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Abstract Salt inundation leads to increased salinization of
arable land in many arid and semi-arid regions. Until genetic
solutions are found farmers and growers must either aban-
don salt-affected fields or use agronomic treatments that
alleviate salt stress symptoms. Here, field experiments were
carried out to study the effect of the osmoregulators proline
at 200 mg L−1 and glycine betaine at 400 mg L−1 in counter-
acting the harmful effect of soil salinity stress on canola
plants grown in Egypt. We assessed growth characteristics,
yield and biochemical constituents. Results show first that
all growth characters decreased with increasing salinity
stress but applied osmoregulators alleviated these negative
effects. Second, salinity stress decreased photosynthetic pig-
ments, K and P contents, whilst increasing proline, soluble
sugars, ascorbic acid, Na and Cl contents. Third, application
of osmoregulators without salt stress increased photosyn-
thetic pigments, proline, soluble sugars, N, K and P contents
whilst decreasing Na and Cl contents. It is concluded that
the exogenously applied osmoregulators glycine betaine and
proline can fully or partially counteract the harmful effect of
salinity stress on growth and yield of canola.

Keywords Salt stress . Osmoregulators . Canola . Glycine
betaine . Proline

1 Introduction

Salinity is one of the major abiotic stresses in arid and semi-
arid regions and substantially reduces the average yield of
major crops by more than 50% (Bray et al. 2000). Salinity
has been estimated to affect over 77 million hectares or 5% of
the arable land worldwide. It has been predicted that this will
rise substantially and could reach as much as 50% of the
irrigated arable area in the next 50 years (Munns and Rawson
1999;Wang et al. 2001). Crop losses due to salinity are of great
concern for many countries like Egypt, which rely heavily on
agriculture and where it has been estimated that over 1 million
hectares is already salt affected (Athar and Ashraf 2009).

Canola or oil-seed rape (Brassica napus L.) is grown
mainly for the purpose of the production of edible oil and
it is a moderately salt tolerant crop species (Francois 1994).
Canola is now the second largest oilseed crop after soybean
in the world providing 13% of the world’s supply. Seeds of
canola have an oil content of more than 40% and produce
post-crushing meals with 35% to 40% protein which is used
mainly for animal feed (Snowdon et al. 2007). Canola is
important due to the low Erucic acid in its oil which makes it
a good quality edible oil but it also has high Erucic acid
containing varieties which are used for manufacturing. Seed
oils are an important source of fatty acids for human nutri-
tion and hydrocarbon chains for industrial products such as
oleochemistry or as a replacement for petroleum products
for combustion engines (Friedt and Lühs 1998). Canola is
the preferred oil seed crop under Egyptian conditions, espe-
cially where salinity and drought are commonplace and in
newly reclaimed soil (Weiss 1983).
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Several authors who have studied the effects of salinity on
Brassicas report reductions in plant height, shoot and root dry
weight, leaf number, leaf area, pod number/plant, seed num-
ber/pod, 100 seed weight, seed yield/plant, oil and protein
content in the seeds Redmann et al. (1994) on canola, Ashraf
and Sharif (1998) on Brassica carinata, El-Ghamry et al.
(1992) on rapeseed, Francois (1994) on B. napus and Brassica
campestris, Hashem et al. (1998) onB. napus andWright et al.
(1995) on canola and Indian mustard.

Currently there is intensive work by many researchers to
study the responses of plants to salt stress in order to try to
overcome salt injury. One approach is the exogenous appli-
cation of substances which have been identified at a cellular
level to be involved in resistance to stresses such as
betaines, proline and antioxidants (Lopez and Satti 1996).
Glycine betaine and proline are two major organic osmo-
lytes that accumulate in a variety of plant species in re-
sponse to environmental stresses such as drought, cold and
salinity (Ashraf and Foolad 2007). Proline is an amino acid
and is one of the most commonly occurring compatible
solutes and plays a crucial major role in osmoregulation
and osmotolerance (Rhodes and Hanson 1993; Hasegawa
et al. 2000). It protects membranes and proteins against the
destabilizing effects of dehydration during abiotic stress. In
addition, it has some ability to scavenge free radicals gen-
erated under stress conditions (Ashraf and Foolad 2007).

