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Abstract
In this thesis we used mathematical and computational models to study neuronal net-
works that control motor behaviours. Specifically, we modelled two neuronal circuits
from two opposite ends of the brain complexity spectrum: the swimming circuit of the
hatchling Xenopus tadpole and the human basal ganglia.
Due to its relative simplicity, tadpole is a unique animal for studying locomotion us-
ing both experiments and models. This allowed us to define three biologically-realistic
spiking models to clarify the interplay between the architecture of synaptic connections
(structure) and the network’s ability to generate activities that correspond to its swim-
ming behaviour (function).
First, we investigated how the structural variability of individual circuits produces similar
behaviours. To answer this question, we defined a probabilistic model of connectivity
and dynamics for the neurons in the spinal cord. Simulations of the model showed that
the swimming behaviours generated by different connectivities are remarkably similar.
We used graph theory measures to characterise structural properties of networks un-
derlying swimming. For example, we applied them to (1) predict the swimming period
and (2) detect key neurons and connections that promote the swimming rhythm.

Second, we built a minimal model of the central pattern generator (CPG) which repro-
duces all the experimentally recorded oscillatory regimes: swimming and synchrony
- anti-phase and in-phase oscillations between two body sides, respectively. Using
bifurcation theory, we defined stabilities for these regimes and demonstrated the exis-
tence of bi-stablity for a physiological range of parameters. Considering a vicinity of the
critical parameter values of a saddle-node bifurcation, we explained how long-lasting
synchrony transitions can appear both in model and experiment.

Third, we expanded our CPG model by adding three sensory pathways. Our modelling
is based on available anatomical and physiological data and on our new probabilistic ap-
proach for modelling connections. The expanded model contains approximately 1700
neurons and about 100,000 connections. The model reproduces the experimentally
recorded neuronal activities during the initiation, acceleration, continuation, modula-
tion and termination of locomotion. Therefore, it can describe the complete swimming
behaviour of the tadpole in response to sensory inputs.
Inspired by our study of oscillations and synchronisation in the tadpole nervous sys-
tem, we proposed a theoretical model of action selection in the basal ganglia. We use
a mathematical formalism known as Arnold tongues to explain how modulatory inputs
from the cortex can partially synchronise subsets of neurons in the basal ganglia and
generate a rhythmic action. This mechanism can explain how the transitions between
multiple oscillatory states might work, thus effectively resolving the switching between
competing actions. Although theoretical, the model could serve as a qualitative tool to
understand the basic working principles of action selection. For example, model simula-
tions match experimental recordings in rodents showing that the cortex can synchronise
neurons in the basal ganglia and generate Arnold tongues synchronisation.
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Chapter 1

Introduction

This thesis is devoted to the study of neuronal mechanisms underlying oscillations

in motor circuits. Animals and humans spend the entire course of their lifetime

executing a variety of stereotypical rhythmic movements, such as as swimming, walking

and breathing. What leads to the generation of these movements?

Contemporary neuroscience states that these behaviours can be explained by specific

patterns of oscillatory activities generated by specialised neuronal circuits in the brain

[Marder, 2015]. It is well-known that theoretical principles and mechanisms of these

circuits are universal and they work at many levels of the nervous system organisation,

from simple animals up to humans [Marder and Calabrese, 1996, Kandel et al., 2000].

One such principle is the principle of synchronisation [Pikovsky et al., 2003], according

to which oscillatory units can coordinate their activities to work together as one global

oscillator. Another example is partial synchronisation, a state of a network in which only

some oscillatory units become synchronised during a limited time period [Kazanovich

and Borisyuk, 2006].

We attempted to clarify how motor neuronal circuits generate oscillations and synchro-

nise to achieve motor functions. To answer this question we studied two neuronal cir-

cuits: the swimming circuit in the two day old Xenopus tadpole and the basal ganglia.

Each of these circuits controls locomotion by synchronising the activity of multiple oscil-

lating neurons. Therefore, in both of these circuits we studied how this synchronisation

occurs.

The Xenopus tadpole is a unique animal for studying locomotion from both an exper-

7



imental and a modelling perspectives. On one hand, its nervous system is relatively

simple; so simple that it can only generate two types of movements: swimming and

struggling. One the other hand, it is complex enough to be able to select, generate and

modulate movements in response to sensory signals from the external environment.

These two features have allowed us to design biologically-realistic spiking neuronal

models aiming to clarify some important and challenging questions.

Firstly, what are the neuronal mechanisms beyond the generation of a complete swim-

ming episode? We answer this question using one of our models, which includes most

of the neurons active during swimming (about 1500). Model simulations clarify the neu-

ronal processing leading to the initiation, continuation, modulation and termination of

anti-phase swimming oscillations, and can therefore explain a whole episode of swim-

ming at the neuronal level.

Secondly, what mechanisms can lead to the generation of all oscillatory patterns of

activities that have been recorded during swimming? We used bifurcation theory to

study a reduced circuit and find the existence and stabilities of all the experimentally

recorded regimes. One is a swimming regime which is characterised by anti-phase

oscillations between opposite body sides, and one a regime of synchronous in-phase

spiking between the two body sides.

Thirdly, how do neurons in the swimming neuronal circuit generate connections? And

what are the structural properties of these connections that lead to the generation of

swimming oscillations? For the connectome of some animals answering the first ques-

tion is still not possible, because the number of connections is too high. In the case

of tadpoles, however, we suggest a new "probabilistic model" approach to finding the

pair-wise connectivity and successfully use it to generate and analyse connections in

multiple individuals. We then mapped this connectivity to a functional spiking neuronal

model to simulate the circuit dynamics and identify some of the neurons and connec-

tions that are key for producing and controlling the swimming rhythm.

In the case of the basal ganglia, we demonstrated a plausible mechanism of the ac-
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tion selection problem. Our approach to modelling this mechanism is mostly based on

the principle of partial synchronisation and some constraints coming from experimen-

tal neurobiology. This model suggests a theoretical mechanism for the selection and

switching between multiple actions, which is interpreted in terms of phase-locking of

different groups of oscillating neurons in the basal ganglia.

1.1 Thesis outline

In chapter 2, we review the experimental and modelling studies on the anatomy and

behaviour of the Xenopus tadpole and on the basal ganglia. All other chapters of this

thesis include an introductory selection which reviews the information relevant to that

specific chapter.

In chapter 3, we describe the probabilistic model of the neuronal connectivity in the

tadpole spinal cord. Our primary goal is to clarify the relationship between the topo-

logical properties of the architecture of synaptic connections and the network’s ability

to generate behaviour, commonly known as structure-function problem. Clarifying this

relationship is often difficult because the neuronal connectivity of most animals varies

considerably across individuals of the same species. To clarify this problem, we de-

velop a probabilistic meta-model that generalises the neuronal connectivity of multiple

individuals. We calculate of structural characteristics of this connectivity and we com-

pare them with the neuronal circuits of other species. We use the probabilistic model to

generate neuron-to-neuron connectivity and we combine this connectivity with a func-

tional model of Hodgkin-Huxley neurons to simulate the oscillatory neuronal dynamics

corresponding to the animal’s swimming behaviour. These simulations can explain the

basis of key experimental findings and make new predictions for experimental testing.

In chapter 4, we study a reduced spiking neuronal model representing one segment of

the tadpole spinal cord. In experiments, neurons in each of these segments oscillate in

anti-phase between left-right half-centres (swimming oscillations). However, the same

neurons can also generate transient bouts of in-phase oscillations between left-right

centres (synchrony oscillations). In this chapter, we use our reduced model to inves-
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tigate the origins of these two activity patterns. Using the reduced model allows us to

find the minimal conditions for the generation of biologically-realistic patterns of oscil-

lations and for providing a mathematical description of how these oscillations appear.

Although highly reduced, our model contains a detailed description for spike gener-

ation and synaptic transmission, which allows model simulations to accurately mimic

physiological recordings. The reduced model can generate outputs that closely match

all the activities seen in experimental recordings, including synchrony and swimming

oscillations. We use bifurcation analysis to show the critical boundaries separating dif-

ferent dynamical regimes and demonstrate the existence of parameter regions where

swimming and synchrony are bi-stable. Our results can explain the appearance of long-

lasting synchrony bouts seen at the beginning and during a swimming episode.

In chapter 5, we describe a spiking neuronal model of the tadpole nervous systemwhich

includes three sensory pathways and the spinal central pattern generator, called the Vir-

tual Tadpole (VT) model. We use the VT model to clarify how somatosensory modula-

tory inputs can initiate and terminate swimming in tadpoles. Swimming can be initiated

in two sensory modalities - skin touch, head touch - and terminated by head pressure.

Anatomical and physiological experiments have identified the sensory modalities that

lead to the decision to start/stop the animal’s swimming behaviour. The VT model is

an extension of our previous anatomical and functional models described in chapter 3.

Based on these experiments we model the connectivity and dynamics of the new neu-

ronal populations participating in the sensorymodalities. Firstly, we use the probabilistic

model defined in chapter 3 to generalise the static neuronal connectivity of these popu-

lations based on the connectivity of previously modelled neurons. Secondly, we model

the dynamical properties of each neuronal type using the Hodgkin-Huxley formalism

and with parameters that fit experimental recordings. The final model represents the

most complete and biologically realistic reconstruction of a vertebrate neuronal network

and it can generate the whole swimming behaviour of tadpoles. With the term "whole"

we mean that the VT model (1) includes most of the active neurons in the entire ner-

vous system and (2) simulates the complete temporal dynamics of these neurons, from
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the initiation to the termination, through the continuation and modulation of swimming.

External modulatory input mimics the tactile and visual contribution of the external en-

vironment in each modality. In agreement with experiments, the model suggests two

distinct mechanisms for swimming decision-making: touch of the trunk skin stimula-

tion generate slow and variable accumulation of excitation to threshold, and provide a

simple mechanism of working memory. Head pressure and touch produce much faster

and less variable decisions, similar to reflexes. In summary, the VT model simulates a

detailed and biologically plausible sequence of information processing from the internal

representation of different sensory modalities, integration and decision-making, action

selection, and movement generation.

In chapter 6, we attempt to clarify the physiological role of synchronisation in the context

of action selection by modelling the mechanism of switching between multiple compet-

ing motor tasks. This problem is particularly important because it could help to treat

impulsive movements in patients affected by Parkinson’s disease. We propose a theo-

retical neuronal spiking model of the basal ganglia, a collection of brain nuclei involved

in action selection and other motor functions. Our hypothesis is that different motor pro-

grams correspond each to a different groups of partially synchronised oscillators and the

action selection is achieved by transition between these groups. We use this paradigm

to explain a potential mechanism of action selection based on partial synchronisation

by periodic cortical forcing. This model is motivated by experimental studies showing

this type of synchronisation occurs in both normal and Parkinsonian conditions. Using

numerical simulations and bifurcation analysis, we find regions of phase-locking syn-

chronisation under variation of cortical input parameters, called Arnold tongues. Our

model shows how these synchronisation regions can explain the transition between dif-

ferent oscillatory states and could be used as a qualitative tool to understand the basic

working principles of action selection.

Finally, Chapter 7 summarises the thesis contribution and the Appendix contains copies

of published papers.
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Chapter 2

Background

In this chapter we review previous experiments and models related to our research
studies. We start off by outlining previous experiments and models that have studied
the role of oscillation and synchronisation in neuronal circuits. In the second part we
review some key findings related to the neuronal circuits that have been the focus of
our studies: the swimming circuit in the Xenopus tadpole and the basal ganglia.

2.1 The importance of oscillations and synchronisation in the brain

Brain oscillations are rhythmic patterns of brain activity recorded in variety of experi-

mental setups such as electroencephalograms (EEG), local field potentials (LFP), sin-

gle/multiunit electrodes, etc.

After Berger firstly recorded oscillatory activities in the brain [Berger, 1929], brain rhythms

have been classified into the several bands in the frequency spectrum: α (8-13 Hz), δ

(1-4 Hz), θ (4-8 Hz), β (13-30 Hz) and γ (30-70 Hz) [Buzsáki and Draguhn, 2004].

Oscillations at each of these frequencies manifest themselves during a multitude of be-

haviours [Buzsáki and Draguhn, 2004]. For example, δ oscillations appear during cog-

nitive processes such as attention [Herrmann et al., 2016], while γ oscillations during

object representation tasks [Ritz and Sejnowski, 1997]. Singer [1993] give a detailed re-

view of the frequency bands and their emergence during many behaviours. Particularly

relevant in the field of motor control are β oscillations in the human basal ganglia (BG), a

collection of subcortical nuclei believed to play a critical role in generating movements.

A remarkable fact suggesting the importance of oscillations in underlying the function

of the brain is that the identification of different abnormalities in the state of the brain,

such as anesthesia and coma, can be based solely on the frequency spectrum of EEG
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oscillations [Singer, 1993, Voss and Sleigh, 2007]. However, this should not lead us to

thinking that this spectrum is the signature of any behaviour, simply because different

functions can be associated with oscillations at the same frequency. For example, α

oscillations are recorded during both memory and attention [Herrmann et al., 2016].

Besides being found at different frequency levels, brain oscillations appear also at mul-

tiple spatial scales, ranging from the activity of single neurons up to entire brain regions.

Recordings made with EEG and LFP instrumentations reveal the activity of an ensem-

ble of neurons in the brain scalp and neuronal tissue, respectively. The fact that these

recordings show oscillations indicates that a large number of neurons must be engaged

in a synchronous rhythmic activity to generate what are typically called "macroscopic

oscillations". Indeed, if these oscillations were not the result of synchronous rhythmic

activity of many single neurons, the weak currents associated with membrane potential

and synaptic activity of single neurons would not be detectable [Singer, 1993].

Current belief in neuroscience is that oscillations and synchronisations play a key role

in various brain functions. These activities correspond to different cognitive processes

such as sensory processing [Engel et al., 2001, Kahana et al., 2001], pattern recogni-

tion [Gray et al., 1989, Llinas and Ribary, 1993], memory [Buzsáki and Draguhn, 2004,

Başar et al., 2001], attention [Herrmann et al., 2016, Fries et al., 2001, Borisyuk and

Kazanovich, 2004], hearing [Lakatos et al., 2008, Rankin et al., 2015, Wang and Chang,

2008], perception and emotions [Kahana et al., 2001, Varela et al., 2001], object rep-

resentation [Ritz and Sejnowski, 1997], cicardian clock [Moore, 1983], feature binding

and binocular rivalry [Schillen and König, 1994, Engel et al., 1999, Singer, 1993, Singer

and Gray, 1995, Borisyuk et al., 1998], dreaming and sleeping [Llinas and Ribary, 1993,

Kahn et al., 1997, Steriade et al., 1993]. Moreover, oscillations appear in motor circuits

which control rhythmic movements such as breathing, walking, swimming, flying, etc

[Grillner and Kashin, 1976, Roberts et al., 1998, Grillner et al., 2008, Golubitsky et al.,

1999, Marder and Bucher, 2001, Arshavsky et al., 1993, Dimitrijevic et al., 1998, Marder

and Calabrese, 1996, Grillner, 2006, Eisenhart et al., 2000, Marder and Bucher, 2001].
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For this reason clarifying the neural mechanisms underlying oscillations and synchro-

nisations is believed to be a crucial part of understanding how the brain operates. In

the next sections we review some modelling studies which have suggested how the

structural and dynamical properties of neuronal circuits can account for the generation

of these oscillations and synchronisations. We do not attempt to cover all the literature

in this field of research, as there are many existing books and reviews that do this in

great detail, such as [Izhikevich, 2007, Ashwin et al., 2016].

One of the most famous and widely used models describing how a neuron can generate

electrical activity is the one formalised by the two British scientists Hodgkin and Hux-

ley [Hodgkin and Huxley, 1952a]. Their model dissects the biophysical mechanisms

underlying the generation of the action potential (or spike), a fast rise of the neuron

membrane potential followed by a rapid decrease. Since the work of Hodgkin and Hux-

ley a variety of different neuronal models have been developed, such as the Izhikevich,

integrate-and-firemodels andmany others [Izhikevich, 2003, Brette andGerstner, 2005,

Izhikevich, 2007]. These models describe neurons using systems of ordinary differen-

tial equations, and they can generate many complex phenomena, including oscillations

and chaos [Glass and Mackey, 1988, Izhikevich, 2007, Chua et al., 2012].

In these models, oscillations can appear spontaneously in absence of any input, or due

to forcing by an external stimulus [Izhikevich, 2007]. One typical example relates to the

firing of neurons in response to depolarising current injections: some neurons, if injected

with a sufficiently strong current, exhibit oscillatory patterns of action potentials (tonic

spiking). This property is called neural excitability [Izhikevich, 2000, Rinzel and Ermen-

trout, 1998]. The firing frequency of excitable neurons depends on the amplitude of the

injected current, and the curve describing this dependency (current-frequency curve)

is typically monotonically increasing. The current-frequency curve of excitable neurons

can be either continuous (Class 1 excitability) or discontinuous (Class 2 excitability).

The remaining set of neurons can only fire one action potential in response to current

injection, independently of the amplitude of the current (Class 3 neurons). One example
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of a Class 3 neuron excitability is the one of excitatory descending spinal interneuron

(dINs) neurons in tadpoles [Soffe et al., 2009], as we will discuss later in this chapter.

In the past decades, many advances in the study of neuronal oscillations have been

reached thanks to the theory of dynamical systems [Guckenheimer and Holmes, 2013].

In particular, bifurcation theory offers a qualitative description of how such systems

change their dynamics under parameter variation [Kuznetsov, 2013]. For example,

consider the transition between quiescence and repetitive spiking states in neurons in-

jected with current, as mentioned in the previous paragraph. This transition is marked

by the crossing of the system at a critical value of the current amplitude below which

the neuron is quiescent and above which it produces oscillatory firing. This value is

commonly referred to as a bifurcation point, that is, a critical parameter value that de-

termines a "drastic" change in behaviour. For example, bifurcations determining the

transition between quiescence and oscillatory firing can be one of four types: a saddle-

node, a saddle-node on invariant circle, a sub- or a super-critical Andronov-Hopf (AH)

bifurcation [Kuznetsov, 2013]. The analysis of bifurcations can explain a number of

neurocomputational properties of single neurons, including excitability [Rinzel and Er-

mentrout, 1998], subthreshold oscillations [Shilnikov and Rulkov, 2004], post-inhibitory

rebound [Wang andRinzel, 1992] and resonance [Baer et al., 1989]. For example, when

crossing a super- or sub-critical Andronov-Hopf bifurcation, neurons exhibit small am-

plitude oscillation in the membrane potential that can promote post-inhibitory rebound

firing [Izhikevich, 2000]. This is another characteristic feature displayed by dINs in tad-

poles which we will consider throughout the thesis.

Other than tonic firing, there are other more complex oscillatory modes that single cells

(not necessarily neurons) can exhibit and that have been explained using bifurcation

theories. Two of these examples are bursting and mixed-mode oscillations. Burst-

ing is a dynamical mode characterized by alternations between quiescence and repeti-

tive firing, while mixed-model oscillations are patterns of intermittent low-amplitude and

high-amplitude oscillations [Desroches et al., 2012]. These phenomena have been
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observed in electrophysiological recordings of single-cell activity. Cortical chattering

neurons [Gray and McCormick, 1996], respiratory neurons in the pre-Botzinger com-

plex [Butera Jr et al., 1999], endocrine cells [Tsaneva-Atanasova et al., 2010] and the

lobster stomatogastric ganglion cells [Gola and Selverston, 1981] are examples of cell

bursters, while entorhinal cortex layer II neurons [Dickson et al., 2000] and pituitary cells

[Vo et al., 2010] are examples of neurons exhibiting mixed-mode oscillations. The tran-

sitions between two dynamical states (quiescence from/to spiking and low from/to high

amplitude oscillations) in both bursting and mixed-mode oscillations typically occurs

because of the different time scales of the variables in the system. Using a geometric

approach to the study of dynamical systems, bifurcation and singular perturbation theo-

ries have unveiled many mechanisms underlying these complex oscillations. Thanks to

these approaches we now have full classifications for different types of bursting [Izhike-

vich, 2000, Coombes and Bressloff, 2005] and mixed-mode [Golubitsky et al., 2001]

oscillations that is based on the bifurcation structure of the various models.

In addition to single cells, it is well known that the dynamics of a neuronal network

models comprised of excitatory and inhibitory neurons can be oscillatory [Ashwin et al.,

2016, Buzsáki and Draguhn, 2004, Selverston and Moulins, 1985]. For example, a

study [Borisyuk, 2002] of spiking integrate-and-fire type neurons with random connec-

tions demonstrated that an oscillatory regime is stable and exists for a broad range of

parameter values after crossing an Andronov-Hopf bifurcation.

Experiments have shown that spinal circuits can produce fictive movements without

any input from the brain in many animals, including tadpoles [Li et al., 2006] and cats

[Pearson and Rossignol, 1991]. This has led to the general concept of central pattern

generators (CPGs): specialised neuronal circuits in the spinal cord that are capable of

autonomously generating rhythmic activity in the absence of forcing by periodic exter-

nal stimuli [McCrea and Rybak, 2008, Marder and Bucher, 2001]. The ability of these

circuits to generate oscillations depends on both the properties of the neurons and on

their interactions [Bargmann and Marder, 2013].
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For example, using a simplifiedCPGmodel Skinner et al. [1994] considered two relaxation-

oscillator neurons (n1 and n2) coupled by reciprocal inhibition. Synapses were assumed

to have the same constant threshold and to be instantaneous, so that each neuron can

either be in an active or in an inhibited state. The model shows four different mecha-

nisms which can generate anti-phase oscillations. Two of these mechanisms are driven

by the intrinsic properties of the neurons (case 1), and the other two by the properties

of the synapses (case 2). In case 1, the dynamics of n1 starts from an inhibited (active)

state and it escapes (release) from it after crossing a fold bifurcation and jumping to its

active (inhibited) state. At the same time, n2 starts from an active (inhibited) state and

jumps to its inhibited (active) state after the jump of n1. In the second two cases, n1

starts from its active (inhibited) state and jumps to its inactive state after crossing the

synaptic threshold. Meanwhile, the n2 starts from its active (inhibited) state and jumps

to its active state when n1 crossed the threshold.

Although oscillations in neural circuits have been studied for decades, we still struggle

to understand many aspects of their functioning [Bargmann and Marder, 2013, Marder

and Taylor, 2011, Roberts et al., 2010]. One reason is that many of the circuits’ proper-

ties are largely unknown, due to the lack and variability of experimental data. To over-

come this limitation, biologically-inspired models have been successfully developed to

test experimental hypotheses and make suitable predictions. However, these models

are often difficult to validate because they can be either too complex, therefore difficult

to analyse, or too abstract, therefore restrictive in their predictions. A possible solution

is to model neural circuits with few number of neurons and behaviours. This would

guarantee models to be simple enough to be analysed, for example, by using computer

simulations. In addition to selecting such circuits, these models should be designed

to incorporate as many biological details as possible to increase their predictive power.

In a more general picture, the hope is that the study of these circuits could help us to

understand some general principles for the brain functioning in even more complex cir-

cuits. This would allow stepping forward in the ambitious goal of understanding how the

human brain works. This modelling paradigm can be achieved, for instance, by mod-

18



2.2. THE STRUCTURE AND FUNCTION OF THE TADPOLE SWIMMING CIRCUIT

elling the main behaviour of the neuronal circuit in the two-day-old hatchling Xenopus

tadpole.

2.2 The structure and function of the tadpole swimming circuit

Oscillatory activity patterns corresponding to (fictive) swimming can robustly be initiated

and sustained for some seconds by stimulating the skin of tadpoles even when these

animals are deprived of all body parts except for a 1.5 mm long segment consisting of

parts of the hindbrain and spinal cord (shown in Figure 2.1 A, these results are sum-

marised in Li et al. [2006]). Therefore, we presume that the neural circuit located in this

segment - which we call "swimming circuit" throughout all the thesis - contains the CPG

generating the swimming rhythm and at least one sensory modality responsible for the

start of the CPG and motor activity in response to skin stimuli. In this thesis we mainly

consider the study of this swimming circuit, but we also extend our studies to model

other sensory modalities located in other parts of the hindbrain and trigeminal ganglia

[Roberts et al., 2010].

According to the present knowledge [Roberts et al., 2010], which has been accumu-

lated over decades of experimental and modelling studies, the swimming circuit con-

tains roughly 1500 neurons divided into only eight cell types. Seven of these types

are divided based on their anatomical and functional properties [Sautois et al., 2007,

Roberts et al., 2014]. The remaining one - the hindbrain extension neurons (hINs) - is

a hypothetical neuronal class that has not yet been identified anatomically nor physio-

logically. However, we have evidence that suggest that these neurons exist, and that

they are involved in initiating swimming via the skin stimulation [Koutsikou et al., 2018].

We will discuss and investigate the role of these neurons in chapter 5.

Here, we review the properties of the remaining seven neuronal types, which have been

studied in detail using anatomical measurements and electrophysiological recordings,

combined with computational modelling. It is thanks to these studies that we now have

a clear picture of the role of these cell types during tadpole’s swimming behaviour.
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Figure 2.1: Organisation of the swimming neuronal network in the Xenopus tadpole.
A. Left: Photo of a 5 mm long hatchling Xenopus tadpole, stage 37/38.
Middle: Zoom of the two-dimensional of the CNS seen from top with its
subdivisions (midbrain, hindbrain and spinal cord). Right: Zoom of the in-
dicated region of hindbrain and rostral spinal cord after opening the body
in half along the midline like a book, showing the division of the body into
left and right sides. This diagram shows examples of cell bodies posi-
tions (filled circles), dendrites (straight horizontal lines) and axons (lines
extending also vertically). The floor plate separates left and right side of
the CNS (grey rectangle). The colour coding used to identify each cell type
is the same one used throughout the whole thesis. B. Transverse section
of the spinal cord, showing the neuron somata (white arrows), typical po-
sition of cell bodies of different types (coloured circles), the roof and floor
plates (green oulines), dorsal tract (DT) and marginal zone (MZ). Dorslat-
eral (dl) somata separate the MZ from seonsory axons in the DT. C. Dia-
gram showing the different populations within the swimming network and
the synaptic connections between them (lines withmarkers; red=excitatory,
blue=inhibitory). Connections ending on the border of each symmetri-
cal half-centres (grey square) represent connections to any cell-type in
the corresponding half-center. Descending interneurons (dINs) are locally
coupled by gap junctions. Note that neuronal populations in the sensory
pathway are only shown for one side of the body, but are present on both
sides. Parts A and C are taken from [Ferrario et al., 2018a], and part B
from [Roberts et al., 2014]
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2.2.1 The anatomy of the circuit

Anatomically, neurites (cell bodies, axons and dendrites) are located in special posi-

tions within the spinal cord. Figure 2.1B shows a transverse section of the spinal cord

and the dorso-ventral position of the cell bodies of the different cell types. The body is

symmetrical under mid-line reflection. Therefore, all anatomical properties described

for one side are obviously valid for the other side, too. On each body side, cell bodies

are organised in sequence from top (ventral end) to bottom (dorsal end) according to

the neuronal type. This sequence repeats in a series of longitudinal columns along

the body (coloured circles in Figure 2.1A-B). The dorso-ventral disposition of neurons

in this sequence is controlled by different sensitivities to chemical gradients resealed

from the roof and floors plates during development. These gradients control also the

growth of axons in the cord and the positions of dendrites. Figure 2.1A shows simpli-

fied diagram of the swimming circuit opened dorsally like a book, showing location of

cell types, axons and dendrites of the different neural types in a two dimensions. After

following a short path in dorso-ventral direction starting from the soma, axons tend to

grow longitudinally in ascending or descending directions. Some of these axons branch

in two, with one branch growing in ascending and the other in descending directions.

Dendrites extend dorso-ventrally, covering more surface to be crossed by growing ax-

ons. During these developmental processes neurites distribute in special positions in

the spinal cord, where synapses can form. A result of this special positioning of neu-

rites is that some synaptic connections between neural types are more likely to form,

while others are less likely. Figure 2.1C shows a schematic diagram of the synaptic

connectivity between the different neural types. The anatomy of the different neuronal

types and the properties of their synaptic connections is presented below; more details

can be found in [Roberts et al., 2014, Li et al., 2007a].

Rohon-Beard neurons (RBs) are excitatory sensory cells innervating the skin. They

release glutamate neurotransmitters on post-synaptic sites and spike in response to

stimulation or touch of the skin. Their axons grows longitudinally in the dorsal tract
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(DT), where they form synapses with dlas and dlcs.

Dorsolateral ascending (dlas) and commissural interneurons (dlcs) are excitatory

sensory pathway cells releasing glutamate. They are located in a region separating the

DT from a thin lateral area called marginal zone (MZ), where all cells except RBs are

located. Their dendrites extend towards the DT, where they are likely to be contacted

by RB axons. The axons of dlas run ventrally towards the MZ and then in an ascending

direction. The axons of dlcs travels contralaterally (to the other side of the body) passing

through the floor plate.

Ascending (aINs), commissural (cINs) and descending interneurons (dINs) are

believed to form the CPG population responsible for the maintenance of swimming os-

cillations over time. Cell bodies, dendrites and axons of all three cell types are located

in the MZ, where these neurons are likely to form synapses with all other neural types

except RBs. While aINs and cINs are inhibitory cells by releasing glycine, dINs are ex-

citatory cells by co-releasing glutamate and acetylcholine. Opposite to dINs and aINs,

cINs have axons running contralaterally. DINs are also electrically connected via gap

junctions.

Motor neurons (mns) are excitatory cell that release acetylcholine. Their cell bodies

are ventrally located, and their dendrites lie in the MZ, where they receive input from

CPG neurons. Mns form special neuromuscolar synapses controlling the contraction

of muscles, and enable the animal to swim. They have very short axons and, conse-

quently, they form few synapses with nearby cells and muscles organised in longitudinal

segments.

Electrophysiological pairwise recordings have revealed the connection probabilities for

each pair of neural types [Li et al., 2007a]. Analysis of these data suggest that the

formation of synapses does not depend on cell-to-cell specific factors, but it can rather

be explained simply by the crossing of axons and dendrites in the spinal cord [Li et al.,

2007a, Borisyuk et al., 2014]. By using the numerous anatomical and physiological

data gathered throughout the years, previous studies [Borisyuk et al., 2008, 2011, 2014,
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Davis et al., 2017] have shown howmodelling of the neuronal connectivity in the tadpole

swimming circuit is possible through a ’developmental’ approach, whereby connections

between neurons are not prescribed but appear as a result of the intersection between

(simulated) growing axons with dendrites. This anatomical model mimics the realis-

tic growth of axons in the spinal cord, including axon branching, physical constraints

(barriers) and projections to opposite body sides (commissural axons). Following bio-

logical realism, the axon growth is guided by the concentration of chemical gradients

controlled by model parameters that have been optimised to produce the same statisti-

cal characteristics as real measurements. Other model specifications (including soma

positions and dendritic extents) are assigned from the distributions of experimental data

and from general biological knowledge. The model includes several stochastic compo-

nents; therefore, each model simulation generates a different pattern of connectivity

(’anatomical connectome’). In this thesis we use this model to define a probabilistic

model that generalises the connectivity of many stochastically generated anatomical

connectomes (chapter 3). Since clarifying some details of the anatomical model is cru-

cial for understanding the results presented in this chapter, we give a brief description

of the model in the next subsection.

2.2.2 The anatomical model

The anatomical model generates the complete neural connectivity in the spinal cord

using a "developmental" approach that mimics axon growth [Borisyuk et al., 2014] of all

the cells and synaptic formations. This model is based on numerous anatomical data

of the Xenopus tadpole spinal cord neurons. Here, we give a brief description of the

model, but full details can be found in [Borisyuk et al., 2014, Roberts et al., 2014].

It is important to note that the anatomical model provides a way of generating many

different connectomes, such that the random variation observed between generated

connectomes has the same statistical properties as measurements taken from different

individual animals. Here, we set out to reveal the fundamental features of the neuronal

connectivity that underlie the ability of the swim network to function robustly.
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The model spatial structure

Tadpole’s spinal cord is approximated as a 2D rectangular plate where neuronal bod-

ies, dendrites and axons are located (Figure 2.1). The third dimension (i.e. the thick-

ness of the spinal cord "tube") was ignored as this is very thin (10 µm thick). In the

model description, variables and correspond to the rostro-caudal distance (RC) from

the midbrain-hindbrain border (referred to as "rostro-caudal distance") and the dorso-

ventral distance (DV) from the ventral mid-line border (referred to as "dorso-ventral

distance"), respectively. Positive (Negative) values of correspond to positions on the

left (right) side of the body. We consider a limited area of the spinal cord, where

(x, y) ∈ [500µm, 2000µm]× [−145µm, 145µm].

Axon growth model

Wedescribe the axon growth using discrete time iterationmap (with time step 1ms). The

map is described by three variables (xn, yn, θn), where xn represents RC coordinate,

yn the DV coordinate and θn the growth angle of the axon at each time step n(n =

0, 1, ..., N). The map for the growth angle depends on a "stiffness" term, which is the

tendency of the growth angle to grow straight, and by the influence of environmental

cues (according to chemical gradients), which deviate the growth cone from a straight

path. The chemical gradients functionsGRC(x, y) andGDV (x, y) depend on the current

position of the axon and that will determine the change of the growth angle at each time

step on the RC and DV axis, respectively. Additionally, a uniform random variable εn

is included to provide an additional degree of freedom at each time step. The map is

described by the following equations:

xn+1 = xn + ∆cosθn

yn+1 = yn + ∆sinθn

θn+1 = θn −GRC(xn, yn)sinθn +GDV (xn, yn)cosθn + εn

Here, the elongation parameter ∆ = 1µm; εn uniformly distributed in the interval [−α, α].

To start the axon growth simulation we assume that the axon initial positions coincide
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with the soma positions. The initial value for the growth angle θ0 and the axon length

L = N · δ (which will determine the number of iterations of the map) are randomly se-

lected from the distribution of experimentally measured initial angles and axon lengths.

The gradient functions GRC(x, y) and GDV (x, y) depend on various parameters that

describe the properties of the chemical gradients in the 2D space. Previous studies

revealed that the axons of the same neuron type tend to grow in specific regions of

the spinal cord, suggesting that such axons could be controlled by the same gradi-

ents. Thus, the parameters of the gradient functions in the model were selected to

reproduce the statistical properties of the axons of each specific cell type separately.

Some of these parameters were selected according to general biological knowledge on

the distribution and properties of the chemical gradients. The remaining parameters

were estimated using an optimisation technique that minimises a custom cost function

measuring the similarity between statistical properties of simulated and experimentally

measured axons. For a detailed description of the gradient functions GRC(x, y) and

GDV (x, y), the cost function and the optimisation technique see Borisyuk et al. [2014].

Anatomical and physiological studies in tadpoles have revealed that there are physical

constraints to the axons growth, and these have been added in the anatomical model.

In particular, longitudinal barriers delimited by DV coordinates y = ±125 delimit the

area where axons of all neuron types except RBs grow (called marginal zone). Coor-

dinates y ∈ (127, 137) on the left body side (y ∈ (−137,−127) for the right body side,

respectively) delimit the region where RB axons can grow (called dorsal tract area).

Branching and contralateral axons

The axon of tadpole spinal neurons typically splits into two branches during its growth.

We call primary axon the branch that starts from the soma and continues to grow fol-

lowing the growth direction before the branching point. Secondary axons grow from

the branching and towards the opposite direction of the primary axon (rostro-caudally).

The RC direction of primary axon of each neuron type is known from anatomy of neu-

rons. In the model we thus consider growth of primary axons and secondary axons as
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two consecutive processes. All primary axons grow first, and after that secondary axon

growth starts at a specified branching point. The coordinates of branching points are

selected randomly from the distribution of available experimental data for each neuron

type.

The axon of commissural neurons (dlcs and cINs) starts to grow on the cell body side

and then rapidly navigates on the opposite body side after crossing the floor plate due

to the influence of strong DV gradients. After crossing, DV gradients change their sen-

sitivity and become weak, and the axon starts to deviate towards ascending direction.

Secondary axons are positioned on the contralateral side and grow in the descending

direction. At the beginning, commissural neurons grow in the ventral direction according

to the axon growth equations with specially adjusted parameter values. After crossing

the boundary of the ventral plate on the opposite side the axon growth is described by

the same equations but with another regular set of parameter values (for details see

Borisyuk et al. [2014]).

Synapses and Full Connectome

Dendrites are assumed to be fixed bars extending dorso-ventrally. Thus, each dendrite

is represented by a pair of DV positions, one corresponding to its lower (ventral) bound

and on to its upper (dorsal) bound. For each neuron, cell body positions and dendritic

bounds are sampled from the distributions of experimentally measured data for each

specific cell type.

In model simulations the number of neurons of each type is fixed and it is the same for

both sides of the body. In reality, although biological data are limited, total numbers of

spinal neurons and the population sizes of individual neuron types do not appear to vary

greatly between animals (perhaps± 10-15%atmost) at this early stage of development.

Any variation in these numbers is small compared to the differences from the previous

developmental stage to the following stage.

For each pair of pre- and post- synaptic neurons, a connection is generated whenever

the pre-synaptic axon crosses the dendritic bar of the post-synaptic neuron with some
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probability. Such probability depends on pre and post synaptic cell types and was es-

timated from various experimental pairwise recordings (for details see [Borisyuk et al.,

2014]). During the initial pre-crossing stage we assume that the axon of commissural

neurons cannot produce synapses. Since the model uses several number of random

variables, each simulation of the anatomical model generates a different connectome.

2.2.3 Functional model

In a next study [Roberts et al., 2014] the connectivity of each anatomically generated

connectome has been mapped onto a functional model composed of spiking units of

Hodgkin-Huxley type, with parameters chosen to match known tadpole electrophysiol-

ogy [Sautois et al., 2007, Dale, 1995, Winlove and Roberts, 2012]. The resulting func-

tional model reliably produces activity patterns similar to those seen in cell recordings

during fictive swimming [Roberts et al., 2014].

In the next sections we review the spiking neuronal models used to describe the activity

of the different neuronal types in the tadpole connectome. We start off by describing

one of the most popular models describing the activity of neurons, the Hodgkin-Huxley

model, as this model was used to model the dynamical features of the seven cell types

in the functional model.

2.2.3.1 The Hodgkin-Huxley model

In the early 50s Alan Hodgkin and Andrew Huxley derived a set of non-linear equations

that describe the dynamics of the squid giant axon-work for which they received the

Nobel prize [Hodgkin and Huxley, 1952a,b,c]. The Hogkin-Huxley model is essentially

a four-dimensional system of ordinary differential equations describing the dynamics of

the cell membrane by ionic channels, which is able to reproduce highly non-linear phe-

nomena of neurons called action potentials, which is at the basis of neural transmission.

In this model, the cell membrane is thought as a circuit with capacitance C which acts

as parallel resistors consisting of different ionic channels (sodium: Na+, potassium:

K+, and non-specific leakage: LK). Each of these channels is a pore forming protein
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in the cell membrane allowing the flow of charged ions (currents) between the inside

and the outside of the cell.

The voltage or membrane potential - i.e. the voltage difference between the interior and

the exterior of the cell - regulates the proportion of opened and closed of K+ and Na+

channels (voltage gated), but not LK ions, which are always open.

Typically, the concentration of K+ ions is higher in the inside of the cell, while the con-

centration of Na+ ions is higher outside of the cell. Due to this difference in concentra-

tions, when the channels are in the open state, a chemical force mediated by a cellular

pumps attractsNa+ ions from the outside to the inside of the cell, and it repelsK+ ions

from the inside to the outside the cell.

While ions of each type (K+ or Na+) move due to this force, they create an excess of

charge on either the inside or the outside of the cell. This activates an electrical force

that contrast the continuous movement of ions in a single direction. These two forces

balance each other creating an equilibrium where the voltage is at rest. The reversal

potentials (Nernst potential) ENa, Ek and Elk represent the equilibrium at which these

forces are balanced for each type of ion. This means that, when the voltage of the cell

is equal to the reversal of one ion type, the corresponding ionic current is zero.

This proportion of opened and closed ionic channels is modelled in the Hodgkin-Huxley

formalism by considering two variables for theNa+ current and one variable for theK+

current.

According to the Hodgkin-Huxley model, the voltage across the membrane varies ac-

cording to the following equation:

C
dV

dt
= glk(Elk − V ) +m3hgNa(ENa − V ) + n4gK(EK − V ) + Iext

Where Iext is an external source of current, glk,gNa,gK and Elk,ENa,Ek are the maximal

conductance and equilibrium potential of the sodium, potassium and leakage currents,

respectively. The variablesm, h and n are the gating variables of the sodium and potas-
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sium channels and their integer powers represent the number of molecules involved in

the dynamics of each channel. Each of these gating variables evolves according to an

equation of the following form (where X is m, h or n):

dX

dt
= αX(V )(1− αX(V ))(1−X)− βX(V )X

The function αX is the forward rate function (specified inms1) at which the correspond-

ing gating molecule moves from its configuration where ions are blocked to its con-

figuration where ions can flow. Conversely βX are backwards rate functions, which

determine how quickly gating molecules move from the unblocked to the blocked con-

figuration. The functions αX and βX follow the form:

f(V ) =
A+BV

C + exp[(V +D)/E]
(2.1)

where A, B, C, D and E are parameters determined using experimental voltage clamp

protocols.

The Hodgkin-Huxley equations can show a variety of dynamics seen in experimental

recordings, including excitability, tonic spiking and bursting. Extended versions of the

Hodgkin-Huxley model consider more currents and equations than the ones consid-

ered in their seminal work, leading to even more complex and interesting dynamical

behaviours.

Although being biologically realistic the four dimensional Hodgkin-Huxley system usu-

ally has computational limitations, especially if extended withmultiple ionic currents. For

this reason, several simplified models have been developed. The Morris-Lecar [Mor-

ris and Lecar, 1981] and FitzHugh-Nagumo [FitzHugh, 1961] models are examples of

two dimensional systems of ordinary differential equations that demonstrate many of

the same basic features of the Hodgkin-Huxley model, but they cannot reproduce com-

plex behaviours like bursting. Existing two-dimensional models are able to reproduce a

different firing patterns (including bursting), but take into account a reset condition. Ex-
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amples of these models are Izhikevich neuron model [Izhikevich, 2003] (which is used

in chapter 6 to model neurons in the basal ganglia) and the adaptive exponential leaky

integrate and fire model [Brette and Gerstner, 2005].

Models of the neurons in the tadpole’s swimming circuit

To simulate the activity in the functional model each cell type in the tadpole connec-

tome has been modelled using the Hodgkin-Huxley formalism with more ionic currents

than the ones described in the original model. The equation governing the membrane

potential (V) for each neuron i is:

C
dV

dt
= Ilk + INa + IKf + IKs + ICa + Isyn + Igj + Iext

The capacitance C of all neurons is C = 10pF , which corresponds to a density of

1.0µF/cm2 for a total surface area of 10−5cm2. The terms INa, IKf , IKs and ICa rep-

resent transmembrane currents mediated by different ions, respectively: non-specific

leak, sodium, fast potassium, slow potassium and calcium. The terms and represent

the summed inputs from chemical synapses (Isyn) and gap junctions (Igap), while Iext

is an external source of injected current. Although the different neuron types in the tad-

pole spinal cord have different electrophysiology, for simplicity we use the model of a

motoneuron from for most model neurons, as this shows characteristics (e.g. repetitive

firing in response to injected current) that are broadly shared by all of the neuron types.

The exception to this is dINs, which have special properties such as only firing a sin-

gle spike in response to current injection and the ability to fire post-inhibitory "rebound"

spikes. Model dINs differ from non-dINs in the following ways:

• Parameter values governing membrane properties are different (Tables 2.2 and

2.1).

• Only dINs contain a calcium current. For non-dINs, we set Ica = 0.

• Only dINs make gap junction connections (and only with other dINs).
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glk elk gNa eNa gKf eKf gKs eKs

dIN 1.4 -52 240.5 50 12 -80 9.6 -80
non-dIN 2.47 -61 110 50 8 -80 1 -80

Table 2.1: Maximal conductance (in nS) and equilibrium potential (in mV) of each ionic
channel in the model neurons.

dIN/others Rates A(ms−1) B(ms−1mV−1) C(-) D(mV) E(mV))
Ca αr 4/- 0/- 1/- -15.3/- -13.6/-

if v < −25 βr 1.2/- 0/- 1/- 10.6/- 1/-
if v > −25 βr 1.3/- 0/- 1/- 5.4/- 12.1/-

K-fast αf 5.1/3.1 0.1/0 5.1/1 -18.4/-27.5 -25.4/-9.3
βf 0.5/0.4 0/0 0/1 28.7/9 34.6/16.2

K-slow αs 0.5/0.2 8.2e−3/0 4.6/1 -4.2/-3 -12/-7.7
βs 0.1/0.05 -1.3e−3/0 1.6/1 2.1e5/-14.1 3.3e5/6.1

Table 2.2: Parameters defining the rate functions of the model neurons rounded to
the first decimal digit for dINs and all other neuronal types in the functional
connectome model (- sign indicates that the cell type has no contribution of
the specific channel variable, units of measures are given in the first row of
each parameter; parameter C is dimensionless.

