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Abstract: In recent years, enterprise applications have begun to migrate from a local hosting to a 

cloud provider and may have established a business-to-business relationship with each other 

manually. Adaptation of existing applications requires substantial implementation changes in 

individual architectural components. On the other hand, users may store their Personal Identifiable 

Information (PII) in the cloud environment so that cloud services may access and use it on demand. 

Even if cloud services specify their privacy policies, we cannot guarantee that they follow their 

policies and will not (accidentally) transfer PII to another party. In this paper, we present 

Identity-as-a-Service (IDaaS) as a trusted Identity and Access Management with two requirements: 

Firstly, IDaaS adapts trust between cloud services on demand. We move the trust relationship and 

identity propagation out of the application implementation and model them as a security topology. 

When the business comes up with a new e-commerce scenario, IDaaS uses the security topology to 

adapt a platform-specific security infrastructure for the given business scenario at runtime. 

Secondly, we protect the confidentiality of PII in federated security domains. We propose our 

Purpose-based Encryption to protect the disclosure of PII from intermediary entities in a business 

transaction and from untrusted hosts. Our solution is compliant with the General Data Protection 

Regulation and involves the least user interaction to prevent identity theft via the human link. The 

implementation can be easily adapted to existing Identity Management systems, and the 

performance is fast. 

Keywords: identity-as-a-service; federated identity management; privacy-preserving; 

purpose-based encryption; purpose-based access control; attribute-based encryption; cloud 

adaptation; cloud migration 

 

1. Introduction 

In a local hosting environment, traditional applications have their own implementations for 

authentication and authorisation. Each application has n user accounts. Personal Identifiable 

Information (PII) or user identity is information about a person (e.g., name, age, addresses), which 

makes it possible to identify him or her [1]. The management process of PII associated with different 

levels of access control gave birth to Identity Management (IDM) [1]. In one security domain, PII 

may be stored in a central Identity Provider (IdP) and disseminated to Service Providers (SPs) on 
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demand. An SP may require PII to authorise a user request, to complete a business transaction, or to 

customise its service [2]. 

In federated IDM, SPs from different security domains exchange messages containing 

authentication and authorisation credentials about users [3]. As a result, federated IDM reduces the 

cost for SPs because they no longer manage users that are not under their control [4]. SPs form a 

federation by developing offline operating agreements [4]. For instance, they may specify which PII 

they want to exchange, which protocol to use (e.g., Security Assertion Markup Language (SAML) 

[5], or Web Services Federation [6]), and whether the client may act on behalf of a user to access the 

service. In the end, SPs expect each other to behave accordingly and thus they establish a trust 

relationship [7]. Afterwards, developers adapt the implementation of Authentication and 

Authorisation Infrastructure (AAI), depending on these agreements [4]. 

In cloud computing, SPs come from various security domains; provide themselves as cloud 

services and may cooperate with each other. From the beginning, they may establish their trust 

manually. However, as time goes by, cloud services may migrate to another Software-as-a-Service 

(SaaS) cloud provider and may adapt their trust upon each change [8]. Figure 1 shows various 

motivation scenarios. In the first scenario (Figure 1a), a shopping service consumes a delivery 

service in a business-to-business (B2B) scenario. Each time the delivery service migrates from a local 

host to another cloud provider, developers have to adapt their security infrastructures again 

manually. As an Independent Service Vendor running on many platforms, cloud services may 

refuse to change their application implementations to adapt to a given one [8]. 

 

 
 

(a) 

 

(b) 

 

(c) 

Figure 1. Motivation scenarios. (a) Cloud migration; (b) Identity propagation; (c) Identity federation. 

Note: Throughout this paper, we will use Salesforce, Facebook, and Telekom in our examples since 

they represent familiar examples, but we note that our examples are not tied specifically to these 

organisations and our concepts are equally applicable to other vendors and services. 

On the other hand, users may store their PII in the cloud environment so that cloud services 

may access and use it on demand. From the user’s perspective, users may prefer to access multiple 

cloud services in federated security domains, but also preserve their privacy [8]. Even if cloud 

services specified their privacy policies, it is not possible to guarantee that they follow their policies 

and will not (accidentally) transfer user data to another party [8]. In Figure 1b, Facebook is a public 

IdP that collects PII about users. After a user authenticates to Facebook, he can access an application 

in this domain (step 1 and 2). Facebook may also disseminate user identity to the application on 

demand (step 3). According to the Facebook data scandal in early 2018 [9], an application was 

allowed to collect PII of 50 million users for “academic” use but gave the collected data further to a 

company, Cambridge Analytica, for “analysis” purpose. This example shows that users typically 

disclose their identities with an SP (e.g., SP1) over the frontend. In the backend, SP1 may consume 

another service (e.g., SP2) in a B2B relationship (step 4). SP1 may be dishonest or accidentally 

forward PII to SP2 without user control. This scenario raises a question: how do we support identity 

propagation between intermediaries but also protect unauthorised access at the same time? 

In the third scenario (Figure 1c), a company (e.g., Deutsche Telekom) offers its employees 

several applications hosted by an SaaS (e.g., Salesforce). Cloud services on Salesforce may require 

user identity exclusively. Thus, it may be necessary to provision user identity from Telekom to 

Salesforce, while keeping the authentication credential (e.g., username and password) locally at 
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Telekom. After a user authenticates successfully at Telekom (step 1), he can access cloud services at 

Salesforce (step 2). This is a typical solution for a local company that uses a SaaS provider [10]. 

Thanks to identity federation, cloud services can query PII from the IdP of Salesforce without 

contacting Telekom and gain performance (step 3). The disadvantage is that Telekom must 

completely trust and delegate the control for disclosing its employee’s data to Salesforce. This 

scenario raises a question: how do we protect PII when we disseminate it from a trusted domain to 

an honest-but-curious one in identity federation? It means Salesforce may follow the protocol and 

computation that Telekom delegates to it, but may try to learn more information about the stored 

data. Even if the two companies specify privacy policies in their business contract, we cannot 

prevent a malicious host, malware, or an insider attack. Indeed, attackers have stolen 1.5 million 

personal data from the health authority in 2018 because the IdP had malware injected in it [11]. This 

scenario raises a question: how do we protect PII from an untrusted host? 

2. The Need for Identity-as-a-Service 

In e-commerce, SPs demand highly secure and flexible access control mechanisms for identity 

federation. However, this security feature is not a core competency [12]. Therefore, cloud services 

may prefer outsourcing AAI to a third party so that they can focus on developing their core business 

functionalities [12]. In such cases, their security infrastructures can be strengthened by a specialised 

provider to reduce their cost [12]. Migration of existing applications from a local hosting to a cloud 

provider requires substantial adaptation effort in individual architectural components [13]. A survey 

of cloud topology and orchestration from 2012 to 2017 identified 91 research efforts, but very few 

papers have addressed the security aspects [14]. Existing work has focused on migrating application 

components with functional and non-functional aspects [15–18]. However, none of them has focused 

so far on the adaptation of the required security infrastructures. 

