
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2019-05-01

Platooning Control for Heterogeneous

Sailboats Based on Constant Time

Headway

Viel, C

http://hdl.handle.net/10026.1/13771

10.1109/tits.2019.2912389

IEEE Transactions on Intelligent Transportation Systems

Institute of Electrical and Electronics Engineers (IEEE)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, XX 20XX 1

Platooning control for heterogeneous sailboats
based on constant time headway
VIEL Christophe*, VAUTIER Ulysse*, WAN Jian*, JAULIN Luc**

*School of Engineering, University of Plymouth , Plymouth, UK (name.surname@plymouth.ac.uk)
**Lab-STICC, ENSTA-Bretagne, Brest, France (namesurname@gmail.com)

Abstract—This paper addresses the problem of platooning con-
trol for a fleet of heterogeneous sailboats. Platooning maintains a
constant time headway (CTH) between sailboats following a cir-
cular path, a complex problem for sailboats due to the influence of
wind direction. First, the desired acceleration based on the CTH
and the sailboat velocity needed to converge to the platooning
is defined. Second, a control of sailboat orientation to manage
the sailboat acceleration is proposed. The proposed platooning
strategy adapts to the specific characteristics of sailboats, which
are different from other motorized marine vehicles. Two tack
strategies can be used for the method: the first is to regulate
the sailboat velocity; the second is to go front the wind, while
staying in a short corridor. Desired acceleration for fulfilling the
platooning has been derived and validated. Simulation results
demonstrate the effectiveness of the proposed approach, with
comparison to an optimal receding horizon control algorithm.

Index Terms—Platooning, autonomous sailboats, non-linear
control, heterogeneous fleet.

I. INTRODUCTION

Over the past decades, there is a growing interest in marine
robotics due to the needs for various marine research and
exploration activities such as oceanography. Such robots can
be used to transport materials between harbours and/or off-
shore stations, to find ship wreckages, to collect ocean floor
data, and to conduct biological measurement or surveillance.
Autonomous sailboats can play a significant role in such
marine activities, particularly for long-duration missions be-
cause of their use of ocean renewable energy as their primary
propulsion. However, autonomous robotic sailing is restricted
by wind direction. The control task becomes very challenging
with coupled wind conditions and complex sailboat dynamics.

The dynamics of a sailboat is studied in [18, 19, 25, 30, 3],
represented by Euler-Lagrange dynamics or state-space equa-
tions. In these papers, an accurate estimation of the sailboat
behavior is obtained by considering forces on the sail, keel
and rudder. However, a perfect knowledge of the dynamic
parameters for a real sailboat is difficult to obtain in practice
and complex to implement on a real sailboat. That is why
in some work like [27, 10, 23, 12], alternative methods
like fuzzy methods or geometric laws are used to control
rudder and sail without using dynamic models. The idea
is to imitate common sailing practice, without knowing the
sailboat dynamics. The main advantage of this technique is
its applicability to every type of sailboats although the control
performance may not be optimal. This paper follows these
ideas to imitate sailing practice with knowing a very small
number of sailboat dynamics parameters, which makes it easy
to implement for various types of sailboats.

Studying the platooning problem for sailboats is interesting
in terms of synchronizing boats for various missions such

as ocean transportation, scanning, mapping and surveillance
using a convoy of sailboats. A convoy of sailboats can be used
to deliver supplies to remote islands or offshore infrastructures
with energy efficiency and zero emission. It can also be used to
conduct a 360-degree surveillance in coastal borders. All these
tasks requires the sailboats to maintain certain formations and
to avoid collisions. A circular platooning can therefore be used
to maintain the fleet close to a target position or an observation
area with better collision avoidance management. Moreover,
another interest is to combine arcs and straight lines to define
a platooning on a general reference trajectory.

