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Abstract. Acesta excavata is the largest known bivalve associated with the Lophelia
pertusa communities along the northeast Atlantic continental margin, but has also
been found along steep cliffs, devoid of bathyal corals, and on more subdued
topographies. During the Pleistocene, including the last glacial, A. excavata was
widespread in the Mediterranean, but is in the Recent fauna known only from four
Mediterranean sites. A new possible live-record from the Canyon du Var off Nice
is presented. Radiocarbon dating (AMS “C-method) on an A. excavata assemblage
from the Strait of Sicily yielded a Late Pleistocene age of 39.9 ka. Biometric
parameters indicate that Pleistocene Mediterranean shells achieved about the same
maximum sizes as their Recent Atlantic counterparts, but individuals have been
slightly smaller on average. The subspecies Acesta excavata sublaevis Nordsieck,
based on a subfossil juvenile Mediterranean shell, is not considered a valid taxon.
Mineralogical composition and ultrastructure of A. excavata have been analyzed
using thin-sections, Feigel staining, x-ray diffractometry (XRD) and SEM-imaging.
Its wide distribution, large size (15 cm) and simple shell architecture makes it a
prime candidate for palacoenvironmental studies in cold-water coral settings.

Keywords. Acesta, North Atlantic, Mediterranean Sea, biogeography, ultrastructure,
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Introduction

Cold-water scleractinians are the focus of a growing interest in the field of
palacoceanography and palaeoclimatology (Adkins et al. 1998; Mangini et al. 1998).
Corals secrete an aragonitic exoskeleton whose growth pattern and geochemical

Freiwald A, Roberts JM (eds), 2005, Cold-water Corals and Ecosystems. Springer-Verlag
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composition is complex, making the extraction of suitable climatic signals often
technically difficult and not always easy to decipher (e.g., Mikkelsen et al. 1982;
Adkins et al. 2002; Risk et al. 2005). There is, therefore, a strong motivation to
test additional calcareous organisms co-occurring with cold-water corals, and thus
sharing the same ambient environmental conditions. Bivalvia are particularly useful
and reliable tracers to reconstruct past attributes of seawater (e.g., Jones et al. 1983;
Richardson 2001; Owen et al. 2002). In this respect, Acesta excavata Fabricius,
1779 (Fig. 1) is one of the most prominent bivalves that inhabit bathyal cold-water
coral communities along the European continental margin. A. excavata is expected
to be a more reliable environmental recorder than the corals, with a much simpler
growth pattern. The margin-wide occurrence in intermediate water masses could
provide us with an in situ archive.

Fig. 1 Acesta excavata Fabricius, 1779, from 180 m in Trondheimfjord, Norway. Major
growth lines and fine radial ribs sculpture the exterior. Note the attached parasitic foraminifer
Hyrrokkin sarcophaga and several circular grooves produced by the parasite. The shell
interior has a smooth surface. Interior swellings are due to the callus production of A.
excavata, where H. sarcophaga pits had entered the mantle cavity

We propose A. excavata as a possible target-species for studies of environmental
conditions in cold-water coral settings. This paper summarizes the known
distribution of A. excavata and its habitats. Herein we provide a biometric analysis
and a description of its shell structure, including an examination of its ultrastructure.
Our data on shell mineralogy and internal architecture provide a basis for subsequent
geochemical examinations.
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Taxonomy and biology of Acesta

The cosmopolitan genus Acesta is represented by more than 30 Recent species,
grouped within four subgenera (e.g., Vokes 1963, 1964; Dawson 1995; Coan et al.
2000; Marshall 2001). All of them are epifaunal filter feeders, found in cold-water
environments (e.g., Jeffreys 1879; Sowerby 1883; Dall 1902, 1908; Bartsch 1913;
Lamy 1930-1931; Madsen 1949; Hertlein 1952; Barnard 1963; Vokes 1963; Kuroda
et al. 1971; Coan et al. 2000; Marshall 2001), often associated with bathyal cold-
water corals.

The genus Acesta comprises larger (~25 cm) species (Lamy 1930-1931), than
other genera within the Limidae (Limaria, Lima, Ctenoides, Limatula and Limea)
are smaller and, with exceptions, tend to occur mostly in shallower waters (e.g.,
Coan et al. 2000; Hall-Spencer and Moore 2001; Mikkelsen and Bieler 2003).
Limidae live on the surface of seabed sediments or settle various types of hard
substrata. They are similar to the Pectinidae in many respects, for both families have
species that are active swimmers and that can attach to hard substrata by a byssus
(Yonge 1936).

Acesta excavata (Fig. 1) was first described as Ostrea excavata from Norwegian
fjords in 1779 by Fabricius, a Danish student of the pioneering Swedish taxonomist
Carolus Linnaeus. Its current taxonomic position within the phylum Mollusca is
shown below, having been transferred to the genus Acesta by H. and A. Adams
(1858). Lima solida Calcara, 1845, Radula (Acesta) excavata H. and A. Adams,
1858 and Lima excavata Lamarck, 1819 are synonyms of Acesta excavata (for
details see Vokes 1963), which is the type species for the genus Acesta.

Class BIVALVIA Linnaeus, 1758
Subclass PTERIOMORPHA Beuerlen, 1944
Order LIMOIDA Waller, 1978
Superfamily LIMOIDEA Rafinesque, 1815
Family LIMIDAE Rafinesque, 1815
Genus Acesta H. and A. Adams, 1858
Species excavata Fabricius, 1779

Acesta excavata is a suspension feeder which lives attached to hard substrata
and is distributed along the continental shelf-break of the north-eastern Atlantic
Ocean (Fig. 2) and during the Pleistocene to Recent within the Mediterranean basin
(e.g., Bourcier and Zibrowius 1969), often co-occurring with Lophelia pertusa and
Madrepora oculata. Most specimens for this study were recovered from cold-water
coral sites (Fig. 3). Remotely Operated Vehicle (ROV) investigations showed a
direct byssal attachment to dead coral frameworks, just below the active growth
zone.

Acesta rathbuni (Dawson, 1995) and A. bullisi are capable of releasing themselves
from their byssus and swimming to more favourable sites (Kohl and Vokes 1994)
yet A. excavata seems unable to swim actively. Nevertheless, even adult specimens
can move easily using their strong byssus (Jarnegren 1999).
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Fig. 2 Distribution of Recent Acesta excavata in Europe (black circles). Bathymetry is
simplified to the 200 m and the 1000 m depth contour. White triangles indicate submerged
sites of subfossil to Late Pleistocene age and black triangles denote uplifted Lower Pleistocene
sections on Sicily and Rhodes. Sampling sites covered in detail are: 1 - Sula Ridge, 2 -
Trondheimfjord, 3 - Kosterfjord, 4 - Faroe Bank, 5 - Cabliers Bank, 6 - Strait of Sicily, 7
- North Tyrrhenian Sea

Acesta bullisi Vokes, 1963 from the Gulf of Mexico is found attached to large
vestimentiferan tubeworms (Lamellibrachia luymesi) in chemosymbiotic bottom
communities at hydrocarbon seeps (e.g., Boland 1986; MacDonald et al. 1989;
Kohl and Vokes 1994). Jarnegren et al. (2003) observed an oophagous lifestyle for
A. bullisi, in addition to its filter feeding habit. This combination is unique in the
animal kingdom. A. bullisi preys on lipid-rich tubeworm eggs.