Membrane Channels

The leak, sodium and potassium channel currents are given by the following equations:

Ilk(v) = ḡlk(v − elk)

INa(v) = ḡNahm
3(v − eNa)

IKf (v) = ḡKfn
4
Kf (v − eK)

IKs(v) = ḡKsn
2
Ks(v − eK)

The parameters elk, eNa and eK give the reversal potential for the leak, sodium and

potassium channels respectively, and the parameters ḡlk, ḡNa, ḡKf and ḡKs give their

maximum conductances (these parameter values are given in 2.1). The gating variables
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h, m, nf and ns are governed by equations 2.2-2.5, where X = h,m, nf , ns.

τX(v) = (X∞(v)−X) (2.2)

X∞(v) = αX(v)(αX(v) + βX(v))−1 (2.3)

τX(v) = (αX(v) + βX(v))−1 (2.4)

αX(v), βX(v) =
A+Bv

C + exp((D + V )/E)
(2.5)

The values of the parameters A, B, C, D and E in the functions were taken from Sautois

et al. [2007] for non-dINs and from Roberts et al. [2014] for dINs, and are shown in

table 2.2. As in Roberts et al. [2014], model dINs contain a calcium-mediated current

which is modelled according to the Goldman-Hodgkin-Katz equation. This current is

calculated as:

ICa(v) = hCapCazFx
Sin − Soutexp(−x)

1− exp(−x)

x =
zFv

RT

Here, pCa is the permeability of the membrane to calcium ions (analogous to maximum

conductance) and z is their ionic valence (+2). Sin and Sout are the concentration of

calcium in and outside of the cell, respectively. F is Faraday’s constant, and R is the

ideal gas constant, while T is the temperature in Kelvin. Parameters of the calcium

current are pCa = 14.25cm3/ms, F = 96485C/mol, R = 8.314J/(K ·mol), T = 300K,

Sin = 10−7mol/cm3, Sout = 10−5mol/cm3. Finally, hCa is the gating variable associated

with the calcium current, which is governed by the standard gating equations 2.2-2.5

- although note from table 2.2 that two different sets of parameters are used for this

equation based on whether the membrane potential is above or below -25mV.

Synaptic Currents

The probabilistic and anatomical connectomes provides detailed information on con-

nectivity in the spinal cord - specifically a list of synaptic connections between neurons.

We use this information to build a functional model that simulates the spiking activity of
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all the swimming network. This allows us to study one of the fundamental problems of

neuroscience: the relationship between connection structure and functionality.

The synaptic current that arises in a neuron is the combination of three different sub-

types of synaptic receptor: excitatory AMPA and NMDA and inhibitory glycine:

Isyn = Iampa + Inmda + Iinh

Each synaptic current is calculated using the following equation, whereX = ampa, nmda, inh:

IX =
∑
j

ḡXi,jfX(vi)
∑

s∈Sj(t)

∆X(exp((s+ δi,j − t)/τXc )− exp((s+ δi,j − t)/τXo ))

Here, ḡXi,j is the maximum conductance ("strength") of synaptic connection of type X

from neuron to neuron . If the connectome does not include a connection from i to j

then ḡXi,j = 0, otherwise it is selected according to the type of the pre- and post- synap-

tic neurons, based on paired recordings. Pre-synaptic neuronal type determines the

synapse type X. Inhibitory neuron types are cIN and aIN; excitatory ones are the re-

maining cell types. The synaptic strengths used in the model are typically the ones

given in table 2.3, except for few values that were modified to match the physiology

of neurons and synapses (details are given in [Roberts et al., 2014]). Specifically, the

maximal conductance of AMPA synapses from RBs to dli neurons are set to 8nS, the

maximal conductance of AMPA synapses from dINs to aINs are set to 0.1nS, the maxi-

mal conductance of NMDA synapses from dIN to dINs are set to 0.1nS, and the maximal

conductance of NMDA synapses from dlc to dINs are set to 1nS (to guarantee the start

of swimming on the unstimulated side). The set Sj(t) contains the times of all the spikes

that neuron j has fired up to the current time t. Each spike generates a post-synaptic

current (PSP) that rises according to the time constant τXo and decays according to τXc .

The normalising constant ∆X is set such that the peak of the sum of the exponential

is 1, meaning that following a spike the conductance rises to a maximum of ḡXi,j . The

values selected for the time and normalising constants are given in 2.3 and they are
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X NMDA AMPA INH
τXo (ms) 0.5 0.2 1.5
τXc (ms) 80 3 4

∆X (-) 1.25 1.25 3.0
EX (mV) 0 0 -75
gX (nS) 0.29 0.593 0.435

Table 2.3: Parameters of the synaptic models.

based on previous modelling [Roberts et al., 2014]. To mimic synaptic strength variabil-

ity, Gaussian noise with standard deviation 5% of the mean was added to the maximum

conductance of each individual synapse.

The synaptic delay between two neurons, δi,j , consists of a constant and distance-

dependent part:

δi,j = δC + δD|Pi − Pj |

Here, Pi and Pj are the positions of neurons i and j along the rostro-caudal axis, δC is

the constant delay and δD is the speed of synaptic transmission. We set δC = 1ms and

δD = 0.0035ms/µm. Finally, the function determines how the synaptic current depends

on the post-synaptic voltage. For AMPA and inhibitory synapses this has a simple linear

(Ohmic) form:

fX(v) = EX − v

WhereX = ampa, inh andEX is the equilibrium (reversal) potential of the synapse type

(2.3). As a result of magnesium block, NMDA synapses have an additional non-linear

voltage dependence, which we include by adding a sigmoidal scaling term to :

fNMDA(v) = (Enmda − v)(1 + 0.05 · exp(−0.08 · v))−1

Gap Junctions

As mentioned above, descending interneurons (dINs) are electrically coupled to other

nearby dINs via gap junctions. The gap junction current is calculated using a simple
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Ohmic relationship:

Igj =
∑
j∈Gi

ḡgj(vj − vi)

Here Gi is the set of indexes of all dINs that are on the same side of the body as

neuron i and are located within Dgj of neuron on the rostro-caudal axis, where we set

Dgj = 100µm. The parameter ggj = 0.2nS gives the conductance of gap junctions.

2.2.4 The neuronal dynamics during swimming and synchrony

Hatchling Xenopus tadpoles spend the majority of their lifetime attached under the sur-

face of the water or attached onto solid object using its cement gland. When the skin of

the animal is touched or the light dims, the tadpole starts to swim. A swimming episode

typically stops spontaneously after minutes, during which the neurons generate a pat-

tern of antiphase oscillations between left and right sides with a frequency of 10-25Hz.

Some of these neurons activate the rhythmic contraction of muscles that enable the

animal to swim. It is also possible that the tadpole suddenly bumps into a solid object.

When this happens, swimming terminates prematurely.

In neurobiological experiments, tadpoles are immobilised using a neuromuscular blocker

(α-bungarotoxin). The activities of the neurons in the swimming circuit have been stud-

ied intensively using whole cell recordings collected over many years combined with

simulations of the functional model. These studies gave us a detailed picture of the

dynamical properties of the different neuronal types and their role during swimming.

Some of these features appear to be critical for the generation of swimming activity,

such as the ones related to dINs. Analysis of dINs’ recordings highlighted some unique

properties (properties 1-5) that can be summarised in the following points [Soffe et al.,

2009, Koutsikou et al., 2018, Li et al., 2009, Dale, 1995, Li et al., 2006]:

1. The firing of dINs precedes and drives the firing of all other CPG neurons and

mns at each swimming cycle via synaptic excitation.

2. The simultaneous activation of single dINs by electrical stimulation is likely to trig-

ger the start of a swimming episode.
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Figure 2.2: Visualisation of the dynamics for neurons of different types. Colours follow
the standard coding of 2.1.
A. Each panel shows the voltage dynamics of one representative neuron
of each type during a single simulation of the functional connectome, from
Roberts et al. [2014]. 2 Stimulations of two left RBs (arrow) trigger a stable
pattern of anti-phase oscillatory activity between the left-right sides. B.
Schematic diagram showing the time of spiking and synaptic transmissions
events t1, t2, ... happening during the swimming episode shown in panel A
(time is not on scale). Coloured dots represent spikes. Connectivity lines
indicate the key synaptic connections activated during each time event and
promoting the rhythm. NMDA synapses are shown by dotted black arrows.
The other connections indicate excitatory and inhibitory synapses as in
Figure 2.1C. For more details, see the text.

3. dINs can spike on post inhibitory rebound (PIR) if their membrane potential is

sufficiently high.

4. They can only fire at most one spike in response to positive current injection (thus

exhibiting the "Class 3" excitability).

5. They are recurrently coupled via both excitatory glutamatergic synapses and elec-

tric coupling (gap junctions). These connections excite and promote the syn-

chronous firings of the dIN population on each side during every swimming cycle.

Next, we will briefly describe the results from one simulation of the functional model,

where model dINs incorporate the special properties described above. These simula-

tions can partially reproduce the activities of neurons of each type during one episode
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of swimming.

Figure 2.2 A and B clarify the mechanisms leading to the start and the continuation of

swimming oscillations in the functional model, by describing the sequence of spiking

and synaptic events from the stimulations of the skin to the establishment of the swim-

ming rhythm. Panel A shows the voltage activities of one representative neuron per

type from a typical random simulation of the functional connectome. Panel B shows a

schematic diagram explaining the sequence of spiking events and synaptic transmis-

sions t1, ..., t7 leading to the establishment of the swimming oscillatory dynamics (see

next paragraphs). For more details on panel A see Roberts et al. [2014].

To mimic the skin touch or stimulation, two left RBs are injected with brief depolarising

current at time t = 0, which ultimately leads to the left-right antiphase oscillatory firing of

motor neurons, which is defined as "swimming". Stimulation causes RBs to fire a single

spike each at t = t1, which activates most dlas and dlcs on the left side at t = t2. These

dlcs activate most right dINs at t = t3 (property 4), which fire at most one spike each

(property 4) in a synchronous fashion (property 5). Right dINs release NMDA currents

which sets their voltage at high voltage levels. The summed excitation of these dINs

causes single and synchronous bombarding of most right CPGs at t = t4, including

cINs (but not aINs, property 1). Right cINs inhibit left dINs and causes them to spike on

PIR at t = t5 (see note 1 below). After spiking, left dINs fire synchronously, releasing

NMDA in their population and activating most left CPGs at t = t6. At this time, left cINs

inhibit right dINs and cause them to fire on PIR at t = t7 (property 3). After t = t7, the

same process repeats like in the previous cycle and a stable pattern of anti-phase CPG

oscillations appears (2.2).

Note 1: dla firings at t = t2 releases NMDA currents into dINs at t = t2, which enables

their PIR spiking at t = t5 (property 3).

Note 2: In this simulation synapses from dlcs were made stronger than the ones from

dlas (see above) in order to start swimming oscillations on the unstimulated side. Ex-
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changing these strengths results in the start of swimming on the stimulated side (for

more details, see [Roberts et al., 2014]) and leads to a similar dynamics.

2.2.5 An overview of the sensory pathways

In tadpoles there are four sensory pathways which respond to the input signal from the

external environment. These pathways activate in response to sensitive, mechanical

or light stimuli and integrate these signals in the neuronal circuit to make movement

decisions. Sensory cells in each of these pathways are responsible for the integration

and they are located in different positions in the body. Here is an overview of the sensory

pathways and cells, and of their role:

• Skin touch - The whole body surface is innervated by sensory RB neurons in the

spinal cord [Roberts, 1980, Clarke et al., 1984] located under the skin [Boothby

and Roberts, 1995]. The skin is excitable and propagates a single action poten-

tial when stimulated anywhere on the spinal cord [Roberts et al., 2010, Roberts,

1969], which can initiate swimming.

• Head touch - The head is innervated by sensory neurons in the trigeminal ganglia

located under the skin [Roberts, 1980, Buhl et al., 2012, 2015]. Similar to the skin

touch pathway, the touch of the head propagates single action potential when

stimulated and can lead to the initiation of swimming.

• Pineal eye - Tadpoles have a pineal eye that is excited by light dimming [Foster

and Roberts, 1982, Roberts, 1978]. Dimming of the light can lead to the initia-

tion of swimming [Jamieson and Roberts, 2000]. If the light is dimmed when the

tadpole is moving, swimming accelerates and the animal turns upward moving

spirally towards the water surface [Jamieson and Roberts, 1999, 2000, Roberts

et al., 2000]. Once it reaches the surface, the animal stops and attaches to it

[Boothby and Roberts, 1992].

• Head Pressure - Sensory neurons innervate the head skin and cement gland

and they are excited by mechanical pressure of the head, such as when tadpoles
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bump into objects. This leads to the termination of swimming behaviour [Roberts

and Blight, 1975, Roberts, 1980, Perrins et al., 2002].

In this thesis we study tadpoles that at the developmental stage 37/38. At this stage

tadpoles have lateral eyes, but they do not seem to influence their behaviour. Little is

known about the function of the nose in olfaction, the inner ears, sense of balance and if

reflexes can be activated by Mauthner neurons [Roberts et al., 2010]. However, Mauth-

ner neurons are present [Van Mier and Ten Donkelaar, 1984] and it has been suggested

that they can drive trunk flexions in young larvae [Sillar and Robertson, 2009]. We there-

fore concentrated on these mechanical and light stimuli, because enough experimental

evidences are known to model the corresponding pathways.

2.2.6 Synchrony in the functional model

As we previously described, a "normal" swimming behaviour is controlled by anti-phase

activity of CPG neurons and muscle contractions between the two body sides. How-

ever, a puzzling observation that is rarely seen in experimental recordings is that the

activity on both sides of the tadpole’s body can show transient synchrony bouts, with

CPG neurons and muscle active in-phase on both sides [Kahn and Roberts, 1982a,b,

Soffe et al., 1984, Li et al., 2014a]. This synchronous firing has double the frequency

of swimming and occurs more frequently at the beginning of a swimming episode. Fig-

ure 2.3 shows dIN and MN activity during synchrony and swimming. It is somewhat

remarkable that the same very simple network can generate two different patterns of

oscillatory activity, and we will use a computational model to investigate the conditions

and mechanisms of synchrony in chapter 4.

2.3 The structure and function of the basal ganglia

In this section, we mainly review previous models related to the study of the basal gan-

glia and, in particular, action selection. Our aim here is to highlight that principles

of neuronal oscillations and synchronisation are considered to be critical aspects of

the general functioning of this circuit. A more systematic and complete review of the
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Figure 2.3: Pairwise recordings from a right dIN and left mn during following stimula-
tion of the trunk skin. For an initial period of time (blue time line), activities
of both neurons are locked in in-phase oscillations (synchrony). This is
followed by a second time period (fuchsia time line), where the same ac-
tivities are in anti-phase. Note how the frequency of synchrony is double
that of swimming, and that dIN period becomes aperiodic in the transition
from synchrony to swimming.

anatomy and function of the BG can be found in our published book chapter Merrison-

Hort et al. [2017], with a particular emphasis on the role of deep brain stimulation for

treating Parkinson’s disease.

The basal ganglia (BG) are a group of subcortical nuclei in the brain of vertebrates

which are thought to play a role in movement generation and action selection [Redgrave

et al., 1999]. Oscillatory neuronal activity in the BG is the focus of much research, since

many studies have shown that increased oscillatory synchronisation, particularly in the

β band (10-30 Hz) is linked to the motor symptoms of Parkinson’s disease [Joundi et al.,

2012]. There are a number of reasons why widespread pathological oscillations may

cause motor deficits, for example they may impair the ability to relay information [Mallet

et al., 2008]. It has also been proposed that, in health, sporadic beta oscillations act as a

global signal for maintenance of the current motor activity [Jenkinson and Brown, 2011].

For example, Hutchison et al. [2004] put forward the hypothesis that beta oscillations are

enhanced in Parkinson’s disease and prevent the generation of voluntary movements.

As well as these pathological oscillations, however, it has been proposed that oscilla-

tions may play a functional role in the physiological BG [De Lau and Breteler, 2006].

Previous works showed that the BG may be organised into multiple parallel "channels"
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[Joundi et al., 2012, Merrison-Hort et al., 2013], with each channel corresponding to

actions and/or body regions and/or specific muscles. These channels are believed

to be organised both topographically and by frequency of oscillations [Alexander and

Crutcher, 1990, Williams et al., 2002]. In a previous population-level modelling study

it was shown that oscillations can be generated within the BG if they are considered

as a set of weakly coupled parallel channels [Jankovic, 2008]. In the context of ac-

tion selection, these channels must be coordinated to resolve the competition between

different motor outputs [Chersi et al., 2013, Redgrave et al., 1999]. We will discuss

this in chapter 6, where we propose a model of the mechanism of action selection in

a sub-network of the BG formed by neurons in the subthalamic nucleus (STN) and in

the internal part of the globus pallidus (GPi). In our model, activation of GPi groups

represents the activation of a combination of BG channels representing an action.

There are several hypotheses related to synchronization of neural activity for explain-

ing how these oscillations might appear and lead to the network function/dysfunction.

Results reported in Bar-Gad et al. [2004] showed a complex phase-locking synchro-

nisation between a stimulus and its response in most neurons in the globus pallidus.

Some neurons increased their firing rate but the majority of neurons displayed partial

inhibition during the stimulus train. The activities of simultaneously recorded neurons

display rate correlation but no spike-to-spike correlation. In vivo experiments in epilep-

tic and Parkinsonian rats show that BG neurons acts as self-sustained oscillators and

can partially synchronise to external periodic stimuli [Velazquez et al., 2015]. Moreover,

cortical input appears to be synchronised to neurons in the BG and contributes to gen-

erating oscillations. For example, oscillations in the STN-GPi network have been shown

to be phase-locked to the cortical modulatory input and are abolished under transient

inactivation of this cortical input [Magill et al., 2000]. Other experiments have shown that

oscillations in Parkinsonian rats are also modulated by cortical rhythms [Magill et al.,

2001].

Although significant progress has been made towards our understanding of how the
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BG controls movements, many questions remain unanswered. Models have attempted

to answer many of these questions, including the mechanisms that lead to pathological

activities in PD and the restoration of physiological activity via deep brain stimulation.

Network models of the BG can be divided into essentially two classes:

• Spiking models, in which equations represent the activity of individual neurons,

possibly within one or more synaptically coupled populations.

• Models of interactive nuclei, where each nucleus (or population of neurons) is

described by averaged population-level equations.

Here, we will briefly review these two approaches to computationally modelling neuronal

activity, and describe how each has been applied to the study of the BG.

Probably the most well-known computational model of the BG is that of Terman et al.

[2002]. This is a conductance-based spiking model of the interconnected subthalamic

nucleus and globus pallidus, where each neuron is of single compartment Hodgkin-

Huxley type, with a (simplified) set of ion channels chosen to represent the main elec-

trophysiological features of the neurons in each nucleus. This model was used to in-

vestigate the emergence of different patterns of spiking behaviour, such as rhythmic

bursting, under conditions of simulated Parkinson’s disease. In a later paper the model

was improved with parameter changes and the addition of thalamo-cortical relay neu-

rons, and this revised model was used to consider the effects of deep brain stimulation

on the activity in the network [Rubin and Terman, 2004]. A more advanced single com-

partment model of 500 neurons within the BG network was built by McIntyre and Hahn

[2010], and was similarly used to investigate the effects of STN. These models have

many advantages: since they are built of reasonably biologically-realistic conductance-

based neurons, their outputs can be easily compared with electrophysiological data,

and because they consist of networks of such neurons they can be used to exam-

ine how different patterns of synaptic connectivity produce different outputs. However,

these models do not make use of any anatomical information about the spatial distribu-
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tion of their constituent neurons. This limits their utility for studying the effects of spa-

tially heterogeneous stimulation, such as deep brain stimulation, and makes it difficult

to compare the results of simulations with spatially averaged experimental recordings,

such as local field potentials.

A well-known larger scale spiking model of the BG is that developed by Humphries et al.

[2006a]. This model comprises 960 spiking neurons across five BG nuclei, where each

nucleus is divided into three parallel "channels". Each neuron in the model is based on

the leaky integrate-and-fire formalism, with additional currents added to neurons in each

sub-population to better reflect their physiological behaviour. Although the model does

not contain any synaptic plasticity mechanisms, and cannot therefore exhibit learning, it

is able to demonstrate robust selection of outputs based on simulated cortical input, in

line with the proposed action selection role of the BG. Furthermore, this model is able to

reproduce a number of experimental characteristics of the BG under both healthy and

parkinsonian conditions. Chersi et al. [2013] developed a model that is similar to that of

Humphries et al. [2006a], but with the addition of cortical and thalamic populations and

a much larger number of neurons: 14,600 in total. These neurons are also of the leaky

integrate-and-fire type, and are similarly organised into distinct channels. The main

improvement in this model is the addition of spike timing dependent plasticity (STDP).

Chersi and colleagues claim that their model may represent how the BG are able to

facilitate learning of habitual motor responses to sensory input, and they demonstrate

this by showing that a "virtual primate" is able to learn to perform a simple behavioral

task when driven by the model.

The circuit formed by the reciprocally connected subthalamic nucleus (STN) and globus

pallidus (GP) has been particularly well studied using models of interactive nuclei at the

population level of modelling [Willshaw et al., 2002, Merrison-Hort et al., 2013, Holgado

et al., 2010, Nevado-Holgado et al., 2014] as this circuit has been hypothesized to act

as a neuronal pacemaker that generates pathological rhythms in Parkinson’s disease.
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Taking inspiration from these models, we will also consider this pacemaker property in

our model of the STN neurons in chapter 6. The advantage of relatively simple math-

ematical models such as these is that they permit detailed mathematical analysis of

the network, which can be used to determine, for example, the conditions under which

oscillatory activity can occur. Another advantage of averaged models is that because

they are computationally straightforward to simulate and typically have only a small

number of parameters, they can be used alongside optimisation techniques in order to

fit experimental measurements, such as average spike rates. This allows macroscopic-

scale characteristics of the network, for example the relative overall synaptic connec-

tion strengths between populations, to be determined [Nevado-Holgado et al., 2014].

However, since these models are averaged over time and often represent the activity of

many neurons as a single equation, they are unable to address many questions that are

likely to be very important for understanding BG (dys)function. For example, averaged

models cannot be used to study the information carried by precise spiking patterns, or

to unravel the role played by the circuits formed between neurons of the same nucleus.

44



Chapter 3

A probabilistic model of neuronal connec-

tivity in the Xenopus tadpole spinal cord

In this chapter we use computational models to clarify the relationship between the
structure and function of a neuronal circuit. Although, in most animals, this connectiv-
ity varies between individuals, behaviour is often similar across a specie. What fun-
damental structural properties are shared across individual networks that define this
behaviour? We describe a probabilistic model of connectivity in the hatchling Xeno-
pus tadpole spinal cord which, when combined with a spiking model, reliably produces
rhythmic activity corresponding to swimming. The probabilistic model allows calcula-
tion of structural characteristics that reflect common network properties, independent
of individual network realisations. We use these characteristics to study examples of
neuronal dynamics, in the complete network and various sub-networks, and this al-
lows us to explain the basis for key experimental findings, and make predictions. We
also study how structural and functional features differ between detailed anatomical
connectomes and those generated by our new, simpler, model.

Information processing in the brain is based on the communication between spiking

neurons that are embedded in a network of synaptic connections. Clarifying the in-

terplay between network connectivity and functionality is a key part of understanding

how the brain generates functional behaviours [Sporns et al., 2005, Marder and Cal-

abrese, 1996, Newman, 2003]. Studying this relationship is difficult because nervous

system connectivity usually varies considerably between individuals. Despite this vari-

ation each individual behaves in approximately the same way, especially in the case of

simple animals. This commonality of behaviour suggests that there are some funda-

mental organisational principles that underlie the structure of a species’ nervous system.

How can we identify these fundamental properties that are shared across individuals

and allow the nervous system to function correctly?
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In this chapter we attempt to answer this question in the case of the hatchling Xenopus

tadpole. Whole cell recordings and anatomical measurements of neurons, combined

with computational modelling, have uncovered many important details regarding the

neuronal network that controls swimming in hatchling tadpoles [Roberts et al., 2010,

2014].

We describe a new probabilistic model of connectivity, which is generalised from a large

number of connectomes generated by the anatomical model (see chapter 2). This prob-

abilistic model is a matrix that specifies the probability of connection between each pair

of neurons. Being derived frommultiple biologically realistic (anatomical) connectomes,

the probabilistic model reflects the anatomical structure of the biological system. An im-

portant advantage of the probabilistic model is that it is simple enough that we can anal-

yse the properties of the model itself, rather than individual connectome realisations.

We use the probabilistic model to calculate structural properties of the tadpole network.

These results are general, and therefore should reflect the fundamental organisational

principles that we aim to uncover here.

A potential advantage of the probabilistic model is that it can be used to easily gener-

ate connectome realisations by sampling from the probability matrix, without detailed

simulation of neuronal growth. This enhances its potential value as a tool for studying

the functional properties of the network when combined with an appropriate physiolog-

ical model. Multiple functional simulations of probabilistic connectomes demonstrated

a reliable pattern of rhythmic activity, qualitatively like tadpole swimming and as seen

in previous modelling [Roberts et al., 2014]. Thus, the generalised probabilistic model

shares structural and functional properties with the real biological object.

A common approach for studying the relationship between the structure and function of

neuronal networks is to use methods from graph theory, a branch of mathematics that

applies to a variety of scientific fields, including linguistics, sociology, physics, biological

and neural sciences [Newman et al., 2002, Albert and Barabási, 2002]. These methods

are increasingly used to study connectivity of different neuronal networks [Bullmore and
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Sporns, 2009, Kaiser, 2011, Rubinov and Sporns, 2010, Bassett and Sporns, 2017]: C.

elegans [Varshney et al., 2011, Kaiser and Hilgetag, 2006], vertebrate systems [Stobb

et al., 2012], cat and macaque cortical structures [Sporns et al., 2007, de Reus and

van den Heuvel, 2013, Humphries et al., 2006b].

In this chapter some of these measures are discussed and applied to analyse and com-

pare the tadpole connectome with the ones of other animals. By combining these mea-

sures with the functional model, we show that the neuronal connectivity in the tadpole

has some specific structural features, and we suggest how this specificity relates to its

swimming behaviour. For example, we found that the network has an abundance of

reciprocal connections and we demonstrate the importance of these connections by

showing how, by removing them, the network is not able to reproduce normal patterns

of swimming oscillations.

The comparisons with other animals show interesting similarities and differences. For

example, similar to theC. elegans connectome [Varshney et al., 2011, Kaiser and Hilge-

tag, 2006], the tadpole connectome has low density, low average path length, high ro-

bustness, modular organisation, minimal number of long distance connections and the

same overrepresented motifs - including feed-forward loops. Differently from C. ele-

gans and other animals, we found that the overrepresented motifs in the tadpole and

zebrafish spinal connectomes are more similar to null-model networks possessing a

random rather than ring-like topologies. In the case of tadpoles, we also demonstrate

that the network is not of the small-world type [Watts and Strogatz, 1998]. Overall,

these comparisons suggest that graph measures describe properties of each specific

neuronal circuit, and should therefore be used with care. In tadpoles, we both speculate

and demonstrate using simulations a possible functional role of each of this measures.

It was shown that the C. elegans connectome is also heterogeneous and has a hub

structure [Towlson et al., 2013]: most neurons have a low number of connections but

there are several highly connected "hubs". Hubs have been identified in many brain

networks [Achard et al., 2006, Eguiluz et al., 2005], they are likely to be formed at an
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early stage of development [Varier and Kaiser, 2011] and are thought to be critical to

guarantee the robustness of the network [Albert et al., 2000, Barabási and Albert, 1999].

However, not all brain circuits have hubs; for example, they have not been found in the

brainstem reticular formation [Humphries et al., 2006b] or zebrafish nervous system

[Stobb et al., 2012]. Using the probabilistic model, we estimate the heterogeneity [Hu

and Wang, 2008, Estrada, 2010] and connection degree distributions [Barabási and

Albert, 1999, Sporns et al., 2007, Varshney et al., 2011] of the tadpole’s spinal cord

network. We found that the generalised tadpole network is not scale-free and that hubs

do not exist; therefore in this respect the generalised tadpole network differs from the

C. elegans connectome.

When comparing the simulations of the functional model using anatomical and prob-

abilistic connectomes, we found some quantitative differences. These differences re-

vealed that caution is required to avoid pitfalls when employing the probabilistic ap-

proach to study real biological activity. Specifically, we found the variance in the num-

ber of incoming connections (in-degree) or out-going connections (out-degree) of each

neuron is higher in anatomical rather than a probabilistic connectomes. As a result

of this finding, we observed that the period of the rhythm was longer in probabilistic

connectomes. We can explain why the generalisation process affects the swimming

period, and show how it is possible to accurately predict the period of swimming using

only structural properties of the connectome. We then show how, by making suitable

parameter adjustments, we canmatch the functionality of the probabilistic connectomes

to that of the animal and anatomical connectomes. This makes it possible to use the

probabilistic approach as a tool for studying real biological activity as well as fundamen-

tal structural properties of networks.

Despite the differences between anatomical and probabilistic models, we demonstrate

several important advantages of using the probabilistic model in comparison to the

anatomical one. For example, we could predict the position of commissural interneu-

rons (cINs) that are active during swimming, which cannot be explained by the anatomi-
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cal model. Specifically, our simulations show that cINs in rostral positions are less likely

to fire reliably than those in caudal positions. Moreover, the probabilistic model allowed

us to easily design new computational experiments that helped to clarify the following

experimental findings.

By studying the connectivity of CPG neurons specifically, we show that the minimal

swimming subnetwork includes neurons of two types: inhibitory commissural interneu-

rons (cINs) and excitatory descending interneurons (dINs). Similar to experiments with

the surgically isolated half semi-CNS [Soffe, 1989], we found that the network of in-

terconnected dINs on one body side could still generate rhythmic activity even without

commissarial inhibition. It is known from experimental measurements that some dINs

have both descending and ascending axons [Roberts et al., 2010]. Our simulations of

the model without ascending dIN axons show that the ascending connections play a

key role in swimming and their deletion leads to pathological activity.

To summarise, in this chapter we design a simple probabilistic model (meta-model)

which reflects some structural features of anatomical connectomes. We also show that

it can be used to study how these features relate to real behaviour by making suitable

adjustments in synaptic strengths. We consider this investigation of the tadpole spinal

cord as an important example of a technique that can be widely applied to study the

nervous system of other animals.

3.1 Derivation of the probabilistic connectivity model

The probabilistic connectivity model is derived from multiple connectomes generated

by our existing anatomical model: a developmentally-inspired model which is biologi-

cally realistic and incorporates a large number of biological measurements [Borisyuk

et al., 2014, Li et al., 2007a, Borisyuk et al., 2011]. The anatomical model simulates

axon growth guided by chemical gradients, with model parameters that are chosen

by fitting the generated axons to experimental measurements. As the growing axons

intersect dendrites, which are allocated along the body according to experimental mea-

surements, synapses form and make connections between neurons. Here we explain
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some details of the anatomical model that are important for understanding the new

probabilistic model (for more details about the anatomical model, see the Introduction).

The anatomical model includes N=1382 neurons of the seven types known to gener-

ate the swimming response. The network is divided between neurons in the sensory

pathway (RB, dlc and dla), CPG neurons (dIN, cIN and aIN), and output motor neurons

(mn). Sensory pathway neurons deliver sensory stimulation to CPG neurons. CPG

neurons are responsible for the generation and maintenance of the swimming activity

pattern. Motor neurons (mn) deliver CPG output to muscles and generate locomotion.

The model is simplified by fixing the number of cells for each neural type, with neurons

of each type equally divided between the left and right body sides (Table 3.1). Simula-

tion of the anatomical model results in a network with approximately 83,000 synapses

on average. For a full description of the anatomical model and its implementation, see

[Borisyuk et al., 2014, Roberts et al., 2014].

Importantly, the anatomical model includes stochastic components, so repeatedly run-

ning the model produces different connectomes with different numbers of connections

and connection distributions. In particular, rostro-caudal coordinates of neurons can

vary between connectomes. However, since the number of neurons of each type is

kept constant it is possible to find a one-to-one correspondence between any two gen-

erated connectomes. First, we ordered the cell types (RB, dla, dlc, aIN, cIN, dIN, mn)

and second, for each cell type we ordered neurons of that type according their longi-

tudinal position (or the rostro-caudal (RC) coordinate) in ascending order from head to

tail. For example, in any connectome neuron #1 is the most rostral RB neuron on the

left side of the body, while neuron #62 is the most caudal left-side RB ; neurons #63-

126 are the right-side RB neurons; neurons #127-146 and neurons #147-174 are the

dla neurons on the left and right sides respectively, etc. This ordering of cells is univer-

sal and does not depend on a particular connectome; therefore, we can enumerate all

neurons in a universal way, providing a one-to-one correspondence between generated

connectomes.
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RB dlc aIN cIN dIN mn dla
nuumber of cells 126 104 136 384 236 338 58

Table 3.1: Number of cells for each neural type in the connectome model

To define the probabilistic model we used the universal enumeration of neurons and

considered the matrix of probabilities P = (pi,j) where pi,j is the probability that there

is a synaptic connection from neuron i to neuron j. Here N=1382 is the total number of

neurons. We defined the random Bernoulli variable Xi,j ∈ 0, 1 where Xi,j = 1 means

that there is a directed connection from i to j and the probability Pr(Xi,j = 1) = pi,j . To

calculate an estimate of this probability (p̂i,j), we generated K=1000 connectomes and

calculated the frequency of appearance of this directed connection: p̂i,j = M
K , where

M is the number of connectomes with a connection from neuron i to neuron j. The

RC-coordinate of each neuron is defined by the averaging the RC-coordinates across

the K generated connectomes. The central limit theorem provides the error estimation

of each entry of the probability matrix pi,j : the length of the binomial confidence interval

with 95% confidence is given by ei,j ≈ 2 1.96√
M

√
p̂i,j(1− p̂i,j). The maximum of this error’s

estimate corresponds to p̂i,j = 0.5, therefore, maxi,j(ei,j) ≈ 0.06.

The probabilities of directed connections between all neurons of the swimming network

are shown in Figure 3.1A. All probabilities are between p̂i,j = 0 (no connections) to

p̂i,j = 0.69. To visualise these probabilities we use a colorscale, where white colours

correspond to p̂i,j = 0, blue and red colours correspond to high inhibitory and excitatory

connection probabilities, respectively. Note: here and below we use the same notation

p̂i,j for both the probabilities and their estimates.

As an example, 3.1B shows the sub-matrix corresponding to aIN-aIN inhibitory con-

nections. There is a white diagonal line which results from the fact that neurons cannot

make connections with themselves. In fact, similar almost-diagonal lines can be seen

in all of the other sub-matrices due to a feature of the growth model that prevents neu-

rons contacting very nearby neurons. Close to the diagonal line in 3.1B the shading is

very bright, but this fades to blue away from the diagonal. This results from the fact that
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the probability of two neurons being connected decreases with the distance between

them. For aINs, the shading is brighter below the diagonal line, which reflects the fact

that their axons are mainly in the ascending direction, making a given aIN more likely to

contact aINs that are located more rostrally. While the aIN-aIN example is relatively sim-

ple to understand, neurons with more complicated growth patterns have sub-matrices

with more complex structure - for example in the case of dIN-dIN connections. The

matrix P can be used to generate a specific adjacency matrix of directed connections

(connectome) A = (ai,j), where ai,j ∈ {0, 1} and ai,j = 1 indicates existence of the con-

nection from neuron i to neuron j. This matrix A is a particular realisation of indepen-

dent Bernoulli variables. We then used these specific adjacency matrices ("probabilistic

connectomes") to explore their functional properties by mapping the connectomes onto

our functional model to study the spiking activity in the swim network in response to

stimulation.

3.2 Graph theory methods

We assume that a structure of the neuronal network is represented by a graph, which

includes units (nodes) and connections (edges). In our study of tadpoles, nodes repre-

sent neurons and edges represent directed synaptic connections from an origin node

to a destination node. We do not consider a connection from the node to itself. We

can order nodes in the graph according to indexes j = 1, ..., N , where N is the total

number of nodes. In fact we do not distinguish between graphs and networks and use

both terms.

A tadpole connectome (anatomical or probabilistic) can be represented as a binary ad-

jacency matrixA = (aij), where aij=1 indicates the presence of a connection from node

i to node j, and aij = 0 indicates the absence of such connection. The probabilistic

matrix of connectivity P shown in 3.1 is a weighted graph P = (pij), where pij is the

probability of directed connection from node i to node j.

Equivalently, a graph G can be considered as a pair of two sets: G = (V,E), where V

is the set of N nodes and E is the set of edges. Elements of E are direct connections
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Figure 3.1: Visualisation of the probability matrix P. A. Image representation of the
complete matrix P = (pi,j), where the intensity of the pixel in row i and
column j represents the value of the probability pi,j . White intensity corre-
sponds to connection probability zero and blue/red intensity corresponds
inhibitory/excitatory connection with probability one. Rows and columns
corresponding to neurons of each of the seven types are separated by solid
green lines. These lines separate the matrix into symmetrical sub-blocks.
Within each sub-block vertical and horizontal dotted lines separate the left
body side (top rows and left columns) from the right body side (bottom rows
and right columns). In each sub-block neurons are ordered according to
increasing rostro-caudal position B. Zoom of the left body side aINaIN sub-
block (marked by a red square in A)
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between pair of elements in V . Therefore for each edge e ∈ E there are two nodes u, v ∈

V connected by a directed connection, and we write e = e(u, v), where e represents a

binary or weighted connection from node u to node v.

3.2.1 Network density

The density of a binary network W = (wij) is the proportion of existing edges in the

network k =
∑N

i,j=1wij relative to the total possible number of connections N(N − 1).

Therefore, the density ranges from 0 (graph with no connections) and 1 (fully connected

graph), and it is a measure that indicates the sparseness of the network. The density

of brain networks is typically small. For example, a density of 0.03 was found in the

nematode worm C. elegans [Kaiser and Hilgetag, 2006], while the density of cortical

areas and pathways interconnecting them ranges between 0.1 and 0.3 [Kaiser, 2011].

3.2.2 Degrees

The degree is a measure of the centrality of individual nodes of a graph. For directed

networks, it consists in counting the number of incoming connections Ij (in-degree) or

outgoing connections Oj (out-degree) of each node j. For an adjacency matrix A =

(aij) these degrees are given by the following formulas:

Ij =

N∑
i=1

aji Oj =

N∑
i=1

aij (3.1)

The probabilistic matrix P = (p̂ij) can be used to generate single connectome real-

isations drawn by independent Bernoulli random variables (see previous paragraph).

Therefore, the in-degree Ij and the out-degree Oj for each node j are also random

variables, and we can analytically derive their mathematical expectations using the fol-

lowing formulas:

< Ij >=
N∑
i=1

pji < Oj >=
N∑
i=1

pij (3.2)

These formulas follow from the fact that the random variables Ij and Oj have the Pois-
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son binomial distribution [Sprott, 1958]. Similarly, the formulas for the standard devia-

tion of these random variables are the following:

std(Ij) =

√√√√ N∑
i=1

pji std(Oj) = sqrt

N∑
i=1

pij

3.2.3 Scale-free graphs and degree heterogeneity

A key structural property of a graph is whether or not it is a scale-free graph. A scale-free

graph contains some "hub" nodes with the large number of connections in comparison

with other nodes. Networks with hubs are important because they are particularly robust

to removal of random nodes [Barabási and Albert, 1999]. One way in which a network

can be categorised as scale-free is by quantifying the heterogeneity of its nodes’ in-

or out-degrees. We use the so-called heterogeneity index H [Hu and Wang, 2008] for

in- and out-degree distributions to estimate the variability of in and out-degrees. We

compute this index to confirm that it is less than the threshold for scale-free networks

[Hu and Wang, 2008]. The heterogeneity is given by the following formula:

H =

∑N
i=1

∑N
j=1 |di − dj |

2N2d̄

Here di is either in- or out-degree of neuron i, d̄ =
∑

i di is the average degree (either

in- or out-), and N is the number of neurons. Note, we calculate the heterogeneity index

using the probabilistic model without considering any particular connectome.

3.2.4 Strongly connected component and path length

The strongly connected component of a binary graph G = (V,E) is a sub-graph G′ =

(V ′, E′) containing the maximal number of nodes and edges of G such that all node

pair are connected by a direct or a sequence of intermediate edges (called a path). In

symbols this writes:

u, v ∈ V ′ if ∃e(u,w1), e(w1, w2), ..., e(wm, v) ∈ E for some m ∈ N and w1, ..., wm ∈ V ′
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By definition, every pair of nodes in the strongly connected component G′ = (V ′, E′) of

a graph G = (V,E) is connected by a path. The length of any of paths is equal to the

number m of edges connecting nodes u and v. The shortest path length du,v for each

pair of nodes u, v ∈ V ′ is the path with minimal length connecting u and v. Therefore,

the shortest path length is the length of the shortest communication pathway between

nodes, and it is the most effective way to quickly transfer information across nodes.

The average path length of the graph G is simply defined as the average length of the

shortest paths between all node pairs in the strongly connected component G′ [Watts

and Strogatz, 1998]:

L =
1

N(N − 1)

∑
u,v∈V ′:u6=v

du,v

The average path length L is therefore a global characteristic indicating how effective

is the synaptic integration between nodes. Generally, paths of various lengths other

than the shortest path could be important for processing the information in networks. In

brain networks, however, longer paths are likely to be a less effective method of synap-

tic integration rather than short paths. The shortest path length has been popular and

used, together with the clustering coefficient (see next sections), to demonstrate the

small world property in several real world networks [Watts and Strogatz, 1998], which

will be discussed further in the results section. We use Tarjan’s algorithm [Tarjan, 1972]

to compute numerically the strongly connected component and Dijkstra’s algorithm [Di-

jkstra, 1959] to compute the shortest path of the tadpole’s connectome.

3.2.5 Clustering coefficient

The clustering coefficient is a local measure of segregation around individual nodes.

It involves counting the number of triangles around such nodes, with high number of

such triangles implying segregation. Locally, the clustering coefficient of a node j is

the fraction of triangles tj around the node, or equivalently, the probability CCj that

the neighbours of node j are connected between each others. Globally, the clustering
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coefficient of the whole network is defined by the average clustering coefficient of all

nodes. For undirected networks (networks where all edges are bidirectional) this simply

writes as:

CC =
1

N

∑
j

CCj =
1

N

∑
j

tj
dj(dj − 1)

, (3.3)

where tj is the number of triangles around node j, and dj is the degree of node j

(equivalent to both in- or our-degrees). If dj = 0 or 1, the clustering coefficient for

node j is 0. In the case of directed networks, the clustering coefficient depends on

the directionality of connections and can therefore be defined in four different ways for

any neuron j in the network [Fagiolo, 2007]: the inward, outward, middle and cycle

clustering coefficients. Figure 3.2 shows a definition of these coefficients for each node

in a generic graph defined by an adjacency matrix A = (Aij). For weighted graphs

W = (wij), the matrix A in these formulas is replaced by Ŵ = (w
1/3
ij ). To calculate

the clustering coefficients for the whole graph in the case of directed connections, we

simply average the local clustering coefficients across all the nodes in the graph, like

in the case of a directed network (Equation 3.3). We will refer to the clustering of the

network simply as the inward, outward, middle and cycle clustering coefficients, and

use the abbreviations CCin, CCout, CCmid and CCcyc, respectively. On the right side

of Figure 3.2 we report a simple interpretation of each of these local measures.

Note 1. It is obvious from this figure that the cycle clustering coefficient only counts the

number of cyclic triangular patterns (or cycle loops), while all the other three clustering

coefficients count the number of feed-forward loops.

