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1 Introduction

Quantum field theory in the presence of an external field is a rich area of physics that

finds applications in heavy ion collisions, accelerator physics, astrophysical scenarios and

intense laser-particle physics. If the field is strong, then it must be treated without recourse

to perturbation theory in the coupling to the background field, making such instances of

great theoretical and phenomenological interest. This is possible if the field configuration

is simple, or highly symmetric.
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Figure 1. The “tadpole” diagram formally vanishes by momentum conservation (in vacuum it

vanishes by Furry’s theorem) but can contribute when sewn to a larger diagram. The double line

indicates the particle propagator dressed to all orders by the background field.

This area of field theory was pioneered by Euler and Heisenberg who, taking a constant

electromagnetic background, calculated the one-loop effective Lagrangian for QED [1] (see

the calculations of Schwinger and Weisskopf [2, 3] for the corresponding calculations in

scalar QED, and [4] for a review of these results). As is well known, one physical conse-

quence revealed by the Euler-Heisenberg Lagrangian (EHL) is the instability of the vacuum

to the application of strong electric fields, which leads to particle / anti-particle pair cre-

ation (the Schwinger mechanism). This effect has recently received renewed attention [5–9]

due to the prospects of investigating pair creation using future laser facilities. For the

status of current and future laser facilities, making study of these backgrounds of great

experimental interest for the coming years see, for example, the information at [10–13]).

Related results now exist for the effective action at two- and three loops [14, 15]

in a constant background, (anti-)self-dual backgrounds [16–18] and at one-loop order for

various non-constant backgrounds such as Sauter pulses [19–21] and a pulsed Hermite and

Laguerre-Gaussian laser beam [22]. See also [23] for the full mass range analysis of the

QED effective action for a nontrivial background with some special symmetry. These have

been used to study low energy photon amplitudes [24, 25] and the structure of the quantum

vacuum, see [26] for a recent review. Aside from this, the particle propagator can also be

constructed exactly (non-perturbatively) in the presence of constant fields, plane waves,

and other symmetric fields, allowing the calculation of a variety of electron-seeded and

photon-seeded processes, see [26–29] for reviews.

Recently, however, it was found that historical calculations had overlooked the pos-

sibility of one particle reducible (1PR) contributions to processes in constant background

fields [30–32]. These contributions involve a tadpole, displayed in figure 1, attached some-

where in the corresponding Feynman diagram describing the process. The tadpole is linear

in the exchanged (off-shell) photon momentum, kµ, and momentum conservation implies

that it can be supported only for kµ = 0. This may seem to suggest that the tadpole contri-

bution vanishes, which has long been asserted in this area of quantum field theory [33, 34].

However, the propagator joining the tadpole to the remainder of the diagram diverges at

kµ = 0, and a careful analysis shows that a finite result remains. For example, joining

two tadpoles in any covariant gauge (in the following we use Feynman gauge) leads to a

momentum integral of the form∫
dDk δD(k)

kµkν

k2
=

1

D
ηµν , (1.1)

– 2 –
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Figure 2. The 1PR contribution to the two-loop EHL: the “dumbell” diagram, consisting of two

tadpoles sewn together. The double lines indicate the particle propagators dressed to all orders by

the background field.

where the tensor structure of the right hand side is determined entirely by covariance. This

result is the origin of surviving contributions from reducible diagrams and we shall appeal

to it in our analysis to come below.

The original discovery [30] focussed on the reducible contribution to the two-loop QED

Euler-Heisenberg Lagrangian (the “dumbbell” of figure 2), which should be added to the

original irreducible diagram consisting of a virtual photon exchanged in a single loop. This

was rapidly extended to scalar QED [35], where it was then found that that there were

additional reducible corrections to the scalar propagator in a constant background even at

one-loop order. The results were further developed to an analogous result for the spinor

propagator in [36] (see [33, 37–39] for the tree level propagators). These processes are

shown in figure 3; they are of the same order in coupling as the usual irreducible one-loop

contributions to the particle self-energies.

In the cases of both the two-loop EHL and one-loop self-energy corrections there are

covariant formulae expressing the reducible contributions in terms of derivatives of lower

order objects. For the two-loop EHL, the reducible contribution can be written as

L(2)1PR[F ] =
∂L(1)
∂Fµν

∂L(1)
∂Fµν

, (1.2)

where L(1)[F ] is the one-loop EHL and F is the field strength tensor of the background field.

This is valid for spinor and scalar QED upon use of the appropriate EHL. For the one-loop

propagator, choosing Fock-Schwinger gauge [40, 41] for the background field centered at

one of the endpoints of the line, the momentum space version of the covariant formula for

spinor matter is

S(1)1PR(p|F ) =
∂S

∂Fµν
∂L(1)
∂Fµν

, (1.3)

where now S(p|F ) is the tree level propagator in the constant background.

Although these equations are complete for arbitrary constant fields, further insight

can be gained by examining these contributions for some specific field configurations, where

both general features and field-specific phenomena can be seen. The EHL is of phenomeno-

logical interest for its relation to pair creation, vacuum birefringence (photon helicity flip)

etc., in the strong fields of intense laser experiments [42] or astrophysical scenarios, and

of theoretical importance due to the AAM conjecture [43]. Similarly, loop corrections to

the electron propagator, including, in general, 1PI contributions, contribute to the Ritus

– 3 –
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Figure 3. The 1PR contribution to the particle self-energy, where a tadpoles is sewn to the

propagator (shown in position space; x0 is the centre of mass of the loop.). The double lines

indicate the particle propagators dressed to all orders by the background field.

mass shift [44], and to g − 2 in the presence of a background field [45]. Clearly, then, it is

important to know what the physical consequences of the new reducible contributions are,

since their effects have been missed since the earliest days of background field QED. In

this paper we therefore determine the reducible contributions for some background fields

of phenomenological interest and analyse the results.

This paper is organised as follows. In section 2 we show that the 1PR contribution to

the EHL in crossed fields vanishes, whilst the tadpole correction to the electron self-energy

picks up an additional renormalisation from the background field. In section 3 we turn to

a constant magnetic field. Here both the EHL and the electron propagator pick up a finite,

physical part from the reducible diagrams that cannot be absorbed into renormalisation.

Finally in section 4 we consider a non-constant background, namely an arbitrary plane

wave. These fields are of central importance to the modelling of intense laser experiments

in the relativistic and quantum regimes (and also provide a smooth limit to the constant

crossed field case). If 1PR contributions had been overlooked it would have significant

implications for several existing literature calculations. This would include electron spin flip

at one loop [46] and loop corrections to photon emission which are essential for the correct

modelling of radiation reaction [47], a topic of current experimental investigation [48, 49].

Due to the many symmetries of plane waves, we are, notably, able to calculate the tadpole

correction to any diagram. We show that this only contributes terms which can be removed

by renormalisation. We conclude and discuss our results in section 5.

Throughout, we present details for spinor QED in the main text, and then state the

corresponding scalar QED (sQED) results, relegating the details of the scalar calculations

to the appendix.

2 Crossed electric and magnetic fields

Whilst the covariant formulae (1.3)–(1.2) are compact, we require more explicit expressions

for the derivatives involved in order to calculate the form of the reducible contributions

for a chosen background, so we begin there. In this section we give the general 1PR

contribution to the QED EHL (at two loops) and to the electron propagator (at one loop)

in an arbitrary constant field, and then specialise to the case of constant crossed fields,

where a simple argument shows that the 1PR diagrams correspond to renormalisation.

– 4 –
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2.1 Explicit 1PR contributions

A convenient representation of the 1-loop EHL is the “proper-time” representation de-

rived in the worldline (or first quantised) approach to QED [50–53] and dating back

to Schwinger [54]. The (un-renormalised) EHL for spinor matter coupled to a constant

electromagnetic background admits the proper-time integral representation (in Minkowski

spacetime) [52, 55–57]

L(1)[F ] = −2

∫ ∞
0

ds

s
(4πis)−

D
2 e−im

2sdet−
1
2

[
tanhZ
Z

]
, (2.1)

where Zµν := esFµν with Fµν the constant field strength tensor for the background. Like-

wise, the spinor propagator in a constant background field has the compact integral repre-

sentation presented in [36] (based upon the results of [58])

S(p|F ) =

∫ ∞
0

ds
[
i(m− /p) + iγ · tanhZ · p

]
e−is(m

2+p· tanhZZ ·p)symb−1
{

e−
1
4
η·tanhZ·η

}
, (2.2)

where the “symbol map” is defined by

symb
(
γ̂[αβ···ρ]

)
≡ ηαηβ . . . ηρ , (2.3)

with γ̂µ ≡ i
√

2γµ and where γ̂[αβ···ρ] denotes the totally anti-symmeterised product,

γ̂[α1α2···αn] ≡ 1

n!

∑
π∈Sn

sign(π)γ̂απ(1) γ̂απ(2) · · · γ̂απ(n) . (2.4)

Explicitly

symb−1
[
e−

1
4
η·tanhZ·η

]
= 11 +

1

4
Zµν [γµ, γν ]− 1

8
εµναβZµνZαβγ5. (2.5)

These results follow from recent advances in treating tree level processes within the world-

line formalism.

