2015

Heat and mass transfer during the sump development in a potash solution mine

Ellard, O.

http://hdl.handle.net/10026.1/14084

The Plymouth Student Scientist
University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Appendix A: Derivation of Rectangular Interior Node

\[
\frac{\partial^2 T}{\partial x^2} = \frac{T_2 + T_4 - 2T_0}{a^2} \]

\[
\frac{\partial^2 T}{\partial y^2} = \frac{T_1 + T_3 - 2T_0}{b^2} \]

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{\frac{T_2 + T_4 - 2T_0}{a^2} + \frac{T_1 + T_3 - 2T_0}{b^2}}{} \]

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{b^2(T_2 + T_4 - 2T_0) + a^2(T_1 + T_3 - 2T_0)}{b^2a^2} \]

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{b^2(T_2 + T_4) + a^2(T_1 + T_3) - 2T_0(b^2 + a^2)}{b^2a^2} \]

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \text{ Therefore;} \]

\[
b^2(T_2 + T_4) + a^2(T_1 + T_3) - 2T_0(b^2 + a^2) = 0 \]

\[
T_0 = \frac{b^2(T_2 + T_4) + a^2(T_1 + T_3)}{2(b^2 + a^2)} \]
Appendix B: FDM Equations for Rectangular Nodes

Interior Nodes

\[T_0 = \frac{b^2(T_2 + T_4) + a^2(T_1 + T_3)}{2(b^2 + a^2)} \]

Isothermal Boundary Layer

\[T_0 = \left(\frac{T_1}{2} + T_2 + \frac{T_3}{2} + \frac{ha}{\lambda} T_f\right) \frac{1}{2 + \frac{ha}{\lambda}} \]
External Corner Node

\[T_0 = \left(\frac{T_a}{2} + \frac{T_b}{2} + \frac{ha}{\lambda} T_r \right) \frac{1}{1 + \frac{ha}{\lambda}} \]

Appendix C: Depth Calculation

\[y = 5e-6x^2 + 0.0031x + 292.67 \]

When \(y = 328 \)

\[328 = 5e-6x^2 + 0.0031x + 292.67 \]

\[0 = 5e-6x^2 + 0.0031x - 35.33 \]

Using the quadratic equation:

\[x = \frac{-0.0031 + \sqrt{(0.0031)^2 - (4 \cdot 5e-6 \cdot -35.33)}}{2 \cdot 0.0031} \]

\[x = 2366.21 \text{ m} \]
Appendix D: Equating of Heat Transfer Equations

\[\dot{Q} = h\Delta T_{SL} \alpha c \]

\[T_b = T_t - \frac{\dot{Q} \Delta z}{\rho C_p uV} \]

therefore \[\dot{Q} = \frac{\Delta T_{tb} \rho C_p uV}{\Delta z} \]

Equating the two equations gives;

\[\frac{\Delta T_{tb} \rho C_p uV}{\Delta z} = h\Delta T_{SL} \alpha c \]

\[\frac{\Delta T_{tb} \rho C_p uV}{\Delta z h\alpha c} = \Delta T_{SL} \]
Appendix E: Fluid Properties

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Density (kg/m³)</th>
<th>Prandtl Number</th>
<th>Thermal Conductivity (W/mK)</th>
<th>Viscosity (pa.s)</th>
<th>Specific Heat Capacity (J/kgK)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1000</td>
<td>9.29</td>
<td>0.59</td>
<td>0.001002</td>
<td>4193</td>
<td>Haywood, 1990</td>
</tr>
<tr>
<td>Brine</td>
<td>1076.8</td>
<td>9.29</td>
<td>0.59</td>
<td>0.001002</td>
<td>4193</td>
<td>Haywood, 1990 and Lide, 2004</td>
</tr>
<tr>
<td>Diesel</td>
<td>820.8</td>
<td>27.74</td>
<td>0.14</td>
<td>0.012</td>
<td>1914.21</td>
<td>Chemical Hazards Response System, cited in Zen-Stoves, 1999</td>
</tr>
<tr>
<td>Gasoline</td>
<td>704.01</td>
<td>6.68</td>
<td>0.88</td>
<td>0.00041</td>
<td>2055.72</td>
<td>Chemical Hazards Response System, cited in Zen-Stoves, 1999</td>
</tr>
<tr>
<td>Naphtha</td>
<td>849.94</td>
<td>73.13</td>
<td>0.15</td>
<td>0.0055</td>
<td>2001.29</td>
<td>Chemical Hazards Response System, cited in Zen-Stoves, 1999</td>
</tr>
<tr>
<td>Kerosene</td>
<td>793.87</td>
<td>17.22</td>
<td>0.13</td>
<td>0.0011</td>
<td>1963.61</td>
<td>Chemical Hazards Response System, cited in Zen-Stoves, 1999</td>
</tr>
</tbody>
</table>
All properties taken at 20°C and 12% KCl by mass in water.