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Abstract 
This project explores the potential use of Sentinel-2 as a tool for quantifying 
suspended particulate matter (SPM) in the Tamar estuary. In the first section of this 
project, the radiometric performance of Sentinel-2B is quantified using in situ above-
surface reflectance data acquired autonomously off the waters of Lanai, Hawaii. 
Three band ratio algorithms were tested/developed for atmospheric correction over 
this location. No band ratio performed best, but greater inaccuracies were found 
using the red/green bands (RD -27 – -87 % at 560nm, RD 312 – 440 % at 665nm) in 
contrast to the blue bands (443nm (RD 4 – 11 %) and 491nm bands (RD -8 – -17 
%). This was attributed to inadequate signal to noise ratios over clear waters. In the 
second section in situ SPM data alongside radiometric data were used to derive four 
SPM algorithms. The best performing algorithm was found to be a green/blue ratio, 
which utilised the 560nm and 497nm bands of Sentinel-2A (R2 = 0.761, p-value < 
0.01, N = 15). The empirically derived exponential algorithm was subsequently 
applied to two Sentinel-2A tiles (25th January 2017 and 26th March 2017) to map 
SPM throughout the estuary. A river plume extending into the Sound in Figure 11 
(LW + 0.5) and slightly higher in Figure 12 (LW + 1.5) were observed. There was no 
evidence of an estuarine turbidity maximum in either image. When comparing 
derived SPM results with values from the literature it is clear that the algorithm 
underestimated SPM in both images. The primary reason for the underestimation of 
SPM in the estuary was thought to be due to a failure in atmospheric correction. 
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Introduction 
ESA’s new high resolution land observation satellite pair known as Sentinel-2 offers 
an exciting new opportunity for the observation of small scale coastal processes. 
However this is only possible if the signal-to-noise (SNR) statistics are adequate and 
accurate atmospheric correction is attainable (Pahlevan, et al., 2017). SNR 
performance can be problematic as if it is too low it is difficult to differentiate the 
reflected signal from sensor noise. In this first section of this project, atmospheric 
correction will be performed utilising the ACOLITE processor. Using three different 
band combinations, TOA Sentinel-2 data was atmospherically corrected and the 
results will be tested against in situ data collected autonomously off the waters of 
Lanai, Hawaii. 

SPM is a primary measure of water quality (European Union, 2008) and is of interest 
to the bio-optical community (Nechad, et al., 2010). Obtaining SPM data from high 
resolution remote sensing satellites offers a cheap and regular data source. Given 
the optical complexity of estuarine waters and sensor specific variations it is 
necessary to develop regional and sensor specific algorithms. In the second section 
of this project an empirical suspended particulate matter (SPM) algorithm will be 
developed for the Tamar estuary.  

Background Review 

Coastal Monitoring 
There are various forms of SPM found within the water column. These can range 
from colloids 1 nm – 1 μm in size to organisms of the order of millimetres (Jackson, 
et al., 1997). In coastal waters, the concentration of inorganic particles is 
considerably higher than that of open waters. This is due to the runoff of clays, sands 
and silts (Bowers & Binding, 2006). In this project SPM is defined as particulate 
matter larger than 0.7 μm in diameter. 

The quantification of SPM in coastal waters is a key measure of water quality 
(European Union, 2008), as well being of interest to the bio-optical community 
(Nechad, et al., 2010). SPM concentrations influence a variety of biogeochemical 
processes. Increased SPM directly limits photosynthetic growth (Platt, et al., 1988), 
as increased concentrations of suspended sediment prevent light from passing 
through the water column (Kirk, 2011). SPM is also relevant to sediment transport, 
sediment resuspension (Acker, et al., 2002) and the transfer of heat into the upper 
waters (Morel & Antoine, 1994). Finer particles also enhance microbial growth as 
smaller particles offer the highest surface area to volume ratio for them to settle on 
(Hoppe, 1984).  

Optical Properties of Sediments 
The scattering and absorption properties of suspended sediments affect the 
attenuation of light through the water column. The spectral influence of these 
sediments varies with the composition and distribution of sediment particle size 
(Maul, 2012), as well as particle shape and mineraology (Novo, et al., 1989).  

Particulate absorption varies widely from place to place (different coloured water 
bodies indicate different absorption characteristics). However, when comparing the 
absorption spectra of mineral suspended solids (MSS) in the literature some 
consistent patterns emerge. MSS absorption spectra have been analysed from the 
Irish Sea (Harker, 1997) (Bowers & Binding, 2006), Saharan dust samples (Babin & 
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Stramski, 2002) and from Italian river samples (Tassin & Ferrari, 2003). All 
absorption spectra generally decreased with increasing wavelength, and all spectra 
exhibited a small shoulder at around 500 nm.  

In general, sediment absorption and scattering charcteristics are non-linear and vary 
with various properties such as particle size, colour, density and shape all influencing 
the scattering and absorption of light through the water column (Mobley, 1994). 

Using the methodology and instrumentation developed by Kirk (1994), Bowers et al. 
(1998) were able to directly measure the reflection and diffuse attenuation 
coefficients at various stations in the Irish Sea to derive absorption and scattering 
coefficients. They observed that 64% of the variation in mineral specific scattering of 
light was related to particle density (mass concentration/volume concentration) and 
only 15% of the total variance was related to particle diameter.   

Sediment Dynamics in Estuaries 
Three modes of sediment transport occur in coastal waters: Wash load, bed load 
and suspension. Wash load comprises the smallest particles, generally consisting of 
fine clay material. These particles are kept in motion by turbulence and as they are 
so fine, move at all current speeds. Suspension occurs as a result of erosion of 
grains from the bed, and the transfer of kinetic energy to the grains because of 
turbulence. Particles smaller in diameter than 150 μm will go into suspension with 
any movement; particles larger than this move at higher velocities. Bed load 
describes the movement of coarser sediments moving along the bed and move via 
the process of saltation. As current velocities increase so too does the concentration 
of SPM and the mean grain size of that material (Dyer, 1995).  

Flocculation describes the process in which suspended material clump together to 
form particulate matter. Flocculation rates are enhanced by increases in 
concentration of suspended material, grain inertia, shear velocity (McCave, 1975). 
Studies have also shown that exopolymer particles exuded by living organisms give 
rise to flocculation (Passow, et al., 1994; Alldredge & Silver, 1988).  

In the estuarine environment sediments are a highly dynamic constituent, responding 
to a variety of oceanographic and meteorological processes. Tidal fluctuations 
influence resuspension, advection and disposition. Wind gives rise to stochastic 
resuspension events, and lower wind speeds negatively influence resuspension 
rates. Seasonal variations also impact suspended sediment rates. During the 
summer, thermal stratification stimulates the growth of phytoplankton species which 
gives rise to changes in organic sediment. This leads to increased flocculation rates 
and therefore larger particles; this increases settling rates and reduces the total 
suspended sediment load (Jones, et al., 1998).  