Created to avoid traffic jam, a platooning allows to main-
tain a desired distance among vehicles. Over the past years,
platooning studies mostly focus on ground vehicles, mainly
studied in a very theoretical way like an optimization or a
consensus problem like in [24, 17], detection of obstacle and
choice of sensors like in [16, 1, 5], or problem of commu-
nication like communication delay and reduction of commu-
nication using event-triggered methods like in [7, 15, 6, 31].
However, platooning is more delicate for sailboats due to wind
direction and the challenge to control the sailboat velocity
exactly. As a diamond trajectory or a line allows sailboats
to move upwind so as to get a similar wind orientation,
platooning becomes rather difficult to obtain in case of a
circular path where the wind direction changes for each boat.
While ground vehicles, AUVs and classic surface vehicles
can control their position/velocity exactly by using motors,
exact sailboats positions/velocities are uncontrollable, making
previous classic platooning strategies unsuitable to implement
or follow straightforwardly. Moreover, some work like [9],
where the main focus is to improve energy efficiency and
eco-driving is not relevant to sailboats since sailboats use
renewable energy to move.

Distance between two vehicles can be fixed as in [6, 2]
or variable with vehicle velocity as in [4]. In the later case,
a constant time headway (CTH) is defined, corresponding to
the desired time that a vehicle needs to reach the position of
its predecessor. The time headway, developed in [4], allows
to respect a security distance proportional to vehicles velocity,
for example for cars on highway to avoid collision in case
of sudden braking. CTH is really interesting for the sailboat
platooning problem due to the difficulty to control sailboat
breaking: it allows to stay the closest to the other sailboat
without risk of collision. Moreover, since sailboats require
a considerable velocity to be controlled, a constant time
headway is mostly desirable than a fixed distance for allowing
sailboats to move at their maximal velocity.

Platooning problems for surface and underwater vehicles
have been studied in [14, 13]. In these work, a distributed RHC
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(Receding Horizon Control) problem for nonlinear vehicle
platooning with input and state constraints is developed, where
an optimization allows keeping a stable platooning formation.
Similar work for ground vehicles can be found in [31, 24],
which consider a robustness analysis and distributed H-infinity
controller for a platooning of connected vehicles with undi-
rected topologies and presence of external disturbances. Opti-
mization problems are formulated to obtain an optimal undi-
rected topology for a platoon system. These sub-platooning
tasks are linked by the presence of a leader at the top of the
fleet. However, methods based on general nonlinear dynamic
models can not obtain efficient results compared to methods
developed for a specific model, mostly for vehicles with very
specific dynamics like a sailboat. Moreover, since in real-
world applications, some information can be difficult to obtain
due to disturbances like wind, wave and current conditions,
making it difficult to implement. That is why neurodynamics
observers are proposed in [21, 20] to recover the unmeasured
velocity information and unknown vessel dynamics. Similarly,
neurodynamic optimization and fussy approximation are used
in [22] to evaluate unknown dynamics parameters. Control law
of platooning is constructed based on the estimated parameters
and an optimal guidance signal, shared by all vessels and
obtained by the neurodynamic optimization.

In this paper, a platoon strategy adapted to sailboats is
proposed, allowing better results than a method with general
nonlinear dynamics model like in [14, 13], and without the
need of complex dynamics parameters as required in [18, 19].
The proposed approach is compared with the optimal receding
horizon control (RHC) algorithm exposed in [13] for showing
its advantages. Thus, the main contributions of this paper are
as follows:

• a platooning method to follow a linear and circular
trajectory and it is adapted to an heterogeneous fleet of
sailboats and their specific constraints.

• a control of sailboat orientation to manage the sailboat
acceleration. This one allows performing a proposed pla-
tooning strategy, adapted to sailboat’ specific dynamics,
different from other marine vehicles.

• a simple method independent of sailboat dynamics to be
applicable to various kinds of sailboats. Only few sailboat
parameters are required to implement it.

To our knowledge, no other paper addresses the problem of
platooning for sailboats so far. Distance between sailboats is
defined using a CTH like in [4] to adapt security distance
between sailboats and to move at their maximum velocity. A
tack strategy has been created to regulate the projection of
the sailboat acceleration and to go front the wind. Control
methods for the sail angle and rudder are explored. Finally,
an application example, consisting of the control of a sailboat
fleet, is simulated so as to demonstrate the proposed approach.

