to identify different RF shapes at their respective detection threshold
it would imply that the shapes were processed by discreet detectors/
channels. Their results supported this notion but also showed a depen-
dence on the amount of visible shape, e.g. if just a single cycle was
presented identification at threshold was not possible. Based on these
results, and as an alternative to shape decomposition into an RF base set,
Dickinson et al. (2013) suggested that the periodicity of curvature
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maxima (convexities) is the crucial feature that underpins RF detection.
Dickinson et al. (2013) proposed that the cue that distinguishes the
patterns with differing radial frequencies is the angle subtended between
adjacent points of maximum curvature at the pattern centre. More re-
cently, and in line with Dickinson, et al. (2013), Dickinson, Haley,
Bowden, and Badcock (2018) demonstrated that RF3 patterns and si-
milar patterns but with the same overall triangular-like shape, were very
hard to discriminate. Given these findings, Dickinson et al. (2013, 2018)
argue against a shape decomposition into discrete RF channels.

The main aim of this study was to probe how signals from two RF
components are integrated when presented on a compound shape (see
Fig. 1). We aim to determine if signals from the two components remain
independent or if they are combined, and if they are combined, which
process best describes the combination (see Fig. 2A vs. B, C). To do so,
we measured detection (discrimination against circle) and discrimina-
tion (discrimination against pedestal amplitude)’ sensitivity for a range

! Most of the previous studies were concerned with observer ability to dis-
criminate an RF shape from a circle. This will subsequently be referred to as an
RF detection task, to contrast it from RF discrimination, where observers have
to discriminate two RFs: one with a pedestal amplitude and the other with an
incremented amplitude.
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Fig. 2. Classes of summation scenarios considered within a signal detection theory framework (left column) and their corresponding predictions (summation plot in
right column). In all 3 scenarios, the two components (shown by the grey-scale RF shapes) elicit a signal in a hypothetical shape channel. The signal within that
channel depends on the amplitude of the component and is subject to a non-linear transducer (z is the exponent of the transducer function) and an internal noise
source (N). In the experiments, observers were shown two shapes in separate intervals and had to decide which was less circular (two-alternatives/intervals forced-
choice paradigm). Each interval (e.g. circle vs RF compound with specific amplitude) will result in different signals and the two intervals are symbolized by the red
and light blue rectangular boxes. MAX refers to a decision rule where the stronger signal is selected. Note that there are two MAX rules in some of the scenarios: in the
case of probability summation, the stronger of the signals from the two channels in each interval is first selected and then the interval with the stronger signal
determines the decision. The predictions on the right show the amplitudes of each component (x and y axis) for compounds at threshold (summation plots). (A) In the
winner-take-all scenario only the strongest component contributes, the other is ignored or suppressed (= ). This results in predictions (right) for compound shapes
that are determined by only one of the components. (B) In probability summation, each of the component channels contributes and the channel is selected that yields
the stronger signal. Performance for the compound stimulus is better than that for the components because it allows two chances on which to base a decision. The
predicted summation plots are consequently convexly curved and the amplitudes of each component when the compound is at threshold are lower than the
thresholds for each component alone. (C) In additive summation (AS) the signals from the two component channels are summed and the summed signals compared
between intervals, with the stronger signal selected. With AS the predicted thresholds are lower than PS. In the special case of linear transducers (r = 1), AS
predictions fall on straight lines. In all scenarios, equal thresholds are assumed for the two components presented in isolation (A = 0.0075). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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of compounds. The compound shapes comprised various weighted
combinations of two RF components (RF3/RF5; RF3/RF8; RF4/RF7).

1.1. Summation models

It may be helpful at the outset to outline the general predictions of
the summation models we will entertain, each of which describes how
component sensitivities are combined to derive predictions for com-
pound performance. It is widely agreed that Signal Detection Theory
provides a solid framework for describing decision-making processes in
psychophysical experiments (Green & Swets, 1988; Laming, 2013;
Meese & Summers, 2012; Nachmias, 1981; Tyler & Chen, 2000), and
especially for experiments on signal summation (Meese & Baker, 2011;
Schmidtmann, Jennings, Bell, & Kingdom, 2015b; Baldwin,
Schmidtmann, Kingdom, & Hess, 2016). Hence, the data in this study
are analyzed with models of summation based on Signal Detection
Theory (Kingdom, Baldwin, & Schmidtmann, 2015).

Fig. 2 illustrates three possible model scenarios and their predic-
tions. We distinguish between the rule for how the two signals from the
two components of each compound shape in each trial are combined -
the signal combination rule — and the rule for deciding which of the two
sequentially presented compound shapes (forced-choice alternatives) —
the decision rule. In all three models the latter, decision rule is a MAX
rule, meaning that the observer chooses the alternative with the largest
signal. This is represented by the rightmost MAX (black box) in the left
panels of the figure. The three models differ in the signal combination
rule, as symbolized in the red (first interval) and blue (second interval)
rectangular boxes.

The model predictions are given in summation plots. These plots
show the amplitude thresholds of the two components when they are
presented in isolation (intersection of summation curve with the x and
y-axis). Sensitivity for any compound (various weighted sums of the
two components) is given by a point within the first quadrant as the
amplitude of each component when the compound is at its threshold.
When only one component is contributing, thresholds for various
compound conditions would fall along straight horizontal and vertical
lines: the compound is detectable if one of the component amplitudes is
at its individual threshold.