Little is known about Acesta angolensis Adam and Knudsen 1955, the south-
eastern ‘neighbour’ of A. excavata, which inhabits bathyal depths along the
west-African continental margin (Boss 1965). A. angolensis has its northernmost
distribution off north-west Gabon at 439 to 595 m depth, but is more commonly
found further south from Pointe-Noire to Mo¢amedes (pers. comm. R. von Cosel
2003).
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Fig. 3 Haltenpipe Reef cluster, 300 m depth, off Mid-Norway. Dense clusters of large (>10 cm)
A. excavata, byssally attached to dead coral framework, just below the active growth zone
(photo courtesy of M. Hovland, Statoil Company; Hovland and Mortensen 1999)

Description of Acesta excavata

The thin white shell, often translucent in juvenile specimens, is roughly oval and
higher than wide (Fig. 1). The anteroventral margin is oblique, while a prominent
auricle marks the posterior. Adult specimens can reach 20 cm in height and are
moderately inflated, strongly inequilateral, but equivalved. The lunular field is
excavated, sometimes slightly gaping at the byssal notch.

Many fine radial ribs restricted to the exterior originate from the umbo. Each
rib can be traced across the entire shell to its margin. On the medial portion they
are often subdued and faint, but again more pronounced towards the valve margin.
In anteroventral and dorsal portions the ribs are most prominent, especially on
either side of the umbo, in the lunular area and on the posterior auricle. Interspaces
between ribs are shallow concave grooves, equally wide as the adjacent costae. The
posterodorsal margin shows a distinctly ribbed angular auricle behind the small
umbones, while the anterior auricle is reduced.

Major growth lines occur on the exterior side in relatively regular increments
(Fig. 1). In large adult specimens (>10 cm) these lines get narrower and are
increasingly crowded. Earliest growth lines close to the umbo are often indistinct.

The shiny interior side, in contrast, is smooth with a slight opalescence, only
interrupted by the imprints of the posterior muscles. The non-sinuate pallial line is
situated close to the valve margin.
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The hinge is straight, without teeth, slightly indented by an oblique triangular
ligament pit in the middle (Fig. 2). Most of the ligament is restricted to the oblique
triangular groove, with narrow lateral extensions onto the actively growing hinge
zone. Contact with the valves is partly calcified, in contrast to a black elastic exterior
part. The extremely thin periostracum is light brown to brown, often abraded during
lifetime on the medial shell portion.

The soft body of the living animal is light orange to white and shows a gaping
mantle cavity (Fig. 4), without fused margins and without siphon. Long tentacles,
some with eyes, extend from the folded mantle margin (Jarnegren 1999). Two muscle
imprints are visible on the posterior portion of the shell interior. Usually one large
approximately circular imprint is accompanied by a field with dense accumulation
of smaller pedal muscle holdfast. This patch is made up of several muscle strings,
which can be fused in adult shells. In old shells both muscle attachment areas may
form a joint imprint, up to 4 cm in length (1.5 cm wide). The strong foot allows the
animal to crawl hinge-first, assisted by strong byssus threads originating from the
byssus gland. These fibres exit at the lunular field and allow for a firm attachment to
hard substrata. Jarnegren (1999) has documented a sex change during the lifetime
of A. excavata; most specimens from Trondheimfjord (Rgberg and Hitra) <9.0 cm
were male, while shells >11.5 cm were female.

Fig. 4 A. excavata byssally attached to a steep bedrock cliff at 85 m in the Kosterfjord,
Sweden. Shells reach 13 cm height (photo courtesy of T. Lundalv, TMBL)
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Fossil record of the genus Acesta

Taxa attributed to the Limidae can be traced back at least to the Carboniferous
(e.g., Coan et al. 2000), while the fossil record of the genus Acesta spans the
Late Mesozoic and Cenozoic era (e.g., Dall 1900; Clark 1925; Yokoyama 1925;
Woodring 1938; Otuka 1940; Kanno 1960, 1971; Vokes 1963, 1964; Aoki 1976;
Hickman 1984; Beu and Maxwell 1990; Stilwell and Zinsmeister 1992; Palazzi and
Villari 1996; Stilwell and Gazdzicki 1998; Coan et al. 2000). Today more than 30
fossil species are attributed to Acesta.

All known Mesozoic Acesta localities originate from the southern hemisphere
supercontinent Gondwana, encompassing its continental margins. The oldest Acesta
records are reported from Late Jurassic deposits (Kanjilal 1990) of western India.
Early Cretaceous sites are known from New Caledonia (Freneix 1980), southern
Chile (Dawson 1995) and India (Kanjilal 1990). Latest Cretaceous to Early Tertiary
sections on Seymour Island in Antarctica document the continuous record of Acesta
across the K/T boundary, represented by Acesta shakletoni, A. seymourensis, A.
laticostata and A. bibbyi (Stilwell and Zinsmeister 1992; Stilwell and Gazdzicki
1998).

Lower Oligocene deposits of Austria document early occurrences in Europe with
Acesta szaboi and A. mittereri (Loffler 1999). During mid-Tertiary times (especially
Miocene) the genus has at least 16 species documented (Vokes 1963). This peak
in diversity also marks the onset of its cosmopolitan distribution. Most species are
reported from Japan (e.g., Matsumoto 1986), but also from New Zealand (Beu and
Climo 1974; Marshall 2001) and from the Pacific side of North America (Moore
1984). According to Sacco (1898) the European Acesta miocenica Sismonda, found
in Miocene deep-water deposits of Italy and Hungary (Sacco 1898; Baldi 1986),
represents potentially a mid-Tertiary ancestor of Acesta excavata.

The bathyal, neotectonically uplifted Plio-Pleistocene sections of Rhodes (pers.
observ. A. Freiwald) and Sicily (Seguenza 1870, 1880) provide the oldest known
A. excavata sites. Many occurrences are recorded from Early to Mid-Pleistocene
deposits from Sicily and the adjacent southern Italian province Calabria (e.g.,
Seguenza 1873-1879, 1880; De Stefani 1891; Di Geronimo and Li Gioi 1980; Di
Geronimo 1987; Barrier et al. 1996; Palazzi and Villari 1996; Vazzana 1996; Di
Geronimo and La Perna 1997).

Apart from those emerged sections, A. excavata is also recorded from numerous
Late Pleistocene submerged deposits in the western part of the Mediterranean Sea
(Fig. 2), often associated with subfossil azooxanthellate scleractinian corals (Segre
and Stocchino 1969; Taviani and Colantoni 1979; Corselli and Bernocchi 1990;
Bonfitto et al. 1994a, b). A. excavata has been recorded so far from the Alboran Sea
over the Balearic Sea to the Strait of Sicily (Taviani and Colantoni 1979) and from
the Adriatic (Ghisotti 1979). These submerged sites document together with the
southern Italian outcrops the frequent fossil (Pleistocene) distribution of the bivalve
in the western Mediterranean. Recently dredged hardgrounds (CORTI mission) on
the flanks of Cialdi Seamount in the Tyrrhenian Sea have yielded the first submerged
example of a micritic limestone containing A. excavata (Fig. 5).
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Fig. 5 Pleistocene A. excavata from a hardground dredged from Cialdi Seamount (CORTI
86) in the Tyrrhenian Sea (450-1074 m). The pictured fragment is 1.7 cm long, but specimens

>10 cm height have been recovered

Emerged Late Glacial to Holocene A. excavata have been noted from the glacial
isostatically uplifted Norwegian coast (Jeffreys 1879), also together with L. pertusa
from the Oslofjord (Broch 1922).

