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Abstract
We present an overview of large numbers within mathematics and computing. Par-
ticular emphasis is put on the problem of large number notation in the mathematical
attempt to get closer to infinity.

1 A Brief History

In mathematics, the notion of ‘large numbers’ is associated with large positive integers
that are not ordinarily used in everyday activities such as simple counting or monetary
transactions [1].

In ancient times numbers were believed to have significant power, and naming
large numbers was considered to be a mark of authority. This goes back to Greek
philosophers from the school of Pythagoras (their motto was “all is a number”) who
identified numbers they considered to be linked with creation, thus representing build-
ing blocks of the universe. People believed that knowing the name of a large number
gave you power over that number and then, in turn, gave you power over nature [2, p.
30–38].

According to Buddhist tradition, Gautama Buddha (583-483 BC) [3] named a
whole series of numbers. He started with one million and worked upwards, reach-
ing numbers comparable with the googol (1× 10100), numbers which in isolation have
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little practical use, but demonstrated his command over the impossibly large [2, p.
30–38].

It is known that the ancient Indians had a passion for working with exceptionally
large numbers, naming each of the powers of 10 up to 1062. They also introduced
the concept of infinity. An ancient Indian book, named Surya Prajnapti (dating back
to 300-400 BC) contains definitions of how they classified all the real numbers [4].
There were three separate categories, one of them being infinite numbers. The latter
were divided into nearly infinite, truly infinite and infinitely infinite [5].

2 The Sand-Reckoner

The earliest known application of large numbers was used in the calculation of the
number of grains of sand on a beach by Archimedes in 287-212 BC, where he
invented an equivalent to our use of powers of 10 for calculating large numbers.
Archimedes named his paper “The Sand Reckoner”, and in it he set out to deter-
mine the upper bound for the number of grains of sand that could fit into the ‘known’
universe [6].

2.1 Powers of 10

The ancient Greeks used a system based on a myriad, which is equal to 10,000.
Their largest named number at the time was a myriad myriads, equal to 100,000,000,
which is nowhere near large enough to calculate the grains of sand on a beach [4].

Archimedes denoted all numbers x less than or equal to a myriad myriads as
being of ‘first order’:

x ≤ Ω = 10, 000× 10, 000 = 108. (1)

Numbers of second order were therefore all x obeying:

x ≤ Ω2 = 108 × 108. (2)

He continued this pattern up to the order of a myriad:

x ≤ ΩΩ = 10800,000,000 . (3)

In general he stated:

“If there be any number of terms of a series in continued proportion, say A1, A2,
A3, . . ., Am, . . ., An, . . ., Am+n−1, . . . of which A1 = 1, A2 = 10 [so that the series forms
the geometrical progression 1, 101, 102, . . . , 10m−1, . . . , 10n−1, . . ., 10m+n−2, . . .], and if
any two terms as Am,An be taken and multiplied, the product Am×An will be a term in
the same series and will be as many terms distant from An, as Am is distant from A1;
also it will be distant from A1 by a number of terms less by one than the sum of the
numbers of terms by which Am and An, respectively are distant from A1” [7].
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2.2 Size of the Universe

Archimedes estimated the size of the universe by modelling it as a sphere whose
centre is the centre of the earth and whose radius is equal to the straight line between
the centre of the sun and the centre of the earth (nowadays called the astronomical
unit). To be on the safe side, he then deliberately overestimated this size by using
then known relationships between the size of the moon, the earth and the sun [8].
This was done to take into account views like those of Aristarchus, who believed the
sun to be the centre of the universe and the universe to extend vastly beyond the
astronomical unit [7].

By taking the size of sand grains to be no larger than that of a poppy seed (equiv-
alent to 1/40 of a finger breadth), Archimedes showed that it would take, in modern
notation, 8 × 1063 grains of sand to fill his model universe [8]. In doing so he also
proved, of course, that there was an upper bound on the number of grains on a
beach.