The estuarine turbidity maximum (ETM) is one of the most notable features of 
sediment dynamics in the estuarine environment, occurring in meso- (<2m tidal 
range) and macrotidal (4-6m tidal range) estuaries. The ETM (sometimes referred to 
as the estuarine turbidity zone, ETZ) is the zone in which the quantity of suspended 
sediment is highest. The strong tidal influence in these meso/macrotidal estuaries is 
capable of holding a high concentration of sediment in suspension whilst also 
preventing particles from settling. A high proportion of the fine sediment in the 
estuary is held within this zone, and the residence time of these fine sediments can 
be in excess of one year (Dyer, 1995). In macrotidal estuaries the tidal range 
difference between springs and neaps is considerable; this leads to large variations 
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in the position and magnitude of the ETM (Allen, et al., 1980). In addition to this, 
seasonal changes in river flow rate also influence the position and strength of the 
ETM. Reduced river flow leads to a weaker ETM that is higher up the estuary and 
higher river flow leads to a stronger ETM that is closer to the estuary mouth (Dyer, 
1995).  

Study Site 1: The MOBY Buoy, Hawaii 
The Marine Optical Buoy (MOBY) is located 20km off the Hawaiian island of Lanai 
(Figure 1), where the depth is approximately 1200m.  

 

 

Figure 1: MOBY buoy, Hawaii (Google Maps, 2018). 

At this station, since July 1997, MOBY has measured downwelling irradiance and 
upwelling radiance for the calibration of many ocean colour sensors. MOBY currently 
measures downwelling irradiance onto the sea surface as well as upwelling radiance 
at 1, 5 and 9 and metres below the sea surface. The final reprocessed water-leaving 
radiance dataset has a typical uncertainty of less than 5%, however variations in the 
environment may add further uncertainty (Clark, et al., 2000). 

The MOBY buoy is in consistently case 1 waters with minimal biological activity 
(Clark, et al., 2000). Case 1 waters are defined as waters with high chlorophyll 
concentrations in comparison to particulate matter concentrations (Morel & Prieur, 
1977). The Hawaiin islands are located in the centre of the North Pacific subtropical 
gyre. Due to the gyres anticyclonic circulation pattern, the upper water column is 
almost completely isolated from neighbouring current systems (Karl & Lukas, 1996). 
As a result of this, temperature, salinity and dissolved inorganic nutreints are 
relatively constant laterally (Hayward, 1991). Seasonal variations in the upper waters 
and surface mixed layer are also uncommon (Bingham & Lukas, 1996). The gyre 
has a generally permanent nutricline and pyncoline, which is even present during the 
winter months. As a result, the upper waters are continuously oligotrophic and 
produce organic matter at a low rate. The main source of nutrients is thought to be 
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from periodic injections such as biological migrations, nitrogen fixation, atmospheric 
inputs and episodic deep sea mixing (Karl & Lukas, 1996).  

Study Site 2: The Tamar Estuary 
The Tamar estuary (Figure 2) is located in the South West of England, dividing 
South Devon and North Cornwall. 

 

Figure 2: The Tamar estuary as seen from Sentinel-2A (25th January 2017). Credit: 
ESA/Sentinel-2A/MSI – CC BY-SA IGO 3.0 license. 

The estuary is tidal for 31km, spanning from Plymouth Sound to Weir Head. In the 
top 20km of the estuary (Weir Head – Cargreen) the mean depth is 2 – 8m below 
mean high water springs. In the final 11km the channel deepens significantly with 
depths ranging from 8 to 40m below mean high water springs (Grabemann, et al., 
1997). The estuary is semi-diurnal and hypersynchronous, i.e. the effect of 
convergence exceeds the frictional effect and thus the tidal range is larger toward 
the estuary head and lower in the upper riverine section (Dyer, 1995). 

Uncles & Stephens (1989) found that the ETM in the Tamar holds the highest 
quantity of suspended sediment when it is in the lower reaches of the estuary. They 
also observed a net landward sediment flux during summer due to the asymmetric 
tide, where the flood phase current velocities are stronger than during the ebb phase 
and thus more sediment can be carried in suspension. In winter, when the river flow 
is higher, the sediment transported up the estuary in the summer is redeposited 

https://creativecommons.org/licenses/by-sa/3.0/igo/
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downstream and thus the sediment flux is balanced. Because of the seasonal 
fluctuations in river flow, the position of the ETM during the summer is in the upper 
reaches of the estuary and moves down during the winter to the mid-estuary as a 
result of increased river flow (Uncles & Stephens, 1989) (Uncles & Stephens, 1993). 
The ETM during springs is clearly defined and reaches maximum concentrations of 2 
– 3 kg m-3; during neaps the ETM is more dispersed and only reaches peaks of 
roughly 0.2 kg m-3 (Uncles, et al., 1994). At slack water, when current velocities slow, 
sediments fall out of suspension. During neaps, slack water periods are longer and 
as a result more sediment settles (Dyer, 1995). 

Sentinel-2 
The Sentinel-2 mission comprises two satellites, each carrying a MultiSpectral 
Instrument (MSI). Each MSI records data in 13 spectral bands at varying spectral 
resolution. The spatial resolution of these bands (at ground level) varies between 10, 
20 and 60m; the swath width is 290km. The two satellites (Sentinel-2A and Sentinel-
2B) follow the same sun-synchronous orbit with one delayed behind the other to 
increase revisit times, the revisit time at the equator is 5 days (Drusch, et al., 2012). 

The Sentinel-2 mission is intended to provide monitoring of land usage. However, if 
the signal-to-noise ratio (SNR) performance statistics are acceptable and accurate 
atmospheric correction of L1C data is possible, Sentinel-2 will provide an invaluable 
tool for the monitoring of coastal and inland waters. Pahlevan, et al. (2017) took 
more than 30 L1C (top-of-atmosphere (TOA)) images over spatially uniform and 
clear waters and calculated average SNRs. These values are displayed in Table 1 
alongside the Sentinel-2 technical specification.  

Table 1: Sentinel-2A/Sentinel-2B wavelengths, spectral and spatial resolutions, 
specification SNRs (Gatti & Galoppo, 2018) and observed SNRs (Pahlevan, et al., 

2017). * indicates the band width is the same for each satellite. 

Band# Central 
wavelength 
(S2A/S2B) 
(nm) 

Band 
width 
(S2A/S2B) 
(nm) 

Spatial 
Resolution 
(m) 

Reference 
Radiance 
[W/m²/sr/µm] 

SNR 
Requirement 
(at Lref) 
 

Clear Water 
SNR 
Performance  
(Sentinel-2A 
TOA)  
(at Lref)  

1 443.9/443 27/45 60 129 129 439 

2 496.6/492.1 98* 10 128 154 102 

3 560/559 45/46 10 128 168 79 

4 664.5/665 38/39 10 108 142 45 

5 703.9/703.8 19/20 10 74.5 117 45 

6 740.2/739.1 18* 20 68 89 34 

7 782.5/779.7 28* 20 67 105 26 

8 835.1/883 145/133 10 103 174 20 

8a 864.8/864 33/32 20 52.5 72 16 

9 945/943.2 26/27 60 9 114 NA 

10 1375.5/1376.9 75/76 60 6 50 NA 

11 1613.7/1610.4 143/141 20 4 100 2.8 

12 2202.4/2185.7 242/238 20 1.5 100 2.2 
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Ocean colour satellites MERIS and MODIS have quicker revisit times (1-3 days) than 
the Sentinel-2 satellites, but in this case the large spatial resolution (250m per pixel) 
means that the data is only suitable for the mapping of oceanographic properties in 
larger estuaries (e.g. SPM (Doxaran, et al., 2009; Nechad, et al., 2003)). Sentinel-2 
is the first high resolution (10, 20, 60m per pixel) satellite to cover the world’s coastal 
zone with revisit times of up to 5 days. This offers an exciting new opportunity to 
measure oceanographic properties at high spatial resolution from space. In relation 
to the two study sites covered in this study, the high spatial resolution of Sentinel-2 
will allow for radiometric quantification of the Tamar’s higher reaches and the revisit 
time of 1 - 5 days will increase the chance for cloudless matchups over both sites.  