Note 2. It is easy to prove that any commissural neuron i in the tadpole connectome is

such that CCmid
i = 0. Indeed, by contradiction method, let us consider a commissural

neuron i which receives a connection from a sender neuron and sends the connec-

tion to a receiver neuron. Then, according to the definition of middle clustering coeffi-

cient, the sender neuron would be connected to one neuron on each side. Therefore,

it contradicts to the property of tadpole neurons: a neuron can be either ipsilateral or

commissural.
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Figure 3.2: Local clustering coefficients measures for a node j (red dot) in a binary or
weighted directed network A. Depending on the directions of connections
of neighbouring nodes (black dots), there are four clustering coefficient
(from top to bottom). In this figure, dinj and doutj are the in- and out-degrees
of node j, respectively. d∗j is the number of nodes that have reciprocal
connections with node j. In the right, we report a simple interpretation of
each clustering coefficients.

3.2.6 Null graphs

Typically, some of the structural properties of a network occur significantly more or less

often than we would expect if these networks were organised in a random or ordered

(lattice) topologies [Bullmore and Sporns, 2012]. Indeed, these properties often fall

in between completely random and completely ordered networks (called "null-models")

that can be constructed from our network of study (called "original network"). Wewill use

these null-models to compare some of their graph properties with the properties of the

tadpole connectome and of other animals’ connectomes. Bymaking these comparisons

we will show that some of these properties are lost in the randomisation process used

to construct these null-models. Thus, we will demonstrate that the connectivity of our

original network is specific (not random nor lattice), and we suggest how such specificity

might be related the network function. We refer to random and lattice null-models as

benchmark random and lattice networks, respectively. In the next section we are going

to explain how to construct these networks.

Benchmark random and lattice networks are artificial graphs generated from the orig-

inal network (Figure 3.3) using a randomisation algorithm. These networks have the
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same number of nodes and the same node degrees as the original network (degree-

preserving). These properties guarantee that the comparisons we are going to make

are not biased. Both benchmark random networks are generated using a Markov chain

rewiring algorithm that starts by considering the original network and fixing a (large)

number c >> 1 of iteration steps [Maslov and Sneppen, 2002]. The algorithm iter-

ates c times searching for four nodes u, v, w, t ∈ V that are connected through edges

e(u, v) and e(w, t), but not by edges from e(u,w) and from e(v, t) (Figure 3.3). Once

the algorithm detects such nodes, it deletes e(u, v) and e(w, t) from the network and

adds two new edges e(u,w) and e(v, t) (rewiring step). When the number of iterations

reaches c, the network is considered fully randomised. This network will be our random

benchmark network. For creating a lattice benchmark network the algorithm works in

a similar way, except for an additional condition on the rewiring step based on the dis-

tance between node indexes. To define this distance, we rewire nodes according to

their indexes. Therefore, let us change reference to nodes u, w, v, t with indexed nodes

i1, j1, i2, j2, respectively. The additional condition for rewiring in the lattice network

generation is:

|i1 + j2|+ |i2 + j1| < |i1 + j1|+ |i2 + j2|

This condition guarantees that the reconnected network is organised as a ring or lattice

(Figure 3.3).

3.2.7 Motifs measures

The clustering coefficient is a particular case of a more general graph property called

motifs. The clustering coefficient measures the number of triangular motifs, i.e. patterns

of three connected nodes in the network. In general, motifs are defined as sub-network

of any sizeM = 2, 3, 4, ..., whereM is the number of nodes in the motif pattern consid-

ered, such asM = 3 for triangular motifs orM = 4 for square motifs. ForM = 2 nodes

(non-ordered pair of nodes A and B) there are two types of motifs: 1) a connection in

one direction, A → B, 2) a bidirectional connection, A ↔ B. For M = 3 nodes, there

are 13 different triangular motifs in which three nodes can be connected. Figure 3.4
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Figure 3.3: Sketch of the rewiring algorithms for generating benchmark random and
lattice networks with an example network, the macaque cortex on one
hemisphere, obtained from [Kaiser and Hilgetag, 2006]. The algorithm
start from an original network (bottom left) and ends by generating either a
random (bottom center) or a lattice network (bottom right). In each rewiring
step, two edges (top left) are destroyed and two new edges generated (top
center). In the case of a lattice generation, an additional condition on the
vicinity of the nodes is given. More details are given in the text.

shows these 13 triangular motifs and their indexing (note that these indexes are used in

the Result section to identify motifs). ForM = 4 nodes, there are 199 different square

motifs. We do not report a figure showing all these different motifs and their indexes for

M > 3, as it is not relevant for the results presented in this chapter.

Note. The definition of motifs which we use, corresponds to the definition of structural

motifs in some other works (see [Sporns and Kötter, 2004] for more details).

Of particular interest are "over-represented" motifs occurring in a network significantly

more often than in random benchmark networks (see null model section). By having

this property, over-represented motifs are believed to have some functional significance

in the network [Milo et al., 2002, Kaiser, 2011]. To decide if a motif is overrepresented in

the original network, we compare the motif counts between the original and benchmark

random networks. Specifically, we generated 100 random benchmark networks and

calculated the frequency of occurrence of each motif in the original (Nreal) and in these

random networks (Nrand ± SD), following the approach described in Milo et al. [2002].

To detect if a motif is over-represented in the original network we checked if 1) the

probability that this motif occurs more times in random lattice networks rather than in

the original network is smaller than P = 0.01 (P-value), 2) this motif appears at least

4 times in the original network , 3) the number of appearances in the original network
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Figure 3.4: Overview of all possible 13 triangular motifs.

is significantly larger than in the randomised networks: Nreal − Nrand > 0.1Nrand. 4)

The Z-score of over-represented motifs is positive and sufficiently high (Z > 20). This

Z-score is defined as Z = (Nreal −Nrand)/SD, to quantify the significance of the over-

representation of such motif in the original network.

The histogram of the number all motifs of a selected size M is called the motif spec-

trum of the network for that size, and it is indexed using the same motif indexes (like

the indexes shown in Figure 3.4). Plotting the motif spectra of a network and its bench-

mark random networks helps to quickly visualise which motifs are likely to be over-

represented and to make comparisons between these networks. In addition to this vi-

sualisation, we will use a normalised Euclidean distance between these motif spectra to

quantify similarities. Given the vector of frequencies for the real network f = (f1, ..., fN )

and for the mean frequencies fX = (fX1 , ..., f
X
N ) from several repetition of random or

lattice networks X, this distance is given by:

d = d(f, fX) =

√∑N
i=1(fi − fXi )2∑N

i=1 fi

3.2.8 Functional model of spiking activity

Graph theoretical approaches describe the structural properties by considering net-

works as static objects. However, brain networks are not static objects, as their function

depends on the relationship between their intrinsic structural and dynamical properties

[Bassett et al., 2018, Bassett and Sporns, 2017]. Therefore, to investigate the function

of the tadpole connectome in more detail, we simulate the spiking activity using the

connectomes generated by the probabilistic model. We produced specific adjacency

matrices from the probability matrix and used them in a functional model described in

the Introduction and in [Ferrario et al., 2018a, Roberts et al., 2014]. Simulations of neu-
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ral activity described in this chapter were performed using NEURON 7.3 [Carnevale

and Hines, 2006] with a fixed time-step of 0.01ms.

3.3 Results

PART I - Structural Properties

3.3.1 Modular structure defined by the degree measure

All neurons in the tadpole connectome can be divided into three main groups,

based on what we know about their function during swimming (see the Intro-

duction and Roberts et al. [2010, 2014]):

• Sensory and sensory pathway neurons (RB, dlc and dla) - starters:

They are active only at the start of a swimming episode (<15ms after stim-

ulation). They internally represent the sensory stimuli and transmit it to

neurons in the other two groups for further processing.

• Interneurons (INs - aINs, cINs, dINs): They are CPG neurons responsi-

ble for processing the sensory input, rhythm generation and transmission

to output motor neurons. Except for aINs, interneurons tend to fire at al-

most every cycle of swimming. For this reason, they are believed to be

responsible for the generation and maintenance of swimming oscillations.

• Motor neurons (MNs): They are the "output" neurons and their firing

controls the contraction of muscles.

Figure 3.5 shows a schematic diagram of these three functional groups (starters,

IN and MN) in tadpole. Arrows represent directional synaptic contacts between

members of each group. Numbers above each arrow are the average out-

degree across all neurons in the pre-synaptic group to all neurons in the post-

synaptic group. Remarkably, this connectivity diagram, which is based on only

structural connectivity of the network (the degrees), confirms themain functional
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Figure 3.5: Classification of neurons in the connectome. We divide neurons between
sensory/sensory pathway neurons (RB, dlas, dlcs), interneurons (IN) and
motoneurons (MN). Numbers along each arrow represent the average
number of connections a single neuron in the presynaptic group forms to-
wards neurons in the postsynaptic group. Average numbers of connections
that appear less than 5 times are ignored.

role of each neural group. Starters receive no connections from other groups,

which confirms their role as "input" cells. They also send many connections to

CPG neurons and mns, suggesting their role as transmitters. The fact that the

CPG population have many recurrent connections suggests that their role is to

process the information and sustain it over time. MNs receive many connec-

tions, but they do not send connections to other neurons and this suggests their

role as output cells.

3.3.2 Network density and average path length

A common structural feature among many neuronal circuits is sparseness of

connections. This can be easily observed from Figure 3.1, where low proba-

bilities occur more often than high probabilities. Another way to show this is to

measure the network density, which is the total number of connections in the

network relative to the number of potential connections. Assuming that the net-

work has E edges and N nodes its density is d = E/(N(N − 1)). As expected,

the density of the tadpole connectome is low, d = 0.09. This is similar, for ex-
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ample, to the density of the nematode worm C. elegans, d = 0.03 [Kaiser and

Hilgetag, 2006].

The network density essentially measures the probability that any randomly

picked nodes in the network are connected by a directed connection. This con-

cept leads to the definition of a minimal path between a sender node and a

receiver node, which is the minimal number of directed connections from the

sender to the receiver, or minimal path length. This measure can be extended

to the whole network by defining its strongly connected component (see Meth-

ods). Since neurons tend to form connections mostly with other spatially neigh-

bouring neurons [Bullmore and Sporns, 2012], we would expect a high average

path length in both the tadpole and C.elegans connectomes. However, it turns

out that these lengths are much lower than in a lattice benchmark topologies

and much higher than in a random benchmark network (Table 3.2). Having this

property has been suggested to enhance a quick signal integration and syn-

chronisability in the network [Watts and Strogatz, 1998, Bullmore and Sporns,

2012].

In the case of tadpoles, we randomly generated 80 connectomes using the prob-

abilistic model and we calculated the strongly connected component for each of

these connectomes. The number of neurons in the highest populated strongly

connected component is 1103± 6.7 (80% of the total population). Remarkably,

the C. elegans connectome has a similar fraction of cells in its highest pop-

ulated strongly connected component (85% of the total population) [Varshney

et al., 2011].

We hypothesise that this feature might enhance robustness of a network to ran-

dom removal of connections. In the case of tadpole, we tested this hypothesis

by removing a percentage of connections in the network and checking if sim-

ulations of the functional model (see Introduction) could still generate a robust
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Real Random Lattice
Xenopus tadpole 2.3 2.2 5

C. elegans 4 3 5.2

Table 3.2: Average path length in tadpoles and C. elegans in the original, randomised
and lattice-random networks.

anti-phase swimming oscillatory activity (repeating the results of Roberts et al.

[2014]). Simulations with connectomes where less than 40% of connections

have been randomly removed, generate swimming oscillations for every ran-

domly generated connectome. After removing 40% of connections, simulations

still produce swimming oscillations with a realistic period (average is 63 ms) in

87% of simulations. Removing 45% of connections, only 25% of simulations

generate swimming oscillations. Removing more than 45% of these connec-

tions results in no simulations generating swimming oscillations. These results

demonstrate that the network is indeed very robust, as we need to remove more

than 40% of connections to destroy its functionality.

3.3.3 Distributions of connection lengths

The results presented in the previous section have shown that tadpole’s con-

nectome and other neuronal circuits have similar structural properties, includ-

ing a low density of connections, low path length and high robustness. Another

shared topological feature is the tendency of these networks to form an unex-

pectedly high number of long range connections. There are multiple interpreta-

tions on the functional role of this property. Firstly, it would allow propagating the

information more quickly in the network by minimising the number of processing

paths [Kaiser and Hilgetag, 2006]. Secondly, it would minimise the metabolic

costs by generating shorter connections [Bullmore and Sporns, 2012].

To clarify if the tadpole also shows this feature, we analysed the distribution of

lengths between each neuronal pair in the connectome. We perform this anal-

ysis for each neuronal type. Figure 3.6 shows the normalised distributions of
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connection lengths for each of these types. To calculate these distributions,

we compute the connection distances for all pairs of neurons and group them

according to the pre-synaptic neuronal type. These distances have been calcu-

lated as the sum of all axon segments produce by the axon growth model, start-

ing from the pre-synaptic neuronal soma to position where synapses are located

(see chapter 2 for more details). Black dotted lines define a lower bound xlow =

150µm for the probability of forming short connectionsG(x) = P (x ≤ xlow), while

blue dotted lines define an upper bound xup = 850µm for the probability of form-

ing long connections F (x) = P (x ≥ xup). These lower and upper bounds have

been arbitrarily chosen to show a qualitative feature in the connection length

distributions. The results represented in this figure can be summarised in the

following statements:

• For each cell type, short connections are more likely than long ones. How-

ever, if pre- and post-synaptic cells are too close to each other, then the

connection is less likely to be formed. The reason is that axons start to

grow from the pre-synaptic soma position in some direction before reach-

ing a position where the post-synaptic dendrite is located. As a result of

this, the distributions are skewed and their medians are located at inter-

mediate distance values.

• Compared to the other ipsilateral neuronal types, dlc and cIN demonstrate

few short distance connections (low values of G(x)=0 and 0.04, respec-

tively). The reason is that the axons of dlcs and cINs initially travel in the

floor plate and then contralaterally before they can form synaptic contacts

with other neurons.

• Dlas and dlcs exhibit longer connections than all other neuronal types

(higher values of F (x) = 0.2 and 0.16, respectively).

• Mns have very short connections.
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Figure 3.6: Connection length distributions for the different cell types. The black dotted
lines are set to a lower bound xlow = 150µm for the probability of forming
a low-range connection G(x) = P (x ≤ xlow), while the blue dotted line
are set to an upper bound xup = 850µm for the probability of forming long
connections F (x) = P (x ≥ xup).

The fact that axons from dlas/dlcs are longer suggests that these neurons favour

the integration of the information via a higher number of direct mono-synaptic

connections. This would allow a quick and reliable communication between dis-

tal regions. Considering the role of dlas/dlcs in initiating the swimming activity,

this property would guarantee sensory signals to be well distributed throughout

the spinal cord and quickly propagated to guarantee a reliable start of the swim-

ming dynamics. On the contrary, the fact that CPG neurons do not exhibit such

long connections suggests that the CPG sub-network favours the segregation of

the information. This latter interpretation is in line with previous ideas suggest-

ing that CPGs are organised in longitudinally segmented clusters, such as in the

lamprey [Cohen et al., 1982]. The fact that mns have such short connections

confirms their role as output cells.

Overall, our results are in agreement with the analysis of other neuronal circuits,

by showing that also the tadpole connectome minimises - to some extent - the

number of long range connections, by favouring short range ones. Moreover,

we suggested some functional interpretation about the relationship between the

length of connections and their functional role.
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3.3.4 Clustering coefficients

Analysis of the complete cionnectome

Each panel of Figure 3.7 shows one clustering coefficient (inward, outward, mid-

dle, cycle and total) for the tadpole connectome (red dotted line) and 100 ran-

dom benchmark networks generated from the tadpole original connectome (see

Methods section). In the case of the tadpole connectome, the clustering mea-

sures are obtained from one probabilistically generated connectome (i.e. one

probabilistic connectome, see Methods section), but we found similar results

when repeating the same analysis on multiple generated connectomes. On the

x-axis of each panel we vary the number of rewiring steps in the algorithm used

to generate the benchmark random networks. The black and green lines in

Figure 3.7 show the average and standard deviation clustering coefficients for

the random benchmark networks. Since these networks are equal to the tad-

pole connectome at x = 0 (at the first iteration of the rewiring algorithm), the

red dotted lines and black curves start from the same clustering measures. At

increasing values of x the clustering coefficients for the benchmark random net-

works separate from the corresponding values for the tadpole connectome and

they converge to some asymptotic values. These values represent the cluster-

ing coefficients for a fully randomised benchmark network, and they should be

compared with the values for the tadpole connectome (red dotted lines).

Each clustering coefficient is higher for the tadpole connectome than for ranges

generated by the random benchmark networks, except for the cycle clustering

coefficient CCcyc. These results show that, on average across all neurons in

the connectome, the inward, outward and middle neighbours (Figure 3.2) tend

to be more mutually connected than if the network was randomly organised.

These results and the ones obtained on the average path length (see above)

show that the tadpole connectome is small-world, if we define this property using
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any clustering coefficient except of CCcyc [Watts and Strogatz, 1998, Bullmore

and Sporns, 2012]. The fact that the tadpole network has lower CCcyc than

benchmark random networks shows that the tadpole connectome cannot be

considered a small-world network in this respect. This contradicts a commonly

believed principle stating that all brain networks have the small-world architec-

ture [Telesford et al., 2011, Bullmore and Sporns, 2012].

What do our results tell us about the structure of the tadpole connectome? The

cycle clustering coefficient of a selected neuron measures probability that its

neighbouring neurons complete a feedbackward triangular motif, while all the

other clustering coefficients (i.e. CCin,CCout and CCmid) define the probability

that such neighbours complete a feedforward triangular motifs (see the def-

inition of the clustering coefficients in the Methods section). Therefore, the

results presented in the previous section show that the tadpole connectome

has an over-represented number of feedforward triangular motifs and an under-

represented number of feedbackward triangular motifs, when compared to a

degree-matched random topology. This suggest that these feedfoward motifs

are important building blocks for a proper functioning of the tadpole swimming

network. Interestingly, the over-represention of feed-forward loop motifs were

also found in the connectome of C. elegans [Milo et al., 2002].

The functional significance of feed-forward and feed-backward loops in the these

circuits is still unclear. A previous modelling study on the human locomotor CPG

suggested that these motifs could help to stabilise gait modulations [Iosa et al.,

2015]. We speculate a second potential advantage of these motifs in the case

of the tadpole swimming circuit. It is known [Kahn and Roberts, 1982c] that the

activity of neurons during each cycle of swimming progresses from the head to

the tail. Since feed-forward loops help to integrate and propagate the informa-

tion in a preferential (forward) direction, we suggest that the over-representation

of these motifs in the tadpole connectome could help to generate this progres-
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Figure 3.7: Clustering coefficients for the global network (red dotted lines) and for 100
random networks at varying number of rewiring steps. The black and green
curves show the mean and mean ± standard deviation curves for the ran-
dom networks.

sion. A confirmation of this intuition comes from simulations of the functional

model [Roberts et al., 2014]. This model reliably reproduces head to tail pro-

gression that is remarkably similar to experimental recordings [Roberts et al.,

2014, Soffe et al., 2009]. Therefore, it is likely that the feed-forward connectivity

incorporated in the tadpole connectome encapsulates the key mechanisms for

reproducing this progression (see also Figure 3.7).

CPG subnetwork Evidences from the lamprey studies suggest that swimming

CPGs are organised in longitudinally segmented clusters, and that this organi-

sation should be favoured by having a segregated structure [Cohen et al., 1982].

To test if this segregation is present also in the tadpole CPG, we calculated the

level of segregation in this subnetwork - i.e. the subnetwork constituted by dINs,

aINs and cINs - using the clustering coefficients.

Figure 3.8 compares the clustering coefficients calculated from the CPG sub-

network (red dotted line) and from 100 random benchmark network realisations

(black and green curves). The description of this figure is similar to the one of

Figure 3.7 (see previous section).

All clustering coefficients measured for the CPG subnetwork are higher than for

the random benchmark networks, except for the middle clustering (and, as a

consequence of this, also the total clustering coefficient). This implies that the

inward, outward and cyclic triangles are overrepresented motifs in the CPG cir-
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cuit and they are therefore likely to be important for the functioning of the circuit.

Since the network is formed by both ascending (cINs) and descending neurons

(dINs), it is not so surprising that cyclic triangular motifs are overrepresented.

Why is the middle clustering of the CPG network higher than the one of the

random networks? We have previously shown (see the Methods section) that

the middle clustering coefficient of all commissural neurons - including cINs - is

zero. Therefore, these neurons have a null contribution to the measure of the

middle clustering coefficient for the whole network. The percentage of cINs in

the CPG subnetwork is higher than all other CPG neuronal types (53%). There-

fore, CCmid for the whole CPG subnetwork is dominated by the zero cIN contri-

bution. Instead, in the case of the benchmark random networks, the contribution

of the cINs in CCmid is positive and non-zero, and increases with the number

of rewiring steps. In fact, the randomisation algorithm iteratively swaps any pair

of randomly picked edges, including ipsilateral and contralateral connections.

By swapping these connections, we obviously lose ipsilateral and commissural

properties of the neurons. The number of contralateral neurons therefore de-

creases with increasing the number of swaps and, as a result of this, also the

middle clustering coefficient tends to decrease.

Overall, our results on the tadpole CPG partially support the hypothesis of the

segregation of CPG networks [Cohen et al., 1982], by showing that the tadpole

CPG is segregated according to almost all clusteringmeasures (outward, inward

and cycle clusterings coefficients) except for the middle clustering coefficient.

3.3.5 Analysis of motifs

Overrepresented triangular motifs

In this section, we report the analysis of motifs in the tadpole connectome. Pre-

vious studies analysed motifs in brain networks and they found that some motifs

are overrepresented in these circuits [Sporns and Kötter, 2004, Varshney et al.,
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Figure 3.8: Clustering coefficients for the CPG subnetwork (red) and average across
100 random networks at varying number of rewiring steps.

2011]. For this reason, overrepresented motifs - which we will call "motifs" from

now on, for simplicity - are believed to have some functional significance in these

networks [Rubinov and Sporns, 2010, Kaiser, 2011].

In Figure 3.9, the left panel shows the frequency of each motif in (black circles)

and in 100 benchmark random networks (green crosses) relative to the average

frequency across all the benchmark random networks. Bars in the right panel

of Figure 3.9 show the z-score values of each triangular motif. Black bars rep-

resent motifs that are overrepresented (based on the approach described in the

Methods section), while red bars represent motifs that our approach does not

classify as overrepresented (we call these "non-overrepresented motifs").

Overrepresentedmotifs are the ones with indexes ids = 5,8,11,12 and 13 (Figure

3.4). We notice that these results are statistically robust, since the Zscore of all

these overrepresented motifs are much higher than the threshold Zscore = 20.

Remarkably, the same overrepresented motifs have been detected also in the

C. elegans connectome [Varshney et al., 2011] and in the mammalian cortex

[Song et al., 2005].

Is there a functional reason for the overrepresentions of these motifs in such

networks? This question does not have an answer in either of these networks,

yet. The overrepresentation of feedforward motifs (motif id = 5) suggests, as

we previously speculated, that they are important for generating a head to tail

progression.
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For the other motif ids (8,11,12 and 13), we found some interesting insights

by looking at their connectivity structure. All these overrepresented motifs are

characterised by having at least two reciprocally connected nodes. Thus, over-

representation of these motifs implies that also reciprocal connection are over-

represented. A study on the C. elegans [Varshney et al., 2011] suggested that

such overrepresentation would arise naturally if proximity was a limiting factor

for connectivity. However, since there is no evidence for this, the functional role

of motifs is unclear from this study.

Our simulations of the tadpole functional model revealed that reciprocal connec-

tions between some neurons (specifically, dINs) are crucial for stable swimming

rhythm. Indeed, when we removed ascending connections between the dINs,

we found that that the percentage of simulations where swimming oscillations

are stable drops from 100% to 36% - the analysis and interpretation of these

results are discussed in the last section of this chapter. Remarkably, we found

that the motifs with ids = 8,11,12 and 13, and therefore reciprocal connections,

are overrepresented also in the subnetwork constituted by only dIN neurons (not

shown).

Motif spectrum

It has been hypothesised that the occurrence of specific motif spectra in brain

circuits result from evolutionary processes which have extended and combined

some primitive and simple connectivity structures (i.e. these motifs) to form

complex connectomes, which would guarantee robust and flexible behaviours

[Sporns and Zwi, 2004]. According to this hypothesis, the occurrence of similar

motifs in connectomes that generate similar functions should be detectable.

To clarify this, in this section we analyse and compare the occurrence of motifs in

the tadpole connectome and the connectome of other animal nervous systems:

the C. elegans complete neuronal network (from Kaiser and Hilgetag [2006]), a
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Figure 3.9: Overrepresented triangular motifs in the tadpole connectome. The left
panel shows the frequency spectrum (black circles) and in 100 random
benchmark networks (green crosses), relative to the average frequencies
across the random networks. The y-axis is set to the logarithmic scale to
help in the visualisation. Bars in the right panel of Figure 3.9 show the
Z-scores, and they are divided between motifs that are overrepresented
(black) and non-overrepresented (red). See the text for more details.

connectome model of the zebrafish spinal spinal circuit (extracted from [Stobb

et al., 2012]) and the Macaque cortical connectivity (from [Kötter, 2004]). We

selected these three circuits because, while the spinal connectomes of both

tadpole and zebrafish are (vertebrates) generate similar swimming behaviour

[Wiggin et al., 2012], the other two circuits produce very different types of be-

haviours [White et al., 1986, Rizzolatti et al., 1983] and represent the brain of

very different animals: an invertebrate (C. elegans) and a mammal (Macaque).

We therefore investigated similarities and differences in the occurrence of motifs

in these circuits.

Figure 3.10 shows the triangular and square motif spectra for these four circuits.

The spectra of triangular and square motifs are shown in the left and right parts

of the figure, respectively. In each sub-panel we represent, from left to right, the

motif spectra of the original circuit of each selected animal, and of its random and

lattice benchmark networks. The x-axis of each sub-figure correspond to the

index of the selected motif. To quantify the similarity between the spectra of the

benchmark network and the original one we report the value of the normalised
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Euclidean distance d between frequency spectra (seeMethods for more details).

Red circled values report the minimum between these two distances.

Interestingly, a simple visual inspection and the distance values d reveal that

the spectra of the tadpole and zebrafish connectomes are both closer to the

spectra of a random rather than a lattice topologies. On the contrary, the spec-

tra of the C. elegans and Macaque are closer to lattice topology. We obtained

similar results also when analysing the functional motifs [Sporns and Kötter,

2004] in these networks, but these results are not presented in this thesis, be-

cause they are very similar. The fact that both structural and functional motifs

of the tadpole and zebrafish connectomes are more similar to a random rather

than a lattice topology shows that these connectomes are also very different

from many animal connectomes [Sporns and Kötter, 2004]. Indeed, the study

of these connectomes (Macaque visual cortex, Macaque complete cortex, Cat

cortex and C. elegans) revealed that their motif spectra are more similar to a

lattice rather than a random topology. This suggests that the structures of spe-

cific neuronal circuits, such as the tadpole and zebrafish, does not necessarily

follow "universal" rules, but they are rather built to produce specific functions,

including swimming.

PART II: Functional Properties

3.3.6 The distribution of incoming connections from the sensory path-

way to CPG neurons explains the shape of spike propagation in

the first swimming bout

Swimming in tadpoles can start on either side of the body and this start is marked

by the first firings of CPG neurons (see Introduction and Koutsikou et al. [2018]).

Recordings have shown these spikes start at RC positions of around 800 µm

(distance from the mid-hindbrain border) and propagate in both rostral and cau-

dal directions during time interval of 5-10 ms [Soffe et al., 2009].
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Figure 3.10: Triangle and square motif frequency spectra for different brain networks:
tadpole and zebrafish spinal cord, C. elegans global and macaque cor-
tex. While the C. elegans and macaque motif spectra are more similar
to benchmark lattice networks, the spectra of tadpole and zebrafish are
closer to benchmark random networks. This might be related to proper-
ties of vertebrate systems.
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In this section, we show examples of three simulations of the probabilistic and

functional models to show that they can reproduce the propagation of the first

spiking CPG neurons preceding at the start of a swimming episode. We also

show that the longitudinal distribution of the number of incoming connections

from dlas and dlcs to these CPG neurons can explain this propagation. This

proves how a simple structural property of a network such as the degree can be

used to estimate a feature related to the function of the network (i.e. the activity

propagation).

Figure 3.11A shows the rostro-caudal positions (RC coordinate, y-axis) and the

number of connections from dlcs (x-axis) of each CPG neuron, divided accord-

ing neuronal types (aIN,dIN,cIN,MN - colours identify these types). This number

of connections has been extracted from probabilistic matrix (Figure 3.1). Each

panel of Figure 3.11B shows raster plots of the spiking activities in two left RBs

and of all right CPG neurons for three simulation examples (left,center,right).

From left to right, these simulation were obtained by activating a single spike in

two RBs (at time 60 ms) located at three different rostro-caudal positions: cau-

dally located (left panel), middle located (central panel), and rostrally located

(right panel) at positions shown in figure. Spiking of RBs mimics the touch of

the skin which can start swimming in the real animal [Roberts et al., 2014].Sim-

ulations last until 85 ms to show only the first bout of swimming dynamics.

Firing of RBs activates dlas and dlcs (not shown), which in turn activate dINs.

The combined input from dlcs and dINs then drives the firing of all the other

CPG neurons, and initiates swimming. There is a clear propagation of the spik-

ing of all CPG neuron starting from central rostro-causal positions. In these

simulations, the start of swimming happens on the opposite side of stimulation

because the strengths of synapses from dlcs are higher than the ones from dlas

(see the chapter 2 for more details). In other simulations we also tested the ef-

fect of reverting these strengths in order to make swimming start on the same
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Figure 3.11: Propagation of the first firing of CPG neurons via dlcs A. Flipped figure
showing the number of connections from all dlcs to each CPG neuron as a
function of the CPG rostro-caudal coordinate, divided according neuronal
types. B. Raster plots showing the spiking activities in two left RBs and of
all right CPG neurons in three different simulations (left, center, right). The
longitudinal position of RB neurons is what changes in these simulation
(black thunderbolt). Firings of CPG neurons mark the start of a swimming
episode and propagate starting from central longitudinal positions in all
the three simulations.

side of stimulation. We do not report these results because they are essentially

similar to the ones shown in this figure and presented in the next section.

There is a clear correspondence between the shapes of the number of connec-

tions from dlcs to the CPG neurons (Figure 3.11A) and the positions of the CPG

neurons of each type which fire first (Figure 3.11B). For example, dINs with RC-

coordinate near 1000 µm receive the highest number of incoming connections

from dlcs. These positions correspond to the RC-coordinates of dINs that start

to fire. These positions vary between approximately 700 µm and 1200 µm in

dependence of RC-position of the activated RBs in the three panels. The firing

of dINs neurons propagates both rostrally and caudally, and follows the shape

of the degrees shown in Figure 3.11A. Similar descriptions are valid also for all

other CPG neuronal types. We run 100 random simulations of the functional

models in three batches. In each batch we activated the same RBs as the ones

shown in 3.11B. All simulations generated qualitatively similar results, including

the ones describing the shape of propagation of the CPG firings. Swimming

started in the range between approximately 600 and 1350µm.
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3.3.7 Reliable swimming anti-phase oscillations

The next stage was to investigate the spiking activity of connectomes to see

whether they behaved like those generated anatomically [Borisyuk et al., 2014]

and as described behaviourally [Roberts et al., 2014]. This was necessary to

evaluate whether the probabilistic model provided a useful tool for exploring

biological function.

To investigate the spiking activity of connectomes generated by the probabilis-

tic model, we mapped them onto a functional model composed of single com-

partment Hodgkin-Huxley type neurons, following the approach described in

[Roberts et al., 2014] and described in the chapter 2. To simulate the basic

experiment where brief stimulation of the trunk skin initiates swimming in the

tadpole, we excited two adjacent sensory RB neurons on one side of the body

at a randomly selected RC position. The RB activity propagates along their own

axons and then in the sensory pathway (via dla and dlc neurons) to deliver ex-

citation to CPG neurons on both sides of the body. These CPG neurons (cIN,

dIN, aIN) generate a pattern of rhythmic spiking alternating between the left and

right body sides suitable to drive swimming movements. We repeated this ex-

periment 100 times using different generated adjacency matrices. We found

that in all simulations the functional model produced a swimming-like pattern

where: firing was rhythmic; neurons that were active fired once per cycle; firing

alternated between the two sides; and firing on each cycle was most delayed

towards the tail.

However, although connectomes from both the anatomical and probabilistic model

produced qualitatively similar swimming activity, the probabilistic model pro-

duced a rhythm with significantly longer cycle periods (68.6 ± 0.8 ms, mean

± SD, range from 65 to 70 ms) than the anatomical connectomes (58 ± 1.8

ms), as shown in Figure 3.12. We investigated the underlying cause of this dif-
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ference, and in doing so gained an insight into how the structure of the network

affects swimming period, a key characteristic of the system’s behaviour.

What determines the period of one swimming cycle? A swimming cycle starts

when dINs on one side of the body spike. These excite cINs on the same side,

which then spike and inhibit dINs on the opposite side, leading to delayed spik-

ing of dINs on the opposite side through post-inhibitory rebound (PIR). Thus, the

swimming period can be approximated as T = 2(∆DC + ∆CD), where ∆DC is

the delay between spiking of dINs and the subsequent spiking of the ipsilateral

cINs they excite, and ∆CD is the delay between spiking of cINs and the sub-

sequent PIR spiking of the contralateral dINs they inhibit (Figure 3.12B). Both

∆DC and, particularly, ∆CD were significantly larger with the probabilistic con-

nectome (anatomical model: ∆DC=5.3 ms ± 0.4; ∆DC=23.7 ms ± 0.9; proba-

bilistic model: ∆DC=6.2 ms± 0.3; ∆DC=28.2 ms± 0.4, N=100). Together these

two differences account for the overall slower swimming rhythm seen with the

probabilistic model, and this is largely as a result of the increased time it takes

for dINs to fire PIR spikes in response to contralateral cIN input.

What, then, determines the delay between cIN spikes and contralateral dIN re-

bound spiking? During swimming dINs are held depolarized by summation of

NMDA-receptor-mediated excitation from other dINs, and in this state inhibition

from cINs can result in delayed dIN spiking as a result of PIR. Intuitively, and

from past investigations, we know that this spiking delay depends on the relative

strength of inhibitory and excitatory input from cINs and other dINs respectively.

We characterised the relative strength of inhibition and excitation for a given con-

nectome by calculating the average in-degree from cINs and from other dINs.

Any cINs that received fewer than 13 connections from dINs were excluded from

this calculation, since, as we shall demonstrate in Section 3.5, such cINs are

likely to be inactive. We used a linear regression model where cIN-dIN and

dIN-dIN in-degrees (independent variables are IcIN>13 and IdIN ) correlate very
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Figure 3.12: Investigating the difference in swimming cycle period between anatomical
and probabilistic connectomes. A. Swimming period (as defined by me-
dian motoneuron spiking period) for 200 anatomical connectomes (grey),
for 200 probabilistic connectomes (black) and 200 probabilistic connec-
tomes where cIN to dIN synaptic strength is reduced (see text for de-
tails). B. Example membrane potentials of example dINs (brown) and
cINs (blue) on the left and right side during one swimming cycle. The
swimming period is a sum of (twice) the delay between dIN and cIN spik-
ing (∆DC and (twice) the delay between cIN and contralateral dIN spiking
(∆CD). C. Network structure allows us to predict swimming period. Each
point shows for one connectome (different from those used in part C and
for linear regression) the predicted period based on the connectivity, with
the actual period from simulation plotted on the vertical axis. The blue line
shows the case where the prediction perfectly matches the simulation.
D. More cINs are inactive in anatomical connectomes than in probabilis-
tic connectomes. Although the average in-degree (black line) is similar
under both conditions, the standard deviation (blue area) is much higher
for anatomical connectomes. This increased variance in anatomical con-
nectomes means that more cINs receive fewer than the 13 connections
from dINs that are required for reliable spiking.
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strongly with the period of swimming:

T = 2.5 · IcIN>13 − 3 · IdIN

Where T is the period. The coefficient of determination R2 = 0.96.

We used this linear regression model to predict firing period for 200 new con-

nectomes (100 probabilistic, 100 anatomical). The accuracy estimated using

the coefficient of determination is R2 = 0.94 (Figure 3.12C). We were there-

fore able to predict with good accuracy a key characteristic of the network’s

behaviour based only on its connectivity. Note that this prediction is universal,

since it does not require knowledge of whether the connectome was generated

using the probabilistic or anatomical model.

Why is inhibition from cINs stronger relative to excitation from dINs, and there-

fore swimming slower, in connectomes generated by the probabilistic model?

This is a difficult question to answer completely, but much of the difference is

due to the fact that anatomical connectomes have more cINs that receive fewer

than 13 connections from dINs and are thus inactive during swimming (anatomi-

cal model: 168± 11 inactive cINs, N=100; probabilistic model: 101± 8 inactive

cINs, N=100). Although the mean dIN-cIN in-degree is very similar between

anatomical and probabilistic connectomes (and above the threshold of 13), the

variance is much higher in the anatomical case (Figure 3.12D).

Therefore, in anatomical connectomes there are more inactive cINs. The un-

derlying reason for this difference in variance is that in the anatomical model

neurons have randomly chosen dendritic extents, sampled from the distribu-

tion of experimentally measured dendrites (see the thesis Introduction). This

means that some neurons have small dendrites and receive very few connec-

tions, while others have large dendrites and receive very many connections. In
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the probabilistic case this detail is lost, as all incoming connections to a neuron

are chosen completely independently of each other.

While we can explain the quantitative difference between anatomical and prob-

abilistic models, this difference clearly illustrates that there are potential pitfalls

in applying the probabilistic approach to a particular biological question, and it

must be used with caution. In this specific case, there is a problem because the

reduction in dIN to cIN in-degree variance produced by the averaging process

used to generate the probabilistic connectomes has asymmetric consequences.

The decreased number of cINs failing to fire because of weak excitatory input

(low in-degree number) is not balanced by the effect of reducing the number

of cINs with very strong excitatory input (high in-degree number). This is be-

cause, above a threshold input strength, cINs only fire a single spike per cycle

(see below); changing the level of excitation above the threshold value does

not alter this. The result of this asymmetry is the overall increase in the num-

ber of cINs firing with the probabilistic model and hence the lengthened cycle

period. To offset this consequence of the probabilistic approach, we therefore

reduced the strength of cIN to dIN inhibition (from 0.435 to 0.2 nS). As predicted,

this reduced the cycle period to a range overlapping the distribution produced

by anatomical connectomes and matches periods seen in the real swimming

behaviour (Figure 3.12A).

3.3.8 A core dIN-cIN sub-network can generate swimming

The probabilistic approach allows us to test the reliability of network function

after removal of selected connections. As an illustration, we considered a sub-

network comprising only the sensory pathway (which is not active during swim-

ming), and dIN and cIN CPG neurons. We excluded aINs and mns simply by

setting the probability of connections to and from them to zero. Figure 3.13

shows one simulation of the functional model containing only this sub-network.
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Figure 3.13 A, D shows examples of voltage dynamics for individual dIN and cIN

neurons on the left and right body sides respectively; Figure 3.13 B, C shows

raster plots of spiking activity for all neurons on the left and right sides of the

body respectively.

The brown and light blue dots in Figure 3.13 B, C show a typical pattern of

anti-phase, left-right swimming activity in the dIN-cIN sub-network. We found

that in 100 independent simulations (with different reduced network connec-

tomes) swimming activity was generated that was similar to that in Figure 3.13.

The swimming period in these simulations was 57 ± 0.9 ms. These values

are again within the physiological range observed in experimental recordings of

swimming.

Previous experiments have shown that the swimming CPG includes dINs, cINs

and aINs [Roberts et al., 2010]. However, it is known that aINs have a low

probability of firing during swimming, suggesting that their contributions during

swimming are minimal and their role in the network is still unclear [Li et al.,

2004a]. Our simulation results confirm these experimental findings by showing

that the dIN-cIN subnetwork generates reliable swimming.

3.3.9 Removal of commissural connections allows rhythmic firing on the

stimulated body side

Experiments have revealed that an isolated side of the tadpole spinal cord with-

out commissural connections can generate regular rhythmic spiking activity in

motoneurons, with period that is lower than that of swimming [Soffe, 1989].

Once again, the probabilistic model readily allowed us to simulate these experi-

mental findings by setting the probability of commissural connections from cINs

and dlc neurons to zero to disconnect the two body sides. This is equivalent

to a sagittal midline lesion experimentally. Figure 3.14 A shows a raster plot

of steady oscillatory spiking in motoneurons (green) and dINs (brown), demon-
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Figure 3.13: Alternating firing ("swimming") in one realization of the dIN-cIN subnet-
work in a 300ms simulation, showing activity on the left (A-B) and right
(C-D) sides of the spinal cord. B and C show spike times, where the ver-
tical position of each spike corresponds to the rostro-caudal position of
the associated neuron. A and D show voltage trace examples for sin-
gle selected dINs (brown) and cINs (blue) on the left (A) and right (D).
Simulated sensory stimulation at 50ms causes an RB neuron (yellow) to
spike, which excites dlas and dlcs (pink and red, respectively). Excitation
from these sensory pathway neurons causes the dIN and cIN neurons
that form the CPG to generate an alternating rhythm.

strating that the rhythmic activity was maintained and stable.

It is important to note that the mechanism that generates this singled-sided

rhythm is different to that which generates swimming. In swimming, inhibition

from cINs causes contra-lateral dINs to fire post-inhibitory rebound spikes. In

the case of separated body sides there is no cIN input to dINs, and the only other

inhibitory CPG neurons, the aINs, are inactive. Instead, the rhythmic activity is

caused by feedback NMDA excitation within the dIN population, as has been

previously observed experimentally [Li et al., 2010] and in modelling [Hull et al.,

2016]. Within one simulation dINs fell into a number of different groups, based

on their spiking period. In most simulations the majority of dINs spiked rather

quickly, with period approximately 24 ms (41 ± 16 dINs, N=100 connectomes),

while most of the remaining dINs spiked with approximately double this period,

approximately 53ms (24 ± 4 dINs). A much smaller group fired twice as slowly

again, with a period of approximately 101 ms (2 ± 3 dINs). Figure 3.14B makes

these groups clear, by showing the same set of dIN spikes as Figure 3.14A
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but with the neurons sorted according to firing rate. Interestingly, motoneurons

tended to fire in-phase with the intermediately sized group of dINs that spiked at

approximately 53ms (as shown in Figure 3.14 A), although in some simulations

some mns did also spike in-phase with the faster group of dINs; further investi-

gation is required to understand why more mns are not able to fire with the dINs

in this group.

We have no direct experimental recordings of dINs following separation of the

two body sides, only ventral root recordings showing motor neuron activity. In

these experiments [Soffe, 1989] it was found that single-sided rhythmic activity

was significantly faster than that seen during swimming (initial average cycle pe-

riod 60ms vs 43 ms). This was also the case with our simulations, where most

mns spiked at approximately 53ms in the single-sided cases, versus approxi-

mately 69ms in normal swimming. From our results, we predict that recordings

from dINs during single-sided rhythm generation would reveal a relatively large

group of dINs that spike much more quickly than ventral root activity, and an-

other much smaller group of dINs that fire much more slowly.

3.3.10 Reliability of cINs spiking depends on their RC-coordinate

Experiments have shown that during swimming the reliability of spiking of some

neuron types can vary from cell to cell [Soffe, 1993, Li et al., 2007b]. In simula-

tions of connectomes generated by the anatomical model approximately 50% of

cINs fire reliably, whereas in connectomes from the probabilistic model approx-

imately 70% of cINs were reliable. Other cINs were either completely inactive

or only fire on some swimming cycles. We investigated the cause of this unreli-

ability by analysing the probabilistic model.

In the functional model, for each pair of cell types, the mean value of synap-

tic strength was selected in line with experimental data [Roberts et al., 2014]

and randomised by addition of the Gaussian random variable with zero mean
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Figure 3.14: Oscillatory activity on one side of the body after removal of commissural
connections. A. Raster plot of spiking activity during swimming, show-
ing dINs (brown) and motoneurons (green) on the left side of the spinal
cord after removal of commissural connections. B. The same dIN spik-
ing activity as in (A), but with the spike trains sorted vertically based on
increasing firing rate. In both cases activity is shown between 1500 and
1800 ms post-stimulation, when the system has settled down into a stable
oscillatory state.

and relatively small variance (see chapter 2). In the case of synchronous bom-

barding, the total input to the neuron depends on both the connection strength

and the number of incoming connections, therefore, the degree is an important

measure. For the reliability study, we approximate the total input to cIN by the

mean dIN to cIN connection strength multiplied by themean in-degree from dINs

to cINs, because dIN spike reliably and synchronously during each swimming

cycle.