Applying the formulae (1.2) and (1.3) we arrive at the results of [35, 36] for the 1PR

contribution to the EHL

L(2)1PR = − 4e2

D

∫ ∞
0

ds(4πis)−
D
2 e−im

2s

∫ ∞
0

ds′(4πis′)−
D
2 e−im

2s′

× det−
1
2

[
tanhZ
Z

]
det−

1
2

[
tanhZ ′
Z ′

]
tr
[(
ĠB − GF

)
·
(
Ġ′B − G′F

)]
, (2.6)

where GB and GF are the coincidence limits of the bosonic and fermionic “worldline Green

functions” in the presence of the constant background field,1

ĠB = cothZ − 1

Z , GF = tanhZ , (2.7)

1All functions of the matrix Z are defined by their power series, all of which involve only non-negative

powers of the same matrix.
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and to the self-energy,

S(1)1PR(p) = − e2
∫ ∞
0

ds s e−is(m
2+p· tanhZZ ·p)

∫ ∞
0

ds′(4πis′)−
D
2 e−im

2s′det−
1
2

[
tanhZ ′
Z ′

]
×
{[
i(m− /p) + iγ · tanhZ · p

]
×
[
− s p · Z − sinhZ · coshZ

Z2 · cosh2Z · Ξ′ · p− iΞ′µν
∂

∂Zµν

]
+ γ · sech2Z · Ξ′ · p

}
symb−1

{
e−

1
4
η·tanhZ·η

}
, (2.8)

where

Ξ[F ] ≡ −i
[

1

Z −
1

sinhZ · coshZ

]
. (2.9)

All primed variables in the above equations refer to the proper time parameter, Z ′ := eFs′.

We now evaluate these contributions in the special case of crossed electric and magnetic

fields of equal strength.

2.2 Constant crossed fields

We consider the class of constant fields with vanishing Maxwell invariants, FµνF
µν =

4(|E|2−|B|2) = 0 and FµνF̃
µν = 4E ·B = 0, where the dual field strength tensor is defined

as usual by F̃µν := 1
2ε
µναβFαβ . Furthermore F 3

µν ≡ FµαF
αβFβν = 0 for such fields and all

higher powers also vanish.

Note then, that as there are no invariants which can be built from the field alone,

the EHL for crossed fields must be independent of the background field, i.e. is effectively

zero. To see that the 1PR contribution at two-loop order respects this, we note that for

all constant backgrounds the one-loop EHL, L(1), is an even function of the field strength

tensor meaning that its derivative with respect to F is odd. Given that for the crossed

field background F 3 vanishes, it is clear that the factor ∂L(1)
∂Fµν is linear in F (recall that

although the one-loop EHL reduces to a (D = 4 divergent) field -independent constant for

crossed fields, one should take the derivative of L(1) for an arbitrary background before

specialising the result to the crossed field case). Consequently the crossed field tadpole,

when attached to any diagram will be linear in the coupling of the tadpole’s loop to the

background field. For this reason we can immediately deduce that the 1PR contributions

to the one-loop self-energy and the two-loop EHL can be absorbed by renormalisation (we

discuss this below). This general argument applies to both spinor and scalar QED.2

It is useful for the studies below of nontrivial cases to see how the above result appear

through the covariant formulae (1.2) and (1.3). This also allows us to determine the exact

coefficient of the part linear in the background. For constant crossed fields we may always

2Thanks go to Christian Schubert for helpful discussions on these points.

– 6 –
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choose coordinates such that the field strength tensor

Fµν =


0 B 0 0

−B 0 0 B

0 0 0 0

0 −B 0 0

 . (2.10)

As can be checked, F 3
µν = 0, so that all hyperbolic trigonometric functions that enter the

proper time representations of the general 1PR contributions, above, are at most quadratic

in Z and Z ′.
For the 1PR contribution to the self-energy, evaluating the trigonometric functions

in (2.8) and computing the s′ integral leads to the representation (the super-script mi-

nus refers to light-cone coordinates, x± := x0 ± x3 and square brackets indicate anti-

symmetrisation of indices without a combinatorical factor)

S(1)1PR =
e2

m2

(
m2

4π

)D
2 eB

m2
Γ

[
2− D

2

] ∫ ∞
0

ds s e
−is
(
p2+m2+ z2

3
p−

2
)

(2.11)

×
[

1

2

{
i
(
m− /p

)
,

4is

9
zp−

2 − 2

3
γ−γ1

}
+ izγ[−p1]

(
4is

9
zp−

2 − 2

3
γ−γ1

)]
×
[
1l + zγ−γ1

]
,

in which {·, ·} denotes the anticommutator, and z = eBs. The leading eB
m2 arises from

the integral over the loop proper time s′ and, as argued above, the result is linear in this

coupling of the loop to the crossed field background (this is because Ξ′ is linear in Z ′ and

it enters every term of the integrand). As such we see that this 1PR contribution can

be absorbed simply by an additional (infinite, in D = 4) renormalisation of the photon

propagator, as shown in figure 4. It therefore has no physical significance, once the photon

propagator has been correctly renormalised. The result (2.11) is suitable for numerical

integration and is amenable to an expansion in the background field, but as it corresponds

to renormalisation, it is not necessary to pursue that here.

The Feynman diagrams corresponding to an expansion of (2.11) in powers of the cou-

pling to the background field are shown in figure 4. External photon legs with a cross

correspond to the background field and have vanishingly small energy. Since the loop cou-

ples linearly to the background, only one such low energy photon is attached to it, whereas

the line couples to an arbitrary number of photons. We discuss the specific form of the

vertices at the end of the next subsection.

For the 1PR correction to the EHL, (2.6), it is sufficient to note that for crossed fields

ĠB =
1

3
Z , GF = Z , =⇒ ĠB − GF = −2Z

3
, (2.12)

so that the relative contribution of spin is −3 times that in scalar QED. Hence the integrand

in (2.6) contains the factor, linear in Z ′ as expected,

tr
[(
ĠB − GF

)
·
(
Ġ′B − G′F

)]
=

4

9
tr
[
Z · Z ′

]
. (2.13)

– 7 –
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Figure 4. The schematic diagrammatic expansion of the 1PR contribution to the self energy

interactions with the background field for crossed fields. Being linear in the coupling of the loop,

there is only one low energy photon attached thereto.

However tr(F 2) = 0, being the first of the Maxwell invariants. The remaining parts of the

integrand of (2.6) are field independent, so that the integrand identically vanishes. Thus

we recover the result that there is no 1PR correction (not even additional renormalisation)

to the two-loop spinor EHL for constant crossed fields.

2.3 Scalar QED

For scalar QED the story is much the same. The 1PR contribution requires the proper-time

representation of the scalar one-loop EHL given in the appendix and evaluates to3

L(2)1PR = − e2

D

∫ ∞
0

ds(4πis)−
D
2 e−im

2s

∫ ∞
0

ds′(4πis′)−
D
2 e−im

2s′

× det−
1
2

[
sinhZ
Z

]
det−

1
2

[
sinhZ ′
Z ′

]
tr
[
ĠB · Ġ′B

]
. (2.14)

The expansion of ĠB for crossed fields is proportional to Z as for the spinor case as it

is an odd function, ĠB = Z/3, so that as above the integrand is proportional to tr[Z ·
Z ′] = 0. Once again, the 1PR contribution to the 2-loop scalar EHL is zero for constant

crossed fields.

For the one-loop correction to the propagator the proper time representation of the

tree level propagator in the appendix leads to the explicit form

D(1)1PR(p) =
e2

2

∫ ∞
0

ds′(4πis′)−
D
2 e−im

2s′det−
1
2

[
sinhZ ′
Z ′

]
×
∫ ∞
0

ds s e−im
2sdet−

1
2

[
coshZ

]
e−is p·

tanhZ
Z ·p

×
[
s p · sinhZ · coshZ − Z

Z2 · cosh2Z · Ġ′B · p+
1

2
tr
(
itanhZ · Ġ′B

)]
. (2.15)

Evaluating this for crossed fields gives

D(1)1PR(p) =
e2p−

2

9m2

(
m2

4π

)D
2
(
eB

m2

)
Γ

[
2− D

2

] ∫ ∞
0

ds s2 e−is[p
2+m2+ z2

3
p−

2
] z. (2.16)

3The spinor and scalar results are related by the so-called “replacement rules” discussed in [51] which

roughly amounts to replacing products of ĠB by the same product minus its counterpart with ĠB → GF
and an overall change of normalisation of the path integral. We again work with the un-renormalised EHL.

– 8 –
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Figure 5. The expansion of the 1PR contribution to the scalar propagator in the crossed field

case. Note that in Fock-Schwinger gauge there is an odd number of free low energy photons of the

background coupled to the line, and one low energy photon attached to the loop as before.

This is, of course, once again linear in the coupling of the loop to the background field (the

leading factor of
(
eB
m2

)
), and as such it again corresponds to a trivial renormalisation. The

remaining integral with respect to s is finite in D = 4.