Recent distribution of Acesta excavata

The Recent distribution (Fig. 2) encompasses the north-eastern Atlantic between
Norway and Mauritania (e.g., Sars 1878; Jeffreys 1879; Locard 1898; Friele and
Grieg 1901; Kier and Wollebak 1913; Madsen 1949; Filatova 1959; Bourcier and
Zibrowius 1969; Nordsieck 1969; Poppe and Goto 1991; Mikkelsen and Bieler
2003), including occurrences off southern Iceland (Madsen 1949) and south-western
Greenland (Lamy 1930-1931). A record from a fjord setting in south-western
Newfoundland (Bay D’Espoir) extends the geographical range to the western
Atlantic margin (Haedrich and Gagnon 1991; Gagnon and Haedrich 2003).

At present Acesta excavata is a common component of cold-water coral reefs and
circalittoral submarine cliffs in Sweden and Norway (Hgis@ter 1986). The earliest
records of A. excavata come from Norwegian fjords, which yield the shallowest
occurrences at water depths of less than 200 m. Stjernsund in West Finnmark at
70° is the northernmost record for live A. excavata (Freiwald et al. 1997). Among
the best documented occurrences is the Trondheimfjord, were A. excavata is found
down to 500 m (Jarnegren 1999). Many mid-Norwegian fjords (Grieg 1913; Kiar
and Wollebzk 1913; Nordgaard 1929; Dons 1932, 1944; Burdon-Jones and Tambs-
Lyche 1960) host the typical deep-water bivalve at relatively shallow depths. The
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Swedish Kosterfjord, which is connected to Atlantic waters by an over 500 m
deep trough, is inhabited by dense A. excavata clusters on steep rock cliffs (Fig. 4)
between 65 and 90 m depth (Lundalv 1997).

Apart from the fjord sites, A. excavata is distributed all over the relatively deep,
glacially influenced Norwegian shelf, between 200 and 350 m (e.g., Sula Ridge;
see Freiwald et al. 2002). Further south this species is restricted to the western
European shelf-break area. The sites show a rough north-south depth trend, with the
shallowest locations at 180 to 380 m on the continental margin off the Faroe Islands
(Jensen and Frederiksen 1992; Delongueville and Scaillet 2000) and the deepest
sites west of the Strait of Gibraltar (Dautzenberg and Fischer 1897; Hidalgo 1917),
off south-western Portugal (1200 m). Southwards A. excavata has been scarcely
reported from the Moroccan shelf (Reynell 1910; Ghisotti 1979), down to western
Sahara (Locard 1898) and Mauritania (Table 1), and from an isolated site off the
Ivory Coast (pers. comm. R. von Cosel 2003). Marche-Marchad (1979) reports and
figured A. cf. excavata from 900 m in the Golf of Guinea near Abidjan. Additionally
A. excavata has also been reported at 3200 m from the Canaries (Dautzenberg and
Fischer 1906; Dautzenberg 1927) and between 599 to 1850 m around the Azores
archipelago (Dautzenberg 1927).

In the Mediterranean, A. excavata was widespread during the last glacial period
(Malatesta and Zarlenga 1986) but is currently less successful with only scattered
records of live animals (Fig. 2). Early records, like that of Madsen (1949) who was
the first to record this species as alive from the Mediterranean, may be questionable
since fresh looking shells were often considered as living at that time. Appearances
can be deceiving, as fresh-looking shells might be of Pleistocene age. Today there
are four reliable reports for live A. excavata in the Mediterranean (Ghisotti 1979;
Carcassi 1983; Rocchini 1983; Terreni and Voliani 1995), located between 430 and
570 m. Three of those sites are in the northern half of the western Mediterranean, north
of Corsica in the Tuscan Archipelago (Fig. 2). The fourth site is located southwest
of Sardinia in the Tyrrhenian Sea with a specimen found attached to a thick plastic
canvas on a muddy bottom (Terreni and Voliani 1995). Numerous subfossil to fossil
sites have been recorded from the western Mediterranean (Table 1) and document
the former wide distribution within the basin (e.g., Bourcier and Zibrowius 1969;
Taviani 1976; Taviani and Colantoni 1979; Remia and Taviani 2004). Segre and
Stocchino (1969) and Colantoni et al. (1970) record fossil A. excavata deposits in
the Tyrrhenian Sea. Two questionable subfossil sites are recorded from the Adriatic
Sea (Ghisotti 1979).

Habitats

The species has an overall depth range report from 40 to 3200 m, but is usually
found between 200 and 800 m, bound to intermediate water masses, particularly
along the shelf-break area (Fig. 2). Living specimens are reported between 3 and
13°C (e.g., Bourcier and Zibrowius 1969; Ghisotti 1979), while most A. excavata
sites have a temperature range of 6 to 8°C and salinities of 33.4 to 38.5 %0 (Malatesta
and Zarlenga 1986).
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The most detailed insights into A. excavata habitats come from Scandinavian
waters (Figs. 3, 4), based on ROV images and submersible observations from
several cruises. A. excavata is for example common at the 300 m deep Haltenpipe
Reef Cluster, on the shelf off mid-Norway (Hovland et al. 1998). Many A. excavata
are found byssally attached to steep or overhanging hard substrata, especially to
Lophelia corals and rocks (Hovland and Mortensen 1999). The shells are attached
to dead coral skeletons, just below their soft tissue protected active growth zone
(Fig. 3). Most A. excavata appear to be large (>10 cm height), orientated with
the gape of their shells protruding into the water column. They co-occur with the
gorgonacean octocorals Paragorgia arborea and Primnoa resedaeformis, as well as
with the actinarian Protanthea simplex.

Surveys on the 200 m deep Nord-Leksa L. pertusa reefs off western Norway also
revealed dense clusters of large (>10 cm) A. excavata on vertical to overhanging L.
pertusa colonies, accompanied by live L. pertusa, Paragorgia arborea and Primnoa
resedaeformis as conspicuous associated species (pers. comm. M. Hovland 2003).

Similar observations were possible from submersible (Jago) photographs taken
on R/V Poseidon cruise POS 228 to the L. pertusa reef complex on the 250 to
320 m deep Sula Ridge (Freiwald et al. 2002). Here large A. excavata (up to 13 cm)
were attached to vertical faces of dead coral rubble associated with the demosponge
Pachastrella sp.

A. excavata has been documented at 40 m depth by SCUBA divers in
Trondheimfjord, Tautraryggen, mid-Norway (pers. comm. E. Svensen 2003), and
from several other sites down to 500 m at the fjord outlet (Hitra). Tautraryggen is
at the same time the shallowest known site for the cold-water coral L. pertusa and
for the bivalve A. excavata. Again, A. excavata was found attached to live Lophelia
corals and to vertical faces of dead coral, associated with Ascidia mentula forming
conspicuous parts of the sessile community.