The outline of the paper is as follows. Problem statement
of platooning and sailboat parameters are presented in Sec-
tion II-A, Section II-B and Section II-C, respectively. Specific
constraints on the platooning are exposed in Section II-D.
Parameters of the platooning trajectory are described in Sec-
tion III. Control of platooning is described in Section IV. Eval-
uation of the desired acceleration is exposed in Section IV-A,
and a tack strategy to regulate sailboat velocity and to define
sailboat orientation is proposed in Section IV-B. A second tack

strategy to move upwind is also described in Section IV-B2,
with comparison to the first tack strategy. Low level control
of rudder and sail are defined Section V-A and Section V-B,
respectively. Section VI presents some simulation results and
Section VII concludes the paper.

II. PROBLEM DESCRIPTION

A. Sailboat parameters

Figure 1: [18] Fixed distance parameters.

The notations used in this paper are described in Table I.

θ orientation of the sailboat
v velocity of the sailboat
ω rotation speed
φ course angle
δr angle of rudder, δr ≤ δr,max

δs angle of sail, |δs| ≤ δs,max

ψtw(t),
atw(t)

direction and speed of the true wind, de-
scribed in Section II-B.

ψaw(t),
aaw(t)

direction and speed of the apparent wind,
described in Section II-B,

δ hauled angle which define the dead area
Ωd(t) = [ψtw(t) + π − δ, ψtw(t) + π + δ],

Mi sailboat i mass.

Table I: Sailboat parameters.

The wind direction and speed are not assumed to be constant
in this paper. The notation ψtw, atw, ψaw, aaw represents
ψtw(t), atw(t), ψaw(t), aaw(t). The strategies developed in
this paper are defined for the current wind conditions at instant
t and they can be updated new wind conditions.

Sailboats are assumed to be equipped with the following
sensors:
• a weather vane and a wind gauge measure ψwv and awv

such the apparent wind direction ψaw = π − ψwv and
velocity, aaw = awv ,

• GPS sensor to measure sailboat position pS .
• IMU or GPS to evaluate the sailboat velocities v and u.
• a compass to measure sailboat heading θ, where θ = 0

corresponds to the north.
As shown in [26], the dynamics of a sailboat i can be expressed
with the general form

Miv̇i = τf,i + τr,i + τs,i + τw,i (1)

Jiφ̈i = Cr,i + Cs,i + Ck,i + Ch,i, (2)

where Ji is the sailboat inertia matrix, φi is the course
angle of the sailboat i, τf,i, τr,i, τs,i, τw,i is the action of
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friction/drift, rudder, sail and wind and Cr,i, Cs,i, Ck,i, Ch,i
are the rudder, sail, keel and hydrodynamic actions. Since a
perfect knowledge of the dynamic parameters of the sailboat
is difficult to obtain in practice, the proposed algorithm and
control scheme in this paper are independent of the system
(1)-(2) and use those parameters that are simple to measure
like in [27, 10, 23, 12]. Thus, they can adapt to different
models of sailboats (different sizes of mono-hull, catamarans)
by using the same control of the sail and the rudder exposed
in Section V.

B. True and apparent wind
As illustrated in Figure 1, let the True wind (tw) be the

wind measured from a fixed referential, and Apparent wind
(aw) be the wind measured by a weather vane on a moving
referential. The orientation ψtw = 0 corresponds to the north,
and ψaw = 0 points the sailboat heading, such ψtw = ψaw+θ
if sailboat is static, i.e. v = 0 in (3)-(4).

As exposed in [18], apparent wind can be evaluated in polar
coordinate such{

aaw = ‖Aw‖
ψaw = atan2 (Aw)

, Aw =

[
atw cos (ψtw − θ)− |v|
atw sin (ψtw − θ)

]
,

(3)

with Aw is the apparent wind in the Cartesian coordinate.
In the same way, an estimation of the true wind can be

obtained from apparent wind :{
atw = ‖Tw‖

ψtw = atan2 (Tw)
, Tw =

[
v sin (φ) + aaw sin (ψaw + θ)
v cos (φ) + aaw cos (ψaw + θ)

]
,

(4)

where Tw is the apparent wind in the Cartesian coordinate.
The sailboat is back wind if cos (ψtw − θ) > 0, and upwind

if cos (ψtw − θ) + cos (δ) < 0. In other scenarios, the sailboat
is crosswinds, which is the default configuration.