This is the first model in Fig. 2A where only the strongest compo-
nent contributes to detection, the other(s) being ignored or suppressed
(+). We refer to this as the “winner-take-all” model, termed “decision
separability” by Macmillan & Creelman (2005). The other two models
show cases where performance for compounds is better than that for the
components. With probability summation, or PS, shown in Fig. 2B, a
maximum (MAX) signal combination rule is applied: for each alter-
native the component with the biggest signal is selected. Thus, PS
performance predicts higher sensitivity (lower thresholds) for the
compound condition than for the components alone because there are
two chances for a component signal to contribute to detection. The
additive summation, or AS model in Fig. 2C, describes a scenario where
the signals from the two components are summed within each interval/
alternative. For all but the extreme parts of the summation square,
where the compound comprises only one component, AS predicts lower
thresholds than PS The precise shape of the summation curves for AS
and PS depends on the transducers of the component channels (z, Eq.
2). While the summation curve for PS will always be convex, the shape
for AS, and the degree of curvature for PS, depends on the exponents on
the transducers of the component channels: for AS the shape is straight
if the transducers are 1 and convex for values > 1, as shown by the
dashed lines in Fig. 2B and C. A special case of AS is a Single Channel
model, which assumes a single noise source.

The other aspect of summation to consider, which is not presented
in Fig. 2, concerns how an observer attends to information from

2 Note that this is not shown in Fig. 2.
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different channels. For this, we contrast a Matched Attention Window
(Kingdom et al., 2015) with a Fixed Attention Window (FAW, Tyler &
Chen, 2000) scenario. The difference between the two lies in the
number of channels that an observer monitors, which determines the
amount of internal noise limiting performance. The Matched Attention
Window (MAW) scenario assumes that the components are at least in-
itially processed in separate channels and that the observer attends to
only the channels that are known in advance to contain a signal; the
other channels, together with their sources of noise, are ignored. Under
the Fixed Attention Window scenario on the other hand both compo-
nent channels are always monitored irrespective of whether or not they
contain a signal, involving the obligatory pooling of the noise from both
channels. As a consequence, when only one component is present the
Matched Attention Window is the more efficient of the two scenarios,
because there is only one source of noise limiting performance. It is
important to bear in mind that both Matched and Fixed Attention
Window scenarios are possible under PS and AS. Under AS, the Matched
Attention Window scenario implies that the two components are in-
itially processed by separate channels each with their own source of
noise, prior to being additively combined by a single detection me-
chanism. With the Fixed Attention Window scenario under AS on the
other hand, the signals from all monitored channel, together with their
associated noises, are additively summed. We have also tested model
scenarios where the exponent of the transducers of the component
channels are fixed (74 = 7). In summary, we have tested nine different
models: (1) AS FAW, (2) PS FAW, (3) AS MAW, (4) PS MAW, (5) AS
FAW (74 = 1), (6) PS FAW (z4 = 73), (7) AS MAW (74 = 7p), (8) PS
MAW (74 = ), and (9) Single Channel. Each of the nine models was
applied to individual data and not to averaged data. The model code
and model simulations, including summation squares can be found at
http://www.gunnar-schmidtmann.com/stimuli-software/#
CompoundRF.

2. Methods
2.1. Subjects

Three observers participated in this study. Two of the participants
were naive as to the purpose of the experiment. All subjects had normal
or corrected-to-normal visual acuity. Informed, written consent was
obtained from each observer, and the study was approved by the
Glasgow Caledonian University Ethics Committee. All experiments
were conducted in accordance with the Declaration of Helsinki.
Observations were made under binocular viewing conditions. No
feedback was provided during practice or data collection.

2.2. Apparatus

Stimuli were generated using Matlab 7.7 (Mathworks). The shapes
were presented on a gamma-corrected LaCie “electron22bluell”
monitor (1024 x 768) with a frame rate of 85 Hz under the control of a
Macintosh G4 computer. Monitor linearization was achieved by ad-
justing its color look-up table, resulting in 150 approximately equally
spaced gray levels. The pattern luminance was on average 65 cd/m?
Observers viewed the stimuli using a chin and forehead rest to guar-
antee a constant viewing distance of 120 cm. At this distance the size of
1 pixel was 0.018 deg. To minimize reference cues, a white cardboard
mask with a circular aperture of 12deg was placed in front of the
monitor. Experiments were carried out under dim room illumination.
Routines from the Psychophysics Toolbox were used to present the
stimuli (Brainard, 1997).