Recent A. excavata from the Mediterranean have been reported attached to hard
substrata and were found in the vicinity of dead cold-water scleractinians (L. pertusa
and M. oculata).

ROV investigations from the Swedish Kosterfjord (Fig. 4) revealed a different
picture (Fig. 4). A. excavata thrives in dense clusters on steep to overhanging
bedrock cliffs, in absence of L. pertusa. They occur at 65 to 90 m depth with the
actinians Bolocera tuediae and Urticina eques, the tube-dwelling polychaetes
Serpula vermicularis, Hydroides norvegica and Sabella pavonina, as well as with
encrusting and erect bryozoans Alcyonidium diaphanum, and with the ascidians
Dendrodoa grossularia and Ascidia sp. (Lundalv 1997).

A. excavata also occurs in the adjacent Oslofjord (Table 1) on bouldery glacial
deposits, as well as on muddy bottoms where dropstones provide hard substrata.

Di Geronimo (1995) reported A. excavata from emerged Plio-Pleistocene
deposits (Fig. 2) of the Straits of Messina, in the community of “White Corals”. The
bivalve occurs together with L. pertusa and M. oculata, all originating from nearby
escarpments, later embedded in bathyal marls (Di Geronimo 1987).

Sampling station COR2-56 in the Strait of Sicily in Late Pleistocene muddy
sediments at the base (-505 m) of a steep cliff yielded a similar picture. The grab
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sample contained numerous disarticulated A. excavata shells (>200), including
at least 64 other macrofaunal taxa within the mixed pelagic to benthic death
assemblage. Several organisms that live on hard substrata, like L. pertusa and M.
oculata, the brachiopod Gryphus vitreus and the bivalves Spondylus gussoni and A.
excavata, originate from the adjacent cliff.

Epibionts, parasites and endolithic organisms

Acesta excavata valves provide a hard substratum for epibionts. Recent shells
often show dense overgrowth of serpulids, bryozoans and sponges, but also
scleractinians and saddle-oysters (Anomiidae sp.). Fossil Mediterranean shells were
often colonized by the brachiopod Novocrania anomala, which produces a typical
imprint on the shells.

A. excavata is frequently infested by Hyrrokkin sarcophaga Cedhagen, 1994.
This parasitic foraminifer also settles on the scleractinian L. pertusa, on other
bivalves (e.g., Delectopecten vitreus), and even on sponges, within cold-water
coral settings (Freiwald and Schonfeld 1996). H. sarcophaga preferentially uses A.
excavata and L. pertusa as host (Cedhagen 1994). In early ontogenetic stages the
foraminifer produces a 0.5 to 1 mm deep and up to 3 mm wide circular groove on
the shell surface of A. excavata (Fig. 1), usually within the outer calcite zone. Adult
foraminifer produce a narrow pit, which penetrates the entire valve and enters the
inner soft tissue (Freiwald and Schonfeld 1996). A. excavata then forms a callus to
close the hole, easily recognized as swelling on the shell interior (Fig. 1). Typical
swelling diameter is 5 mm, formed by thin aragonite laminae, enriched in organic
matter. More than forty pits have been observed on single valves, often with the
parasite still attached in life-position.

A similar relationship is reported from Acesta angolensis, which is infested by
Rosalina carnivora (Todd 1965). A. angolensis is the southern ‘neighbour’ of A.
excavata and at the same time a closely related species. Both limid bivalves can
hardly be distinguished by their biometric parameters (e.g., width and height). The
two parasitic Foraminifera Hyrrokkin sarcophaga and Rosalina carnivora (Marche-
Marchad 1979) are also closely related (see discussion in Cedhagen 1994).

The foraminiferan Hyrrokkin sarcophaga has not yet been documented from
the present day Mediterranean (Cedhagen 1994; Freiwald and Schonfeld 1996).
Boring traces preserved in Pleistocene A. excavata shells instead suggest that the
foraminifer must have persisted in the Mediterranean as well. Unfortunately none
of the fossil samples had the parasite still attached. Only a detailed investigation of
the trace can consolidate this likely possibility.

Cedhagen (1994) noted that A. excavata from the Kosterfjord, although some
hundred specimens were collected, had not shown an infestation by H. sarcophaga.
Samples of A. excavata collected during the R/V Alkor cruise 232 to the Kosterfjord
and the Skagerrak in November 2003 (Table 1), showed instead traces of the
foraminifer at most sampled sites, including Kosterfjord. Both, subfossil to Recent
shells were infested.
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On older shell portions the periostracum tends to disappear, enhancing early
bioerosion during the lifetime of the bivalve. Consequently bioerosion lacks in the
youngest shell parts, but becomes increasingly frequent towards the umbonal area.
The same pattern can be observed on the hinge plate, where only the youngest part
is occupied by the ligament, while the older parts are already slightly affected by
boring organisms.

The micro-borings Orthogonum lineare and Saccomorpha clava, produced
by fungi (e.g., Dodgella priscus) are the most common ichnotaxa observed in A.
excavata shells. The macro-boring Entobia, produced by sponges like Cliona,
has been observed on many Pleistocene Mediterranean shells. Traces of boring
foraminifers, especially of Hyrrokkin sarcophaga are highly abundant on Recent
Norwegian A. excavata and on Pleistocene material from the Mediterranean.

Materials and methods

Live specimens sampled along the European continental margin, e.g. on the mid-
Norwegian shelf or in the Swedish Kosterfjord, and dead specimens (subfossil and
fossil) from the Mediterranean Sea, were analysed with various methods. Samples
were collected over the years on many cruises (Table 1), supported by the following
European research vessels: R/V Bannock, R/V Poseidon, R/V Urania, R/V Johan
Hjort, R/V Meteor, R/V Littorina, R/V Lophelia, R/V Victor Hensen, R/V Alkor and
R/V Marion Dufresne. Most specimens were obtained with an epibenthic dredge
device or by grab sampling (Van Veen grab). Sampling at the Sula Reef site off mid-
Norway, involved direct collection with the manned submersible Jago (Freiwald et
al. 2002) and the Kosterfjord colonies were documented with ROV. Positions were
usually fixed with a differential global positioning system (DGPS).

Over 350 single valves were measured for a biometric analysis. Using a digital
calliper, length of the straight hinge line, maximum shell width (parallel to the
hinge line) and maximum length (height) along the main growth axes from umbo to
margin, as well as single valve inflation and hinge height were measured.

Thin sections were prepared along and across the main growth axes, to study
internal architecture and layering of the shell with a high resolution light-optical
microscope (Zeiss). Single valves were embedded in a two compound epoxy resin
(Araldit and Araldur) to ensure sawing stability.

Some polished slabs were immersed in Feigel’s solution for 3 to 4 minutes,
resulting in dark staining of aragonitic shell portions. This silver coating leaves
calcite unaffected and allows for a quick distinction of major mineralogical zones.
Homogenous powder samples were prepared of several interior and exterior shell
portions to verify this preliminary mineralogical zonation with x-ray diffractometry
(XRD).

