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Abstract 9 

Noise is a form of human induced rapid environmental change, and mounting evidence suggests that 10 

it can affect the sensory environment and consequently the decision-making ability of animals. 11 

However, while the effects of anthropogenic noise on individual organisms in the context of 12 

movement patterns, foraging and predator risk have been reported, relatively little is known about 13 

how noise impacts groups and intraspecific interactions. Here we investigated the effects of 14 

anthropogenic noise on grouping preference (i.e. being with conspecifics or alone) in the European 15 

hermit crab, Pagurus bernhardus. Hermit crabs live in empty gastropod shells and frequently fight 16 

with each other in order to gain an optimal-fitting shell. Thus crab grouping preference may depend 17 

on the optimality of their own shell and thus on their motivation to gain another. In order to test the 18 

effect of shell size and its interaction with noise exposure on grouping preferences, crabs were 19 

housed in either suboptimal or optimal shells before being exposed to playbacks of either ship noise 20 

or an ambient sound (control) and given the choice to group with either five crabs, one conspecific 21 

or to remain alone in a neutral zone. Crabs occupying suboptimal shells displayed a longer latency to 22 

https://doi.org/10.1016/j.anbehav.2019.03.010
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enter the zone with a single crab than crabs in optimal shells. This difference was only seen in the 23 

ambient sound treatment, disappearing completely under ship noise. Under ambient sound, crabs in 24 

optimal shells spent most of their time close to a single crab, while crabs in suboptimal shells 25 

showed no clear preference. However, exposure to ship noise reversed the effect of shell quality on 26 

grouping preference. Our results demonstrate that exposure to anthropogenic noise can not only 27 

alter individual behaviour but also social behaviour. 28 

 29 

Keywords: anthropogenic noise, environmental change, grouping preference, hermit crabs, 30 

intraspecific interaction, sensory environment  31 

 32 

 33 

Introduction  34 

Assessing diverse cues from the environment is an essential component of animals’ decision-making. 35 

However, human induced rapid environmental change (HIREC) (sensu Sih, Ferrari & Harris, 2011), 36 

caused by noise, chemicals or light, can disrupt information gathering, processing and assessment in 37 

animals both by inducing physiological stress (for review see Kight & Swaddle, 2011) and by changing 38 

animals’ sensory environment (for review see Halfwerk & Slabbekoorn, 2015; Tuomainen & 39 

Candolin, 2011). An example of unimodal interference by noise is the masking of acoustic cues and 40 

signals documented in terrestrial and aquatic taxa (Brumm, 2004; Clark et al., 2009; Luo, Siemers & 41 

Koselj, 2015; Simpson et al., 2016a; Sun & Narins, 2005;). This has been demonstrated across 42 

behavioural contexts such as territory defence (Brumm, 2004), mating (Sun & Narins, 2005) and the 43 

detection of habitats (Pine, Jeffs & Radford, 2012), conspecifics (Codarin, Wysocki, Ladich & Picciulin, 44 

2009) and predators (Curé et al., 2013). In addition to these unimodal effects, noise can also have 45 

cross-modal effects where this pollutant disrupts information processing and assessment of non-46 

acoustic cues (Halfwerk & Slabbekoorn, 2015). For instance, underwater noise has been shown to 47 
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alter behaviours related to visual and chemical cues used in predator avoidance and detection 48 

(Hasan, Crane, Ferrari & Chivers, 2018; Kunc, Lyons, Sigwart, McLaughlin & Houghton, 2014; 49 

McCormick, Allan, Harding & Simpson, 2018). Such effects have been explained by distraction (Chan, 50 

Giraldo-Perez, Smith & Blumstein, 2010) due to limited attention in animals (Dukas, 2004), which 51 

modulates the multisensory integration (Talsma, Senkowski, Soto-Faraco & Woldorff, 2010). This 52 

effect has also been termed ‘info-disruption’ (Lürling & Scheffer, 2007) and ‘sensory pollution’ 53 

(Halfwerk & Slabbekoorn, 2015). In addition to these sensory effects noise has been shown to cause 54 

physiological stress (for review see Kight & Swaddle, 2011), which could also alter animal behaviour. 55 

Cross-modal noise pollution might therefore adversely affect animals even though they do not use 56 

acoustic communication.  57 

The behavioural effects of anthropogenic noise have frequently been studied in two 58 

contexts. First, many studies have focussed on individual behaviour, including impacts on 59 

movement, foraging and responses to predators (Chan et al., 2010; Luo et al., 2015; Shafiei Sabet, 60 

Neo & Slabbekoorn, 2015; Shafiei Sabet, Dooren & Slabbekoorn, 2016; Shannon et al., 2016; Siemers 61 

& Schaub, 2011; Simpson, Purser & Radford, 2015; Simpson et al., 2016b; Wale, Simpson & Radford, 62 