2.3. Stimuli

The stimuli used in this study were weighted combinations of radial
frequency (RF) patterns (Wilkinson et al., 1998), a class of closed
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contour with varying shapes. An RF compound contour was defined as:
1(6) = Tean [1 + wi-A-sin(w-8 + @,) + wy-A-sin(w;-8 + @,)] 1)

where r (radius) and 0 refer to the polar coordinates of the contour and
TI'mean 1S the radius of the modulated circle and determines the overall
size of the pattern. It was set to 0.5deg. A defines the modulation
amplitude, w;, w, the radial frequencies and ¢;, @, the phases (or-
ientations) for each RF component, respectively. The variables w; and
w,, refer to the relative weights of the two RF components in percent.
They were set so that w, = 1-w;. Weights (w;/w») (expressed in per-
cent) of 100%/0%, 75%/25%, 50%/50%, 25%/75% and 0%,/100%
were used. The shapes with a weight relationship of 100%,/0% and 0%/
100% will be referred to as ‘pure’ RF patterns, as they contain only
information from one RF component. Compound shapes were weighted
combinations of the following component configurations: RF3/RF5,
RF3/RF8 and RF4/RF7. The appearance of the resulting compound
shape depends on the component frequencies, their amplitudes as well
as their phase relationship. The phase relationship was either in-phase
(a peak of each component aligned) or out-of-phase for combinations
between an RF3 and an RF5 (a peak aligned with a trough). Ad-
ditionally, an intermediate phase was used, defined as the point where
the concave contour minimum, or trough of the higher RF component
(RF5, 7 & 8) coincides with the point of inflection, or zero-crossing of
the lower (RF3 & RF4) component (Fig. 3).

Pure RF patterns are symmetrical shapes, where the frequency, i.e.
number of cycles determines the number of symmetry axes. For in-
stance, an RF3 has three axes of symmetry and an RF5 has five.
Combining different RF components in-phase and out-of-phase results
in compound shapes with only one axis of bilateral symmetry, whereas
combining the RF components with intermediate phases leads to
asymmetrical shapes (see Fig. 3 for example stimuli with different
phase relationships).

Consistent with previous studies the cross-sectional luminance
profile of the stimuli was defined by a fourth derivative of a Gaussian
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Fig. 3. Example stimuli and phase-depen-
dence. The rows show compound shapes
formed by adding an RF3 and an RF5 pat-
tern, where the two RF components are in-
phase (top row), out-of-phase (mid row) and
intermediate phase (bottom row). Columns
are for five different combination weights.
The left hand column shows pure RF3, the
right hand column pure RF5 and the other
columns show compounds. For the shape
combinations used in this study, the in-
phase and out-of-phase conditions result in
symmetrical compound shapes, whereas the
intermediate phase condition leads to
asymmetrical compounds.

pure RF5

RF3 0%
RFS5 100%

(D4) (Wilkinson et al., 1998) with a peak spatial frequency of 8 c¢/deg.

2.4. Procedure

The method of constant stimuli was employed using a temporal two-
interval forced choice task. The monitor was initially set to a mid grey
luminance level. The subject started the experiment by pressing a key
on a standard computer keyboard. Each trial contained a reference and
a target stimulus. After 300 ms the first stimulus was presented for
160 ms, followed by a mid grey screen for 300 ms (inter-stimulus in-
terval), after which the second stimulus was presented for 160 ms. The
observer’s task was to indicate which of the two successively presented
stimuli was the target, which was always the contour with the higher
modulation amplitude (less circular). In the first experiment (RF de-
tection) the target was the non-circular shape (green vs. blue in Fig. 1)
which was always paired with a perfect circle as reference. In the
second experiment (RF discrimination) the target was the more
modulated shape (orange vs. red in Fig. 1). In the latter case the
modulation amplitude A of the reference shape was set to 0.05, which
corresponds to approximately 10x detection threshold of an RF shape
against a circle. The two patterns were always presented in random
order and with random overall orientations. Different relative weights
(w;, wy) and phase relationships (¢;, @) between the two components
were run in separate blocks. Thresholds were defined as the minimum
amplitude (A; Eq. (1)) required for reliable detection/discrimination.
These compound amplitudes (A) were then converted into the re-
spective component amplitudes at threshold by multiplication: Aw; or
A'Wz.

The stimuli were presented at a random position within 0.124 deg
from the centre of the screen. Each experimental condition was tested
within separate blocks (e.g. RF3/RF5 in-phase). In each block, six dif-
ferent stimulus amplitudes were presented 30 times each, resulting in a
total number of 180 trials per threshold estimate. Subjects completed
three repetitions of each experimental condition. The data of each run
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were fitted with a Quick psychometric function using a customized
maximum- likelihood procedure based on binomial proportions, and
MatLab’s fminsearch function. Thresholds were defined as the point on
the function where subjects made 75% correct responses.

2.5. Summation modeling

Apart from winner-take-all summation, the two possible scenarios
for the processing of compound RF shapes are PS and AS. According to
PS if the two RF components (A and B) are processed independently by
separate narrowly-tuned shape channels, one would expect only a slight
reduction in thresholds (improvement in sensitivity) for the RF com-
pound compared to the components. On the other hand, according to
AS, if the components are initially processed in separate shape channels
but their signals are then added before a decision is made, one would
expect a greater reduction in thresholds as the information from both
RF components is used more efficiently.