Let us briefly compare the spinor and scalar cases for the self-energy, (2.11) and (2.16)

to examine some general features. Although both are linear in the loop’s coupling to the

background field, the spinor case begins at zeroth order in the coupling of the background

to the line (z0), whereas the scalar result, being an odd function of this coupling, begins at

order z. This would seem to miss a contribution from the vacuum propagator and one low

energy photon attached to the loop (first diagram in figure 4) but this is an artefact of Fock-

Schwinger gauge. Since the tree level scalar propagator in the constant background, (A.2),

is an even function of Z in this gauge an expansion in powers of Z will produce insertions

of an even number of low energy photons. Then (1.3) implies connecting one of these

photons with a photon from the expansion of the loop, leaving an odd number of free

photons remaining on the line (there can therefore be no contribution to (2.16) at O(z0),

for example). This expansion is shown in figure 5 for the scalar propagator.

In the second order formulation [59, 60] of spinor QED, however, which the worldline

formalism is based upon, there is an additional vertex beyond the 3-point and seagull

vertices of scalar QED. This extra 3-point vertex couples the spin degrees of freedom to

the background in a gauge invariant way4 and contributes to processes with an arbitrary

number of photon insertions. As such, (2.2) is neither even nor odd in Z and so its

expansion involves arbitrary powers of this variable. Thus (2.11) involves terms constant

and linear in the coupling of the line to the background field and hence its expansion in

figure 4.

After this warm up where we have verified the general argument that the crossed field

tadpole affects only the renormalisation required during quantisation, we turn to a more

interesting field configuration where the 1PR contributions imply physical corrections.

3 Constant magnetic field

In this section we consider constant fields with Maxwell invariants F < 0, G = 0, in

contrast to the above. In the current case it is always possible to choose a frame such

that the background is a pure magnetic field pointing along the z-direction, say, so that

4Its Feynman rule is an insertion eσµνkν where σµν are the spin 1/2 generators of the Lorentz group

and k is the external photon momentum.
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~B = Bẑ. Calculating the 1PR contributions to the EHL and propagators for scalar and

spinor QED in a magnetic field, we will see that there is a physical contribution, beyond

renormalisation. We will also explicitly compute the result in the weak field approximation.

In this background the only non-vanishing components of the field strength tensor are

F12 = −B and F21 = B

Fµν =


0 0 0 0

0 0 −B 0

0 B 0 0

0 0 0 0

 . (3.1)

In this section it will be convenient to make use of the following projection matrices:

F̂ =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , g⊥ =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , g‖ =


−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , (3.2)

which will help us to write the expansions of the trigonometric functions and determinants

in (2.6) and (2.8). For example, the determinant factor can be simplified as

det−
1
2

[
tanhZ
Z

]
= det−

1
2

[
g‖ +

tan z

z
g⊥

]
=

z

tan z
, (3.3)

where z = eBs.

3.1 1PR contribution to the two loop EHL

For the 1PR contribution to the two-loop EHL we also need the result

ĠB − GF = −
(

cot z − 1

z
+ tan z

)
F̂ . (3.4)

Defining, J (z) = (z/ tan z)(cot z− 1/z+ tan z), (2.6) can be written in this background as

L(2)1PR =
4e2

D

∫ ∞
0

ds(4πis)−
D
2 e−im

2sJ (z)

∫ ∞
0

ds′(4πis′)−
D
2 e−im

2s′J (z′) . (3.5)

As the integrand contains arbitrary positive powers of z and z′ it is clear that this con-

tribution to the EHL cannot be absorbed by renormalisation, so that this represents an

important physical correction at two loop order.

For weak fields (that is, B/Bcr � 1 with Bcr = m2/e ' 4.41× 1013G the critical field

strength) we can expand the integrand in order to determine explicitly the first non-trivial

contribution. Using J (z) = 2z
3 + 4z3

45 +O(z5) we find

L(2)1PR =
4e2

Dm4

(
m2

4π

)D [
2

3

(
eB

m2

)
Γ

[
2− D

2

]
− 4

45

(
eB

m2

)3

Γ

[
4− D

2

]
+ . . .

]2
. (3.6)

The first term in the large square bracket is divergent in D = 4, but is linear in the coupling

of the respective loop to the background, so can be removed by renormalisation as we saw
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Figure 6. The weak field expansion of the reducible contribution to the two-loop spinor EHL.

The single photons attached to loops are subtracted by renormalisation. Note that Furry’s theorem

(now that the propagators are single-lined, vacuum propagators) implies that only an odd number

of low energy photons can be attached to each loop.

in the case of crossed fields (in D = 4 it is sufficient to replace J(z)→ J(z)− 2
3z in a similar

spirit to the renormalisation of the one-loop EHL). The higher order terms, though, are

physical and start at order
(
eB
m2

)6
. This should be contrasted with the weak field expansion

of the irreducible contribution to the two-loop EHL [61] that starts at order
(
eB
m2

)4
. We

show the expansion of (3.5) in figure 6; the two factors in large square brackets of (3.6)

correspond to the first and second diagrams in the expansion shown in the figure.

It is also very interesting to consider the strong field limit, since it has recently been

shown that the strong field asymptotic limit of the EHL is determined, at all loop orders,

by one-loop reducible contributions [62]. Here we will confirm the leading-order behaviour

argued by [62] at two loops by explicitly evaluating the integrals in (3.5). Since there are

two copies of the same integral it suffices to focus on one, and then square the result.

Returning to Euclidean space-time by replacing s→ −iT , therefore z → −iz, we must also

work with the renormalised Lagrangian [63]. Anticipating our eventual specialisation to

D = 4, the renormalisation proceeds as mentioned above, where the pole in s is subtracted

so that the integral we require is

I = −
∫ ∞
0

dT (4πT )−
D
2 e−m

2T

[
cothz − z csch2 − 2

3
z

]
(3.7)

= − 1

eB

( 4π

eB

)−D
2

∫ ∞
0

dz e−
m2

eB
zz−

D
2

[
cothz − z csch2z − 2

3
z

]
= − 1

eB

(
4π

eB

)−D
2

(I1 − I2 − I3) .

The complete integral is now finite in D = 4. We begin with I1; this is just the Laplace

transform F (ω) of the function f(z) where

f(z) = z−
D
2 cothz and ω =

m2

eB
. (3.8)

The Laplace transform can be expressed in terms of the Hurwitz zeta function ζ[x, q] as

I1 = 2
D
2
−1Γ

[
1− D

2

](
ζ

[
1− D

2
,
m2

2eB

]
+ ζ

[
1− D

2
, 1 +

m2

2eB

])
. (3.9)

Likewise we observe that the integral I2 may be expressed by introducing an auxiliary

parameter, α, as

I2 =

∫ ∞
0

dz e−
m2

eB
z z1−

D
2 csch2z = − ∂

∂α

∫ ∞
0

dz e−
m2

eB
z z−

D
2 coth(αz)

∣∣∣
α=1

. (3.10)

– 11 –



J
H
E
P
0
5
(
2
0
1
9
)
0
3
8

Making the change of variables z → z
α we learn that I2 = − ∂

∂αα
D
2
−1F (αω )

∣∣
α=1

so we may

re-use the result for I1 to get

I2 = 2
D
2
−1Γ

[
2− D

2

]{
ζ

[
1− D

2
,
m2

2eB

]
+ ζ

[
1− D

2
, 1 +

m2

2eB

]
(3.11)

− m2

2eB

(
ζ

[
2− D

2
,
m2

2eB

]
+ ζ

[
2− D

2
, 1 +

m2

2eB

])}
.

Finally the integral I3 is trivial,

I3 =
2

3

(
eB

m2

)2−D
2

Γ

[
2− D

2

]
. (3.12)

Substituting these two expressions into (3.8) and setting D = 4−2ε, the 1
ε divergence in I3

cancels that in I1 − I2. The remaining, finite, expression can then be expanded for large

B to obtain the strong field expansion. One easily finds that I ∼ eB
24π2 ln

(
eB
m2

)
and so the

leading order strong field behaviour of the reducible two-loop contribution to the EHL is

L(2)1PR ∝ 1

2
B2

[
αβ1 ln

(
eB

m2

)]2
(3.13)

where β1 = 1
3π is the order α coefficient of the β-function in spinor QED. This correctly

reproduces the results presented in [62] at two-loop order.

Note also that the asymptotic behaviour can be read off from the finite (in ε) contri-

bution of the renormalisation term in (3.8):

1

eB

(
4π

eB

)−2
I3(D = 4− 2ε)

∣∣∣∣
O(ε0)

=
2

3eB

(
4π

eB

)−2(eB
m2

)ε
Γ[ε]

∣∣∣∣
O(ε0)

∼ eB

24π2
ln

(
eB

m2

)
(3.14)

where the behaviour holds asymptotically (the expansion of the prefactor to the integral

in ε contributes subleading field-dependent terms that are killed by I1 and I2 as with the
1
ε poles discussed above). This connection between the strong field asymptotic behaviour

and the renormalisation term introduced to render the proper time integral finite (that

also give the β-function coefficient) is well known at one-loop order [63, 64].