Additionally, with the introduction of the high quality SWIR bands, the potential for 
accurate atmospheric correction is improved. This is as absorption in these bands is 
extremely strong and reflectance can therefore be assumed to be zero (in clear 
waters), thus the remaining signal can be assumed to be caused by aerosol 
scattering only (Vanhellemont & Ruddick, 2016). Compared with Landsat-8’s 
Operational Land Imager (OLI) instrument, MSI has four more bands in the NIR 
region (Table 1 bands 5-8a) at higher spectral resolution (D'Odorico, et al., 2013). 
These additional NIR bands increase accuracy of retreival of bio-optical paramerers 
in optically complex coastal and inland waters (IOCCG, 2000). In particular they 
provide improved retrievals of bio-optical parameters such as SPM/turbidity and 
Chlorophyll-a in highly turbid (Liu, et al., 2017; Lee, et al., 2016; Nechad, et al., 2016; 
Gernez, et al., 2015) and hypertrophic waters (Toming, et al., 2016; Kutser, et al., 
2016; Watanabe, et al., 2017). In many highly turbid waters, organic detritus and 
suspended minerals scatter light beyond 700 nm. Thus it is useful to have additional 
NIR bands as longer wavelengths may be needed to be used to acquire a dark pixel 
for effective astmopheric correction (IOCCG, 2000). 

Atmospheric Correction 
To derive bio-optical parameters from satellite imagery the remote sensing 
reflectance (𝑅𝑟𝑠(𝜆)) must first be calculated. This is problematic as a large proportion 
(up to 90%) of the signal received by the satellite sensor is influenced by aerosols 
and sunglint reflected by air molecules in the atmosphere (Franz, et al., 2015) 
(Gordon, et al., 1997). The process of removing the effects the atmosphere has on 
the reflectance data is known as atmospheric correction. The effect the atmosphere 
has on the signal received by the satellite is influenced by various factors. These 
factors include water vapour, oxygen, carbon dioxide and ozone content, all of which 
alter the signal through molecular or aerosol absorption and scattering (Gao, et al., 
2009). The signal is also influenced by geometric factors such as the angle of the 
view of the sensor, the solar elevation angle and the slope and position of the target 
in relation to the solar azimuth (Lantzanakis, et al., 2017). Two main types of 
atmospheric correction exist, physical-based and image-based. Physical-based 
atmospheric correction methods rely on radiative transfer models. They require 
auxiliary data on atmospheric optical properties coincident to the time the satellite 
image was taken. This data is commonly collected at a ground station or derived 
from satellite data (Lantzanakis, et al., 2017). 

 

Atmospheric parameters have varying effects on the reflectance magnitude of 
different light spectra. For example, Vermote, et al. (1997) found that a change in 
atmospheric water vapour content of 0.5-4.1 g cm-2 led to a change in 3.4 – 14% 
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change in reflectance in the near-infrared (NIR) region, but only a change of 0.5 – 
3% in the visible light region for the bands of Landsat 5’s Thematic Mapper. 
Atmospheric scattering effects also decay exponentially from shorter (blue) to longer 
(red/NIR) wavelengths, i.e. the TOA signal at shorter wavelengths comprises of more 
atmospheric signal than at longer wavelengths (Bodhaine, et al., 1999). This is 
problematic in the context of bio-optical remote sensing as band ratios are commonly 
used to derive bio-optical parameters. For example, Chlorophyll-a and CDOM 
algorithms commonly use blue/green band ratios, therefore they are more prone to 
the skewed spectral influence of atmospheric scattering (Matthews, 2011). 

Image-based atmospheric correction methods derive atmospheric effects from the 
image itself and then remove them from the TOA reflectance to get bottom-of-
atmosphere (BOA) reflectance. ACOLITE is an example of an image-based 
atmospheric correction method (Vanhellemont & Ruddick, 2016). This correction 
method was developed specifically for marine applications. ACOLITE uses Look-Up 
Tables (LUTs) generated with a radiative transfer model (6SV) (Vermote, et al., 
2006) to estimate Rayleigh scattering. Under the assumption of high pure water 
absorption in the NIR/SWIR wavelengths, the remaining signal after Rayleigh 
correction can be assumed to be caused by aerosol scattering alone (Gordon & 
Wang, 1994). The ratio of the two chosen bands (in the NIR or SWIR region) can 
then be used to extrapolate the aerosol reflectance into the visible wavelengths 
(Yang & Gordon, 1997). Note that the atmospheric correction can use any 
combination of two bands given the requirement that the water-leaving signal in 
these bands is known or negligible (Franz, et al., 2015). 

SPM from Remote Sensing Data 
Carrying out SPM measurements from a boat is time consuming and expensive. The 
deployment of automated sensors reduces costs, however data are limited spatially 
(i.e. at one point) and most estuaries do not have sensors present (Etcheber, et al., 
2011).   

The determination of SPM via remote sensing data is cheap (using public satellites) 
and measurements are regular. Satellite derived SPM data has many uses; Van 
Raaphorst, et al. (1998) used AVHRR SPM data in conjunction with in situ data to 
produce sediment transport maps. Lacroix, et al. (2007) used MERIS SPM data in a 
light forcing ecosystem model and Fettweis & Van den Eynde (2003) used SPM data 
as model input conditions as well as for model validation. 

Landsat has been used to map and develop suspended sediment algorithms in 
various inland and coastal waters such as the Amazon River (Mertes, et al., 1993), 
the Gironde and Loire estuaries (Doxaran, et al., 2003; Doxaran, et al., 2006; 
Doxaran & Lavender, 2018), the Rhone River mouth (Forget & Ouillon, 1998), the 
Orinoco River (Yepez, et al., 2017). The latest Landsat satellite has a high spatial 
resolution (30m per pixel), which makes it suitable for observing small scale 
processes, however, due to its infrequent revisit time (16 days (Vanhellemont & 
Ruddick, 2016)), as an oceanographic tool, it is significantly temporally limited. 
Ocean colour satellites MERIS and MODIS have much quicker revisit times (1-3 
days), but in this case the low spatial resolution (250m per pixel) means that this 
data is only suitable for the quantification of SPM in larger estuaries (Doxaran, et al., 
2009) (Nechad, et al., 2003).  
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Given the non-linearity of SPM optics in the estuarine environment (Mobley, 1994) 
and the influence of other optically significant constituents such as coloured 
dissolved organic matter and phytoplankton pigments, it is necessary to develop a 
sensor specific, regional algorithms to accurately quantify SPM from Sentinel-2 data. 