Below we summarize the equations for PS and AS for the general
case where stimulus strength of the two components can be unequal/
different. Unequal sensitivities for the two components making up a
compound is the typical scenario in the experiments presented below
but the predictions differ from those illustrated in Fig. 2 where equal
sensitivities were chosen for clarity. In order to derive the summation
predictions, one has to make an assumption about first the number of
channels that are activated by the stimulus and second the number of
channels monitored by the observer. As discussed earlier, the analysis
here considers two scenarios: Matched Attention Window (Kingdom
et al., 2015) and Fixed Attention Window (Tyler & Chen, 2000). The
difference between the two lies in the number of channels that an ob-
server monitors (Q, see below). Assuming that the two components are
being processed in separate channels, there are two channels that can
carry a signal. The observer can attend to one, the other or both. The
Matched Attention Window scenario assumes that the observer can
match their attention to the experimental condition and only attends to
those channels that contain a signal. Under this scenario Q, the number
of channels monitored, is the same as n, the number of channels car-
rying signals. Thus, when components are tested, Q and n both equal 1,
while for the compound Q and n both equal 2. Given that the compo-
nent and compound conditions were tested in separate blocks, we
consider this a plausible scenario. Observers were, however, not in-
formed whether in an individual block they were tested on a component
or a compound. It is therefore also conceivable that they always mon-
itored two channels - this is the Fixed Attention Window scenario. In
this case, Q would be 2 for both components and compound conditions
and n = 1 for the component and n = 2 for the compound. Hence, we
modeled PS and AS under both scenarios.

2.6. Additive summation

Signal detection theory considers the internal strength of a signal as

> a
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Fig. 4. Parameters for calculating AS and PS. N = noise distribution, S = signal
distribution, d’ = separation between S and N distributions. t is a sample sen-
sory magnitude. ®(t) and ®(t-d”) are the areas under the N and S distributions to
the left of t. ¢(¢) and ¢(t-d’), are the heights of the N and S distributions at t.
Based on Figure 6.5 in Kingdom & Prins (2016).
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the distance between two distributions: internal noise only and signal
plus noise (see Fig. 4). This is expressed in units of standard deviations
and referred to as d’. According to Kingdom et al. (2015), d’ for AS for
stimulus components of unequal strength (i.e. different amplitudes for
each of the two components making up the compound in our experi-
ments) is given by:

Z (&S)"
\/_ (2a)
where S;, g; and 7; refer to the stimulus strength, gain and transducer
exponent of the iy stimulus component respectively. Q and n are the
number of monitored channels and the number of stimulus components
respectively. In essence, this is calculating d’ as the sum of the signals
from each channel divided by the square root of the number of mon-
itored channels. In the model simulations below, the stimulus strengths
S; correspond to the component amplitudes; gains and transducers for
each channel, g; and ;, are free parameters set to best fit the data. The
following equation is then used to calculate percent correct responses
for a given stimulus strength and corresponding d” as (Kingdom & Prins,
2016; Fig. 4):

Pe= [ ¢ - do@Md (2b)

In these equations ¢(t) and ¢ (t-d’) refer to the heights of the signal
(S) and noise (N) distributions at a sample point t and ®(t) and ®(t-d’)
refer to the areas under the S and N distributions to the left of t, as
illustrated in Fig. 4. M indicates the number of alternatives in the
forced-choice task (in all experiments here M = 2). The detailed
mathematical derivations of the equations can be found in Kingdom
et al. (2015) and Kingdom & Prins (2016). For the Matched Attention
Window scenario, one simply sets Q equal to n; i.e. for the component
Q =n=1 and for the compound Q = n = 2. For the Fixed Attention
Window scenario, Q = 2 and n = 1 for the components and Q = 2 and
n = 2 for the compound. Note that if only the compound conditions
were considered the two scenarios would make the same predictions,
because Q = n = 2 in both cases. The equations for additive summation
are implemented by the function PAL_SDT_AS_uneqSLtoPC in the Pa-
lamedes Toolbox (Prins & Kingdom, 2018)

2.7. Additive summation single channel

The Single Channel AS model assumes a single source of noise. The
number of monitored channels is Q = 1. This model has just two instead
of four free parameters (g and 7).

d=) @Sy
; (20)

2.8. Probability summation

Kingdom et al. (2015) showed that PS under SDT for stimuli of
unequal strength under the Fixed Attention Window scenario with a
2AFC task is given by:

n

Pe=2, ./,l: st - dpoO J] o¢-djpa

i=1 j=1,j#i
+@-n [ e [Tow - d )
- j=1 (3a)

The first part of Eq. (3a), computes the probability that the i-th
signal component will be greater than all noise components (total QM-
n) and all other signal components (total n-1). These other signal
components are designated as j, hence j refers to all signal components
except the i-th signal component.

