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Abstract— Alzheimer’s disease (AD) and other forms of 

dementia are one of the major public health and social 

challenges of our time because of the large number of people 

affected. Early diagnosis is important for patients and their 

families to get maximum benefits from access to health and 

social care services and to plan for the future. EEG provides 

useful insight into brain functions and can play a useful role as 

a first line of decision-support tool for early detection and 

diagnosis of dementia. It is non-invasive, low-cost and has a 

high temporal resolution.  The functions of brain cells are 

affected by damage caused by dementia and this in turn causes 

changes in the features of the EEG. Information theoretic 

methods have emerged as a potentially useful way to 

quantify changes in the EEG as biomarkers of dementia. Tsallis 

entropy has been shown to be one of the most promising 

information theoretic methods for quantifying changes in the 

EEG. In this paper, we develop the approach further. This has 

yielded an enhanced performance compared to existing 

approaches. 

I. INTRODUCTION 

The number of people living with Alzheimer’s disease 
(AD) and other forms of dementia is rapidly rising and this is 
creating significant burden on families and on the health and 
social care systems [1]. Dementia is a set of symptoms 
caused by damage to the brain. Common symptoms include 
loss of mental ability, difficulty with finding the right words, 
changes in personality and mood [2]. AD is the most 
common cause of dementia, accounting for over 50% of all 
cases. AD is progressive and in the early stages may present 
as mild memory loss, but in later stages it can lead to loss of 
awareness and ability to interact socially. Early diagnosis is 
widely recognised as important for patients and their families 
to get maximum benefits from appropriate access to available 
health and social care and to plan for the future [3]. 

The EEG (electroencephalogram) can play a useful role 
as a first line of decision-support tool for early detection and 
diagnosis of dementia [4]. It is non-invasive, low-cost, has a 
high temporal resolution and has been shown to contain 
useful information about brain dynamics in AD [5].  In AD 
patients, the EEG is characterized by changes in the mean 
frequency, complexity measures, and in the coherences 
among cortical regions [6]. These changes in the EEG can be 
quantified as a biomarker.  

A variety of linear and non-linear methods exist for 
computing biomarkers from the EEG [7]. However, 
information theoretic methods, entropy-based approaches in 
particular, have emerged as a potentially useful way to derive 
robust EEG biomarkers of dementia [8, 9, 10, 11, 12, 13]. 
They are attractive because of the potential natural link 
between information theory-based biomarkers and changes in 
the brain caused by dementia.  Changes in the information 

 
 

processing activities caused by damage to nerve 
cells/pathways in the brain may be reflected in the 
information content of the EEG and hence in the biomarkers 
[8]. 

Tsallis entropy approach has been shown to be one of the 
most promising information theoretic methods for 
quantifying changes in the EEG [8, 10, 13]. It has also been 
shown to be a reliable analysis tool to use with working 
memory tasks. As its computation is fast, it can serve as a 
basis for a real-time decision support tool for dementia 
diagnosis by both specialists and non-specialists. In this 
paper, we aim to develop it further and to evaluate its 
performance. This has yielded an enhanced performance 
compared to existing approaches. 

The paper is organised as follows. In Section II, the 
methodology used in the study is described. In Section III, 
the materials (including the datasets and EEG recordings) are 
described. Section IV presents the results and Section V 
concludes the paper. 

II. METHODOLOGY 

In our approach, we start by computing the Tsallis 
entropy for each EEG channel and for each subject from a 
reference datasets which includes dementia and normal 
subjects. The entropy values are then normalised to 
emphasise the differences between the entropy for normal 
and dementia subjects.  The normalised Tsallis entropies are 
used to create reference feature vectors, one for dementia 
subjects and one for normal subjects. Subsequently, the 
feature vector for a new dataset is compared to the reference 
vectors using K-means clustering to discriminate between 
AD and normal subjects.    

A generalised measure of entropy, due to Tsallis, is given 
by:  
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Where Sq is the Tsallis entropy value, N is the number of 

states that the amplitudes of the EEG are quantized into, iP  

is a probability associated with the ith state [14].   

The scale range method was used to standardize and 
normalise the entropy range values as in “(2)”. It was found 
that normalisation is important to prevent clusters that are 
dominated by the greater values of variation [15]. 
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Where Sq is the Tsallis entropy value need to scale, Sqi is the 

scaled value of Sq with ith, min(Sq) and max(Sq) represent  
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the minimum and maximum Tsallis entropy values and C is 

constant. 

III. MATERIALS 

Two datasets (Datasets A and B) were obtained from 
Derriford Hospital. The datasets were collected using normal 
hospital practices in conjunction with a strict [4]. Dataset A 
consists of 3 Alzheimer’s patients and 8 age-matched 
controls (over 65 years old) who have normal EEGs. Each 
case was assessed and confirmed by a consultant clinical 
neurophysiologist.  Dataset B consists of 24 normal subjects 
and 17 probable AD, which are not perfectly age matched. In 
normal groups, mean age is 69.4±11.5, minimum 40, 
maximum is 84, 42% are male. In the AD group, mean age is 
77.6±10.0, minimum is 50, maximum is 93, 53% are male. 