Glycine betaine is an amino acid derivative known for its
protective effects in higher plants against salt/osmotic stresses,
not only by maintaining osmotic adjustment (Ashraf and
Foolad 2007), but by stabilizing many functional units, like
the oxygen-evolving PS-II complex (Harinasut et al. 1996),
membranes, quaternary structures of complex proteins (Murata
et al. 1992) and enzymes such as rubisco. Some plants therefore
can protect themselves against abiotic stresses by enhanced
synthesis and accumulation of glycine betaine. Exogenous
foliar application of glycine betaine has been suggested as an
approach to induce stress tolerance in crops with poor or no
solute accumulating ability (Ashraf and Foolad 2007). Foliar
application of glycine betaine on tobacco and lupin (Agboma et
al. 1996) and on wheat and barley (Makela et al. 1996) en-
hanced leaf area, dry matter accumulation and plant growth as
well as increasing soluble sugars. This osmo-induced accumu-
lation of soluble sugars was almost maximal at 1 MPa and did
not change significantly at higher osmolarities.

Ashraf and Sharif (1998) on Raphanus sativa and El-Tayeb
(1996) on sorghum and peas showed that foliar application of
proline increased transpiration rate, leaf area, dry matter accu-
mulation, enhanced growth, increased the germination rate and
final germination percentage, water content and amounts of
photosynthetic pigments and strongly stimulated the produc-
tion of polysaccharides, total nitrogen and soluble protein at all
salinities and showed that application of proline alleviated the
harmful effect of salinity stress. Exogenous application of

proline counteracted the adverse effects of salt stress by stim-
ulating growth of cells and plants (Ali et al. 2008) improving
metabolism (Alia et al. 1991; Rana and Rana 1996), and
reducing oxidation of membrane lipids (Okuma et al. 2004;
Yazici et al. 2007) under stress conditions.

Athar et al. (2009) also showed that exogenously applied
glycine betaine and proline at the germination and seedling
stages alleviated the adverse effects of salt stress on canola
cultivars and Okuma et al. (2004) reported that proline-
induced alleviation of the adverse effects of salt stress on
growth was more pronounced than those of glycine betaine.

The work reported in this paper is the result of trying to
determine whether glycine betaine and proline can be ap-
plied exogenously in the field and alleviate field induced salt
stress under Egyptian conditions. This may then provide an
agronomic option for the alleviation of stress which could
be used whilst plant breeders and biotechnologists search
for genetic and physiological solutions to this problem.

2 Materials and methods

Two field experiments during successive seasons 2006/2007
and 2007/2008 were carried out on the El-Serw farm site,
Field Crops Research Department, National Research Centre,
Dakahlia governerate, Egypt.

Within a single field of uniform silty-loam soil type with
known salt inundation three locations which differed in their
soil salinity as measured by a standard sodicity test (Rhoades
et al. 1999) were used as follows:

& Area 1. Low salinity (control) 1.5 dS m−1

& Area 2. Moderate salinity 9.1 dS m−1

& Area 3. Severe salinity 13.5 dS m−1

Each area was sub-divided into a randomized block de-
sign with three replicates and three treatments randomly
allocated to plots within a block.

Phosphorous as calcium superphosphate (350 kg ha−1 P)
and potassium as potassium sulphate (120 kg ha−1 K) were
added before planting according to local agronomic practice.
Canola (B. napusL. cv. Pactol seed (courtesy of theMinistry of
Agriculture “Oil Crop Research Center” Giza, Egypt) was
sown on 25th November in both experimental seasons. After
20 days from sowing, plants were thinned to a plant population
of 50 plants per m2 (interplant spacings of 20 cm). Nitrogen
fertilizer was added in three equal doses at 20, 30 and 60 days
after sowing as ammonium nitrate (143 kg ha−1 N total).

The plants were treated with distilled water or the osmor-
egulators, glycine betaine at 400 mg L−1 or proline at
200 mg L−1 plus 0.05% Tween 20 as a wetting agent. Seed
was presoaked for 6 h before planting and subsequently plants
were sprayed with the same applied osmoregulators at 40 and
70 days post-sowing corresponding to mid-vegetative and
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flowering stages respectively. Automatic atomizers were used
for spraying solutions and plants were sprayed until run-off.