Analogous to AS, signal strength d’ is calculated as:
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dl = (giSi)Ti

Setting Q equal to n for Matched Attention Window scenario, gives:

(3b)

Pc = Z [: Pt — d) DM H ot — dj)dt

i=1 J=1j#i

(€3]

2.9. Pedestal condition (Discrimination Experiment)

For the conditions containing a pedestal of amplitude 0.05 (dis-
crimination experiment), we have modelled the data using the same
model as for the zero pedestal conditions, i.e. fitting the multiple psy-
chometric functions with the same free parameters of g and 7. We tried
to fit the pedestal = 0.05 conditions with a model in which d’ = [g
(S + AS)]"-(gS)", where S is the pedestal amplitude and AS the ampli-
tude increment, but the minimization procedure we employed failed to
converge on estimates of g and z. We assume that the reason for this is
because the above equation is not a good model for amplitude dis-
crimination in RF patterns. In order to model the pedestal data (dis-
crimination experiment), we have also tested various versions of al-
ternative models, such as the Legge & Foley (1980) model that has been
widely employed to model contrast discrimination data. However, in all
cases we were unable to find a model which converged on consistent
estimates of its free parameters, a problem often encountered in mod-
eling psychophysical data when there are many free parameters to es-
timate. We are therefore making the assumption that treating the
pedestal = 0.05 conditions as equivalent to the pedestal = 0 conditions
does not have an adverse effect on our conclusions concerning the
summation properties of RF patterns with two component frequencies.

3. Results

For each component and compound condition, thresholds were
measured as the minimum amplitude required for reliable detection (RF
vs circle) or discrimination (RF with pedestal amplitude vs RF with
pedestal + increment amplitude). As the main aim was to determine
how the weighting of each component influenced the thresholds for the
compounds, the results are shown as summation plots (Fig. 5). Within
each summation plot, the threshold amplitude (A) for compound de-
tection/discrimination is expressed by the respective amplitude of each
component at the point where the compound was at threshold. That is,
the x and y axes give Aw; and Aw,. This allows one to appreciate how
threshold amplitude of each component varied as a function of their
contributions (weight) to the compound. The ordinate in all plots shows
the higher RF and the abscissa the lower RF component. Each com-
pound condition was tested with five different component weights
(100%/0%, 75%/25%, 50%/50%, 25%/75% and 0%,/100%). The first
percentage corresponds to the lower RF, the second to the higher one.
The data point on the x-axis gives baseline thresholds for the lower RF
component presented on its own (weight 100%/0%); the data point on
the y-axis that for the higher RF (weight 0%,/100%).

The left column in Fig. 5 shows the data for detecting shapes against
a circle (reference shape with A = 0), whereas the right column shows
thresholds for discriminating two non-circular shapes (pedestal
A = 0.05). Different lines in each plot shows data for different phase
combinations of the RF components, indicated by different colors (in-
phase: red; out-of-phase: blue; intermediate: magenta).

Considering baseline sensitivities to the components first (data
points on axes), average thresholds for pure RF patterns are in the same
range as previously reported (Bell et al., 2009; Bell & Badcock, 2008;
Loffler et al., 2003; Schmidtmann et al., 2012; Schmidtmann &
Kingdom, 2017; Wilkinson et al., 1998): slightly lower sensitivities
(higher thresholds) for lower RFs than higher RFs (mean threshold
across subjects ( = SEM), RF3: 0.01086 (0.00135) and RF4: 0.00838
(0.00075) compared to RF5: 0.00467 (0.00043), RF7: 0.00474
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(0.00092) and RF8: 0.00336 (0.00028)).

Thresholds for discriminating non-circular shapes (right column)
are slightly higher (data further away from the origin) than thresholds
for detection against a circle (left column). Such an increase in
thresholds with increasing reference amplitude has been reported be-
fore and found to be small for the amplitudes used here (Bell et al.,
2009; Schmidtmann et al., 2012). Thresholds are similar for different
phase relationships with the intermediate-phase conditions typically
yielding slightly lower thresholds than the in-phase conditions.

Differences between conditions were analysed statistically with a
repeated measures ANOVA with phase relationship (in-phase and in-
termediate), modulation amplitude (A = 0; A = 0.05), RF combination
(RF5/RF3, RF8/RF3, RF7/RF4) and relative weight (0-100%) as fac-
tors. The analysis revealed no significant differences between the in-
phase and intermediate-phase conditions (F;.¢ = 11.74, p = .076),
between different reference amplitudes (F; ;6 = 3.687, p =.195) or
between different RF combinations (F» 6 = 6.381, p = .057). However,
a significant main effect was found for the different component weights
(F416 = 58.06, p < .001). Post-hoc Bonferroni-corrected tests showed
that thresholds for the higher frequency component (RF5, RF7, RF8)
were significantly lower than for the lower frequency component (RF3,
RF4; p < .05). Due to the additional out-of-phase condition for com-
binations between RF3 and RF5, a separate ANOVA was applied with
three phase arrangements, five weights and two reference amplitudes as
factors. Again, neither phase nor amplitude show significant differ-
ences, but weight did: phase (Fy;6 =1.161, p = .400); amplitude
(F1.16 = 8.031, p = .105); weight (F4 16 = 65.326, p < .001).

3.1. Model simulations

It is clear from the data in Fig. 5 that thresholds are better for the
compound conditions than for individual components alone. This rules
out a winner-take-all summation, so we are left with PS and AS. To
model the data under PS and AS, we used a modified version of the
Palamedes Toolbox multi-fit summation function PAL_SDT_Summ_-
MultiplePFML, _Fit (Prins & Kingdom, 2018). The modification enabled
us to set the number of monitored channels Q to be different for the
components (Q can be 1 or 2) and the compounds (Q equals 2).