Dataset A was recorded using the traditional 10-20 
system in a Common Reference Montage (by using the 
average of all channels as the reference) and converted to 
Common Average and Bipolar Montages in software. Dataset 
B was recorded using the modified Maudsley system that is 
similar to the traditional 10-20 system. The Fig. 1 below 
shows the electrode locations in 10–20 system. 

In both datasets, the EEG recordings include various 
states such as awake, hyperventilation, drowsy and alert, with 
periods of eyes closed and open. The sampling rate was 
reduced from 256Hz to 128Hz by averaging two consecutive 
samples for storage reasons. 

 

Figure 1.  International 10–20 system [16]. 

IV. RESULTS AND DISCUSSIONS 

Following the approach in [4], complete recordings 
including artefacts were used without a priori selection of 
elements ‘suitable’ for analyses. This was to enable us to 
have an idea about the robustness and usefulness of the 
method in practice. Data from a fixed interval (61s to 240s) 
was used to avoid electrical artefacts, which regularly occur 
at the beginning of a record, therefore give, a standard 3 
minutes data to analyse. 

EEG analysis to derive the biomarkers was divided into 
two phases (development Phase, and testing phase) and 
Tsallis entropy is computed in both phases. 

A. Development Phase 

In this phase, dataset B was used. We separated the 
dataset into AD and normal groups. For each group, we 
computed the Tsallis entropy (Sq) for all 21 channels 
(N=5120, and q=0.5). Fig. 2 shows the Tsallis entropy for 21 

channels to dataset A. Dataset B is used to build the reference 
feature vectors because it is larger than dataset A and 
consequently has more diversity. 

The scale range method was used to standardize and 
normalise the data range values. The average values of 
Tsallis entropy for AD, and normal groups are used to create 
reference feature vectors which are used in the classification 
stage. 

Fig. 2, Fig. 3, Fig.4, and Fig. 5 illustrate the effects of the 
scale range normalisation. 

B. Testing Phase 

Dataset A was used for testing. We computed the average 
Tsallis entropy as is done in training Phase, and normalise the 
results. We compared the mean Tsallis entropy values and the 
reference vectors (computed in the development phase) using 
k-Means clustering. 

We classified a case as AD if the vector was closer the 
reference vector for the AD group. Otherwise, we classified it 
as normal.  In the study, 15 channels of EEG (F8, A1, T3, 
C3, CZ, C4, T4, A2, T5, P3, PZ, P4, T6, O1, and O2) are 
used to detect AD by calculating the normalized value of 
Tsallias entropy per channel for each individual. We select 
these channels based on an analysis of the Tsallis values for 
all channels for normal and dementia subjects. 

Fig. 2 shows that Tsallis entropy values for ADs are 
lower than for the controls. The reduction in Tsallis entropy 
values  is thought to be due to the slowing in the EEG 
activities as a result of  AD and is consistent with the findings 
in other studies [9].   

The performance of our approach was evaluated by 
calculating sensitivity, specificity, accuracy, precision and f 
measure. In addition, these measurements were computed 
based on the True Positive (TP), True Negative (TN), False 
Negative (FN), False Positive (FP) [17]. The results are 
summarised in Table 1. 

In [13], the overall accuracy was 77%, the sensitivity was 
82%, and the specificity was 73% for the counting backward 
task.  

 

Figure 2.  Tsallis entropy for dataset A. 



  

 

Figure 3.  Non-normalized Mean Tsallis for normal and AD - dataset A. 

 

Figure 4.  Normalized Mean Tsallis for normal and AD - dataset A. 

 

Figure 5.  Non-normalized Mean Tsallis for normal and AD-dataset B. 

 

Figure 6.  Normalized Mean Tsallis for normal and AD - dataset B. 

 

Figure 7.  P-values for Tsallis entropy between dataset A and B before 

normalization. 

 

Figure 8.  P-values for Tsallis entropy between dataset A and B after 

normalization. 

TABLE I.  PERFORMANCE RESULT OF TSALLIS ENTROPY 

 Dataset A Dataset B 

Sensitivity 100% 85.7% 

Specificity 50% 70.9% 

Accuracy 84.6% 78.8% 

Precision 72.7% 77.4% 

F measure 84.19% 81.33% 

 

V. CONCLUSION 

The results suggest that the approach presented here 

yields enhanced performance for Tsallis entropy-based 

biomarkers for the detection of dementia. At this level of 

performance, the approach can serve as a basis for a first line 

of a decision support tool for detection of dementia. Future 

work will evaluate the approach more extensively using a 

larger dataset. 
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