Five plants were taken randomly from each treatment
after 60 days from sowing and growth characters, stem
and main root length, leaf area and number of leaves per
plant and dry weight of shoot and roots were recorded. At
harvest after154 days from sowing, the number of flowering
branches/plant, seeds/siliqua, weight of 100 seeds, seed
yield/plant and seed oil content were also determined. Pho-
tosynthetic pigments, proline, sugars, ascorbic acid, N, P, K,
Na and Cl contents were determined in the second season.

Seed oil content was determined according to Folch et al.
(1957). A 50-g sample of seeds harvested from each plot was
finely ground in a household electric grinder. An aliquot (10 g)
of ground seed was extracted by homogenization (Polytron
homogenizer) in 80 mL chloroform–methanol (2:1 v/v) con-
taining 0.01% butylated hydroxytoluene as an antioxidant for
3 h at laboratory temperature with occasional stirring. The
mixture was then filtered through Whatmann No. 1 filter
paper. The residual was re-extracted three times with chloro-
form–methanol for 1 h, then filtered and the three filtrates
combined together. The filtrates were shaken (Eberbach Corp.
horizontal shaker) and centrifuged for 3 min at 3,000 rpm
(1,380×g) to separate the aqueous and organic layers. Upon
completion, the aqueous layer was siphoned off, leaving the
fatty acid dissolved in the lower, chloroform layer. The chlo-
roform was then evaporated (Organomation Meyer N-evap
analytical evaporator model no. 112) under a N stream at 60 C.
The resulting product was then transferred to a 15 ml glass
screw-top tub to await methylation and analysis.

Photosynthetic pigments were determined in fully expanded
young leaves (4th leaf down from the apex) 60 days after
sowing. Leaves were cut into pieces and a representative
0.05 g sample extracted in 10 mL methanol 90% for 24 h then
both chlorophylls and carotenoids were determined by spectro-
photometer at wave lengths 452.5, 650 and 665 nm according
to the methods of Mackinny (1941).

Proline content was determined from shoots harvested
60 days after sowing by the modified ninhydrin method
(Troll and Lindsley 1955). A 2-g representative sample of
green leaf and stem material was placed into a test tube
containing 10 mL of distilled water and the tubes were kept
in a boiling water bath for 30 min, and then cooled to room
temperature. An aliquot from water extract, added 2 mL of
ninhydrin reagent and the mixture were maintained in the
boiling water bath for 20 min, and then was cooled in an ice-
water bath. The reaction mixture was extracted with 2 mL
toluene mixed vigorously shaking and left at room temper-
ature for 30 min until separation of the two phases. The
chromophore containing toluene (1 mL, upper phase) was
wormed to room temperature and its optical density was
measured at 520 nm by Spectrophotometer using toluene for
a blank.

Shoot and root dry matter samples per plot were macerated
to provide homogeneous samples and total soluble carbohy-
drates were extracted from duplicate 0.1 gdm representative
samples of shoots and roots using 80% ethanol overnight at
laboratory temperature then filtered through Whatman no. 1
filter paper. Total soluble sugars were determined by the
anthron method (Sadasivam and Manickam 1996) by adding
3 mL anthron reagent to 0.1 mL filtrate, heated for 10 min in a
boiling water bath, cooled rapidly and the developed green
color was read at 630 nm by Spectrophotometer.

Ascorbic acid was extracted from 2 g shoot fresh material
by 4% oxalic acid, then made up to 100 mL and centrifuged
at 2,000 rpm for 5 min, then 10 mL of 4% oxalic acid was
added and titrated with 2,6-dichlorphenol-indophenol as
described by Sadasivam and Manickam (1996), the amount
of ascorbic acid mg/100 g sample was calculated using the
equation

Ascorbic acid mg=100g FWð Þ ¼ 0:5A=1 ml� V2=5

� 100=weight of sample used

� 100

where: V10amount of dye reacted with 10 ml of oxalic acid
and V20amount of dye reacted with 10 mL supernatant.