From simulations of 100 different connectomes, we found that the probability

that a cIN spikes reliably depends on the dIN-cIN in-degree (IdIN ). If IdIN >15

then a cIN fires once on each swimming cycle, approximately in phase with dINs

and mns on the same side; we call this a ’reliable’ cIN. If 13 ≤ IdIN ≤ 15 then

firing is irregular, meaning the cIN fires approximately in-phase with dINs and

mns but on only some swimming cycles; we call this an ’unreliable’ cIN. Those

cINs that have IdIN<13 do not fire at all during swimming.

The probabilistic model allowed us to calculate the expected dIN-cIN in-degree
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as a function of its rostro-caudal position (Figure 3.15). Note that this result was

based only on analysis of the general probability matrix, not individual connec-

tome realisations. The relationship allowed us to hypothesise: (1) it is likely that

rostral cINs will not fire; (2) it is likely that cINs with RC-coordinate near 900 µm

are unreliable, and (3) it is likely that caudal cINs will fire reliably.

To confirm these hypotheses in the model we used the results of 100 spiking

simulations to calculate the probability that a cIN in a certain position will fire

reliably. In Figure 3.15 B we show the reliability proportion (the fraction of sim-

ulations where the cIN fires reliably) vs RC coordinate. From this, it was clear

that cINs at more rostral positions have a significantly lower probability of reliable

spiking than cINs in more caudal positions. Using a linear regression model, we

determined a strong correlation between the cIN reliability proportion (x) and the

average dIN-cIN in-degree (y) given by the linear relationship y = 0.07 · x− 0.4

(Figure 3.15 C). Note that there is currently not enough experimental data about

the reliability of cIN spiking during swimming in vivo to say whether the level of

cIN reliability in our simulations was realistic. However, our general results from

the probabilistic model suggest that it is important that any experimental mea-

sures of cIN spiking reliability (or that of other neuron types) should take into

account the rostro-caudal position of the measured cell.

3.3.11 Ascending axons of dINs are important for swimming

It is a defining feature of dINs in the tadpole that they all have a descending axon,

but some dINs which are located more rostrally have a second axon growing in

the ascending direction [Borisyuk et al., 2014, Roberts et al., 2014]. Simpli-

fied computational models [Li et al., 2006, Wolf et al., 2009] have shown that

the swimming activity fails to self-sustain unless some excitatory interneurons

have ascending connections. We used the probabilistic model to further clar-

ify the role of ascending dIN axon branches, taking advantage of the fact that
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Figure 3.15: Firing reliability of cINs. A. Plot of the average cIN in-degree from pre-
synaptic dINs as a function of rostro-caudal position. Blue dots represent
cINs that have on average 15 or more incoming connections from dINs,
while red dots represent cINs that have on average fewer than 15 incom-
ing connections from dINs. The cINs with 13-15 incoming connections
(green shaded area) are most likely to fire unreliably, whereas those with
fewer than 13 connections are likely to be completely inactive. B. cIN reli-
ability proportion vs cIN rostro-caudal position; for each cIN the reliability
proportion is the fraction of 100 simulations where the cIN fires reliably.
C. Scatter plot of the cIN reliability proportion vs the average in-degree
from dINs. The figure shows the linear regression line between these two
variables and the corresponding R2 value.
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our new model allows us to run large numbers of simulations and to study the

generalised connection structure. Using the probabilistic model, we removed all

ascending connections from dINs and generated a modified adjacency matrix

(connectome), which we then used to simulate spiking activity.

Figure 3.16 A shows the in-degrees for the dIN sub-network (i.e. the number

of incoming connections to each dIN from other dINs) for the standard con-

nectome (black) and one lacking ascending dIN axons (red). In the figure, the

horizontal and vertical axes show the in-degrees and the RC-coordinate of dINs,

respectively. We consider here only rostral and mid-body dINs in the range of

RC-coordinates from 500 to 1400 mm; more caudal dINs do not receive any

synapses from ascending dIN axon collaterals, so the in-degrees are the same

for both connectomes.

From Figure 3.16 A it is clear that the dIN in-degrees in both cases are similar

in the middle body part but are increasingly different for neurons in the rostral

part. For the modified connectome, the in-degree (red dots) decays to zero in a

linear way as the RC-coordinate approaches 500 mm because the dINs in the

most rostral locations have a few if any connections from descending axons. As

a result, the most rostral dINs in the modified connectome can only fire due to

electrical coupling between dINs, resulting in the appearance of some unusual

patterns of spiking activity not observed experimentally. We repeated 100 sim-

ulations of the functional model after removing ascending dIN connections. The

resulting spiking activity patterns can be divided into three cases:

• Case 1 (63/100): In most simulations, the swimming activity was initiated

but failed to persist. Swimming failures begin with rostral dINs failing to

spike due to reduced excitatory drive from other dINs (ascending dIN con-

nections are missing); this reduced excitation from the rostral dINs pre-

vents slightly more caudal dINs from firing, and so on, as can clearly be
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Figure 3.16: Comparison of spiking activity in the normal case and when dIN ascend-
ing axons are removed. (A) Average in-degree from dINs to other dINs at
different rostro-caudal positions in the standard connectome (black dots)
and after removal of ascending dIN axons (red dots). (B) Example of
typical spiking activities from connectomes with ascending dIN axons re-
moved (case 1, see text for details).
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seen in Figure 3.16 B. This result is in line with previous modelling that

showed that feedback excitation is a mechanism that contributes to gen-

erating persistent motor activity in a simpler model [Li et al., 2006].

• Case 2 (36/100): In 33 of 36 simulations one side only was active. In 3 of

36 simulations both sides were rhythmically active for the total length of the

simulation but they do not fire in antiphase. The pattern of spiking activity

on one side is similar to the one shown in Figure 3.14 A.

• Case 3 (1/100): Only one simulation generated sustained swimming alter-

nating firing between left and right sides, but the period of the oscillations

was shorter than for the standard connectome (50 ms).

3.4 Discussion

The study of neuronal connectivity is a challenging problem in contemporary

neuroscience. One popular and effective method for finding cortical connec-

tivity involved detailed tracing of a small number of individual neurons of each

identified type, and then using estimates of the number of location of the differ-

ent cell types to estimate complete connectivity [Binzegger et al., 2004]. Recent

development of new brain imaging techniques allows generation of 3D images

of single neurons, tracing their connections and, for example, making progress

towards a complete Drosophila connectome [Lin et al., 2015, Shih et al., 2015].

Similar progress has been made by combining molecular, anatomical and phys-

iological techniques to find the neuronal cell types, and connections between

them, in mouse retina [Seung and Sümbül, 2014, Kim et al., 2014]. Computa-

tional modelling has been successfully applied to find a sensorimotor connec-

tome in larval Zebrafish [Stobb et al., 2012]. In this chapter, available neurobi-

ological data have been used to describe neuronal cell types and formulate a

stochastic model of connectivity, which was studied using a graph theory ap-

proach.
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It is known that brain development involves multiple stochastic processes and

that, in most species, individuals’ connectomes are different [Seung, 2012]. De-

spite differences in connectivity, most individuals under normal conditions are

able to demonstrate similar functionality. This means that different connectomes

include sufficient key structural features to produce a common repertoire of func-

tionalities and behaviours. What are the key connectivity properties that define

the network functionality?

Motivated by this question, we derive a probabilistic model of connectivity in the

Xenopus tadpole CNS (caudal hindbrain and spinal cord) to study the relation-

ship between the structure and function of the network. To derive the probabilis-

tic model we generate 1000 connectomes using a biologically realistic anatomi-

cal model based on the ’developmental’ process of axon growth [Li et al., 2007a,

Borisyuk et al., 2011, 2014, Roberts et al., 2014]. A similar approach to generat-

ing connectivity from a developmental process was used by Bauer et al. [2012];

in this case, a reaction-diffusion model was applied to generate connectivity in

a network of excitatory and inhibitory neurons with winner-takes-all functional-

ity. Using a universal ordering of neurons in the tadpole, we have calculated

the probability of connection from each neuron i to neuron j as the frequency

at which a connection exists among the thousand generated connectomes. In

this way, our probabilistic model ’generalizes’ structural properties of networks

produced by the anatomical model.

Some of the results of our graph theoretical analysis demonstrate that the struc-

ture of the tadpole spinal connectome differs from the one of many other brain

circuits. For example, using directed measures of clustering, we found that this

connectome has a lower number of cycle loops than a benchmark random net-

works. This implies that the tadpole connectome is not of the small-world type

[Watts and Strogatz, 1998], and differs in this respect frommost previously anal-

ysed brain circuits [Telesford et al., 2011, Sporns and Zwi, 2004]. Another struc-
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tural feature that distinguishes the tadpole and zebrafish spinal connectomes

from many previously studied connectomes [Sporns and Kötter, 2004], includ-

ing the ones analysed in this chapter, is that their motif spectra are closer to a

randomised rather than a ring-like topologies. All these results are quite impor-

tant because they show that some graph properties found in the connectomes

of different brains are not so "universal" as many suspected [Bassett and Bull-

more, 2017]. We suggest that, instead of using graph measure to find universal

structural properties in the brain (such as the small-world property), it is more

useful to apply these measure to each specific network of study and to make

comparisons with networks that share similar functions. Indeed, different neu-

ronal circuits generate different behaviours, and it is well-known that they are

built in a specific way to achieve them [Marder and Calabrese, 1996, Bargmann

and Marder, 2013].

In the case of tadpoles, we suggest some functional implications of the graph

measures used by testing the ability of the connectome to generate swimming

behaviours. Specifically, we use the probabilistic model to generate an adja-

cency matrix representing a particular realisation of neuronal connectivity. Map-

ping the adjacency matrix to a functional model of spiking neurons of Hodgkin-

Huxley type enables us to simulate spiking activity. We compare these simula-

tions of the functional model to the experimental results on swimming initiated

by skin touch. All generated adjacency matrixes (connectomes) mapped to the

functional model generate similar swimming activity. It seems, then, that the

probabilistic model contains some fundamental features of the network connec-

tivity (’proper structure’) which ensure correct functioning of the system. For ex-

ample, experimental recordings show that apparently-pathological activity (syn-

chrony) can sometimes appear soon after swimming initiation: the two body

sides spike synchronously during several cycles before then switching to nor-

mal anti-phase swimming activity [Li et al., 2014a]. This synchronous activity ap-
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pears also in model simulations with connectivity generated by both the anatom-

ical and the probabilistic models. However, the number of synchronously firing

neurons is significantly reduced in probabilistic connectomes.

A second type of apparently pathological activity is the additional firing of some

dINs near the middle of the swimming cycle (mid-cycle dINs) [Li et al., 2014a].

Mid-cycle dINs appear in model simulations with both anatomical and proba-

bilistic connectivity. However, the number of such mid-cycle dINs is significantly

reduced in probabilistic connectomes: 0.8 and 6.3 for probabilistic and anatomi-

cal connectomes, respectively (average according to swimming cycles and 100

simulations). These results suggest that synchrony and mid-cycle dINs arise

from connectivity imperfections and that the generalised connectivity encapsu-

lated in the probabilistic model improves on the imperfection of some individual

realisations.

To design the probabilistic model, we use a minimalistic approach. We use

the assumption that directed connections are represented by the matrix of in-

dependent Bernoulli random variables. One of the strengths of this approach

is that it allowed us to analytically calculate some of the graph’s characteristics

(the mean and standard deviation of in- and out-degrees, heterogeneity coeffi-

cients) directly from the probability matrix, without considerations of a particular

(generated) connectome. In the case of the anatomical model, we can only

compute graph characteristics for a connectome realization. Here, we study

how these characteristics relate to particular functional properties of the net-

work. For instance, the average in- and out-degrees were used to predict the

swimming period and to find the positions of reliably firing cINs.

The assumption that the Bernoulli variables are independent is a significant lim-

itation of the probabilistic model. One way to overcome this limitation might be

the use of more sophisticated probabilistic processes where the random vari-
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ables corresponding to different connections become dependent (e.g. random

Markov field approach).

Computational modelling of the tadpole spinal cord reveals the fundamental fea-

tures of neuronal connectivity that are responsible for robust swimming genera-

tion. Unlike simpler organisms such as C. elegans, tadpoles have the potential

for significant variation between individuals in terms of neuronal connectivity,

as a result of the large number of random processes involved in their develop-

ment. Despite this variation, the behaviour of individuals is approximately the

same, suggesting some fundamental organisational principles common across

the species. We adopt the philosophy that, for tadpoles at least, there is a

theoretical ’perfect’ version of the nervous system with individual random vari-

ations from this ideal. Although, the probabilistic model arises from ’averaging’

of many anatomical connectomes, this model still generates connectomes that

reliably swim and this fact presumably reflects the fundamental organisational

principles of the system. An interesting property of connectomes generated by

the probabilistic model is that their anatomical and functional characteristics are

considerably less variable than those generated by our anatomical model (and

on whose properties the probabilistic model was based). We hypothesise that

due to the ’averaging’ process of the probabilistic model, the connectomes gen-

erated from it are closer to the theoretical ’ideal’ network. Some characteristic

features of the connectivity are not clear from an individual realisation, but be-

come evident from the probabilistic model. For example, the shape of degree

distributions as a function of cell position cannot be clearly seen from analysing

an individual connectome - these shapes are irregular. They are much clearer

when calculated directly from the probabilistic model itself. In addition to this,

connectomes generated by the probabilistic model generate spiking activity that

is considerably less variable and ’messy’ than anatomical connectomes, which

makes it easier to see and quantify phenomena such as irregularly spiking cINs.
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Finding neural connection probabilities under biological constraints is a difficult

problem. In the case of the tadpole spinal cord, the system is simple enough

that it is possible to reconstruct biologically realistic connectivity [Roberts et al.,

2014] (an anatomical connectome) and to define neuronal connection probabil-

ities (probabilistic model). We believe that this is a promising general approach

that could be used beyond the particular case of tadpoles. Similar probabilistic

approaches have been used for modelling the development of neural networks

using limited experimental data [Binzegger et al., 2004, Zubler and Douglas,

2009]. Another possible approach for finding connection probabilities is to mini-

mize an appropriate cost function which reflects both anatomical and functional

properties.

3.5 Conclusion

We study the structure and function of the spinal cord neuronal network using

experimental data and computational modelling. Our anatomical model gener-

ates multiple highly variable and nonhomogeneous connectomes and to deal

with this large and complex data we design a very simple mathematical meta-

model expecting that this new probabilistic model will reflect (generalise) struc-

tural properties of anatomical connectomes and show proper functioning.

The crucial question is: ’Can probabilistic connectomes produce swimming’?

The answer to this is not obvious. An earlier paper [Li et al., 2007a] showed that

a graph of connections based on probabilities derived from small number of pair-

wise recordings provides swimming in about 60% of cases only. On the other

hand, this new study shows that probabilistic connectomes that include some

of the structure of anatomical connectomes reliably swim in all cases. Thus, we

can derive an important conclusion that the two properties of the probabilistic

model inherited from anatomical connectomes: (1) position of neurons along

the rostro-caudal coordinates and (2) frequency of connection appearance, are
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sufficient for swimming generation.

Also, it is easy to use the probabilistic approach to generate connectomes com-

pared to the need to ’grow’ them using the anatomical model: all traditional char-

acteristics of the connectivity graph can be calculated directly from the probabil-

ity matrix without consideration of particular connectomes. Some characteris-

tics of the probabilistic connectomes (e.g. the mean of in- and out-degrees) co-

incide with equivalent characteristics of the anatomical connectomes but some

differ (e.g. the variances of in- and out-degrees are significantly smaller for

probabilistic connectomes). Although there are some differences between the

behaviour of anatomical and probabilistic connectomes, even studying these dif-

ferences can provide important insights into the relationship between the struc-

ture and function of the network. Our investigation in the reasons underlying a

difference in swimming frequency between the two types of connectome (see

result section) is an example of this, where we found that it was the degree

of variance of cIN in-degree from dINs that largely caused the difference. It

would have been hard to observe this interesting phenomenon without having

the probabilistic model (where in-degree variance is much lower) to compare

with the anatomical one.

The probabilistic model provides a different way to look at the information gener-

ated by the anatomical model. It is grounded in the previous anatomical model

as the anatomical model is grounded in the biological anatomy. It provides a

different perspective on data generated by many anatomical models, and it is

this different perspective that makes the probabilistic model an advance.
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Chapter 4

Bifurcations of Synchrony and Swimming

in the Tadpole CPG Controlling Locomo-

tion

During swimming, neurons in the spinal CPG generate antiphase oscillations between
left and right half-centres. Experimental recordings show that the same CPG neurons
can also generate transient bouts of long-lasting in-phase oscillations between left-
right centres. These synchronous episodes are rarely recorded and have no identified
behavioural purpose. However, metamorphosing tadpoles require both antiphase and
in-phase oscillations for swimming locomotion. Although our previous functional model
of the swimming circuit has shown the ability to generate biologically realistic patterns
of synchrony and swimming oscillations, a mathematical description of how these os-
cillations appear is still missing. In this chapter, we study a significant reduction of the
CPG swimming circuit that incorporates the key operating principles of tadpole locomo-
tion. This new model generates the various outputs seen in experimental recordings,
including swimming and synchrony. To study the model, we perform detailed one- and
two-parameter bifurcation analysis. This reveals the critical boundaries that separate
different dynamical regimes and demonstrates the existence of parameter regions of
bi-stable swimming and synchrony. We show that swimming is stable in a significantly
larger range of parameters, and can be initiated more robustly, than synchrony. Our re-
sults can explain the appearance of long lasting synchrony bouts seen in experiments
at the start of a swimming episode.

Rhythmic neuronal activity is the basis for many locomotor activities, such as

swimming, flying and walking [Roberts et al., 1998, Grillner et al., 2008, Golu-

bitsky et al., 1999, Marder and Bucher, 2001, Arshavsky et al., 1993, Dimitrijevic

et al., 1998]. Experimental and modelling evidence suggests that such rhyth-

micity is generated by specialised neuronal networks called central pattern gen-
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erators (CPGs) [Marder and Calabrese, 1996, Ijspeert, 2008]. A key property of

a CPG is the ability to autonomously generate rhythmic activity without forcing

by periodic external input.

Different motor behaviours require different rhythmic patterns, such as left-right

antiphase oscillations for walking and running [Grillner, 2006], or in-phase left-

right firing for some forms of crawling [Eisenhart et al., 2000] and flying [Marder

and Bucher, 2001]. Interestingly, swimming in Xenopus tadpoles follows an anti-

phase pattern, but during metamorphosis there is a progressive shift to in-phase

limb movements [Combes et al., 2004]. Although experiments show that some

CPGneurons can be display either in- or anti-phase oscillations [Li et al., 2014a],

it is unclear whether the same group of CPG neurons could be responsible for

the generation of these different rhythmic patterns. An alternative is that the

CPG includes a repertoire of diverse CPG sub-networks, each responsible for a

single motor pattern with its own specific firing [Dickinson et al., 1990, Briggman

and Kristan, 2006, Briggman and Kristan Jr, 2008].

In this chapter, we consider a computational model of the Xenopus tadpole CPG.

We focus on the neuronal dynamics that drive swimming locomotion in two-

day-old tadpoles (two days from fertilisation, developmental stage 37/38). The

mechanism for swimming generation is well understood and previous studies

have revealed the detailed structure of the CPG circuit. In particular, this circuit

is split between left and right sides of the spinal cord (left-right half centres)

spanning the spinal cord and caudal hindbrain [Roberts et al., 2008]. A pattern

of swimming related activity is generated by excitatory descending interneurons

(dINs) and inhibitory commissural interneurons (cINs). These key CPG neurons

drive the motor response by firing single action potentials per swimming cycle,

with firing occurring in antiphase between left and right half-centres [Roberts

et al., 2010].
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It has long been known from physiological experiments in tadpoles immobilised

with a neuromuscular blocker that the tadpole spinal circuit can also generate

transient forms of motor output in which there is synchronous firing of neu-

rons between left and right half centres, with half the swimming period [Kahn

and Roberts, 1982a,b, Soffe et al., 1984]. Early simulations suggested that

this synchronous output could be stable for neurons excited by positive feed-

back and coupled by reciprocal inhibition [Roberts et al., 1984, Roberts and

Tunstall, 1990]. More recent recordings have confirmed that CPG neurons fire

during these transient periods of synchronous activity, which can be sponta-

neous or induced artificially by injecting constant depolarising currents [Li et al.,

2014a]. Transitional synchrony may last for a relatively long time (500-1000

ms) and, in most cases, starts shortly after swimming initiation [Li et al., 2014a,

Kahn and Roberts, 1982b]. To date, a behavioural correlate of this pattern

has not been characterised, although apparently-pathological ’fluttering’ move-

ments have been observed (unpublished). It therefore remains unclear whether

synchrony is indeed a pathological behaviour or its appearance is an early

preparation for a developmental change. During metamorphosis (happening

at around 60 days from fertilisation), in-phase and anti-phase motor patterns

have been observed and defined both behaviourally and physiologically (ven-

tral root recordings) [Combes et al., 2004]. We believe that one possible role of

synchrony in Xenopus tadpoles is to release glutamate/acetylcholine at double

the normal swimming frequency in the CPG and at the neuromuscular junctions.

This may boost CPG and muscle excitability and help increase the muscle con-

traction amplitude/strength at the beginning of swimming.

Our aim is to understand how swimming (anti-phase) and synchrony (in-phase)

oscillations can be generated by CPG neurons, find conditions for existence of

these two dynamical modes, and for the existence of bi-stability - where both

swimming and synchrony can be generated with the same parameters, just by
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varying the initial stimulus. Furthermore, we seek to understand the mecha-

nism that produces transitions from long-lasting synchrony to stable swimming.

In a related work, anti-phase and in-phase oscillations have been found to be

stable outputs in recent computational models of the mammalian respiratory

CPG [Molkov et al., 2015]. To achieve our goal, we combine a highly reduced

neuronal circuit of two pairs of neurons that are known to be essential for the

tadpole CPG function [Arshavsky et al., 1993, Roberts and Tunstall, 1990, Wolf

et al., 2009] with a detailed model of single neuron spiking. Consideration of

a small network allows us to use bifurcation analysis for studying the possible

dynamical modes. A detailed, biologically plausible model of spike generation

allows us to mimic specific features of experimental recordings and compare

the results of model simulations with experimental data.

The reduced CPG circuit includes one excitatory (dIN) and one inhibitory (cIN)

neuron in each half centre. Key features of the model include dIN self-excitation

acting as a positive feedback and cIN cross inhibition. A circuit with similar

characteristics has been studied in [Laing and Chow, 2002]. During swimming,

this circuit works in the following way. Excitation and subsequent spiking of a

dIN leads an ipsilateral cIN to spike, inhibiting the dIN in the opposite half cen-

tre. A key feature of dIN firing is the potential for post-inhibitory rebound (PIR)

spiking. Therefore, after some delay the inhibited dIN generates a spike due to

PIR, excites the cIN in the same half centre, and the process repeats to gener-

ate an anti-phase spiking pattern between the half-centres. During synchrony,

dINs on both half centres fire PIR spikes at similar times, shortly before the ar-

rival of cIN inhibition. When inhibition does arrive, it hyperpolarizes the dINs,

which then fire another PIR spike after a relatively slow repolarisation period.

If synchrony is stable then the cIN and dIN firing times for the two half-centres

become increasingly close together, until both half-centres are firing in perfect

synchrony. The activity of dINs drives swimming and other locomotor behaviour
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by directly exciting the motorneurons that control muscle movement, though we

do not include motorneurons in the reduced model [Li et al., 2006, Soffe et al.,

2009].

The model of the neuronal circuit includes six synapses and to model spiking

activity we use a detailed single-compartment Hodgkin-Huxley type model with

the gating channels’ dynamics motivated by voltage-clamp experiments [Dale,

1995, Winlove and Roberts, 2012]. Thus, the reduced model includes 34 ordi-

nary differential equations. To study bifurcations we combine the continuation-

based software AUTO-07P [Doedel et al., 2007] and XPPAUT [Ermentrout, 2002].

We study co-dimension one and two bifurcations of the limit cycles correspond-

ing to swimming and synchrony. This analysis reveals the stability regions

for these two limit cycles, including regions where the system can support bi-

stable swimming and synchrony. Taking inspiration from initiation of swimming

in real experiments, we formulate a biologically-plausible method of initiating the

model’s dynamics based on input currents onto dINs. This initiation procedure

allows us to explore to what extent the time jitter and duration between left and

right dIN current inputs can lead to stable synchrony or swimming. We show

that the swimming mode has a bigger stability region and it can be initialised

for a bigger range of initiation parameter values. This suggests that swimming

is the key functional output of young tadpoles. We propose a mechanism for

generating long-lasting transient synchrony preceding a swimming episode that

is qualitatively similar to synchrony in experimental recordings.

4.1 Methods

4.1.1 Model Description

The model is a significant reduction of the detailed, biologically realistic model

of the swimming network in the tadpole caudal hindbrain and rostral spinal cord,

which was described in our previous publications [Li et al., 2007a, Borisyuk et al.,
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2014, Roberts et al., 2014]. This full model for simulations of the swimming dy-

namics includes about 2,000 neurons and 90,000 synapses with about 200,000

delay differential equations. This model demonstrates a very reliable swimming

dynamic under variation of parameter values [Roberts et al., 2014]. In addi-

tion, this model has been used to simulate the experimental data of synchrony

activity [Li et al., 2014a].

To use bifurcation analysis for formal mathematical study of the existence and

stability of swimming and synchrony, it is necessary to simplify the previous

model significantly. Our approach for defining a simplified model for locomotion

in tadpoles is to minimise the number of neurons and synaptic connections, and

to use a detailed biologically-realistic mathematical description of neurons and

synapses. The description of the model comprises two parts.

Firstly, we consider only one "segment" of the spinal cord with the minimal num-

ber of neurons in each half-centre needed to characterise the tadpole CPG [Ar-

shavsky et al., 1993, Wolf et al., 2009]: one excitatory dIN and one inhibitory

cIN. Thus, the "reduced model" includes four neurons and we assume that the

full neuronal network for swimming can be built by expansion of this structure.

Figure 4.1 shows the connections in the reduced model. To compensate for a

lack of excitation resulting from removal of synaptic input from other dINs, we in-

troduce dIN self-excitation. In the reduced model we consider identical neurons

in both half-centres with symmetrical connections. Therefore, the dynamical

system is also symmetrical under midline reflection of left and right half-centres

(Figure 4.1).

Secondly, we use a detailed model of spike generation and synaptic transmis-

sion to mimic important details of firing patterns in different dynamical modes

and compare them with experimental recordings from tadpole neurons. To

model neurons’ membrane potential and transmembrane currents we use the

104



4.1. METHODS

Figure 4.1: Scheme of neurons and connections in the reduced model. Currents I1(t)
and I2(t)represent external depolarising step currents injected to the two
dINs to mimic sensory input. Both currents have the same duration d and
amplitude A. The current pulses for I1(t) and I2(t) are initialised at time t1
and t2, respectively.

same modified Hodgkin-Huxley spiking model as in the full functional model

(see the Introduction and Roberts et al. [2014]). To model synaptic connec-

tions we use an approach similar to the full functional model, the only difference

being that in the functional model, synapses were modelled using delay differ-

ential equations, while here we use synapse models that are continuously de-

pendent on the pre-synaptic potential. We use a continuous model of synaptic

transmission because of the difficulties associated with numerical continuation

of systems of delay differential equations.

Neuronal models. Neuronal spike generation ismodelled by the single-compartment

Hodgkin-Huxley equations, which includes various types of currents flowing

through the ion channels. Although several models describing the activity of

dINs and cINs have been developed [Wolf et al., 2009, Roberts et al., 2010,

2014, Roberts and Tunstall, 1990, Hull et al., 2015], we believe these models

are still not able to reproduce some important properties known from electro-

physiology. Here, we use the same neuron models used to model the func-

tional connectome in the previous chapter (see the Introduction and Roberts

et al. [2014]), because they incorporate some key physiological firing properties
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detected from experimental recordings [Winlove and Roberts, 2012, Dale, 1995,

Roberts et al., 2014].

Remark: In the case of dINs, the mechanism of PIR is based on de-inactivation

of depolarisation-activated inward currents [Li et al., 2006, Soffe et al., 2009,

Angstadt et al., 2005]. However, the complete mechanism underlying PIR in

tadpole dINs still awaits physiological characterisation. It is known that, during

swimming, dINs are depolarised due to summated, long lasting NMDA-receptor

mediated excitation, and the inhibition leading to PIR occurs against the back-

ground of this depolarisation [Li et al., 2006].

Figure 4.2A demonstrates the PIR property of the dIN model. During the time

interval [t0, t1] the dIN is in the depolarised state due to constant current in-

jection [Roberts et al., 2014]. During the time interval [t1, t2] the dIN voltage

decreases due to the injection of inhibitory current (blue line). Termination of

this inhibitory current at time t2 (on the background of positive current injection)

leads to generation of a dIN spike at time t2 via the PIR mechanism.

Figure 4.2B-C show the dynamics of the gating variables and ionic currents,

respectively. It is clear from these figures that the mechanism of PIR is rather

complex, due to the interaction of many model components with different time

scales. However, we can see how the PIR spike at time t2 is triggered by de-

inactivation of the sodium current.

Synaptic models. The reduced model includes excitatory and inhibitory con-

nections. We consider both AMPA and NMDA receptors of glutamate excitatory

synapses from dINs, and glycinergic receptor for inhibitory synapses from cINs

(Figure 4.1). Summation of the slow synaptic transmission mediated by NMDA

receptors from dIN to dIN synaptic transmission is essential for generation of

swimming activity because PIR spiking in dINs needs inhibition to arrive against

a sufficiently high level of depolarization [Roberts and Tunstall, 1990]. For this
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Figure 4.2: Property of PIR in the dIN model. (A) Voltage dynamics in one dIN (black
line) during the injection of the current function I(t) (blue line). (B) and (C)
show the dynamics of the dIN’s gating variables and ionic currents during
the same current injection of part (A), respectively.

reason, we consider NMDA driven self-excitatory connections in dINs. As in the

full model of the swimming network, dINs in the reduced model are able to fire

PIR spikes on release from cIN inhibition. The six synaptic connections of the

reduced model (Figure 4.1) encompass the key properties of the tadpole CPG:

ipsilateral excitation (driven by NMDA/AMPA synapse), commissural inhibition

(driven by glycinergic synapses) and post-inhibitory rebound in dINs.

Equations 4.1-4.5 describe the synaptic currents is (s ∈ {ampa,nmda,inh}). The

time evolution of every synaptic transmission event depends on the opening

and closing of state variables, τc and τo respectively. Equation 4.2 describes

the dynamics of these variables: ys, ys ∈ {cs, os}. In this equation, we use a

well-known model of synaptic transmission that depends continuously on the

pre-synaptic membrane potential vpre [Destexhe et al., 1998] with gs = gs(vpre)

representing the concentration of released neurotransmitter formulated in 4.3.

In the case of NMDA receptors, voltage-dependence of the synaptic current is

described by the factor Mg(v) representing Mg2+ modulation of NMDA recep-
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s NMDA AMPA glycine
es (mV) 0 0 -75
τ so (ms) 0.5 0.2 1.5
τ sc (ms) 80 3 4
v̄s (mV) 10 10 1
Ts (-) 1.5 4 1

Table 4.1: Parameters of the synaptic models.

tors (Equations 4.4-4.5).

is = ws(es − v)(cs − os) (4.1)
dys
st

= gs(vpre)(1− ys)−
ys
τ sy

(4.2)

gs(vpre) =
Ts

1 + exp(v̄2 − vpre)
(4.3)

inmda = wnmda(enmda − v)(cnmda − onmda)Mg(v) (4.4)

Mg(v) = 1/(1 + 0.05exp(−0.08v)) (4.5)

Here the values of parameters es, τ so , τ sc , v̄s and Ts are given in Table 4.1. Param-

eters ws and es represent the synaptic strength and reversal potential of each

type of synapse, respectively. The time constants τo, τc of the opening and

closing state variables were fitted from pairwise electrophysiological recordings

[Sautois et al., 2007] and follow the time course of the different receptors types.

The slow de-inactivation of the NMDA is important for a proper functioning of

swimming [Sautois et al., 2007]. We do not investigate the variation of these

time constants. Parameters wampa, wnmda and winh are the bifurcation parame-

ters that we varied during numerical continuation. In the results section we will

discuss the values of these parameters.

Remark: Parameter wampa describes the connection strength of dIN→ cIN cou-

pling (for simplicity we consider the dynamics of AMPA synapse only). We cal-

culate the physiological range of variation for this parameter using the following

experimental findings: (1) The dINs spike reliably and synchronously during
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each swimming cycle [Soffe et al., 2009, Li et al., 2014a]; (2) The average num-

ber of incoming connections from dINs to cINs participating in swimming is in the

range (15, 17) [Ferrario et al., 2018a]; (3) The maximal unitary strength of the

AMPA synapse is 0.6nS [Sautois et al., 2007]. Thus, it gives the physiological

range of parameter wampa: (9nS,10.2nS).

Parameter wnmda describes the connection strength of the dIN→ dIN coupling.

For simplicity we consider the dynamics of a slow NMDA synapse only, but ad-

just the connection strength to reflect the fast AMPA component as well. To

calculate the physiological range of this parameter variation, we use experi-

mental findings similar to the consideration above. The average number of in-

coming connections to dINs from dINs is in the range (13-21) [Ferrario et al.,

2018a], and the maximal unitary strengths of the AMPA and NMDA synapses

are 0.6nS and 0.15nS, respectively [Sautois et al., 2007]. To take into account

the AMPA influence, we adjust the strength by summing these values and mul-

tiply by the range of incoming connections to get the physiological range of pa-

rameter wnmda: (10nS,15.8nS).

For our numerical study of bifurcations we widen the range for both wampa and

wnmda to clarify the relationship between different bifurcations (e.g. to find the

turning point). Therefore, we vary the parameters wampa and wnmda in the ranges

(9nS,20nS) and (8nS,20nS), respectively.

4.1.2 Software

For numerical studies of limit cycles, we combine several software tools. To

run numerical integration and find periodic orbits we use XPPAUT [Ermentrout,

2002] with the CVODE variable time step integrator with absolute and relative

tolerances equal to 1e-12. We use the stable periodic orbit to start numerical

continuation in order to determine stability and find bifurcations. To perform nu-

merical continuation and detect the bifurcations of the reduced model we use
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the software package AUTO-07P [Doedel et al., 2007]. We use custom writ-

ten Python code to transform equations, variables, functions and parameters

from XPPAUT to AUTO. To study the initiation of the stable limit cycles and run

multiple numerical integrations in parallel, we use both XPPAUT and custom

written MATLAB code (MathWorks, Inc) with different variable time step inte-

gration schemes (ode23tb, ode45) to confirm the accuracy of our results. To

integrate the system with noise, we use standard Euler-Maruyama method with

time step dt=0.01.

4.2 Results

4.2.1 Swimming and synchrony limit cycles

In this section, we validate the reduced model by showing that it can produce

activity similar to that seen in experimental recordings. To do so, we fix synaptic

strengths and simulate the reduced model to reproduce swimming and syn-

chrony dynamics.

In experiments with immobilised tadpoles, CPG neurons are normally at rest

before the start of a swimming episode. This start is marked by a gradual de-

polarisation of the membrane potential that can lead to rhythmic firing [Roberts

et al., 1981]. To mimic these experiments, we initialise neurons at rest, and we

use the following initiation procedure to control perturbations and move the orbit

from the resting state to a basin of attraction of either swimming or synchrony.

Initiation of the dynamics. In experiments, a swimming episode can start after

brief head or trunk skin stimulation on one side of the animal [Buhl et al., 2012,

Boothby and Roberts, 1995]. Skin stimulation leads to neuronal firing in the

sensory pathway which delivers, with some delay, excitation to CPG neurons in

both half-centres. Experiments have shown that the start of movement occurs

shortly after the first dINs spikes [Buhl et al., 2012], and that dIN activity drives

spiking of other neurons during swimming [Soffe et al., 2009].
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Figure 4.3: Voltage traces of dINs in the reduced model during swimming and syn-
chrony. The left panel shows experimental pairwise recordings from one
left-centre dIN and one right-centre dIN during swimming and synchrony.
The right panel shows the voltage variable of the two dINs of the reduced
model during swimming and synchrony. We show three cycles of swim-
ming (3T) and two cycles of synchrony (2T) to highlight the characteristic
shapes of the membrane potential during these two regimes and to com-
pare experiments and model simulations. Arrows indicate the firing of cINs
and mark the inhibition preceding PIR spikes in dINs. Model parameters
used to obtain swimming are winh = 23 nS, wampa = 12 nS and wnmda = 10
nS, with initiation parameters ∆ = 140 ms and d = 6 ms. Model parameters
used to obtain synchrony are winh = 55 nS, wampa = 12 nS and wnmda =
10 nS, and initiation parameters ∆ = 0 ms and d = 6 ms. The experimental
recordings have been obtained using the same experimental protocols and
conditions described in [Li et al., 2014a]

To move the system out of its initial rest state and initiate activity, we inject a

depolarising step current iext with fixed amplitude A = 0.1 nA and duration d = 6

ms to dINs in the left and right half centres at times t1 and t2 respectively, where

time delay ∆ = t2 − t1 (Figure 4.1).

We use the initiation procedure to run numerical integration of the reduced

model in order to find stable oscillatory regimes. Figure 4.3 shows both exper-

imental recordings (left panel) and stable regimes of the reduced model (right

panel). The left part of each panel shows the membrane potential of dINs in

each half-centre of the body during swimming and the right part shows themem-

brane potentials during synchrony. Parameter values for these simulations are

given in the figure caption.
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Although the model describes a highly reduced CPG, the pattern of dIN mem-

brane potential trajectories qualitatively matches the experimental recordings

well. These typical spiking patterns of swimming and synchrony modes include

dIN post-spike depolarisation and deep inhibition (black arrows show time of cIN

spikes in the opposite half-centres) causing inhibition and subsequent rebound

spiking. These two typical oscillatory patterns correspond to limit cycles in the

phase space of the dynamical system. The swimming mode with anti-phase

oscillations in opposite half-centres corresponds to the Swimming limit Cycle

(SwC), while the synchrony mode of in-phase oscillations corresponds to the

Synchrony limit Cycle (SyC).

4.2.2 Symmetry in the reduced model

FromFigure 4.1, one can see that the reducedmodel is invariant under reflection

of neurons and synapses on the mid-line. This means that the reduced model

is a Z2-equivariant dynamical system. The reduced model can be written in the

general form of an n-dimensional system where n = 2k and k is the number of

equations describing the dynamics of the variables related to the left and right

half-centres:

ẏ = f(y), y ∈ R2k (4.6)

We arrange the equations in such a way that the first k equations describe the

state variables of neurons and synapses in the left half-centre as well as the

commissural synaptic connection from left cIN to right dIN. All variables related

to the left half-centre we denote by vector yL(t), yL ∈ Rk. The other k equations

likewise describe neuronal variables and synaptic connections in the right half-

centre, as well as the commissural synaptic connection from right cIN to left

dIN. We denote these right half-centre variables by vector yR(t), yR ∈ Rk. The

system is symmetrical because the equations for variables of the left and right

half-centres in Equation 4.6 are identical. If we swap variables yL and yR in
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Equation 4.6 the equations for yL become equations for yR and these equations

are equivalent to the yR equations. An equivalent statement is valid for the yR
equations.

It follows from the system’s symmetry that any limit cycle that exists in system

4.6 is of one of four types:

Type (1): In-phase limit cycle: yL(t) = yR(t), ∀t

Type (2): Anti-phase limit cycle: yL(t) = yR(t + T/2), ∀t, here P is period of

oscillation.

Type (3): Out of phase limit cycle: yL(t) = yR(t+P ), ∀t here P 6= T/2 is phase

shift.

Type (4): Asymmetrical limit cycle: yL(t) 6= yR(t+ P ), ∀t, ∀P .

It is clear that the synchrony limit cycle SyC should be of type (1), and this cycle

belongs to the symmetry manifold Y +
k = {y ∈ R2k : yL = yR}. The swimming

limit cycle SwC should be of type (2). All limit cycles of type (3-4) should exist

in pairs.

Initiation with symmetry. By selecting proper values for the initiation parameters

described in the Methods section, we can initiate limit cycles of different types.

For example, to initiate the dynamics inside the in-phase manifold Y +
k we select

∆ = 0. This means that dINs in both half-centres simultaneously receive the

same stimulating input, therefore, the orbit is locked inside the manifold Y +
k . If

∆ 6= 0, the dynamics are initialised outside the manifold Y +
k , and an orbit can be

either attracted to a stable attractor inside of the manifold Y +
k or repulsed from

the manifold.

4.2.3 Bifurcation analysis under one parameter variation

In this section we use bifurcation theory to study dynamical regimes in the re-

duced model under variation of one parameter. We begin by outlining our moti-

vations for choosing the bifurcation parameters used for both the codimension-
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one and the codimension-two studies.

Choice of the bifurcation parameters. We assume that the values of all model

parameters are fixed except for three parameters which we vary in turn using

numerical continuation. All parameter values governing the intrinsic dynamics

of the neurons are selected according to our previous study of the full phys-

iological model [Ferrario et al., 2018a, Roberts et al., 2014]. Many of these

parameter values have been directly measured in experiments, although some

were selected from a physiological range in model simulations. Values of these

neuronal parameters are fixed for the purposes of bifurcation analysis. The

three parameters that we vary, wampa, wnmda and winh, correspond to synaptic

strengths for excitatory and inhibitory synapses.

We choose to vary these parameters for three reasons. Firstly, although these

parameters are important for reliable functioning of the CPG and, in particular,

for reliable swimming, it is difficult to measure their values in experiments. Sim-

ulations of the full physiological model show that the swimming regime is very

robust: swimming exists even when these parameter values are varied in a wide

range [Roberts et al., 2014]. However, in a recent work [Davis et al., 2017] we

investigated the effect of axon fasciculation in the spinal network, and we found

that a proper balance between excitatory and inhibitory connection strengths

is needed for generating a reliable CPG swimming activity. Secondly, exper-

imental recordings [Li et al., 2014a] show that occasional synchrony appears

more frequently soon after a stimulus that initiates swimming, at a time when

the excitatory drive is stronger than during later swimming [Soffe and Roberts,

1982]. Moreover, synchrony appears less frequently when glycinergic inhibition

is artificially reduced by application of inhibitory blockers [Li et al., 2014a]. We

hypothesise that these excitatory and inhibitory contributions are mainly driven

from cINs and dINs. Thirdly, a previous experimental work [Li and Moult, 2012]

showed how strong background excitation and phasic inhibition can influence
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the swimming period. We used the reduced model to explore how variations in

excitatory and inhibitory strengths shape the period of the synchrony and swim-

ming limit cycles. The strength of the conductance driven by dINs and cINs

synaptic transmissions represents two major contributions of these two compo-

nents. By computing the period of synchrony and swimming limit cycles under

variation of the synaptic strengths, we explored changes in the swimming and

synchrony periods.

By selecting these parameters for bifurcation analysis we aim to find the critical

boundaries of stability for the swimming and synchrony modes. Since swim-

ming is the main functional behaviour of the animal at the considered stage

of development, we expect that its stability region would most likely occupy a

large area in parameter space. Therefore, we first study bifurcations under vari-

ation of inhibitory connection strength winh. We then study codimension-two

bifurcations by varying winh together with either wampa or wnmda. Throughout the

following sections we use the same notation when referring to codimension-one

bifurcation points in two-dimensional space and to their horizontal coordinate.

We begin with the study of bifurcations of the swimming and synchrony limit

cycles under variation of the inhibitory strength winh. We use each stable limit

cycle as a starting point for a numerical continuation procedure. In Figure 4.4

we show the continuation of the SwC (black curve) and SyC (red curve) un-

der variation of parameter winh, and we fix parameter values wampa=12 nS and

wnmda=10 nS.