On the other hand, in the past 10 years, many efforts have been taken in protecting PII [19–29]. 

These approaches target certain issues but still have limitations. For instance, users require 

interacting with the SPs over the frontend, they neither protect identity propagation between 

intermediaries nor against an untrusted host. It is worth mentioning that human-PC link is the 

weakest link compared to the links between the PC, SP, and IdP [3]. Therefore, the human link is the 

major target of identity theft [3]. For this reason, we consider reducing human interaction from 

identity disclosure as much as possible. 

The open standards organisation, OASIS, mentioned Identity-as-a-Service (IDaaS) as “an 

approach to Identity Management in which an entity (individual or organisation) relies on a cloud 

service provider that allows the entity to perform an electronic transaction, which requires identity 

data managed by this provider” [30]. Since the definition is non-standard and coarse, in [8] we 

revisited the requirements of a traditional IDM system [31] and specify which requirements are still 

missing in cloud computing. Furthermore, an IDM system is much more likely to succeed when it 

benefits all parties, including users, SPs and IdP [32]. This was our goal when we proposed two new 

requirements for IDaaS bringing benefits to both SPs and users: IDaaS adapts an automated trust 

between cloud services on demand and protects the confidentiality of PII in federated security 

domains [8]. Figure 2 illustrates a brief overview of our novel architecture design. First, IDaaS adapts 

the AAI implementation so that cloud services from various security domains can trust each other 

on demand. Second, a user Bob encrypts his PII in his home IDaaS, which further disseminates the 

ciphertext on his behalf to a given security domain before he accesses cloud services in this domain. 
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Figure 2. Identity-as-a-Service proposed model. 

The main contributions of our work can be summarised as follows: 

1. Trust adaptation: In [33], we proposed to separate the security infrastructure from the 

application business logic as a new virtualization layer. In particular, we move the trust and 

protection relationship as well as the identity propagation between application components out 

of the application implementation and model them as a security topology. The topology 

describes the AAI components, their relationships with the application components in a 

platform-independent modelling language. Using the topology, IDaaS can adapt the security 

infrastructure, establishes a dynamic trust relationship between cloud services on demand, and 

evaluates any changes in the runtime environment to conform to the model. 

2. Purpose-based Encryption: In [34], we proposed a broader solution to solve the privacy issues 

above: We protect PII over an intended channel (i.e., a frontend service), as well as an unintended 

channel (i.e., a backend service is completely transparent to the user), and against an untrusted 

host. We also notice that absolute protection does not exist. Thus, we seek an efficient solution 

that is compliant with the law, in particular, the General Data Protection Regulation (GDPR) 

[35]. As a result, we proposed a new approach to Purpose-based Encryption (PBE). To the best of 

our knowledge, our work is the first approach to combine Purpose-based Access Control and 

Attribute-based Encryption (ABE) to protect the confidentiality of disseminated data with 

multi-authorities support. Briefly, a user Bob encrypts his PII with a disclosure policy based on 

three main factors: “domains”, “time”, and “purposes”. Then, IDaaS disseminates Bob’s 

encrypted PII in various domains. Only services hosted in specific domains (e.g., Facebook, 

Salesforce) can decrypt the ciphertext within a given period (e.g., 14 days), if and only if the 

access purposes of the service (e.g., marketing, purchase) satisfy the intended purposes that Bob 

specifies before. Our PBE is efficient: First, our solution involves the least user interaction to 

prevent identity theft via the human link. Second, the implementation can be easily adapted to 

existing IDM systems, and the performance is fast. 

In this paper, we present the experiment results and evaluation of the above concepts. We 

organise the paper as follows. First, we discuss the limitations of related work. Then, we describe 

our novel architecture design of IDaaS in Section 4. Afterwards, we dive deeper into the trust 

adaptation and PBE in Sections 5 and 6, respectively. In the end, we summarise and discuss future 

work. 

3. Related Work and Discussions 

In the following sections, we discuss related work in AAI (Section 3.1) and privacy-preserving 

user identity (Section 3.2). 

3.1. Authentication and Authorisation Infrastructure 

Existing solutions for IDaaS (e.g., One Login [36], Ping Identity [37]) provide a central IdP for 

managing users. Their users have Single Sign-On access to cloud services, which were manually 

adapted to the IdP before. However, automated trust negotiation between cloud services and 

privacy-preserving user identity are not supported. On the other hand, several solutions from the 

industry provide frameworks for developers to implement AAI but lock an AAI implementation to a 
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vendor-specific application server or an IdP [33]. Therefore, developers have to relearn and 

implement repetitive tasks using APIs from different vendors. These proprietary APIs also limit the 

portability and interoperability of cloud services [33]. Our approach provides a holistic approach to 

adapt AAI for cloud services in multiple cloud providers. 

Work in [38] uses Aspect-Oriented Programming to enforce authentication and authorisation 

on critical points of an application program (i.e., a component, a class, or a class method). However, 

administrators may have difficulties to define security policies by looking at the class methods. In 

addition, this approach adds additional performance overhead on the secured resources [38]. In 

comparison to our work, we only secure the public APIs of the application component. However, we 

change the security implementation outside the application component without affecting the 

running application. As a result, we increase the performance, because the Web server now 

performs the security-related tasks [39]. Also, we let the security architect define a flexible topology 

for his application (i.e., he can choose a central Policy Enforcement Point (PEP) to protect multiple 

application components or a dedicated PEP for a target component). 

In a standard approach, the specification WS-Policy [40] and WS-SecurityPolicy [41] define 

frameworks for Web services to express their security constraints and requirements. However, they 

do not specify whether the client may call the Web service with the client identity or impersonate the 

original user. In such cases, the resource owner of the call is unidentified. Without identifying the 

resource owner, the Web service cannot authorise and audit a request correctly. Also, the policy 

specifies the security constraints for a platform-specific implementation only. Our approach fixes 

these missing gaps by modelling the trust relationships between Web services in a 

platform-independent model. When the security infrastructure is adapted to a target hosting, the 

adaptation process generates a WS-SecurityPolicy description that conforms to a trust instance. 

In cloud migration, existing work has focused on migrating application components with 

functional and non-functional aspects [15–18] (e.g., replace a database with a Database-as-a-Service). 

Our approach supports legacy applications by considering them as unprotected components (i.e., 

components with no security constraints). Then, IDaaS secures them during the cloud migration. 

However, a security architect supports the adaptation process by describing the topology views of 

the AAI components. 

Finally, we also need to evaluate the deployment of AAI in a target hosting. In general, a trusted 

third party may assert certifications for the deployment by using a Trusted Platform Module [42], a 

monitoring-based [43], or a test-based certification [44]. In this paper, we follow the test-based 

certification by defining an integration test for each trust capability. At runtime, IDaaS performs the 

corresponding test to check, whether a deployment conforms to the trust capability. 