C. Problem statement
Consider the group of N heterogeneous sailboats is moving

along one or a combination of the following paths:
• a circle C (pc, R) of center pc = [xc, yc] and radius R.
• a line AB defined by two points A = [xA, yA] and B =

[xB , yB ]. Let ÂB be the angle between points A and B.
Sailboats must stay inside a corridor of length 2rsecu, i.e.
• if the path is circular, two circles with the interior circle
C (pc, Rint) and the exterior circle C (pc, Rext) where
Rext = R+ r and Rint = R− rsecu.

• if the path is linear, two lines AB and AB defined by
points Ā = A+ r̄, B̄ = B+ r̄ and A = A− r̄, B = B− r̄
where r̄ = rsecu

[
cos
(
ÂB + π

2

)
, sin

(
ÂB + π

2

)]
.

Combination of circles and lines can be used to define the
reference trajectory.

The sailboat i is noted Si with the Cartesian position
pi = [xi, yi]

T , corresponding to the sailboat mast. The sailboat
in front of Si is Sj , where Sj is Si−1 for i ∈ [2, . . . N ] and
SN is the sailboat in front of S1 if sailboats are in a closed-
loop path. Else, S1 follows a virtual leader with the fixed
velocity v0. Suppose each sailboat i can receive messages
from sailboat j, i.e. the sailboat in the front, and can transmit
message to the sailboat behind. Since the dynamics of the

sailboat is much slower than the communication time, the
communication delay is considered to be negligible. Each
sailboat i transmits its current position pi, its heading θi, its
velocity vi and acceleration v̇i.

Let dij be the projection of the distance between sailboat i
and j on the circle C (pc, R) or the line AB. Each sail-
boat i tries to maintain the desired spacing distance d∗ij with
sailboat j. The desired spacing distance is defined such that
d∗ij = d∗ij = ViT

∗ + dsecu, where T ∗ is the constant time
headway, e.g., the time that the i-th sailboat takes to arrive
at the position of sailboat j, dsecu > 0 a constant security
distance (to avoid sailboats to crash each other if Vi = 0),
and Vi is the projection of the velocity vi on the reference
trajectory, i.e. the circle C (pc, R) or the line AB. Note d∗ij
is variable with the sailboat velocity, inducing d∗ij is large
when vehicles move fast and small when they are slow. Since
sailboats are vehicles which require a good velocity to be
controlled, all sailboats try to move at their maximal velocity.
However, the sailboat maximum velocity is variable with the
wind direction, and so it cannot be identical for all sailboats
if they follow a circular path. Hence a constant time headway
(CTH) to manage the distance between sailboats and not a
fixed distance with a fixed velocity. In the case where sailboats
follow a linear path, CTH becomes a constant distance policy.

D. Platooning parameter constraint

In this study, heterogeneous sailboats can be controlled
inside the fleet. Due to the number of sailboats, their different
weight and size, some constraints must be respected to guar-
antee the feasibility of a platooning, exposed in this section.

Let Li be the length between the rudder and the keel
of sailboat i and li be the length between the keel and
the bow. The turning radius of the sailboat i is defined by
rr,i = Li

sin(δr,max) , where the turning radius is a non-holonomic
constraints describing the smallest circle C (pi, rr,i) which can
not perform by the sailboat i.

To avoid collision with the other sailboat, two points must
be considered:
• A sailboat can stop only if it is back wind, i.e.

cos (ψtw − θi) > 0. Let d(1)
secu be the turning distance

to place sailboat upwind or perform a maneuver to arrive
upwind. As described in Section VIII-B, d(1)

secu can be
expressed such

d(1)
secu = 3 max

i=1:N
(rr,i) + max

i=1:N
(li) + max

j=1:N
(Lj) . (5)

• To decelerate from the sailboat i maximal velocity vi,max

to 0, a stopping distance note d(2)
secu must be maintained

between the sailboat and the one in front of it. As
described in Section VIII-C, d(2)

secu can be expressed such

d(2)
secu = max

i=1:N

(
Mi

Ci
vi,max

)
+ max
i=1:N

(li) + max
j=1:N

(Lj) ,

(6)
where Mi is sailboat i mass and Ci is the tangential
friction of sailboat i, whose measurement is described at
the end of this section.