2013; Wisniewska et al., 2018).  Second, studies on social behaviour have focussed on the potential 63 

masking of acoustic communication in insects, anurans, birds, and mammals (reviewed in Brumm & 64 

Slabbekoorn, 2005; Erbe, Reichmuth, Cunningham, Lucke & Dooling, 2016). In contrast, the effect of 65 

noise on non-vocal social behaviour, such as shoaling, has received relatively little attention. Those 66 

noise exposure experiments which studied intraspecific interactions found altered parental care 67 

(Maxwell et al., 2018; Nedelec et al., 2017) and social interactions (Bas et al., 2017). A basic aspect of 68 

social behaviour is that individuals choose to join groups such as flocks or shoals, which requires 69 

animals to assess cues from their environment. Groups are associated with a range of benefits 70 

(reviewed in Krause & Ruxton, 2002) such as decreased vigilance (Powell, 1974; Ward, Herbert-Read, 71 

Sumpter & Krause, 2011), finding and exploiting resources (Bazazi, Pfennig, Handegard & Couzin, 72 

2012; Childress & Herrnkind, 2001) and conservation of heat (Wilson, 2009). On the other hand, 73 
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there are also costs associated with group membership such as increased attack rates (for large 74 

groups) (Mooring, Fitzpatrick, Nishihira, Reisig & Hall, 2004), elevated parasite burden (Côté & 75 

Poulinb, 1995; Daviews, Ayres, Dye & Deane, 1991) and foraging competition (Rieucau & Giraldeau, 76 

2009). Noise has been shown to alter grouping (Fewtrell & McCauley, 2012; Herbert-Read, Kremer, 77 

Bruintjes, Radford & Ioannou, 2017) and appears to be highly variable across study systems and 78 

noise regime. Mediterranean spiny lobster, Palinurus elepha, (Filiciotto et al., 2014) and bottlenose 79 

dolphin, Tursiops truncatus, (Bas et al., 2017) exhibited reduced grouping behaviour when exposed 80 

to boat noise. In contrast noise led to increased grouping in the trevally, Pseudocaranx dentex, 81 

(Fewtrell & McCauley, 2012). Divergent social responses to noise can even be seen within the same 82 

species. In the European sea bass, Dicentrarchus labrax, the social behaviour differed with the noise 83 

source and regime where fish shoals were less coordinated (cohesion, direction, speed and 84 

directional changes) when exposed to pile-driving (Herbert-Read et al., 2017) but they increased 85 

grouping activities under ship noise (Neo, Hubert, Bolle, Winter & Slabbekoorn, 2018). In the Atlantic 86 

bluefin tuna, Thunnus thynnus, noise led to less concentrated and coordinated shoals but individuals 87 

increasingly swam towards one and another and seemed more likely to join a group (Sara et al., 88 

2007). Although less intensively studied (compared to aquatic examples) anthropogenic noise can 89 

also affect non-vocal social behaviour in terrestrial species. In Carolina chickadees, Poecilie 90 

carolinensis, and tufted titmice, Baeolophus bicolor, flocking density was enhanced in the presence 91 

of traffic noise (Owens, Stec & O’Hatnick, 2012). Thus, as well as changing the propensity to join 92 

groups, noise can influence interactions within groups.  93 

In marine environments, grouping is very common among cetaceans and fish (i.e. shoaling) 94 

but has also been demonstrated in crustaceans as a response to predation risk (Evans, Finnie & 95 

Manica, 2007; Ratchford & Eggleston, 1998). Due to their association with gastropod shells hermit 96 

crabs represent an ideal model organism for studying the effects of underwater noise on the drivers 97 

of grouping behaviour. They are globally distributed crustaceans characterised by a weakly calcified 98 

abdomen which they protect from predators (Vance, 1972) and environmental extremes (Taylor, 99 
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1981; Young, 1978) through occupying empty gastropod shells. They usually obtain these either 100 

when discarded by others or through shell fights with other crabs (snail predation is rare) (Elwood & 101 

Neil, 1992). Hermit crabs need to search for empty shells of increasing size to allow for growth or, in 102 

the case of females, during the reproductive season to accommodate their eggs (Angel, 2000; 103 

Bertness, 1981a). The extent of grouping in hermit crabs differs between species, from those which 104 

are solitary (Hazlett, 1979) to those which form aggregations of hundreds or even thousands of 105 

individuals as in Clibananus erythropus (Gherardi, 1991). The drivers for grouping can differ widely 106 

between species. These include attraction to foraging sites (Hazlett, 1979; Hazlett, 2015), shell 107 

exchange (Gherardi & Vannini, 1993; Hazlett, 1978; Hazlett & Herrnkind, 1980) and predator 108 

defence (Bertness, 1981b). The need to obtain new shells could also influence grouping. Shell 109 

exchange markets as observed in the mangal-dwelling hermit, Clibanarius laevimanus, and the thin 110 

stripe hermit crab, Clibanarius vittatus, (Gherardi & Vannini, 1993; Hazlett & Herrnkind, 1980), and 111 

vacancy chain processes in the European hermit crab, Pagurus bernhardus, (Briffa, 2013), predict 112 

that associating with other crabs may increase the chances of finding an optimal shell (Gherardi & 113 