Forget & Ouillon (1998) developed an empirical algorithm for SPM based on in situ 
SPM and radiometric data collected at the mouth of the River Rhone. Log linear 
relationships (𝑅𝑟𝑠(𝜆) vs log(TSM)) were derived using various bands of three satellite 
sensors (SPOT HRV 1/2 and Landsat ETM). Algorithms were developed for the 
following single bands: the 485 ± 35 nm, 560 ± 40 nm, 660 ± 30 nm bands of the 
ETM and the 545 ± 45 nm and 645 ± 35nm bands of SPOT HRV1/2. SPM 
concentrations varied between 1 and 80 mg L-1. All bands exhibited a strong log 
linear relationship (R2 = 0.972 – 0.982).   

Doxaran, et al. (2003) developed empirical relationships for the quantification of SPM 
in the Grionde and Loire estuaries. They used band ratios to derive logarithmic 
relationships for each estuary using various sensors. In the Gironde Estuary they 
used the bands of SPOT (840 ± 50 nm/545 ± 45 nm, R^2 = 0.884) and Landsat (775 
± 25 nm/565 ± 40 nm, R^2 = 0.8816 and 775 ± 25 nm/482.5 ± 32.5 nm; R^2 = 
0.8752); in the Loire Estuary they used the bands of SPOT (840 ± 50 nm/545 ± 45 
nm R^2 = 0.9292) and SeaWiFS (865 ± 20 nm nm/555 ± 10 nm, R^2 = 0.9036). This 
data was later used to derive an algorithm for the bands of MODIS-Aqua and 
MODIS-Terra (Doxaran, et al., 2009). The authors then carried out a linear 
regression to compare the satellite derived SPM data with in situ SPM data acquired 
at the Marel platform in the Gironde estuary. R^2 values were as follows: Terra = 
0.7653 and Aqua = 0.8235. Discrepencies between the results were attributed to 
seasonal variations that were not observed in the initial algorithm (Doxaran, et al., 
2009).   

Yepez, et al. (2017) developed an empirical algorithm using the NIR channel of 
Landsat-8 in the Orinoco River in Venezuela. Algorithms were also developed using 
the red channel (R^2 = 0.7308) and using a ratio between the two channels 
(NIR/red, R^2 = 0.8406), the NIR channel alone was chosen for the succeeding 
analysis as it gave the best fit (R^2 = 0.9928). They subsequently tested their 
algorithm with independently collected in situ data. It was found to fit with the 
following statistics, R^2 = 0.9127, bias = 7 %, root-mean-squared-error = 11.64 mg 
L-1, relative-mean-error = -9.6% and standard deviation = 13.9 mg L-1. 

Doxaran & Lavender (n.d.) derived an empirical algorithm using a linear regression 
for the Tamar estuary. They used a band ratio derived for the bands of SPOT (840 ± 
50 nm/545 ± 45 nm). They observed a strong relationship (R^2 = 0.9907) for SPM 
data between 10 – 350 mg L-1, however this was only considered a premilinary 
results as only 6 in situ data points were used. Doxaran, et al. (2005) also developed 
an algorithm for the Tamar. They developed a linear relationship between total SPM 
and a 850 nm/550 nm band reflectance ratio. 

Given the results of Doxaran & Lavender (n.d.) and Doxaran, et al. (2005) in the 
Tamar, the studies carried out in the Gironde and Loire estuaries (Doxaran, et al., 
2003) and the work of Forget & Ouillon (1998) at the mouth of the Rhone River, two 
band ratios will be plotted as a function of total SPM: 865/560 and 665/560.  
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Methods 

Sentinel-2 Data Acquisition: MOBY buoy 
Sentinel-2 images were downloaded from the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/). Data for comparison against MOBY buoy data were 
selected based on cloud coverage of the image (<1%) and if they coincided with the 
MOBY data acquisition times. Data that satisfied these criteria were available on the 
27th of December 2017 and the 16th and 26th of January 2018 (3 images). The data 
were downloaded as Level-1C (L1C) products, which are 100x100 km2. L1C 
products provide pixel-by-pixel TOA reflectance values on a Universal Transverse 
Mercator (UTM) projection (Gatti & Bertolini, 2017). Note that these images were 
acquired by the Sentinel-2B satellite. 

ACOLITE Atmospheric Correction 
Atmospheric correction was applied to the L1C images over the MOBY buoy using 
the ACOLITE processor. ACOLITE is available free of charge from the Royal Belgian 
Institute of Natural Sciences (http://odnature.naturalsciences.be/remsem/software-
and-data/acolite/). The version used for this study was version 20170718.0. The 
remote sensing reflectance was calculated for all bands. Cloud masking was 
performed using the Rayleigh corrected reflectances in the SWIR band (B11 – 
1610nm) with a cloud masking threshold of 2.15%. ACOLITE modifies Rayleigh 
reflectance data using a Second Simulation of the Satellite Signal in the Solar 
Spectrum (6SV) LUT; this takes into account sensor and sun geometry as well as 
sunglint, which is modelled for wind speed of 1 ms-1. Under the assumption of high 
pure-water absorption in the NIR and SWIR bands, aerosol contribution was 
estimated using three band combinations: 665nm/885nm, 1612nm/2201nm and 
885nm/2201nm on a per pixel basis (i.e. at native resolution). A standard 
atmospheric pressure of 1013.25 hPa was selected for Rayleigh processing 
(Vanhellemont & Ruddick, 2016). Reflectance values were then extracted from the 
output in SNAP (Sentinel Application Platform) at the location of the MOBY buoy 
(20.4903° N, -157.1141° E). 

MOBY Buoy Rrs(𝛌) 
MOBY has not been configured for the bands of Sentinel-2, so the bands of Sentinel-
3 were used for the radiometric comparison; the bands used are shown below in 
Table 2. As all satellite overpass matchups were with Sentinel-2B, these bands are 
displayed below in Table 2. 

 

Table 2: Bands used for radiometric comparison between in situ (Sentinel-3 bands; 

(Donlon, et al., 2012) and Sentinel-2B bands. 

Sentinel-2B central wavelength (band #) (MOBY) Sentinel-3 wavelength (band #) 

442.3 (B1) 443 (Oa3) 

492.1 (B2) 490 (Oa5) 

559 (B3) 560 (Oa6) 

665 (B4) 665 (Oa8) 
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Rrs(𝜆) was calculated using the methods of Mobley (1999): 

 

𝑅𝑟𝑠(𝑠𝑟−1) =
𝐿𝑤

𝐸𝑑
 

 

Equation 1: Remote Sensing Reflectance 

 

where 𝐸𝑑 (W m-2 nm-1) is the downwelling irradiance at the surface and 𝐿𝑤 (W m-2 sr-

1 nm-1) is the normalised water-leaving radiance.  

