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Appendices 

Appendix A – Literature Review 

Many early researchers (Volkersen, 1938; Goland & Reissner, 1944; Hart-Smith, 
1973; Adams & Peppiatt, 1974; Bigwood & Crocombe, 1990) have investigated the 
shear and out-of-plane tensile stress distributions within the adhesive layer for 
single-lap joints. From these studies, it is well know that due to loading eccentricity 
and differential straining of the substrates, the shear stress distribution in single-lap 
joints are typically non-uniform.   

Since these studies, other researchers (Cheng et al. 1991; Da Silva et al. 2006; 
Kwang-Soo Kima, 2006; de Morais et al. 2007; Kahraman et al. 2008; Lee et al. 
2009; Pereira et al. 2010; Reis et al. 2011; Asgari Mehrabadi & Ganguli, 2012; Pinto 
et al. 2014; Reis et al. 2011) have studied the influence of various manufacturing 
parameters on the shear behaviour in single-lap joints. Even though the majority of 
these studies examine the process of adhesive bonding, the configuration of the 
single-lap joint selected for evaluation of co-curing is similar to those used in 
adhesive bonding; hence, the information available on these joints is still applicable.  

In recent years, the effect of the co-curing manufacturing process has been studied. 
In the few related studies on co-cured single-lap joints (Shin et al. 2003; Kwang-Soo 
Kima, 2006; Matsuzaki et al. 2008a; Matsuzaki et al. 2008b; Tzetzis, 2012), much of 
the work is focused around surface pre-treatment and surface roughness. These 
studies report that surface pre-treatment is one of the most important parameters 
influencing joint strength. Pereira et al. (2010) found that joint strength increases with 
a decrease in surface roughness. 

Shin et al. (2003) studied co-cured single-lap joints using steel and carbon fibre-
epoxy composite adherends. Initial failure mechanism of the co-cured single-lap 
joints was analysed using stress distributions obtained from finite element analysis 
(FEA). It was found that out-of-plane tensile and shear stresses play an important 
role in the failure of the co-cured joints (Shin et al. 2003).  

Kwang-Soo Kima (2006) reports that the structural performance and reliability of the 
co-curing method is better than that of secondary bonding. However, in his study the 
joint strength of the co-cured single-lap joints was found to be lower than the 
secondary bonded ones, due to premature delamination failure. The same results 
were found in the study conducted by Seong et al. (2008) who studied composite-to-
composite single-lap joints. It was found that joint strength increases with adherend 
thickness (Seong et al. 2008). In the study conducted by Kwang-Soo Kima (2006), 
progressive failure of the adhesive layer and early crack growth delays delamination 
failure in the secondary bonded specimens. It was also found that as surface 
roughness and bondline thickness decreases, joint strength increases (Kwang-Soo 
Kima, 2006). Other studies (Bigwood & Crocombe, 1990; Kwang-Soo Kima, 2006; 
Da Silva et al. 2006; Kahraman et al. 2008) report similar results. 

 

 

 



To simplify the manufacturing process and improve joint strength, Matsuzaki et al. 
(2008a), proposed a bolted/co-cured hybrid joining method for joining metal-to-
composite joints. The method combines co-curing and bolted joints without 
damaging reinforcing fibres in the composite adherend. It was found that the hybrid 
joints initially experience adhesive failure and then the hybrid joint behaves as a 
bolted joint until joint failure (Matsuzaki et al. 2008a). The hybrid joints were found to 
improve joint strength in comparison to the co-cured joints. However, the method 
uses several bolts to enhance fracture toughness, and this is problematic in terms of 
weight saving design. Matsuzaki et al. (2008b) proposed a novel method for 
reinforcing metal-to-composite co-cured joints using inter-adherend (IA) fibres. It was 
shown that the IA fibre performs as a bridge and suppresses crack propagation, and 
as a consequence, the displacement to failure and static strength are significantly 
increased (Matsuzaki et al. 2008b). 

