The Plymouth Student Scientist - Volume 10 - 2017

The Plymouth Student Scientist - Volume 10, No. 2 - 2017

2017

Flexural behaviour of BFRP rebar reinforced concrete beams

Rudzinskis, E.

Rudzinskis, E. (2017) ' http://hdl.handle.net/10026.1/14163

The Plymouth Student Scientist University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

1. Appendices

Photo 1 – BFRP Rebar Sample Ends Sheared Off During Tensile Strength Test.

Photo 2 – BFRP Rebar Pulled Out from Aluminium Encasement.

Photo 3 - Extensometer BFRP Rebar Inside The Testing Machine

Photo 4 – BFRP Spiral Sanded Off at Each End. Test Failed by one end crushed.

Damaged "teeth" on the left-hand side.

Photo 5 – Damaged Upper Tensile Strength Testing Machine Clamp.

Concrete Cubes Class C40/50 Mix 10.02

Concrete mix design was based on BS 8500-1-2005+A1 and *"Design of Normal Concrete Mixes"* design manual (refer to list of references).

				5 Flov	w chart of proc	edures	
Table	1 Co	oncrete mix design form					
					Job title	Dissertation	
			Reference				
Stage	ltem		or calculation	Values			
1	1.1	Characteristic strength	Specified	£	Cube: 50	. N/mm² at28	da
				Proportion defect	tive		
	1.2	Standard deviation	Fig 3	0		. N/mm ² or no data .	- N/m
	1.3	Margin	C1	(k = .1.64))	. × = .	N/m
			or Specified				N/m
	1.4	Target mean strength	C2		0	. + = .	
	1.5	Cement strength class	Specified	42.5/ <mark>52.5</mark>			
	1.6	Aggregate type: coarse Aggregate type: fine		Crushed/uncrush Crushed/uncrush	ned		
	1.7	Free-water/cement ratio	Table 2, Fig 4			·]	
	1.8	Maximum free-water/ cement ratio	Specified			} Use the lower value	0.45
2	2.1	Slump or Vebe time	Specified	SlumpS	2, 80	. mm or Vebe time	
	2.2	Maximum aggregate size	Specified				20 n
	2.3	Free-water content	Table 3				225 kg/
3	3.1	Cement content	C3	225	. <u>+</u> 0.45	=	500 kg/
	3.2	Maximum cement content	Specified		kg/m³		
	3.3	Minimum cement content	Specified		kg/m³		
				use 3.1 if ≤ 3.2		Г	
				use 3.3 if > 3.1		L	500 kg/
	3.4	Modified free-water/cement ra	itio				
4	4.1	Relative density of aggregate (SSD)			2.7	. known/assumed	
	4.2	Concrete density	Fig 5				2375 kg/
	4.3	Total aggregate content	C4	2375			
5	5.1	Grading of fine aggregate	Percentage passi	ng 600 µm sieve			53
	5.2	Proportion of fine aggregate	Fig 6				38
	5.3	Fine aggregate content	0-	0.38	×	1650 _	627 kg/
	5.4	Coarse aggregate content	C5	1650)		1023 kg/
			Cement	Water	Fine aggregate	Coarse aggregate	e (kg)
	Quar	ntities	(kg)	(kg or litres)	(kg)	10 mm 20 m	m 40 mm
	per n	n ³ (to nearest 5 kg)	500	225	627	341 6	82
	per tr	rial mix of m ³					

Items in italics are optional limiting values that may be specified (see Section 7).

Concrete strength is expressed in the units N/mm² 1 N/m² = 1 MN/m² = 1 MPa. (N = newton; Pa = pascal.) The internationally known term 'relative density' used here is synonymous with 'specific gravity' and is the ratio of the mass of a given volume of substance to the mass of an equal volume of water. SSD = based on the saturated surface-dry condition.

Class C28/35 Concrete Design Mix 10.03

Concrete mix design was based on BS 8500-1-2005+A1 and *"Design of Normal Concrete Mixes"* design manual (refer to list of references).