Statistical Analysis  
For analysis of the performance of each atmospheric correction the root-mean-
squared-deviation (RMSD), bias and relative differences (RD) were calculated using 
the following equations: 

𝑅𝑀𝑆𝐷(𝜆) =
√(∑ 𝑆2𝑅𝑟𝑠(𝜆) − 𝑀𝑂𝐵𝑌𝑅𝑟𝑠(𝜆)𝑛=3

1 )

𝑛
 

Equation 2: Root-mean-squared-deviation 

𝐵𝑖𝑎𝑠(𝜆) =
∑ 𝑆2𝑅𝑟𝑠(𝜆) − 𝑀𝑂𝐵𝑌𝑅𝑟𝑠(𝜆)𝑛=3

1

𝑛
 

Equation 3: Bias 

𝑅𝐷(𝜆) =
1

𝑛
∑

𝑆2𝑅𝑟𝑠(𝜆) − 𝑀𝑂𝐵𝑌𝑅𝑟𝑠(𝜆)

𝑀𝑂𝐵𝑌𝑅𝑟𝑠(𝜆)
× 100

𝑛=3

1

 

 

Equation 4: Relative difference 

Where 𝑆2𝑅𝑟𝑠(𝜆) atmospherically corrected reflectance value from Sentinel-2 at a 
given wavelength and 𝑀𝑂𝐵𝑌𝑅𝑟𝑠(𝜆) is the MOBY derived in situ reflectance at a 
given wavelength.  

Tamar Estuary: Above-Surface Remote Sensing Reflectance Data 
All data obtained via these methods were acquired by the students of the MAR518 
module. Cruises were conducted on the 27th, 28th, 30th and 31st of March 2017.  

Spectral data was measured using a RAMSES-ARC spectroradiometer, recording 
radiance between 350 and 950 nm at approximately 3 nm resolution. Spectral data 
was recorded in pairs. The first reading was over a white plate (downwelling irradiant 
light) and the second over water (water-leaving radiance). 𝑅𝑟𝑠(𝜆) was then 
calculated using the methodology of Mobley (1999), as previously described. In post 
processing, for each station, the spectral pair with the lowest signal were selected for 
analysis, under the assumption these spectra were the least contaminated by 
reflection off the water’s surface.  
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Sentinel-2 Data Acquisition: Tamar Estuary 
Data were selected based on coincidence with the MAR518 module Tamar cruises. 
There were no exact temporal matchups, so a tile from the day before the cruise of 
the 27th was selected. For seasonal comparison a tile from the 25th of January was 
also selected. The data format for each tile was the same as for the MOBY tiles. 
However, note that the image acquired for the Tamar Estuary was taken using 
Sentinel-2A. 

Tamar Estuary: SPM Data 
All data obtained by these methods were acquired by the students of the MAR518 
module. Cruises were conducted on the 27th, 28th, 30th and 31st of March 2017. The 
stations are displayed in Figure 3. 

 

 

Figure 3: Survey stations map. Stations 1 – 5 (27th), stations 6 – 10 (28th), station 15 
(30th) and stations 17 – 19 (31st). Credit: ESA/Sentinel-2A/MSI – CC BY-SA IGO 3.0 

license. 

SPM concentrations were derived gravimetrically; this method was initially developed 
by Banse, et al. (1963), and was later adapted by Strickland & Parsons (1972) and 
Shimwell (1999). 

Surface water samples were collected using a van Dorn water sampler. Water 
samples were then stored in pre-washed PTFE containers. Containers were rinsed 
three times with the sample to be stored before the final sample was taken. 
Whatman GF/F filters (nominal pore size of 0.7 μm) were first washed with purified 

https://creativecommons.org/licenses/by-sa/3.0/igo/
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water and then placed on aluminium foil. The foil sheets, along with filters, were 
placed in an oven at 60°C for one hour. They were then placed in a desiccator with a 
silicon desiccant for up to 3 days. Each filter was then weighed three times on a 
scale with 1x10-5 g precision.  

A known volume of each water sample was filtered through the pre-weighed filters 
using a vacuum pump. Each filter was then placed in an aluminium foil sachet and 
stored at -20°C until analysis. Sachets were placed in an oven at 60°C overnight and 
then in a desiccator for up to 3 days. The filters were then weighed again. The initial 
filter weight was then subtracted from the final filter weight to give total SPM (organic 
plus inorganic). 

Tamar Estuary: Tidal and Rainfall Data 
Tidal data was acquired online from the British Oceanographic Data Centre (BODC) 
UK Tide Gauge Network. For the Tamar estuary, the BODC obtain tidal 
measurements from the Devonport tidal gauge 
(https://www.bodc.ac.uk/data/hosted_data_systems/sea_level/uk_tide_gauge_netwo
rk/).  

Daily rainfall data was acquired online, from a weather station in Crownhill, Plymouth 
(http://www.bearsbythesea.co.uk/wxrainsummary.php). The data selected for this 
study was from the 25th to the 27th of March 2017. 

Modelling Sentinel-2A Bands and SPM Algorithm 
In situ spectra acquired on the 27th, 28th, 30th and 31st of March 2017 at sixteen 
stations along the Tamar were recalculated for the bands of Sentinel-2A. This was 
achieved by averaging the in situ spectra over the central band ± the bandwidth of 
that band (i.e. averaged over 443.9 ± 13.5nm).  

Four reflectance band ratios were plotted against SPM data. These comprised of two 
green/blue ratios (560nm/497nm and 560nm/443nm), a red/green ratio 
(655nm/560nm) and a NIR/green ratio (885nm/560nm). Subsequently, a log linear 
regression analysis was carried out in MATLAB, where SPM data was logarithmically 
transformed and the reflectance ratios remained linear. Confidence intervals were 
also applied (95 %). Suitability of fit for each algorithm was quantified via the R2 
value and the p-value (tested at 𝛼 = 0.05), these were also calculated in MATLAB.  

An algorithm was then derived from the best performing reflectance ratio. After 
atmospheric correction, this algorithm was applied to two Sentinel-2A tiles (26th 
March 2017 and 25th January 2017). The atmospheric correction applied to this tile 
utilised the 865nm/2202nm band combination. The best performing reflectance ratio 
and the algorithm used are discussed in the Results and Discussion section.  

Results and Discussion 

MOBY Buoy: Assessment of Radiometric and Atmospheric Correction 
Performance 
Figures 4 through 6 are Sentinel-2B images over the MOBY buoy. Sunglint is 
present in all images, as indicated visible striping (more pronounced in Figures 4 and 
6). This is due to the near-nadir view of the MSI sensor, resulting in the radiance 
data being influenced by the reflection of sun at the air-water interface (Harmel, et 
al., 2018). This effect is more pronounced over the open ocean, where regular 
surface waves are present (Clerc, 2018). 
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Figure 4: Sentinel-2 L1C image over the MOBY buoy, 26th December 2017. Credit: 
ESA/Sentinel-2B/MSI – CC BY-SA IGO 3.0 license. 

 

https://creativecommons.org/licenses/by-sa/3.0/igo/
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Figure 5: Sentinel-2 L1C image over the MOBY buoy, 11th January 2017. Credit: 
ESA/Sentinel-2B/MSI – CC BY-SA IGO 3.0 license. 