3.2 1PR contribution to the self energy

As for the 1PR contribution to the spinor self-energy, after plugging the field strength tensor

in (3.1) into (2.8) and using the matrices defined above one gets the following expressions

for the required terms:

p · tanhZ
Z · p = p2‖ +

tan z

z
p2⊥ , (3.15)

i(m− /p) + iγ · tanhZ · p = i(m− /p) + itanz γ[2p1] , (3.16)

Ξ′ = i

[
1

z′
− 1

sin z′ cos z′

]
F̂ , (3.17)
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−ip · Z − sinhZ · coshZ
Z2 · cosh2Z · Ξ′ · p =

[
sec2 z

z
− tan z

z2

][
1

z′
− 1

sin z′ cos z′

]
p2⊥ , (3.18)

γ · sech2Z · Ξ′ · p = i sec2 z

[
1

z′
− 1

sin z′ cos z′

]
γ[2p1] , (3.19)

symb−1
{

e−
1
4
η·tanhZ·η

}
= 1l +

1

2
tan z γ[2γ1] , (3.20)

−iΞ′µν
∂

∂Zµν
symb−1

{
e−

1
4
η·tanhZ·η

}
=

1

2

[
1

z′
− 1

sin z′ cos z′

]
sec2 z γ[2γ1] . (3.21)

We note that the final term (and its derivative) from the inverse symbol map, (2.5) vanishes

for a constant magnetic field and have used γ · F̂ · γ = [γ2, γ1] and γ · F̂ · p = γ[2p1]. Using

these results we find that the one-loop 1PR correction to the electron propagator in a

constant magnetic field is given by

S(1)1PR(p) = − ie2
∫ ∞
0

dss e
−is(m2+p2‖+

tan z
z
p2⊥)
∫ ∞
0

ds′(4iπs′)−
D
2 e−im

2s′
(

cot z′ − z′ csc2 z′
)

×
{[
− isp2⊥

(
sec2 z

z
− tan z

z2

)(
m− /p+ tanz γ[2p1]

)
+ sec2 z γ[2p1]

]
×
[
1l +

1

2
tan z[γ2, γ1]

]
+

1

2
(m− /p+ tan z γ[2p1]) sec2 z[γ2, γ1]

}
.

(3.22)

This general result is non-vanishing, as we show directly below and generalises easily to a

constant magnetic field in an arbitrary direction. The integrand involves arbitrary powers

of z′, so cannot be completely absorbed by renormalisation.

The parameter integrals in (3.22) may be done numerically. As for the case of the

dumbbell, however, it is instructive to expand in powers of a weak background field. Now

we use cot z′ − z′ csc2 z′ = −2
3

(
z′ + 2

15z
′3 + . . .

)
which allows us to compute the s′ integral

term by term. To cubic order in the magnetic field the s′ integral provides a factor∫ ∞
0

ds′(4iπs′)−
D
2 e−im

2s′
(

cot z′ − z′ csc2 z′
)

=
2

3m2

(
m2

4π

)D
2
[(

eB

m2

)
Γ

[
2− D

2

]
−
(
eB

m2

)3 2

15
Γ

[
4− D

2

]
+ . . .

]
. (3.23)

The next step is to expand the s-integrand in z, the results of which we record in appendix

B. The remaining proper time integral over s then yields

S(1)1PR(p) ≈ 2ie2

3

(
m2

4π

)D
2

[(
eB

m2

)
Γ

[
2− D

2

]
− 2

15

(
eB

m2

)3

Γ

[
4− D

2

]
+ . . .

]

×
[

1

4m2

{
m− /p , [γ2, γ1]

}
(m2 + p2)2

+4i

(
eB

m2

)(
(m− /p)p2⊥
(m2 + p2)4

− p1γ1 + p2γ2

(m2 + p2)3

)
+ . . .

]
,

(3.24)

which is also represented diagrammatically in figure 7. Here the top line is the contribution

from the loop; the first term in square brackets diverges in D = 4. However, being linear in
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Figure 7. Diagrammatic representation of the weak-field expansion for the 1PR contribution

to the electron propagator in a constant magnetic field. An odd number of external photons are

attached to the loop (due to Furry’s theorem) and an arbitrary number can be attached to the line.

the coupling to the background this can be absorbed by a renormalisation. The first non-

trivial contribution is of order (eB/m2)3, which would be extremely interesting to compare

to the weak field expansion of the one-particle-irreducible contribution to the propagator.

Moreover, for strong fields it is important to check the relative size of these contributions

in relation to the Ritus mass shift.

3.3 Scalar QED

The scalar QED expressions are slightly simpler. Using the projectors in (2.14) and af-

ter some straightforward manipulations detailed in the appendix, we arrive at the 1PR

contribution to the two-loop EHL

L(2)1PR = −2e2

D

∫ ∞
0

ds(4πis)−
D
2 e−im

2sJsc(z)

∫ ∞
0

ds′(4πis′)−
D
2 e−im

2s′Jsc(z′) , (3.25)

where Jsc(z) = (z/ sin z)(cot z − 1/z). As for the spinor case this involves physical con-

tributions beyond renormalisation. To see this we give the leading contributions in an

expansion in powers of the background field,

L(2)1PR = − 2e2

Dm4

(
m2

4π

)D[1

3

(
eB

m2

)
Γ

[
2− D

2

]
− 7

90

(
eB

m2

)3

Γ

[
4− D

2

]
+ · · ·

]2
, (3.26)

where again each factor corresponds to one of the loops. Similarly, the first term in each

can be subtracted by renormalisation, so that the physical contributions begin at order

(eB/m2)6. These terms have been overlooked in previous work. The expanded result (3.26)

may be represented by Feynman diagrams in the same way as for the spinor case, figure 6.

We may again analyse the strong field limit after the renormalisation Jsc(z)→ Jsc(z)+
z
3 which renders the Euclidean space integral

1

eB

(
4π

eB

)−D
2
∫ ∞
0

dz e−
m2

eB
zz−

D
2

[
cschz − z cothz +

1

3
z

]
(3.27)

finite in D = 4. It is not necessary to evaluate the integral since we know that the

asymptotic behaviour can be extracted from the strong field limit of the finite (in ε) part

of the renormalisation term. Setting D = 4− 2ε this takes the form

1

3eB

(
4π

eB

)−2(eB
m2

)ε
Γ[ε] + subleading, (3.28)
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whose finite part is eB
48π2 ln

(
eB
m2

)
(the pole in ε is present only to cancel the original di-

vergence of the integral (2.14) which, as in the spinor case, also provides some subleading

contributions) so that the strong field behaviour is

L(2)1PR ∼ 1

2
B2

[
αβ1 ln

(
eB

m2

)]2
(3.29)

where now β1 = 1
12π is the first coefficient of the β-function in scalar QED. This is in

agreement with [62] and verifies that analysis to two-loop order.

Likewise, the 1PR contribution to the scalar propagator evaluates to

D1PR
scal (p) =

e2

2

∫ ∞
0

ds′(4πis′)−
D
2 e−im

2s′ z′

sin z′

(
cotz′ − 1

z′

)
(3.30)

×
∫ ∞
0

ds s e−im
2s 1

cos z
e
−is(p2‖+

tan z
z
p2⊥)
{
− s

z

(
tanz

z
− sec2z

)
p2⊥ + itanz

}
.

Now from here one can also take the weak field limit to obtain an expansion in powers of

the coupling of the loop to the background,

D1PR
scal (p) =

e2

2m2

(
m2

4π

)D
2
[

1

3

(
eB

m2

)
Γ

[
2− D

2

]
− 7

90

(
eB

m2

)3

Γ

[
4− D

2

]
+ . . .

]
×
∫ ∞
0

ds s e−im
2s 1

cos z
e
−is(p2‖+

tan z
z
p2⊥)
{
− s

z

(
tanz

z
− sec2z

)
p2⊥ + itanz

}
,

(3.31)

which after performing the remaining proper-time integral yields

D1PR
scal (p) =

e2

2

(
m2

4π

)D
2
[

1

3

(
eB

m2

)
Γ

[
2− D

2

]
− 7

90

(
eB

m2

)3

Γ

[
4− D

2

]
+ . . .

]
×
[(

eB

m2

)(
2p2⊥

(m2 + p2)4
− 1

(m2 + p2)3

)
(3.32)

+ 4m4

(
eB

m2

)3( 5

(m2 + p2)5
− 36p2⊥

(m2 + p2)6
+

40p4⊥
(m2 + p2)7

)
+ . . .

]
.

See appendix A for details of the computation and expansions. As before there is a piece

linear in the coupling of the background to the loop that diverges in D = 4. This can be

renormalised away. The remainder is a physical contribution to the scalar self-energy in

a background magnetic field. To compare with the spinor result, we note that the second

term in the second line of (3.24), involving p2⊥/(m
2+p2)4 corresponds to the contribution of

the 3-point scalar vertex to the spinor QED kernel that is also present in (3.32). Moreover,

the powers of the coupling of the line to the background field (second set of square brackets)

are now only odd, a reminder that the proper-time representation of the propagator was

determined in Fock-Schwinger gauge. We show the expansion in figure 8.