3.2. Privacy-Preserving User Identity 

Recently, the consent receipt specification [19] defines a record of authority when a user 

discloses his PII to an SP. This approach involves the user granting permissions for each SP 

explicitly. On the other hand, anonymity approaches [20–24], aggregated Zero Knowledge Proofs 

[25–27], and group signatures [28,29] preserve complete anonymity for the user in a transaction with 

an SP. They require users to interact with an SP over the front-end. Therefore, they overload the IDM 

tasks to the user’s decision in every transaction and do not support identity propagation over the 

unintended channel. Out of the methods mentioned, our approach involves the least user 

interaction. We require the user to select the intended purposes for his PII when he registers it to the 

system at the beginning. Afterwards, the authorisation is based on the defined purposes. 

In contrast to an anonymity approach, the confidentiality approaches in [45–52] do not protect 

user anonymity but disclose PII to an entity if a disclosure policy is satisfied. Mont et al. [46] encrypt 

user data with Identity-based Encryption [53]. If an SP wants to decrypt the data, it has to interact with 

a Trusted Third Party (TTP) to provide its policies and platform configurations. Our approach does 

not require SPs sending their configurations to the TTP. We borrow their idea to encrypt the data 

with the disclosure policies, but we use ABE as an encryption scheme with a more expressive policy. 
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Active bundles [48] are mobile agents that use disclosure policies to authorise requests from the 

host and disclose the data to the host. However, the execution of a mobile agent’s plaintext code in 

an untrusted host is not secure [54]. Recent work also took advantage of Blockchain technology to 

store data (e.g., an authentication claim [23], or an access control list [24]) in a Blockchain network. 

However, PII is stored in an external database. While Blockchain brings an auditable history to the 

stored data, it cannot protect PII from an untrusted host of the external database and the 

authorisation server. Our solution avoids the above issues of active bundles and Blockchain because 

our authorisation does not rely on the execution of plaintext code. Instead, the cryptographic 

computing itself performs the authorisation. If the host changes the disclosure policies (e.g., the 

access control list) or the cryptographic computing, the decryption simply fails. 

Finally, research in the past has investigated Purpose-aware Access Control to prevent one 

organisation from misusing or accidentally transferring user data to another one [49–52]. A subject 

may have access to an object if the given access purpose corresponds to the intended purpose for which 

data were collected. However, these solutions have difficulties in determining the access purpose of 

a request. In our research, we add a purpose authorisation request that determines an access purpose 

based on an authentication statement and the requesting service. 

4. Architecture Design Overview 

In the following sections, we present the design principles for trust adaptation (Section 4.1) and 

Purpose-based Encryption (Section 4.2). 

4.1. Design Principles for Trust Adaptation 

We proposed the following trust model for IDaaS [8]. Figure 3a shows three security domains: 

Telekom, Salesforce, and Amazon. Each domain has an IDaaS. A user Bob registers at his home IDaaS 

(e.g., Telekom) for authentication. The IDaaS in the other domains (e.g., Salesforce) federate with the 

home IDaaS. We call them a visitor IDaaS. In a domain, all SPs trust its IDaaS as an authoritative 

resource to handle authentication requests (e.g., SP1 trusts IDaaS1, SP2 trusts IDaaS2). This trust 

model reduces the complexity for a user and an SP to establish trust with each partner individually. 

 

 

 
 

(a) (b) 

Figure 3. (a) Trust model; (b) Trust adaptation process. 

To adapt the security infrastructure for cloud services, our approach considers separation of 

duties between a security architect, an IDaaS, and application developers. We allow the security 

architect to describe the security infrastructure and express his requirements (the “what”). We let the 

IDaaS provision the security infrastructure according to the requirements (the “how”). In the end, 

application developers only need to care about what user attributes are available to them from the 

environment so they can use them in their applications. To achieve this goal, we also collected the 

most frequently used security design patterns [33] and modelled the security components. 

In Figure 3b, the adaptation process starts by registering the security topologies of cloud 

services in a modelling engine (i.e., an orchestration engine). In the topology, we describe all trust 

capabilities (and requirements) of AAI components. When two cloud services sign a B2B contract, 

the orchestrator matches their trust capabilities and requirements (step 1), then adapts their AAI 
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implementations in a target cloud hosting (step 2). When a cloud service (e.g., SP2) migrates to 

another cloud provider (step 3), the adaptation process starts again with input from the new runtime 

environment (step 1). In general, we do not define a static trust between services, but let the 

orchestrator establish a dynamic trust between them. 

4.2. Design Principles of Purpose-Based Encryption 

The GDPR [35] defines lawful regulation for a data controller and a data processor. In 

particular, the collection of personal data should be lawful under user consent and with a specified 

purpose. The purpose of data collection has a time limit (from the time to collect data to the time to 

fulfil the purpose). For later use, PII should not be disclosed for other purposes than the ones they 

have been collected. Our access control model follows GDPR by taking “time”, “purpose”, and 

“domain” as the main factors for describing the disclosure policy. We use the Predicate Encryption 

with public index [55] to encrypt the data. As a result, each ciphertext is associated with a public 

index that describes the disclosure policy. According to the “seven laws of identity” [31], we should 

not limit users to a single authority. Thus, we allow users to encrypt and distribute their data in any 

security domains. However, only SPs that satisfy the disclosure policy can obtain the key capabilities 

to decrypt the data. In Figure 4, the Telekom IdP disseminates the encrypted PII on behalf of user 

Bob to federated domains (step 1). On demand, Bob authenticates to his home IdP, which enables 

him to access multiple SPs in federated domains (steps 2, 3, and 4). 

 

Figure 4. Request flow of Purpose-based Encryption. 

5. Trust Adaptation 

In the following sections, we dive deeper into the trust adaptation concept. First, we model the 

security infrastructure. Then, we test the adaptation of the security infrastructure across multiple 

cloud providers using this model (Section 5.2). Finally, we describe the implementation (Section 5.3) 

and evaluate the portability and interoperability of the security infrastructure (Section 5.4). 

5.1. Topology Modelling 

An application topology is a description of all application components (e.g., a Web application, a 

database), their relationships (e.g., the Web application “connects to” the database), and how to 

deploy these components. The Topology and Orchestration Specification for Cloud Applications 

(TOSCA) [56] is a standard specification to describe an application topology. In this section, we 

extend TOSCA to model our security components. In TOSCA, components are defined as node types. 

Relationships between components are defined as relationship types. A component may publish some 

information for other components to establish a relationship with it as capabilities. 

5.1.1. Node Types 

In Figure 5, we model node types (Figure 5a) and capabilities types (Figure 5b) for the security 

components: “PolicyEnforcementPoint” (PEP), “PolicyDecisionPoint” (not shown in the figure), and 

“Proxy”. Our nodes derive from the normative node type “WebApplication” of TOSCA, thus they 

have an application endpoint capability by default. 
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Figure 5. (a) Node types; (b) Capabilities types. 