3 The Googolplex

In 1938, the nine year old nephew of mathematician E. Kasner described 10100 as
looking like a ‘googol’ and this name stuck [2, p.13]. Later, the number “one followed
by writing zeroes until you get tired” was more formally named a googolplex and, as
“different people get tired at different times” [9], was given the value of

10googol = 1010
100

= 1 googolplex . (4)

It is physically impossible to write down the number googolplex because it would
require more space than is available in the known universe given that it contains
about 1080 elementary particles. To do so would also take more time than the age of
the universe. If one (naively) assumes that Moore’s law (that computer power doubles
every 18 months [10]) will continue to hold during the next few centuries, a computer
will be able to store a googgolplex of bytes in about 500 years. As illustrated by this
example, there is currently no specific use for the googolplex.

4 Prime Numbers in Computing and Cryptography

Although large numbers at first may seem rather useless, some of them have recently
made an appearance in ‘everyday life. These are the large prime numbers used for
cryptography.

Recall that a prime number is any number greater than unity with the property of
its only divisors being the number itself and one. The ancient Greeks already proved
that there are an infinite number of primes, so there is no upper limit on their magni-
tude. Through the centuries mathematicians have been calculating larger and larger
primes and continue to do so with the aid of modern computers. Any newly found
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large prime might be of use for current and future encryption technology.

The distribution of prime numbers has occupied number theorists over the cen-
turies and is still not too well understood. Many questions of prime number theory
remain unanswered to this day, among them the famous Riemann conjecture [11].
As an example we show in Fig. 1 the pattern arising from highlighting the primes in
a variant of Ulam’s prime spiral [12] where all integers are successively aligned on a
spiral emanating from the origin.

Figure 1: A variant of Ulam’s prime spiral [12].

We said above that large primes are crucial for modern encryption. For example,
when you log into your e-mail account via a browser, the “s” at the end of “https” in
the web address stands for ‘secure’, which means that your emails are being encoded
using SSL software. This uses public key encryption involving large prime numbers
[13].

The basic idea for encryption with large primes relies on the fact that it is easy
to multiply two numbers together but a lot harder to find the factors of a number. If
we had a number that was 400 digits long, then two possible factors could each have
about 200 digits. Assuming that a computer could test one million factorisations per
second, then it could check 1024 possibilities in the time equivalent to the age of the
universe. However, for a 400 digit number there are 10200 possibilities and this is
where our large prime numbers come in handy.

The method is as follows: Two very large prime numbers p and q (each over 200
digits long) need to be picked to become the private key. They must be kept secure.
The two primes are then multiplied together to get N = pq and N is now the public key.
This is the part that is given to anyone who wants to send a message. If the public
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key was to be intercepted, it would be nearly impossible to find the private keys, p and
q, from this one number because there is no known way of finding the factors of such
a large number in reasonable time. The largest factored number to date is 232 digits
long, so encryption with 200 digit factors should be safe.

As of this writing, the largest known prime contains 17,425,170 digits and was
found in February 2013 [14]. This special prime number is in the form of a Mersenne
Prime (Mn = 2n − 1) and takes the value of

M57,885,161 = 257,885,161 − 1. (5)

In what follows we will push the limits further and discuss numbers compared to which
the large primes above are relatively small.

5 Ackermann’s Function

Figure 2: Wilhelm Ackermann,1896-1962 [15].

In computability theory one defines primitive recursive functions as maps between
non-negative integers employing only the operations of recursion and composition.
For a more precise definition one requires the axioms that (i) the constant function
n 7→ 0, (ii) the successor function n 7→ n + 1 and (iii) the projection (1, . . . , n) 7→ i
(1 ≤ i ≤ n) are all primitive recursive [16].

In the 1920’s Wilhelm Ackermann (Fig. 2), a German PhD student of David Hilbert,
was studying the foundations of computation. In 1928, he published a paper with the
title (translated into English) ‘On Hilbert’s Construction of the Real Numbers’ [17]
in which he introduced a function (now called Ackermann’s function) that was not
primitive recursive.