4 1PR corrections in background plane waves

In this section we will investigate 1PR contributions in background plane waves of arbitrary

strength and shape, which are used as models of intense laser fields. It is clear that for
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Figure 8. The weak field expansion of the reducible contribution to the scalar self-energy. A single

photon attached to the loop can be renormalised away. Only an odd number of low energy photons

couple to the line in Fock-Schwinger gauge.

plane waves the (renormalised) Euler-Heisenberg effective action is zero (to any loop order,

independent of whether it comes from 1PI or 1PR diagrams), because there are no Lorentz

invariants which can be formed from the plane wave field strength alone [3, 5]. The situation

for the 1PR tadpole correction to a given diagram is less obvious; it is certainly possible to

construct non-trivial invariants when there are other (momentum) vectors in play. Here we

will use the worldline formalism to calculate the tadpole correction to, notably, any process

in a plane wave background. We will see that the tadpole gives a nonzero contribution,

but that this can be renormalised away. Moreover this study provides an example of a

non-constant background with a smooth limit to the crossed field case above.

We begin by defining the plane wave background. Given a lightlike direction nµ,

n2 = 0, we can always choose coordinates such that n · x ≡ x+ = x0 + x3, and then the

remaining coordinates are x− := x0− x3, “longitudinal,” and x⊥ := {x1, x2}, “transverse.”

A plane wave may be defined by a transverse potential, aµ(n · x), so that n · a(n · x) = 0,

with field strength

eFµν = nµa
′
ν(n · x)− a′µ(n · x)nν . (4.1)

All plane waves obey

nµFµν = 0 , FµνF
µν = FµνF̃

µν = 0 . (4.2)

4.1 The QED tadpole in a plane wave background

The final expression for the tadpole correction to any diagram in plane wave backgrounds

is simple, but to derive it using the worldline formalism requires a small departure from

the methods commonly used for, and that are particular to, constant fields. We instead

follow [65] which established a useful method of calculation for plane wave backgrounds.

First, we do not rotate to Euclidean space.5 Second, we do not use Fock-Schwinger gauge.

(The choice of potential above makes the physics of particle dynamics in the wave manifest,

see [66].) Third, the worldline Green function in the plane wave background will not be

needed. Instead we will perform the required coordinate-space integrals defining the tadpole

contribution directly, using a suitable basis of functions on the unit circle. In this section

the dimensional regulation of the proper-time integrals is left implicit; it can be made

explicit by analytically continuing in the number of transverse directions, which preserves

the tensor structure of the plane wave, see [67, 68] for details and [47] for an application

in plane wave backgrounds.

5Due to the arbitrary dependence of aµ on x+ this would not give a positive definite action.
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From [35, 36] the tadpole part, figure 1, of any QED Feynman diagram in the presence

of a plane wave background may be written

Γ1 = −2

∫ ∞
0

ds

s

∮
D4x exp

[
− im2s− i

∫ 1

0
dτ

ẋ2

4s
+A · ẋ

]
Spin

∣∣∣∣
O(ε)

, (4.3)

where m is the mass of the particle in the tadpole loop and Aµ = aµ(x+)+eεµe
−ik·x, with kµ

and εµ the momentum and polariastion of the attached photon and e the electromagnetic

charge. Spin is shorthand for the Feynman spin factor [51, 69] that couples the spin degrees

of freedom to the electromagnetic field,

Spin =
1

4
trγP exp

[
− is

2

∫ 1

0
dτ σµνFµν

]
, (4.4)

with F the field strength derived from A. The trace is over the Dirac matrices (σµν =
i
2 [γµ, γν ] are the spinor generators of the Lorentz group), and P stands for path-ordering.

The functional integral is over closed trajectories in Minkowski space, x(τ), on the unit

circle xµ(0) = xµ(1). The variable s parameterises the invariant length of the worldline (the

Schwinger proper time) and is also to be integrated over. The prescription indicated by∣∣O(ε) is that one takes only the piece that is linear in the photon polarisation vector ε. We

break the calculation of Γ1 into the following stages, before attaching it to an (arbitrary)

Feynman diagram in Sect 4.2.

Simplifying the spin factor. Although it is common to employ a Gaussian (Grass-

mann) integral representation of the spin factor [51], it is simpler and more direct here

to use the representation above, as many simplifications will follow from the plane wave

structure, see e.g. [65, 70].

There are two terms linear in ε in (4.3). We can take an ε from A in the exponential

or we take an ε from F in Spin. So to proceed we expand the Spin and write down the

possible terms using the explicit result

− i

2
σµνFµν = /n/a′(x)− ie(/k/ε − k · ε)e−ik·x . (4.5)

Consider the N th order term in the expansion of the exponential of (4.4), containing N

powers of (4.5), from which we wish to extract the terms up to O(ε). As we show in

appendix C, we only need retain the N = 0 and N = 2 terms which may be evaluated

directly. A convenient form of the resulting contributions is

Γ1 = 2e

∫ ∞
0

ds

s

∮
D4x

∫ 1

0
dσ eiS−i

∫
J ·x dτ

[
1 + ies2

∫ 1

0
dτ ε · F (x(τ)) · k

]∣∣∣∣
O(ε)

, (4.6)

in which,

S = −m2s−
∫ 1

0
dτ

[
ẋ2

4s
+ ẋ · a(x+)

]
; Jµ(τ) = kµδ(τ − σ) + εµδ̇(τ − σ) . (4.7)

The representation (4.6) makes clear the relative contribution of spin effects, because if we

delete the second term in square brackets, we obtain the sQED expression (up to an overall

constant). See also below.
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Coordinate integrals. To carry out the path integration over the closed trajectories we

split the coordinates into a centre of mass piece xµc and an orthogonal fluctuation yµ, which

in particular helps deal with the zero mode of the functional integral — see the appendix.

Just as in [47], performing the x⊥c and x−c integrals produces a delta function fixing the

photon momentum to lie in the laser momentum direction,6 kµ = nµk+ (see (C.2) in the

appendix for normalisation conventions);∮
D4x . . . = (2s)2

∫
d4xc

∮
D4y . . . =

1

2
(2π)3δ3−,⊥(k)(2s)2

∫
dx+

c

∮
D4y . . . (4.8)

However, we may not yet use the delta function to simplify expressions, because of the

singular structure in the sewing integral which attaches the tadpole to a larger diagram. We

next perform the y− integral. To do so we first shift variables in y+, writing y+ = y+

cl + δy+

where y+

cl is the classical path obeying the equations of motion

ÿ+

cl = 4sJ− = 2sJ+ =⇒ y+

cl(τ) = 2s

∫ 1

0
dτ ′Gττ ′J

+(τ ′) , (4.9)

with Gττ ′ the free worldline propagator on the space of fluctuations that is given in the

appendix. Since the solution y+

cl always appears together with x+
c we define

ϕ(τ) : = x+
c + y+

cl(τ)

= x+
c + 2n · k sGτσ + 2n · ε s∂τGτσ ≡ ϕ0(τ) + ϕ1(τ) ,

(4.10)

in which the subscripts refer to the order in ε of the terms. Following this shift the only

y− dependence in Γ1 appears in the exponent as

i

∫ 1

0
dτ y−

δÿ+

4s
. (4.11)

The integral over y− produces a delta functional that sets, because of the periodic boundary

conditions, δy+ = 0. (The same is seen in the calculation of helicity flip in a plane wave [65].

For related simplifications in pair production see [71], and also [72, 73].) In order to keep

track of factors of s, it is simplest to leave the integral over (4.11) unevaluated, for now,

and to set δy+ → 0 in the rest of the amplitude.

From here we adopt the following notation for averages on the unit circle:∫ 1

0
dτf(τ)→ 〈f〉 ,

∫ 1

0
dτ ′Gττ ′f(τ ′)→ 〈Gτ•f〉 ,

∫ 1

0
dτdτ ′g(τ)Gττ ′f(τ ′)→ 〈g,Gf〉 .

(4.12)

We now similarly shift the perpendicular coordinates by the classical solution obeying

ÿ⊥cl = 2s(J⊥ − ȧ⊥) =⇒ y⊥cl(τ) = 2s〈Gτ•
(
J⊥ − ȧ⊥(ϕ)

)
〉 . (4.13)

The effect of this shift is to collect all dependence of the fluctuations δy into∮
D4δy exp

[
− i

4s
〈δẏ2〉

]
= −(2π)−2(2s)−4 , (4.14)

6Covariant indices are p± = (p0 ± p3)/2 and p⊥ = {p1, p2}. Measures obey d4xµ = dx+dx−d2x⊥/2 and

d4pµ = 2dp+dp−d2p⊥.
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in which the Gaussian integral is that of the free theory, see (C.2)–(C.3) in the appendix.

At this stage we have obtained

Γ1 = −πe
2
δ3−,⊥(k)

∫ ∞
0

ds

s3

∫
dx+

c

∫ 1

0
dσ eiW

[
1 + ies2

∫ 1

0
dτ ε · F (ϕ(τ)) · k

]∣∣∣∣
O(ε)

, (4.15)

where what remains in the exponent, W , is defined by

W = −s
〈
Jµ − ȧµ(ϕ), G(Jµ − ȧµ(ϕ))

〉
. (4.16)

It can be checked that W is the classical action. That the functional integrals lead to the

classical action is due to the many symmetries of the background.