The PEP node is an abstract node type that does not have any implementation but offers two 

sub-nodes: an “InterceptingWebAgent” and a “SecurityGateway”. A security architect can choose 

one of these nodes to protect a Web application in the backend. He may choose the 

“InterceptingWebAgent” that protects the Web application on the same server. Alternatively, he 

may choose the “SecurityGateway” that enforces centralised protection for multiple Web 

applications in the backend. Finally, the “Proxy” node is an outbound gateway for a service 

consumer to connect to an SP. A security architect uses the “Proxy” to intercept outbound requests 

and to enforce additional security mechanisms to them before calling the PEP of the SP. In TOSCA, 

all node types have implementation interfaces and deployment artifacts. The orchestration engine will 

call the interfaces and use the artifacts to provision the nodes. 

5.1.2. Capabilities Types 

We model trust capabilities for the security components as follows: From the server’s 

perspective, an SP may define whom it can trust for providing service. In Figure 5b, the 

“capabilities.Trust” is an abstract trust model. It describes that a trustor (i.e., an SP) trusts a trustee (to 

be defined) to delegate permissions for an actor subject when the actor subject satisfies the trustor’s 

security policy. If the trust evaluation is correct, the SP continues to execute under the actor’s 

identity. We model trust with three sub capabilities: 

1. DirectTrust: An SP (trustor) trusts a service consumer (trustee) directly. When using this trust 

model, the service consumer indicates the SP to execute further using the service consumer’s 

identity itself (actor). This trust model may generate a security policy that builds a mutual trust 

relationship between Web services such as the “SSL transport binding” [57]. 

2. DirectBrokerTrust: An SP (trustor) trusts a service consumer (trustee) to generate a self-signed 

identity for a user. The service consumer indicates the SP to execute further using the user 

identity (actor). This trust model may generate a security policy that builds a mutual trust 

relationship between Web services and transmits a self-signed user identity such as the “SAML 

assertion Sender Vouches over SSL” [57]. 

3. IndirectTrust: An SP (trustor) trusts an IdP (trustee) for issuing a user identity. The service 

consumer may act on behalf of a user (i.e., identity impersonation) or act as the user (i.e., 

identity delegation) to request a user identity from the IdP. The consumer indicates the SP to 

execute further using the user identity (actor). This trust model may generate a security policy 

that establishes trust with an unknown Web service and transmits a user identity such as the 

“Symmetric binding with supporting token” [57]. 

In summary, by using this trust model, we can express both direct trust and indirect trust 

relationships between Web services, and cover all scenarios associated with identity propagation. 

Also, in our trust capabilities, the trustee and actor have a data type that gives more information 

about a given entity. For instance, the data type “identity.User” has two elements “claims_mapping” 

and “group_mapping”. These data types allow the security architect to express which identities his 

application needs from the runtime environment (more details in the experimental results). 
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5.1.3. Relationship Types 

Figure 6a shows how we model a “protect” relationship between an “InterceptingWebAgent” 

and a “WebService” node, and a “trust” relationship between a Proxy and a PEP. We extend the 

“protect” and “trust” relationship from the normative relationship “ConnectsTo” of TOSCA. This 

relationship defines a connection between a source node and a target node. In our case, the 

“InterceptingWebAgent” is the source node, and the “WebService” is the target node. The 

relationship also provides standard interfaces such as “pre_configure_source” and “add_target”. 

During the deployment, the orchestration engine calls these interfaces to configure the relationship 

between them. 

  
(a) (b) 

Figure 6. (a) Protect relationship; (b) Trust relationship. 

Figure 6b shows how we model a trust relationship between two Web services. In a service 

consumer, a security architect can choose if his Proxy shall connect to the PEP (of an SP) via a trust 

capability. Here, he indicates to which degree the SP obtains a user identity and how they may use it 

(more details in the experiment results). 

5.2. Experimental Results 

In the following sections, we prove our concept in a real deployment: Two Web services hosted 

on two cloud providers establish trust with each other on demand. To show the portability of our 

concept, the Web services are migrated from a local hosting to a cloud provider and then between 

two cloud providers. To show the flexibility of our trust model, we consider two scenarios: Web 

services may belong to the same and to different organisations. First, we describe our test 

environment (Section 5.2.1). Then, we explain the migration workflow under test (Section 5.2.2). 

5.2.1. Test Environment 

Figure 7 illustrates two cloud providers: OpenStack [58] and AmazonWS [59]. In each domain, 

we have set up a Virtual Machine (VM) IDaaS with an orchestration engine and an IdP. 

 

Figure 7. Test environment. 

We have developed two Web services to simulate a B2B relationship: A shopping service 

receives purchase orders from the user and then calls a delivery service for shipping the parcel. In 

the first scenario, the delivery service is a logistic department from the same company. From the 

technical point of view, they are two application components belonging to the same tenant, and the 

delivery service trusts the shopping service for user request authentication. In the second scenario, 
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the delivery service is an external cloud service from a different tenant. Thus, it needs to authenticate 

and authorise the user request again. 

The migration process happens in the following phases. In the first phase, Web services are 

developed offline. They are unprotected and migrated to OpenStack. The IDaaS in OpenStack then 

provisions and updates the AAI implementation for the Web services to trust each other. In the 

second phase, the delivery service is migrated from OpenStack to AmazonWS. In the second 

domain, the delivery service not only provides Single Sign-On access for existing users in the IDaaS 

of AmazonWS but also maintains the existing trust with the shopping service in OpenStack. 

We use the open-source software WSO2 [60] and Alien4Cloud [61] to implement the IdP and 

the orchestrator, respectively. We use Alien4Cloud to control the VMs and the life cycle of the AAI 

components inside the VMs. We have developed the implementation artifacts and deployment 

artifacts for these components. At runtime, the orchestrator sends the artifacts to the VM (via SSH) 

and calls these artifacts during the life cycle of the components. Alternatively, Alien4Cloud can 

deploy an orchestration agent on the VM (e.g., via Cloud-Init [63]). The orchestration agent then 

receives our artifacts via a messaging queue in a private network and executes them on the VM [62]. 

5.2.2. Migration Workflow 

(1) Web service development: We demonstrate an example workflow for securing a Java Web 

service with RBAC. In the development phase, developers have no knowledge of an AAI 

implementation that an IDaaS offers. However, they may define a set of roles for their application as 

well as which roles are allowed to access which resources. Figure 8 shows the deployment descriptor 

of the delivery service, whereby developers allow the role “admin” to access a web resource. 

 

Figure 8. Developers may use a deployment descriptor for RBAC. 

(2) Topology description: In this step, a security architect describes the security topology. Figure 

9a shows a Graphical User Interface (GUI) that helps the architect to describe the topology. 

 

 
(a) (b) 

Figure 9. The topology editor (a) and topology description (b) for the delivery service. 

The GUI is the presentation of our topology model. On the left side, the architect defines a 

“WebService” node running on a “Glassfish” application server of a “Compute” VM. He also wires 

an “InterceptingWebAgent” node to the application endpoint capability of the “WebService” node 

to define a “protect” relationship between them. On the right side, he can specify the trust 
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capabilities of the “InterceptingWebAgent”. In the first scenario, the delivery service is from the 

same organisation, so he chooses the “direct_trust” capability and specifies the public key of the 

shopping service. In this trust model, the shopping service is the “actor”, and the architect can 

specify a role (e.g., admin) for the shopping service in the “actor” property. 