In Figure 4.4 the black curve shows that the SwC is stable for winh > w1. The

critical parameter value w1 corresponds to a subcritical Neimark-Sacker (torus)

bifurcation (TR−). At this critical parameter value, the stable SwC becomes

unstable for winh < w1 by merging with an unstable torus (torus continuation

is not shown in Figure 4.4) which co-exists with the stable SwC for winh > w1.
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Figure 4.4: One-dimensional bifurcation diagram for the swimming (black) and syn-
chrony (red) limit cycles at varying inhibitory strength wihn. Blue and pur-
ple lines show two unstable limit cycles appearing at bifurcation points w3

andw4, respectively. The y-axis shows the maximum of theKf -gating vari-
able f of the left cIN for each limit cycle. Stable and unstable limit cycles
are shown by continuous and dashed lines, respectively. The superscript
- refers to subcritical bifurcations. Bifurcation parameter values (in nS) are
the following: w1 = 8.57, w2 = 2.86, w3 = 15.74, w4 = 27.6, w5 = 11.23
and w6 = 11.21
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Thus, the SwC is unstable (dashed black line) for winh < w1. At the critical

parameter value winh = w2, (w2 < w1) this unstable cycle SwC disappears via a

fold (limit point) bifurcation (LP) by merging with another unstable cycle.

Remark. Our calculations show that stable SwC can be continued until very

large values of winh ∼ 1000 nS (not shown).

In Figure 4.4, the solid red line corresponds to the stable SyC forwinh ∈ (w3, w4).

Both critical parameter values winh = w3 and winh = w4 correspond to subcritical

period-doubling bifurcations (PD−). At a critical parameter value winh = w3 the

stable SyC merges with the unstable limit cycle of double period (blue dashed

line) which exists forwinh > w3 and becomes unstable forwinh < w3. Similarly, at

the critical parameter value winh = w4 the stable SyC merges with the unstable

limit cycle of double period (purple dashed line) which exists for winh < w4 and

becomes unstable for winh > w4. The dashed red line shows the unstable SyC.

It is interesting to note that by looking at the trajectories of these two unstable

limit cycles of double period we found that these cycles are of two different types.

The limit cycle shown by the blue line is of type (1), and this cycle belongs to

the symmetry manifold Y +
k . Further investigation of this blue cycle reveals a

fold bifurcation and another subcritical period-doubling bifurcation (winh = w5).

As a result of this subcritical period-doubling bifurcation, the unstable limit cycle

of double period (blue dashed line) merges with the unstable SyC (red dashed

line) inside of the symmetry manifold Y +
k . The unstable SyC disappears via a

fold bifurcation (winh = w6).

The limit cycle shown by the purple line is of type (2), and this cycle lies outside

the symmetry manifold Y +
k . Further bifurcations of this unstable limit cycle of

double period include several fold bifurcations where two unstable limit cycles

merge and disappear.

This analysis shows that there is a region of bi-stability w3 < winh < w4 for the

117



4.2. RESULTS

SwC and the SyC limit cycles. We notice that the range of parameter values

where the SwC is stable is significantly larger than that of the range where the

synchrony cycle is stable.

4.2.4 Stability of swimming and synchrony under variation of 2 parame-

ters

In this section we consider bifurcations of swimming and synchrony cycles under

two-parameter variation. We vary the synaptic strength of inhibition winh with

either wnmda or wampa.

Figure 4.5 shows the 2-dimensional stability regions of swimming and synchrony

cycles under variation of parameter pairs (winh, wampa) (Figure 4.5A) and (winh, wnmda)

(Figure 4.5B). In both figures, the grey area shows the stability region of the

swimming limit cycle, and inside this area is a light red shaded area correspond-

ing to stability of the synchrony cycle. In fact, this light red area shows the region

of bi-stability, where both SwC and SyC are stable. The white area in the left

part of each panel corresponds to the stationary state without oscillations. From

the figures it is clear that the synchrony cycle has a smaller stability region re-

gardless of which excitatory synaptic strength is changed.

In both Figure 4.5A and B, the critical boundary (black line marked by TR−)

of the SwC stability region corresponds to a subcritical Neimark-Sacker (torus)

bifurcation. On the left from this line, a stable SwC co-exists with an unstable

torus. A swimming cycle and torus merge and disappear on the critical bound-

ary.

The stability region of the SyC is limited by two period-doubling bifurcation lines

(red). In Figure 4.5A, both critical boundaries correspond to sub-critical period-

doubling bifurcations for larger values of wampa (red lines marked PD−). For

smaller values of wampa both period-doubling boundaries become supercritical

(red line marked PD+). We note that everywhere on the period doubling bifur-

118



4.2. RESULTS

Figure 4.5: Codimension-two bifurcation diagrams showing the stability regions for the
swimming (light grey and red) and synchrony (light red) limit cycles under
variation of (winh, wampa) in (A) and (winh, wnmda) in (B). Superscripts - and
+ refer to subcritical and supercritical bifurcations, respectively. To clarify
the stability of the limit cycles for low values of wampa, we computed the
codimension-one bifurcation diagram at fixed value wampa = 10nS shown
in Figure 4.6 (orange dotted line). Bifurcation points B and D switch the
criticality of the PD bifurcation (subcritical to supercritical). The LPD point
is a fold-flip bifurcation point. At this point, a pitchfork bifurcation curve
(PFK, blue line) interacts with a PD line and both exchange criticality.

cation line (red) one multiplier is (-1).

On the left critical boundary there is a point corresponding to a co-dimension

2 fold-flip bifurcation (green point marked LPD). At this bifurcation point, one

additional multiplier becomes equal to the critical value (+1). It is known from

[Kuznetsov et al., 2004] that the bifurcation diagram in the vicinity of the LPD crit-

ical point is very complex and there are several bifurcation lines, which intersect

at the LPD point. [Kuznetsov et al., 2004] shows the bifurcation diagram near the

LPD point. It is clear from this diagram that at an LPD point the period doubling

line changes from sub- to super-critical. In addition, the diagram shows that

the period doubling line and the fold bifurcation line intersect at the LPD point.

However, there may be other bifurcation lines interacting in an LPD bifurcation,

which we did not find. Since our model is symmetrical, it is possible that our

system has a pitchfork line instead of a fold line, and that this pitchfork line inter-

acts with a period doubling line in a symmetrical version of the LPD bifurcation.
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To clarify the boundary of SyC stability near the LPD point we fix the parameter

value wampa = 10 and vary only one parameter winh to find bifurcations (hori-

zontal dotted orange in Figure 4.5A). Figure 4.6 shows the results of this. In

particular, the panel "ZOOM 1" of Figure 4.6B shows that there are two bifurca-

tions in the area of interest. The critical parameter value winh = u4 corresponds

to the subcritical pitchfork bifurcation of limit cycles (red dot u4 marked PFK).

The SyC is stable in region winh > u4, and it becomes unstable for winh < u4. At

the PFK− parameter winh = w4 a pair of unstable out-of-phase limit cycles of

type (4) merge and disappear (green lines in Figure 4.6). This has an important

implication used in last section of the Results: when the stable SyC becomes

unstable at critical point u4, the loss of stability is in the transversal direction to

the symmetry manifold Y +
k . In addition, the panel ZOOM1 in Figure 4.6B shows

the period doubling bifurcation of the unstable SyC (wcr
inh = u5).

We use the critical parameter value of the subcritical pitchfork bifurcation wcr
inh =

u4 to start a new continuation under variation of two parameters and the result

is shown in Figure 4.5A by a solid blue line marked PFK− . The intersection of

this line with the stability region causes the stable SyC to become unstable via

subcritical pitchfork bifurcation.

Remark. There are several unstable limit cycles in Figure 4.6 shown by dashed

green lines (type (4) out of phase cycles) and blue lines (type (2)) limit cycle of

double period.

The critical parameter values wcr
inh = u5 and wcr

inh = u6 correspond to period

doubling bifurcations and wcr
inh = u7 corresponds to the pitchfork bifurcation.

Now we return to the SyC stability region in Figure 4.5A and consider the right

boundary (red line) which corresponds to the period doubling bifurcation. If

wampa=12, then we know from Figure 4.4 that the period-doubling bifurcation

at wcr
inh = w4 is subcritical. If wampa=10 then we know from Figure 4.6A that the
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Figure 4.6: (A) One-dimensional bifurcation diagram for the synchrony (red), swim-
ming (black) and double-synchrony (purple) limit cycles at varying in-
hibitory strength winh and fixed parameters wampa = 10 nS and wnmda = 10
nS. The y-axis shows the maximum of the Kf -gating variable f of the left
cIN for each limit cycle. Blue and green lines show unstable limit cycles
appearing at bifurcation points u5 and u4, respectively. Stable and unsta-
ble limit cycles are shown by continuous and dashed lines, respectively.
The superscript - refers to subcritical bifurcations. (B) Zoom of selected
regions of panel A.
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period doubling bifurcation atwcr
inh = u3 is supercritical: the stable SyC becomes

unstable and a stable limit cycle of double period appears. Stable double period

cycle is an in-phase type (1) limit cycle. Some additional details of the evolution

of this limit cycle (solid purple line in Figure 4.6A) are shown in Figure 4.6B,

panel ZOOM 3. This means that somewhere in between these two points on the

period-doubling line ((w4, 12) and (u3, 10)) there should be some codimension-

two bifurcation point (B), which corresponds to this change. At this point (B)

the red line of subcritical period doubling (marked PD−) becomes the line of

supercritical period-doubling bifurcation (marked PD− at Figure 4.5A). We are

unable to find point B via computational continuation. Therefore, to calculate

the coordinates of this point we use multiple simulations of the reduced model

to find where the double period limit cycle is stable outside of the SyC stability

region. We started simulations from the following point (∆ = 0.1, d = 6, wampa =

10nS,wnmda = 10nS,winh = 42nS) and slightly varied parameters (winh, wampa),

decreasing the value of wampa to find the double period cycle and define its

stability. As a result, we find the coordinates of point B on the period doubling

line: (27.8,11.5).

Figure 4.7A shows the voltage traces of the model neurons for each of the three

stable limit cycles (SwC, SyC and 2-SyC). Here we introduce notation 2-SyC

for the synchrony limit cycle of double period. Each neuron fires once per cycle

in the cases of SyC and SwC, and twice per cycle in the case of 2-SyC. For

each limit cycle, dIN firing evokes a single spike in the ipsilateral cIN. Clearly,

the timing of cIN firing depends on the strength of the AMPA synapses wampa.

In 4.7B we show the time difference between left cIN and left dIN spikes dur-

ing swimming as a function of wampa (for fixed parameters wnmda=10nS and

winh=40nS).

Now we consider Figure 4.5B, which shows the stability region of the SyC cy-
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Figure 4.7: (A) Time evolution of the voltage of dINs (brown lines) and cINs (blue
lines) during one period of synchrony (SyC), double-synchrony (2-SyC)
and swimming (SwC). The three limit cycles are detected by AUTO in Fig-
ure 4.6. Synaptic strength parameters used to generate each panel SyC,
2-SyC and SwC, respectively, are winh = 30nS, 45nS and 40 nS. (B) Time
difference between left dIN and left cIN spikes during one cycle of the SwC
at varying wampa . The remaining vector of parameters used to obtain this
figure are winh = 60nS, wnmda = 10nS, ∆ = 50ms and d = 6ms

cle under variation of (winh, wnmda). This region is shown by red shading, and

the two boundaries (left and right red lines) correspond to period-doubling bi-

furcations. Using simulations of the reduced model we find that the left line

corresponds to the subcritical period-doubling bifurcation (marked PD−).

Through the analysis of the right boundary, we find that this period-doubling

bifurcation line is supercritical for high values ofwnmda and it becomes subcritical

for low values of wnmda at the bifurcation point D represented in Figure 4.5B.

Point Dwas not detected by AUTO, so to find its coordinates we used simulations

in similar way to the procedure described above for finding the coordinates of

point (B) in Figure 4.5A. As a result, we find the coordinates of point D on the

period doubling line: (32.6,11.4).

Remark. As we have seen above, the bifurcation software AUTO cannot reliably

distinguish whether the period-doubling bifurcation is sub- or supercritical. To

clarify this matter for the left stability boundary of SyC, in Figure 4.5B we use

multiple continuations and simulations of the model. We found that in a small

vicinity on the left of the critical boundary, the bifurcation diagram is rather com-

plex. In fact, some parts of this boundary correspond to a subcritical and other
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parts to a supercritical period-doubling bifurcation. In the case of supercritical

bifurcation, upon crossing the boundary, the stable synchrony limit cycle be-

comes unstable and a stable double-period cycle appears. This cycle is stable

in a very small vicinity of the period-doubling boundary and becomes unstable

via pitchfork bifurcation. We do not report complex bifurcations in this small

vicinity on the left of the boundary and indicate that this boundary relates to

the subcritical period-doubling bifurcation. Thus, if we do not consider a small

region near this boundary, then the only stable attractor is the SwC. A similar

remark is valid for the upper part (from the LPD point) of the left critical boundary

in Figure 4.5A.

4.2.5 Study of the initiation space

In this Section we study how the dynamical mode depends on initiation param-

eters. We consider a grid of two parameter pairs: initiation time difference ∆

and duration d. The amplitude initiation parameter is a fixed value A=0.01. The

rectangular area of the initiation space (0 ≤ ∆ ≤ 30 and 0 ≤ d ≤ 20) is covered

by a grid of n by n nodes uniformly spaced (n=128). For each node in the grid

we initiate the system dynamics. We run the simulations for a long time (3 simu-

lated seconds) so that the trajectory approaches an attractor. This attractor can

be either a limit cycle or a fixed point (resting state). In the case of a limit cycle,

we calculate the period of oscillations. Figure 4.8 shows the result of simula-

tions with fixed parameters wnmda = wampa=10nS for different values of winh ∈

(28,42,60 nS). A black pixel at position (∆, d) means that initiation with these pa-

rameters results in a fixed point (period 0). If the initiated trajectory converges

to a limit cycle then we discriminate the limit cycle by computing its period. Pa-

rameter value winh=28nS corresponds to regions of coexistence of stable SwC

and stable SyC. Parameter value winh=42nS corresponds to regions of coexis-

tence of stable SwC and the stable 2-SyC (type (2) cycle). For winh=60nS only

SwC is stable. These particular values for winh have been selected using the
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Figure 4.8: Stable attractors of the reduced model at varying initiation parameters
(∆, d) with fixed wampa=10nS and wnmda=10nS. We show three different
values of winh =28, 42 and 60 nS (title of each subplot). These values cor-
respond to all the possible combinations of stable attractors of the system
shown in Figure 4.6. Each coloured region identifies the initialisation pa-
rameters (∆, d) that converge to a stable limit cycle, or converge to the rest-
ing state (black regions, fixed point). In the case of convergence to a limit
cycle, the colour represents the period of the attractor. The orange region
in the case winh =28nS identifies the initial conditions where the system
converges to stable synchrony, the yellow region in the case winh =42nS
corresponds to convergence to the 2-synchrony stable attractor, while the
white regions correspond to convergence to stable swimming.

bifurcation diagrams described in the previous sections. This diagram allows

us to explore the initiation space for all the stable attractors of the system. In

all cases the largest region of initiation space corresponds to stable swimming

(period of∼ 50ms) but for some parameter values there is also a relatively small

region where simulations converge to either synchrony (period of ∼ 20ms) or

the double-period synchrony cycle (period of ∼ 45ms).

In Figure 4.8 all three panels include a vertical boundary near ∆ = 5ms. This

boundary separates the white swimming region (or double-synchrony yellow

region on the middle panel) from the black rest state region. In fact, the position

of this boundary is determined by the time difference between first spikes of the

left-dIN and left-cIN which we denote by µ (µ ≈ 5ms).

Indeed, if the value of parameter d is limited and the time interval ∆ satisfies

∆ > µ, then stimulation of the right dIN will not generate a spike because at the

time of stimulation the right dIN will be under strong inhibition. Therefore, the
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system will move to the rest state. To explain the right boundary of the black

rest state region, we note that after some time the inhibition of the right dIN

becomes weaker. Therefore, for some appropriate values of parameter ∆ (for a

fixed moderate value of parameter d) stimulation of the right dIN will overcome

the inhibition, the right-dIN will spike and the system will converge to swimming.

In the case of a short delay ∆ < µ, the right-dIN will spike because the stim-

ulation of this dIN precedes the inhibition from the left-cIN. This dIN spike will

trigger a spike in the right-cIN and it will lead to rhythmic activity. This rhyth-

mic spiking can be either double-synchrony (yellow colour region in the middle

panel) or swimming (white colour area).

If d < 2ms the injected currents of the initiation procedure are too short to ac-

tivate either of the two dINs, and the system converges to the rest state (small

black rectangular region in all three panels).

4.2.6 Interpretation of bifurcation diagrams in terms of experimental record-

ings

In this section, we speculate on how our study of the reduced model can ex-

plain the long-lasting synchronous activity seen in some biological experiments.

Firstly, we find that patterns of spiking activity recorded in experiments following

skin stimulation are very similar to spiking patterns and voltage traces generated

by the reduced model. Secondly, our study of bifurcation enables us to formu-

late hypotheses on the existence of the synchrony mode and bi-stability regime,

where both swimming and synchrony modes co-exist for the same parameter

values.

We show that the system’s bifurcations and the particular initiation procedure

used play important roles in explaining long lasting synchronous activity and a

subsequent transition to swimming. To explain this, we consider model param-

eters near the bifurcation points shown in Figure 4.6.
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Figure 4.9: Transition from synchrony to swimming. Plot of dINs’ voltage recordings at
varying time shows synchronous activity before the dynamics are locked
into synchronous (A) and double-synchronous regimes (B) before then
converging to swimming mode. In both panels A and B, initiation parame-
ters are set to ∆ = 0, d = 6 and A = 0.04. At time t? = 0.3ms the system
is integrated starting from a perturbed initial point. This point is obtained
by adding a normally distributed vector of numbers with equal variance
σ = 10−3 to each variable at time t?. Values of synaptic strengths are
wampa = 10, wnmda = 10, winh = 20.2 in case A and winh = 60 in case B.

Synchrony (double-synchrony) to swimming transitions. In Figure 4.9A, the se-

lected parameter values correspond to the orange region of the bifurcation dia-

gram in Figure 4.6B (ZOOM 1). For any parameter value inside this region, the

SyC is globally unstable, but it is stable inside the symmetry manifold Y +
k . The

initiation parameter value ∆ = 0 means that the orbit starts and remains on the

invariant symmetry manifold Y +
k . Although the SyC is unstable, the trajectory

converges to this limit cycle. At time t? we slightly perturb the last point of the

trajectory by adding a normally distributed vector with mean equal to zero and

variance σ = 10−3. We then restart the system integration from the perturbed

point. The perturbed point does not belong to the invariant symmetry manifold;

therefore, the trajectory diverges from the manifold and tends to SwC. The tran-

sitional period from the vicinity of the manifold to SwC is long because the value

of winh is close to the subcritical pitchfork bifurcation (critical parameter value is

u4 in Figure 4.6B, ZOOM 1).
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The transition time spent near the "ghost" of the stable synchrony cycle tends

to infinity as winh tends to the critical value of the pitchfork bifurcation. This

effect is valid for any parameter in the orange region winh ∈ (u5, u4) in Figure

4.6B, ZOOM 1. Although both swimming and resting state are stable, for u1 ≤

winh ≤ u5 the system converges to resting state under the initiation procedure

with parameter values used in Figure 4.9 (∆ = 0, d = 6 and A = 0.04). These

parameters correspond to the orbit initiation inside the symmetry manifold Y +
k .

For parameter values u1 ≤ winh ≤ u5, the SyC is repulsive inside Y +
k (in Figure

4.9B, ZOOM1 both unstable cycles shown by blue and red dotted lines belong to

the symmetry manifold), therefore, the orbit stays inside the symmetry manifold

and converges to the resting state. By multiple simulations we confirmed that

the basin of attraction for the resting state is large, therefore, small perturbations

(σ < 0.1) cannot move the system to another attractor.

In Figure 4.9B, the selected parameter values are inside the light blue region in

Figure 4.6A and Figure 4.6B (ZOOM 3). This corresponds to winh ≥ u8. The

critical parameter value winh = u8 corresponds to a fold bifurcation, and the sta-

ble 2-SyC disappears. Near the bifurcation a ghost of this limit cycle exists. We

start the dynamics with initiation parameter ∆ = 0 and the trajectory converges

to unstable SyC. At time t? = 0.3ms we perturb the last point of the trajectory by

adding a normally distributed random number to all system variables (the mean

is zero and the variance σ). Integration from the perturbed point results in a long

transitional period near the ghost of 2-SyC cycle and convergence to the SwC.

This long transition can be reproduced for all parameter values winh ∈ (u8, 70)

in the light blue region of Figure 4.6A and Figure 4.6B (ZOOM 3). Remarkably,

winh does not need to be too close to the bifurcation point to obtain long last-

ing transitions, provided values of the perturbation parameter σ are small. For

example, with winh = 70nS and σ = 0.01 we can still obtain a ∼ 1s transition

time.
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In addition, this study of bifurcation provides insights into explanation of some

recordings from CPG neurons. Figure 4.6C in Li et al. [2014a] shows that under

depolarising current injection, dINs can fire an additional spike at approximately

half the swimming period and initiate synchrony. The voltage recordings of these

neurons look very similar to the 2-SyC "ghost" part of the trajectory in Figure

4.9B. It is not clear from the experiment why "mid-cycle spikes" appear in the

recordings. Our study provides an explanation of this experimental observation.

Distributions of the duration of the synchrony (double-synchrony) bouts. Ex-

perimental findings show that the time of transition from synchrony (double-

synchrony) to swimming can be distributed in a wide range from 100 to 1000

ms [Li et al., 2014a]. To study how this time of transition depends on the system

perturbation we add white noise to the deterministic model 4.6. The following

continuous stochastic process describes the model with noise:

ḋu = f(u) · dt+ φ · dWt, u(t), f(u),Wt ∈ R2k (4.7)

where u(t) is the solution 4.7, f(u) is the vector of the right hand side, Wt rep-

resents a standard vector of independent Weiner processes and φ is a small

parameter (φ = 0.01). We use Euler-Maruyama integration to compute the nu-

merical solution of 4.7. We find that in the large majority of random simulations

this solution shows transitions from synchrony (double-synchrony) like that in

Figure 4.9A,B (with the same parameter values as Figure 4.9).

We run 1000 simulations with independent random seeds. For each simulation

we integrate the system for 2s and detect the time of switching from synchrony

(double synchrony) to swimming. In 97% of cases the system demonstrates a

transition from synchrony to swimming and in 3% the system switches to the

resting state. Figure 4.10A shows the histogram of switching time from syn-

chrony to swimming.
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Figure 4.10: Distribution of times spent in the synchrony (double-synchrony) transition
in the system with noise. A and B show the histogram of times spent
in the synchronous state before switching to swimming. The selected
parameter values of A and B are the same as the ones used in Figure
4.7A and B, respectively.

It is clear from this figure that the time of transition from synchrony to swimming

is variable and the range of transition times is compatible with those observed in

experiments (see Figure 2 in [Li et al., 2014a]). Considering the transition from

double-synchrony to swimming we find that for any random seed, the system

demonstrates transitions from double-synchrony to swimming. Figure 4.10B

shows the histogram of switching time from double-synchrony to swimming.

From swimming to synchrony (double-synchrony) and back. We show that the

reducedmodel can reproduce transitions from swimming to synchrony and switch

back to swimming similarly to what is observed in experimental recordings [Li

et al., 2014a]. To initiate synchrony from swimming in physiological experiments,

one side is stimulated at the middle of the swimming period. We mimic these

experiments to initiate synchrony keeping parameter values as in Figure 4.9A.

Figure 4.11A shows the injection of a brief positive step current to the left dIN

in the middle of the swimming cycle (shown by an arrow). This injection evokes

an additional spike which is nearly synchronous with the firing of the right dIN.

This additional spike starts a long-lasting synchrony bout before switching back

to swimming. This is similar to the experimental recordings [Li et al., 2014a].

Similarly, Figure 4.11B shows that mid-cycle stimulation (shown by an arrow) of
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Figure 4.11: Plot of dIN voltage dynamics showing transitions from swimming to syn-
chrony (A) or double-synchrony (B), and back to swimming. In both A
and B a brief step current (0.45nA, 5ms) is injected to the left dIN at the
time of right dIN firing (black arrows). Parameter values used to obtain A
and B are the same as the ones used in Figure 4.9A and B, respectively,
except that ∆ = 50.

the left dIN during the swimming mode can evoke a long-lasting bout of double-

synchrony oscillations.

4.2.7 Breaking symmetry does not change the stability of swimming and

synchrony

In this section we analyse the effect of symmetry-breaking in the reducedmodel.

To break the Z2-symmetry of the system, we slightly perturb the maximal con-

ductance of all ion channels by adding a normally distributed random variable

with mean equal to zero and standard deviation σ = 10−3. This perturbation

is applied to all neurons, using a different random seed for each perturbed pa-

rameter. All other parameters of neuronal activity and synaptic transmission are

identical. As a result of this perturbation, we break the symmetry of the reduced

model and consider a non-symmetrical system (NSS).

Studying the bifurcations of the symmetrical system (SS) under variation of two
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parameters, we find that there are three stable limit cycles: SyC, SwC and 2-

SyC (Figure 4.7). Simulations of the NSS show that the three stable limit cycles

(SyC,SwC,2− SyC) have a shape and pattern of firing similar to corresponding

cycles for the SS. Figure 4.12A shows projections of stable limit cycles of NSS

to the plane of left-right dIN voltages for the three stable limit cycles. For each

projection, zooming into part of the phase portrait helps to visualise a small

"imperfection" of the limit cycle and a deviation from the diagonal. This figure

clearly demonstrates that these three stable cycles are not symmetrical.

To find the stability regions for the stable limit cycles SyC, SwC, 2− SyC of NSS

under variation of two parameters (winh,wampa) and (winh,wnmda) we use massive

simulations of the perturbed reduced model. We consider the same region of

parameters as in Figure 4.5 and with a uniform n by n grid (n=128). For each

node of the grid we simulate the same NSS using the same seed for the random

number generator and simulate the trajectory for long times (30 sec), enabling

convergence to the limit cycle attractor. Similar to the SS case, we find that the

trajectory approaches either a stable limit cycle or a fixed point. In the case of a

limit cycle, we compute the period of oscillation. Figure 4.12B (i), (ii) and Figure

4.12B (iii) and (iv) show the results of these computations under variation of

(winh,wampa) and (winh,wnmda), respectively. All simulation parameters used to

simulate the trajectories and compute each period are reported in the legend of

Figure 4.12.

In Figure 4.12B we use colour coding to show the period of each stable at-

tractor for each pair of parameters (winh,wampa) and (winh,wnmda). Dark blue

corresponds to the zero period, i.e. to the fixed point. Figure 4.12B (i) shows

the stability regions for two attractors: a fixed-point attractor (dark blue) and the

SwC attractor (yellow-red colours indicating periods in the range 35-50 ms). It

is clear from the figure that the period of swimming increases with an increase

of winh for any fixed value of wampa. It is interesting to note that the separation
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Figure 4.12: Stability of the attractors of after symmetry breaking A. Projection of the
three stable limit cycles (SyC,SwC,2− SyC) to the phase plane of dINs
voltages and zoom of selected regions (black boxes). The green diag-
onal line shows the loss of mid-line symmetry of the stable limit cycles.
The vector of parameters (winh,wampa,wnmda,∆,d) used for the SwC case
is (60,10,10,100,6), for the SyC case is (25,12,10,10e-4,6), and for the
2− SyC is (40,10,10,10e-4,6) B. Period of the attracting limit cycle found
by numerical simulation at varying (winh,wampa) and fixedwnmda=10nS in
cases (i-ii) and at varying (winh,wnmda) and fixed wampa = 12nS in cases
(iii,iv). Initiation parameters for cases (i-iii) are ∆ = 50 and d = 6, while
for cases (ii-iv) are ∆ = 1e− 4 and d = 6.
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line between these two regions matches the black line (TR−) in Figure 4.5A

corresponding to the subcritical torus bifurcation of the symmetrical system.

Similarly, in Figure 4.12B (iii) there are also different regions (colour coded as

in part A). In this case, the period of swimming increases with increase of winh

for any fixed value of wnmda. The separation line between these two regions

matches the black line (TR−) in Figure 4.5B again corresponding to the subcrit-

ical torus bifurcation of the symmetrical system.

Figure 4.12B (ii) and (iv) show the results of simulations with initiation parame-

ters corresponding to the synchrony mode (SyC and 2− SyC). Dark blue again

means a trajectory that converges to the fixed point attractor. The light blue area

shows the stability region of SyC. This region and its boundaries match the re-

gion and boundaries of the stable synchrony region in the case of SS (Figure

4.5B).

In Figure 4.12B (ii), the left boundary of the SyC stability region corresponds

to two transitions from the synchrony mode: (1) transition to the fixed point and

(2) transition to the swimming mode (dark red area). Both transitions match the

bifurcation lines in Figure 4.5A. The right boundary of the SyC stability region

also corresponds to two transitions: (1) The first is the transition to the swim-

ming mode (red area). The boundary of this transition, above point B in Figure

4.12B (ii), matches the subcritical period-doubling bifurcation line in Figure 4.5A.

(2) The second is the transition to the double-period synchrony mode 2− SyC

(yellow-brown area). The boundary of this transition, down-right from point B in

Figure 4.12B (ii), fits well to the supercritical period-doubling bifurcation line in

Figure 4.5A. This region of stability of the double-period 2− SyC cycle is nar-

row with transitions to the swimming mode. Remarkably, our simulations show

a stability region of 2− SyC which was not found by the study of bifurcations.

In Figure 4.12B (iv) the left boundary of the SyC stability region (light blue area)
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relates to transitions from the "synchrony" mode to the fixed point attractor (dark

blue area). The right boundary of the SyC stability region relates to two tran-

sitions: (1) transition to double-period synchrony mode 2− SyC (yellow area).

The boundary of this transition, up from point D in Figure 4.12B (iv), fits well

to the supercritical period-doubling bifurcation line in Figure 4.5B. (2) Transition

to the swimming mode. The boundary of this transition, down-left from point D

in Figure 4.12B (iv), fits well to the subcritical period-doubling bifurcation line in

Figure 4.5B. It is interesting to note that again the simulations show the region

of stability of the double-period cycle 2− SyC (the narrow yellow strip with tran-

sitions to the swimming mode) which was not found by the study of bifurcations.

Thus, we conclude that symmetry-breaking by a small perturbation of maximum

conductance parameters leads to a minor change of limit cycle stability bound-

aries. Stability boundaries of NSS fit well to bifurcation lines of the symmetrical

system. In addition, the simulation results help to clarify the stability of dynam-

ical regimes in the vicinity of co-dimension-two bifurcation within the complex

structure of the bifurcation diagram.

4.3 Discussion

4.3.1 Summary of main findings

In this study we have developed a reduced model of the core neuronal elements

of the circuit that drives swimming in the hatchling Xenopus tadpole. We have

used bifurcation theory to provide a mathematical description of two main os-

cillatory modes under variation of key parameters of this model. These modes

of anti-phase and in-phase oscillations correspond to swimming and synchrony

patterns of spiking activity respectively. Both of these spiking patterns can be

observed in physiological experiments where neurons typically fire in alterna-

tion (in swimming mode) but can occasionally fire synchronously at half the

swimming cycle period (synchrony mode). Bifurcation analysis has shown the
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boundaries of the region between two parameters where the stable synchrony

regime exists. This synchrony stability region lies within a much larger region

corresponding to stable swimming. Therefore, the intersection of these two re-

gions is a region of bistability. We conclude that the same pattern generator

circuit can support both swimming and synchrony. A crucial factor in determin-

ing which pattern is expressed is the way in which the oscillation is initiated. In

addition to swimming and synchrony, we have also described a further stable

spiking pattern which we term double period synchrony.

4.3.2 Significance of using the reduced model

We study a reduced model, which can be considered the result of "averaging"

of the biologically realistic functional model of the tadpole spinal cord [Roberts

et al., 2014]. Specifically, we ignore parts of the functional model correspond-

ing to sensory pathways and consider only the key parts of the tadpole’s CPG

circuit, as derived from biological measurements and designed to capture the

important details. Firstly, the two neuron types included (dIN and cIN) are the

core of the CPG. Secondly, the model specification for each is based on avail-

able knowledge of their real biological characteristics, including ionic channel

currents [Dale, 1995]. The reduction is achieved by minimising the number of

neurons considered, leaving just two neurons in each half centre (each side of

the body): one excitatory (dIN) and one inhibitory commissural (cIN). Of course,

an even smaller circuit constituted by two mutually inhibitory with PIR neurons

can generate an anti-phase swimming [Wang and Rinzel, 1992]. However, the

mechanism of tadpole CPG functioning is different. In [Arshavsky et al., 1993]

there is a comparison of tadpole and Clione CPGs, which, it is believed, work

as a chain of two mutually inhibitory neurons.

The essential connectivity between these neurons is maintained. Models of

synaptic connections are also biologically realistic; for example, the glutamater-
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gic transmission from dINs acts at separate NMDA and AMPA type receptors

with different properties [Li et al., 2010]. One additional change made to the

model is feedback self-excitation of each dIN. We adopted this change to com-

pensate the lack of excitation between the dINs in the swimming circuit, a prop-

erty that is lost when reducing the model to a single neuron per type. As a result,

the voltage dynamics of the model show patterns of neuron activity that look like

those seen in real recordings and previous detailed modelling [Li et al., 2014a,

Soffe et al., 2009]. In particular, they show characteristic features of spike dy-

namics, such as post-inhibitory rebound [Wang and Rinzel, 1992]. The reduced

model therefore encapsulates the core features of the full circuit.

Model reduction is essential for allowing a detailed bifurcation analysis of the

system. Different approaches for reducing highly complex neuronal systems

have been proposed and have been applied to the study of bifurcations in CPG

networks [Wojcik et al., 2014, Cymbalyuk et al., 2002, Lodi et al., 2017, Danner

et al., 2016]. These approaches tend to reduce the number of differential equa-

tions describing neuronal properties by considering simplified neuron models,

non-spiking neuron models or phase/amplitude reduction [Izhikevich, 2007, Ke-

pler et al., 1992, Ashwin et al., 2016, Molkov et al., 2015, Rubin et al., 2009].

A further simplification made in CPG circuits is the reduction of the number

of synaptic interactions by considering the minimal number of synaptic connec-

tions [Marder and Calabrese, 1996, Lodi et al., 2018]. Our approach is different:

we do not minimize the number of equations describing the dynamics of single

neurons, but we reduce the number of neurons and connections, keeping the

important biological properties of spike generation and synaptic interactions.

Even with the significant reduction in scale relative to the whole swimming cir-

cuit, the dynamical system describing the neuronal activity was still relatively

large and included 34 variables. It is a challenging problem to study bifurca-

tions in a dynamical system of such high dimension. For instance, it is known
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that the numerical algorithms for continuation of periodic orbits in the case of

high dimensional systems are not reliable near the critical parameter value of

period-doubling bifurcation. However, using AUTO, and after adjustment of mul-

tiple numerical parameters, it was possible to continue the limit cycles and detect

bifurcations up to codimension two. Our studies have been restricted to contin-

uation of limit cycles corresponding to swimming and synchrony. The swimming

(synchrony) limit cycle is characterised by anti-phase (in-phase) oscillations of

equivalent neurons on opposite body sides.

4.3.3 Simplified initiation and the significance of the pattern of initiation

One feature known to be over-simplified in the most recent model of the full

swimming circuit [Roberts et al., 2014] is the mechanism for initiating rhythm

following a brief stimulus. Fundamentally, the requirement is simply that oscilla-

tions on both sides (in each half centre) need to be initiated and coordinated. In

the reduced model, the process is also greatly simplified: the triggering stimu-

lus to each side is sufficient to initiate oscillation and this allows us to focus our

attention on the effect of timing differences between stimuli to the two sides. We

have illustrated effects of also changing the stimulus duration, but we do not con-

sider these further here. Running multiple simulations showed that stimuli are

much more likely to initiate swimming than synchrony. To produce synchrony,

timing differences between stimuli to the two sides must be very small. This

would suggest that, in biological terms, an initiation mechanism is required that

avoids such near-simultaneous activation of the two sides (see below).

4.3.4 Stable states and symmetry

Our study of bifurcations provides new insights into themechanism of CPG spike

production. This study reveals three spiking patterns of neuronal activity corre-

sponding to swimming, synchrony and double-period synchrony, each of which

is stable in some area of the parameter space. The largest area of stability cor-
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responds to the swimming pattern. In swimming, there is typical slow voltage

decay after each dIN spike followed by a deep inhibition which leads to a subse-

quent post inhibitory rebound spike. Spiking in the equivalent dIN neuron in the

opposite half-centre is exactly in anti-phase. The stable synchrony pattern is

characterised by simultaneous spiking of equivalent neurons on the two sides,

with a period of half that seen in swimming. The third stable spiking pattern

revealed in our analysis is what we have termed double-period synchrony. The

period of this mode is close to the swimming period and the spiking pattern also

resembles swimming. But this mode an additional spike with slightly different

shape at mid cycle, giving an appearance superficially like that of synchrony.

However, in double-period synchrony, spiking of equivalent neurons on the two

sides is near-synchronous rather than synchronous. Alternate spikes in the dIN

in each half-centre occur just ahead of and then just behind the dIN spike in

the opposite half-centre. Like swimming and synchrony, a pattern resembling

double-period synchrony has also been described experimentally (see below).

The analysis of bifurcations in the reduced model takes into account the left-

right half-centre symmetry. Because of this symmetry, we detect some proper-

ties that are exclusive of symmetric dynamical systems [Golubitsky et al., 1999,

Kuznetsov et al., 2004]. For example, there are two types of cycles originating

from the period-doubling bifurcation of the symmetry cycle. Of the two types

of double-period synchrony, one is unstable and left-right symmetrical, while

another is stable and its right-half variables are symmetrical to the left-half vari-

ables shifted by half-period. Our results on bifurcations are not limited to the

symmetric system, but extend to systems where the symmetry is broken by

including a small perturbation to some equation parameters. Trivially, all the

bifurcations change to non-symmetrical ones (for example, pitchfork becomes

fold).
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4.3.5 Biological links and significance

As outlined above, our reduced model displays three stable spiking patterns.

Remarkably, these three characteristic patterns correspond well to experimental

recordings of spiking activity from spinal cord neurons.

Of these, swimming is the most biologically relevant: it is the pattern of activity

shown by the CPG neurons that drive muscles to provide the main behavioural

response of the tadpole. In experiments, long-lasting swimming is initiated by

a brief sensory stimulus (touch) to the head or trunk skin [Roberts et al., 2014,

Boothby and Roberts, 1995, Buhl et al., 2012]. The spiking patterns of dIN

and cIN neurons in the swimming mode represent the typical activity of CPG

neurons and in our analysis, the largest areas of parameter space are for stable

swimming.

Synchrony is seen in occasional experimental recordings, where it can last for

several hundred milliseconds (perhaps 10-15 cycles) before returning to swim-

ming [Li et al., 2014a]. The synchrony pattern occupies a substantial area of pa-

rameter space; however, it lies within the area for swimming, hence it is an area

of bistability. Bifurcation analysis shows that both types of stability boundary of

the synchrony cycle correspond to subcritical bifurcations (pitchfork and period-

doubling bifurcation lines). Therefore, the loss of stability by the synchrony cycle

will result in a change of dynamical mode, particularly from synchrony to swim-

ming, just as has been observed experimentally. Like experimentally recorded

neurons, this modality change can take several seconds, if model parameters

are near the bifurcation points which determine the loss of stability for the syn-

chrony cycle.

Although synchronous activity in the limbs will become a characteristic of the

tadpole as it nears metamorphosis to the adult [Combes et al., 2004], there is

no evidence that the synchrony pattern modelled here has any function in the
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young tadpole. It is more likely, therefore that the goal is to avoid expression of

this pattern. Analysis of the initiation parameters in the reduced model suggest

that it is important to minimise the likelihood of oscillations on the two sides being

initiated within a very short time delay, since such short delays make synchrony

more likely. We speculate that the the mechanism of initiation in the real animal

introduces some delays that ensure activation on the two sides while avoiding

their co-activation.

We have concentrated on analysing the stability of limit cycles corresponding

to swimming and synchrony. However, we find that there are several unstable

limit cycles, which should be also taken into consideration for clarity of the mul-

tiple interlinked bifurcations. Some of these unstable cycles are shown on our

bifurcation diagrams for completeness. Moreover, we found one more stable

mode - double-period synchrony. As with synchrony, there is no evidence for

a biological role for this regime. Double synchrony activity can be observed

experimentally, for example by injecting depolarising current into a dIN, or this

regime can spontaneously occur during swimming. From a biology viewpoint,

the regime corresponding to the double-synchrony in the model appears if the

spiking of two dINs on the opposite body sides is not perfectly synchronised,

and the jittered cIN inhibition does not suppress dIN spiking on either side [Li

et al., 2014a]. Remarkably, the spiking pattern of the double-synchrony in the

reduced model perfectly reproduces this experimental finding and the shape of

dIN-cIN voltages is very similar to experimental recordings (Figure 4.7A).
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Chapter 5

Modelling tadpole locomotor behaviour in

response to signals from multiple sensory

modalities

In this chapter, we present a detailed computational model of spiking neuron for the
network controlling swimming in hatchling Xenopus tadpoles. We define neurons and
connections for three sensory pathways controlling the decisions to start/stop the ani-
mal locomotion and for the central pattern generator circuit. Themodel uses numerous
biological data and it reproduces biologically realistic patterns of initiation, continua-
tion, acceleration and termination of swimming by mimicking the interactions with the
external environment. The input from the environment is integrated and amplified in
each sensory pathway and directed to the central pattern generators and motoneu-
rones to select appropriate actions. The model suggests two distinct mechanisms
explaining the decision processes for swimming initiation. In the first, slow and vari-
able summation of excitation to threshold generates long and variable decisions. In
the second, direct and less variable excitation generates fast and reliable decisions.
The model simulates a detailed and biologically plausible sequence of information pro-
cessing from the internal representation of different sensory modalities, integration and
decision-making, action selection, and movement generation.

Animals constantly make movement decisions to survive in a dangerous and

complex environment, for example to escape from threats or to find energy re-

sources. Each animal’s nervous system represents the external environment by

integrating sensory input signals via specialised circuits, which ultimately guide

movement decisions. Thus, clarifying the interaction between sensory circuits

and the other circuits in the nervous system is key for understanding how an-

imals initiate, continue and stop locomotion [Jin and Costa, 2010, Bargmann
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and Marder, 2013, Surmeier, 2013].

Like any other behaviour, locomotion arises from the activity generated by net-

works of interconnected neurons. What are the key structural and functional

properties of these networks that lead to the generation of these activities?

Neuroscientists have tried to answer this question by modelling a variety of neu-

ronal networks and behaviours, including swimming and walking in the C. ele-

gans [Roussel et al., 2007], the lamprey [Ekeberg, 1993] and the salamander

[Ijspeert, 2008], walking in the stick insect [Bässler and Büschges, 1998, Cruse

et al., 1998], locomotion in the cat [McCrea and Rybak, 2008], stomach move-

ments in the crab Cancer Borealis [Marder and Bucher, 2001]. Despite being

remarkably useful to understand many of the neuronal principles beyond the

generation of these behaviours, these models and all the other spiking model

that we are aware of cannot currently reproduce the complete dynamics of the

neuronal activity underlying a whole animal’s behaviour. We found confirma-

tions of this from other reviews [Bargmann and Marder, 2013, Marder and Tay-

lor, 2011, Roberts et al., 2010].

One reason is that these models typically aim to simulate only a part of the

temporal dynamics of one or of many behaviours. Indeed, these model cannot

reproduce the activities of all the neurons that contribute to the start, the mod-

ulation and the termination of an entire episode in these behaviours. Models of

locomotions have mainly focused on clarifying either the initiation and termina-

tion of somemovements during decision-making tasks [Surmeier, 2013, Kristan,

2008, Hull et al., 2016]) or the generation and modulation of long-lasting rhyth-

mic patterns of behaviours [Marder and Calabrese, 1996, Marder and Bucher,

2001, McCrea and Rybak, 2008]. There is, however, at least one model that re-

produces the whole temporal dynamics of the neuronal populations during both

struggling and swimming in the Xenopus tadpole [Borisyuk et al., 2017], but it is

not a spiking model. Here, however, we focused on developing spiking models,
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due to their powerful predictive power.