In a recent study on co-cured single-lap joints, Tzetzis (2012) investigated the 
mechanisms that govern adhesion using surface profilometry, contact angle and 
surface energy measurements, X-ray photoelectron spectroscopy (XPS) and 
scanning electron microscopy. It was found that removal of internal contamination of 
the bonded surfaces, increased bonding ability. It was also shown that joint strength 
is not proportional to the adhesion strength of the bulk adhesive, but failure dictated 
by the interlaminar shear strength of the composite part, which coincides with the 
literature reported by Kwang-Soo Kima (2006) and Seong et al. (2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B – Material Properties 

 

 

 

 

 

 

Material Property Value Units

Structural Epoxy Adhesive

Elastic Modulus 2415 MPa

Poisson's Ratio 0.35 N/A

Mass Density 1100 kg/m^3

Tensile Strength 28 MPa

Compressive Strength 104 MPa

Thermal Conductivity 0.188 W/(m·K)

Epoxy/E-Glass Fiber, 0/90 Woven Fabric Lamina

Elastic Modulus in X 37722.18 MPa

Elastic Modulus in Y 37722.18 MPa

Elastic Modulus in Z 9132.38 MPa

Poisson's Ratio in XY 0.2663 N/A

Poisson's Ratio in YZ 0.2663 N/A

Poisson's Ratio in XZ 0.4273 N/A

Shear Modulus in XY 3357.48 MPa

Shear Modulus in YZ 3199.55 MPa

Shear Modulus in XZ 3357.75 MPa

Mass Density 1937.6 kg/m^3

Tensile Strength in X 1075 MPa

Tensile Strength in Y 1075 MPa

Compressive Strength in X 725 MPa

Compressive Strength in Y 725 MPa

Shear Strength in XY 88.47 MPa

Yield Strength 1075 MPa

1050 H19 Aluminium Alloy

Elastic Modulus 69000 MPa

Poisson's Ratio 0.325 N/A

Shear Modulus 25000 MPa

Mass Density 2680 kg/m^3

Tensile Strength 166 MPa

Compressive Strength 157 MPa

Yield Strength 157 MPa



Appendix C – Surface Roughness Methodology and Experimental Results 

 

 

 

 

 

 

 

 

 

 

 

Appendix D – Typical Load/Extension Curve 

 

Specimen Sample SRp (µm) SRv (µm) SRz (µm) SRa (µm) SRq (µm)

Average 28.36 31.67 60.03 3.95 5.91

Max 31.60 35.19 66.04 4.45 6.57

Mechanically Blasted Min 24.87 28.59 54.04 3.48 5.23

Range 6.73 6.60 12.00 0.97 1.34

S.d 2.87 2.65 4.91 0.41 0.55

Average 13.58 14.86 28.45 2.30 3.34

Max 16.34 16.01 32.19 2.58 3.78

Mechanically Abraded Min 11.40 13.59 25.12 1.97 2.89

Range 4.94 2.41 7.07 0.61 0.89

S.d 2.13 0.96 2.96 0.25 0.35

Delamination 



Appendix E - Statistical Methodology 

Winsorizing of raw data  

Prior to mean testing, sample outliers were investigated by identifying sample 
maximum and minimum values within each dataset. For each sample, a Lilliefors 
normal distribution test was conducted at the 1% significance level, in order to 
determine the normality of the data. Two-sample F-tests were then conducted to 
clarify if the variances of the original and winsorized data are equal. 

After clarifying the normality and population variance of each sample, two-sample t-
tests were further conducted in order to compare the means between the original 
and winsorized data. Acceptance of the null hypothesis, indicates that the data in the 
two samples comes from independent random samples and normal distributions, 
with equal means and equal but unknown variances. The alternative hypothesis is 
that the data between the samples comes from populations with unequal means. A 
result of h=1 rejects the null hypothesis at the 1% significance level, and 0 otherwise. 

Finally a box-and-whisker plot for all samples were generated and mean 
comparisons expressed as a percentage were calculated. From these results and 
the statistical analysis any noticeable outliers were identified and eliminated from the 
forthcoming analysis. 

Two-sample testing 

Statistical analysis 1 to 6 shown in Table 3.1 were analysed using two-sample t-tests 
in MATLAB R2015b. Statistical analysis 1 to 4 investigates the influence of the 
bonding process (i.e. co-curing vs. adhesive bonding) on the tensile lap-shear 
strength for a composite adherend thickness of 20, 15 and 10 plies respectively. 
Within analysis 1 to 3, all samples were prepared by mechanical abrasion. In 
statistical analysis 4, the influence of the bonding process is compared when 
specimens are prepared by mechanical blasting. The influence of surface 
preparation is later studied in analysis 5 and 6 for both bonding processes.  

For two-sample statistical hypothesis testing, two-sample F-tests were firstly 
conducted to determine if the variances of the two samples are equal at the 1% 
significance level. For the tests involving populations with equal variance, two-
sample t-test were then conducted. This method of statistical testing clarifies whether 
the two independent samples come from populations with equal or unequal means. 
A large p-value indicates that the difference between sample means is insignificant, 
hence the tensile lap-shear strengths are similar and the null hypothesis is accepted, 
h=0. A small p-value indicates that difference between sample means is significant, 
hence the tensile lap-shear strengths are not the same and this suggests rejection of 
the null hypothesis, h=1. For additional confirmation, the degree of overlap in a 
boxplot comparison was used to confirm these results. 