Shell ultrastructure was investigated using a Scanning Electron Microscope
(SEM). Polished shell sections were etched with 0.1 N dilute hydrochloric acid
(HCI) for 30 seconds, then rinsed in deionized water, dried, sputter coated with
gold, and photographed under the SEM.
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A numeric radiocarbon age from a Mediterranean A. excavata (COR2-8) was
obtained with the AMS-"*C method at the Eidgenossische Technische Hochschule
(ETH) in Zurich.

Results

Taxonomy

The subspecies Acesta excavata sublaevis Nordsieck, 1969 was established on
the photo of a juvenile subfossil specimen from Cassidaigne Canyon off Marseille
in the Mediterranean (pers. comm. H. Zibrowius 2004). It is actually the same
specimen which is described in Bourcier and Zibrowius (1969) and now stored at
the Museum of Natural History in Paris (MNHN). This single valve does not differ
in any respect from Recent juvenile Acesta excavata Fabricius, 1779 from the North
Atlantic and, therefore, the taxon is not considered valid.

Possible documentation of living in situ Acesta excavata in the
Mediterranean

CYANA-submersible dive CY 86-53 (6" November 1986; SAME-cruise) in
Canyon du Var, off Nice (France), photographed Acesta excavata on steep canyon
walls of conglomerate bedrock (Fig. 6). Still articulated shells with gaping valves
occurred on slightly overhanging canyon walls next to solitary scleractinian corals
— presumably Desmophyllum cristagalli. The 10 cm large shells were either alive
or recently dead, being open, but the soft body is not visible on the pictures (pers.
comm. H. Zibrowius 2004). The exact depth is unknown, but was shallower than
1548 m.

Radiocarbon dating

A large well-preserved A. excavata specimen (COR2-8) from a grab sample in
the Strait of Sicily (Table 1) has been radiocarbon dated to 39,960 + 820 cal yr BP,
dating back to the latest glacial period of the Pleistocene. This numeric age is close
to the upper age limit of the AMS-"*C method and has to be judged carefully. If the
numeric age of 39.9 kyr does not correspond to the real value, then it provides at
least a minimum age.

Tyrrhenian hardgrounds with Acesta excavata

Dredge samples (CORTI 86 to 88) from the steep western and eastern slopes
of Cialdi Seamount (Table 1) in the Tyrrhenian Basin have yielded calcareous
hardgrounds between 1073 and 450 m (CORTI 86) and between 494 and 358 m
(CORTI 87). The rocks contained a high number of fossil A. excavata and represent
the first known submerged occurrence in lithified Pleistocene deposits (Fig. 5) from
steep sediment starved seamount flanks. All rock samples showed a black stained
irregular surface with dissolution cavities and partly lithified yellowish brown
mud. The interior was built up of micrite containing numerous fossils, dominated
by Gryphus vitreus and A. excavata (~8 cm), associated with Desmophyllum
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Fig. 6 Pictures from CYANA dive CY86-53 (6™ Nov. 1986) in Canyon du Var (<1548 m)
off Nice (France) show paired valves of A. excavata (a - lower right corner, b - enlarged),
documenting living or recently dead specimens (~10 cm height). The steep conglomeratic
bedrock walls are colonized by solitary scleractinians (most likely Desmophyllum sp.)
(courtesy of H. Zibrowius, modified from IFREMER material)

cristagalli, Stenocyathus vermiformis, Lophelia pertusa and large oysters. Thin
black manganese veneers and irregular seams mark dissolutional horizons. Rock
surfaces were densely populated by Vermiliopsis monodiscus and Protula sp., which
occur also as fossils within the rock.

Shell banding and hierarchic growth patterns

Regularly-spaced growth bands on the shell surface are a prominent feature of
A. excavata (Fig. 1). Growth increments are widest along the main growth axes,
and get narrower towards the cardinal area, were they continue as fine ribs on the
hinge (Fig. 7). Increments have average widths of 0.3 to 0.5 cm in juvenile shells
of around 5 cm height. Older shells, up to 10 cm height, show the widest bands,
ranging from 0.4 to 0.9 cm, and measuring 0.6 cm on average. In adult specimens
larger than 10 cm, the bands become increasingly narrower (<0.3 cm) and crowded
(Fig. 7). The growth band boundaries can be traced as lines across the whole shell.
Incomplete and irregular growth bands occur especially where parasitic foraminifers
were attached to the valve margins. These ‘false’ rings cannot be traced across the
entire shell. Banding of left and right valve is equal, showing the same cyclic patterns
and also the same irregularities and incomplete bands in pathologic specimens.
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Fig. 7 Shell growth shows two phases. The first phase (a), typically up to 10 cm shell height,
is marked by a flat shell shape and an oblique ligament pit (¢). The second phase (arrows) is
marked by increased valve inflation and reduced height growth (b), while a broad hinge plate
is formed (d). Samples: JH-5-99 (a, ¢) and COR2-39 (b, d)

Growth increments are clearest on the central portions of large shells (>10 cm).
Proximal bands are frequently abraded or faint and hard to recognize, whereas
crowded and narrow bands of old shells cannot be accurately counted either. Shells
with 10 cm height have typically 18 to 22 bands. These shells, still in their first
growth mode, show a raw linear correlation of increment number and height.

Minute banding of parallel, equally wide (<0.4 mm), ribs marks the hinge plate
(Fig. 7). Their number corresponds to the number of external growth increments.
Shells at the end of the first growth phase, with about 10 cm height, have 18 to
22 hinge lines. The second growth phase produces large arched shells width an
extended hinge plate, showing more than 50 hinge lines (e.g., COR2-39). Up to 80
ribs have been counted from Norwegian samples. The maximum number of hinge
lines in some Trondheimfjord (Rgberg) specimens was in excess of 100 ribs (pers.
comm. J. Elvestrand 2003).

Live specimens from one location caught at the same time of the year show
a similar degree of growth increment completion. However, exact growth band
completion could not be calculated accurately, due to changing band widths
during clam ontogeny. Variability of growth ring width, possibly driven by local
environmental changes, further prohibited an exact calculation of growth band
completion. Relative variation of increment width for the latest 10 growth bands
showed a similar pattern for shells from the same location.

Thin-sections revealed hierarchic growth patterns also for the valve interior and
especially the hinge shows a rhythmic banding.
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Shell growth and allometric changes

Allometric growth shows linear correlations among most biometric parameters
(Fig. 8). Shell width correlates linearly especially well with height at an average
width/height ratio of 0.77+0.05 (min./max. 0.71-0.90). Older specimens, typically
larger than 10 cm (e.g., TMBL 1-4), tend to slightly wider forms with a width/height
ratio of 0.83. In these adult shells, the pallial line is retracted a considerable distance
(~1 cm) into the shell, resulting in slowed growth ring precipitation. This decrease
in growth rate is well depicted by a reduced distance between growth increments
on the shell exterior. At this time the valve form changes from a flat cross-section
to an increasingly glabrus, arched shape with crowded growth lines (Fig. 7). The
onset of the second growth mode is well depicted in the lunular area by the first
emplacement of a straight rib. Arched ribs in the excavated lunular area characterize
the first growth period. Lunular ribs are parallel in the second growth phase and
rapidly increase the valve inflation (Fig. 7).