Table 3 shows the flyover times and geometric data for each image, alongside the 
MOBY data acquisition time. The images appear cloudless over the region of the 
buoy; however, it is not possible to know whether or not clouds were present over 
the buoy at the time of the flyover. All Sentinel-2B flyovers were near simultaneous 
(5-7 minutes) with the MOBY data acquisition (Table 3). It is therefore assumed that 
the optically significant constituents were the same between the flyover and the buoy 
data acquisition. Due to the short timeframe (within 1 month) in which the flyovers 
occurred, the solar angles are all relatively similar. This suggests the viewing 
geometry has minimal influence on differences in reflectance between images. 

 

Table 3: MOBY data acquisition time and Sentinel-2 flyover time and geometric data 

Matchup 
date 

Sentinel-
2 Flyover 
Time 
(UTC) 

MOBY 
Data 
Acquisition 
Time 
(UTC) 

Mean 
Solar 
Zenith 
Angle (°) 

Mean 
Solar 
Azimuth 
Angle 
(°) 

Mean 
Sensor 
Zenith 
Angle (°) 

Mean 
Sensor 
Azimuth 
Angle (°) 

2017/12/26 21:09:09 21:14:26 47.9 154.4 6.4 104.6 

2018/01/16 21:09:19 21:16:04 46.7 150.4 6.4 104.5 

2018/01/26 21:09:19 21:15:08 45 148.1 6.4 104.7 

https://creativecommons.org/licenses/by-sa/3.0/igo/
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Figure 6: Sentinel-2 L1C image over the MOBY buoy, 26th January 2018. Credit: 
ESA/Sentinel-2B/MSI – CC BY-SA IGO 3.0 license. 

 

Based on the work of the Pahlevan, et al. (2017) the NIR/SWIR band combination 
were expected to perform best. This is as in the SWIR (2202nm) band absorption 
water is extremely high and in the NIR (865nm) band the SNR is higher than other 
wavelengths in the SWIR/NIR region, which allows for a more accurate quantification 
and removal of aerosol contribution (Franz, et al., 2015). However, no band 
combination worked consistently better than another across all four wavelengths. 

In the 443nm band the red/NIR (665nm-865nm) and SWIR only (1613nm-2202nm) 
band combinations performed best (in red/NIR RMSD = 0.000000486 sr-1, bias = -
0.000323 sr-1, RD = 4.2 % and in SWIR only RMSD = 0.000000429 sr-1, bias = 
0.000367 sr-1, RD = 4.6 %), whereas in the 491nm and 560nm band the NIR/SWIR 
method (865nm-2202nm) performed best (@491nm RMSD = 0. 000000193 sr-1, bias 
= -0.000517 sr-1, RD = -8.2 % and @560nm RMSD = 0.0000000766 sr-1, bias = -
0.000353 sr-1, RD = -27.0 %). In the 665nm band the SWIR only band combination 
performed best (RMSD = 0.0000000393 sr-1, bias = -0.000277 sr-1, RD = 311.6 %). 

 

https://creativecommons.org/licenses/by-sa/3.0/igo/
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Figure 7: Scatter plot of in situ MOBY Rrs(λ) versus Sentinel-2B Rrs(λ) derived 
using the ACOLITE processor. Each window corresponds to the four (near) matching 

visible wavelengths, 443nm/442nm (top left), 490nm/492nm (top right), 
560nm/559nm (bottom left) and 665nm/665nm (bottom right). The band combination 

for each method is as follows: SWIR only (1613nm-2202nm), Red/NIR (665nm-
865nm) and NIR/SWIR (865nm-2202nm). 

 

Table 4: Root-mean-squared-deviation (RMSD), bias and relative differences (RD) 
for in situ and atmospherically corrected Sentinel-2B data presented in Figure 7. 

Band combination / wavelength 
(443nm) 

RMSD (sr-1) Bias (sr-1) RD (%) 

SWIR only (1613nm-2202nm) 0.000000429 0.000367 4.6 

Red/NIR (665nm-865nm) 0.000000486 -0.000323 4.2 

NIR/SWIR (865nm-2202nm) 0.000000823 0.000997 11.3 

Band combination / wavelength 
(491nm) 

   

SWIR only (1613nm-2202nm) 0.000000703 -0.000913 -14.2 

Red/NIR (665nm-865nm) 0.00000073 -0.00104 -16.6 

NIR/SWIR (865nm-2202nm) 0.000000193 -0.000517 -8.2 

Band combination / wavelength 
(560nm) 

   

SWIR only (1613nm-2202nm) 0.000000623 -0.00111 -88.6 

Red/NIR (665nm-865nm) 0.000000269 0.000733 -59.0 

NIR/SWIR (865nm-2202nm) 0.0000000766 -0.000353 -27.0 

Band combination / wavelength 
(665nm) 

   

SWIR only (1613nm-2202nm) 0.0000000393 -0.000277 311.6 

Red/NIR (665nm-865nm) 0.0000000817 0.000394 440.0 

NIR/SWIR (865nm-2202nm) 0.0000000884 0.000384 428.1 
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It is challenging to draw any conclusions regarding which band combination 
performed best due to the low (n = 3) number of satellite and in situ data matchups 
and that each performed better at different wavelengths. It is however clear from the 
results that across all band combinations they performed worse at the red/green end 
of spectrum (RD -27 – -87 % at 560nm, RD 312 – 440 % at 665nm) in contrast to the 
443nm (RD 4 – 11 %) and 491nm bands (RD -8 – -17 %). 

Effective atmospheric correction depends on adequate SNRs as well as a sufficient 
digital resolution to store the water-leaving signal (Franz, et al., 2015). Given that the 
satellite values do not ‘bottom out’ (i.e. reach a detection limit), this would suggest 
the SNRs of MSI were not sufficient over this water type. Ocean satellites have the 
requirement of a SNR of 1000 in the 443nm band (Hu, et al., 2012). This potential 
inadequacy is supported by the results of Pahlevan, et al., 2017 (Table 1), which 
show the SNR of the MSI 443nm band at 439 over clear waters. The MSI SNRs 
decrease with increasing wavelength (439, 102, 79, 45 for the bands: 443nm, 
491nm, 560nm, 665nm respectievely). This can be explained by the low productive 
waters the MOBY buoy is situated (Clark, et al., 2003). In these water types there is 
a minimal reflected signal in the green and red spectral region (hence low SNRs), 
which can most likely be attributed to the high absorption by pure water and the 
minimal particulate scattering at this end of the spectrum. At the blue end of the 
spectrum, the signal is greater as pure water absorption is not dominate (high SNRs) 
(Hu, et al., 2012). This explains the decreasing peformance of the atmospheric 
correction with increasing wavelength. In addition to this, inadequate SNRs in the 
bands used for atmospheric correction could lead to noise and bias across the 
visible spectrum. This is because of inaccuracies in calculating aerosol contribution 
to the signal, which is then used to extrapolate results to the visible spectra (Hu, et 
al., 2012). Insufficient SNRs in the atmospheric correction bands were also evident 
in the results of Pahlevan, et al., 2017 (Table 1) where SNRs at 665nm, 865nm, 
1613nm and 2202nm equalled 45, 16, 2.8 and 2.2 respectively; these fall far below 
the requirements set by European Space Agency (2015) of SNRs of 142, 72, 100 
and 100 (in the same order). 