In the second scenario, the service consumer is still unknown, so the architect chooses the 

“indirect_trust” capability. In this trust model, the user is the “actor”, and the delivery service has to 

authorise the user based on his identity. Here, the architect can specify the endpoint of IDaaS1 as the 

“trustee” to issue user identity. He may allow the service consumer to act on behalf of the user, so he 

selects the value “trust.impersonation” in the “type” property (optionally, he may choose 

“trust.delegation”). When he saves his work, the editor generates an equivalent topology description 

as in Figure 9b. We can see that the nodes have been instantiated with the trusted endpoint of IDaaS1 

(line 16). The architect also specifies that his application needs an email address and a user group 

from IDaaS1 (lines 18–20) to propagate to the backend. 

In the topology for the shopping service (Figure 10a), the architect uses a “Proxy” node to 

intercept outbound requests from the shopping service and connects the “Proxy” to a “PEP” node. 

 

 

(a) (b) 

Figure 10. Topology editor (a) and topology description (b) for the shopping service. 

Figure 10b shows the generated topology description for the shopping service. Recall that our 

PEP node is an abstract node that represents a partner service. The architect may use a TOSCA 

“node_filter” to define his trust criteria for selecting a partner service (line 9). If the partner service is 

known beforehand (e.g., the delivery service), he chooses the “direct_trust” capability and specifies 

the public key of the delivery service. Otherwise, he chooses the “indirect_trust” capability and 

specifies IDaaS1 as one of the trusted endpoints of the Proxy (line 14). 

(3) Provisioning: In this step, an administrator provisions the delivery service to OpenStack. The 

orchestrator uses the OpenStack APIs (and the credential of the administrator) to boot a VM, deploys 

the Web service, and calls the interface “pre_configure_source” of the “InterceptingWebAgent” to 

protect it. For direct trust, the public key of the shopping service is imported to the truststore of the 

application server. For indirect trust, the Web agent is configured to trust IDaaS1 and intercept client 

requests on the message layer (see the Web agent implementation). 

(4) Integration test of the Web agent: To validate the deployment, the orchestrator calls the 

interface “add_target” of the “InterceptingWebAgent” to run an integration test. The test sends a 

dummy SOAP request (with no authentication) to the Web agent endpoint. If the request is denied, 

the Web service is secured successfully. Otherwise, the orchestrator disables the delivery service 

from the application server. If the test is successful, the orchestrator publishes the endpoint as well 

as the trust capability of the delivery service (from Figure 9b) in its registry. 

(5) Update: In this step, the shopping service signs a business contract to use the delivery service. 

An administrator provisions the shopping service to OpenStack. Before the deployment, the 

orchestrator allows the administrator to confirm the security matching between the two services. 

Then, the orchestrator sets up the Proxy node according to the trust capability of the delivery service. 

For direct trust, it imports the public key of the delivery service to the truststore. For indirect trust, it 

configures the Proxy to trust IDaaS1 and to impersonate the user (see the Proxy implementation). 
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(6) Integration test of the Proxy: The orchestrator also calls the interface “add_target” of the Proxy 

node to check if the delivery service’s endpoint is accessible. According to the trust capability, the 

Proxy can call the delivery service directly (i.e., direct trust) or indirectly with the token issued by 

IDaaS1 (i.e., indirect trust). Otherwise, the test will fail. 

(7) Termination: Now the delivery service is migrated from OpenStack to AmazonWS. In 

OpenStack, the orchestrator removes any credentials of the delivery service from the Proxy node, 

and then it terminates the delivery service VM. 

(8) Migration: In this step, the orchestrator in each domain updates the deployment of the Web 

service under its control. In the AmazonWS domain, the topology of the delivery service is updated 

with the new trusted endpoint (i.e., IDaaS2). Then, the orchestrator deploys the delivery service and 

configures the “InterceptingWebAgent” to trust IDaaS2. In the domain of OpenStack, the delivery 

service is now an external service. The administrator defines a PEP node (as a substitution for the 

external service) with the “trustee” updated to the endpoint of IDaaS2. Then, the orchestrator can 

read this trust capability and configures the “Proxy” node for identity federation (see the Proxy 

implementation). 

5.3. Implementation 

We use the open-source software Apache Synapse [64] to implement the Proxy that mediates 

outbound requests from a Web service client. For direct trust, the Proxy acts as a gateway to sign and 

encrypt the message on the transport layer. The implementation of direct trust is straightforward by 

importing the certificate of the Web service to the truststore of Synapse. 

For indirect trust, we follow the design pattern of identity proxy in [65]. In this design pattern, 

the STS Client interacts with two STS and the Web service sequentially from left to right (see Figure 

11a). The STS Client first authenticates to STS1 to receive a SAML assertion about a user (step 2) and 

then submits the SAML assertion to the second one (step 3). The second STS acts as a proxy gateway, 

which validates the received assertion and transforms it for the STS Client to access the Web service 

(step 4). In this case, the Web service only trusts STS2 as the proxy gateway for issuing assertions. In 

Figure 11b, the Web agent receives the SAML assertion from the STS Client (step 1) and propagates 

the required claims to the Web service (step 2). The Web agent loads the public key of the STS server, 

which the orchestrator imported previously, and uses it to validate the signature of the SAML 

assertion. Afterwards, it authenticates the user subject in the SAML to the container-managed 

authentication. 

 

 

 

(a) (b) 

Figure 11. (a) Proxy implementation; (b) Intercepting Web agent implementation. 

5.4. Evaluation 

The implementation of the Web agent faces two obstacles of interoperability and portability. 

Interoperability is the ability of two or more components to exchange information and to use the 

exchanged information [66]. In our cases, the Web agent needs to exchange the user identity with the 

application in the backend, but the backend is a black box. Furthermore, developers implement the 

Web service without knowledge of the AAI implementation at runtime. In our approach, the 

security architect supports the interoperability between the Web agent and the application in the 

backend by providing the “group_mapping” and “claims_mapping” in the trust capability. By 
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reading the “group_mapping”, the Web agent understands which claim is mapped to the group 

principal (e.g., http://wso2.org/claims/groups). By reading the “claims_mapping”, the Web agent 

understands which HTTP headers to propagate to the backend (e.g., HTTP_EMAIL). 

It is worth mentioning that, if we implement the Web agent for scripting languages (e.g., PHP 

or Ruby), we will use HTTP headers, because identity propagation in HTTP headers is considered as 

programming and platform independent for any applications to obtain information about a request 

[36]. If we implement the Web agent for Microsoft .NET applications, we will use the Windows 

Identity Foundation (WIF) [67]. By using WIF, we will not face the obstacles above, because WIF has 

standardised its identity model for propagating a SAML assertion [68]. In this paper, we evaluate a 

Java application, because the Web agent implementation in Java has such obstacles for security 

adaptation to consider. 