This changing growth pattern also affects the hinge morphology. In young shells,
with sizes of less than 8 to 10 cm the hinge has a strongly oblique ligament groove.
At the change of growth modes the hinge reaches a typical width of 3.0 cm and a
height of 0.8 cm. Subsequently the shell forms a prominent hinge plate, with the
ligament pit approximately centred within the parallel hinge margins (orthogonal
to hinge line). Old specimens can reach an inflation of about 3.5 cm and show a
prominent hinge plate, with a hinge height of around 1.5 cm and a hinge with of
about 3.5 cm.
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Fig. 8 Linear correlation of shell width versus shell height and also linear correlation of hinge
width to shell height
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Hinge height versus hinge width shows similar plots for Recent Atlantic and
Pleistocene Mediterranean shells (Fig. 9). The overlap is considerable, although
Mediterranean hinges seem to be slightly narrower and start to produce a hinge
plate slightly earlier than their Atlantic counterparts. Atlantic shells switched to the
second growth mode at a typical height of 10 cm, while Pleistocene Mediterranean
shells switch at heights of 8 to 9 cm. The hinge width shows a linear correlation to
shell height for Atlantic samples >10 cm (Fig. 8). This morphological relation can
be used to reconstruct shell height estimates of Mediterranean populations where
often only the hinges are preserved.

Microstructure and shell mineralogy

Polished or broken shell sections show a general subdivision into two layers
visible to the naked eye, corresponding to the bimodal mineralogy of A. excavata
with an outer calcitic and an inner aragonitic layer (Fig. 10). Staining with
Feigel’s solution of vertical transects along the main growth axes visualized this
differentiation. XRD-investigations of powdered shell material from interior and

exterior portions confirmed this first mineralogical zonation.
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Fig. 9 Hinge width versus hinge height for Recent Atlantic A. excavata and Pleistocene
Mediterranean specimens (triangles) plot in the same field, indicating that fossil Mediterranean
shells attained similar sizes as their Recent Atlantic (circles) counterparts. Hinge parameters
for shells of the first or second growth mode plot in different fields

Aragonite makes up the entire hinge and the interior valve side (Fig. 10). In
the umbonal part of juvenile specimens this aragonitic layer is covered by a thin
(<10 %) exterior calcitic veneer, which extends all the way to the valve margins.
Along radial transects there is a considerable change in mineralogical proportioning,
with the calcitic zone gaining in thickness towards more distal parts. At the pallial
line calcite provides about 70 % of the valve over the remaining 30 % of interior
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Fig. 10 Shell mineralogy and internal structure. The external calcite is often missing near
the umbo

aragonite. The narrow zone (2 to 5 mm) between the pallial line and the margin
is entirely formed by calcite. This calcitic zone frequently lacks on the umbonal
to central shell portion of adult clams (Fig. 10). Instead intense bioerosion, which
penetrates also into the aragonite, often marks this part.

Calcitic outer layer

The calcitic layer is responsible for the thin radiating ribs, which weakly sculpture
the shell surface and which are regularly interrupted by growth rings (Figs. 1, 7).
The ribs are pronounced towards the anterior and posterior margin of the clam and
are least developed in the central portion. In juvenile specimens, the entire shell is
covered by ribs. A smooth appearance on the central to umbonal portion in adult
shells is due to secondary reduction of the calcitic layer (Fig. 10).

Aragonitic inner layer

The shiny shell interior is made of aragonite layers (Fig. 10). The surface of the
interior valve side exhibits a characteristic zebra-fur pattern, which is also visible in
shell cross-sections along the growth direction. The aragonitic interior layer shows
a fine horizontal banding, with numerous bands close to the umbo and just one layer
behind the pallial line. In correspondence to the number of external growth lines
there is an equal increase in number of aragonite strata towards older and more
proximal shell parts. Each stratum is thinnest in the medial shell part and thickest
adjacent to the pallial line. Where the parasitic Foraminifera Hyrrokkin sarcophaga
penetrated the shell and entered the mantle cavity with its pseudopodia, the mollusc
formed a several millimetre thick callus (Fig. 1) of multi-layered aragonite to seal
the wound.
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Ultrastructure

SEM analysis of polished and slightly etched shell sections has revealed five
distinct ultrastructural zones. The calcitic layer exhibits an outer fibrous-prismatic
zone (Fig. 11) and a microgranular zone (Fig. 12) below. The aragonitic layer shows
mainly a crossed-lamellar structure (Fig. 13), which grades into a radiating crossed-
lamellar fashion in the hinge. On the inside of the umbones is a spatially restricted
complex crossed-lamellar zone.

Fibrous-prismatic calcite

Thin calcite prisms make up the outermost sublayer of the shell (Fig. 11). They
lie subparallel to the outer shell surface, but often inclined up to 20°. Mineralogical
c-axes have the same orientation and large areas show synchronous extinction
under crossed-nichols. This layer is usually 100 to 150 wm wide, with a well
defined boundary against the granular sublayer underneath. Individual prisms reach
50 wm in length and 5 to 10 um width. The calcite fibres show several forms. Most
common are flat, lath-type prisms and rod-type fibres. The longest linear prisms
occur on the shell exterior (Fig. 11), which grade inwards into thinner and shorter
fibres. Larger prisms often form areas with equally oriented crystals. The broad
lath-type prisms attain the largest sizes and show a minute internal banding. SEM-
studied shell surfaces show fine prisms that are oriented approximately orthogonal
to the closest growth line.

g f( i i ”,ll” " ] Xf ]
Fig. 11 Surficial SEM image of the exterior fibrous-prismatic calcite layer. The tips of the
prisms point in growth direction and mark the boundary of a growth band. The interspaces
between the prisms had been filled with intercrystalline organic matrix
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layer. The shape of the granules varies from near spherical to short fibres. The calcitic granules
are often arranged in single-grain layers

Fig. 13 SEM image of the crossed-lamellar interior aragonite. The first-order lamellae of this
ultrastructural and mineralogical unit exhibit a characteristic zebra fur pattern
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Microgranular calcite

Light-microscopy on this thickest calcite layer (170 to 250 um) shows a fine
varved appearance. An undulating asynchronous extinction under crossed-nichols is
typical for this sublayer. SEM investigations revealed a microgranular ultrastructural
zone. Minute calcite granules (Fig. 12), usually less than 1 um in diameter, comprise
90 % of this sublayer. Irregular globular grains are arranged in monogranular layers,
which are inclined against the outer fibrous layer at an angle of 10 to 15°. The lower
part shows a shift from almost spherical grains to increasingly elongated particles,
which grade inwards into fibrous calcite prisms at the boundary to the aragonitic
below. Fibrous calcite is developed closely along the margin towards the aragonitic
inner shell material, predominantly in adult specimens. The upper boundary against
the outer fibrous-prismatic layer appears very sharp in thin sections, but shows a
narrow transition zone under the SEM. This shift of different structure compositions
seems to be triggered by the adjacent intercrystalline matrix.