				5 FIU	v chart of proce	uures		1
Table	1 Co	oncrete mix design form						
					Job title ^D	issertation		
			Reference					
Stage	ltem	1	or calculation	Values				
1	1.1	Characteristic strength	Specified	{	Cube: 35	N/mm² at	28	day
				Proportion defect	tive			9
	1.2	Standard deviation	Fig 3	0		N/mm ² or no da	ta	N/mm
	1.3	Margin	C1	(k =)	×	=	N/mm
			or Specified					N/mm
	1.4	Target mean strength	C2		0	+35	=35	N/mm
	1.5	Cement strength class	Specified	42.5/52.5				
	1.6	Aggregate type: coarse Aggregate type: fine		Crushed/uncrush Crushed/uncrush				
	1.7	Free-water/cement ratio	Table 2, Fig 4		0.68			
	1.8	Maximum free-water/ cement ratio	Specified		}	Use the lower	value	
2	2.1	Slump or Vebe time	Specified	SlumpS	2, 80	mm or Vebe tim		
	2.2	Maximum aggregate size	Specified				20	mr
	2.3	Free-water content	Table 3				225	kg/m
3	3.1	Cement content	С3	225	÷	=	330	kg/m
	3.2	Maximum cement content	Specified		kg/m³			
	3.3	Minimum cement content	Specified		kg/m³			
				use 3.1 if ≤ 3.2 use 3.3 if > 3.1			330	kg/m
	3.4	Modified free-water/cement rat	io					
4	4.1	Relative density of aggregate (SSD)			2.7	known/assume	d	
	4.2	Concrete density	Fig 5				2375	. kg/m
	4.3	Total aggregate content	C4	2375	330	225	_ 1820	-
5	5.1	Grading of fine aggregate	Percentage passi	• •				_53 g
	5.2	Proportion of fine aggregate	Fig 6	ر 0.42		820		
		Fine aggregate content	C5	1800	····· × ······	764	= 764	kg/m
	5.4	Coarse aggregate content		ιιου	·	/04	= 1056	kg/m
	0.02	ntities	Cement (kg)	Water (kg or litres)	Fine aggregate (kg)	Coarse aggr 10 mm		0 mm
	Qua	nuuco						5 mm
	1 A A	n ³ (to nearest 5 kg)	330	225	765	350	705	
	ner t	rial mix of 0.065 m ³	21.45	14.625	49.725	22.75	45.825	

Items in fallos are optional limiting values that may be specified (see Section 7). Concrete strength is expressed in the units N/mm² 1 N/mm² = 1 MN/m² = 1 MPa. (N = newton; Pa = pascal.) The internationally known term 'relative density' used here is synonymous with 'specific gravity' and is the ratio of the mass of a given volume of substance to the mass of an equal volume of water. SSD = based on the saturated surface-dry condition.

	63.0	40.50	14.5	60.3 1	19.7
Per 4 beams = 0.18 m3		В			
4x(0,0x0,15x1,5) = 4x(Dopth x)	Dreadth y Long	D			

4x (0.2x0.15x1.5) = 4x(Depth x Breadth x Length)

Photo 6-Aggregate Quantities for Concrete Mix.

Photo 7 – Plasticiser "MasterPolyheed"