Expansion to order ε. We now expand the exponential of (4.15) to order ε. We begin

with (writing δτσ := δ(τ − σ) for brevity)

Jµ − ȧµ = kµδτσ − ȧµ(ϕ0(τ)) + ∂τ

(
εµδτσ −

n · ε
n · k ȧµ(ϕ0(τ))

)
+O(ε2)

≡ αµ + βµ +O(ε2) ,

(4.17)

where αµ (βµ) is order zero (one) in ε. Thus to order ε we have

eiW → −2is〈αµ, Gβµ〉 exp
[
− is〈αµ, Gαµ〉

]
, (4.18)

in the first term in large square brackets of (4.6), while for the second term in large

square brackets, which is already linear in εµ, we replace everything outside the exponential

in (4.18) with unity. The exponential terms are, using periodicity,

〈αµ, Gαµ〉 = k2Gσσ + 〈aµ(ϕ0)〉〈aµ(ϕ0)〉 − 〈aµ(ϕ0)a
µ(ϕ0)〉 .

≡ − 1

12
k2 − var(a) .

(4.19)

The aµ-dependent terms are a variance, generating the “effective mass” of a particle in

a plane wave background [65, 74, 75]. The factor of −1/12 is the coincidence limit Gσσ;

such contributions are usually assumed to be killed in vacuum by the overall momentum

conserving delta function. Indeed note that all terms vanish if we use this delta function,

for then k2 = n ·k = 0 from the start. Again, though, we may not use such arguments until

we have sewn the tadpole onto a larger diagram, as otherwise we risk missing precisely the

1PR contributions of interest.

We turn to the pre-exponential factor in (4.18). Integrating by parts, using periodicity

of ϕj , and that Ġσσ = 0, we find7

〈αµ, Gβµ〉 =

(
εµ −

n · ε
n · kkµ

)(
aµ(ϕ0(σ))− 〈aµ(ϕ0)〉

)
, (4.20)

which is linear in aµ and, it can be checked, independent of σ.

7In simplifying the pre-exponential terms one encounters the τ -integral of aµ(ϕ0(τ))∂τϕ0(τ), which is

exact and therefore vanishes by the periodicity of ϕ0.
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Final result and simplification. At this stage we can add (4.20) to the piece from

the spin factor in (4.6) that is already linear in the polarisation vector. As the spin factor

only depends on x+(τ), the preceding calculation of the path integral goes through without

change, and due to (4.11) we simply replace x+(τ)→ ϕ0 in the spin factor (since this part

is already linear in ε we drop the ϕ1 part). At this stage we can write out the full, but

cumbersome expression for the tadpole, from here on dropping the subscript “c” on the

centre of mass piece x+
c → x+,

Γ1 = − 2ieπ δ3⊥,−(k)

∫ ∞
0

ds

s
e−ism

2

∫
dx+e−ik+x

+
eis var(a)eis

k2

12

×
[
− 1

2s

(
εµ −

n · ε
n · kkµ

)(
aµ(ϕ0(σ))− 〈aµ(ϕ0)〉

)
+
e

4
ε · 〈F (ϕ0)〉 · k

]
.

(4.21)

This is a non-trivial function of the background field, containing arbitrary powers of the

gauge potential due to the exponent. However, the only relevant part of Γ1 is that which

survives being sewn to another diagram. By considering the dependence of the various

parts of (4.21) on kµ we will shortly find a considerably simpler expression for this surviving

contribution. We have the following properties.

P1. Expanding the field-dependent exponential involving var(a) generates (one plus) x+-

and s-dependent terms with n ≥ 2 powers of aµ. These terms could contribute phys-

ical (i.e. non-renormalisation) effects to other diagrams. It can be checked directly

that each such term comes with at least two powers of n·k.

P2. Expanding the pre-exponential terms, i.e. the second line in (4.21), generates lead-

ing order contributions proportional to ε ·F (x+) ·k, and then x+- and s-dependent

terms containing higher x+-derivatives of ε·F (x+)·k. Each derivative comes with an

additional power of ϕ0 and, thought this, a power of n·k.

P3. Expanding the final exponent in (4.21) contributes (one plus) powers of k2.

Making the expansions above, we may write Γ1 as

Γ1 =
1

3
ie2πδ3⊥,−(k)

∫ ∞
0

ds

s
e−ism

2

∫
dx+e−ik+x

+
k ·F (x+)·ε

+ higher powers in a+ derivative terms + k2 terms.

(4.22)

We now perform the x+ integral. For the term shown this gives the Fourier transform

F̃µν(k+). The higher order terms have a more complicated functional dependence, but

nevertheless are just Fourier transforms. Note that the essential tensor structure of all the

terms is given by derivatives of k · F · ε. It is convenient to introduce an auxiliary variable

ω and write the Fourier transform as an integral over a delta function setting ω → k+, in

order to obtain a covariant δ4, thus:

δ3⊥,−(k)f(k+) = δ3⊥,−(k)

∫
dω f(ω)δ(k+ − ω) = 2

∫
dω f(ω)δ4(k − l) , (4.23)
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lµkμ

Figure 9. The one-loop tadpole correction to any diagram.

in which lµ := ωnµ, here and below, is an auxiliary momentum. It follows that Γ1 has

the expansion

Γ1 =
2

3
ie2π

∫ ∞
0

ds

s
e−ism

2

∫
dω δ4(k − l) k ·F̃ (ω)·ε+ . . . , (4.24)

in which the ellipses denote the “higher order” terms summarised in (4.22). Note that if, at

any stage of this calculation, we had taken the delta functions on trust, then we would have

obtained zero for the tadpole. However, we must first sew the tadpole to another diagram.

4.2 The tadpole correction to any diagram

We now show that none of the “higher order” terms neglected in (4.22) or (4.24) can survive

being sewn. Consider the tadpole correction to any diagram, as illustrated in figure 9 (one

could keep in mind sewing the tadpole to a particle propagator as we have done above, for

which the one-particle irreducible contributions have previously been calculated [46, 76].)

The photon with momentum and polarisation kµ which is part of our tadpole is attached

at its other end to the larger diagram. We write the tadpole as Γ1 = Γµ1 (k)εµ, and similarly

write the rest of the diagram as ∆µ(−k)εµ. This is also linear in the photon polarisation by

the assumption that the tadpole’s photon is attached to it. Then the sewing prescription

in Feynman gauge is to make the replacement εµεν → ηµν/k
2 and then to integrate over

the intermediate photon momentum kµ. The 1PR contribution to the two-loop effective

action is then

Γ
(2)1PR
spin =

∫
d4k

(2π)4k2
∆µ(−k)Γµ1 (k) . (4.25)

We can see from (4.24) that the photon connecting the tadpole to another diagram has

support not just at kµ = 0 as for constant fields, but rather at kµ = lµ = ωnµ. However,

since l2 = 0, on-shell, the support of the delta function is still precisely where the k2

denominator in the sewing integral vanishes. We require, then, a generalisation of the

sewing relation (1.1) which allows us to extract the finite part of the singular sewing

structure, beyond the case of constant fields.

Now, the diagram to which we sew will in general be a function of kµ multiplied by,

because the process occurs in a plane wave, a three dimensional delta function δ3⊥,−(P − k)

where P is some collection of momenta. This can always be made covariant as for the

tadpole, above. It is safe to use the delta function coming from the tadpole to either

replace δ3⊥,−(P − k) → δ3⊥,−(P ), or to replace a covariant δ4(P − k) → δ4(P − ωn) and to

bring this inside the dω integral in (4.24), as this does not affect the singular structure in
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the sewing integral. Hence, the type of sewing integral we encounter is, for l2 = 0,

Kµ1µ2···µn :=

∫
d4k

1

k2
δ4(k − l) kµ1kµ2 · · · kµn

= cn
(
gµ1µ2 lµ3 · · · lµn + symmetrised

)
+ λnlµ1 lµ2 · · · lµn ,

(4.26)

where the constant cn is determined by taking the trace, while the constant λn will always

drop out (the equality of these expressions is shown in the appendix). The most important

case is

Kµν =
1

4
gµν + λ2lµlν . (4.27)

We have the following results

i) nµnνKµν···τ = 0 , ii) Kαα...τF τρ = 0 ,

iii) nµKµν···τF τρ = 0 , iv) Kαα...τnτ = 0 .
(4.28)

Given this, consider again the expansion of (4.21) into (4.24) plus corrections, and the

sewing to a larger diagram. Any term in the tadpole containing (n · k)2, or higher powers

thereof, will vanish when sewn, by i) of (4.28). Hence, from P1, no higher power of the field

strength can survive sewing. All derivative terms from the second line of (4.21) at greater

than linear order vanish for the same reason. The first derivative term vanishes because of

iii). Hence, from P2, no derivative terms in the tadpole survive sewing. Finally, no term

containing k2 can survive because of ii) and iv), see P3, above. It follows that the only part

of the tadpole which survives being sewn to another diagram is (4.22), equivalently (4.24).