Crossed-lamellar aragonite

Crossed-lamellar aragonite (Fig. 13) builds the interior shell-layer and makes up
the entire hinge. Even at thin-section scale crossed-lamellae are visible as repeated
vertical zones of extinction under polarized light. Those first-order lamellae (10 to
25 um wide), which produce a straight to branching zebra fur pattern (Fig. 13), are
aligned parallel to the valve outline. The crossed first-order lamellae commence as
linear lamellae, but are often branching inward and grade into a radiating pattern in
the hinge. SEM images show second-order lamellae within each ‘zebra stripe’, with
equal orientation, responsible for the synchronous extinction of a single stripe under
crossed-nichols. The second-order lamellae are inclined at an angle of 30 to 45°
against the vertical axes of the first order lamellae, resembling a series of inclined
books on a shelf board. The lamellae grow in optical continuity, across all internal
growth increment boundaries.

Complex crossed-lamellar aragonite

The innermost shell layer, which occurs only on the inside of the umbo and at the
hinge, is formed by complex-crossed aragonite lamellae. This ultrastructure zone is
thickest (~100 um) in large shells and is lacking in smaller specimens. Individual
lamellae grow in optical continuity to the adjacent crossed-lamellae, starting from
a distinct ultrastructural boundary. The first-order lamellae have widths of 15 to
30 um and branch inward.

Myostracal aragonite prisms

The adductory muscle scar comprises fine aragonite prisms, with a complex
layer-wise intertongueing of crossed-lamellar aragonite layers. The overall
distribution of this myostracal aragonite is thickest at the muscle scar and thins
gradually towards the valve margins. At the muscle scar this ultrastructure unit has
a thickness of 150 wum and shows a banded structure, with individual layers of 5 to
15 wm thickness. Typically 10 wm high and wide pyramid-shaped aragonite prisms
form these internal bands.



196 Lopez Correa, Freiwald, Hall-Spencer, Taviani

Discussion

The present-day distribution of A. excavata is largely bound to the continental
margin at depths of 200 m and more (Fig. 2). The depth trend from deep sites
(>1000 m) at the Strait of Gibraltar to increasingly shallower localities northwards
to the Faroe Islands is likely to be guided by watermass boundaries. Depth range
and spatial distribution of A. excavata are restricted by temperature (Bourcier and
Zibrowius 1969), while salinity does not seem to play a major role. However, the
large depth and temperature range of A. excavata sites makes it unlikely that these
parameters are the singlemost important for the geographical spread of the species.

Depth is certainly not a limiting factor, while 3 and 13°C are the reported extreme
temperatures withstood by this bivalve. The extreme depths (Dautzenberg and
Fischer 1906; Dautzenberg 1927) reported around the Azores (>1500 to 3200 m)
and the resulting lowest temperatures (~3°C) for A. excavata have to be regarded
with suspicion. Exact depths of dredge samples could not be precisely measured
at that time and the deepest records do certainly not refer to living specimens
(pers. comm. H. Zibrowius 2004). The continental margin of western Europe and
especially the shelf-break are entirely located within this temperature window.
Therefore temperature cannot account for the northward ‘climbing’ of A. excavata
sites. Western European shelf-break areas are characterized by strong currents,
due to the boundary zone of intermediate watermass against deeper water bodies.
Plankton from the water column gets enriched along these density boundaries. High
levels of nutrients in combination with enforced water circulation allow for thriving
cold-water coral ecosystems (Broch 1922) and occurrence of A. excavata, which
favours similar conditions.

Temperature is though a possible limiting factor in the present day eurythermal
Mediterranean Sea, where A. excavata seems close to its ecological boundaries, as
does the scleractinian L. pertusa.

The deepest sites around the Canaries and off Senegal (Table 1), including the
isolated record off Ivory Coast, are located in tropical latitudes. Upwelling on the
African west coast (Le Leeuff and von Cosel 1998) provides cold watermasses at the
continental rise and along narrow shelf edge, allowing for a spread of non-tropical
species. The wide distribution gap south of Senegal, between Guinea Bissau and
southern Liberia, might be due to the lack of upwelling and could explain this
distribution pattern, which is also typical for other northern Bivalvia (Le Leeuff and
von Cosel 1998).

Northern guests and oceanographic change

A. excavata was much more widespread during the Pleistocene in the
Mediterranean basin (Fig. 2). Several submerged sites indicate a link to the
palacocommunity of ‘White Corals’ (sensu Péres and Picard 1964) in general.
But A. excavata does not only occur within mud-covered mound structures, which
resemble their present day counterparts in the North Atlantic. The grab samples
from the Strait of Sicily indicate that the bivalve also thrived on steep cliffs in
absence of the bathyal azooxanthellate scleractinians. These two substrata observed



Distribution and habitats of Acesta excavata with new data on its ultrastructure 197

in the Recent North Atlantic sites, cold-water corals and steep bedrock outcrops,
occur also in the fossil record. Interestingly enough, the single specimen recorded
by Terreni and Voliani (1995) was living on a muddy bottom, although attached to
an artificial hard substratum (plastic canvas).

The obtained radiocarbon age of 39.9 kyr from a submerged A. excavata site
from the Strait of Sicily (Table 1) supports the widespread distribution during the
colder periods of the Pleistocene. A. excavata joins species like Arctica islandica,
Pseudoamussium septemradiatum and Mya truncata as an example of a mollusc with
a northern distribution pattern in the present day that spread into the Mediterranean
during the last Ice Age and prior glacial periods as a so called ‘northern guest’ (Segre
and Stocchino 1969; Colantoni et al. 1970; Colantoni 1973; Taviani and Colantoni
1979; Malatesta and Zarlenga 1986; Bouchet and Taviani 1992). Nevertheless, there
is growing evidence that A. excavata is not a pure northern guest, as for example
stated in Malatesta and Zarlenga (1986). Instead, the scarce Recent finds indicate
that A. excavata is capable of surviving in the relatively warm basin at present.
Extinct Lophelia colonies at North Cabliers Bank, between Spain and Morocco,
had revealed an Early Holocene age of 8.5 kyr (365 yr), which have been dated,
using the TIMS U/Th-method (for details see Schroder-Ritzrau et al. 2005). Several
A. excavata specimens from the same dredge sample indicate that the bivalve might
have a similar age. Consequently it could have persisted in the basin throughout
the Holocene. There is no doubt that Holocene warming radically diminished the
distribution of A. excavata in the Mediterranean, which is at present a nutrient-poor
isothermal sea with temperatures of around 13°C throughout the bathyal zone. A.
excavata samples (LM-99-50) from the Tuscan archipelago (Remia and Taviani
2004), northeast of Corsica (Fig. 2), contain pristine shells, accompanied by subfossil
valves. Comparing the state of shell degradation with known Late Pleistocene
sites makes it likely that those are much younger, possibly latest Pleistocene as
co-occurring corals (Remia and Taviani 2004). Shell degradation can only provide
hints and further radiometric dating is necessary.

CYANA-submersible pictures from Canyon du Var (Fig. 6), document another
possible live-record for A. excavata in the Mediterranean Sea (pers. comm. H.
Zibrowius 2004). The paired valves hanging from an overhang indicate that the
shells were alive or died recently.