Total nitrogen content estimated using a micro-Kjeldahl
method (Jackson 1967). A sample of 0.2 g of homogenized
dry material was digested by sulphuric and perchloric acids
and distillation was carried out with 40% NaOH and am-
monia was received in 4% boric acid solution.

Sodium, potassium and chloride contents were measured
using 0.2 g of homogenized shoot dry matter extracted for
1 h in a boiling-tube of distilled water in a boiling water bath
and the extract filtered. Sodium and potassium contents in
the aqueous extracts were measured with a Flame Photom-
eter. Meanwhile, chloride was determined by titration with
0.001 N AgNO3 using potassium dichromate as an indicator
(Chaudhary et al. 1996).

Phosphorous content was determined colorimetrically at
wave length 725 nm using chlorostannous-reduced molyb-
dophosphoric blue colour method, as described by Jackson
(1967).

Data were analyzed by analysis of variance according to
Gomez and Gomez (1984). Least significant difference val-
ues were used for the comparison of means. Data are pre-
sented to show the effects of salinity in the first instance
(water control) and then the effects of the applied osmore-
gulators for each measured parameter.

3 Results and discussion

Salinity affected all stages of canola growth and develop-
ment and resulted in a depression of seed yield (Fig. 1).
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Seed yield declined proportionately more than the vegeta-
tive characters measured and this may be attributed to a
decrease in the viability of pollen grains or in the receptivity
of the stigmatic surface or both as suggested by Sakr et al.
(2007) and caused by decreased calcium mobilization as a
result of high sodium levels in leaves. Abscission of flowers
or young fruit due to ethylene induction by salinity could
explain the reduced pod set observed. Chrominski et al.
(1989) also noted a decrease in fruit abscission which led
to increasing fruit number and seed number per fruit and
consequently increased seed yield per plant and this was
attributed to a decrease in ethylene production in the plants.
A reduction in the supply of carbon assimilate due to de-
creased leaf area is also probably responsible for the reduc-
tions in the yield components (Sakr et al. 2007). Ozdemir et
al. (2004) proposed that the relatively greater uptake of Cl−

than Na+ in salt-stressed plants could be responsible for
growth reduction by depressing the uptake of other anions
(Sakr et al. 2007).

Growth characters including stem and root length, leaf
number and leaf area per plant, shoot and root dry weights
and flowering branches per plant were all significantly de-
creased with increasing salinity stress levels and the greatest
reduction in these parameters were observed under the high-
est salinity level (Table 1). These growth parameters re-
duced the components of yield (pods per plant, seed
number per fruit, 100 seed weight per plant) which

combined reduced the seed yield by up to 25% at the highest
salinity level. This inhibitory effect of salinity may be due to
a number of physiological processes such as a decrease in
meristematic activity and/or cell enlargement (Khadr et al.
1994; Sakr et al. 2007) or a perturbation of the functioning
of vital components of photosynthesis (Yang and Britton
1990) and there was some evidence for this in the decreased
levels of chlorophyll measured.

The results of this investigation clearly demonstrated that
the adverse effects of salinity could be partially or fully
offset by the exogenous application of proline and glycine
betaine (Fig. 1 and Table 1). Proline was generally more
effective than glycine betaine and proline led to an enhanced
seed yield in the absence of salt stress and this effect was
maintained as salt stress increased. The exact mechanism of
the effect of these osmoregulators is not known but may be
due to osmotic protection (Arteca 1996) or promotion of the
uptake of essential macro-nutrients which then facilitated
normal growth and development (Foyer and Spencer 1986).
Whatever the mechanism of action the application of exog-
enous proline or glycine betaine revealed partial counter-
acting effects in dry matter reduction caused by salinity
stress and this is attributed to a combination of an increase
in leaf area and improvement in the components of yield.

Oil content was decreased by increased salinity but the
Erucic acid content increased. This increases the danger of such
crops for human consumption. All measured growth characters
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improved with both osmoregulator treatments and improve-
ments were recorded even in the low salinity (control) treat-
ment. Proline was the most effective osmoregulator in
enhancing growth characters and led to a significant increase
in yield under low salinity. Both osmoregulators partially coun-
teracted the adverse growth effects of salinity stress. The osmor-
egulators were able to re-establish the oil content of the seed.
Ross and Murphy (1993) suggested that increasing sucrose
content or the carbon/nitrogen ratio increases oil content due
to their effect on the specific and total activity of diacylglycerol
acyltransferase and therefore the re-establishment of good
growth caused by the osmoregulator was probably responsible
for the improved oil content of the seeds. However osmoregu-
lators could not fully reduce the Erucic acid content of the salt
affected seed and were therefore not capable of guaranteeing
the human consumption safety of the harvested seed.