The routine was used to simultaneously fit the four free parameters,
gain (ga, gg) and transducer (z,, 7) as per Egs. (2a) and (3b) to the five
relevant conditions: two components (e.g. RF5: 100%/0%, RF3: 0%/
100%) and 3 compounds (e.g. RF5/RF3 with 75%/25%, 50%/50%,
25%/75% weights). Parameters were derived separately for each ob-
server, each phase relationship and each model (PS and AS). Once the
parameters are set, percent correct responses for any stimulus level can
be simulated, psychometric functions (Logistic) modeled and predicted
thresholds extracted. Fitting all five conditions simultaneously provides
a better fit than the alternative of first fitting the component data, then
using these fits to test how well the AS and PS models fit the compound
conditions. The simultaneous fitting method uses all the data, both from
component and compound, to test and compare the AS and PS models
(Kingdom and Prins, 2016). Typically, the AS model predicts a more
linear dependency of thresholds on the amplitudes of the two compo-
nents when presented within summation plots, whereas the PS model
favours a convex curved relationship. As model fits were applied si-
multaneously to all five conditions in each graph, neither model would
be expected to perfectly match the component conditions. If the free
parameters (ga, g, 7a, 7g) were derived exclusively from the two
component conditions, predictions from both models would be an-
chored at the component data points, but the overall fit to all conditions
would be poorer. All model fits can be found here: http://www.gunnar-
schmidtmann.com/stimuli-software/#CompoundRF.

Both models, AS and PS, generally provide a good approximation to
the data. The PS and AS model fits were compared by calculating the
difference in the Akaike Information Criterion (AIC) between the
models (Akaike, 1974; Kingdom and Prins, 2016), such that negative
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Fig. 5. Summation plots showing the
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values favor AS and positive values favor PS. The complete model
comparisons for each observer and all conditions, including the esti-
mated gains g, gg and transducer exponents 74, 7 for each model, AIC
and AAIC are summarized in tables provided in the Supplementary
material. The conditions where PS showed a better model fit are in-
dicated by positive AAIC values, whereas the conditions where AS is the
preferred model are indicated by negative AAIC values. The average
transducer exponents for the AS model are: Fixed Attention Window
74 =1.17 ( = SD = 0.25) and 73 = 1.04 ( = SD = 0.27); Matched At-
tention Window: 7, =1.00 (*SD=0.26) and «z=1.01
( £+ SD = 0.28). The average transducer exponents for the PS model
are: Fixed Attention Window 7, = 1.01 ( = SD = 0.26) and 7z = 0.91
( = SD = 0.23); Matched Attention Window: 74 = 1.03 ( = SD = 0.29)
and 7z = 0.95 ( = SD = 0.25). This indicates an approximately linear
transducer and explains the approximately straight lines in summation
plots. The average transducer exponent for the Single Channel AS
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model is 7 = 0.89 ( = SD = 0.12). . Comparing the AS and PS sum-
mation models, AS provides better model fits in 33 out of 42 conditions
(78%) for the Fixed Attention Window scenario and in 32 out of 42
conditions (76%) for the Matched Attention Window scenario. Com-
paring the two Attention scenarios, we found that the Fixed Attention
Window scenario gave better overall fits (smaller AIC values) than the
Matched Attention Window scenario in 88% of the cases for PS and
83% for AS. This suggests that observers were monitoring more than
one channel in the component conditions and, by extension, some ir-
relevant channels, which contribute noise but no signal to the decision.

However, the differences in AIC values between the PS and AS
models are relatively small. According to Burnham and Anderson
(2004), the preferred model can be determined by calculating the dif-
ference between the AIC scores of the i-th model (AIC;) and the model
with the lowest AIC score (AIC,;,) obtained from the set of models
examined, so that
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Fig. 6. The figure shows the model results across observers. A; (see Model Simulations section) was calculated for each condition for PS FAW (blue), PS MAW (red),
AS MAW (green) and the Single Channel AS model (pink). A; for the models with the fixed transducer exponents (t4 = t5) are shown in the right plot. Each graph also
contains a marginal histogram of A; with the color corresponding to the model. Models with A; > 7 can be rejected (Burnham & Anderson, 2004). This threshold is
indicated by the dashed black line in each graph. According to this criterion, 14% of the PS FAW fits, 57% of the PS MAW fits, 43% of the AS MAW fits and 74% of the
Single Channel fits can be rejected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A; = AIC; — AICy,;, 5)

The model with the smallest AIC values is the additive summation
fixed-attention window model (AS FAW).

Fig. 6 (left) shows the results for this analysis across observers and
shows A; calculated for each condition for PS FAW (blue), PS MAW
(red), AS MAW (green) and the Single Channel AS model (pink). A; for
the models with the fixed transducer exponents are shown in the right
plot. The graph also contains a marginal histogram of A; with the cor-
responding colors. Models with A; > 7 can be rejected (Burnham &
Anderson, 2004). This threshold is indicated by the dashed black line in
each graph. According to this criterion, 14% of the PS FAW fits, 57% of
the PS MAW fits, 43% of the AS MAW fits and 74% of the Single
Channel AS models can be rejected.