An additional source of error arises from the fact that ACOLITE does not correct for 
adjacency effects. Adjacency effects occur when a non-uniform reflecting surface is 
present. This causes radiance from the high reflective area to contaminate 
neighbouring weakly reflecting surfaces causing them to appear brighter than they 
actually are (Otterman & Fraser, 1979). In this case, the non-uniform reflecting 
surfaces are the clouds observed in Figures 4 - 6. Other potential sources of error 
include inaccurate aerosol models, shading of the buoy by clouds, lack of sunglint 
correction, radiometric inaccuracy of the MOBY buoy (<5 % (Clark, et al., 2003)), the 
difference in measured wavelength between MOBY and Sentinel-2B and known gain 
coefficients (Clerc, 2018) not being applied to the Sentinel-2 data. 

Given that the SNRs over this clear water surface fall far below the requirements for 
the ocean colour applications (Hu, et al., 2012), this is likely to the primary source of 
error in this validation exercise for the atmospheric correction of these Sentinel-2B 
tiles over the MOBY buoy.  

Tamar Estuary: Spectral Signature 
Figure 8 shows the spectra collected at various stations on the Tamar, these were 
chosen to show the range of spectra results observed in this study. There are two 
clear different spectral shapes for the data observed in Figure 8. The signature at 
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station 4 and station 7 do not display a significant signature at ~650 nm and station 4 
has a clear signature at ~500 nm. Stations 11, 16, 17 and 18 show a clear signature 
at ~560, ~650 and at ~ 810 nm. 

 

 

Figure 8: Spectral signature at six stations with varying SPM concentrations. 

 

These results are similar to the results of Doxaran, et al. (2005) who observed 
spectral features at ~560, ~650 and ~800 nm in waters of the Tamar with an SPM 
concentration of 45 mg L-1. In a region of the Tamar with lower total SPM (7 mg L-1) 
they observed similar spectra to the spectra observed in this study at stations 4 and 
7. The signature at ~560 nm is indicative of low absorption by chlorophyll, and the 
depression at ~440 nm is indicative of high absorption by chlorophyll pigments (Kirk, 
2011).  

Tamar Estuary: Modelled Sentinel-2A Spectra 
Figure 9 shows the in situ spectra from the cruise on the 27th of March 2017 (top) 
and the spectra modelled in the bands of Sentinel-2A (middle). It also shows the 
spectra from the Senitnel-2A flyover on the 26th of March 2017 (bottom). 
Atmospheric correction was performed using the 865nm/2202nm (NIR/SWIR) band 
combination.  
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Figure 9: In situ, Sentinel-2A modelled and flyover spectra. Top: In situ spectra 
collected at five stations (in the lower Tamar/Sound) on the 27th of March 2017. 

Middle: In situ spectra modelled for the bands of Sentinel-2A. Bottom: BOA Rrs(λ) 
derived from the Sentinel-2A flyover (26th of March 2017) for the same five stations. 

 

The modelled spectra (middle) fits the in situ spectra (top) reasonably well, but 

misses the sharp decline in Rrs(λ) between 575 nm and 610 nm. This is due to the 
‘jump’ in the Sentinel-2 bands between 560nm and 665nm (Table 1).  

Figure 9 shows clear discrepancies in the Rrs(λ) acquired in situ and the Rrs(λ) 
derived from the atmospheric correction of the Senitnel-2A flyover. For example, at 
550nm the in situ spectra reflectance values are between ~0.03 sr-1 and ~0.04 sr-1 
whereas the Sentinel-2A derived Rrs(550nm) gives a reflectance value of ~0.01 sr-1. 
These differences are observed from 400nm to 700nm, after which the spectra are of 
the same order (for station 1 in situ Rrs(782.2nm) = 0.0039 sr-1, for station 1 flyover 
Rrs(782.5nm) = 0.0035 sr-1). It is possible the differences in spectra could be due to 
tidal or meteorological variations. To clarify whether or not these factors were 
influential, the tidal and rainfall data will be discussed.  

In situ spectra were collected between 10:00 UTC and 12:00 UTC; the Sentinel-2A 
flyover was at 11:20 UTC (the day prior). The tidal state during the in situ survey was 
between LW – 1.5 (at 10:00 UTC) and LW + 0.5 (at 12:00 UTC), at the time of the 
flyover the tidal state was at LW + 0.5 (the day before). Total rainfall for the 25th, 26th 
and 27th of March 2017 was 1.2, 0.2 and 0.2 mm respectively. Given the similarity in 
tidal state and the fact there were no significant rainfall events occurring around the 
dates of flyover or in situ measurements, it is assumed that the five stations (Figure 
9) would have similar optical properties at the time the measurements were taken. 
Thus, it is assumed that the discrepancies observed in Figure 9 occur due to 
inaccuracies in atmospheric correction, this is supported by Figure 7 and the 
discussion thereafter. As discussed in the previous section, inadequate SNRs in the 
bands used for atmospheric correction can lead to noise and systematic error across 
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the visible spectrum (Hu, et al., 2012), this is the most likely explanation for the 
inaccurate atmospheric correction. Potential SNR performance issues are supported 
by the fact this is a land satellite, and thus the spectral resolution is coarse in 
comparison to traditional ocean colour satellites (European Space Agency, 2015). 
This is also supported by the clear water SNR results of Pahlevan, et al, (2017) 
(Table 1), however are not directly relevant as the Tamar estuary is a coastal region 
with turbid waters (Dyer, 1995). For turbid coastal waters the reflected signal in the 
blue bands is often lower than for clear waters. This is commonly due to the 
absorption of light by Chlorophyll-a and coloured dissolved organic matter (CDOM) 
(Hu, et al., 2012). This may explain the large differences in Rrs(λ) at the blue end of 
spectrum (for station 1 in situ Rrs(497.6nm) = 0.033 sr-1, for station 1 flyover 
Rrs(496.6) = 0.011 sr-1; for station 1 in situ Rrs(444.8nm) = 0.02 sr-1, for station 1 
flyover Rrs(443.9) = 0.009 sr-1), as a depressed signal in the blue bands may lead to 
lower SNRs. 

Tamar Estuary: Empirical SPM Algorithm 
Figure 10 shows the results of the four surface reflectance ratios as a function of 
SPM concentration. Additional green/blue band ratios were derived as the fit for the 
NIR and red ratios were poor. Based on the statistics (Table 5), the best performing 
retrieval algorithm was observed using the Rrs(560nm)/Rrs(443nm) ratio (top left in 
Figure 10, R2 = 0.761, p-value = 0.000997 (𝛼 = 0.05)).  

 

 

 

Figure 10: Log linear regressions for four band ratios as a function of SPM with 
confidence intervals. SPM concentration represents the total SPM measured at each 

station, comprising both inorganic and organic materials. Band ratios used are as 
follows: top left (560nm/497nm), top right (560nm/443nm), bottom left 

(665nm/560nm) and bottom right (885nm/560nm). 
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Table 5: Equation, p-value and R^2 for the four log linear regressions (Figure 10). 