There are a number of issues that make the problem of reproducing behaviours

using such models extremely difficult [Marder and Taylor, 2011, Bargmann and

Marder, 2013, Marder, 2015]. One issue is that the circuits in these circuits pro-

duce not only one, but a zoo of different and complex behaviours [Marder and

Taylor, 2011]. To deal with this problem, models typically have to make strong

assumptions, including reducing the study of different sub-circuits in the whole

network, each of which generates only a limited number of behaviours. How-

ever, since the entire nervous system is connected, these assumptions should

be supported by some experimental evidence. One of such evidence could

be hypothesised in spinal cord sub-circuits reproducing rhythmic patterns of lo-

comotion. Indeed these circuits can reproduce these patterns even after the

spinal cord is removed from the rest of the brain [McCrea and Rybak, 2008,

Roberts et al., 2010]. It seems reasonable to believe that explaining how the

behaviour works in this sub-circuit could be enough. Another issue is that the

structural and/or physiological properties of neurons and connections are largely

unknown. In some cases, such as vertebrates’ brains, neurons and connections

are so many that they cannot be fully identified neither anatomically nor phys-

iologically even for the sub-circuits discussed above [Bargmann and Marder,

2013]. In other cases, such as the brain of some invertebrates, although all

neurons and connections have been identified anatomically, their physiological

properties are largely unknown [Bargmann and Marder, 2013, Roberts et al.,

2010].

Due to its simplicity, the hatchling Xenopus tadpole represents a unique ani-

mal for studying how a circuit can achieve a complete motor behaviour (swim-

ming) using both experiments and models. Several biological data have been

collected over the years and have identified the properties and connections of

most of the neurons that contribute to the initiation, continuation, modulation and
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termination of swimming [Roberts et al., 2010, Li, 2011]. These neurons have

been classified in only a few number of types based on anatomy and physiology

[Li et al., 2007a, Sautois et al., 2007]. This has allowed previous models to repli-

cate a biologically-realistic partial reconstruction of the neuronal connectivity in

the swimming circuit and to simulate the spiking dynamics of most of the neu-

rons in this circuit [Roberts et al., 2014, Ferrario et al., 2018a]. Thanks to this

model and to other experimental studies, the role of most neurons in the swim-

ming circuit have been clarified, and we know that they are essentially divided

between neurons that participate in the sensory integration of the external sig-

nals by initiating and terminating swimming, and neurons in the central pattern

generator that produce the swimming alternating activity [Roberts et al., 2010,

Li, 2011]. Secondly, the number of neurons and connections in the swimming

circuit is relatively low [Roberts et al., 2010], and it is therefore possible to simu-

late biologically-realistic models using a relatively low computational power and

memory.

In this chapter, we model the whole swimming behaviour of the hatchling Xeno-

pus tadpole by improving and extending our previous anatomical and functional

models (see chapter 2, chapter 3 and [Roberts et al., 2014, Ferrario et al.,

2018a]). We include the neuronal populations and connections of three sen-

sory pathways, and we integrate these into the previous models of the central

pattern generator.

Experimental recordings have shown that there are four sensory pathways that

lead to the initiation, continuation, modulation and termination of swimming via

the interaction with the external environment. The same experiments have de-

fined the identity, properties and connections of neurons in three of these path-

ways. Swimming can be reliably started by trunk skin touch (TS), head skin

touch (HT) or by activation of photo-receptors in the pineal eye by light dim-

ming (LD), and it can be reliably stopped by head skin pressure (HP). Addition-
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ally, stimulating the TS and LD pathways during swimming transiently acceler-

ates swimming [Sillar and Roberts, 1988]. In our model, we do not include the

LD pathway as this pathway is not yet well defined. The extended network in-

cludes 1732 neurons and∼ 100,000 connections. Among them, there are 1198

CPG and motor neurons and the remaining 532 neurons are sensory and sen-

sory pathway neurons. We name this new, extended computational model as

"Virtual Tadpole" (VT). In building the connectivity in this model we use some

ideas and findings from our probabilistic model (described in chapter 3; Ferrario

et al. [2018a]) and recent biological evidence [Buhl et al., 2015, Koutsikou et al.,

2018]. Specifically, unknown connections between the newly included sensory

populations are established from the distributions of known connection proba-

bilities of other neuronal types included in the probabilistic model.

The VT anatomical model generates the architecture of connections which we

project to the VT functional model of Hodgkin-Huxley type spike generating neu-

rons. The final model represents the biggest reconstruction of the tadpole’s

swimming neuronal network that we are aware of. It can reproduce the initia-

tion, continuation, acceleration and termination of the animal’s swimming be-

haviour in response to stimulation of the TS, HT and HP pathways, which mimic

the normal interaction with the external environment. The model can also re-

produce spontaneous slowing down and termination of swimming. We simulate

a detailed and biologically plausible sequence of interactions and information

processing from the internal representation of environment, sensory integration

and decision-making, action selection, and generation of movements. The VT

model provides a framework for exploring multi-sensory integration and simple

motor decision making, as well as generating new ideas and hypotheses for

experimental testing. The VT is the only spiking neuronal model we are aware

of that (1) accounts for the sensory initiation, modulation and termination of a

whole animal’s locomotor behaviour and (2) represents most of the functioning
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neurons in the system.

One of the most interesting results from the VT functional model relates to the

decision-making neuron populations. It is known from recent experiments that

the time delay between the spiking of sensory neurons and first motor responses

are long and variable (range 20-150 ms; Koutsikou et al. [2018]). To explain this

experimental finding we develop a model of decision-making neuron popula-

tions. Recordings from the brainstem reticulospinal neurons driving swimming

show that they receive slow, variable synaptic excitation which would allow in-

tegration of sensory inputs and explain the long, variable delays to swimming.

Experiments and model simulations suggest that extended firing in currently

undefined presynaptic hindbrain neurons can generate slow, variable summa-

tion of excitation leading to the variable delays in the decision to swim found in

experimental recordings [Koutsikou et al., 2018].

Our simulations allow us to explain the difference in reaction times between the

TH/HP pathways and the TS pathway. The TH and HP pathways include hind-

brain tIN and MHR neurons respectively, which fire shortly after the sensory

stimulus and lead to faster decisions to initiate or terminate swimming com-

pared to the TS initiation pathway. Our results suggest the following two distinct

mechanisms for decision-making: (1) the TS pathways generate slow and vari-

able summation of excitation to threshold, and include a simple mechanism of

sensory memory. (2) The HP and HT pathways can provide faster and less

variable decisions, with response times more comparable to reflexes.

Model simulations also suggest that the activity of inhibitory neurons with con-

tralateral connections (called cINs and forming part of the CPG circuit; Roberts

et al. [2010]) are extremely important for coordinating the initiation of swimming

in the TH and TS pathways. The incoming signal from the skin sensory path-

ways arrives at the hindbrain population driving the decision-making process on
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the two sides at approximately at the same time (but see Buhl et al. [2015]) and

this will lead to two issues. On one hand it will tend to generate synchronous ac-

tivity on both sides rather than alternating swimming activity. On the other hand,

if the activation of muscles on one side occurs before those on the other side,

the latter muscles must be activated after approximately half a swimming cycle.

CIN inhibition ensures that excitation arrives with a suitable delay between the

two sides. Firstly, this inhibition allows a type of winner-take-all mechanism to

select on which body side swimming will start, by suppressing the activity of

CPG neurons on the opposite side and avoiding the synchronous activation of

muscles. Secondly, it delays the firing of CPG and motor neurons and allows a

coordinated alternation.

Themassive simulations of the VTmodel reproduce patterns of neuronal activity

that correspond to those recorded experimentally, from the activity of brain and

spinal cord neurons to the motor behaviour. To show that the VT model gener-

ates a plausible and complete swimming behaviour similar to a real tadpole we

consider combinations of input signals to different sensory pathways. The VT

functional model converts these signals into the tadpole motor behaviour. These

simulations demonstrate how the integration of different sensory modalities of

environmental signals can lead to appropriate motor behaviours.

5.1 Model description

5.1.1 Biological details of the VT neuronal circuit

In this section we report the neurobiological details of the sensory pathway neu-

ronal populations and their role in decisions to start/stop swimming locomotion.

These details include anatomical and functional properties of neurons, synaptic

connections and the activities of each neuronal type. We use these details to

extend the previously defined anatomical and functional models of the swim-

ming circuit by establishing neuron-to-neuron connectivity and by modelling the
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Figure 5.1: Diagram of connectivity in the VT model. Coloured circles represent neu-
ronal populations and lines with markers represent directed connections
between these populations (black=excitatory, red=inhibitory). All neuronal
populations except hIN have been defined anatomically and physiologi-
cally in experiments. Continuous lines show connections established by
evidence from recordings. Dotted lines are at present inferred from indirect
evidence. Shaded coloured regions highlight the neuronal populations and
connections within the three sensory pathways included in the VT model.
Colours in each populations are used hereafter to show the activity of the
different neuronal types.

dynamical properties of the different neuronal types and their synapses. Figure

5.1 shows a diagram representing all populations included in the VT model and

their connections. These include the populations and connections described in

the following sections.

5.1.1.1 Trunk skin initiation pathway - TS

Sensory pathway and the start of swimming. In biological experiments,

touch to the trunk skin usually leads to tadpole swimming [Boothby and Roberts,

1995]. To measure response times to the first flexion of swimming in immo-

bilised tadpoles a single spike is evoked in sensory RB neurons using a current

pulse stimulus to ventral trunk skin [Clarke et al., 1984]. These spikes excite

sensory pathway dlc and dla neurons which project axons into the contralateral

and ipsilateral part of the hindbrain, respectively. Paired recording failed to find

any evidence for direct synaptic excitation of hindbrain CPG hdIN neurons by
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dlcs [Buhl et al., 2015]. We have focused exclusively on dlcs because we are

confident that they provide the only skin sensory pathway activating swimming

on the unstimulated side of the body Li et al. [2003]. We have not investigated

the ipsilateral pathway from the skin to the hindbrain, which is formed by the

ascending axons of both sensory RB neurons and the dlas which they excite [Li

et al., 2004b].

Long and variable reaction times. Latency measures showed that response

times made in intact animals are long and variable (median: 102, inter-quartile-

range: 81-136 ms; Koutsikou et al. [2018]). In immobilised tadpoles, motor

nerve recordings were used to define delays to the start of fictive swimming fol-

lowing a threshold stimulus to the left trunk skin. Swimming started on either

side. The median delay to the first motor burst on the unstimulated side was

40 ms (range: 20-150ms; inter-quartile range: 33-61 ms) from the stimulation

time. These delays to the start of fictive swimming, when the central nervous

system is exposed to physiological saline, were shorter than delays measured

behaviourally. However, both were long and variable compared to Xenopusmo-

toneuron firing delays in a simple flexion reflex to a trunk skin stimulus (7.0-13.8

ms; Li et al. [2003]). These measures suggest that delays to the start of tadpole

swimming are longer and more variable than simple reflexes or the ballistic es-

cape responses seen in fish [Korn and Faber, 2005]. To investigate the timing

of sensory firing, dlc whole-cell recordings were used to measure responses to

a current pulse to the trunk skin. EPSP onset latencies in dlc neurons indicated

that the firing delays of the single spikes in sensory RB neurons were short and

consistent (mean 4.7 ± 0.6 ms). The dlc spike latencies were a little longer and

more variable (mean 6.5 ± 1.1 ms).

The role of hindbrain dINs. The latency and variability of firing times in the

sensory and sensory pathway neurons cannot explain the length and variability

of response times to the start of swimming. Recordings were therefore made
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from the dINs located in the hindbrain (hdINs) that drive swimming to examine

the pattern of synaptic input that leads to their firing and the start of swimming

following a sensory stimulus to the skin [Koutsikou et al., 2018]. These record-

ings showed that the hdINs on each side are equivalent to reticulospinal neurons

in adult vertebrates and are critical for the initiation and generation of swimming

(see chapter 1 and Li et al. [2006], Soffe et al. [2009]). In summary, hdINs ini-

tiate swimming following sensory stimulation [Buhl et al., 2012, 2015] but also

sustain it through their mutual electrical and chemical excitatory synapses [Hull

et al., 2016], cellular and pacemaker properties, and rebound from reciprocal

inhibition between the two sides [Li, 2011]. These critical roles make the retic-

ulospinal hdINs the key neurons to account for the long and variable delays to

the start of swimming. As expected from the delays to the start of swimming,

delays to the first spikes in hdINs are also long and variable (median 35.4 ms,

IQR 27.8-65.7, range 25-140 ms).

A new proposal for the mechanism that initiate swimming. When the

trunk skin is stimulated, hdINs receive excitation for up to 1.5 seconds in the

form of a series of summating EPSPs which can depolarise the hdINs to firing

threshold (Figure 5 in Koutsikou et al. [2018]). The amplitudes and timings of

these EPSPs is variable. The dispersed pattern of these summating EPSPs

cannot be explained by the short latency, single firing patterns of the RBs, dlas

and dlcs. Instead, the timing of these EPSPs raises the possibility of that there is

a population of excitatory neurons, which we call hindbrain interneurons (hINs),

presynaptic to the hdINs, that are excited by a brief sensory stimulus but fire

later, and can fire for much longer extending the firing the sensory pathway.

Therefore, we hypothesise that the hIN populations on each body side receive

input signals from dlc and dla neurons, sustain their activity by making recurrent

excitatory connections, and excite hdINs and other hindbrain CPG neurons. We

explore the plausibility of this proposal by integrating a model of the hIN network
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into the VT model.

5.1.1.2 Head touch initiation pathway - HT

Similar to the TS, stimulation or touch to the head can also initiate swimming.

Here, we briefly summarise some of these results.

The HT pathway (see Figure 5.1) is innervated by touch-sensitive trigeminal

sensory neurons (tSts) in the head. Similar to RBs, tSt neurons fire single ac-

tion potentials in response to brief current pulses and excite trigeminal interneu-

rons (tINs) and rostral dlcs (rdlcs) and make them fire [Buhl et al., 2012, 2015].

Single tINs make direct excitatory connections onto ipsilateral hdINs, but rdlcs

do not make equivalent connections onto contralateral hdINs. However, rdlcs

remain strong candidates for exciting contralateral hdINs (and possibly other

CPG neurons) indirectly via some unidentified neuronal population (discussed

in the next paragraph). Stronger stimuli lead to firing of many tINs and this can

activate hdINs and initiate swimming on the stimulated side at short latencies.

However, lesion experiments show that surgical removal of tINs does not block

the initiation of swimming at short latencies. This suggests the existence of at

least two different mechanisms that can lead to the start of swimming. Overall,

swimming in response to HT stimulation can start on either sides, but it starts

more frequently on the stimulated side.

Weak stimulation of the head does not initiate swimming and leads to a vari-

able pattern of summating EPSPs in hdINs, similar to the ones observed in

response to weak stimulation of the trunk skin [Buhl et al., 2015]. In response

to stimulation near swim threshold, both the delay to the first firing of hdINs and

reaction times are long and variable. These results suggest that an undentified

neuronal population is involved in extending the effect of sensory stimuli to the

head. Since rdlcs are excited by both head and trunk skin stimuli, it seems cer-

tain that they will excite the same hindbrain neurons on the opposite side in both
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cases. Therefore, we hypothesise that these unidentified neurons are the hINs

recruited during stimulation of the trunk skin (Figure 5.1). Stronger stimuli lead

to the firing of hdINs and evoke swimming more reliably and at much shorter

delays than weaker stimuli.

5.1.1.3 Head pressure termination pathway - HP

Trigeminal neurons innervating the cement gland and head skin (tSps) fire in

response to head pressure [Roberts, 1980]. These neurons excite and acti-

vate inhibitory mid-hindbrain reticulospinal neurons (MHRs) which can in turn

terminate swimming [Perrins et al., 2002, Li et al., 2014b]. In response to head

pressure MHR neurons directly inhibit CPG neurons via GABAergic synapses.

It is remarkable that the activation of a single MHR can stop swimming [Per-

rins et al., 2002]. Therefore, as a population, MHRs must deliver a powerful

inhibitory signal to the CPG neurons that reliably stops swimming.

5.1.2 Modelling the pathways and swimming initiation

In this section we describe the neuronal populations (or types) and connectiv-

ity in the VT model. We consider a total of 12 populations (Figure 5.1), which

are schematically represented by coloured circles in Figure 5.1. Four of these

populations form the CPG circuit (dIN,cIN,aIN,mn) and their connectivity is es-

tablished from the anatomical connectome model and previous experimental

studies (see chapter 1). The remaining 8 populations relate to the new sensory

pathways included in the VT model.

We consider two excitatory sensory pathways, skin touch and head touch, which

are organised in a similar way. In both pathways, sensory neurons (RBs and

tSts, respectively) fire single spikes in response to touch of the skin and of the

head, respectively. The signal from these sensors propagates to the process-

ing populations (dla/dlc and tIN, respectively), which in turn deliver excitatory

inputs to a hypothetical hindbrain neuronal population (hINs). We hypothesise
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that hINs extend this brief input signal by producing irregular and variable firing

patterns that can last for up to 2 seconds. The hINs then project to the CPG and

they initiate swimming by exciting dINs. Also, we include direct connections from

tINs to dINs which have been detected also in pairwise recordings [Buhl et al.,

2012, 2015]. The inhibitory head pressure pathway is organised in a simpler

way. The signal from sensory neurons (tSps) goes to a processing population

(MHRs), which delivers inhibitory inputs to the all the CPG populations to stop

swimming.

In the next sections, we describe the neuron and connection models of the dif-

ferent sensory pathways shown in Figure 5.1. All neuronal models and synaptic

connectivity in the CPG circuit are the same as the previous anatomical and

functional models described in the chapter 1 and in [Ferrario et al., 2018a,

Roberts et al., 2014, Sautois et al., 2007].

5.1.3 Number and rostro-caudal positioning of neurons

Each neuronal population in the VT model is formed by a fixed number of neu-

rons, and each neuron is defined by its cell type and its rostro-caudal distance

(simply referred to "position" hereafter). On each side of the spinal cord, the

positions of these neurons are defined by the distance of the cell bodies from

the mid-hindbrain border.

The number and positions of neurons in each population have been assigned

based on experimental data except for hINs. We fix the same neuron numbers

and positions for each population included in the probabilistic model (RB, dla,

dlc, dIN, cIN, aIN, mn). To define the connectivity to CPG neurons from the

sensory pathway populations, we divide CPG neurons between hindbrain and

spinal CPGneurons. Simply, hindbrain CPGneurons (including hdINs) are CPG

neurons with soma positions less than 900µm. The remaining CPG are defined

as spinal neurons.
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hIN tSt tIN tSp MHR
number of cells 60 130 40 80 40

Table 5.1: Number of cells for newly included neuronal populations in the VT model.
Populations on each side contain exactly half of these numbers.

The number of neurons in each of the remaining populations in the VT model

are estimated based on prior experimental knowledge and they are reported in

table 5.1. For more detalis see Koutsikou et al. [2018], Buhl et al. [2012], Perrins

et al. [2002].

These distances are estimated based on anatomical measurements of each

class of neuron, except for hINs. The positions of tSts are independently uni-

formly distributed in the interval [-50,0]µm, while tIN positions are uniformly dis-

tributed in the interval [150,330]µm (based on Buhl et al. [2012]). The positions

of tSps are also independently uniformly distributed in the interval [0,10]µm,

based on Hayes and Roberts [1983]). MHRs are uniformly distributed in the

interval [400,550]µm, based on Perrins et al. [2002]. Since we have no anatom-

ical data on hINs, we assume that their positions are uniformly distributed in the

hindbrain in the interval [-130,500]µm.

5.1.4 Spiking neuron models

To model all neuronal types except hINs we use the same single-compartment

Hodgkin-Huxley equations used to define all neuronal types in the previous func-

tional model of the swimming circuit (described in the chapter 1). Parameters in

these equations have been chosen specifically for each neuronal type to mimic

their electrophysiological properties known from neurobiology.

For the RB, dla, dlc and CPG neuronal types except dINs we use the same

parameter values as in [Roberts et al., 2014]. The motivations of the choice of

these parameters have been provided in this paper. For dINs, we also use the

same model and parameters as in [Roberts et al., 2014], except for changing
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the maximal conductance of the sodium ionic current in the dIN model (from

210.5nS to 180nS dINs). This change helps in reducing the number of simula-

tions where the dIN activity starts in left-right synchrony in response to inputs

from the TH and TS pathways (see Results and Discussion sections). For the

same reason we reduce the value of electrical coupling between hdINs from

0.2nS to 0.05nS. For tSt and tSp sensory neurons we use the same model pa-

rameters as sensory cells as in the spinal cord given in [Sautois et al., 2007],

because they have not been physiologically characterised.

tIN neurons - To model tIN neurons, we match some of the basic electrophysio-

logical properties of these neuronal type from data reported in Buhl et al. [2012].

We start from the parameter values of the aIN model given in Sautois et al.

[2007] because both aINs and tINs have similar firing properties: repetitive fir-

ing to current injection at any depolarisation level, no firing adaptation, no de-

layed firing and no after-spike depolarisation block. We then adopt the following

parameter changes to match the specific properties of tINs:

• Leak conductance and leak reversal potential are set to match the aver-

age input resistance Rin = 459MΩ and resting potential Vrest = −55mV

recorded in experiments [Buhl et al., 2012].

• We use the approach discussed in [Roberts and Tunstall, 1990] to obtain

a qualitatively similar current threshold for firing. Specifically, we decrease

by 25mV parameter Ds defining the rate functions in all ionic channels to

obtain current threshold of ∼ 50pA similar to tINs (from Figure 6D in Buhl

et al. [2012]).

• To obtain a similar dependence of firing frequency in response to variable

current injection (I-f curve) andmatch the range of firing frequencies of tINs

(compare Figure 5.2A with Figure 6D in Buhl et al. [2012]), the maximal

conductance of the sodium, fast potassium and slow potassium is modified
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Figure 5.2: Current-frequency curves in the model tIN (A) and MHR (B). To compute
these curves, we inject a step depolarising current with increasing ampli-
tude and measure the spiking frequency. Spiking frequencies are plotted
against these varying current amplitudes. These curves match the cur-
rent frequency curves measured experimentally (compare with Figure 6D
in Buhl et al. [2012] and Figure 5 in Perrins et al. [2002] for tIN and MHR,
respectively).

to values gna = 680nS, gKf = 40nS and gKs = 20nS, respectively.

• Parameter A of the βm sodium rate function is decreased by 2ms−1 to give

a better match of the voltage amplitude of spikes during high current injec-

tions.

MHRs - Similar to tINs, wemodel MHR neurons tomatch some key electrophys-

iological properties reported in [Perrins et al., 2002]. We start from dlc model

paramters [Sautois et al., 2007] because the dlcs’ resting potential and input

resistance are closer to the average MHR values than all other neuronal types

in the swimming circuit. Moreover, MHRs have similar firing properties to dlcs:

multiple action potential firing in response to positive current injection and firing

adaptation [Perrins et al., 2002, Roberts and Sillar, 1990]. We then adopt the

following changes to model parameters to mimic other properties of MHRs:

• The leak conductance and leak reversal potential are set to match the av-

erage input resistance Rin = 262MΩ and resting potential Vrest = −68mV

of experimentally recorded MHRs. These values were measured from

sharp microelectrodes, which record more negative resting potential val-
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ues than more precise patch electrodes. To correct these imprecise mea-

surements, we manually select a lower value of the resting potential Vrest =

−60mV . This change was suggested by multiple comparisons between

neuronal recordings made using both types of electrodes (microelectrodes

and patch clamps).

• We decrease parameter D defining the rate functions of all ionic channels

by 10mV to obtain a similar current threshold for firing to MHRs, following

the same approach discussed in the case of tINs.

• To match the I-f curve and firing frequencies of MHRs , obtain multiple

firing at any level of injected current, lower the spike frequency to realistic

values and avoid single-spikes to current injection the values of parameter

A of the αm sodium rate function was decreased by 3ms−1 and of parameter

A of the βf of the fast potassium rate function was decreased by 0.9ms−1

(compare Figure 5.2B with Figure 5 in Perrins et al. [2002]).

hINs - This model neuron consists of two electrically connected compartments,

one representing the combined dendrites and soma and the other represent-

ing the axon. The equations governing the dynamics of both compartments

are based on the same Hodgkin-Huxley equations used to model all other cell

types (see chapter 1), but with the membrane properties of an unspecialised,

generic tadpole neuron (spinal motoneuron; Koutsikou et al. [2018], Sautois

et al. [2007], Roberts et al. [2014]). The parameters for the dendrite/soma and

axonal compartments are identical, except that the maximum conductance val-

ues of all active channels (Na, K fast , K slow) are increased by a factor of five

in the axonal compartment. The total capacitance of each compartment is 5pF,

and the inter-compartment conductance is 10nS. We use a two-compartment

model because random networks of single compartment neurons with motoneu-

ron properties are not able to produce persistent rhythmic firing when coupled by
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glutamatergic synapses with NMDA receptors. During strong excitatory synap-

tic input, the neurons in such networks became very depolarised and stopped

firing because of depolarisation block. A more realistic model incorporating a

second compartment representing the axon did not have this problem; when

the soma/dendrite compartment was depolarised by excitatory synaptic input

the axonal compartment could continue to spike repetitively.

5.1.5 Modelling the neuronal connectivity in the VT circuit

Connections from dlas/dlcs to hINs. In the model, connections from dlas

to hINs and from dlcs to hINs are randomly prescribed by sampling from inde-

pendent Bernoulli variables with probabilities p1 and p2, respectively. We infer

probabilities p1 and p2 from physiological recordings of unidentified neurons in

the mid-brain which are believed to be analogous to the hINs. These recordings

revealed that 45% of hINs receive EPSPs earlier than 13ms after the stimula-

tion of the skin which leads to a swimming episode. Previous experiments sug-

gested that dlas and dlcs fire only once in response to RB input and they are

the only active neurons before 13ms apart from RBs [Koutsikou et al., 2018].

Therefore, we can assume that these early EPSPs are a result of direct con-

nections from active dlas or active dlcs to hINs. Assuming that the trunk skin

stimulation activates n1 dlas and n2 dlcs, any randomly picked hIN receives a

binomially distributed number of EPSPs Y1 ∼ B(n1, p1) from the active dlas and

Y2 ∼ B(n2, p2) from the active dlcs. We assume that the inputs from both sides

are equal (Y1 = Y2). Thus we can derive formulas for the probability that a

randomly picked hIN receives EPSPs from either dlas or dlcs before 13ms:

0.45 = Pr(hIN received EPSPs < 13ms) = P(Y1 ≥ 1)+P(Y2 ≥ 1) = 2*P(Yi ≥ 1) =

2 ∗ [1− 1 ∗ (1− pi)ni ]

From the functional model simulation we found that the average numbers of ac-

tive dlas and dlcs following activation of the trunk skin from 100 realisations of
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the functional connectome model [Roberts et al., 2014] is 19 and 31, respec-

tively. With simple calculations we thus obtain the probabilities p1 and p2.

Connections from tSts/tINs to hINs. tSt and tIN axons grow ipsilaterally in

the hindbrain, where they are well-placed to make synaptic connections with the

dendrites of hINs. We have no anatomical nor physiological data to use to es-

tablish these connection probabilities. However, since both dlas and tSts/tIN are

sensory/sensory pathway cells with ipsilateral axons, we expect similar tSt/tIN→hIN

and dla→hIN connection probabilities. However, since tSts and tINs are lo-

cated closer to hINs than dlas, we expect higher probability of connections

from tSts/tINs. Therefore, we used the same model as was used to establish

dla→hIN connections to establish both tSt→hIN and tIN→hIN connections, but

adding 0.05 to each probability.

Connections from hINs to hindbrain CPG neurons. One of the current hy-

potheses is that hINs make ipsilateral connections with CPG neurons in the

hindbrain (including hdINs). Since we have no available information on hINs

nor on their connections to CPG neurons, we opted for a simple model of con-

nectivity: any pair of pre-synaptic hIN and post-synaptic CPG neurons located

in the hindbrain connect with probability p=0.1. We fixed this low probability

value because some pilot studies suggest that these connections are rare, id

they exist at all (unpublished data).

5.1.5.1 Probabilistic approaches to defining the other connection probabilities

To establish some of the synaptic connections between sensory pathway neu-

rons in the VT circuit we used two approaches based on the probabilistic model

[Ferrario et al., 2018a], which we will call hereafter the "probabilistic approach".

The idea of the probabilistic approach is to use the probabilities contained in

the probability matrix P (Figure 3.1) to infer unknown connection probabilities of

the new neuronal pathways included in the VT model. This approach allows us

161



5.1. MODEL DESCRIPTION

to estimate these unknown probabilities based on the assumption that neuronal

types in these pathways have similar anatomical and/or functional properties

to the neuronal types contained in the probabilistic model. The probabilistic ap-

proach allows us to infer unknown connections without simulations of the growth

of axons and synaptic formation as in the anatomical model.

Although the probabilistic approach is based on several strong assumptions,

there are some encouraging motivations for using it. First, the probabilistic and

anatomical models have shown that cell types with similar anatomical and/or

functional properties (such as sensory interneurons or CPG neurons) tend to

form a similar pattern of connection probabilities (see Figure 3.1). Second, we

use this approach because there are no (or only a few) available and reliable

anatomical measurements and/or pairwise recordings which can be used to

establish these new connections. Third, if the connectivity determined using the

probabilistic approach can realise the function of the network, then this would

suggest that more complicated models are not required.

We use two different modified versions of the probabilistic approach:

1. PROBABILISTIC APPROACH 1 - Let us assume that we need to define the

probability of connection between two new cell types, and detailed anatom-

ical information is unavailable. In this case we select two neuronal types

that exist in the probabilistic model with anatomical and/or functional prop-

erties the most similar to the two new cell types. These properties will be

discussed when we describe the neuronal connectivity between two par-

ticular neuronal types (see below). We extract all connection probabilities

from the probability matrix for these two selected cell types and apply the

generalisation procedure [Borisyuk et al., 2014] to generate connection

probabilities for each pair of neurons for two new cell types.

2. PROBABILISTIC APPROACH 2 - The second approach is similar to the
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first one, but in this case we use available measurements of axon lengths

to generate connection probabilities. We notate a cell type as "old" if it is

already included in the probabilistic model and as "new" if it is not in the

probabilistic model. Let us assume that we need to generate probabilities

of connection from neurons of a new cell type (N ) to neurons of an old cell

type (O1). We notate this connections N → O1. We know from experi-

ments that there is a similarity in the axon length distribution between neu-

rons of another old cell type (O2) and N neurons. We use this axon length

distribution to generate connection probabilities from neurons of type N .

For each neuron k of cell type O2 and neuron m of cell type O1 the dif-

ference between rostro-caudal coordinates is l(k,m) = ck − cm, where cj
is the rostro-caudal coordinate of neuron j = k or m. We assume that

neurons of cell type O2 and O1 are ordered according to strictly increasing

rostro-caudal coordinates; k numerates orderedO2 neurons;m numerates

ordered O1 neurons. From the probability matrix we know the probability

of connection p(k,m) from neuron k to neuron m. The correspondence

between l(k,m) and p(k,m) defines the function p = f(l). This function

describes how the probability of connection depends on the difference of

rostro-caudal coordinates. We use this function to specify the probability

of connection from each neuron r of type N to neuron t of type O1. To

do that, we consider the piece-wise linear interpolation of function f , and

calculate the difference l(r, t) in rostro-caudal coordinates between neuron

r and neuron t. We use this distance to find the probability of connection

p(r, t) = f(l(r, t)).

5.1.5.2 Connections determined using the probabilistic approach 1

Connections from tSts to tINs. Buhl et al. [2012] provides direct evidence

from pairwise recordings that the probabilities of connections from tSts to tINs
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are relatively high. We use approach 1 and we assume that these connection

probabilities are similar to the probability of connections from RB cells to dlas.

The motivations for choosing these connections are twofold. Firstly, Figure 3.1

shows that these probabilities are the highest values in the probabilistic matrix.

Secondly, we expect that connections from tSts and tINs and connections from

RBs to dlas are similar because they are both ipsilateral projections from sen-

sory neurons (tSts and RBs) to sensory interneurons (dlas and tINs). Thus we

use the generalisation procedure [Borisyuk et al., 2014] to prescribe the individ-

ual connection probabilities from tSts to tINs.

Connections from tSts to rdlcs. Buhl et al. [2015] provides indirect evidence

that the probabilities of connections from tSps to rdlcs are high. Also in this

case we use approach 1 and select the probabilities of connections from sen-

sory RB cells to dlcs from the probabilistic model. The motivations for choosing

these connections are twofold. Figure 3.1 shows that probabilities of connection

from RBs to dlcs are high. Secondly, both connections from tSts and dlcs and

connections from RBs to dlcs are both ipsilateral descending connections pro-

jecting from sensory neurons (tSts and RBs) with similar functional properties

to the same dlc interneuron class. The generalisation procedure is then used

to find individual connection probabilities.

Connections from tSts to hdINs. tSt axons grow ipsilaterally in the hindbrain,

where they could potentially make synaptic connections with the dendrites of

hdINs [Buhl et al., 2012]. Again, we use approach 1 to establish these connec-

tions probabilities by assuming that they are similar to connection probabilities

from dlas to hdINs. The motivations for choosing these probabilities are the

following. Firstly, both dlas and tSts are ipsilateral. Secondly, both dlas and

tSts are sensory cells active briefly after stimulation. Thirdly, both connection

probabilities consider the same post-synaptic cells (hdINs).
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Connections from tSps to MHRs. Perrins et al. [2002] provides indirect evi-

dence that the probabilities of connections from tSps toMHRs are relatively high.

In this case, we also use approach 1 and select the probabilities of connections

from sensory RB cells to dlas in the probabilistic model. We choose these prob-

abilities because they are high and because sensory RB neurons have similar

functional properties to tSps. Thus we use the generalisation procedure to find

individual connection probabilities from tSps to MHRs.

5.1.5.3 Connections determined using the probabilistic approach 2

Connections from tINs to hdINs. We know from experiments that tINs are

descending neurons and their axons are relatively long (1750 ± 480µm, mean

± standard deviation, Buhl et al. [2012]) and comparable to the axon lengths of

dlas (1820±470µm, Li et al. [2001]). Additionally, both tIN and dla neurons have

a similar anatomical properties and functional roles in the swimming behaviour.

Anatomically, axons of both types have similar length distributions and project

ipsilaterally. Functionally, they are both sensory interneurons, fire transiently in

response to skin touch (in the touch of the head or the skin) and excite other

interneurons in the CPG [Buhl et al., 2012, Li et al., 2004b]. Thus we expect

tINs and dlas to have similar connection probabilities towards hdINs. We follow

the probabilistic approach 2 and use dla to hdIN connection probabilities from

the probabilistic model to define the function p = f(l). However, since dlas are

ascending neurons and tINs descending neurons, we consider the symmetric

reflection of f by applying the change of variables p = f(−l). This function

provides the probability of connection from tINs to hdINs. Figure 5.3 A shows

the graph of this function which was calculated from the probabilistic model.

Inhibitory Connections from MHR to CPG neurons. Perrins et al. [2002]

provides indirect evidence that MHR neurons connect with high probability to

CPG neurons in the rostral part of the spinal cord. We follow the probabilistic
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Figure 5.3: Graph of probability functions p = f(l) showing the probability of connec-
tions from dlas to hdINs (A) and from dlcs to aINs (B), where l is the dis-
tance between pre- and post-synaptic cell bodies positions.

approach 2 by selecting dlc to CPG connection probabilities from the proba-

bilistic model to define the function p = f(l) for establishing ipsilateral MHR

to CPG connection probabilities. In fact, we separate connection probabilities

from dlcs to any of the CPG types (dIN,cIN,aIN,mn). For each of these types we

build function f and use it to define connection probabilities from MHRs to this

selected type. Figure 5.3 B shows the graph of this function in the case of con-

nection probabilities from dlcs to aINs. The reasons for choosing dlc to CPG

connection probabilities are twofold. First, the axon lengths of MHR neurons

(1180± 350µm, Perrins et al. [2002]) are comparable to the axon lengths of dlc

neurons (1190 ± 410µm, Li et al. [2001]). Second, both MHR and dlc neurons

have a similar functional role in the swimming network. They are both sen-

sory pathways neuronal types, fire transiently in response to sensory input and

connect to CPG neurons. We therefore expect dlcs and MHRs to have similar

connection probabilities to CPG cell types. However, since dlcs are ascending

neurons and MHRs descending neurons, we consider the symmetric change of

variables p = f(−l). Since activation of MHRs sends powerful signal to CPG

neurons [Perrins et al., 2002], we expect these connection probabilities to be

higher than dlc to CPG connection probabilities. For this reason, we multiply
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function f by factor 2, so that these probabilities can reach values up to p=0.8.

Moreover, we know from [Perrins et al., 2002] that MHR neurons have primary

ipsilateral axons, and about 20% of MHRs also have a secondary contralateral

axons. For this reason, we randomly select 20% MHRs in the model and use

the same function p = f(−l) to define contralateral connections from MHRs to

CPGs.

5.1.5.4 Establishing the hIN recurrent connections using an alternative proba-

bilistic approach

We hypothesise that hINs are able to generate sustained firing in response to

transitory input from the sensory pathways (dla/dlc/tIN/tSt) as a result of exci-

tatory recurrent connections within their population. To establish this recurrent

connectivity we used the probabilistic approach, since we have no anatomical

or physiological information that can be used to infer these connection probabili-

ties. We suspect hINs to be located in a relatively compact longitudinal region of

the hindbrain, which would suggest connections between hINs to be local. The

most local connectivity amongst neurons in the probabilistic model is the mn to

mn connection probabilities (Figure 3.1). Therefore, we select the first 30 rows

and columns of sub-matrix containing to the mn to mn ipsilateral connectivity

and we select these as the connection probabilities between ipsilateral hINs.

These first rows and columns are selected because they represent the connec-

tivity between the most-rostral mns, near positions where hINs are presumably

located. To allow sustained activity within the hIN population in response to in-

put from active dlas/dlcs it was necessary to multiply these probabilities by a

factor of 2. In addition to ipsilateral connections, we add contralateral connec-

tions between the left and right hIN populations. The reasons behind adding

these connections are twofold. Firstly, there is anatomical evidence from some

neurons in the midbrain called mIN (midbrain interneuron) neurons, which we

believe are anatomically and physiologically analogous to the hINs, have such
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contralateral connections (unpublished data). On the other side, preliminary

simulations of the functional model suggested that contralateral connections

between hINs are necessary to sustain activity at a similar frequency on both

sides and to avoid unbalanced excitation of CPG neurons on either side, which

would not allow a coordinated initiation of swimming. To include contralateral

connections between hINs we use the same approach used to model ipsilat-

eral hIN-hIN connections using the same sub-matrix containing to the mn to mn

probabilities, except that each of these probabilities connections is established

randomly by drawing a Bernoulli variable with probability p=0.3. We choose this

probability value because anatomical experiments tracing mIN axons revealed

that about 20 % of them run contralaterally (unpublished data).

5.1.6 Adjacency matrix in the VT model

In the previous section we have described how we assigned the connection

probabilities of the new classes of neuronal types in the VT model. These prob-

abilities, combined with the previous anatomical model, can be used to generate

an adjacency matrix of directed connections A = (ai,j), where aij ∈ {0, 1} and

aij = 1 indicates existence of a connection from neuron i to neuron j. We use

these probabilities to sample the connectivity of the new populations included in

the VT connectome using Bernoulli variables. The remaining connections in A

have been generated from single realisations of the anatomical model. One ran-

dom realisation of the full adjacency matrix A for the VT connectome is shown

in Figure 5.4. We use white colour to show existing connections (aij = 1) and

black colour to show no connections (aij = 0). Neurons have been indexed and

sorted according to rostro-caudal positions as in Figure 3.1.

5.1.7 Synaptic parameters

In this section we describe the parameters used to model synapses. The VT

functional model includes different types of excitatory and inhibitory synapses.
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Figure 5.4: Visualisation of one realisation of the adjacency matrixA of the VT connec-
tome, where white colours show existing connections (aij = 1) and black
colour no connections (aij = 0). The remaining description of this figure
is the same as the one of Figure 3.1. Rows and columns corresponding
to neurons of each of the 12 types in the VT model are separated by solid
blue lines. Light blue lines separate thematrix into symmetrical sub-blocks.
Within each sub-block vertical and horizontal dotted lines separate the left
body side (top rows and left columns) from the right body side (bottom rows
and right columns). In each sub-block neurons are ordered according to
increasing rostro-caudal position.

169



5.1. MODEL DESCRIPTION

Two of these models mimic excitatory synapses by releasing glutamate and ac-

tivating AMPA and NMDA receptors to the post-synaptic neurons, and the other

two models mimic inhibitory synapses releasing glycine (INH) and Gamma-

Aminobutyric acid (GABA-A) and activating inhibitory receptors to the post-synaptic

neurons. The AMPA, NMDA and INH synaptic models used in the VT model

follow the same model equations and time constants described in the previ-

ous functional connectome model (see chapter 1). The values of these param-

eters were selected to match physiological properties of neurons or pairwise

recordings [Sautois et al., 2007]. To model synaptic variability, the maximal

conductance value of most synapses are normally distributed with fixed mean

and standard deviation. If not stated otherwise in the description below, the val-

ues of standard deviations of each conductance is 5% of the mean conductance

value. Synaptic parameters of synapses that were already included in the previ-

ous functional model [Roberts et al., 2014, Ferrario et al., 2018a] are maintained

the same, except for the changes described in the following sections.

5.1.7.1 Changes to previous synaptic parameters

rb → dla/dlc - One of the possible sources of variability in the start of swim-

ming is the difference in the synaptic input levels between left and right sides.

For trunk skin stimulation the current belief is that part of this difference derives

from the difference in the input from RBs to dlas and to dlcs. This difference

in inputs will contribute to deciding the side where first firing of CPG neurons

and first motor responses occur [Buhl et al., 2012]. Like the previous functional

model, we assume that RB to dla/dlc synapses include only an AMPA compo-

nent and that their conductance is normally distributed. To avoid simultaneous

co-activation of the two sides, which leads to pathological left-right synchrony,

[Li et al., 2014a], we increase the original standard deviation value of the of the

AMPA conductance by a factor 10. The mean value of these conductance are

varied to mimic a difference in the input from RBs.
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For the mean conductance values in the model, we selected two values: the

original value of conductance suggested in previous functional model (8nS),

and a reduced value (5nS). The motivation for using the first value (8nS) is

given in Roberts et al. [2014]. However, it is possible that this original is too

high, since the input from only 2 active RBs activates roughly half of the dlas

and dlcs in any swimming simulation of the functional model (average of 19 dlas

and 31 dlcs). Koutsikou et al. [2018] shows that there is a threshold stimulus

above which tadpoles start to swim reliably on each repeated trial, and below

which the same animals do not move (called swimming threshold). We aim

to reproduce the physiological conditions where the stimulation is just above

swimming threshold in the VT model. To do so, we assume that lowering the

stimulation levels reduces the sensory input and, as a result, also the number

of active dlas/dlcs in the network. In order to test this in the model, we used

a second mean conductance value to model these synapses (5nS). Using this

value we reduce the average number of active dlas and dlcs by an average of

7 and 9 units, respectively.

rb/dla/dlc→ CPG neurons - These connections are excitatory glutamatergic

connections with separate AMPA and NMDA receptors. The mean value of con-

ductances in both receptors are reduced to 0.04nS from the previous functional

model. We reduced these values because there is evidence suggesting that

dlas and dlcs excite dINs and other CPGs only weakly [Koutsikou et al., 2018,

Li et al., 2004b].

dIN → dIN - We reduced the mean conductance of the AMPA self-excitation

in dINs to 0.3nS in order to decrease the number of simulations that produce

pathological synchronous activity at the beginning of swimming episodes via

trunk skin stimulation (see Results below).
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5.1.7.2 Synaptic parameters in the new sensory pathway connections

There is only a small amount of available data that can be used to infer the values

of synaptic parameters of the new connections included in the VT model. When

synaptic data is available, we use it to fit synaptic parameters. In the case that

such data is not available, we explored the parameter space in order to find

ranges of values that gave the desired behaviour.

dla/dlc/tSt/tIN→ hIN - We hypothesise that these synapses are glutamatergic,

similar to all other excitatory synapses in tadpoles. We selected a mean con-

ductance of 3nS for both AMPA and NMDA components and standard deviation

value 2.

hIN→ hIN - Wemodel these connections as glutamatergic synapses activating

AMPA and NMDA receptors, which allow sustained firing in the hIN population

following transitory excitatory input from dlas and dlcs. The maximal conduc-

tance values for these synapses are not normally distributed like all previously

described synapses and have maximum values of 5.5nS and 1.4nS for AMPA

and NMDA, respectively. To include trial-to-trial variability, the strength of hIN-

hIN synapses varied across simulations. Specifically, the maximum conduc-

tance of each synapse was scaled down by a randomly chosen value (0.8, 0.6,

0.4, 0.2 or 0) at the start of each simulation, with the scaling factor for each

synapse chosen independently. To stop the firing of hINs, we introduced a sim-

ple model of synaptic depression in these synapses: the value of AMPA and

NMDA synaptic strengths of each individual synapse is multiplied by parameter

α = 0.995 at the occurrence of a pre-synaptic spike (exponential decreasing

of synaptic strength). Parameter α was selected to stop the firing of hINs after

about 1.5 seconds. The synaptic delays between hINs are fixed: for ipsilateral

and contralateral connections between hINs these delays are fixed to 1ms and

5ms respectively. Parameters in the model have been selected to reproduce
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sustained firing in hINs that last for about 1.5 seconds after skin stimulation,

similar to experiments [Koutsikou et al., 2018].

hIN → CPG neurons - We hypothesise that hINs are connected via mixed

AMPA and NMDA synapses to CPG neurons. To model these synapses we use

the samemodel of synaptic depression like hIN to hIN synapses with depression

parameter α = 0.99. Both AMPA and NMDA synapses have maximum conduc-

tance of 0.3nS, and we use the same random variability of synaptic strengths

as the one introduced in the case of hIN to hIN synapses.

tSt → rdlc - Buhl et al. [2015] provides indirect evidence for direct excitatory

connections from tSts to rdlcs. For simplicity we included only the AMPA com-

ponent and the same standard deviation like in RB to dla/dlc synapses, and we

select a mean conductance value of 4nS.

tSt→ tIN - Buhl et al. [2012] provides indirect evidence that these synapses ac-

tivate glutamatergic AMPA and NMDA receptors, and it provides data of EPSP

recordings on tINs following stimulation of the head skin at varying intensity.