Based on d(1)
secu and d(2)

secu, let define the condition on dsecu:

dsecu ≥ max
(
d(1)
secu, d

(2)
secu

)
. (7)
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In the same way and to implement strategy to be exposed
in Section IV-B, we desire the sailboat velocity can converge
to zero when it moves perpendicularly to the reference circle
C (pc, R) or line AB. Thus, take rsecu ≥ d(2)

secu.
The conditions on the interior circle Rint are defined as

follows. The radium of the smaller circle performed by the
sailboat i is rr,i. Moreover, the sailboat needs to maintain a
distance d∗ij with the sailboat in front of them, where dsecu ≤
d∗ij ≤ T ∗vmax + dsecu, and vmax = maxi=1:N vi,max. Thus
the interior circle of the corridor must be a parameter such

Rint >
N

2π
(T ∗vmax + dsecu) . (8)

From these conditions, one obtains R = Rint + rsecu and
Rext = R + rsecu. Note dsecu, Rint and Rext are evaluated
using parameters of all sailboats so as to consider their
heterogeneity.

Measurement of Ci: Due to the hypothesis made in
Appendix VIII-C on the sailboat dynamics, value of Ci can
be measured in practice. This one may not be close to the
true value, but it is the adapted value for our method. For
that, consider that the sailboat is moving at the instant t = 0
such vi (0) = vini and θi = ψtw + π

2 . At instant t = 0+,
take |δs| = π

2 , i.e. open the sail completely until wind is not
a driving force anymore, and measure the stopping distance
dstop,i between t = 0+ and instant t = tf where vi (tf ) = 0.
One can evaluate Ci such Ci = Mi

dstop,i
v (0).

Justifications of the dynamic model used for the measure-
ment of Ci are the same to the ones used for the evaluation
of dsecu, and they can be found in Appendix VIII-C.

III. PLATOONING PATH PARAMETERS

In this paper, a platooning can be performed by following
two kinds of paths: line or circle. Parameters linked to these
trajectories are described in the following section, and used in
Section IV to define the control of sailboats. More complex
trajectories for platooning can be made by the combination of
circles and lines.

A. Linear platooning
Due to physical constraints or wind direction, a linear path

or a diamond trajectory allows to avoid the dead zone of the
wind so as to obtain a smoother control of the sailboat.

If sailboats follow a linear trajectory, the following notations
are defined:
• θ∗i = ÂB is the default sailboat heading, allowing to

follow the line AB.
• Vi = vi cos (θ∗i − θi) is the projection of the velocity of

sailboat i on the line AB. In the same way, take V̇i =
v̇i cos (θ∗i − θi).

• ei = det
(

B−A
‖B−A‖ , pi −A

)
is the distance of the boat to

the line AB.
• qi is the tack variable.

The distance dij between sailboat i and j can be evaluated as

dij = d̄ij

∣∣∣cos
(

ÎJ− ÂB
)∣∣∣ , (9)

where ÎJ is the angle between sailboat i and j, and d̄ij =√
(xi − xj)2

+ (yi − yj)2.

Figure 2: Top: Parameters for platooning with a linear path.
Bottom: Parameters for platooning with a linear path..

These notations are illustrated in Figure 2 and are to be used
in Section IV-A and IV-B to define the desired acceleration and
heading.

B. Circular platooning

In a classic closed-loop platooning, turning around a circle
is possible for a land vehicle, a plane or a drone, because the
vehicle’s velocity is independent of its orientation. In case of
sailboats, wind direction creates a dead zone where boats can
not move easily. Defining a diamond route allows sailboats to
avoid dead area, but here we propose a method to follow a
circular path.

If sailboats follow a circular trajectory, the following nota-
tions are defined:
• αi = angle (xi − xc + 1i (yi − yc)) is the angle of sail-

boat i around the circle C (pc, R).
• s is the direction of the rotation of sailboats around the

circle (s = 1 for the trigonometric direction, s = −1 for
clockwise).

• θ∗i = αi + π
2 s is the default sailboat heading, allowing to

follow the circular path.

• Ri =

√
(xi − xc)2

+ (yi − yc)2 is the distance between
the center pc of the circle C (pc, R) and the sailboat i.

• Vi = vi cos (θ∗i − θi) R
Ri

is the angular velocity of sail-
boat i around the circle C (pc, R). In the same way, take
V̇i = v̇i cos (θ∗i − θi) R

Ri
.

• ei = Ri − R is the distance of the boat to the circle
C (pc, R).