Habitats

Marshall (2001) noted that the genus Acesta has been found associated with
rocky or coral bank facies in deep waters worldwide. Isolated Acesta valves have
been recorded from sedimentary facies (Vokes 1963); Marshall (2001) considered it
likely that at least some of these were byssally attached to hard substrata when alive.
Our observations for A. excavata from the northeast Atlantic and Mediterranean
Sea support and extend these general observations. All photographic records from
Norwegian waters suggest a strong link between A. excavata and the Lophelia
pertusa coral sites (Fig. 3) in high biomass saxicolous communities indicating high
food availability.
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Surveys of Lophelia/Madrepora coral provinces on the Irish continental margin
(Porcupine Seabight) have not recorded A. excavata from these habitats, showing
that the bivalve is not as strongly linked to the bathyal coral facies as Norwegian
surveys would suggest. Instead the smaller Lima marioni (Mikkelsen and Bieler
2003) was frequently found byssally attached to L. pertusa and M. oculata (pers.
observ. A. Freiwald). Similarly, living L. pertusa and M. oculata occurrences in
the Tyrrhenian and the Ionian Sea lacked A. excavata. This confirms that European
cold-water coral facies do not always support populations of A. excavata.

Pleistocene submerged sites in the Mediterranean show that steep cliffs have been
commonly inhabited by A. excavata (COR2-39; Table. 1), similar to the habitats
observed in Scandinavian fjords. The steep rugged slopes of Cialdi Seamount in
the Tyrrhenian Sea with the recovered A. excavata limestone (hardgrounds) provide
another example for rock wall habitats (Fig. 5). These rock sites might be in fact
more typical for A. excavata than the coral sites, where current research is focused.
Cialdi Seamount is the first known submerged A. excavata occurrence in lithified
Pleistocene deposits from a steep sediment starved submarine relief. High number
of specimens, often with preserved shell material, document the fossilisation
potential of A. excavata communities, even in sediment deprived seamount settings.
Observations in Canyon du Var provide another record of rock wall habitats
(Fig. 6).

Growth rate

Regular spacing of growth increments suggests a rhythmic, possibly annual,
control on the shell deposition. Shells collected at different times of the year showed
different completions of increments. It cannot be ruled out that increment boundaries
are triggered by rhythmic spawning events or changing fluxes in food supply from
the water column. First observations though make a seasonal emplacement of
growth-increments likely. Thin-sections of the hinge showed a rhythmic internal
banding with changing density and different amounts of intercrystalline organic
matter. These internal changes were repeated in each ring, making an overriding
seasonal control more likely than single events.

Accepting an annual character of the growth increments the shell shows two
different modes of growth. The first phase ceases after the deposition of about 18 to
22 increments indicating that the shell reaches a size of about 10 cm within the first
18 to 22 years of its life. The second phase is resolved with possibly annual ribs on
the hinge plate, but shows little further size gain (Fig. 7). A typical lifespan of 50 to
80 years, including the first growth phase, is suggested by the number of hinge ribs
(pers. comm. J. Elvestrand 2003).

Underwater images from Scandinavia (Figs. 3, 4) all showed that large A.
excavata live out in the open both on steep rock surfaces (e.g., Kosterfjord and
Trondheimfjord) and on cold-water corals of the northeast Atlantic (e.g., Sula
Ridge). That smaller A. excavata were not visible suggests that they may be cryptic,
only moving out onto open areas when they are large enough to be safer from
predators. More likely though is a biased size distribution due to the two growth
modes (Fig. 7) with an early gain of maximum size during its life time (Fig. 9).
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It is possible that the monogranular layers (Fig. 12) of the second calcite layer
reflect diurnal deposition of shell calcite, which is also depicted by the banding of
individual prisms in the outermost fibrous-prismatic layer.

Biometry

Similar biometric patterns of Pleistocene Mediterranean specimens and Recent
Atlantic shells (Fig. 9) indicate that A. excavata was thriving under glacial
oceanographic conditions in the Mediterranean basin. They show about the same
maximum sizes, as their Recent Atlantic counterparts.

Samples from both areas exhibited the abrupt shift between growth modes at
around 10 cm height, from flat to more arched valves. The sex change during the
lifetime (Jarnegren 1999), might account for the abrupt switch between the two
observed growth modes. The timing of sex-change from male to female and the
change from a flat to a more arched valve seems to take place at the same stage of
shell growth.

Ultrastructure

Detailed ultrastructure observations were made in anticipation of isotopic studies
that need to be based on a sound understanding of shell structure and composition.
The observed structures reflect the characteristics for Limidae, given in Carter
(1990), with a fibrous-prismatic outer calcitic layer and a crossed-lamellar interior
aragonitic layer. The fine costae on the exterior shell surface (Figs. 1, 7) are
exclusively built by the fibrous-prismatic calcitic subzone (Fig. 10). Nevertheless,
the sculpture is not guided by the microstructure. The prisms typically run across
the costae at an angle, their directions are only equal on the medial shell portion. It
is likely that the ribs follow a pattern provided by the precipitating mantle, while the
prismatic microstructure follows crystallographic laws. The first-order lamellae of
the crossed-lamellar interior aragonitic are oriented commarginal. The exterior fibres
and prisms are in every position of the shell orthogonal to the lamellae underneath.
This pattern allows for thin shells with a strong architecture, even for large valves.

Aragonitic strata are difficult to count in central portions, since their crossed
lamellar ultrastructure shows a syntaxial mineralogical growth across the boundaries
of individually deposited layers (Fig. 13). This often makes a distinction of internal
growth increments impossible. Therefore the stack of layers cannot be isotopically
subsampled for each period precisely, nor would it provide inter-annual resolution.

The calcitic layer has a much simpler growth pattern. Typical growth ring widths
on the external surface offer about 0.4 to 1.0 cm of sampling interval per growth
increment. The sampling interval in the corresponding aragonitic layer on contrast is
usually less than 0.5 mm (best case). It becomes obvious from these growth patterns
that only calcitic shell portion with its macroscopic banding is accessible for isotopic
sampling with a hand-held drilling device. Based on the observed ultrastructure, we
propose an isotopic sampling within the outer calcitic zone of the shell (Fig. 10).
The two calcitic zones (fibrous-prismatic and micro-granular) cannot be sampled
individually with a hand held drilling device. The resolution of the aragonite is
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highest in the hinge, where cyclic banding is visible under the microscope, but is
not accessible for manual sampling.

Conclusions

Fast growth rate, compared with other organisms containing calcified structures
from the same environment, its widespread distribution and its frequent co-
occurrence with cold-water corals, make A. excavata an ideal sampling object for
palaeoenvironmental studies. Moreover, shell architecture is much simpler than
in the associated cold-water corals. Its extensive distribution along the northeast
Atlantic continental margin and its widespread subfossil to fossil Mediterranean
communities will allow for a margin-wide assessment of environmental changes for
cold-water coral environments. Both submerged and emergent, uplifted Quaternary
fossil occurrences might allow us to extend datasets into the past. We propose
that sclerochronology be applied to large limid bivalves to study intermediate and
cold waters, as they are large, clearly banded and occur world-wide in bathyal
environments of tropical and boreal settings.
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