Increasing salinity reduced total chlorophyll and carotenoid
levels but increased proline, soluble sugars and ascorbic acid
content (Table 2). The nutritional balance of plants was affect-
ed by increasing salinity with nitrogen, phosphorus and potas-
sium contents all being depressed whilst sodium and chloride
contents increased. This is a commonly found observation
under increasing salinity and reflects the limited ability of
non-adapted terrestrial plants to control sodium and chloride
uptake. Chloride is a more sensitive indicator of salt damage
than sodium, since it is stored by the plant. Accumulation of
Cl− may cause leaf injury, thereby decreasing photosynthesis
and productivity. Ozdemir et al. (2004) proposed that the
relatively greater uptake of Cl− than Na+ in salt-stressed plants
could be responsible for growth reduction by depressing the
uptake of other anions (Sakr et al. 2007). Sodium frequently
replaces potassium as cell channels cannot distinguish between
these elements and the antagonism between K+ and Na+ cati-
ons increases considerably as salinity increases (Sairam and
Srivastava 2002). However, the sodium and chloride levels
recorded in plants under high salinity in these trials were not
extremely different from the low salt condition reflecting the
reasonable salt resistance of canola.

When plants are challenged by abiotic stress they fre-
quently produce a stress response to try to mitigate the
effects of the stressor and cellular compatible solutes such
as proline and sugars rise and confer desiccation tolerance
(Ashraf and MacNeilly 2004; Thakur and Rai 1985; Munns
and Termaat 1986; Stewart and Lee 1974). Proline accumu-
lation is one of the most frequently reported modifications
induced by water deficit and salt stress in plants and it is
involved in stress resistance mechanisms (Sakr et al. 2007;
Ashraf and Harris 2004). Proline has been associated with
the relief of cellular osmotic stress, detoxification of excess
ammonia, stabilization of proteins and/or membranes and
improving the stability of some cytoplasmic and mitochon-
drial enzymes (Ozdemir et al. 2004). In this experiment
however proline did not rise substantially but soluble sugarsT
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did increase and the anti-oxidant ascorbic acid rose signifi-
cantly under salt stress. With increasing salinity there is an
associated soil osmotic effect which limits macro-nutrient
uptake such as nitrogen and phosphorous which could ac-
count for the depressed macro-nutrient contents recorded.
Also an increase in chloride uptake and accumulation is
reported to be accompanied by a decrease in shoot nitrate
concentrations of plants due to the competition between
chloride and nitrate which decreases nitrate content (Sakr
et al. 2007).

In this study, osmoregulators were shown to offset the
effects of increasing salinity and had some positive stimulatory
effects in the absence of salinity stress supporting the reports of
others (Ali et al. 2008; Athar et al. 2009; Okuma et al. 2004)
and exogenous application of proline was the most effective in
this respect. This clearly demonstrated that exogenous appli-
cations in the field can be a useful method to alleviate salt
induced yield reductions in canola and opens the possibility of
using exogenous applications to alleviate stress in the agro-
nomic situation. This study did not attempt to assess the
economic aspects of these treatments but such an assessment
would clearly be necessary to assess the efficacy of applica-
tions in an agronomic situation, however both osmoregulators
are readily available. Further work is necessary to investigate
whether these compounds could be combined to work syner-
gistically as they have different cellular modes of action. The
results indicate that there are exciting opportunities for the
alleviation of moderate or severe salt stress in the field.

4 Conclusions

These results clearly demonstrate that exogenous applications
of proline or glycine betaine could be used to reduce the
harmful effect of salinity on both physiological aspects and
growth parameters of canola. They are capable of restoring
yield potential and oil content of seed and may be useful
useful in agronomic situations where soil sodicity is diag-
nosed as a problem.
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