Ackermann’s function is denoted ϕ(a, b, n) and can be specified as follows [18]:

n = 0 : ϕ (a, b, 0) = a + b , (6)
n = 1 : ϕ (a, b, 1) = a × b , (7)
n = 2 : ϕ (a, b, 2) = ab . (8)
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As n increases (n ≥ 2),ϕ can be represented by the recursion

ϕ(a, b, n) = ϕ(a,ϕ(a, b − 1, n), n − 1) . (9)

For n > 2 the Ackermann function rapidly becomes very hard to evaluate, so over time
the original Ackermann function was replaced by simpler functions of two arguments.
The most common modification is due to Péter and Robinson, often referred to as
the Péter-Ackermann function and denoted A(m, n) [18]. It is defined through the
recursion

A(m, n) =


n + 1 if m = 0

A(m − 1, 1) if m > 0 and n = 0

A(m − 1,A(m, n − 1)) if m > 0 and n > 0

(10)

As this Ackermann function has a 2 variable argument, it can be represented in a
table to display its rapid increase [18]:

A(m, n) values
m/n 0 1 2 3

0 1 2 3 4
1 2 3 5 5
2 3 5 7 9
3 5 13 29 61

4 22
2 − 3 22

22 − 3 22
22

2

− 3 22
22

22

− 3

To appreciate the rapid growth of A(m, n) one notes that A(4, 0) = 13 and A(4, 1) =
65, 533, while A(4, 2) already has over 19,700 digits so is unprintable here.

Since only a few Ackermann numbers can be written in standard base-10 notation,
new methods of notation had to be created in order to represent the higher values.
An example is Knuth’s up-arrow notation which is our next topic.

6 Knuth’s up-arrow notation

In 1976, the American computer scientist Donald Knuth introduced his ‘up-arrow’ no-
tation (↑) as a method of writing extremely large numbers. The idea behind the nota-
tion is that multiplication can be seen as iterated addition,

a × b = a + a + . . .+ a (b times), (11)

while powers can be seen as iterated multiplication,

ab = a × a × . . .× a (b times). (12)
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Hence the notation can be summarised by the recursion

a ↑n b =


a × b if n = 0

ab if n = 1

1 if b = 0

a ↑n−1 (a ↑n (b − 1)) otherwise.

(13)

Here n is the number of arrows present and the notation is always right-associative
[19]. The notation is closely linked to the Ackerman function and many discussions of
the latter will include this notation. One finds, in particular [18],

A(m, n) = 2 ↑m−2 (n + 3)− 3 . (14)

To illustrate the use of Knuth’s up-arrow notation we present a worked example:

2 ↑↑ 3 = 2 ↑ (2 ↑2 2) = 2 ↑ (2 ↑↑ 2)
= 2 ↑ (2 ↑ (2 ↑↑ 1))

= 2 ↑ (2 ↑ (2 ↑ (2 ↑↑ 0)))
= 2 ↑ (2 ↑ (2 ↑ 1))

= 2 ↑ (2 ↑ 2)
= 2 ↑ 4

= 24 (15)

7 Graham’s Number

Alongside the Ackermann function, Knuth’s up-arrow notation has also been used
to represent Graham’s number G [20], which we want to discuss briefly as a final
extreme. Graham’s number is unimaginably bigger than all other numbers we have
discussed so far including the googolplex (10googol). To express Graham’s number
in words, it is simply a power tower of three’s 7,625,597,484,987 stages high. It is
physically impossible to have a digital representation of Graham’s number because
the observable universe is too small to hold its digits – even if one was ‘written’ into
every Planck cell in the universe. However, it can be described using Knuth’s up-arrow
notation in the form

G = 3 ↑↑ . . . ↑ 3 (16)

It remains to represent the number of up-arrows. This can be done as follows using
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‘layers’ [20]:

3 ↑↑ . . . . . . ↑︸ ︷︷ ︸ 3
3 ↑↑ . . . .. ↑︸ ︷︷ ︸ 3

G = 3 ↑↑ . . . . ↑︸ ︷︷ ︸ 3
3 ↑↑ .. ↑︸ ︷︷ ︸ 3
3 ↑↑↑↑ 3


64 Layers (17)

A simple recursion for this is G = g64 with g1 = 3 ↑↑↑↑ 3 and gn = 3 ↑gn−1 3.

8 Discussion and Conclusion

This report has explored a range of notations and uses for large numbers within math-
ematics and computing. We have followed the development of large number notation
from the first powers of ten used by Archimedes’ sand-reckoner to Knuth’s up-arrow
notation.

While finding or describing large numbers today commands less respect than in
ancient times, it still remains a worthwhile enterprise. Large primes, once thought
to be completely irrelevant for practical applications, have become a tool for modern
encryption. It may very well be that large numbers such as Ackermanns’ or Graham’s
will find similar uses in digital, or other, environments.
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