Vannini, 1993). In addition, the larger the group the lower the likelihood at the individual–level of 114 

being preyed upon, an effect known as the dilution effect (Foster & Treherne, 1981; Gherardi & 115 

Benvenuto, 2001). On the other hand, larger groups can be more detectable (Krause & Ruxton, 116 

2002) and for hermit crabs their individual defence mechanisms, primarily withdrawing into their 117 

gastropod shell (Gherardi & Benvenuto, 2001) or fleeing (Mima, Wada & Goshima, 2003; Rosen, 118 

Schwarz & Palmer, 2009; Scarratt & Godin, 1992), might be a better responses to a predator attack 119 

compared with joining a group. Given this array of the potential costs and benefits of grouping, to 120 

make decisions on whether to join a group hermit crabs need to assess information from their 121 

environment across different sensory modalities, including tactile information on the size of the shell 122 

relative to their own size (smaller shells offer less protection).  123 

As in other hermit crabs P. bernhardus are frequently found in aggregations, and the factors 124 

described above are all likely to contribute to this (Elwood & Neil, 1992). Here we aim to determine 125 
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whether the decision to join a group in the European hermit crab P. bernhardus is influenced by 126 

information on risk level (i.e. shell fit) and information on the number of conspecifics in a group. We 127 

then ask whether the grouping patterns are altered in the presence of anthropogenic noise using 128 

ship noise playbacks and ambient controls. We predict that, due to a combination of shell exchange 129 

markets and the dilution effect, crabs in suboptimal shells are more likely to join a group compared 130 

to crabs in optimal sized shells. Furthermore, if noise distracts hermit crabs and reduces their ability 131 

to use information on shell and group size, we expect these different grouping preferences of crabs 132 

in suboptimal and optimal shells (described above) to be altered by noise.  133 

Methods 134 

Collection and husbandry of hermit crabs 135 

We collected P. bernhardus from the rocky intertidal of Hannafore Point, Cornwall, UK 136 

(50°20N, 4°27W) in May and July 2017 and transported them directly to the laboratory at the 137 

University of Plymouth, UK. We kept the crabs in a temperature controlled room at 15 °C with a 138 

12:12 hour light:dark cycle in a single holding tank containing 125 l continuously filtered and aerated 139 

seawater (Briffa, Rundle & Fryer, 2008). The laboratory seawater was obtained from the seaward 140 

side of Mount Batten pier (50°36N, 4°13W) in Plymouth Sound, UK, at spring tides. We fed crabs ad 141 

libitum with white fish. To remove focal crabs from their original gastropod shells (at least 22 hours 142 

prior to observations) we carefully cracked the shell with a bench vice, which allows the crab to be 143 

removed from its shell without injuring the crab. Afterwards the crabs were sexed and weighed 144 

them. The crab mass ranged from 0.36 g to 1.61 g (mean mass ± SE = 0.84g ± 0.045 g, N = 45). Based 145 

on a regression line relating preferred shell mass to body mass obtained from a previous shell 146 

selection experiment, where crabs across a range of sizes were provided with free access to a range 147 

of different sized shells (Briffa & Elwood, 2007), we assigned a Littorina littorea shell of either 75% or 148 

100% of its preferred shell mass to each crab. Although a range of other shell features might also 149 

influence preferences, the relation between crab mass and shell mass is the primary predictor of 150 

shell preference. To optimise the reliability, the shell selection experiment (Briffa & Elwood, 2007) 151 
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was conducted using shells collected from the same location as the hermit crabs used in this study to 152 

minimise the effect of factors such as shell internal volume to weight ratio, which can differ between 153 

study sites. Furthermore, following a standard approach, only clean and intact shells, without 154 

encrusting organisms, holes or damage to the aperture were used. Afterwards we housed crabs 155 

individually in a white plastic dish of 15 cm diameter containing continuously aerated seawater to a 156 

depth of 5 cm. Since the breeding season is likely to affect the behaviour of egg-carrying females, we 157 

used only male crabs without obviously damaged appendages, visible parasites or recent moult 158 