Portability is the ability to move an application from one cloud provider to another one at the 

lowest possible cost, effort, and time [66]. The TOSCA specification achieves the portability of cloud 

applications by using declarative processing and imperative processing [69]. Declarative processing 

requires a precise definition of the semantics of node types and relationship types so that any 

TOSCA compliant orchestration framework can interpret these types and deploy them in a target 

cloud provider (i.e., the orchestrator has already supported these types and implemented APIs of 

multiple cloud providers to deploy these types). Because our security nodes inherit from the 

normative node types of TOSCA (e.g., “WebApplication”), the orchestrator can interpret our nodes 

as a Web application for the deployment. By inheriting the normative relationship types (e.g., 

“ConnectsTo” and “HostedOn”), the orchestrator can control the dependency and the life cycle of 

our components. On the other hand, imperative processing requires explicit instructions on how to 

manage the components. In our work, we provide deployment artifacts (a Jar archive) and 

implementation artifacts (shell scripts) for the PEP and the Proxy. These artifacts are examples of 

imperative processing. Another IDM vendor may replace our artifacts by theirs if they have a 

specific solution. 

6. Purpose-Based Encryption 

In the following sections, we dive deeper into the PBE concept. First, we summarise the 

encryption scheme that we use to encrypt PII (Section 6.1). Second, we show how we use this scheme 

to encrypt PII (Section 6.2). Third, we present the lifecycle of the encrypted PII in federated domains 

(Section 6.3). Then, we test the lifecycle of PII with a detailed example (Section 6.4). Finally, we 

describe the implementation (Section 6.5) as well as evaluate the performance and security 

considerations of PBE (Section 6.6). 

6.1. Multi-Authority ABE Scheme 

In this section, we summarise the multi-authority ABE scheme in [55]. In this scheme, multiple 

authorities can issue secret keys associated with the attributes under their control independently. 

The scheme consists of the following phases: 

(1) AuthSetup (PID, GP)  {PKPID, MSKPID}: The authority setup algorithm takes a provider 

identifier PID and the global parameters GP as inputs. It outputs a public key PKPID and a master 

secret key MSKPID for the given authority. 

(2) KenGen (UID, SESSIONID, MSKPID, U, GP)  SKUID,U,SESSIONID: The key generation algorithm 

takes in a user identifier UID, a session identifier SESSIONID, a master secret key MSK, an attribute 

U (controlled by the authority), and the GP. It outputs a secret key associated with the attribute U for 

the user UID in the session identifier SESSIONID. 

(3) Encrypt (M, P, {PKPID}, GP)  CT: The encryption algorithm encrypts a message M with a 

disclosure policy P, the public key PKPID of the relevant authority, and the GP. It outputs the 

ciphertext CT. 
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(4) Decrypt (CT, {SKUID,U,SESSIONID}, GP)  M: The decryption algorithm takes a ciphertext CT, a 

set of secret keys, and the GP. It outputs the message M if the attributes in the secret keys satisfy the 

disclosure policy P. Otherwise the decryption fails. 

In the key generation, we use the UID concatenating with the SESSIONID as an input for tying 

all key attributes together due to the following reason. The ABE scheme [55] prevents collusion 

attacks between users (i.e., different users cannot combine their keys to gain more capabilities for 

decryption). However, the scheme does not prevent various entities from combining secret keys 

about the same user. This situation happens when an SP in a call chain receives a secret key about a 

user and may try to collude with other services in a different transaction. In our case, the decryption 

also fails if SPs try to combine secret keys from various transactions. We call this input a “linchpin” 

for tying all key attributes of the same user in the same session. 

6.2. PII Encryption 

Figure 12 shows an example, whereby PII (right column) is encrypted with a disclosure policy 

(left column). In this example, the data owner “id1” encrypts his data with an intended purpose to 

complete the “current” transaction (line 3), in particular, “purchase” or “delivery” a product (line 4). 

The PII is available for SPs managed by the IDM of “salesforce” or “amazon” with the domain “eu” 

(line 5 and 6). The ciphertext has an “access time” valid within 14 days (line 7 and 8 present a range 

of dates from 07.09.2018 to 21.09.2018). In the disclosure policy above, we borrow two standardised 

elements “purpose”, “ppurpose” (i.e., primary purpose) from the Platform for Privacy Preferences 

Project (P3P) [2]: The “purpose” element specifies an intended purpose for disclosing data (e.g., 

“current”, “tailoring”, “telemarketing”). If the “purpose” is set to “current”, the “ppurpose” 

provides more details about the current business transaction (e.g., “purchase”, “login”). 

 

Figure 12. An example of PBE. 

6.3. The Life Cycle of PII in Federated Security Domains 

In the following part, we revisit the scenario where a user Bob from Telekom consumes SPs in 

Salesforce. Telekom authenticates Bob and issues a Time Access Token (TAT). Salesforce is in charge of 

the purpose authorisation request and issues a Purpose Access Token (PAT) for SPs in its domain. An 

SP can decrypt the PII if it possesses both the time and purpose token. This results in the following 

request flow as in Figure 13. Briefly, step 2, 4, and 5 represent the standard request flow of 

Attribute-based Access Control [70]. We only extend the request flow in step 1 and 3. 

 

Figure 13. Request flow. 
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(1) Encryption: Bob encrypts his data with the algorithm in Section 6.1. In particular, he uses the 

public key of Telekom to encrypt the data with the policies “access time”, “domain”, and “country”. 

He uses the public key of Salesforce to encrypt the data with the policies “purpose” and “ppurpose”. 

The algorithm outputs one ciphertext for each user attribute and disseminates it to Telekom. 

(2) Authentication: Bob accesses SP1 and is redirected to Telekom for authentication. Telekom 

authenticates Bob and issues a SAML response (step 1a). Telekom uses the key generation algorithm 

to issue a TAT. This token consists of three key attributes: “access time”, “domain”, and “country”. 

The key generation also uses the user identifier and the session identifier (in the SAML response) as 

a “linchpin” for tying all key attributes together. Telekom includes the TAT in a SAML response and 

returns to the user. In addition, the IdP uses the public key of SP1 to encrypt the TAT so that only 

SP1 can decrypt it. 

(3) Authorisation: Bob gives the SAML response to access SP1 at Salesforce (step 1b). The PEP 

validates the SAML for authentication (not shown in the figure) and forwards the SAML to the 

Policy Decision Point (PDP) for authorisation (step 2). The PDP again submits the SAML to the 

Salesforce’s IdP to exchange for a PAT (step 3). Salesforce uses the key generation algorithm to issue 

a PAT with two key attributes “purpose” and “ppurpose”. It also uses the user identifier and the 

session identifier delivered in the SAML as a “linchpin” for tying all key attributes together. 

(4) Decryption: Now the PDP has enough key attributes. It combines the TAT with the PAT. If all 

key attributes satisfy the disclosure policy and the “linchpin” is the same, the PDP can decrypt the 

ciphertext. Otherwise, the decryption fails. After the PDP decrypts the PII, it returns the user 

attributes to the PEP and to the application in the backend (step 4 and 5). 

6.4. Experimental Results 

In the following sections, we first describe our test environment (Section 6.4.1) and the lifecycle 

of the PII under test (Section 6.4.2). 