 

 

 



For the tests involving populations with unequal variance, unequal two-sample t-test 
were conducted at the 1% significance level. For further validation, log 
transformation testing was conducted. Taking the log transformation improves the 
stability and linearity of the populations by reducing skewness, this additionally 
eliminates any bias from the analysis. Using the log transformation data, once again 
two-sample F-tests for equal variance and two-sample t-tests were conducted to 
validate results. Finally, for populations with unequal variance, non-parametric 
Kruskal-Wallis tests are performed to assess one-way analysis of variance 
(ANOVA).  

Three-sample testing 

Three-sample tests (Statistical Analysis 7 to 11) shown in Table 3.1 were conducted 
by means of one-way ANOVA statistical hypothesis testing. But firstly, for each 
analysis, Bartlett's test for homogeneity of variances (homoscedastic) was conducted 
to estimate whether more than two groups are homoscedastic. A large p-value 
indicates acceptance of the null hypothesis that the samples come from normal 
distributions with the same variance. The alternative hypothesis is that at least two of 
the data samples do not have equal variances. 

One-way ANOVA and multiple comparison mean testing was finally conducted in 
order to determine which pairs of group means are significantly different. Small p-
values indicate that the differences between sample means are significant, and this 
suggests rejection of the null hypothesis. Large p-values favour the null hypothesis 
and suggest that the difference between sample means are insignificant.  

Further comparisons using multiple comparison of means allows for clarification as 
to which sample means are different, as performing multiple two-sample t-tests to 
determine which pairs of means are significantly different would be highly inefficient. 
From this test, combinations involving confidence intervals that do not include zero 
and small corresponding p-values, indicate that the differences in means are 
significant and the null hypothesis is rejected. Conversely, for combinations involving 
confidence intervals that include zero, and large corresponding p-values, the null 
hypothesis cannot be rejected. Confidence interval graphical plots were finally used 
to validate these results. 

 

 

 

 

 

 

 



 

Appendix F - Statistical Results - Winsorizing of Raw Data 

Lilliefors Normal Distribution Test 

 

Two-sample F-test for Equal Variance 

 

 

 

 

 

Sample Number

kstat critval p h

A 0.1409 0.3326 0.5000 0

B 0.1709 0.3326 0.5000 0

C 0.1461 0.3326 0.5000 0

D1 0.0000 0.3171 0.3074 0

D2 0.0000 0.3034 0.3872 0

D3 0.0000 0.3326 0.0211 0

E1 0.1191 0.3034 0.5000 0

E2 0.1072 0.3034 0.5000 0

E3 0.0000 0.3034 0.1562 0

F1 0.1321 0.3034 0.5000 0

F2 0.1545 0.3034 0.5000 0

F3 0.1592 0.3034 0.5000 0

G1 0.3046 0.3171 0.0165 0

G2 0.1653 0.3326 0.5000 0

Lilliefors Normal Distribution Test

Sample Number

p h

A 0.6070 0

B 0.4446 0

C 0.1781 0

D1 0.6980 0

D2 0.1556 0

D3 0.0064 1

E1 0.6990 0

E2 0.4457 0

E3 0.8288 0

F1 0.5666 0

F2 0.7222 0

F3 0.4167 0

G1 0.5441 0

G2 0.6034 0

Two-sample F-test for Equal Variance



 

Two-sample t-test 

 

Mean Comparisons (% Difference) 

 

 

 

 

 

 

 

Sample Number

ci1 ci2 p h

A -0.9691 0.9381 0.9613 0

B -0.5831 0.6547 0.8628 0

C -0.2591 0.2409 0.913 0

D1 -2.5062 2.5158 0.9955 0

D2 -1.3478 1.4891 0.8862 0

D3 (unequal) -1.5352 2.3504 0.5064 0

E1 -1.6964 1.7342 0.9747 0

E2 -1.484 1.3931 0.9276 0

E3 -1.6947 1.7329 0.9744 0

F1 -2.0441 2.0783 0.981 0

F2 -1.76 1.7568 0.9979 0

F3 -1.9446 1.823 0.926 0

G1 -0.522 0.4486 0.825 0

G2 -1.0448 1.1333 0.9033 0

Two-sample t-test

Sample Number Mean Test 1 (MPa) Mean Test 2 (MPa) Percentage Difference (%) Outlires