(Briffa & Elwood, 2007). After the observations we returned the animals to the sea at the collection 159 

point.  160 

Tank set-up and sound analysis  161 

We carried out the observations in a 80 x 50 x 50 cm sized glass tank (with 1 cm thick 162 

aquarium glass) filled to a depth of 40 cm with seawater from the laboratory supply (~ 160 l). We 163 

placed the tank on a free-standing trolley and cushioned the set-up with 1 cm Styrofoam plates 164 

between tank and trolley as well as between the trolley and floor. We suspended an underwater 165 

speaker from a cushioned bamboo stick at 20 cm distance to one end of the tank, facing towards an 166 

observation arena (Fig. 1). At 10 cm distance to the speaker we divided the observation arena (50 cm 167 

width x 40 cm length) from the rest of the tank with 1x1 cm mesh. Along either side of the glass 168 

walls we separated two ‘stimulus chambers (6 cm width) for the two groups of stimulus crabs (see 169 

details below). The chambers were custom-made of 3 mm transparent acrylic sheets. Adjacent to 170 

each of these stimulus chambers, we defined ‘decision zones’ (9 cm in width) marked by a line on 171 

the base of the arena so that the focal crab could enter freely into either decision zone. We 172 

designated a ‘neutral zone’ (18 cm width) at the centre of the tank. At the beginning of each 173 

observation, we placed the focal crabs in the centre of the neutral zone at 30 cm distance from the 174 

speaker and equal distance to the walls of the stimulus chambers. At this location (point in Fig. 1) we 175 

analysed the sound pressure levels of the two sound treatments (ship noise and ambient control).  176 
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While hearing in a narrow definition seems to be absent in nearly all aquatic crustaceans, 177 

sound detection has been widely demonstrated in Decapoda (Budelmann, 1992). Only very few 178 

auditory thresholds have been established for invertebrates but an experiment the common prawn, 179 

Palaemon serratus, showed an auditory brain response to acoustics stimuli at a frequency range of 180 

100-3000 Hz with amplitudes varying between 105 and 130 dB RMS re 1 µ Pa at 1 m (Lovell, Findlay, 181 

Moate & Yan, 2005). There has been no similar study conducted for P. bernhardus but behavioural 182 

sensitivity (antennae flicks) to substrate borne vibration in this species has been demonstrated for 183 

frequencies between 5-410 Hz at a particle acceleration of 0.02-0.44 ms-2 RMS (Roberts, Cheesman, 184 

Elliott, & Breithaupt, 2016). 185 

For the sound playbacks we used an underwater speaker (DNH Aqua-30 underwater 186 

speaker, effective frequency range 80-20 000 Hz, DNH A/S, Kragerø, Norway) connected to a Lvpin 187 

LP-200 amplifier (Lvpin Technology Suzhou Co., Taiping Town, China). We played back the sound 188 

tracks from a Toshiba Portégé R830-13C laptop (Tokyo, Japan). For the sound treatment we used 189 

three ship noise playbacks and three corresponding ambient control sounds from the same sites 190 

recorded at three major UK harbours (for details on recordings such as ship size and speed see 191 

Simpson et al., 2015; Wale et al., 2013). We used Audacity 2.1.2 (Audacity Team, 2017) to create a 192 

total of six audio tracks. In the case of ship noise tracks we alternated two min of ship noise with two 193 

min of ambient control sound including 15 sec fading in and out to simulate noise of passing by 194 

ships. We assigned the crabs randomly to one of the two sound treatments (ambient, ship) and to 195 

one of the alternative three audio tracks within these sound treatments (ambient A, B, C; ship A, B, 196 

C) and alternated the sound treatment between subsequent observations.  197 

To make sure crabs were exposed to two distinct sound treatments we analysed the power 198 

spectrum as a proxy similar as in previous studies on crustaceans (for instance Wale, Simpson & 199 

Radford, 2013). We are aware of the challenges of measuring noise in small tanks (Rogers, Hawkins, 200 

Popper, Fay & Gray, 2016; Simpson et al., 2015) and that hermit crabs are likely to perceive the 201 

particle motion component of sound rather than the measured sound pressure levels (Breithaupt, 202 
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2002; Popper, Salmon & Horch, 2001). However, as pointed out in previous studies (see for instance 203 

Herbert-Read et al., 2017; Simpson et al., 2015; Wale et al., 2013), we do not aim to establish 204 

absolute noise sensitivity levels for hermit crabs but analysed the power spectrum to confirm that 205 

we exposed crabs to two different sound treatments, namely ship noise and ambient control. To do 206 

that, we re-recorded the six audio tracks at the centre of the arena at 30 cm distance to the speaker 207 

and 25 cm to the glass walls (were the crabs were be placed at the beginning of the experiment) at 208 

1-2 cm distance to the bottom of the tank with an omnidirectional hydrophone HTI-96-MIN (with 209 

inbuilt preamplifier, manufacturer-calibrated sensitivity -165 dB re 1 V µPa-1; frequency range 210 

0.002-30 kHz, High Tech Inc., Gulfport, MS, USA) and Linear Sony PCM-M10 recorder (48 kHz 211 

sampling rate, Sony Corporation, Tokyo, Japan; recording level calibrated using pure sine wave 212 

signals from a function generator with a measured voltage recorded in line on an oscilloscope). At 213 

this position, the three ambient control sounds had an average maximum sound pressure level of 214 