Control of Substances Hazardous to Health (COSHH) Assessment

Faculty/Department: Science	e and Engineering	School/Section: School of Engineering / Civil and Coastal Engineering				
Assessment No.		Assessor: Tony Tapp				
Description of procedure or experiment (Include how long and how often this is carried out and the quantity of substance used).	BASF MasterPolyhee polycarboxylate ethe lower the water/ceme a rate of 0.5 to 2% by the mixing water. Pro-	r, used in c ent ratio wh / weight of	oncrete mixes to le maintaining v cement by incor	o increase v workability. porating int	workability or to Added to a mix at to the final 40% of	
Identify the persons at risk:	Staff	Cont	actors	Publi	c/students	
Name the substance involved in the process, the supplier (<i>if known</i>) and the information source.	BASF MasterPolyhee which is soluble in wa Hulme, Cheadle, Che north@basf.com; Em	ater. Suppli eshire, SK8	er: BASF plč, P 6QG; 0161 485	O Box 4, Ea 5 6222; <mark>proc</mark>	arl Road, Cheadle	
Classification (state the cate	gory of danger, tick all	that apply)				
Very Toxic	🚺 🗹 Irritant		Carcinoge	nic 📀	Gas under pressure	
\land 🗆 Toxic	Sensitiser	۲	☐ Highly flammable)		
Corrosive	Explosive	۲	Flammable	e		
🚯 🗌 Harmful 🔇	🗴 🗌 Oxidising	Ś	Environme	ent		
Hazard Type (tick all that ap)	oly)		·	-		
Gas Vapour Mist	Fume Dust	Liquid	Solid	Other ((Details)	
Route of Exposure (tick all th	at apply)	•	• •			
\checkmark	\checkmark	\checkmark		(Details)		
Inhalation Skin	Eyes Ir	gestion	Other			
Workplace Exposure Limits (WELs) please indicate	n/a where	not applicable	•		
Long-term exposure level (8) No limits given.	nrTWA):	Short-term exposure level (15 mins): No limits given.				
State the Risks to Health from	n Identified Hazards (<i>i</i>	nclude Risk	Phrases)			
R36/38 - Irritating to eyes an	d skin; S37/39 - Wear	suitable glo	ves and eye/fac	ce protection	n.	

Control Measures: (for example extraction, ventilation, training, supervision). Include special measures for vulnerable groups, such as disabled people and pregnant workers. Take account of those substances that are produced from activities undertaken by another employer's employees. (include Safety Phrases)									
Wear PPE. Avoid aerosol generation.									
Can a less hazardous substance be used ? Yes No 🗸									
If YES why is it not being used ?:									
Is health surveillance or monitoring required ? Yes No 🗸									
Personal Protective Equipment (state type and standard)									
8									
Dust mask				V	isor				
				0	\checkmark	EN166 c	lass 2FT o	or better.	
Respirator				Go	ggles				
		/ chemical res	istant;						
Gloves	EN374			Ov	eralls				
Footwear				0	ther				
First Aid Measu	res			•		•			
In all cases see contact: Wipe of develops. Eye of Ingestion: Rins	off immediately; contact: Flush v	wash with soap with water for at	o and pl least 1	enty of v 5 minute	varm wate s. Seek ir	er. Seek me mmediate n	edical atte	ntion if irr	
Spillage/Uncont	rolled Release f	Procedures							
Do not breathe spill with an iner									osorb
Storage									
Store at room te	mperature in tig	htly closed orig	ginal co	ntainer.					
Disposal of Sub		aminated Items	;	_		(Deta	vile)		
							1115)		
Hazardous Waste	Skip	Run to Drain	Sup	ırn to plier	Othe	F			
Name of Assess	sor: Tony Tapp	Signed: A	P			Date: 22/1	2/2016		
Name of Safety HOS/ HOD:	Manager/	Signed:				Date:			
Review Date:		Signed:				Date:			
Review Date:		Signed:			Date:				

10.04 Bar Bending Schedule

Bending schedule

Bar schedule ref:

Rev letter

Date prepared: 29/11/2016

Date revised:

Job no.

Prepared by: E.R.

Checked by: D.E

Site ref:

Member	Bar mark	Type & size	No. of mbrs.	No. bars in each	Total no.	Length of each bar (L) mm	Shape code	A° mm	B° mm	C° mm	D° mm	E/r° mm
Top/ Bottom	1	H8			10	1450	00	1450				
Shear Links	2	H8	4	6	24	660	51	100	150			
L-Bars	3	H8	1	4	4	399	11	115	300			

BFRP Rebar COSHH Assessment Form

Material Safety Data Sheet	Vulkan- Europe B.V.					
Basalt Continuous Filament Fibres	Continuous Basalt Fibre Distributor					

1) Identity and Distributor information.	Basalt fibre components : yarns , rovings , chopped strands , fabrics , non-woven mats , nets . With epoxy : rebars of different diameters , wall ties and composite mesh.
Identity of the Distributor.	VULKAN Continuous Basalt Fiber Distribution Europe BV.
	Raesbergenstraat 47
	2804TJ Gouda
	The Netherlands.
	Tel: +31 182 535520
	Mob: +31 6 54 907 214
	E-mail : <u>i.dewit@vulkan-europe.com</u>
	Web site : www.vulkan-europe.com
4. Emergency and First Aid Procedures.	
Inhalation :	No specific treatment is necessary as this material is not likely to be inhaled, unless the material is in dust form : see infra 8.
	Wash with soap and running water .
Skin Contact:	
	Immediately flush with plenty of water . Get medical attention if problem develops.
Eye contact :	
	Ingestion of this material is unlikely. If it does occur , get medical attention .
Ingestion :	