In the above analysis, we allowed the transducer exponents for the
two components 7,4, 75, to be different. However, one could argue that
they should be constrained to be equal. To evaluate the effect of such a
constraint, we also modeled the data with fixed transducer exponents
for both, the Fixed and Matched Attention Window Scenario for all
subjects. The results are shown on the right hand side in Fig. 6 (z4 = 73)
and the model parameters are summarized in Table A2-C2. As before,
the Fixed Attention Window scenario gives better overall fits (smaller
AIC values) than the Matched Attention Window scenario. Note, that
for one condition (GS: RF3-8, in phase, A = 0) the model simulations
did not converge.

Assuming equal transducers, AS provides a better prediction than PS
in 30 out of 41 (73%) conditions for the Fixed Attention Window and
38 out of 41 (93%) for the Matched Attention Window scenario. The
average transducer exponents for the AS model are: Fixed Attention
Window 7=1.05 (*SD =0.15) (z4 =17g); Matched Attention
Window: 7z = 0.98 ( = SD = 0.15). The average transducer exponents
for the PS model are: Fixed Attention Window r = 0.91 ( = SD = 0.13)
(za = B); Matched Attention Window: 7 = 0.94 ( = SD = 0.15). This
also indicates an approximately linear transducer in all conditions. The
comparison of the two Attention scenarios revealed that, assuming
equal transducers, the Fixed Attention Window scenario gave better
overall fits (smaller AIC values) than the Matched Attention Window
scenario in 90% of the cases for PS and 73% for AS. The comparison
between the AIC values of the preferred model (model with the smallest
AIC values is the additive summation fixed-attention window model)
for the fixed transducer condition (z4 = 73) is presented in Fig. 6 (right).
Results show that 12% of the PS Fixed Attention Window models, 45%
of the PS Matched Attention Window models and 29% of the AS Mat-
ched Attention Window models can be rejected.

Fig. 7 shows A; values for the PS FAW, PS MAW, AS MAW and the
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corresponding models for the fixed transducer exponents (74 = 7g)
condition for each observer (left). A normal distribution was fit to the
data (for each observer, averaged across conditions) which is presented
in the marginal histogram (right). This analysis illustrates that the
model predictions were similar for each observer, despite differences in
absolute thresholds (Fig. 5).

In summary, the model simulations favour additive summation of
information in excess of the predictions by PS, with observers adopting
a strategy of always monitoring the channels of both RF components
even if this is strategy is suboptimal as in the case of components
presented alone.

4. Discussion

The aim of this study was to investigate how the signals from two RF
components are combined when observers are asked to discriminate
between compound shapes made up of two components with various
relative weights.

All in all, we tested nine possible summation scenarios: winner-take-
all, PS and AS (Fig. 2) Matched and Fixed Attention Window scenarios
with and without fixed transducer exponents and a Single Channel
model. The data clearly rejected the winner-take-all scenario. Given
that the vast majority of fits (74%) with the Single Channel model were
rejected, we conclude that this model does not provide a reasonable
account of the data. Although both, PS and AS provide a satisfactory fit
to the data, goodness-of-fit comparisons of the two models showed that
AS gave the better fit in the large majority of conditions (see Fig. 6). The
superiority of AS over PS was found irrespective of whether one as-
sumed that the observer always monitored both RF component-sensi-
tive channels (Fixed Attention Window), or only those channels for
which an RF component was present (Matched Attention Window).
These results support the idea that compound RF detection is mediated
by putative separate channels whose information is subsequently
combined into a single channel before a decision rule is applied, as
illustrated in Fig. 2C. This combination could be local, i.e. within spa-
tially limited parts of the shape, or global. This conclusion is in line
with previous investigations (Dickinson et al., 2013, 2018).

With regards to observer ability to attend to one, or both of the two
putative component (RF) channels, our results favour the latter, Fixed
Attention Window scenario, which fitted the data better than the
Matched Attention Window scenario. This suggests that observers al-
ways monitored both channels, irrespective of whether the stimulus
was a component or compound. Remember that sensitivity to the
components alone would be predicted to be better than we observed if
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Fig. 7. The graph shows A; values for the PS FAW, PS MAW, AS MAW and the corresponding models for the fixed transducer exponents (z4 = 75) condition for each
observer (left). Normal distributions were fit to the data and are presented in the marginal histogram (right).

observers ignored the channel not containing a signal. The obligatory
additive summation of task-irrelevant information with AS under the
Fixed Attention Window scenario means that performance is limited by
the noise summed from two channels into one mechanism, as indicated
in Fig. 2C. Note that our results do not provide evidence that observers
have access to the outputs from individual RF/component channels.
This may have been a consequence of the particular experimental set-
up. It would be a matter for future research to determine if obligatory
pooling of information from multiple channels into one mechanism is
the general rule with compound RF detection or if observers can select
other strategies under other conditions.