74.5 dB RMS re 1 µ Pa (ambient A: 70.8, ambient B: 76.2, ambient C: 76.6) and the ship noise an 215 

average maximum of 119.4 dB RMS re 1 µ Pa (ship A: 124.4, ship B: 118.7, ship C: 115.2) at 1000Hz. 216 

We used PAMGuide (Merchant et al., 2015) for MATLAB R2015b (MathWorks Inc., 2015) to perform 217 

a power spectrum analysis of 60 sec recording with Hann evaluation window, overlap 50%, 0.25 sec 218 

window length, 1 - 48 000 Hz bandwidth normalised to 1 Hz (Fig. 2). 219 

Experimental design and behavioural analysis  220 

We designed a classical choice experiment with three zones (Krause & Ruxton, 2002) (see 221 

Fig. 1), which has previously been applied on shoaling in crustaceans (Evans, Finnie & Manica, 2007). 222 

Consequently, the observation arena had a neutral zone in the centre (1/2 of the arena) and two 223 

decision zones (each 1/4 of the arena) between the neutral zone and two stimuli chambers for the 224 

stimuli crabs. One chamber was the single crab stimulus chamber (SSC) containing one crab and the 225 

second chamber was the group stimulus chamber (GSC) containing five stimuli crabs as in a previous 226 

study (Evans, Finnie & Manica, 2007). That led to a neutral zone of 18 cm width in the centre, 227 

surrounded by two decision zones each of 9 cm width and two stimulus chambers of 6 cm width 228 
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(plus 1 cm thick glass tank on either side). In order to remove the possibility of directional bias we 229 

alternated the sides of the SSC and GSC between each day of observations. After being placed in a 230 

stimulus chambers, we gave the stimulus crabs 20 min to acclimatise to the tank before any of the 231 

six sound tracks was played. We ran the experiment in blocks of observations where the same 232 

stimuli crabs (one and five individuals in each observation) were used repeatedly for eight 233 

observations of focal individuals (thus an experimental block = eight observations of unique focal 234 

crabs per day, reusing the same stimuli crabs across these eight observations). Furthermore, 235 

observations within each block consisted of four observations in the presence of ship noise and four 236 

observations under ambient control conditions). We matched focal and stimulus crabs for size based 237 

on sight as closely as possible. After observations were completed, we removed the stimulus crabs 238 

from their shells, sexed and weighed each crab to test the effectiveness of matching focal and 239 

stimulus crabs by calculating the relative weight differences between focal and stimulus crabs. The 240 

weight of the focal crabs was positively correlated with the weight of SSC crabs (Spearman’s rank 241 

correlation: rs = 0.67, N = 45, P < 0.0001) and the average weight of crabs in the GSC group weight (rs 242 

= 0.63, N = 45, P < 0.0001). Immediately following the start of the playback, of either ship noise or 243 

ambient control, we placed the focal crab in the centre of the neutral zone (equidistant from the 244 

boundary of each association zone) and in an inverted position with the aperture of the shell facing 245 

upwards. Once the focal crab recovered from the startle response (it emerged from its shell and 246 

contacted the bottom of the tank with a walking leg), we recorded its behaviour for 20 min (Canon 247 

Legria HF R47 digital video camera; Tokyo, Japan). We assigned focal crabs to be in association with 248 

either the single conspecific or the group of five conspecifics when the whole of their occupied shell 249 

had crossed the outer boundary of the appropriate decision zone. We excluded crabs that climbed 250 

up the mesh and escaped the arena or did not emerge from their shell after five min from the 251 

analysis. We coded the behaviour with The Observer version 12 (Noldus IT, Wageningen, the 252 

Netherlands) event logger software blind to the sound treatment and the occupied shell size. We 253 

recorded whether each decision zone was entered, the latency to enter each decision zone and the 254 
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average proportion of the total observation time spent in each of the three zones. Thus, the 255 

experiment contained two factors, sound treatment and shell size, and four treatment combinations 256 

(Table 1). 257 

Statistical analysis 258 

In order to determine whether ship noise and shell size influenced the chance of crabs 259 

entering the single and group stimulus zone we used Generalised Linear Mixed Effect Models 260 

implemented in the R-package lme4 (Bates, Mächler, Bolker & Walker, 2015) in R version 3.3.2 (R 261 