Large EPSPs are produced in tINs by trigeminal afferents in response to weaker

stimuli, which presumably activate single tSt neurons. Therefore, we hypothe-

sise that these data result from a single tSt spike and one connection from this

tSt to the tIN. The analysis of these data include measures of EPSP amplitudes,

rise time from 10 to 90% amplitude, time to peak after the stimulus and duration

at 50% amplitude. These data are provided separately for mixed AMPA and

NMDA components, and for the AMPA component (obtained by blocking the

NMDA component via applications of NBOX). We use both sets of data to fit

the synaptic conductance parameters of the AMPA and NMDA components us-

ing a python derivative-free optimisation algorithm based on a user defined cost

function [Mayer, 2017]. Our cost function is defined as the sum of the difference

between experimental and simulated measures of single EPSPs (amplitude, 10-
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NMDA model exp AMPA+NMDA model exp
Amplitude (mV) 4.7 4.7 13.7 14.2

10-90 % rise time (ms) 9.9 10.4 2 2.5
50 % amplitude time (ms) 70.6 54.4 13.9 17.8

Time to peak (ms) 24.4 16.6 10.4 8.7

Table 5.2: Comparison between different measures of tIN EPSPs from NMDA (left)
and mixed AMPA and NMDA (right) in model simulations and experiments
(exp). These measures are EPSP amplitudes, rise time from 10 to 90%
amplitude, time to peak after the stimulus and duration at 50% amplitude.
Experimental measures are averaged acrossmany neurons, fromBuhl et al.
[2012]. The measures obtained from simulations are obtained by modelling
a single synapse from one tSt to one tIN with parameters gAMPA = 1nS
and gNMDA = 0.78nS.

90% rise time, time to peak and duration at 50% amplitude). Simulated EPSPs

are obtained by modelling a single connection from one model tSt to one model

tIN, and by injecting a brief step current to the tSt sufficient to activate one spike.

We start the fitting of the NMDA maximal conductance using the data obtained

by applications of NBOX, which gives best fitting value gNMDA = 0.78nS. We

then fixed gNMDA = 0.78nS and we used the same fitting method to approximate

the AMPA conductance using the data on mixed AMPA and NMDA components,

which gives value gAMPA = 1nS. We started the fitting procedure from sev-

eral initial condition and confirmed convergence of the optimisation algorithm

to these values of parameters. Table 5.2 shows a good agreement between of

the measures of EPSPs in experiments and and simulations obtained using the

fitted parameters.

tIN → dIN - Buhl et al. [2012] provides direct evidence of direct glutamatergic

AMPA and NMDA synapses from tINs to rostral reticulospinal dINs and hdINs.

Similar to the case of tSt to tIN connections (see above), the paper provides

measures of EPSP recordings on dINs, including EPSP amplitudes, rise time

from 10 to 90% amplitude and time to peak after the stimulus (no data on the

duration at 50% amplitude is provided, and therefore omitted in the model). In

this case, however, these data are obtained from pairwise recordings of tINs
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AMPA+NMDA model exp
Amplitude (mV) 2.5 2.6

50 % amplitude time (ms) 14.7 14
Time to peak (ms) 4.1 5.2

Table 5.3: Comparison between measures of single EPSPs in dINs from mixed AMPA
and NMDA (right) in model simulations and experiments single tIN→dIN
synapses. These measures are EPSP amplitudes, rise time from 10 to
90% amplitude, time to peak after the stimulus and duration at 50% am-
plitude. Experimental measures are averaged across many neurons, from
[Buhl et al., 2012]. The measures obtained from simulations are obtained
by modelling a single synapse from one tIN to one dIN with parameters
gAMPA = 0.37nS and gNMDA = 0.23nS.

and dINs. Therefore, we are confident that that these EPSPs are a result of

single pre-synaptic spiking and single connections from tIN to a dIN. The data

has been analysed for mixed AMPA and NMDA components. We use a similar

optimisation algorithm and cost function used to fit synaptic parameters of tSt to

tIN synapses (see previous paragraph). The only two differences are that we fit

the AMPA and NMDA synaptic strengths simultaneously using two-parameter

fitting and that the cost function is defined as the sum of the difference between

experimental and simulated EPSP amplitudes, time to peaks and durations at

50% amplitude. EPSPs are reproduced by a single connection model from one

tIN to one dIN, and by injecting a brief step current to the tIN sufficient to evoke

one spike in the tIN. Additionally, since the voltage dynamics of dINs depends

on the electrical coupling in the dIN population, the post-synaptic dIN is electri-

cally coupled to other 15 dINs with coupling coefficient value of 0.2nS (selection

of these dIN numbers and coupling coefficients are based on analysis of the

previous functional model). The result of the fitting gives values of parameters

gAMPA = 0.37nS and gNMDA = 0.23nS. The fitting procedure was started from

several initial condition to confirmed convergence of the optimisation algorithm

to these parameters values. Table 5.2 shows a good agreement between of

the measures of EPSPs in experiments and and simulations obtained using the

fitted parameters.

175



5.1. MODEL DESCRIPTION

Figure 5.5: Voltage of one tIN (top) connected to one dIN (bottom) via mixed AMPA
and NMDA excitatory synapse in a model simulation. A depolarising step
current evokes a train of spikes in a single tIN and generates summation
of EPSPs in the dIN. Conductance parameters used in this simulation are
gAMPA = 1nS and gNMDA = 0.78nS (the best fitted parameters, see text
for more details).

Figure 5.5 shows the voltage recording of one tIN connected via a single exci-

tatory synapse (AMPA+NMDA) with parameters given in Table 5.3. The tIN is

injected with positive current that activates 6 spikes in the tIN. It is remarkable

that the tIN-evoked EPSPs in the dIN show temporal summation similar to that

seen in electophysiological recordings (see Figure 9 in [Buhl et al., 2012]).

tSt→ dIN neurons - Buhl et al. [2012] suggest the existence of direct excitatory

synapses from tSts to dINs. Since there is no available data that can be used

to estimate synaptic parameters, we assume that these synapses have mixed

AMPA and NMDA receptors and that parameter values of these synapses are

the same as tIN to dIN synapses.

tSp→ MHR neurons - Perrins et al. [2002] provides indirect evidence for ex-

citatory synapses from tSps to MHRs. We seleted excitatory synapses with

mixed AMPA and NMDA components with mean conductance of 5nS and 1nS,

respectively.

MHR → CPG neurons - Perrins et al. [2002] shows that these synapses are
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inhibitory and activate GABA-A. These GABA-A synapses are modelled using

the same equations and parameters of glycine inhibitory synapses included

also in the previous functional model (INH), except for the closing time con-

stant tauc = 20ms and reversal potential EGABA−A = 70mV . These parameters

are based on current clamp recordings of inhibitory postsynaptic potentials pro-

duced in tadpole spinal neurons by MHR stimulation [Hull et al., 2016].

Synaptic delays - The delays in the synaptic transmissions depend on the

rostro-caudal distance between cell bodies. We use the same model used to

define this delay in the previous functional model (see chapter 1).

5.2 Results

In the previous section we described the new elements of the VTmodel which in-

clude head skin sensory modalities and hindbrain sensory processing neuronal

populations. In this section we combine these populations with CPG neurons

to demonstrate how the model can generate appropriate behaviour in response

to different sensory stimuli. We show that the VT model can reproduce and

explain the neuronal processes underlying the initiation, continuation, acceler-

ation and termination of swimming in response to sensory signals. First, we

demonstrate how swimming activity can be initiated by the TS and HT sensory

pathways. Second, we show that swimming activity can be stopped by activation

of sensory neurons from the head pressure pathway or can stop spontaneously.

Third, we show that the stimulation of the trunk skin can lead to acceleration of

swimming. For each of these behaviours, the model can mimic the experimen-

tally recorded spiking neuronal activity of many of the key cell types. Therefore,

these simulations could provide an incredibly useful platform to help understand

the neuronal mechanisms that generate each of these behaviours, and for ex-

perimental testing.
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5.2.1 Extended firing in hINs leads to long and variable swimming initia-

tion delays in a first test of the model

The long and variable pattern of EPSPs in hdINs observed before the start of a

swimming episode (see model description and Koutsikou et al. [2018]) suggests

that the spiking of neurons in the TS sensory pathway is extended. A simple and

commonly proposed mechanism to explain extended firing is that some popu-

lation of neurons form small recurrent networks (see, for example, Durstewitz

et al. [2000]) on each side of the hindbrain (hINs), lying between the trunk skin

sensory pathway and the hdINs. To explore the plausibility of this proposal, we

start by building a first, simplified "test" network model of the trunk skin path-

way (Figure 5.6). All details of this model (including model parameters) can be

found in Koutsikou et al. [2018]. We use this "test model" to show the working

principles underlying the decision-making process for swimming initiation. This

test model uses the same functional specifications of neurons and synapses as

the ones used in the VT model, except for some adjustments in synaptic param-

eters. In this test model, we only consider one side of the spinal cord (opposite

to the stimulation side), and the number of neurons and connections is reduced

compared to the VT model.

In this model, 30 sensory pathway dlcs, with nearly synchronous spike times,

produce glutamatergic excitation in a group of 30 hINs with a contact proba-

bility of 0.4. To form a recurrent network, the hINs make mutual glutamatergic

synapses, activating AMPA and NMDA receptors; each hIN receives input on

average from three other, randomly chosen, hINs. hINs connects randomly to

any hdINs with probability of 0.2 and these connections also activate AMPA and

NMDA receptors.

The synaptic strength varies randomly across trials as in the VT model and as

is found experimentally [Li et al., 2002, 2003, 2006, 2007b, Buhl et al., 2012].
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Similar results hold also for the VT model and are reported in the next section.

In preliminary tests, we found that brief sensory dlc firing produced continu-

ous, self-sustained firing of all hINs. This showed the effectiveness of recurrent

excitation but did not provide significant variability. Synaptic strengths and con-

nection probabilities of dlc to hINs were therefore reduced until only some hINs

fired as a direct result of dlc excitation. Sustained firing was then variable across

the hIN population, and on some trials hIN firing was transient (Figure 5.6 B-D).

These patterns of hIN firing lead to slow and variable summation of EPSPs in

the five hdINs, connected to the hINs to monitor their output (Figure 5.6A). The

summating EPSPs could fail to reach hdIN firing threshold or lead to firing with

variable delays (34-190 ms; n = 30 trials). Single hIN spikes led to small hdIN

EPSPs (0.6-2.3 mV) but larger hdIN EPSPs occurred when two or more hIN

spikes were nearly synchronous.

The simplified test model described above demonstrate that a recurrent network

of hINs can generate extended and variable firing following transient input from

the sensory pathway and produce a pattern of summating EPSPs in hdINs with

which they synapse. These results illustrate the plausibility of the proposal that

activity in a group of neurons forming a simple recurrent network could act as a

short sensory memory, extending firing to a brief sensory stimulus and providing

summating excitation to produce long and variable delays in the initiation of hdIN

firing and the activation of the first motor responses.

5.2.1.1 Swimming initiation via trunk skin stimulation

The simplified test model described in the previous section can explain the neu-

ronal processes underlying the initiation of swimming on one side of the body.

In this section, we test if this explanation can be extended to the VT model by

including the hIN populations on each side of the body. A major issue is then

to explain how the two sides are coordinated at the start of swimming. More
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Figure 5.6: Simplified recurrent model of hdIN excitation and recruitment from Kout-
sikou et al. [2018]. Details about the model connectivity and parameters
can be found this paper. In A we show a diagram of connectivity and neu-
ronal populations in the test model: we consider a recurrent hIN network
excited by single spikes in 30 sensory pathway dlcs and 5 hdINs to mon-
itor output (A). All neurons are considered to be on one side of the spinal
cord. Parts B-D show raster plots of spike times for dlcs (black) and hINs
(colours); in response to 30 DLC spikes at time t=0 (arrow). Lower pan-
els show selected hdIN voltage records. HINs generate sustained firing
with variable durations and produce variable, summating EPSPs in hdINs
(black arrowheads). EPSP summation can reach threshold (dashed red
line) and lead to hdIN firing (red arrowhead) after variable delays. In part
D, when hIN firing is brief, EPSPs sum but do not reach hdIN firing thresh-
old (all five traces separated for clarity).
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precisely, we can formulate this issue with the following two related aspects:

1. Muscle alternation. Assuming that swimming starts when muscles on

one side contract, how can muscles on the opposite side be activated half

a swimming cycle later?

2. Muscle synchronisation. If the same process that leads to the hdINs

spiking and first motor responses happens on both sides, how is the net-

work able to avoid synchronous activation of antagonist muscles?

Clarifying how the network is able to produce the initial alternation of muscles

and avoid their synchronisation is not trivial. For the first aspect, we cannot

assume that the same mechanism of PIR in dINs controlling the alternation

of antagonist muscles during swimming can coordinate alternation also of the

first two swimming cycles. This is because dINs’ voltages are at low levels of

depolarisation at the time when these two cycles occur (presumably driven by

hINs), and we know that dINs cannot fire on rebound under such conditions

[Soffe et al., 2009]. For the second aspect, although we know that synchronous

activation of antagonist muscles during the first few swimming cycles can be

observed (Chapter 3; Li et al. [2014a]), this phenomenon is rare and usually

lasts for only a brief period of time. These observations suggest that the oc-

currence of this left-right muscle synchronisation should be minimised by the

circuit. However, the current proposal for the start of swimming could lead to

several cases where this phenomenon might occur.

We start by reproducing the start of swimming in response to trunk skin stimula-

tion using the VT model. Figure 5.7 shows one simulation of this model, where

all neurons are initialised at rest at time 0. The top and bottom panels of Figure

5.7 show examples of voltage dynamics for individual neurons for each type on

the right and left body sides (three randomly selected hINs and one neuron for

each of the other active neuronal types). Neurons of all the other neuronal types
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are omitted because they are inactive. The central panels in Figure 5.7 show

raster plots of spiking activity of all neurons on the right and left sides of the

body. The maximal conductance of RBs to dlas/dlcs synapses in this simula-

tion is 8nS (we then tested changes to 5nS, see below). We mimic skin touch

(or stimulation) by generating single-spikes into two sensory RB neurons on the

left side of the spinal cord. These spikes trigger single-spike responses in a

group of sensory interneurons (dlas and dlcs), which in turn excite and cause

the firing of some hINs on both sides. Due to their recurrent excitation, hINs

on both sides generate sustained irregular firing (lasting for about 1.5 seconds

on both sides) and produce similar variable and summating EPSPs in hdINs

as in experimental recordings [Koutsikou et al., 2018] and in the previous test

model (Figure 5.6B-C). However, in the VT model, EPSPs are also produced

in all other CPG neurons. When the EPSP summation reaches threshold for

spiking, left CPGs start to fire (typically, hdINs fire first).

It is important to notice that results similar to the one presented in this figure

hold also when generating random simulations with new network connectivities

(see Methods). Additionally, these repeated simulations show that swimming

oscillations can start on both left and right sides of the body and in response to

the stimulation of the skin on either of these sides (see results below).

Due to their contralateral connections, the hIN populations on both sides display

similar firing patterns, and that these two patterns build up with time at similar

rates. This property guarantees that left and right CPG neurons receive a sim-

ilar build-up of excitation from left and right hINs, respectively, enabling their

firing. Simulations that are not reported in this chapter revealed that including

a sufficient number of these connections is important. If this number is too low,

a high percentage of random simulations show that the first firing of CPG neu-

rons on one side is not followed by the firing of CPG neurons on the opposite

side, and swimming oscillations are not properly initiated. This activity pattern
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is discussed in more details below.

The inhibition from cINs helps to guarantee the initial alternation of muscles and

avoid their synchronisation (see point 1-2 above). Due to the similarity of hIN

inputs to the CPG neurons on both sides, right CPGs in Figure 5.7 could in the-

ory fire shortly after the firing of left CPGs. However, the inhibition from the left

cINs prevents and delays the firings of the right CPG. In fact, due to the inter-

play between the excitatory input from left hINs and the inhibition from right cINs,

these firings occurs at approximately half a swimming cycle after the firing of left

CPGs, establishing the alternation of antagonist muscles for the first swimming

cycle (see point 1 above). Additionally, results frommultiple random simulations

revealed that the cIN inhibitory strength helps to avoid co-activation of the two

sides (see point 2 above). Simulations with reduced cIN inhibitory conductance

showed that episodes of synchronous activation of antagonist muscles occurred

more frequently (see results below).

The first firings of left and right mns defines the first half-cycle of swimming.

Once this cycle is completed, CPG neurons continue to generate anti-phase

left-right oscillatory firings, which is essentially controlled by contralateral inhi-

bition from cINs and PIR spikes of dINs during their mutual re-excitation. We do

not explain this pattern in detail because it has been studied in detail in chapter 3

and chapter 4. It is worth highlighting, however, that CPG neurons are able to

generate this pattern while receiving continuous excitatory drive from the back-

ground firing of hINs, which is a feature that was not explored in these previous

chapters.

We then repeated 100 independent random simulations of the VT model using

the same parameters and stimulation protocol as in Figure 5.7 to test the robust-

ness of these results and compare them with experimentally observed patterns

of neuronal activities. In all the simulations tested, the pattern of neuronal ac-
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Figure 5.7: Start of swimming in response to trunk skin stimulation. The horizontal
line in the middle of the figure separates the activity of neurons on the left
(top) and right (bottom) body side. Central panels show spike times, where
the vertical position of each spike corresponds to the rostro-caudal posi-
tion of the associated neuron. Top and bottom panels show the voltage
traces from selected neurons that represent the activity of the population:
three hINs and of one neuron for each of the other active neuronal types.
Neurons of all the other neuronal types are omitted because they are in-
active. Two sensory RB neurons fire one spike each in response to a brief
stimulation at time 0. RBs excite and lead to the firing of dlas and dlcs,
which in turn excite and recruit a number of hINs on both sides. HINs fire
repetitively and irregularly, and they produce variable summating EPSPs
in CPG neurons. The first firing of CPG neurons on the left side is followed
by the firing of CPG neurons on the right side half a swimming cycle later
and by left-right anti-phase alternation of the CPG activity. The mean max-
imal conductance of RBs to dlas/dlcs in this simulation is 8nS. We use the
standard colour coding described in Figure 5.1 to show both voltages and
spikes.

184



5.2. RESULTS

tivity of RBs, dlas, dlcs and hINs is similar to the one shown in Figure 5.6B-C

and Figure 5.7. Briefly, single spikes in sensory and sensory pathway neurons

activate the hIN populations on both sides. These neurons spike irregularly and

at variable times between 1 and 2 seconds and they generate variable EPSPs

in CPG neurons, similar to those in experimental recordings [Koutsikou et al.,

2018]. The summation of these EPSPs can fail to reach firing threshold on both

sides, and in these cases all neurons eventually return to their resting steady-

state (19/100 simulations). We do not show the results of these simulations

because they are similar to the ones shown in Figure 5.6D in the case of hdINs,

except that the same pattern of EPSPs reported for hdINs appears also in all

CPG neurons on both sides. Similar to Figure 5.6B-C, the same summation

can lead to firing in at least one of the two sides (81/100 simulations). The

description of these 81 simulations can be divided in the following three groups:

1. 75 simulations showed neuronal activity patterns similar to the ones shown

in Figure 5.7. First motor responses, measured as the first mn firing times,

could occur on either of the two sides (41 times on the left, 34 times on the

right), and their delays from the time of stimulation were long and variable,

ranging from 45 ms to 199 ms.

2. In 3 simulations CPG neurons on both sides fired at approximately the

same time (synchrony). This synchronous firing persisted for 1-3 swim-

ming cycles (see point 2 above). In all these simulations, this synchronous

activity was followed by swimming with anti-phase firing of CPG neurons

on each side. These results suggest that synchrony is unstable. Interest-

ingly, synchrony has also been seen in experimental recordings [Li et al.,

2014a] and, in both model and experiments, is a rare event. In chapter 4

we have reported a detailed study of how this pattern can occur in a sim-

plified model of the CPG circuit. In particular, we have observed that syn-
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chrony can be initiated when CPG neurons receive a similar input on both

sides and occurring at nearly the same time. Similarly, synchrony in these

simulations is driven by the irregular spiking of hINs neurons, which can

occasionally provide CPGs on both sides receive a similar input occurring

at nearly synchronous times.

3. In 1 simulation, CPG neurons on one side start to fire, but CPG neurons

never fire during the entire simulation time, and all neurons converge to

the resting state. A similar activity pattern where single motor responses

are activated on one cycle but does not persist was observed also in ex-

periments [Roberts et al., 1985].

We then tested the impact of reducing cINs’ inhibition by repeating 100 random

simulations with modified maximal cIN maximal conductance from 0.435nS to

0.2nS. In 22/100 of these simulations CPG neurons on both sides fail to reach

firing threshold and return to their resting steady-state. The description of the

remaining simulations can be divided in the same three groups previously de-

scribed (points 1-3 above). 63/100 simulations showed neuronal activity pat-

terns similar to the ones shown in Figure 5.7 (see point 1 above). In 2/100

simulations the firing of CPG neurons on one side is not followed by the firing of

CPG neurons on the opposite side (see point 3 above). In the remaining 13/100

simulations CPG neurons on both sides start to fire in synchrony (see point 2

above).

Therefore, we observe a significant reduction in the number of cases where the

firing of CPG neurons is initiated in antiphase alternation and a significant in-

crease in the number of cases where firing of CPG neurons starts in synchrony.

These results suggest that the strength of cIN inhibition helps to avoid the co-

activation of antagonist muscles (see point 2 above).

Koutsikou et al. [2018] summarises the biological experiments supporting these
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predictions of the VT model. Additionally, the experiments presented in this

paper demonstrated that sub-threshold stimulation of the skin may lead tadpoles

to make a decision to start to swim or to stay still. Buhl et al. [2012] shows that

also head skin stimulation can lead tadpoles to make the same decisions. After

repeated trials with variable stimulation levels, Buhl et al. [2012] concludes that

swimming starts more frequently and with less reaction times variability when

stimulation levels are stronger.

We therefore tested if the VT model can also predict this experimental finding.

So far, our model mimics strong stimuli levels to the trunk skin by using high

conductance values in the synapses from sensory RB neurons and sensory

pathway dla and dlc neurons. To investigate responses to weaker skin stim-

uli, we presume that lower stimulation levels activate less dlas and dlcs in the

network. We therefore tested if the VT model responses were different after

reducing the number of active dlas and dlcs in the network. Although we are

aware that lower stimulation levels are likely to decrease also the number of

active RBs, we did not test the effect of reducing this number for two reasons.

Firstly, because we wanted to keep this number equal to the one described in

the previous functional model [Roberts et al., 2014], as changing it would re-

quire to drastically modify the strengths of synapses from RBs to dlas and dlcs

(of an order of magnitude of more than 10), which are based on physiological

evidence [Roberts et al., 2014]. Secondly, because we could still reduce the in-

put from RBs to the network simply by lowering these strengths from 8nS to 5nS

(see Model description). In future tests, we aim to explore further this feature of

the model.

We therefore repeated 100 random simulations of the VT model after the ap-

plication of these changes and tested the reliability of the start of swimming.

In these simulations the voltage and spiking activities of RBs, dlas and dlcs is

similar to the ones shown in 5.7, except that fewer dlas and dlcs are activated,
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due to the reduced input from RBs (see previous section). In some simulations,

the hINs spike at variable times between 1 and 2 seconds, and their dynamics

is similar to the one of hINs in Figure 5.7. In the remaining simulations, hINs

stop to fire briefly after stimulation on both sides (between 60 and 150 ms), sim-

ilar to Figure 5.6D. In both cases, however, hINs generate variable EPSPs in

CPG neurons. The summation of these EPSPs often failed to reach threshold

for the spiking (64/100 simulations). In 36 simulations, spiking of CPG neurons

and swimming was initiated. The activity of CPG neurons is similar to the one

shown in Figure 5.7. Firing of mns on either side of the spinal cord (19 times

on the left, 17 times on the right), and delays to the first mn firing ranged from

50 to 170ms. These simulation results suggest that lower levels of TS stimula-

tion lead to less reliable initiations of swimming and to more variable delays to

the first motor responses. It is also interesting that these simulations can pro-

duce transitory pattern of hdINs’ EPSPs that has been seen also in experiments

[Koutsikou et al., 2018].

The results of these 200 simulations demonstrate that the VT model can repro-

duce neuronal activities that lead to the initiation of swimming that are similar to

those seen in experimental recordings. In agreement with experiments, the VT

model shows that TS stimulation may or may not lead to the start of swimming.

Moreover, when swimming starts, the first motor response can occur on either

side after long and variable delays from stimulation. These results suggest that

the VT model mimics closely the neurobiological details of the swimming circuit

and it can be used to study the neuronal mechanisms leading to the initiation of

swimming in response to the TS stimulation. These results endorse the neuro-

mechanistic proposal suggested by the test model to explain the long and vari-

able delays to the start of swimming [Koutsikou et al., 2018]. Moreover, they

provide additional insights that demonstrate the neuronal principles beyond the

alternation and de-synchronisation of antagonist muscles during the first swim-
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ming cycle.

5.2.2 Initiation of swimming by head touch

In this section, we simulate the start of swimming in response to head touch

(or electrical stimulation) in the VT model. Figure 5.8 shows an example where

the top and bottom panels show the voltage dynamics of representative neu-

rons of each type and the central panels show the spiking activity of all neurons

as in Figure 5.7. To mimic the neuronal responses to head touch, 8 sensory

tSt neurons on the left side were stimulated to fire a single spike each at time

0. The firing of tSts excites and causes single spiking in 8 tINs and 30 rdlcs.

tSts, tINs and rdlcs contribute to excite hINs and hdINs on both sides. Due to

this mixed transitory input and their recurrent excitation, hINs fire repetitively

and irregularly, similar to model simulations of the TS pathway (Figure 5.7) and

excite CPG neurons on both sides. The mixed inputs from left tSts, tINs and

hINs summate to generate high amplitude EPSPs and cause the early firing

of left hdINs, which in turn activate CPG neurons on the left side. Meanwhile,

the population of right hINs excites and causes the firing of right CPGs approx-

imately half a swimming cycle after the firing of left CPGs. As in the case of

TS stimulation, left cIN inhibition is crucial for making sure that the firing of right

CPG neurons occurs after approximately half a swimming cycle delay, and not

before. When the first half-cycle of swimming is complete, left-right anti-phase

oscillatory activity of the CPG neurons is established and continues as in the

case of TS stimulation.

100 random simulations of the VT model were used to confirm the validity of

these results. For 99/100 simulations the stimulation protocol led to the initiation

of swimming oscillations and to neuronal activities similar to Figure 5.8. The

number of tINs and rdlcs recruited in all simulations was also similar (9 ± 2.4

tINs and 31 ± 1 rdlc, mean ± std). First spiking of CPG neurons started on
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the stimulated left side in all 99 simulations, and the first motor response was at

29.9±2.4 ms (mean±std, calculated from the vector of median first firing times

in left mns). In the remaining 1/100 simulation the summation of EPSPs did not

reach threshold for activating CPG neurons on either sides. These EPSPs were

long and variable as in the case of TS stimulation.

We notice that, in contrast to TS stimulation, none of these 100 simulations

demonstrated coactivation of antagonist muscles. The reason for this is that

the dINs on the left stimulated side receive stronger excitatory sensory inputs

than right dINs, because of input from tINs. Another consequence of this high

level of excitation is that hdINs tend to fire at much shorter delays from the

start of stimulation which leads to much shorter first reaction times, as found in

recordings from tadpoles [Buhl et al., 2015].

Buhl et al. [2015] showed that changing the intensity of electrical stimulation to

the head skin can have a great impact on both the side where swimming will

start and the delays to first motor responses. After repeated trials experiments

show that, with stronger stimulations (above swim threshold), swimming starts

always on the stimulated side and first motor responses occur at shorter and

less variable delays (approximately 30-40ms). Other experiments showed that

lower stimulation levels (just above swim threshold) can lead to the initiation of

swimming on either side of the body and that the first motor responses occur

at much longer and more variable delays, similar to the delays to swimming

following TS stimulation [Koutsikou et al., 2018]. Additionally, these second ex-

periments show that hdINs on both sides of the spinal cord receive a similar

pattern of summating EPSPs which can make them to fire at long and variable

times. These results suggest that a similar mechanisms to the one described

for the TS pathway might be responsible for the initiation of swimming when low

stimulation levels are applied to the head skin.
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Figure 5.8: Simulation of the start of VT model swimming in response to head stim-
ulation. Panels are organised as in Figure 5.7. Top and bottom panels
show the voltage activities of selected active neurons in response to head
pressure. Eight sensory tSts fire one spike each in response to a brief
stimulation at time 0. These neurons excite and lead to the firing of tINs
and rdlcs, which in turn excite and recruit a number of hINs on both sides.
hINs fire repetitively and irregularly, and they produce variable summating
EPSPs in CPG neurons. The strong excitation from tINs to dINs mixed with
hIN to dIN excitation leads to the firing of dINs and other CPGs and to the
start of swimming on the stimulated side. Meanwhile, right hINs excite and
activate CPG neurons on the opposite side approximately half a swimming
cycle after the firing of left CPG neurons. After this first half-cycle of swim-
ming, left-right anti-phase alternation of the CPG activity is established and
continues.
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Our previous simulations of the TH pathway showed that activation of tSts, tINs

and hINs on the stimulated side is sufficient to activate ipsilateral hdINs and ini-

tiate swimming (in 99/100 simulations). The first firing of CPG neurons and the

first motor responses always occur on the same stimulated side and at a shorter

and less variable delays compared to TS stimulation. This would suggest that

our stimulation protocol was similar to the high level intensity stimulation of the

head skin. We therefore tested if lowering this level can still lead to the initiation

of swimming and, if this is the case, whether the delay to the first motor re-

sponses was longer and more variable, as found in the experimental recordings

[Buhl et al., 2015].

To mimic the lower intensity of head skin stimulation we reduced the number of

activated tSts from 8 to 6 in the VT model. We then repeated 100 random sim-

ulations of the model and obtained the following results. The number of active

tINs decreased to 2.8 ± 1.6 (mean ± std). Swimming oscillations were initiated

in 52/100 simulations on either side of the animal (28 times on the left side, 18

on the right side). Delays to first motor responses were long and variable (range

30.2-173ms), similar to simulations of the TS pathway. CPG neurons received

long and variable patterns of EPSPs caused by the firing of hINs. The neuronal

mechanism leading to the start of swimming in these simulations is analogous

to the one described for the TS pathway. In 46/100 simulations CPG neurons

on either sides received similar long and variable EPSPs, but the summation of

these EPSPs did not reach threshold for firing and swimming was not initiated.

In 2/100 simulations synchronous activity of CPG neurons lasting 3 swimming

cycles was observed, similar to the synchrony pattern seen in response to TS

stimulation. In one of these simulations this synchrony was followed by anti-

phase swimming oscillations, similar to the synchrony in simulations of the TS

pathway. In the other simulation, swimming oscillations did not appear and dy-

namics of CPG neurons returned to the rest. This pattern has been reported
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also in chapter 4.

In summary, these results suggest two distinct mechanisms for the initiation of

swimming in response to TH stimulation. In the first mechanism, direct excita-

tion from tINs to dINs sums, causing the firing of dINs on the stimulated side,

which in turn activates the other CPG neurons on the same side. On the op-

posite side, the sustained and variable firing of hINs excites CPGs and leads

to their firing after approximately half the swimming cycle, effectively initiating

swimming. This mechanism leads to quick and less variable delays to the first

muscle activation which are comparable to reflexes. In the second mechanism,

long and variable summation of excitation caused by irregular firing in hINs may

or may not initiate swimming. When swimming is initiated, delays to first motor

responses are longer and more variable, like delays to first motor responses in

the case of stimulation of the TS (discussed in the next section).

5.2.3 Summaries of results on the initiation pathways

Figure 5.9 shows an analysis of simulations of the VTmodel in response to stim-

ulation of the TS and TH (the data used are from the 400 simulations described

in the previous two sections). We divide simulations between the ones obtained

by applications of high levels of stimulation (High TS, High TH) and the ones ob-

tained by applications of low levels of stimulation (low TS, low TH), following the

same division that was described previously (therefore, we use 100 simulations

for each group). The neuronal activity of each simulation is classified into four

distinct groups. The first group is formed by simulations where CPG neurons

eventually generate antiphase swimming oscillations (swim, blue colour). The

second group is formed by simulations where CPG neurons receive variable EP-

SPs that do not reach threshold for firing in these neurons, and therefore swim-

ming oscillations do not start (no swim, red colour). The third group is formed

by simulations where CPG neurons on both sides start to fire in synchrony and
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either switch to swimming or return to rest after some time (sync, green colour).

The fourth group is formed by simulations where only CPG neurons on one

side fire (one-sided, purple colour). Each bar in Figure 5.9A shows the size of

each of these groups of simulations. Boxlplots in Figure 5.9B show separate

distributions of the reaction times of the first motor responses for each of the

four tested stimulation protocols (High/Low TS, High/Low TH). These data were

calculated from simulations where swimming with anti-phase oscillatory firing of

CPG neurons was initiated. Reaction times are calculated in each simulation

as the median across all active rostral mns (rostro-caudal positions < 1000µm).

Above these boxplots we show the percentages of simulations where swimming

started on the left (L) and on the right sides (R).

This analysis summarises the quantitative agreements between model simula-

tion and experimental recordings, which were discussed in the previous sec-

tions. In summary, we observe the following (Figure 5.9A). High levels of TS

stimuli lead to a higher probability to initiate swimming than lower levels of TS

stimuli. However, in both cases swimming can start on either side of the spinal

cord (Figure 5.9B). High levels of HT stimuli start swimming oscillations in al-

most all cases (99/100), while lower levels of HT stimuli may or may not start

swimming. Coactivation of antagonist muscles (synchrony) occurred in 5/400

simulations. In a single simulation the CPG neurons on one side of the body

were activated while the ones on the opposite side remained inactive (one-sided

activation). Remarkably, both the simulations showing synchronous coactiva-

tion of antagonist muscles and the simulation showing one-sided CPG activity

correspond to activity patterns that have been recorded in experiments in [Li

et al., 2014a] and [Roberts et al., 1985], respectively.

From Figure 5.9B we observe the following. The TS pathway can lead to long

and variable decisions to swim and lower levels of the TS stimuli lead to longer

and more variable reaction times than stronger TS stimuli. These distributions
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of reaction times correspond to the ones measured in experiments from ventral

root recordings, which measure inter-quartile ranges of 33-61 ms and 80-113

ms in responses to stimulations near threshold for initiating real and fictive swim-

ming, respectively [Koutsikou et al., 2018]. In particular, we remark that these

distributions (low TS and high TS) are skewed towards those like the ones re-

ported in this paper (Figure 1 in Koutsikou et al. [2018]). The TH pathway can

lead to either reliable and quick (high TH) or to long and variable (low TH) de-

lays to swimming. These distributions of reaction times also correspond to the

ones gathered from experiments shown in Buhl et al. [2015]. For stimulations

near the threshold for initiating fictive swimming these times range of 15-87 ms

median of 25ms, while for stronger stimulations the inter-quartile range is 19-

40 ms and median of 23 ms. Lastly, our results correspond to experiments by

predicting that all stimulation protocols except High TH can initiate swimming on

either side, and that the High TH pathway leads to initiation of swimming always

on the stimulated side.

5.2.4 Termination of swimming

5.2.4.1 Head pressure reliably stops swimming

In this section, we simulate the termination of swimming in response to head

pressure. Figure 5.10 shows the activities of CPG, tSp andMHR neurons, which

belong to this pathway. The top and bottom panels of Figure 5.10 show the

voltage dynamics of selected neurons for each of these cell types and central

panels the spiking activity of all neurons. We activate single firing in 10 tSts to

initiate swimming. To mimic responses of sensory neurons to head pressure

like in experiments [Perrins et al., 2002], we stimulated 10 sensory tSp neurons

on the left side by injecting each tSp with a step current from 1.95s to 2.35s with

independent random normally generated amplitudes (mean=0.2nA, std=0.02).

During this stimulation tSp sensory neurons fired rhythmically with amplitude
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Figure 5.9: Summary of statistics in simulations of the VT model in response to TS
and TH sensory pathway stimulation. Random simulations of the TS and
HT pathways are divided between high and low levels of stimulation inten-
sities. A. Bar charts showing the number of simulations where swimming
is initiated for each of four groups of simulations. These groups are based
on the activity of CPG neurons. We group simulations where CPG neu-
rons display antiphase oscillations (swim, blue), no firing on either side (no
swim, red), synchronous activity (sync, green) and firing on one-side only
(one-sided, purple). B. Box plots showing the reaction time distributions
of the first motor responses for each of the stimulation protocols (high/low
TS, high/low TH). These distributions are calculated only from simulations
that displayed CPG swimming activities. Top: percentages of simulations
where swimming starts on the left (L) and on the right sides (R) in each of
the stimulation protocols.
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dependent frequencies. The frequency of the tSp neuron shown in the upper

panel of Figure 5.10 is 32.5Hz. Stimulation of 10 tSps leads to the activation

of all ipsilateral MHRs, which produced irregular spiking activity and inhibited

CPG neurons on both sides via ipsilateral and commissural connections. As a

result of the stimulation of the head pressure pathway the swimming oscillatory

activity of all neurons stops after 2.4 seconds.

We repeated 100 random simulations of the VT model with the same stimula-

tion protocol to confirm the reliability of these results. In each simulation we

activate single spikes in 10 tSts, which reliably initiate the swimming dynam-

ics in all 100 simulations. All active neuronal types show similar voltage and

spiking dynamics to the ones shown in Figure 5.10. Following tSp stimulation,

swimming was reliably stopped in all 100 simulations. Similarly, experiments in

immobilised tadpoles suggest that pressure of the skin can reliably be stopped

stopping swimming (97% of tadpoles are stopped by application of head pres-

sure; Perrins et al. [2002]).

Physiological experiments have shown that firing of single MHRs can reliably

stop swimming (in 7 of 9 MHR tested; see Perrins et al. [2002]). We simulated

these experiments using the VT model. Figure 5.11A and B show the activities

of CPG and MHR neurons in two random simulations of the model. Top and

bottom panels show voltage dynamics of selected cells and central panels the

spiking activity of all the CPGs and MHRs in the network. In each simulation, we

initiate the swimming dynamics by activating single spikes in 10 tSts. We apply

the same stimulation protocol used to activate individual MHRs in experiments

[Perrins et al., 2002]. We inject 5 equal current pulses to a randomly selected

MHR starting 2 seconds after the stimulation tSts. The selected MHR fires two

spikes in response to each pulse (amplitude 0.2nS lasting 30ms). In Figure

5.11A the activity of the selected MHR inhibits CPG neurons on left side (this

neuron only forms ipsilateral connections), while in B the selected MHR inhibits
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Figure 5.10: Simulation of the VT model mimicking the termination of swimming in re-
sponse to head pressure stimulation. Panels are organised as in Figure
5.7. Top and bottom panels show the voltage activities of selected active
neurons in response to head pressure. CPG neurons started by display-
ing swimming oscillations. 10 sensory tSp neurons were injected with
step current and fired rhythmically to activate all ipsilateral MHRs, which
inhibited CPG neurons and stopped swimming oscillations.
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CPGs on both sides (neuron with both ipsilateral and contralateral connections).

In the first case (A) the swimming dynamics continued after the inhibition, while

in the second case (B) swimming is terminated. In case (A) some of the left

CPG neurons fire additional spikes at half the cycle of swimming.

We repeat a total of 100 random simulations using the same stimulation pro-

tocol for the activation of single MHRs. In all these simulations the activities

of the MHR and all CPG neurons is similar to the ones shown in Figure 5.10.

Swimming was stopped in 62/100 simulations, and continued in the remaining

38/100 simulations. For the second set of simulations when swimming did not

stop (38/100), CPG neurons on either side tended to fire additional spikes syn-

chronously with those on the opposite side, during the period of stimulation. In

simulations where swimming ends after MHR input (62/100), anti-phase activity

in CPGs is not immediately interrupted after spiking of MHR neurons inhibition,

but it can continue for up to 3 cycles after the last MHR spike. The termination

or continuation of swimming cannot be determined based solely on whether the

selected MHR forms only ipsilateral connections or both ipsi and contralateral

connections. Swimming can stop or continue both if the activated MHR forms

only ipsilateral connections to CPGs or if it forms both ipsilateral and contralat-

eral connections to CPGs.

5.2.4.2 Spontaneous termination of swimming

When swimming is initiated in biological experiments, it normally starts with

short cycle periods. The cycle period then increases to a stable plateau, before

eventually slowing again before swimming stops [Dale and Roberts, 1984]. To

mimic this phenomenon in the VT model we introduced a mechanism of synap-

tic depression into the NMDA recurrent connections amongst dINs. We use the

same mechanism of synaptic depression as in hIN to hIN synapses, with a de-

pression parameter α = 0.99. Essentially, the strengths of each of these NMDA
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Figure 5.11: Activation of single MHR neurons can terminate swimming. In both A and
B, panels are organised as in Figure 5.7. Top and bottom panels show
the voltage activities of CPGs and the only active MHR. In both A and B,
CPG neurons start by displaying swimming oscillations. We inject 5 equal
current pulses to a randomly selected MHR starting 2 seconds after the
stimulation of tSts which initiates swimming. The selected MHR fires two
spikes in response to each pulse (amplitude 0.2nS lasting 30ms). In A
firing of the MHR does not stop swimming oscillations. In B the firing of
the MHR stops swimming oscillations.
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synapses are multiplied by α after each pre-synaptic spike.

Figure 5.12 shows the last 800 ms of a 3.4 second simulation of the VT model

which demonstrates the spontaneous termination of swimming CPG activity.

The top and bottom panels of Figure 5.8 show the voltage dynamics of selected

CPG neurons, and central panels show the spiking activity of all neurons. Swim-

ming was initiated by stimulating 10 tSts at the start of the simulation. The sim-

ulation is then run for a long enough time to observe the swimming termination

time. At the last cycle of right CPG firings, left dINs are inhibited by right cINs,

but do not fire on rebound as in the previous cycles. Therefore, the failure of

left dIN rebound spiking at approximately 3.2 seconds causes the end of the

spiking in left CPGs. This stops the left cIN inhibition and PIR spiking in right

dINs. Thus, the swimming episode stops at around 3.2 seconds. The period of

swimming in the last few cycles increases significantly compared to the when

swimming started, going from 50-60ms to about 100ms (compare Figures 5.7

with Figures 5.12), as in biological experiments [Li and Moult, 2012]. We will dis-

cuss the time course of the cycle period in during a full simulation of swimming

in the next section.