A 5.1574 5.1729 0.3000

B 2.8348 2.7990 -1.2620

C 2.4101 2.4192 0.3788

D1 5.7278 5.7229 -0.0845

D2 5.9332 5.8626 -1.1905

D3 3.0927 2.6852 -13.1783 D3.9

E1 5.5238 5.5049 -0.3420

E2 4.3708 4.4162 1.0397

E3 4.2748 4.2558 -0.4466

F1 4.0564 4.0393 -0.4213

F2 3.0857 3.0873 0.0513

F3 4.5829 4.6437 1.3273

G1 11.1599 11.1967 0.3292

G2 7.9725 7.9283 -0.5548



 

Appendix G - Statistical Results - Two-sample Testing 

Two-sample F-test for Equal Variance 

 

Two-sample F-test for Equal Variance (Log Transformation Data) 

 

Two-sample t-test 

 

Two-sample t-test (Log Transformation Data) 

 

Kruskal-Wallis Test 

 

 

Analysis Test Number

Sample 1 Sample 2 p h

1 A  D2 0.0970 0

2 B E2 0.0146 0

3 C F2 2.2910E-05 1

4 G1 G2 0.0652 0

5 G1 F2 0.0010 1

6 G2 C 0.0017 1

Two-sample F-test for Equal VarianceSample Combination

Analysis Test Number

Sample 1 Sample 2 p h

3 C F2 0.0001 1

5 G1 F2 2.1146E-08 1

6 G2 C 0.6847 0

Sample Combination Two-sample F-test for Equal Variance (Log Transformation Data)

Analysis Test Number

Sample 1 Sample 2 ci1 ci2 p h

1 A  D2 -2.1679 0.6164 0.1231 0

2 B E2 -2.8002 -0.2718 0.0027 1

3 (unequal) C F2 -2.0577 0.7064 0.1491 0

4 G1 G2 2.3894 3.9855 5.6322E-09 1

5 (unequal) G1 F2 6.6869 9.4615 3.0820E-09 1

6 (unequal) G2 C 4.6756 6.4492 3.1916E-08 1

Sample Combination Two-sample t-test

Analysis Test Number

Sample 1 Sample 2 ci1 ci2 p h

3 (unequal) C F2 -0.6549 0.3556 0.3661 0

5 (unequal) G1 F2 0.8802 1.8900 8.8327E-06 1

6 (unequal) G2 C 1.0708 1.3199 1.3344E-13 1

Two-sample t-test (Log Transformation Data)Sample Combination

Analysis Test Number Kruskal-Wallis Test

Sample 1 Sample 2 p

3 (unequal) C F2 0.4239

5 (unequal) G1 F2 0.0002

6 (unequal) G2 C 0.0008

Sample Combination



 

Two-sample Mean Comparisons 

 

 

Appendix H - Statistical Results – Three-sample Testing 

Bartlett's Test for Homogeneity of Variance 

 

One-way ANOVA 

 

Multiple Comparison Mean Tests 

 

 

Analysis Test Number Percentage Increase (%)

Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 vs. 2

1 A  D2 5.1574 5.9332 15.0418

2 B E2 2.8348 4.3708 54.1856

3 C F2 2.4101 3.0857 28.0336

4 G1 G2 11.1599 7.9725 39.9802

5 G1 F2 11.1599 3.0857 261.6617

6 G2 C 7.9725 2.4101 230.7958

Sample Combination Mean Comparison (MPa)

Analysis Test Number

Sample 1 Sample 2 Sample 3 Bartlett's Statistic p h

7 A B C 8.4272 0.0148 1

8 D2 E2 F2 0.2000 0.9048 0

9 D1 D2 D3 5.6238 0.0601 1

10 E1 E2 E3 0.1560 0.9249 0

11 F1 F2 F3 0.3062 0.8580 0

Sample Combination Bartlett's Test

Analysis Test Number

Sample 1 Sample 2 Sample 3 F-statistic p h

7 A B C 85.9376 7.7250E-11 1

8 D2 E2 F2 13.1669 0.0001 1

9 D1 D2 D3 15.5932 3.1500E-05 1

10 E1 E2 E3 3.0664 0.0631 0

11 F1 F2 F3 2.5587 0.0960 0

Sample Combination One-way ANOVA

Sample 1 Sample 2 ci1 Diff in Means ci2 p

C B -0.9933 -0.4247 0.1440 0.1685

C A -3.3160 -2.7473 -2.1787 1.1496E-09

B A -2.8913 -2.3227 -1.7540 4.3976E-09

Statistical Analysis 7

Sample Comparisons Multiple Comparison Mean Test

Sample 1 Sample 2 ci1 Diff in Means ci2 p

F2 E2 -2.6630 -1.2851 0.0929 0.0711

F2 D2 -4.2254 -2.8475 -1.4695 6.3253E-05

E2 D2 -2.9404 -1.5624 -0.1844 0.0239

Statistical Analysis 8

Sample Comparisons Multiple Comparison Mean Test



 