Core Team, 2017) with a binary response variable. For the response variable of whether or not crabs 262 

entered a zone (yes or no), sound (ambient and noise) and occupied shell (suboptimal = 75% and 263 

optimal = 100%) were the fixed factors and body mass was also included as a covariate. In order to 264 

account for the repeated use of three different sound playbacks for both sound treatments (noise 265 

and ambient) we included playback as a random factor. To account for the fact that each set of 266 

stimuli crabs was used for eight observations of focal crabs per day, block was also treated as a 267 

random factor. In order to determine the effects of sound treatment and shell size on the latency 268 

and average proportion of time spent in each zone, we used linear mixed effect models, again 269 

implemented using the lme4 package. As above, we included playback ID and block of the 270 

experiment as random factors. Finally, to determine whether shell size and noise treatment 271 

influenced the average proportion of time spent in all three zones, we used a single linear mixed 272 

effects model and to account for the fact that we took three measurements from each focal crabs to 273 

analyse the average proportion of time spent in each zone (single/neutral/group), we added zone as 274 

a fixed factor and the focal crab ID as a third random factor. We used post-hoc residual plots to 275 

assess the fit of each model. Where necessary we natural log transformed the data to improve 276 

normality, such that the assumption of the linear models would be met.  277 

 278 



12 
 

Ethical note: No animals were harmed during the experiment. After the experiment each crab was 279 

supplied with an optimal shell, fed and returned to the sea at the location of collection. No licences 280 

or permits were required for this study. 281 

 282 

Results 283 

There was no interaction between sound treatment and shell size and no main effects of 284 

sound treatment, shell size or crab weight on whether crabs entered the single zone (Table 2). 285 

Similarly, there was no interaction between sound treatment and shell size and no main effect sound 286 

treatment, shell size or crab weight on whether crabs entered the group zone (Table 2).  287 

There was, however, a significant interaction between sound treatment and shell size on the 288 

latency to enter the single zone (Table 2, Fig. 3). Under the ambient control treatment, crabs in 289 

suboptimal shells showed a longer latency to enter the single crab decision zone compared with 290 

crabs in optimal shells, but in the presence of noise this pattern was absent. The weight of the focal 291 

crab had no effect on the latency to enter the single zone (Table 2). There was no interaction 292 

between sound treatment and shell size and no main effect of sound treatment, shell size or the 293 

weight of the focal crab on the latency to enter the group zone (Table 2). 294 

There was a significant three way interaction between sound treatment, shell size and zone 295 

on the average proportion of time spent in each zone (Table 2, Fig. 4). Under ambient sound, crabs 296 

in suboptimal shells showed no discernible preference for any of the three zones while crabs in 297 

optimal shells spent more time with conspecifics; mostly with a single crab. Under ship noise this 298 

pattern was reversed. Crabs in a suboptimal shell strongly preferred the zone adjacent to a single 299 

crab and spent very little time in the neutral zone whereas for crabs in optimal shells the preference 300 

for the zone adjacent to a single crab was reduced under noise and spent their time more evenly in 301 

all three zones compared to ambient sound. Crabs in suboptimal shells spent significantly less time 302 
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in the neutral zone than crabs in optimal shells. The weight of the focal crab had no effect on the 303 

average proportion of time spent in each zone (Table 2).   304 

Discussion  305 

We predicted, based on the ideas of shell exchange markets and predator dilution, that 306 

hermit crabs in suboptimal shells would show a stronger preference for joining groups compared 307 

with crabs in optimal shells.  Furthermore, we predicted that noise would disrupt this behaviour. 308 

Surprisingly, we found the opposite pattern under ambient control, where crabs in suboptimal shells 309 

did not show a preference for either zone but crabs in optimal shells preferred to group with a single 310 

conspecific. Noise, however, reverses the grouping pattern. While crabs in suboptimal shells now 311 

preferred to group with conspecifics and particularly with a single crab, crabs in optimal shells 312 

showed no clear preference and spent their time more evenly across all three zones. Thus, although 313 

our overarching prediction that noise pollution would disrupt the grouping behaviour of hermit 314 

crabs (expressed under ambient conditions) was upheld, the direction of that effect differed from 315 

what we expected.  316 

The unexpected pattern under ambient sound that crabs in small shells showed longer 317 

latency than crabs in optimal shells might be explained by considering some wider behavioural 318 

consequences of shell size. In hermit crabs the latency to emerge from the shell after a short 319 

disturbance, also called startle response, is a common measure for boldness (Briffa et al., 2008; 320 

Gherardi, Aquiloni, & Tricarico, 2012). Previous experiments have shown a that hermit crabs in a 321 

100% optimal shell showed shorter startle response than individuals in 75% shells (Briffa & Bibost, 322 

2009). Furthermore, bolder crabs are also more inquisitive and more likely to investigate empty 323 

shells compared with shy crabs (Mowles, Cotton & Briffa, 2012). Thus, the relative lagging of crabs in 324 

suboptimal shells to join another individual might be driven by the effect of shell size on 325 

inquisitiveness, rather than by the relative costs and benefits of joining a group as we initially 326 

hypothesised. Indeed, grouping behaviour has been shown to be influenced by personality (such as 327 
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shy-bold) in a wide range of species (for review see Webster & Ward, 2011) and gregarious species 328 

showed stronger personality differences (von Merten, Zwolak & Rychlik, 2017).  329 