Hence, let any diagram have the “k-linear” part δ4(P − k)∆(P )µνk
µεν . Then the

tadpole correction is

Γ
(2)1PR
spin =

2

3
ie2π

∫ ∞
0

ds

s
e−ism

2

∫
dω δ4(P − ωn)∆µν(P )F̃ (ω)σν

∫
d4k

(2π)4k2
δ4(k − l) kµkσ

=
1

6
ie2π

∫ ∞
0

ds

s
e−ism

2

∫
dω

(2π)4
δ4(P − ωn)∆µν(P )F̃ (ω)µν . (4.29)

Crucially this is, as for the case of constant crossed fields, linear in the external field

coupling to the tadpole loop, so it can be absorbed into a renormalisation.

The most important aspect of the sewing, then, is that all terms of higher order in the

background field vanish, so that although the tadpole itself involves the gauge potential to

all order, the contribution that sees the larger diagram through the mediating photon is

at most linear in the external field. It is not entirely obvious from the beginning that this

should be the case, and indeed one can imagine other terms that could have contributed to

the final result (4.29). For example, if F̃ 2 (suitably normalised by powers of m or s) had

appeared in (4.29) then we would have non-renormalisation effects. Similarly, if the sewing

allowed terms like p ·F 2 · p for pµ some momentum from the larger diagram, then we could

have had arbitrary powers of the field strength in the final expression. However, we have

seen that no such terms arise. Thus, we have found that although the tadpole contribution

is nonvanishing in a plane wave background, it does not induce a physical correction to

any process.
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4.3 The dumbbell and the effective Lagrangian

Our expression for the tadpole allows us to examine the two-loop dumbbell diagram in plane

waves, see figure 2. This could give a nontrivial contribution to the vacuum persistence

amplitude [77] if the diagram developed an imaginary part — it is well known, though,

that there is no pair production in plane waves [3].

We take two copies of (4.24), send kµ → −kµ in one, and sew them together:

Γ
(2)1PR
spin :=

∫
d4k

(2π)4k2
Γµ1 (−k)Γ1µ(k) . (4.30)

Define the (dimensionally regulated) constant c by

c =
2

3
ie2π

∫ ∞
0

ds

s
e−ism

2
. (4.31)

Then we find for the dumbbell diagram

Γ
(2)1PR
spin = c2

∫
d4k

(2π)4k2

∫
dωdν δ4(k − ωn)δ4(k + νn) k · F̃ (ω) · F̃ (ν) · k

= c2
∫

dωdν δ4(ωn+ νn)

∫
d4k

(2π)4k2
δ4(k − ωn)k · F̃ (ω) · F̃ (ν) · k

=
c2

2
V ⊥V −

∫
dω

∫
d4k

(2π)4k2
δ4(k − ωn) k · F̃ (ω) · F̃ (−ω) · k .

(4.32)

The volume of the longitudinal and transverse directions reflects the translation invariance

of the process in those three directions. Interestingly, the integrand of (4.32) is proportional

to the (Fourier transformed) “χ-factor” of the intermediate photon [27],

χ(φ) = e2kµFµσ(φ)F σν(φ)kν = −(n · k)2a′2(φ) , (4.33)

which determines the relevance of nonlinear quantum effects in plane wave backgrounds [27–

29]. However, the whole expression is ultimately killed because the kµ integral gives Kµν ∼
gµν , above, which replaces χ→ tr (F 2) = 0, and the dumbbell vanishes.

This is reassuring since, if the dumbbell did not vanish, there could be a non-zero

contribution to the Euler-Heisenberg effective Lagrangian for plane waves. To confirm that

there is no such contribution, we take two copies of the tadpole, and reintroduce the centre

of mass coordinates in each. We then define an average of these two positions, call it xµ0 ,

and extract the contribution to Euler-Heisenberg via the definition

Γ
(2)1PR
spin :=

∫
d4x0 Lspin(x0) . (4.34)

A straightforward extension of the dumbbell calculation yields

Lspin(x0) =
c2

(2π)4

∫
dωdν ei(ω+ν)n·x0

∫
d4k

(2π)4k2
δ4
(
k+ 1

2(ν −ω)n
)
k · F̃ (ω) · F̃ (ν) · k , (4.35)

which again vanishes after performing the sewing integral.
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4.4 Examples: the constant crossed field limit and scalar QED

The methods used here for the plane wave calculation are quite different to those used for

constant fields, above. A mutual check on these methods is thus provided by re-deriving

crossed field results from the general plane wave result. The crossed field is defined by

aµ(x+) = εµx
+ for εµ a spacelike constant (not to be confused with the polarisation vector

of the attached photon). The constant field strength is then eFµν = nµεν − εµnν . The

variance in this case is

var(a) =
1

180
s2(n · k)2εµε

µ , (4.36)

which is independent of x+. The second line of (4.21) simplies exactly to −2
3 k · F · ε,

constant. Carrying out the x+ integral gives (2π times) a fourth delta function, which is

just the Fourier transform of the field, consistent with (4.24) and

Γ1 =
4ie2π2

3
δ4(k) k · F · ε

∫ ∞
0

ds

s
e−ism

2+i s
3

180
(n·k)2ε2+i s12k

2

. (4.37)

Consider now sewing this onto a larger diagram, denote it by ∆. The more general sewing

integral above reduces to (1.1). The only term which can survive this sewing is quadratic

in kµ. Hence if ∆ contributes a linear term, so ∆ ⊃ εµ∆µνkν , then the tadpole can couple

to this (any part independent of the momentum is killed by symmetry when integrated).

Observe that we may therefore, without losing any terms, simplify the tadpole to

Γ1 →
4ie2π2

3
δ4(k) k · F · ε

∫ ∞
0

ds

s
e−ism

2
, (4.38)

exactly as argued for the general result (4.24). Moreover, were we to sew two tadpoles

together to form the two-loop reducible contribution to the EHL of figure 2 then the

momentum integral produces the contraction tr(F 2), which vanishes, as for the general

case (see text below (4.33)). The same result follows if the crossed field limit is taken

directly in (4.32). This also reproduces the results of section 2 as a smooth limit of a more

realistic spatially varying field configuration.

Finally, we comment on the scalar QED tadpole. Note that when identifying the the

surviving contributions in Γ1, we expanded the second line of (4.21) in powers of kµ about

the point x+, see P2. The leading order of this expansion is

−Gσσk ·F (x+)·ε+
1

4
ε·F (x+)·k + . . . =

1− 3

12
k ·F (x+)·ε+ . . . , (4.39)

in which the spin factor gives the same contribution as the scalar part, multiplied by −3.

From (4.39) we deduce that for scalar QED the tadpole is given by −1/2 of (4.24). Using

this to compute the dumbbell for scalar matter immediately confirms that the reducible

contribution to the scalar Euler-Heisenberg action is also zero. Again, precisely the same

structure was seen in the crossed field case, where we found that ĠB − GF = −2ĠB,

see (2.12).
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5 Discussion and outlook

We have considered one-particle-reducible (1PR) contributions to processes in both con-

stant and non-constant background fields. For the former it was only recently discovered

that such contributions could be non-vanishing, in contrast to what had long been as-

sumed in the literature. We have examined 1PR “tadpole” corrections to the two-loop

EHL and one-loop propagator in the background in two classes of constant field, Lorentz

equivalent to either a constant crossed field (|E| = |B| and E.B = 0) or a pure magnetic

field (E = 0). In the former case, the tadpole contribution contributes only a divergent

factor which can be renormalised away. In the latter case, and in D = 4 there is both

a divergent renormalisation and finite higher order terms which yield physical corrections

to the propagator and, by extension, any other process occurring in a constant magnetic

background. These physically relevant corrections have never before been studied to the

best our our knowledge.

We have also considered background plane waves of arbitrary strength and shape.

Here we were able to make a stronger statement; we calculated the 1PR correction to

any diagram, and showed that this again amounts to a divergence (in D = 4) which can

be renormalised away. This is consistent with, and goes beyond, one-loop Hamiltonian-

picture calculations where the tadpole does not appear due to normal ordering [47], as

in background-free QED. For all plane waves, including constant crossed fields, we have

also confirmed that the dumbbell diagram vanishes identically. Therefore (unlike in the

case of magnetic fields) there is no additional two-loop correction to the Euler-Heisenberg

effective action coming from the 1PR diagrams. We saw that the reason for this is es-

sentially geometrical — there is no Lorentz invariant which can be formed which survives

the contractions into the field potential demanded by the creation of the dumbbell from

the sewing of two tadpoles. That the only part of the tadpole that can see the larger

diagram through the mediating photon is linear in the background field is also compatible

with the 1PR contribution to the propagator in the crossed field limit being an additional

renormalisation.

Our results show that standard lessons from QFT, such as the freedom to ignore

tadpoles, does not automatically go over to QFT with background-fields and verifies that

the discovery of the 1PR contributions in constant background field QED has physical

significance. This holds also for the case in which the photon in figure 1 is taken to be an

asymptotic state — as a scattering amplitude this is not zero for a general background,

and it describes four wave mixing [78], or vacuum emission [79].