6. Accidental Material Release or Spillage.					
Personal protective equipment :	See infra 8.				
Environmental protection :	Prevent spread of basalt fibre dust and avoid dust-generating conditions .				
Cleaning procedures :	Vacuum clean dust. If sweeping is necessary , use a dust suppressant .				
8. Exposure Limits and Personal Protective Equipment.	OSHA PEL ACGIV TLV				
Fibrous basalt (Fibrous basalt dust) ,	(8 h TWA) (8 h TWA)				
CAS No 65997-17-3 .	5 mg/m ³ 5 mg/m ³				
Basalt fibre continuous filament :	(respirable dust) 1 fibre /cm ³				
	15 mg/m ³				
	(total dust)				
	1 fibre /cm ³				
	(suggested)				
	N/A N/A				
Size (µm) Personal protective clothing and equipment.	When, through mechanical processing, basalt dust is produced and when the dust levels exceed the recommended levels, use an approved respirator and local exhaust for processing machines.				
Respiratory protection :	Impervious gloves are recommended.				
	Impervious glasses are recommended.				
	Protect skin as much as possible by clothing.				
Protective gloves :					
Eye protection :					
Body protection :					
11. Toxicology.	The basalt continuous filament has a diameter > 5 µm and does not split longitudinally. Only when , through a mechanical process, the filaments are broken into dust particles , is the OSHA standard for nuisance dust of				

	application . (if the respirable fraction of 5 mg/m ³ is reached)
12. Ecology.	N/A. Basalt has its origin in nature.
16. Other Information .	All data in the MSDS are based on the current state of knowledge , however they do not certify product properties and they do not justify legal liability. Vulkan- Europe bv. as the distributor cannot control the use of the end-product, the consumer has to determine under which circumstances the product can be used safely, This Material Safety Data Sheet is exclusively intended for professional use.

Raesbergenstraat 47 2804TJ Gouda The Netherlands. Tel: +31 182 535520 Mob: +31 6 54 907 214 E-mail : j.dewit@vulkan-europe.com Web site : www.vulkan-europe.com

Photo 8 – BFRP and Steel Reinforcement Setup in Beams B2 and B4.

Photo 9 - BFRP and Steel Reinforcement Setup in Beams B1, B2 and B4

Photo 10 – Concrete (C28/35) Concrete Cube Curing Inside the Water Chamber.

Photo 11 – External Vertical Displacement Gauge Location 1.

Photo 12 - External Vertical Displacement Gauge Location 2.

- 10.09 Crack Propagation
- 10.09.1 Beam B1 (Control Beam)

10.09.4 Beam B4

Steel Ultimate Load Calculations 10.10

 X < 0.	.45d					
0.45d=	73.35					
BM	Capacit	ty = T*(d-0.8*)	(/2)		
BM Cap	acity =	15	.25	(kNm)		
		BM=Pa				M _{mdx} = Pa
P ir	n (kN)=	43	.57	(kN)		
P _{Total} ir	n (kN)=	87	.13	(kN)	87.13	$R_{A} = R_{B} = P$
	a(m)=	0.	35			$4_{\text{max.}} = \frac{P_L^{1/2}}{E_L} \frac{3a}{4L}$
	E=	5000	0000			
	I=	0.000	05625			
	s _	2	.8	(mm)		
	δ _{max} =	2	.8	(mm)		