6.4.1. Test Environment 

As depicted in Figure 14, we have set up a home domain and a visitor domain to simulate 

Telekom and Salesforce, respectively. In the home domain, we have developed a client application 

that is responsible for encrypting and storing PII in the home IdP. In the visitor domain, we have 

developed two Web applications: The shopping service receives purchase orders from the user and 

then calls the delivery service for shipping the parcel. 

 

Figure 14. Test environment. 

In our proof of concept, we want to show that existing IdP vendors and applications can easily 

adapt our solution (i.e., existing applications do not need to change their implementations). 

Therefore, we have developed the following “handlers” that can be integrated into an existing 

system. In the home IdP, we have developed an OSGi bundle “SAML Handler”, which embeds a 

TAT in an authentication response on the fly. In the visitor IdP, we have developed an OSGi bundle 

“OAuth Grant Handler”, which embeds a PAT in an authorisation response on the fly. We have 

implemented a Web agent, which intercepts and handles the tokens for the applications. It decrypts 

the ciphertext and propagates the PII in the payload to the Web application in the backend. 

In addition, we have the following key distribution for the components. For encryption, the 

client application requires the public keys of the home and visitor IdPs (e.g., PK1, PK2). The “SAML 
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Handler” requires a master secret key of Telekom (e.g., MSK1) for issuing the TAT. The “OAuth 

Grant Handler” requires a master secret key of Salesforce (e.g., MK2) for issuing the PAT. To isolate 

the test environment, we test each IdP inside a docker container separately. 

6.4.2. The Lifecycle of PII under Test 

In the following section, we test the lifecycle of PII. We show that the shopping service and the 

delivery service can only decrypt a portion of PII to complete a purchase order and to deliver a 

parcel, respectively, but nothing more. 

(1) Encryption: Table 1 shows some examples of user identities under test. In our example, the 

user is willing to disclose his “date of birth” (DOB) for purchasing a product (e.g., confirm that a 

user is an adult). However, for delivering a parcel, he does not need to disclose his birthday. 

Furthermore, he only discloses his “addresses” in a “current” transaction and limited within 14 days 

after “delivery”. In contrast to his “addresses”, his “last name” has a longer lifetime (e.g., 30 days) 

and can be used for contacting purpose without having a “current” transaction (e.g., a marketing 

service may use his last name to “contact” him later on for advertising a new product). 

Table 1. Sample user data. 

Attribute 

Name 

Attribute 

Value 

Purpose 

 

PPurpose 

 

Domain Country 

Name 

Lifetime 

(days) 

Last name 
Tri current, 

contact 

purchase, 

delivery, 

salesforce, 

amazon 

eu 30 

DOB 
01.01.1980 

current 
purchase, 

government 

salesforce, 

amazon 

eu 30 

Addresses Berlin… contact delivery salesforce eu 14 

 

(2) Authentication: Figure 15a shows an authentication response from the home IdP to the 

shopping service. In the SAML response, the home IdP issues the encrypted TAT (lines 19 to 21) 

and several attribute statements about the user (lines 12 to 18). These user attributes are in 

ciphertext format, so the shopping service cannot read them (yet). Figure 15b shows the TAT in 

plaintext after the services decrypt it. The TAT is a Based64-encoded format that contains some 

cryptographic key attributes about the current access time (lines 3 to 6), which is the current date 

that the user authenticates to his home IdP (see the implementation for more details). Also, the TAT 

has the key attributes issued for the visitor IdP of “salesforce” with the domain “eu” (line 7 and 8). 

 

 

 

 

 

(a) (b) 

Figure 15. (a) SAML response with encrypted time access token; (b) Time access token. 
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(3) Purpose authorisation request: To implement the purpose authorisation request, we have 

extended the protocol “SAML 2.0 Profile for OAuth 2.0” [71]. Briefly, the shopping service 

authenticates to the visitor IdP and submits the SAML response in a POST request. After receiving 

the request, “OAuth Handler” checks the expiration time of the SAML session. If the session is still 

valid, it issues a PAT containing two key attributes “current” and “purchase”. It means the shopping 

service is authorised for processing PII to “purchase” a product in the “current” transaction. 

(4) Decryption: In Figure 16a, the shopping service can decrypt PII for the “purchase” purpose 

(e.g., last name and birthday) but cannot decrypt the “addresses”. In Figure 16b, the delivery service 

also performs the purpose authorisation request and receives a PAT containing the key attributes 

“delivery”, “contact”, and “current”. With the given keys, the delivery service can decrypt user 

“addresses” for shipping the product, but cannot see the user birthday. 

  

 

(a) (b) 

Figure 16. (a) The shopping service; (b) The delivery service. 

(5) Expired authentication: When the shopping service submits an expired SAML session, the 

PAT does not contain the key attribute “current”. Thus, the shopping service cannot decrypt the 

“dob”. It means after the shopping service completed the current transaction, it cannot reuse the 

SAML to access the “dob” (even though it was authorised to access the “dob” before). 

(6) Expired ciphertext: When the user authenticates to the home IdP after 15 days, the home IdP 

issues a TAT with a new access time. Recall that the “addresses” is encrypted with the disclosure 

policy limited to 14 days. This time, the delivery service cannot decrypt the ciphertext “addresses”. 

In this scenario, we say that the ciphertext is expired, the IdP has fulfilled the intended purpose for 

collecting the “addresses” (i.e., to deliver the parcel within 14 days). After 14 days, the user may 

re-encrypt and disseminate his “addresses”, if there is a new intended purpose. 

6.5. Implementation 

(1) ABE Encryption: We have implemented the ABE scheme [55] by using the jPBC [72], a Java 

API that wraps the pairing-based cryptosystems written in C [73]. The ABE scheme requires an 

access policy in the form of a Linear Secret Sharing Scheme (LSSS), but our disclosure policy needs a 

mixed formula of Boolean expressions, simple thresholds, and numerical range. Therefore, we first 

convert our policy string to a Boolean formula and then to an LSSS. To convert a numerical range to 

a Boolean formula, we borrowed the idea of a segment tree [74]. To convert a Boolean formula to an 

LSSS, we followed the algorithm of Lewko in [75]. 

(2) Ciphertext serialisation: So far, we have described that we use ABE for encryption. Actually, 

we do not use ABE to encrypt PII directly but combine it with the Advanced Encryption Standard 

(AES) [76]. With AES, we can encrypt arbitrarily large data without affecting the performance. In the 

first step, we generate an ephemeral key and use it as a symmetric key in AES to encrypt the PII. In 

the second step, we use ABE to encrypt the ephemeral key. For embedding the ciphertext in a SOAP 

message as well as in an HTTP POST, we encode the ciphertext in a base64 string format. 

6.6. Evaluation 
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In the following sections, we evaluate the performance of PBE (Section 6.6.1) as well as the 

benefits and limitations of our approach (Section 6.6.2). 

6.6.1. Performance 

The performance depends on two factors: the security levels and the numbers of key attributes. 