In this case, as previously, we repeat 100 random simulations of the VT model

with equal parameters and stimulation procedures. Each simulation is run for

a long time to observe spontaneous swimming terminations. Swimming ended

in all simulations, either on the left or right side, and stopping times ranged

between 2.6 and 3.9 seconds. The activity of CPG neurons when swimming

stopped was similar in all simulations to Figure 5.12. The termination of swim-

ming always occurred in the same way, starting with missed rebound in dINs on

one side and missed inhibition on the opposite side.
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Figure 5.12: Spontaneous termination of swimming. Panels are organised as in Fig-
ure 5.7. Top and bottom panels show the voltage traces of one selected
CPG neuron per type on the left and right side, respectively. All other
neurons are inactive, and their voltages are omitted. In the last cycle of
right CPG neuron firing, left dINs are inhibited by right cINs, but do not
fire one rebound as in the previous cycles. Therefore, the termination of
left dIN rebound spiking at approximately 3.1 seconds causes the end of
the spiking in left CPGs and to the termination of swimming.
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5.2.5 Simulating a tadpole’s swimming behaviour and interactions with

the external environment

In this section we present massive simulations of the VT model that aim to re-

produce a biologically plausible, neuronal activity during a complete swimming

episode of a tadpole that includes interactions between sensory pathways and

the CPG populations. These simulations aim to reproduce a realistic sequence

of events where a tadpole receives external inputs from multiple sources, in-

ternally represents and processes this information and modifies its behaviour

accordingly.

We describe one hypothetical sequence of events that might be observed during

the life of a tadpole. The sequence lasts for 8 seconds and the events are

summarised in Table 5.4. We assume that the tadpole is motionless before time

t=0 (rest state). At time t=0 the tadpole is touched on the left side of the trunk

skin for a brief period of time (Event #1), the TS pathway becomes active and the

animal starts to swim. At time t=2s the animal finds shade and attaches under

a plant floating on the water surface. Pressure receptors in the cement gland

become active in response to the pressure of the left side of the head against the

plant for 0.4 seconds and activate the HP pathway. The signal from this pathway

inhibits the CPG during the time interval [2,2.4]s (Event #2), stops swimming

after 2.4 seconds and the tadpole returns to the rest state. At time t=2.5s the

head of the animal is briefly touched on the left side, the HT pathway becomes

active and the animal starts to swim for a second time (Event #3). The last event

happens at time t=4.5s, when the tadpole skin is touched briefly on the right

side (Event #4). The TS pathway becomes active and causes the acceleration

of swimming for a limited time period. After this acceleration, swimming stops

spontaneously.

Figure 5.13A shows a simulation of the sequence of events for the VT model.
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Event # Initial Time (s) Final Time (s) Stimulation Pathway (side)
1 0 0.005 Skin Touch (left)
2 2 2.4 Head Pressure (left)
3 2.5 2.505 Head Touch (left)
4 4.5 4.505 Skin Touch (right)

Table 5.4: Sequence of events

The top and bottom panels show the voltage dynamics of selected active neu-

rons and central panels the spiking activity of all neurons. The top two panels

and the bottom two panels show the activities of left and right neurons, respec-

tively. Events in the sequence are shown by black arrows and are summarised

in Table 5.4. Coloured horizontal bars under the voltages in the top and bottom

panels show the duration of these events (colours mark the event type). Each

event represents the signal from the external environment that modulates the

dynamics of the neuronal populations in each sensory pathway. These popu-

lations then influence the activities of the CPG populations and, in the case of

Events #1-2-3, lead to the initiation or termination of swimming. The dynamics

of active neurons in each of these events is similar to those described in the

previous sections. The intensities of stimulation of the TS and HT pathways are

selected to be high enough to initiate swimming. In the case of Event #4 the

stimulation of the TS pathway leads to the acceleration of swimming. A sim-

ple explanation for the shorter periods at the start of a swimming episode and

during acceleration lies in the properties of hINs and dINs. When acceleration

occurs, the hIN population is active and excites dINs during swimming. This ex-

citation increases the voltage level of after-spike depolarisation in dINs [Li and

Moult, 2012]. Due to this higher depolarisation and the intrinsic properties of

dINs, PIR firing in dINs occurs at shorter times after the release of cIN inhibi-

tion than during periods when hINs are inactive. An experimental confirmation

of this explanation comes from Li and Moult [2012]. This paper shows that in-

jecting positive currents into dINs during swimming leads to the same results:
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higher level of after-spike voltage depolarisation in dINs, faster PIR spiking in

dINs and acceleration of swimming.

Figure 5.13B shows the swimming period versus time. Periods are calculated

at the half of each swimming cycle as the median firing of left active mns. The

values of these periods are within the physiological range measured in experi-

ments [Roberts et al., 2014]. At the first start of swimming (Event #1) the period

starts at∼63ms, quickly decreases to∼ 53ms during the first 300ms, and slowly

increases. This is in line with experimental recordings [Sillar and Roberts, 1992,

Li and Moult, 2012]. When the HP pathway is activated (Event #2), swimming

stops (red rectangle). When swimming restarts via stimulation of the HT path-

way (Event #3), the period of swimming follows the same temporal dynamics

as at the previous start of swimming. When the right TS occurs (Event #4), the

period quickly decreases (acceleration), and slowly increases until it reaches a

value of ∼ 100ms and spontaneously stops.

5.3 Conclusions and discussion

TheVirtual Tadpolemodel (VT) presented in this chapter is a biologically-realistic

reconstruction of the tadpole swimming neuronal circuit that reproduces the ac-

tivity of most of the active neurons during a swimming episode, from its start to

its end. Thus, the VT model is the only spiking neuronal model that we know

of that (1) accounts for the sensory initiation, modulation and termination of a

whole animal’s locomotor behaviour and (2) represents most of the functioning

neurons in that animal.

To define the VTmodel we extended and improved previous biologically realistic

anatomical and functional models [Roberts et al., 2014, Ferrario et al., 2018a].

These previousmodels aimed to reproduce the processes of swimming initiation

in response to touching the trunk skin and rhythmic pattern generation [Roberts

et al., 2014, Ferrario et al., 2018a]. However, recent experimental evidence
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Figure 5.13: Sequence of events of multi-sensory pathways. A. Panels in this subfig-
ure are organised as in Figure 5.7, except for showing the voltage traces
of one neuron of each type, provided that at least one neuron in that type
fires at least once during the simulation time. B. Swimming period vs time.
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suggested that the initiation process described in these models was oversimpli-

fied in at least two ways. Firstly, the synaptic strengths of the sensory pathway

neurons to the CPG neurons were adjusted to start the swimming oscillations.

However, recent evidence suggests that these synapses are only weak, if they

even exist [Koutsikou et al., 2018, Buhl et al., 2015]. Secondly, these models

cannot predict the long and variable delays to the first firing of dINs and of first

motor responses [Koutsikou et al., 2018].

In addition to that, the VT model also extends these previous models by incor-

porating two other sensory pathways which can initiate and terminate swimming

in response to head touch and pressure, respectively. Simulations of VT model

can now explain the processes beyond the initiation and termination of swim-

ming in response to the stimulation of each of these three pathways. Moreover,

it predicts the acceleration of ongoing swimming when the skin is stimulated

[Sillar and Roberts, 1988]. By including a mechanism of synaptic depression

between the dINs in the VT model that can also reproduce the slowing down

and spontaneous termination of swimming [Dale and Gilday, 1996].

To define the properties of the connections in the VT model we incorporate sig-

nificant anatomical data collected in experiments. In some cases we prescribed

connections using our probabilistic model [Ferrario et al., 2018a] and by taking

into account the available experimental data. In particular, we use the morpho-

logical similarities between the neurons with known connections and neurons

with unknown connectivity. Using these similarities we consider the known prob-

abilities and use a generalisation procedure to generate the probabilities for new

cell type connections which have similar properties to the known ones, based

on the anatomical and functional properties of these cell types. For example,

since both tINs and dlas have similar anatomical and functional properties, un-

known connection probabilities from tINs are generalised from known connec-

tion probabilities from dlas. As a result, the total number of generated synaptic
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connections in the VT model is about 100,000.

Model equations and parameters have been selected to either match available

experimental data [Buhl et al., 2012, 2015, Koutsikou et al., 2018, Perrins et al.,

2002] or to obtain physiologically plausible initiation/termination of the swimming

dynamics. As a result of this, the VT model imitates a chain of information

processing of external signals to sensors, through a sensory pathway, decision

making and execution of action by generating physiological patterns of neuronal

activities.

The model of the swimming decision making process is based on physiological

evidence and on our previous simplified model [Koutsikou et al., 2018]. Activa-

tion of model hINs generated a pattern of sustained activity which was highly

variable due to the random distribution of connection strengths between these

neurons. This type of variable and sustained activity is what was expected from

the experimental evidence and is similar to processes of decision-making [Kris-

tan, 2008, Surmeier, 2013]. The VT model includes populations of hIN neurons

on both sides of the body and we found that commissural connections between

these neurons are important to ensure that the start of swimming is properly

coordinated. The inclusion of hINs in the model can explain why the response

to trunk skin stimulation have such long and variable delays [Koutsikou et al.,

2018].

Themodel of connectivity includes several random elements that mimic the vari-

ability of the connectivities of multiple tadpole individuals. Due to this random-

ness, repeated simulations of the model produce different pattern of activities

and lead to variable behaviours. For example, first motor responses and swim-

ming stopping times of in VT model simulations vary in the ranges of ∼ 20-200

ms and ∼ 2.6 and 4 seconds, which correspond to the ranges observed in the

real animals [Koutsikou et al., 2018, Buhl et al., 2015, Dale and Roberts, 1984,
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Li et al., 2006]. This means that the VT model has complex and unpredictable

behaviour, like a real tadpole, and it shows that the randomness included in the

model can explain some aspects of the variability in the animal behaviour.

We demonstrated how stimulation can initiate or stop swimming by showing that

model simulations produce spiking patterns similar to the experimental record-

ings in all three sensory pathways. When modelling the response to TS stimuli,

the large majority of random simulations of the VTmodel reproduce the initiation

of swimming antiphase spiking activity in left and right CPG neurons (swimming

oscillations).

Our simulation results suggest that commissural inhibition from cINs is important

for a coordinated start of the first swimming cycle. This inhibition makes sure

that the firing between left and right CPG neurons occurs at a time interval of

approximately half a cycle of swimming.

We have shown that stimulation of the TS pathway can lead to two other activity

patterns. In the first, left and right CPG neurons start to fire in-phase oscilla-

tions (synchrony oscillations), favouring the coactivation of antagonist muscles.

In the second, the firing of CPG neurons on one side is not followed by the

spiking of CPGs on the opposite side (one-sided CPG firing). Synchrony oscil-

lations and one-sided CPG firing have been observed also in experiments [Li

et al., 2014a, Roberts et al., 1985]. These experiments and in random simu-

lations of the VT model have confirmed that these two activity patterns occur

only seldomly. For this reason we believe that they are pathological activities

that the circuit is structured to avoid. Thus, some of the parameters in the VT

model were appropriately selected to reduce the number of simulations produc-

ing these activities.

This calibration of the model revealed some of the critical features of the VT

model which can help to prevent these pathological activities. Specifically, we
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found that higher numbers of commissural connections between hINs help to

minimise the number of random simulations producing one-sided CPG firing.

Thanks to these connections hINs on both sides fire at similar rates and deliver

a similar excitatory input to both left and right CPG neurons, which typically lead

to the firing of CPG neurons on both sides. However, including toomany of these

contralateral hIN connections increases the number of random simulations pro-

ducing left-right synchronous oscillations of CPG neurons. We therefore se-

lected an intermediate number of these connections, which was suggested by

anatomical data of neurons analogous to the hINs. In particular, each hIN in the

model has 30 % chance to form the same average number of connections to

contralateral hINs as it has for ipsilateral ones. Remarkably, using this paramter

value pathological synchronous or one-sided CPG firings happen only rarely

(3/100 simulations of the TS pathway). Another important parameter that acts

to reduce the production of synchrony oscillations is the strength of contralat-

eral inhibition. In fact, repeated simulations of the VT model with reduced cIN

inhibitory strengths showed that episodes of synchronous CPG activity occur

more frequently.

Finally, we suggest that future model development should include several im-

portant details which have not been considered in the current VT model:

1. The pineal eye sensory pathway should be included. This pathway pro-

vides information about light dimming and it leads to the initiation and ac-

celeration of swimming [Jamieson and Roberts, 2000].

2. The spontaneous initiation of swimming is an interesting feature of tadpole

behaviour [Roberts et al., 2010]. Swimming tadpoles can spontaneously

stop and sink to the ground to stay at rest for some time, after which they

spontaneously starts swimming without any apparent external stimulation.

3. It is known [Kahn and Roberts, 1982c, Soffe, 1993, Li et al., 2007b] that
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the repertoire of tadpole behaviours includes both swimming and strug-

gling. During struggling (or escaping behaviour) the tadpole body moves

backward with a higher amplitude and lower frequency in comparison with

swimming.

4. Previous works suggested that the slow-down and termination of swim-

ming are mediated by purinergic transmitters ATP and adenoside released

during swimming by changing the excitability of spinal neurons by inhibit-

ing K+ and Ca currents, respectively [Dale and Gilday, 1996, Dale, 2003,

2002, 1998]. In the VT model, this rhythmic modulation is caused by the

depression of NMDA synapses in the dIN population. Similar to the effect

of adenosine, this mechanism causes a decrease in neuronal excitability

and leads to the slow-down and termination of swimming. Since neuronal

models incorporating the effect of ATP and adenosine in tadpoles have

been previously developed [Dale, 2002], these could be incorporated in

the VT model. This modulation could then be compared with our current

results obtained by NMDA synaptic depression and with experiments.
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Chapter 6

An Action Selection Mechanism based on

Partial Synchronization in a Spiking Model

of the Basal Ganglia

In this chapter we investigate a plausible role of oscillations and synchronisation for
the action selection problem using a spiking model of the basal ganglia. The model
includes neurons in the sub-thalamic nucleus (STN), globus pallidus indirect pathway
(GPi) and an oscillatory forcing input that mimics the cortical contribution to the circuit.
The model assumes that the activation of a set of GPi units corresponds to a specific
motor action. Simulations of the model show that the cortical input can entrain STNs
into complex regions of phase-locking synchronisation, called "Arnold tongues". This
synchronisation and a winner-take-all mechanism enables the cortical input to activate
a selective group of GPi neurons. Multiple changes in the frequency and amplitude of
this input activate different sets of GPi units, enabling the switching between different
motor programs. The model suggests that the strength and decay time of synapses
from STNs to GPis are important for regulating the times of switching. A proper ad-
justment of these parameters allows switching these times to be in the physiological
range.

In chapter 2 we reviewed some of the existing evidence on the structure and

function of the basal ganglia. In this review, we highlighted that the basal ganglia

(BG) are a group of subcortical nuclei thought to play an important role in the

control of movements and action selection. Additionally, we provided evidence

suggesting that the BG is organised into multiple oscillatory parallel "channels",

with each channel corresponding to actions and/or body regions and/or specific

muscles. For instance, a previous model of the basal ganglia [Merrison-Hort

et al., 2013] suggested that both physiological and Parkinsonian oscillations can
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be generated if we consider this hypothetical organisation.

In this chapter we consider this hypothesis and we investigate a plausible mech-

anism of action selection in a spiking neuronal model of the BG. We consider a

simplified neuronal circuit, consisting of Izhikevich neurons in the subthalamic

nucleus (STN) and in the internal segment of the globus pallidus (GPi). Oscilla-

tory input, assumed to originate in the cortex, entrains subsets of STN neurons

via partial synchronization. Excitatory connections from the STN to the GPi and

inhibitory connections within the GPi allow this input to "select" groups of ac-

tive GPi neurons. We assumed that each of these groups corresponds to one

parallel channel, and thus to a specific motor program.

In order to study the entrainment of the STNs, we distribute amplitudes and fre-

quencies of the cortical input and we show that a complex structure of phase-

locking regions of Arnold tongue bifurcations exists on the plane of these pa-

rameters. This revealed how many different groups of STN neurons could be

entrained for a given input strength. Moreover, it shows that, at increasing am-

plitudes, STN neurons with intrinsic frequencies lower than the input can syn-

chronise to the input at ratios other than 1:1 locking. This corresponds to the

activation of different sets of GPi neurons (or "channels"). Moreover, this sug-

gests that input amplitude cannot be too high if a one-to-one mapping between

frequencies and selected channels is required. By considering cases with mul-

tiple forcing frequencies, we showed that more complex scenarios are possible.

Wemodel the switches between different actions by changing the amplitude and

frequency of the cortical input. These changes mimic the cortical encoding of

stimuli coming from the the external environment. By simulating action switch-

ing in the model, we found that the strength and time constant of the STN-GPi

synapses changes on the action switching time. After repeated trials we found

that a proper set of these synaptic parameters can lead to physiologically plau-

214



6.1. METHODS

sible switching times. Conversely, if these parameters are much higher than

these values, all GPi units become active and it becomes impossible to dis-

tinguish which action is selected. This condition may correspond to the motor

impairments in Parkinson’s disease.

6.1 Methods

6.1.1 Neuronal models

We model all neurons using a simple Izhikevich spiking model with parameter

values describing class 1 excitabile cells [Izhikevich, 2003]. This model is com-

putationally tractable yet still reproduces two important features of basal ganglia

neurons: excitability and spiking behaviour.

The circuit model consists of two populations of neurons representing the STN

and GPi, containing Ns = 200 and Ng = 25 neurons, respectively. Each unit is

modelled according to the two dimensional Izhikevich model, where the equa-

tions governing the dynamics of neuron i are:

V ′i = 0.04 · V 2
i + 5Vi + 140− ui + Ii + Iext + Isyn + νi

u′i = a(bVi − ui)

if Vi > 30 : Vi ← c;ui ← uid

We used standard values for all the parameters (a = 0.02, b = 0.2, c = 65, d = 6),

which correspond to neurons that are normally quiescent and have a class 1

excitability according to Izhikevich’s classification. The term Ii corresponds to a

constant external current that is different for each neuron and has the effect of

giving each neuron a different intrinsic spiking frequency. The term Iext, which

is defined more fully below, is the oscillatory cortical input, which is identical

for each neuron in the population. The term Isyn represents the sum of all the

synaptic currents flowing in neuron i. Finally, νi is a Brownian input of white
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Figure 6.1: STN spiking activity without external input. Left: Raster plot showing each
neuron’s spike train. Right: The intrinsic spiking frequency of each STN
neuron.

noise. Initially we set νi = 0 to consider the simpler deterministic case as this

makes it easier to determine the different partial synchronisation regimes, but

we later added noise to obtain more realistic results.

In the model, we choose values of Ii for the STN population uniformly, from the

range 4 to 7, so that without external input the STN units all spike independently,

with a linear range of frequencies from 7-18Hz. A similar range of frequencies

are observed in pacemaker STN neurons recorded in monkeys [Bergman et al.,

1994]. We consider STN neurons arranged on a line, with the injected current Ii
(and therefore frequency of spiking) varying monotonically along the line (y-axis

of Figure 6.1). For GPi neurons we set Ii = 0, so that the neurons in the GPi do

not intrinsically spike. Figure 6.1 shows the intrinsic spiking activity of the STN

population.

In order to simulate oscillatory cortical input to the STN we apply an identical

external current comprising multiple frequency components to all STN neurons:

Iext =
∑
j

ajsin(2πωjt)

Where aj and ωj are the amplitude and frequency of oscillatory component j,
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Figure 6.2: Overview of the populations in the model and their connections.

respectively. For the GPi neurons we set Iext = 0.

6.1.2 Synaptic transmission

Each STN neuron makes an excitatory synapse onto one GPi neuron in a uni-

form manner, such that each GPi neuron receives Ns/Ng = 8 synapses. Like

in the STN, we also consider the GPi units to be arranged on a line, with the

STN→GPi projection organised in a topographical fashion, such that each GPi

neuron receives input from a group of STN neurons that are adjacent to each

other (and therefore have similar intrinsic spiking frequencies). Additionally,

since there is biological evidence for inhibitory synaptic connections between

nearby neurons in the globus pallidus [Terman et al., 2002], model GPi neurons

are coupled via inhibitory connections from their Ngg = 4 neighbouring neurons

on each side (Figure 6.2). The mutual inhibition amongst the GPi establishes a

regime of competition.

For both excitatory and inhibitory connections we used standard exponential

chemical synapses. The total synaptic current flowing at each time t in neuron
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i is given by:

Isyn(t) = IE + II = gE(t)(Erev − Vi(t))− gI(Irev − Vi(t))

Where Erev = 0mV and Irev = −80mV are the reversal potentials, and deter-

mine if the synapse is inhibitory (I) or excitatory (E). We initially set gE = gI =

0nS to study the behaviour of the STN population in response to cortical input.

If two cells are connected through a synapse of type x (where x is E or I), the

postsynaptic response in neuron j in correspondence of each presynaptic action

potential rises by an increment of the conductance gx ← gx +wx, where wx is a

parameter. The synaptic conductance follows an exponential decay determined

by equation:

g′x = −gx/τx

Here τx is the decay time of each synapse x ∈ {E, I}. Each STN neuron i can

form excitatory synapses onto the output GPi units. We scaled the excitatory

impact of STN units according to their intrinsic frequency using the following

procedure. For each x ∈ {E, I} we fixed the maximal weight w1
x and decay

time τ 1
x representing the highest frequency STN unit and we scaled these values

down uniformly with decreasing frequency, reaching minimum weight w2
x = w1

x−

0.15nS and decay time τ 2
x = τ 1

x − 0.015 for the lowest frequency STN unit.

For the moment we do not specify the values of wx and τx because we will

discuss them later in more detail, and show that they play a very important role

in the switching time between selected actions.

6.1.3 Phase-locking synchronisation

In this section, we review principles of synchronisation of non-linear oscillators

which are important for understanding the results presented in this chapter.

It is well known that single neurons can generate oscillatory activity. Current be-
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lief is that, when many of these neurons interact, their oscillatory activities can

synchronise and cause entire brain regions to oscillate at different frequencies

[Buzsáki and Draguhn, 2004]. For example, [Timmermann and Florin, 2012]

showed that excessive β oscillations recorded in entire regions of the basal gan-

glia are associated with synchronisation at the neuronal level.

One of the simplest cases of synchronisation in oscillatory regimes can be ob-

served in a self-sustained oscillator driven by an external force. Such mecha-

nisms can describe many biological phenomena that can be observed in nature,

such as synchronisation of clocks that govern the circadian rhythm [Pikovsky

et al., 2003] or simultaneous flashing of fireflies [Strogatz, 2018]. Assuming

the frequency of forcing is close enough to the oscillator’s intrinsic frequency,

the steady state solution of a periodically-forced oscillator is synchronous with

the periodic input. Under this condition the phase difference of the two oscil-

lators approaches a constant value - this is a stable fixed point of the system.

In dynamical system theory the oscillator in this state is called phase-locked,

because its frequency is locked to the forcing frequency.

We can extend the concept of phase-locking to two neurons coupled by single

or multiple synapses. It is important to note that phase-locking does not nec-

essarily mean that the two cells are firing at the same time, but rather they may

fire with some constant delay between spikes. However, when a subset of spik-

ing neurons in a population have similar phases and are phase-locked to the

same periodic force they will fire in unison. We will call such behaviour partial

synchronisation.

Synchronisation in a periodically forced oscillator may also appear at other fre-

quencies besides the one close to the driving frequency. In fact, we can gen-

eralise the concept of phase-locking when the ratio between the period of the

force and the period of the oscillator is a rational number. We will say that a

219



6.1. METHODS

forced oscillator with period T is p : q - phase-locked to the force with period Tf
if pT ≈ qTf where p and q are positive integers. If the period of forcing (Tf ) is

kept constant, then two parameters affect the ability of an oscillator to phase-

lock: the strength of the forcing input (k) and the oscillator’s intrinsic period of

oscillation (Ti). For each pair p, q we may thus calculate the region in the (k, T )

parameter space of where p : q - phase-locking occurs; these regions are called

Arnold tongues.

Phase locking can appear also in maps that act as non-forced oscillators. Let

us consider a simple clarifying example: the circle-map. In dynamical systems

a map is defined as an equation with discrete times, and it can be represented

through an evolving sequence θ = {θn}∞n=1. The circle map is a particular se-

quence θ that solves:

θn+1 = θn + Ω− K

2π
sin(2πθn) mod 1

Starting from a fixed initial value θ0,mod is the standard modulo operator, Ω and

k are system parameters. The sequence θ represents the angle variation over

a circle. We define rotational number:

r = lim
n→∞

∑n
i=1

n

Thus p : q - phase-locked Arnold tongues are defined as a region in the space

of parameters where there the system solution has is locally constant rotational

number r = p/q. In Figure 6.3 the different coloured regions indicate the different

rotational numbers obtained by varying (Ω, K) ∈ [0, 1]×[0, 2π] are shown. Some

values of the rotational number in Figure 6.3 are rational, and eventually are

surrounded by other equal values of r, in this case, they will form an Arnold

tongue region in the parameter space.
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Figure 6.3: Coloured plot of the rotational number r for circle map at varying Ω in [0, 1]
(x-axis) and K in [0, 1/2π] (y-axis). Not every value of r corresponds to a
rational number, and thus to an Arnold’s tongue.

6.1.4 Software

Simulations of unconnected periodically forced Izhikevich oscillators were per-

formed in MATLAB (MathWorks, Inc), while simulations of connected neural

networks were developed in NEURON [Carnevale and Hines, 2006] interfaced

with Python [Hines et al., 2009].

6.2 Results

6.2.1 Single forcing frequency on STNs

We first studied the effects of a cortical input with a single sinusoidal oscillatory

component Iext = a0sin(2πω0t) on the STN population under a deterministic

regime. With this forcing input applied to each of the STN neural oscillators,

the system produces regions of partial synchronisation with a set of p:q-phase-

locked regions for any fixed input frequency. Each STN neuron remains an

oscillator under forcing but its period of oscillation may be different to its intrinsic

period. When the period of oscillation of an STN neuron is such that it completes

p cycles for every q cycles of the forcing signal, we describe that neuron as

being p:q phase-locked. In Figure 6.4 (left panel) we show three phase-locked

regions found with fixed w = 16.5 and a0 = 1. Figure 6.4 (right panels) shows

plots against time and phase portraits from STN neurons in the different phase-

locked regions.
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Figure 6.4: (Left panel) Activity in STNs using a single sinusoidal input with parameters
ω = 16.5 and A = 0.1. Three regions of partial synchronisation appear,
corresponding to different p and q values. (Right panels) A member of
each locked region is represented with the plot of u, v, and Iext. In order
to make u and Iext visible in the plot they were multiplied by values 5 and
120, respectively. A small rectangle shows the period of q input oscillations
and the number of p spikes in such period. The phase portrait of the two
solutions u and v shows the correspondence between the number of p-
cycles and the value p in the phase-locking.

6.2.2 Arnold tongues on STNs

Arnold tongues illustrate the multiple synchronisations found in STN cells de-

pending on their intrinsic frequencies. The Arnold tongue diagrams in Figure

6.5 help us to visualise the different areas of partial synchronisation obtained

for three different external frequencies in STN neurons at varying external am-

plitude.

Each coloured region in Figure 6.5 corresponds to a partial synchronisation re-

gion, showing that a single frequency cortical input can synchronise multiple

groups of STN neurons depending on their intrinsic frequencies. Increasing

the input oscillation amplitude expands each 1:1 phase-locked region (orange

colour), squeezing together the other p:q locked regions. Changing the forc-

ing frequency shifts the phase-locked regions up and down, whilst largely pre-
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Figure 6.5: Phase-locked regions of Arnold tongues. Each colour represents a single
p:q pair for three different values of external frequencies: 16.5Hz,13.75Hz
and 11Hz from left to right. The horizontal axis shows the strength of
external forcing and the vertical axis shows the STN number (arranged
in order of increasing intrinsic frequencies). The biggest coloured region
(orange) of partial synchronisation corresponds to 1:1 locking. From the
plot with external frequency of 11Hz we notice that no Arnold tongues are
present above the 1:1 locking region. Decreasing the external frequency
does not change the area of the 1:1 region, but shifts the synchronised re-
gions downwards while slightly squeezing together the other phase locked
regions.

serving the total area of each region. Arnold tongues provide a useful tool for

determining the correct parameters to obtain a desired number of synchronised

cells. The Arnold tongues suggest that neurons with intrinsic frequencies above

that of the forcing input cannot become synchronised, and this appears to be a

universal property.

For example, Figure 6.6 shows a simulation with a large number of neurons that

have intrinsic frequencies above that of the input, yet none of these neurons be-

come synchronised. As we will explain shortly, this feature is no longer true

when the forcing input contains multiple frequency components. In this simula-

tion, we consider 2000 STNs with white noise component νi ∼ N(0, σ2), where

N represents a Brownian random variable. We choose the value of σ ranging

from 0.002 to 0.01, such that lower-frequency neurons receive weaker noise

than higher frequency ones.
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Figure 6.6: Raster plot of 2000 STN units forced by a 16.5Hz single-frequency sinu-
soidal force with a0 = 0.12. The STN have frequencies ranging from 0Hz
(bottom) to 40Hz (top). White noise component νi was added in these units
as described in the text. No phase locked units appear in cells with a fre-
quency above 16.5Hz. This important property is not maintained when we
have inputs with multiple frequency components.
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6.2.3 The selection of action via GPi output channels

The phenomena of partial synchronisation may lead to the selection of different

channels via activation of GPi units. To make GPi units active in the network,

we define non-zero weights for the excitatory and inhibitory connections. We

chose maximum weights w1
I = −2, w1

E = 1.2 and decay times τ iI = τ iE = 0.1.

We also added the white noise component νi ∼ N(0, σ2) as discussed in the

previous section.

In our model, actions are selected via activation of groups of GPi neurons, which

we assume belong to different "channels" of information flow through the basal

ganglia. Figure 6.7 shows the spiking activity of the same network of STN and

GPi neurons in response to a single-frequency (16.5Hz) oscillatory input of vary-

ing amplitude. When the amplitude is low (bottom panel), two small groups of

partially synchronised STN neurons appear via 1:1 and 1:2 phase-locking, and

their synchronised firing activates two groups of GPi neurons. GPi neurons with

above-average firing rates are considered "activated", and are indicated by the

solid black bar on the far right of the figure. However, at higher amplitudes a

single-frequency oscillatory input can give rise to other selected channels’ com-

binations, as shown in Figure 6.7 (top panel). This follows from the result of

the Arnold tongue diagrams shown in Figure 6.5, as these showed that multiple

phase-locked groups of STN neurons can appear for a single oscillatory input if

the input amplitude is big enough.

6.2.4 Arnold tongues via two forcing frequencies

We now consider external inputs that contain multiple frequency components.

Figure 6.8 shows how an input containing two, three or four frequency compo-

nents can select groups of GPi neurons. The strength of the oscillatory input

in Figure 6.8 was chosen such that in each case, the selected neurons in the

GPi are activated by groups of STN neurons that are in 1:1 phase-locked syn-
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Figure 6.7: A single-frequency (16.5Hz in this case) oscillatory input can give rise to
multiple synchronisation regions, in agreement with the Arnold tongues.
The bars on the far right of the figure show which GPi neurons are con-
sidered selected, which is defined as those that have an above-average
firing rate. An input amplitude of 0.6 selects only two clear output chan-
nels despite the high number of different p:q phase-locked regions in the
Arnold tongue diagram (Figure 6.5), while an amplitude of 0.35 selects
three channels. Unsurprisingly, the size of the channels (number of GPi
neurons recruited) increases with the amplitude of forcing.

chronisation. The ability to select multiple combinations of output channels in

response to mixed-frequency input may be the basis of action selection in the

basal ganglia.

Arnold tongues are determined using a deterministic regime, but they can still

give us an idea of how many different channels may be open in a stochastic

approach and predict the amplitude required for synchronising a desired amount

of cells. A small amount of white noise preserves the mean number of partially

synchronised cells identified by the tongues. If this number is sufficiently high,

the STN excitatory strength will activate a single channel in the GPi neurons.

As in the single frequency case, regions of partially synchronised STN units

in phase locked regimes other than 1:1 can cause additional channels to be

selected. To investigate this, we calculated Arnold tongue diagrams for the case

with multiple forcing frequency components. Figure 6.9 shows Arnold tongues
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Figure 6.8: A single forcing input with multiple frequency components having ampli-
tude of 0.12 activates multiple GPi "channels" via partial synchronisation.
This figure shows, from top to bottom, the activation of two, three or four
output channels by an oscillatory input containing two, three or four fre-
quency components. The number of active channels is in one to one cor-
respondence with the number of forcing frequencies.

227



6.2. RESULTS

for an external input that has two frequency components: 16.5Hz and 13.75Hz.

In this figure there are 400 STN units with intrinsic firing rates from 0 to 40Hz.

Arnold tongues were computed according to the definition of p:q - phase locking,

considering the two input periods separately to produce two diagrams. The

shapes of the Arnold tongues in Figure 6.9 are the same for the two frequencies,

since each neuron is forced by both frequency inputs, thus its period is a multiple

of both the two-forcing periods. However, the values of p and q for any given

region differ between the two plots. For example, the biggest region of partial

synchronisation (green on the left, dark blue on the right) corresponds to 1:1

phase-locking for the 16.5Hz component of the input and to 6:5 phase-locking

for the 13.75Hz component 13.75. The second biggest region (cyan on the

left, sea green on the right) corresponds to 1:1 phase-locking for the 13.75Hz

component and 5:6 phase-locking for the 16.5Hz component.

The two main regions of partial synchronisation thus correspond to 1:1 phase-

locking in the case of two forcing frequencies, which is similar to the results in

Figure 6.5. However, these regions have a decreased area compared to the

single-frequency case and they squeeze together, forming more tongues be-

tween them. Also, in contrast to the single-frequency component case, other

Arnold tongues appear for intrinsic frequencies higher than the biggest phase-

locked regions, leading to more complex situations. The input signal coming

from the cortex is likely composed of many frequency components and ampli-

tudes, thus our consideration of only single and double frequency input is a sim-

plification. Nevertheless, we discovered that large regions of 1:1 phase-locking

are preserved for each frequency, and their impact on GPi units is maintained

even within a noisy regime.

Finally, we consider the time taken to select different channels in the output

GPi population. Physiologically, the switching time between different actions is

thought to be in the order of hundreds of milliseconds [Anderson and Lebiere,
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Figure 6.9: Two forcing frequencies Arnold’s tongues bifurcation diagram. Values for
p and q are computed from the definition of p:q phase-locked regions us-
ing each of the two frequency components. Only the Arnold tongues cal-
culated in relation to the 16.5Hz is shown, as the figure for the 13.75Hz
component in analogous.
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Figure 6.10: Changing selected channels by switching the forcing input. Each
coloured region corresponds to a different input frequency, which changes
every 6 seconds. The amplitude is fixed at 0.12 for the entire simulation
time. In this simulation (w1

E , τ
1
E) = (0.5, 0.16).

2003].

6.2.5 Multiple action switches

We investigated the effects of synaptic weights and decay time constants on the

time taken to switch between sets of activated channels. Specifically, we varied

the maximal weights and decay times for the excitatory synapses, and looked

for changes in the action selection time. Figure 6.10 reproduces four different

activated channel switches and each switch takes approximately 400ms, here

we use the fixed coupling strength and decay time: (w1
E, τ

1
E) = (0.5, 0.16).

6.2.6 Effect of increasing excitatory synaptic parameters on the switch-

ing time

Figure 6.11 demonstrates that increasing the maximum excitatory conductance

and decay time of synapses decreases the switching time. The switching time

was calculated as the first firing of the GPi units (having indexes in the set Ω) with

closest intrinsic frequency to the switching forcing frequency in the deterministic

case, so that sporadic situations caused by noise could be avoided. Moreover, in

order to obtain a correct comparison, we maintained the same noise for different

values of synaptic conductance and decay time. We define the vector of spike

timings for each unit i (i.e. spike train) as spki, so that the formula used to

calculate the switching time has the form:

tswitch = mini∈Ω(mint≥tstop/2(spki(t)))
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6.3 Discussion

We are interested in oscillations arising in the firing rate of the neuronal activ-

ity of the basal ganglia, since experimental evidence has shown that excessive

oscillatory synchronisation is positively correlated with the symptoms of Parkin-

son’s disease [Holgado et al., 2010]. Moreover, oscillations are thought to play a

fundamental role in the functional physiology of the basal ganglia [Joundi et al.,

2012].

In the past, several computational models were developed that reproduced patho-

logical oscillations in the basal ganglia. Different approaches showed how os-

cillations could be generated either intrinsically within the basal ganglia circuitry

[Ebert et al., 2014, Terman et al., 2002] or extrinsically by an oscillatory input

coming from an external source, such as the cortex. Experiments on rats by

[Magill et al., 2001] suggest that increased low-frequency oscillations in the STN

and GP are due to inappropriate processing of rhythmic cortical input. Ebert

et al. [2014] included STN self-excitation in their model, but experimental ev-

idence [Parent and Parent, 2007] shows that STN axonal arborisation is not

self-targeted, but rather it projects into the globus pallidus (either external or in-

ternal part), the substantia nigra pars reticulata and the striatum. Terman et al.

[2002] focused on the interplay between STN excitation on the GP and the back-

inhibition on the STN from the GP and on the STN strong hyperpolarisation

during back-inhibition.

Here we have presented a model in which an oscillatory cortical input partially

synchronises unconnected STN neurons, and consequently selects different

combinations of output channels in the GPi through excitation. Our results sup-

port the idea that the input coming from the cortex could be separated into mul-

tiple frequency components. The dominant components (higher amplitudes)

would influence the STN by creating regions of partial synchronisation, and it
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6.3. DISCUSSION

Figure 6.11: Decrease in the action selection switching time at increasing excitatory
strength (A) and decay time (B). Conductance values w1

E vary in the in-
terval [0.6, 0.75] with fixed maximal decay time 0.12. Decay times τ1E
vary in the interval [0.11, 0.165] with fixed maximal conductance 0.65. All
simulations last 12s. The switch takes longer than a second with low w1

E

and τ1E , but we can achieve realistic results increasing gE and τE . Forcing
amplitude is equal to 0.12 for the entire simulation, while the frequency
switches from 14Hz to 10Hz at 6s. The set Ω = {3} contains the index of
the GPi unit excited by most STN units. This unit has intrinsic frequency
closer to 10Hz and it has been used to calculate the switching time.
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would then activate a combinations of different channels on the output GP. We

assumed the existence of inhibitory connections between GPi units, because

there is evidence for self-inhibition in the GPe [Goldberg and Bergman, 2011]

but similar data for the GPi is lacking. However, this feature is not a critical part

of the model, and similar results can be achieved without it.

The switching time between different actions is strongly dependent on the synap-

tic strength and decay time, and we were able to find a proper set of parameters

that fit the realistic switching time [Anderson and Lebiere, 2003]. Future de-

velopment of the model could study how dopamine receptors influences the

switching time of new actions and compare parkinsonian (lack of dopamine)

conditions to healthy ones. Experimental evidence suggests that dopamine in-

creases the activity of the inhibitory GPe projection on the STN [Kultas-Ilinsky

and Ilinsky, 2012], and the activity in the STN neurons is consequently reduced

[Magill et al., 2001]. According to Holgado et al. [2010], advanced Parkinson’s

disease increases specific synaptic weights in the basal ganglia, in particular

the increase in the STN excitation towards the GP. According to this predictions

our results would demonstrate that switching time of new actions would much be

faster during the Parkinsonian state. Drastic increases of synaptic conductance

and decay time lead to almost instantaneous switching. If we further increase

the synaptic parameters (g1
E and τ 1

E), most GPi units get activated, and therefore

we cannot clearly recognise which channels are selected. Thus Parkinsonian

conditions may lead to critical values of synaptic strengths in which the selection

of new actions are hardly processed by the brain. This finding may be related

to the motor symptoms of the disease.

Oscillations may play a physiological role in the basal ganglia in terms of action

selection and in Parkinson’s disease, as shown by electrophysiologcal record-

ings (reviewed in the Introduction). Biologically realistic models of the basal

ganglia could help to clarify the neuro-dynamical principles that regulate the
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pathological activity, and they could be used to visualise the effects of treat-

ment, which could provide aid to clinicians. Such studies can then allow one to

explore how to minimise pathological activity and promote healthy activity. Our

results show how computational modelling allows to test hypotheses on how

physiological and pathological activity in the basal ganglia might arise. In the

longer term, the understanding of the basal ganglia and PD that such models

give us might permit even more advanced novel treatments to be developed.

Both experimental and theoretical studies strongly support a concept of oscil-

latory neural activity in the basal ganglia. Irregular and regular oscillations of

different frequencies, synchronised, coherent and not synchronised can be ob-

served both in healthy and pathological cases. The goal of computational mod-

elling in this respect is to clarify the correspondence between oscillatory dynam-

ics and the functional state, in both healthy or pathological conditions. These

computational studies aim to reveal the neuronal mechanisms of movement and

action selection in the healthy brain, to try to understand how thesemechanisms

go wrong in disease. Our modelling of oscillatory dynamics shows that partial

synchronisation is a powerful theoretical approach and can be used for formu-

lation of new theories on brain functioning. In particular, we demonstrate how

partial synchronisation can be applied to model action coding and movement

selection.
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Chapter 7

Thesis contribution

A new method to generate and study pairwise neuronal connectivity: the

probabilistic model Ferrario et al. [2018a]. In chapter 3, we define a new

probabilistic meta-model to generate connections between neurons in the Xeno-

pus tadpole swimming circuit using a previously developed anatomical model

of connectivity (connectome) [Borisyuk et al., 2014, Roberts et al., 2014]. The

probabilistic model generalises the structure of multiple variable anatomical con-

nectomes and it shows proper neuronal activity patterns of swimming oscilla-

tions when mapped into the functional network. Using the probabilistic model

we study the key structural and functional properties of tadpole networks gen-

erating this behaviour and we clarify some experimental findings. We suggest

that the probabilistic model can be used to define connectivity in case of limited

experimental data. In chapter 5 we demonstrate how this approach works: we

use the probabilistic model to define the complete connectome of the expanded

model where we combine CPG neurons and their connections with additional

populations of sensory pathway cells (see below).

Mathematical theory helps to explain experimental relationship between

synchrony and swimming regimes in tadpole Ferrario et al. [2018b]. In

chapter 4 we use bifurcation analysis to study synchrony and swimming regimes

observed in electrophysiological recordings. We built a reduced spiking neu-

ronal model that incorporates the key operating principles of the Xenopus tad-

pole central pattern generator. This model generates all the experimentally-
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observed outputs, including swimming and synchrony. We show that swimming

is stable in a significantly larger range of parameters, and can be initiated more

robustly, than synchrony. Moreover, the model can explain the experimental

observation of synchrony appearance at the start of a swimming episode.

The first spiking neuronal model that accounts for the sensory initiation,

modulation and termination of a whole animal’s locomotor behaviour: the

virtual tadpole (VT) Koutsikou et al. [2018]. In chapter 5 we expanded our

previous anatomical, probabilistic and functional models of the swimming circuit

[Roberts et al., 2014, Ferrario et al., 2018a] to include the sensory pathways.

The VT model is based on multiple biological data which we use to reconstruct

the connectivity and define dynamical properties of neurons and synapses. The

model simulates a detailed and biologically plausible sequence of information

processing events from the internal representation of different sensory inputs,

integration and decision-making, action selection, and movement generation.

We believe that the VT is the first spiking neuronal model that accounts for the

sensory initiation, modulation and termination of a whole animal’s behaviour

and describes a significant part of the tadpole nervous system corresponding

to movement initiation and control.

Study of partial synchronisation of neuronal activity in a model of action

selection Merrison-Hort et al. [2017]. In chapter 6 we present a new spiking

neuronal model of the basal ganglia and propose a plausible mechanism of ac-

tion selection. This model supports the idea that the oscillatory input from the

cortex to the basal ganglia could be represented as a superposition of a sin-

gle or multiple components (channels) with fixed frequencies. The components

with higher amplitudes will create regions of partial synchronization in the sub-

thalamic nucleus (STN). We hypothesise that these partially synchronised STN

regions represent some particular action. The model explains the switching be-

tween actions and relationship between synaptic strengths and switching times.
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We show that the decreasing synaptic strength slows the switching times, a con-

dition that may correspond to the motor impairments in Parkinson’s disease.

The software that I developed during my PhD project is publicly available.

1. Probabilistic and functional models for reproducing the spiking activity of the

tadpole spinal circuit in Neuron-Python language - the code be found in the fol-

lowing link Model DB.

2. I developed a PYTHON code that automatically converts XPPAUT files to

FORTRAN-95 files of AUTO-07. This code can be used to run numerical con-

tinuation using AUTO-07 instead of the XPPAUT. The main advantage of using

AUTO-07 instead of XPPAUT is that AUTO-07 uses multiple computer cores for

parallelisation and drastically increases a speed of the numerical continuation in

high-dimensional systems. Also, my code could be used by people that known

how to write XPPAUT code, but have no experience with FORTRAN-95.
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