4.1. Relation to models of RF detection

How do our results bear upon existing ideas about how RF patterns
are detected? When quantifying the sensitivity for single RF compo-
nents, various previous studies have suggested a highly efficient signal
integration across the circumference of the contour shape (global pro-
cessing) (e.g. Bell & Badcock, 2008; Bell, Badcock, Wilson, & Wilkinson,
2007; Bell, Wilkinson, Wilson, Loffler, & Badcock, 2009; Dickinson,
McGinty, Webster, & Badcock, 2012; Dickinson et al., 2013; Hess,
Achtman, & Wang, 2001; Hess, Wang, & Dakin, 1999; Jeffrey, Wang, &
Birch, 2002; Loffler, Wilson, & Wilkinson, 2003; Tan, Dickinson, &
Badcock, 2013). Thresholds for discriminating circles from RF compo-
nent shapes are in the hyperacuity range, which has been linked to
efficient, non-linear, global pooling of contour information (Hess et al.,
1999; Jeffrey et al., 2002, Loffler et al., 2003; Schmidtmann et al.,
2012; Schmidtmann, Gordon, Bennett, & Loffler, 2013). More recent
psychophysical evidence and modelling suggests that such global
pooling might not be necessary and that models based on the detection
of local curvature might be sufficient (Mullen et al., 2011; Baldwin,
Schmidtmann, Kingdom & Hess, 2016; Schmidtmann & Kingdom,
2017). It is important to bear in mind that our evidence for AS between
RF components is not synonymous with global summation, where the
information from all parts of the RF pattern are summed within a single
mechanism at detection threshold. Our study does not address the issue
of whether RF patterns are detected locally or globally, although our
results do say something about the issue. AS between the components of
a compound RF stimulus within a local region of the stimulus is com-
patible with both PS and AS of local RF regions across the whole sti-
mulus (Baldwin et al., 2016, but see Green, Dickinson, & Badcock,
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2017, 2018a, 2018b).

4.2. Curvature

Schmidtmann and Kingdom (2017) demonstrated that a model
based on curvature maxima and minima can account for RF and non-RF
pattern detection. Fig. 8 shows the dependence of curvature (calculated
according to method described in Schmidtmann & Kingdom, 2017) on
the phase relationship of a compound consisting of a weighted combi-
nation of an RF3 and an RF5 pattern (for a reference of A = 0.05) in an
out-of-phase (Fig. 8A) and intermediate phase arrangement (Fig. 8B).

The formal definition of curvature is the rate of change of tangent
orientation and was calculated according to a method also employed in
previous studies (e.g. Schmidtmann & Kingdom, 2017). For a polar
function r(8), the local curvature xgr (6) is defined as

r(6)* + 2r' ()2 — r(®)r'(6)
r@F +r©>"

Krr (6) o
where r(0) and r’(0) refer to the first and second derivative of Eq. (1).

As can be seen, the positions of local curvature values, including
maxima and minima, depend on relative phase. However, the values of
the maximum (Max) and minimum (Min) curvatures across the entire
circumference (shown by the red and green markers) and hence also
Max-Min curvatures, vary rather little across relative phase. Given that
the data show little or no variation in thresholds across relative phase,
we cannot rule out the possibility that one or other of Max, Min or Max-
Min curvature mediates thresholds in compound RF patterns as sug-
gested by Schmidtmann & Kingdom (2017). Indeed, our finding that AS
rather than PS between the two RF components is the better model of
compound detection does not necessarily imply an initial stage in which
the RF components are separately encoded prior to their combination,
even though that is how the AS model is framed. The AS model may be
the computational equivalent of a low-level feature model of RF de-
tection and discrimination, such as one based on points of Max or Max-
Min curvature. Future data and modeling is required to determine
whether the results of this study can also be explained by channels
sensitive to these curvature dimensions.

4.3. Symmetry

Finally, our results have implications for the role of symmetry in
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Fig. 8. Dependence of curvature on the phase relationship between the two RF components that make up the shape compound. The figure shows compound shapes
created by weighted combinations of an RF3 and an RF5 pattern (A = 0.05) with different phase arrangements; (A) out-of-phase and (B) intermediate phase. The
polar graphs illustrate the shape of the resulting pattern and the adjacent graphs the corresponding curvature profile. Max refers to the maximum and Min to the
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shape discrimination. Pure RF components, and compound RFs with in-
phase and out-of-phase relationships, are bilateral, mirror-symmetrical
shapes. For instance, a pure RF3 has three, and a pure RF5 five axes of
symmetry. Compound RF shapes that are either in-phase or out-of-
phase have only one axis of symmetry. In contrast, compound RF shapes
at intermediate phase arrangements are asymmetric as can be seen in
Fig. 8B. Symmetry in general, and bilateral symmetry in particular,
have been shown to play a special role in human perception and have
been the subject of a vast number of investigations (see Treder, 2010 for
review). If humans are especially sensitive to symmetry, then one might
expect lower discrimination thresholds for symmetric compound pat-
terns compared to those that lack symmetry. This was not what we
found. One possible explanation is that the orientation of the RF pat-
terns was randomly varied between trials. This was used in order to
avoid subjects from predicting the exact position of specific parts of the
contour (e.g. curvature maximum) or to focus on a particular part
(cycle) of the shape. Previous studies on symmetry processing have
shown that performance is best for vertical axes of symmetry, followed
by horizontal and oblique ones (Barlow & Reeves, 1979; Wenderoth,
1994). The change in orientation of the symmetry axes in our experi-
ments might have, to some extent, counterbalanced the contribution of
a symmetry effect. In any case, we did not find any evidence in favour
of symmetry being a beneficial feature in these experiments of shape
discrimination.
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