The grouping pattern we found under ambient sound suggests that shell exchange markets 330 

or the dilution effect do not lead to the clusters we observed in P. bernhardus in the wild (S. Tidau, 331 

Pers. obs.) and which have been reported in other species (Hazlett, 1966; Hazlett, 1979; Tricarico & 332 

Gherardi, 2006). One factor could be that under ambient sound crabs in suboptimal shells perceived 333 

a greater costs from grouping than being solitary. As shown by Briffa and Bibost (2009), crabs in 334 

suboptimal shells stay hidden for longer than crabs in optimal shells indicating that they perceive a 335 

greater level of risk from conspecifics. Such risk could steam from cannibalism which has 336 

occasionally been observed in P. bernhardus (S. Tidau, Pers. obs.) and is also known for other hermit 337 

crab species (Tran, O'Grady, Colborn, Van Ness & Hill, 2014). While some species cluster up to 338 

hundreds or thousands (Gherardi, 1991) solitary behaviour has been reported in some species 339 

(Hazlett, 1966; Hazlett, 1979) and demonstrated in the field in the long-clawed hermit crab, Pagurus 340 

longicarpus, (Tricarico & Gherardi, 2006). As a consequence of the variety of grouping behaviour 341 

across hermit crab species, the clustering and grouping preferences observed in P. bernhardus might 342 

be species specific. Alternatively, for the baseline behaviour under ambient sound conditions we 343 

cannot rule out that our groups (here of two or six crabs) could have been too small to provide 344 

predator protection in hermit crabs as predicted due to the ‘dilution effect’ (Foster & Treherne, 345 

1981). Indeed, being in small groups might make crabs more apparent to predators than being 346 

single. If a predator would detect the group, the crab in a suboptimal shell would be particularly 347 

vulnerable to that predator, and if that crab had a smaller apparent body size than other group 348 

members, it may be easier to detect due to ‘standing out’ (Krause & Godin, 1994).To withdraw into 349 

the shell (Gherardi & Benvenuto, 2001) or flee (Mima, Wada & Goshima, 2003; Rosen, Schwarz & 350 

Palmer, 2009; Scarratt & Godin, 1992) thus might be the better strategy to avoid predation by P. 351 

bernhardus. Finally, we cannot eliminate the possibility that crabs might be attracted by something 352 
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else in the field or driven by abiotic factors such as water currents (Pallas, Garcia-Calvo, Corgos, 353 

Bernardez & Freire, 2006) which opens up questions for further research. 354 

Although the grouping pattern of under ambient sound differed from our initial 355 

expectations, it is clear that grouping behaviour is altered by exposure to noise. Indeed, the usual 356 

(i.e. under ambient sound) pattern was reversed in the presence of noise. One explanation for why 357 

noise reverses decisions about joining a group is that crabs were distracted by the noise so that their 358 

ability to make appropriate decisions was impaired leading to the opposite decision made under 359 

ambient sound. Thus, crabs in suboptimal shells that would normally behave cautiously fail to adjust 360 

their behaviour to match the size of their shell in the presence of noise i.e. crabs in suboptimal shells 361 

showed more cautious behaviour by having longer latency to encounter a single conspecific. This 362 

distraction effect of noise on crustaceans has been observed under predation risk (Chan et al., 2010) 363 

and suggested as a mechanism to explain behavioural changes in other taxa under noise (Simpson et 364 

al., 2015). An alternative explanation is that crabs exposed to noise might have perceived the noise 365 

itself as a threat. Besides functioning as a novel and unpredictable stimulus for animals, some sound 366 

properties of noise could also be biologically similar to relevant stimuli i.e. elicit similar responses 367 

(Francis & Barber, 2013; Shannon et al., 2016). For instance, the Blainville's beaked whales, 368 

Mesoplodon densirostris, responded in similar ways to simulated military sonar and to playbacks of 369 

predatory killer whale, Orcinus orca, calls (Tyack et al., 2011). In this case, crabs in suboptimal shells 370 

may have weighed the potential benefits of associating with another crab (e.g. the dilution effects) 371 

higher than the costs (e.g. attacks by other hermit crabs). Under acute predation threat, animals are 372 

expected to join larger shoals (e.g. Hager & Helfman, 1991). Here crabs that were both exposed to 373 

noise and supplied with suboptimal shells (and were therefore at a high risk of predation) chose to 374 

avoid the neutral zone. The current data do not allow us to distinguish between these two 375 

possibilities (distraction and perception of threat) directly. However, we note that crabs in optimal 376 

shells also changed their preference i.e. associating with another individual was reduced under ship 377 

noise compared with ambient noise. That implies that noise disrupted the usual decision-making 378 
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process in both groups, crabs in suboptimal and optimal shells alike. Furthermore, the size of the 379 

shell does not seem to protect from the impacts of noise.  380 

Our data add to the growing body of evidence that anthropogenic noise can clearly influence 381 

group dynamics from mammals to crustaceans. As noted above, the direction, intensity and 382 

consequences for survival and fitness are far less obvious. Groups of Mediterranean spiny lobsters, 383 