Rrs(𝜆)/Rrs(𝜆) 
(nm) 

Equation R2 p-value 

560nm/497nm 𝑦 = 0.1546 ln(𝑥) + 0.8627 0.761  0.000997 

560nm/443nm 𝑦 = 0.2367 ln(𝑥) + 1.016 0.633 0.0113 

665nm/560nm 𝑦 = 0.2073 ln(𝑥) + 0.1763 0.670 0.0063 

885nm/560nm 𝑦 = 0.0456 ln(𝑥) + 0.136 0.212 0.436 

 

It is likely that the red and NIR based algorithms performed poorly (R2 = 0.67 and R2 

= 0.212) due to the small spectral signal at this end of the spectrum (650 - 900nm) 
observed in these waters (Figure 9). This is because any errors in data collection 
would have profound effects of the results, as the spectral signal is so small. In the 
Gironde estuary, Doxaran, et al. (2003) observed refelctance values in the ~800nm 
region as high as the reflectance in the ~600 nm region. They also observed that 
with increasing SPM concentrations the spectral signitaure at ~800nm increased 
rapidly from 39 mg L-1 to 527 mg L-1, but the signature at ~600nm remained relatively 
constant.  

Tamar Estuary: SPM Maps (26th March 2017/25th January 2017) 
Given that the Rrs(560nm)/Rrs(443nm) ratio performed best (Table 5), this 
relationship was applied to the Sentinel-2A tile from the 26th of March 2017 and the 
25th of January. This was achieved using the following algorithm: 

 

𝑆𝑃𝑀 (𝑚𝑔 𝐿−1) = 𝑒

𝑅𝑟𝑠(560)
𝑅𝑟𝑠(497)

 − 0.8627

0.1546  

 

Equation 5: Empirically Derived SPM Algorithm 

 

Figure 11 shows Equation 5 applied to the Senitnel-2A tile from the 26th of March 
2017. Figure 12 shows Equation 5 applied to the Senitnel-2A tile from the 25th of 
January 2017. Given the tidal state (LW + 0.5) when the image was taken (Figure 
11) it is expected that the ETM would be in the lower reaches of the estuary (Dyer, 
1995). Neap tide was approximately 1 week prior to the flyover, thus the ETM would 
be expected to hold more than during the standard neap (max 200 mg L-1) but less 
than during the spring tide (max 2 – 3 g L-1) (Dyer, 1995). 
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Figure 11: SPM algorithm applied to a Sentinel-2A tile over the Tamar estuary (26th 
of March 2017). Atmospheric correction was performed using the 865nm/2202nm 

band ratio. Credit: ESA/Sentinel-2A/MSI – CC BY-SA IGO 3.0. This tile was adapted 
under the Applicable License, as set forth in Article 4b of the CC BY-SA 3.0 IGO 

licence. 
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Figure 12: SPM algorithm applied to a Sentinel-2A tile over the Tamar estuary (25th 
of January 2017). Atmospheric correction was performed using the 865nm/2202nm 
band ratio. Credit: ESA/Sentinel-2A/MSI – CC BY-SA IGO 3.0. This tile was adapted 

under the Applicable License, as set forth in Article 4b of the CC BY-SA 3.0 IGO 
licence. 

During this flyover (Figure 12) the tidal state was LW + 1.5. Thus, it is expected that 
SPM concentrations would be lower closer to the Sound due to the influence of sea 
water (compared to Figure 11). This appears to be true as concentrations are in the 
blue colour region (0 – 2 mg L-1) further up the estuary than in Figure 11. During 
winter months, river flow rate generally increases in comparison to spring and 
summer due to increased precipitation rates (Dyer, 1995). Given this factor one 
would expect the concentration of SPM in the estuary to increase. This is not 

https://creativecommons.org/licenses/by-sa/3.0/igo/
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apparent when comparing Figure 12 (winter) to Figure 11 (spring). This may be 
explained by the fact that in the 10 days prior to the January flyover less than 1 mm 
of rain fell. It is also important to consider seasonal differences in terms of 
constituents in the water column and in the atmosphere as both will affect the results 
of the algorithm. For example it is likely that due to shifts in the light regime more 
plankton would be present in the water column in March (Figure 11) than in January 
(Figure 12). This would lead to significant differences in light absorption and 
scattering especially in the green and blue wavelengths the algorithm was applied to. 

The SPM values in both images suggest the algorithm has underestimated the total 
SPM in the estuary. This can be attributed to a number of factors. Firstly, the 
inaccuracies in atmospheric correction described in the first section of this report 
which arise primarily due to inadequate SNRs (Pahlevan, et al., 2017). Further 
issues arise from inaccurate aerosol models, the lack of application of know gain 
coefficients (Clerc, 2018), adjacency (Otterman & Fraser, 1979) and sunglint effects. 
All of these factors increase the probability that the weak water-leaving radiance 
signal over the waters of the Tamar will be inaccurately derived, leading to 
inaccuracies in the final algorithm. The results of Doxaran, et al. (2005) showed that 
in the Tamar the blue to green signal (400 – 600 nm) is severly depressed in regions 
of the Tamar with higher SPM values. These results therefore demonstrate that total 
SPM is not a function of these wavelengths and thus the algorithm developed in this 
project will not work in more turbid waters. This is supported by Tassan (1993) who 
demonstrated that chlorophyll and total SPM do not co-vary in estuarine and coastal 
waters due to the presence of particulate matter from runoff, resuspension effects 
and shore erosion.  

The limitations of developing an effective algorithm for the quantification of SPM in 
the Tamar estuary in this study were due to inaccurate amtospheric correction 
mainly caused by inadequate SNRs and an insufficient range of SPM values and 
accompanying spectral data.  

Conclusion 
In the first section of this project the radiometric performance of Sentinel-2B was 
quantified using in situ above-surface reflectance acquired by the MOBY buoy, in 
case 1 waters. The radiometric performance was tested using three atmospheric 
band combinations. The results showed that each method broke down in the green 
and red spectral regions (RD -27 – -87 % at 560nm, RD 312 – 440 % at 665nm) 
compared to the blue spectral region (443nm (RD 4 – 11 %) and 491nm bands (RD -
8 – -17 %)). The primary reason for this was due to inadequate SNRs, caused by the 
high spatial resolution and wide bandwidths of the MSI sensor. In the second section 
of this project in situ SPM and spectral data collected in the Tamar was used to 
derive four empirical algorithms each using a different Sentinel-2A band ratio. The 
best fitting relationship was derived from the Rrs(560nm)/Rrs(443nm) band ratio (R2 = 

0.761, p-value = 0.000997 (𝛼 = 0.05)). After the algorithm was derived it was applied 
to a Sentinel-2A image from the 26th of March 2017 and the 25th of January 2017. 
With comparisons from the literature the SPM map underestimated SPM 
considerably in each image. This was a result of using the green blue ratio which 
does not represent higher SPM in the upper reaches of the estuary. To derive an 
effective SPM algorithm for the Tamar estuary, more SPM samples in conjunction 
with spectral surveys must be carried out. In addition to this, considerable 
improvements need to be implemented into the atmospheric correction methodology. 



The Plymouth Student Scientist, 2018, 11, (2), 3-33 

 

 
28 

If achievable, Sentinel-2 would serve as an effective tool for quantifying SPM in the 
Tamar estuary. 
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