10.12 Bending Moment and Shear Force Calculation (Beam B4)

PROJECT_DISSEZTATION	MARINE
ELEMENT BERP BEHM B4	SCIENCE & Engineering
SHEET NO A	WITH PLYMOUTH UNIVERSITY
DESIGNED BY E.R.	School of Marine Science & Engineering University of Plymouth
DATE_05/04/2017	Reynolds Building Drake Circus
	Plymouth PL4 8AA
CALCULATIONS	OUTPUT
• BFRP REBAR RE	INFORCED BEAM BY
100 2201 11	UO. 275 KN
40.275 kN	
	<u>у</u> <u>хо</u>
4100 × 350 × 600	Y 350 J 100 J
	A Approx Location
	154 Of BFRP Rebar
	Failure
<u>13140 :</u>	
	BM = 40.275 × 0.251
SFD:	= 10.109(kNm)
Yed = 40. (k	.275 AV

	D :	1 +	
PROJECT_	Dissez	anou	
ELEMENT_	BFRP	BERM	B4
SHEET NO_	L		
	BY_E.K		
DATE	51041	2017	

School of Marine Science & Engineering University of Plymouth Reynolds Building Drake Circus Plymouth PL4 8AA

NEERING

PROJECT	Disserle	rtioli	
ELEMENT	BFRP	Beam	134
SHEET NO	3		
DESIGNED	BY ER		
DATE	510412	_017	

School of Marine Science & Engineering University of Plymouth Reynolds Building Drake Circus Plymouth PL4 8AA

AARINE

CIENCE ENGINEERING

OUTPUT CALCULATIONS k = 1000 = 1000/1 1000 N /mui2 10.109 × 106 · As = 1000 × 148.72 < Hs prov (Basald) = 101 mm = 68 mm Calculation above signifies that point of failure BFRP had at enough capacity te more than withstand the tension Min suggest that Beam failure did Thus not check is required Shear

PROJECT_	Dissertation	
ELEMENT_	BFRP BENN	4 B4
SHEET NO	4	
DESIGNED	DBY E.R.	
DATE	51041201-	7

MARINE SCIENCE & ENGINEERING WITH PLYMOUTH UNIVERSITY School of Marine Science & Engineering University of Plymouth Reynolds Building Drake Circus Plymouth PL4 8AA

CALCULATIONS	OUTPUT
SHENR CHECK	
$e \cdot Ded = \sqrt{zd}$ $bu \cdot Z$ $Ved = UO \cdot 275 kN$	
$= \frac{40.275 \cdot 10^3}{150 \cdot 148.72}$ $= 1.81 \text{ N/mm}^2$	
Alsu = zed x bw x S fynd x Cot O	
$= \frac{1.81 \times 120 \times 150}{435 \times 2.5}$	
· 3 H'8 liebs provide: 151 mm² > 30 mm²	
This signific that at the point of faiture shear links had more	
stand shear force applied.	

10.13 Un-cracked Section Deflection Calculations

P _{Total} in (kN)=	8	(kN)
Length (m)=	1.3	
a(m)=	0.35	
E=	3000000	
l=	0.00005625	
δ _{max} =	Variable	(mm)

Beam B1				
Experimental Load Applied (kN)	Actual Deflection Recorded by External Gauge (mm)	Predicted Deflection (mm)	Difference (mm)	%
4	0.11	0.10	0.01	4.6
8	0.18	0.18	0.01	4.9
12	0.25	0.26	0.01	5.3
16	0.36	0.34	0.02	4.9
20	0.48	0.42	0.06	12.2

P _{Total} in (kN)=	8	(kN)
Length (m)=	1.3	
a(m)=	0.35	
E=	30000000	
I=	0.00005625	
δ _{max} =	Variable	(mm)

Experimental Load Applied (kN)	Actual Deflection Recorded by External Gauge (mm)	Predicted Deflection (mm)	Difference (mm)	%
4	0.1	0.10	0.00	4.9
8	0.18	0.18	0.00	2.2
12	0.27	0.26	0.01	2.5
16	0.41	0.34	0.07	16.5
20	1.28	0.42	0.86	67.1

8	(kN)
1.3	
	-
0.35	
20000000	1
3000000	1
0.00005.035	7
0.00005625	1
Variable	(mm)
	1.3 0.35 3000000 0.00005625