1. Security levels: The ABE scheme computes bilinear pairing operations. The National Institute for 

Standards and Technology (NIST) has recommended the sizes for secure settings of parings and 

their validity period [77]. Our implementation also follows these key size settings of NIST for 

both AES and ABE. 

2. Key attributes: The decryption of the ABE scheme has (2l + 1) pairing operations for l key 

attributes, and the pairing is an expensive operation. By using the segment tree [74], we can 

reduce any numerical ranges of size N by a set of size log2(N) key attributes. Also, we present 

the access time policy in a “day” unit, which takes at most 10 key attributes. The “day” unit is 

not as precise as “millisecond”. However, most examples of data retention in the P3P [2] are in 

days, so we think the “day” unit is reasonable. 

We have tested the performance with various data sizes (i.e., 1 byte, 1MB, 10MB, and 100MB) 

and with various security levels (i.e., 80, 112, 128, 192, and 256 bits). Figure 17a shows the 

performance result on a CPU i7-8650U, 1.90GHz, 16GB RAM. First, we notice that various data sizes 

in the same security level (i.e., 1 byte, 1MB, 10MB) affect the encryption and decryption time 

minimally. This is because we use AES to encrypt and decrypt the data. Second, the performance is 

fast for the following security levels: 80, 112, and 128 bits. To give an illusion, for 128 security bits, it 

took 377 ms and 284 ms to encrypt and decrypt 1MB, respectively. However, above this level, the 

performance degrades significantly. 

  

 

(a) (b) 

Figure 17. (a) Performance of encryption, decryption (b) Performance of tokens generation on the 

y-axis in milliseconds. 

Figure 17b shows the token generation (TAT and PAT in total) is very fast for 112 and 128 

security bits but slow for 192 security bits (9 seconds). Higher security levels also increase the token 

size slightly. For 112 and 128 security bits, the tokens add additional overhead to the protocol SAML 

and OAuth (in total) with 10KB and 15KB, respectively. We think this token overhead is acceptable. 

In summary, we think the performance is acceptable for 112 and 128 security bits. However, for 

192 bits, service consumers will experience a delay in their transactions (around 12 seconds in total). 

For 256 bits, the performance is not acceptable. To improve the performance, we may implement an 

ABE scheme that is built on Type F curves [78], which is known to provide faster performance at 

these levels [79]. 

6.6.2. Benefits and Limitations 

Our approach solves the issues identified in the introduction: 



Future Internet 2019, 11, x FOR PEER REVIEW 19 of 24 

 

1. Identity propagation between intermediaries: Each intermediate service in the call chain (e.g., the 

shopping and delivery service) uses the SAML response to perform a purpose authorisation 

request without the user interaction. Therefore, we prevent identity theft in case of users 

mistakenly decide, which attributes to disclose to a service. According to GDPR, the data 

controller is accountable for transferring PII to the data processor. That is, the data controller 

must determine the purposes of PII processing. In other words, when a cloud service registers 

on a cloud provider, it must provide its business information to the cloud provider such as the 

access purpose of the service. The IdP use this information to authorise a purpose request. 

2. Honest-but-curious IdP or SP: Here, we assume that SPs receive the SAML response and the 

tokens and try to learn more information about PII. First, the home IdP issues the SAML 

response with its private key. Therefore, SPs cannot modify the SAML response to request the 

visitor IdP for more capabilities than they are allowed. Second, SPs cannot combine different 

tokens from different transactions or users to gain more capabilities (i.e., the decryption simply 

fails if they do so). On the other hand, the visitor IdP can only issue a purpose token for an SP 

but does not have the time token to decrypt PII. However, our concept cannot prevent the 

collusion attacks between the visitor IdP and the SPs. Here, we assume that adversaries cannot 

control both systems at the same time. 

3. Dishonest IdP or SP: A dishonest entity is an entity that does not follow the protocol. For 

example, an IdP authorises a wrong purpose (with more capabilities) to an SP or an SP forwards 

its purpose token to another service. In such cases, an honest entity can prove that the other side 

has violated the protocol and the dishonest entity must pay for the penalty (according to GDPR, 

an entity may pay a penalty up to 20 million Euro). In the Facebook incident, Facebook would 

prove that it did not authorise Cambridge Analytica for the purpose “analysis”, so the 

dishonest application, which forwarded the user data, would pay for the penalty. 

4. Insider attack on an IdP: PII is encrypted on the IdP. Therefore, an administrator of one IdP does 

not have enough tokens to decrypt it. However, our approach cannot prevent the collusion 

attacks between the home and visitor IdP. Here, we assume that adversaries cannot control 

both IdPs at the same time. 

5. Malicious host: A malicious host may change the execution of plaintext code to bypass the 

disclosure policies and access data. In our case, if the host running the shopping (or delivery 

service) changes the cryptographic computation in anyways, the decryption simply fails. 

7. Conclusions and Future Work 

In this paper, we proposed two concepts for trust adaptation and privacy-preserving user 

identity using PBE. In trust adaptation, we moved the trust relationship and identity propagation 

out of the application implementation and modelled them using TOSCA. We proved that we gain 

three benefits: First, whenever a cloud service migrates from one cloud provider to another one, the 

complexity of the security infrastructure does not move with the application infrastructure. We 

enforced a single security infrastructure that is independent of multiple cloud providers. Second, 

when the business comes up with a new e-commerce scenario, we proved that IDaaS generates and 

adapts a platform-specific security infrastructure for the given scenario. Finally, we proved that 

developers do not need to have specialised security knowledge to understand various protocols, to 

relearn and implement repetitive tasks using proprietary APIs of any vendors. 

We also presented a novel architecture design for privacy-preserving user identity in FIDM. 

Unlike previous approaches, our novel access control model does not rely on the execution of 

plaintext code but on the cryptographic computation of time and purpose. We proved that access 

could be revoked when the ciphertext or the tokens were expired. We showed that existing IDM 

systems and applications could easily adapt our solution by extending the standard protocols SAML 

and OAuth. While protecting identity propagation over intermediaries in the backend, the 

performance is fast for the security levels of 112 and 128 bits. In future work, we may improve the 

performance of the security levels of 192 and 256 bits. 
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Our thesis has advanced the field of IDM for cloud computing. However, a number of areas for 

future work can be built upon the results achieved, especially in edge computing and Internet of 

Things as follows. In edge computing, sensor devices may need to collect sensitive information from 

data producer. These devices need to cooperate with each other for some sensitive jobs without the 

involvement of the users and the data center. When user devices produce data, they automatically 

encrypt the data with PBE. As a result, only sensor devices from specific domains could process a 

portion of user data in the given time if they have the right purposes. Notice that we do not define an 

explicit sensor device that can process the user data in the disclosure policies. Therefore, our concept 

of PBE protects the confidentiality of user data from unknown devices and from the centralized data 

storage, of which users may not be aware. If the sensor device or the central data storage is a 

malicious host and tries to alter the disclosure policies or the tokens, it cannot reconstruct the 

decryption key (with more capabilities) to access user data. 
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GDPR General Data Protection Regulation 
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