 
 

 

Three-sample Mean Comparisons 

 

Sample 1 Sample 2 ci1 Diff in Means ci2 p

D1 D2 -2.7324 -0.7782 1.1759 0.5909

D1 D3 1.4084 3.3625 5.3167 6.1965E-04

D2 D3 2.1866 4.1408 6.0949 4.4682E-05

Statistical Analysis 9

Sample Comparisons Multiple Comparison Mean Test

Sample 1 Sample 2 ci1 Diff in Means ci2 p

D1 D2 -0.2387 1.1529 2.5446 0.1187

D1 D3 -0.1428 1.2489 2.6406 0.0849

D2 D3 -1.2957 0.0960 1.4877 0.9840

Statistical Analysis 10

Sample Comparisons Multiple Comparison Mean Test

Sample 1 Sample 2 ci1 Diff in Means ci2 p

F1 F2 -0.6942 0.9706 2.6355 0.3325

F1 F3 -2.1913 -0.5265 1.1383 0.7158

F2 F3 -3.1620 -1.4971 0.1677 0.0841

Analysis Test Number 11

Sample Comparisons Multiple Comparison Mean Test

Analysis Test Number

Sample 1 Sample 2 Sample 3

7 A B C

8 D2 E2 F2

9 D1 D2 D3

10 E1 E2 E3

11 F1 F2 F3

Analysis Test Number

Sample 1 Sample 2 Sample 3

7 5.1574 2.8348 2.4101

8 5.9332 4.3708 3.0857

9 5.7278 5.9332 2.5606

10 5.5238 4.3708 4.2748

11 4.0564 3.0857 4.5829

Analysis Test Number

Sample 1 vs. 2 Sample 2 vs. 3 Sample 3 vs. 1

7 81.9352 17.6205 113.9930

8 35.7465 41.6454 92.2787

9 3.5871 131.7102 123.6864

10 26.3785 2.2446 29.2152

11 31.4557 48.5180 12.9795

Percentage Increase (%)

Mean Comparison (MPa)

Sample Combination



Appendix I - Manufacturing Standard Combination Table 

Adhesive Bonding Process 

 

Co-curing Process 

 



Appendix J – Mean (x̄) Statistical 

Process Control (SPC) Charts 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix K - Test Statistics 

 

The Lilliefors test statistic (𝑫∗) is: 

𝐷∗ = 𝑚𝑎𝑥 | �̂�(𝑥) − 𝐺(𝑥)| 

where �̂�(𝑥) is the empirical cumulative distribution function (CDF) of the sample data 
and  𝐺(𝑥) is the CDF of the hypothesised distribution with estimated parameters 
equal to the sample parameters. 

 

For the two-sample F-tests, the test statistic is: 

𝐹 =  
𝑠1

2

𝑠2
2
 

where 𝑠1 and 𝑠2 are the sample standard deviations. The test statistic (F) is a ratio of 
the two sample variances.  

 

The two-sample t-test, test statistic (t) is: 

𝑡 =  
�̅� −  �̅�

√𝑠1
2

𝑛 + 
𝑠2

2

𝑚

 

where �̅� and �̅�  are the sample means, 𝑠1 and 𝑠2 are the sample standard deviations, 
and n and m are the sample sizes.  

 

Within Bartlett's test for homogeneity of variance, the test statistic (T) is: 

 

𝑇 =  
(𝑁 − 𝑘) 𝑙𝑛(𝑠𝑝

2) −  ∑ (𝑁𝑖
𝑘
𝑖=1 −  1) ln (𝑠𝑖

2) 

1 + (
1

3(𝑘 − 1)
) ((∑ 1/(𝑁𝑖

𝑘
𝑖=1 −  1)) − 1/(𝑛 − 𝑘)) 

 

 

where 𝑠𝑖 is the variance of the ith group, N is the total sample size, 𝑁𝑖 is the sample 

size of the ith group, k is the number of groups, and 𝑠𝑝
2 is the pooled variance. The 

pooled variance is defined as: 

𝑠𝑝
2 =  ∑(𝑁𝑖 − 1)𝑠𝑖

2/(𝑁 − 𝑘)

𝑘

𝑖=1

 

 



The test statistic has a chi-square distribution with k – 1 degrees of freedom under 
the null hypothesis. 

Test statistics obtained from ‘The MathWorks Inc, (2016)’. 

 