P. elepha, (Filiciotto et al., 2014), European sea bass, D. labrax, (when exposed to pile-driving, 384 

Herbert-Read et al., 2017), bottlenose dolphins, T. truncatus, (Bas et al., 2017) and red swamp 385 

crayfish, P. clarkii, (Celi et al., 2013) were less cohesive, decreases cooperative interactions among 386 

conspecifics and cichlid fish, Neolamprologus pulcher, even more aggressive (Bruintjes & Radford, 387 

2013). On the other hand, in the trevally P. dentex (Fewtrell & McCauley, 2012), the European sea 388 

bass D. labrax (when exposed to ship noise, Neo et al., 2018), the Carolina chickadees, P. 389 

carolinensis, and tufted titmice, B. bicolor, (Owens et al., 2012) shoals respectively flocks formed 390 

tighter groups under anthropogenic noise. These effects could be due to stress and distraction of 391 

attention, stimulus perception and filtering or combination of these mechanisms. Since an animal’s 392 

attention to perceive and process stimuli is limited (Dukas, 2004) and since noise and other 393 

pollutants have been shown to affect animals across sensory channels (Halfwerk & Slabbekoorn, 394 

2015), it has been suggested that anthropogenic noise acts as a distracting stimulus (Chan et al., 395 

2010; Simpson et al., 2015).  396 

Our study is one of few which looked at cross-modal effects of anthropogenic noise on 397 

grouping behaviour and shows that this occurs in hermit crabs. Specifically, in P. bernhardus, 398 

exposure to ship noise causes crabs that occupy suboptimal resource units (a shell that is too small) 399 

to behave as if they possessed an optimal resource unit in terms of their interactions with other 400 

individuals. Further work will be warranted to investigate the underlying causes of the behavioural 401 

changes (for example lack of caution or risk avoidance). Nevertheless, given that survival in hermit 402 

crabs is strongly tied to the quality of their gastropod shell, any changes to shell-mediated behaviour 403 

could impact individual survival and hence population structure. Grouping behaviour is a common 404 
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phenomenon in nature with consequences for survival and fitness and potential noise effects should 405 

be further investigated.   406 
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Tables 635 

Table 1 The orthogonal design of the interaction between sound treatment and occupied shell.  636 

n = 45 
Sound treatment 

Ambient control Ship noise 

Initially occupied shell 75% (suboptimal) n = 9 n = 10 

100% (optimal) n = 11 n = 15 

The values in each cell of the table indicate the proportion of preferred shell weight of shells 637 
supplied to crabs in each group prior to observations. 638 

 639 

Table 2 Summay of results mixed effects models (GLMM and LMM) used to determine the effects of 640 
predictors on meausures grouping behaviour. 641 

Variable  χ2 P 

Entering the single zone   
 Sound treatment * shell size 1.27 0.26 

Sound treatment 0.003 0.96 
Shell size 1.25 0.26 
Crab weight 2.5 0.11 

Entering the group zone   
 Sound treatment * shell size 0.06 0.81 
 Sound treatment 0.03 0.87 
 Shell size 1.04 0.31 
 Crab weight 0.13 0.72 
Latency to enter the single zone   
 Sound treatment * shell size 5.6 0.018 
 Crab weight 2.0 0.16 
Latency to enter the group zone   
 Sound treatment * shell size 0.4 0.55 
 Sound treatment 0.06 0.81 
 Shell size 2.45 0.11 
 Crab weight 0.8 0.38 
Average proportion of time spent in each zone   
 Sound treatment * shell size * zones 7.1 0.028 
 Crab weight 0.4 0.51 

Note that results were obtained using a model simplification approach, and as such reporting is 642 

restricted to the highest order effects, where significant interactions are present.   643 
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 644 

 645 

 646 

Figure 1. Tank set-up and observation arena. Thick solid lines represent the tank walls and speaker supports, the dashed 647 
lines represent the mesh separating the arena from the rest of the tank, the tin solid lines show the walls of the stimulus 648 
chambers and the dotted lines show the decision zones marked at the bottom of the tank. 649 

 650 

 651 

 652 

Figure 2. Power spectrum analysis for 3 ship noise playbacks and 3 corresponding ambient sound playbacks. The system’s 653 
self noise characterises the sound output by the equipment without playbacks.  654 

 655 
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 656 

Figure 3. The interaction effect between sound treatment and shell size on the latency to enter the single stimulus zone. 657 
Error bars show standard error. 658 

 659 

 660 

 661 

Figure 4. Proportion of time (out of a maximum of 20 min) spent in each of the three zones under ambient sound and ship 662 
noise. Error bars show standard errors. 663 