A variety of historic calculations ought now to be revisited with the aim of checking

whether the 1PR contributions need to be included to correct the reported result. For

example, it has previously been stated that the tadpole diagram vanishes in the combination

of a plane wave and and constant and homogeneous field [80]; our results for the magnetic

field case demonstrate that this cannot be true. Furthermore, in the combination of a

plane wave with any field such that the plane wave is able to contribute to the Schwinger

invariants, it becomes clear that there will be a physical contribution from the plane wave.

The methods we have developed here will be useful for the future investigation of such cases.
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On this note, it would be interesting to extend our results to non-constant magnetic

fields and to more realistic models of intense laser fields, and then to examine the physical

implications of 1PR corrections. This may allow new insights into particle physics phe-

nomena occurring in terrestrial experiments and astrophysical scenarios such as magnetar

environments [81–84]. Another natural extension of this work would be the 1PR contribu-

tion to mixed backgrounds such as a constant field accompanied by a plane wave which we

anticipate to lead to physical 1PR contributions. Mixed backgrounds have already shown

interesting consequences in strong field QED such as boosting the pair production rate,

see [21, 85]. Moreover, studying the 1PR contribution to the self-energy in a magnetic

background in the strong field limit could be significant in the context of the well-known

Ritus (effective) mass shift [44] and its leading asymptotic behaviour. We would also like

to compare 1PR contributions with their known 1PI counterparts. One could also consider

the contribution of different types of particles (with different couplings to the background)

running in the loop, in order to examine the relative contribution of 1PI and 1PR contri-

butions in BSM models, for example. These topics will be pursued elsewhere.
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A Scalar QED

Here we list the various formulae needed to arrive at the results for scalar QED. Firstly,

the scalar EHL has proper time representation [35, 52]

L(1)[F ] =

∫ ∞
0

ds

s
(4πis)−

D
2 e−im

2sdet−
1
2

[
sinhZ
Z

]
, (A.1)

whilst the tree level propagator in a constant background has integral form (in momentum

space) [37, 38]

D(p|F ) = i

∫ ∞
0

ds e−im
2sdet−

1
2

[
coshZ

]
e−isp·

tanhZ
Z ·p . (A.2)

With the covariant formulae (1.2) and (1.3) we get the 1PR contribution to the two-loop

EHL and one-loop self-energy as given in (2.14) and (2.15). To arrive at explicit formula

for the functions of Z and Z ′ requires a choice of Lorentz frame and we list the results for

the cases considered in the main text below.
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A.1 Constant magnetic field

To arrive at the results obtained in (3.5) and (3.30) for the scalar case in a pure magnetic

field one needs the following additional formulae:

ĠB = −
(

cot z − 1

z

)
F̂ , (A.3)

p · sinhZ · coshZ − Z
Z2 · cosh2Z · Ġ′B · p = −s

z

[
cot z′ − 1

z′

] [
tan z

z
− sec2 z

]
p2⊥ , (A.4)

tanhZ
Z = g‖ +

tanz

z
g⊥ , (A.5)

tr
(

tanhZ · Ġ′B
)

= 2tanz

(
cotz′ − 1

z′

)
. (A.6)

B Weak field limit

Expanding the s-integrand of (3.22) in the background field provides, to linear order in z,

the following structures

(m− /p)
[
−isp2⊥

(
sec2 z

z
− tan z

z

)]
e−is

tan z
z
p2⊥ = −2iz

3
sp2⊥(m− /p)e−isp

2
⊥ +O(z3) ,

(B.1)

1

2
(m− /p)

[
−isp2⊥

(
sec2 z

z
− tan z

z

)]
tan z e−is

tan z
z
p2⊥ = O(z2) , (B.2)

γ[2p1]
[
−isp2⊥

(
sec2 z

z
− tan z

z

)]
tan z e−is

tan z
z
p2⊥ = O(z2) , (B.3)

1

2
γ[2p1]

[
−isp2⊥

(
sec2 z

z
− tan z

z

)]
tan2 z e−is

tan z
z
p2⊥ = O(z3) , (B.4)

sec2 z γ[2p1] e−is
tan z
z
p2⊥ = γ[2p1]e−isp

2
⊥ +O(z2) , (B.5)

1

2
γ[2p1][γ2, γ1] sec2 z tan z e−is

tan z
z
p2⊥ =

z

2
γ[2p1][γ2, γ1]e−isp

2
⊥ +O(z3) ,

(B.6)

1

2
(m− /p)[γ2, γ1] sec2 z e−is

tan z
z
p2⊥ =

1

2
(m− /p)[γ2, γ1]e−isp

2
⊥ +O(z2) ,

(B.7)

1

2
γ[2p1][γ2, γ1] tan z sec2 z e−is

tan z
z
p2⊥ =

z

2
γ[2p1][γ2, γ1]e−isp

2
⊥ +O(z3) .

(B.8)

Now using this in the remaining proper time integral we finally get the result reported

in (3.24).

C Reparameterisation invariant path integrals

The worldline representation of a generic correlation function involves a functional integral

over closed trajectories, xµ(τ), with period 1. We split the coordinates xµ into a centre
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of mass piece xµc and a fluctuation yµ, so xµ(τ) = xµc + yµ(τ) with centre of mass piece

yµ obeying ∫ 1

0
dτ yµ(τ) = 0 . (C.1)

The reparameterisation-invariant measure over each coordinate is, in these

variables [86, 87], ∮
Dx =

√
2s

∫
dxc

∮
Dy . (C.2)

In four dimensions the free path-integral measure obeys the normalisation∮
D4x exp

[
− i

4s

∫ 1

0
dτ ẋ2

]
= (4πis)−2

∫
d4xc . (C.3)

C.1 Worldline propagator properties

On the unit circle, τ ∈ [0, 1], the second derivative operator, ∂2τ , is invertible on the space

of fluctuations y as defined in (C.1), with inverse G obeying (Gττ ′ := G(τ, τ ′) etc.)

Gττ ′ =
1

2
|τ − τ ′| − 1

2
(τ − τ ′)2 − 1

12
, (C.4)

∂τGττ ′ =
1

2
sign(τ − τ ′)− (τ − τ ′) , (C.5)

∂2τGττ ′ = δ(τ − τ ′)− 1 . (C.6)

G and G̈ are symmetric, Ġ is antisymmetric, so Ġττ = 0. The constant in G is fixed by

the condition that it has zero c.o.m. as in (C.1).

C.2 The spin factor

The spin factor that arises in spinor QED can be simplified for a plane wave background by

expanding the exponential function in the defining equation (4.4). Subsequently extracting

the part at O(ε) leads to an N−fold product of the form (xi := x(τi))

− i

4N !
trγP

(s
2

)N N∏
i=1

∫ 1

0
dτi

N∑
j=1

/n/a′(x1)/n/a
′(x2) · · · e−il·xj

(
/l/ε − l · ε

)
· · · /n/a′(xN ) , (C.7)

where the sum is over the positions, xj , of the term involving the photon. At order N ≥ 3

one finds there are at least two factors of /n which can be brought together by anticommuting

past /a′ and using cyclicity of the trace; because /n/n = n2 = 0, these terms vanish. The

N = 1 terms vanishes because the matrix structure is traceless. Hence we are left with the

second order contribution which after simplification and selection of the piece linear in the

photon polarisation takes the form

− is2

16
trγ

∫ 1

0
dτ

∫ 1

0
dτ ′ /n/a′(x(τ))

(
/l/ε − l · ε

)
e−il·x(τ

′). (C.8)

Computing the trace, it is a simple step to then incorporate this into Γ1 and write the

result in the form (4.6).
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D A sewing result

Sewing the tadpole to a larger diagram requires an integral over the momentum of the

intermediate photon, whose form for a plane wave background we study here. We let

l2 = 0 and define

Kµ1µ2···µn :=

∫
d4k

1

k2
δ4(k − l) kµ1kµ2 · · · kµn . (D.1)

Covariance implies that the integral can only contain products of gαβ and lµ. Consider a

total of n ≥ 1 factors of k in the numerator of the integrand of (D.1). Suppose the integral

gave a term containing r > 1 factors of g and n−2r factors of l (symmetrised). Taking the

trace over r pairs of indicies would leave a contribution proportional to ln−2r. However,

taking the same trace in (4.26) produces (k · k)r−1 with no denominator, and the integral

vanishes since l2 = 0. Hence K must be at most linear in the metric. It follows that

Kµ1µ2···µn := cn
(
gµ1µ2 lµ3 · · · lµn + symmetrised

)
+ λnlµ1 lµ2 · · · lµn , (D.2)

where the constant cn is determined by taking the trace. These arguments do not allow us

to determine the coefficient λn, but as explained in the text there is nothing to which this

can couple so it can safely be ignored. We have the particular cases

Kµ = λ1lµ , Kµν =
1

4
gµν + λ2lµlν . (D.3)

These results are used to deduce that the plane wave tadpole can only contribute something

that can be renormalised away.

Open Access. This article is distributed under the terms of the Creative Commons
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Sauter-Schwinger effect — Non-perturbative versus perturbative aspects, JHEP 06 (2017) 043

[arXiv:1703.09203] [INSPIRE].
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