Experimental Load Applied (kN)	Actual Deflection Recorded by External Gauge (mm)	Predicted Deflection (mm)	Difference (mm)	%
4	0.1	0.10	0.00	4.9
8	0.18	0.18	0.00	2.2
12	0.26	0.26	0.00	1.2
16	0.36	0.34	0.02	4.9
20	0.5	0.42	0.08	15.7

P _{Total} in (kN)=	8	(kN)
Length (m)=	1.3	
a(m)-	0.35	
a(m)=	0.35	
E=	30000000	
	3000000	1
I=	0.00005625	
δ _{max} =	Variable	(mm)

Beam B4				
Experimental Load Applied (kN)	Actual Deflection Recorded by External Gauge (mm)	Predicted Deflection (mm)	Difference (mm)	%
4	0.1	0.10	0.00	4.9
8	0.175	0.18	0.01	5.2
12	0.26	0.26	0.00	1.2
16	0.36	0.34	0.02	4.9
20	0.5	0.42	0.08	15.7

10.14 Cracked Section Deflection Calculations

x= 30.1 bii second moment of area of the cracked section Icr = bx^3/3+aeAS(d-x)^2	
$lcr = hx^3/3 + aabS(d-x)^2$	
b= 150 mm ae= 5.81 E= 50 N/mm2 Ec,eff=	8.61 kN/mm
As= 101	
d= 163	
Icr= 11723848.4 mm4	
biii Curvature Cracked Section	
(1/r)cr = M/Ec,eff lcr	
M= 15.25 kNm	
Ec,eff= 8.61 kN/mm2	
(1/r)cr = 1.51E-04 /mm	
c The Average of cracked and uncracked curvature	
ci Mcr= $f_{ctm}*(b_wh^2/6)$	
fctm= 2.8 N/mm2 or Mpa	
bw= 150 mm	
h2= 40000 mm2	
Mcr= 2.8 kNm	
cii $\epsilon = 1-\beta(Mcr/M)^2$	
β = 1 (assumed for a singe short-term load). Also for sustained loads or c	yclic loading is 0.5
ε = 0.966	
ciii $1/r= \epsilon(1/r)cr+(1-\epsilon)(1/r)uc$	
(1/r)uc= M/Ec,eff * Iuc	
luc= bd^3/12 b= 150 d= 200	
luc= bd^3/12 b= 150 d= 200	
luc= bd^3/12 b= 150 d= 200 luc= 10000000 mm4	

The deflection of the beam can be calculated from the total curvature using elastic bending theory which for small deflections is based on the expression:

$$M = \frac{EId^2y}{dx^2}$$

$$\frac{EIdy}{dx} = Mx + A$$

$$A - \text{constant of integration}$$

$$A + x = \frac{L}{2}\frac{dy}{dx} = 0$$

$$\therefore A = \frac{-ML}{2}$$

$$-EIy = \frac{Mx^2}{2} + Ax + B$$

$$B - \text{constant of integration}$$

$$-EIy = \frac{Mx^2}{2} - \frac{MLx}{2} + B$$
when $x = 0$ and $y = 0$

$$B = 0$$

$$y = \frac{M}{EI}\left(\frac{x^2}{2} - \frac{Lx}{2}\right)$$

Maximum Deflection Occurs at Midspan When $x = \frac{L}{2}$

$$y = -\frac{M}{EI} \left(\frac{L^2}{8}\right)$$

substitue $-\frac{M}{EI}$ with $\frac{1}{r}$ (refer to ciii)
 $y = \frac{1}{r} \left(\frac{L^2}{8}\right)$
 $y = 1.47 * 10^{-4} \left(\frac{1300^2}{8}\right)$

y = 31.0 mm

10.15 Transverse Steel Beam Deflection

Analysis undertaken using Two-Frame Structural Analysis software. (Deflection Units in mm; External Load in kN)

Graph 1 – Experimental Steel and BFRP Rebar Modulus of Elasticity.

Basalt Rebar Modulus of Elasticity:

$$E = \frac{Stress}{Strain} = \frac{400}{.0.0081} = 49383 MPa = 49.4 kN/mm^2$$

Steel Rebar Steel Modulus of Elasticity:

$$E = \frac{Stress}{Strain} = \frac{290}{.0.0014} = 207143 MPa = 207.1 kN/mm^2$$