• qi is the tack variable.
The distance dij between sailboat i and j can be evaluated as

dij = RÎJ, (10)
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where

ÎJ = arcsin (s sin (αi − αj)) If s sin (αi − αj) > 0,

ÎJ = 2π − arcsin (sin (s (αi − αj))) else.

IV. PLATOONING CONTROL

To reach and maintain the desired distance d∗ij between
sailboats i and j, a control of sailboats velocity/acceleration is
required. Since wind is the propulsion force for a sailboat, the
sailboat’s speed is proportional to the wind speed. A sailboat
can not navigate inside the dead zone Ωd(t) where it is upwind,
i.e. against the wind direction. Thus, due to the unpredictable
nature of the wind, the control of sailboat position/velocity
is difficult or impossible in some scenarios. Theoretically,
sailboat acceleration can be managed using the sail with a
method like sail control exposed in [29]. However, maximal
sailboat deceleration using the sail angle is very limited and
it is not enough to perform a platooning.

Nevertheless, if the velocity/acceleration can not be tuned,
a control of an average velocity/acceleration in a particular
direction, i.e. a projection of the velocity Vi/acceleration V̇i
on the reference path, is possible. To obtain this result, a
solution is to make tacking inside a corridor, like in Filippov’s
continuation method [28].

In Section IV-A, the desired acceleration to reach a platoon-
ing is first described. Tack strategies to regulate sailboat ve-
locity/acceleration using this desired acceleration are exposed
in Section IV-B.

A. Desired acceleration

Since the behavior of the generic dynamics of a sailboat is
complex and the values of its dynamic parameters are hard
to obtain, a simplified model for the sailboat dynamics is
considered to study the platooning problem:

MiV̇i = ui, (11)

where Mi is the sailboat mass, ui is the platooning control
input. This simplification is feasible because the projected
distance/acceleration dij /V̇i on the axis AB or circle C(pc, R)
is considered here, and not the true distance/acceleration
d̄ij /v̇i. Indeed, one can have Vi = 0 with vi = vmax if
θi = θ∗i + π

2 . Thus, the convergence of the heading θi in
the general dynamics (1) to the desired heading θ̄i evaluated
in Section IV-B guarantees the connection between (1) and
(11), as shown in Appendix IX.

The projected distance dij is targeted to converge to the
desired distance d∗ij = ViT

∗+dsecu as exposed in Section II-C.
Thus the sailboat adjusts its dynamics following the control
input

ui= −kv,i (Vi − Vj) + kp
(
dij − d∗ij

)
, (12)

where kv,i = Mi

T∗ and kp > 0 are the designed parameters.
To obtain an optimal convergence and stability, it is advised
to choose kp close to kp = M

2 where M = maxi=1...N (Mi).
Convergence of (11) using (12) is studied in Appendix VIII-A.

Remark: Only one neighbour is considered in this method
to better manage the security distance and collision avoidance
with the sailboat in the front.

Based on (11) and (12), one can define the desired acceler-
ation of the sailboat v̇∗i :

V̇ ∗i =
1

Mi

(
−kv,i (Vi − Vj) + kp

(
dij − d∗ij

))
, (13)

The desired acceleration V̇ ∗i will be used in Section IV-B
to control the sailboat heading, and so the projection of its
velocity Vi.

Leader in the open-loop path: If sailboats follow a close-
loop path, S1 follows SN . Else, as explained in Section˜II-C,
S1 follows a virtual leader of velocity v0 and its control
becomes

u1 = −kv,i (V1 − v0) . (14)

B. Heading control

1) Main direction: To control the sailboat velocity, an
usual method is to force the sailboat to make tack inside
a corridor. By making tack, the boat moves at an average
velocity Vi as required to perform the platooning. Figure 3
and Figure 4 show sailboat inside a corridor of width 2rsecu.
At the time instant t, if the desired acceleration V̇ ∗i is
negative, i.e. sailboat i needs to slow down, it makes tacking
following orientation θ̄i = θ∗i + qiγi, where γi ∈

[
0, π2

]
and

qi ∈ {−1, 1}, thus Vi = vi cos
(
θ̄i − θ∗i

)
= vi cos (γi) if the

reference path is a line, Vi = vi cos (γi)
R
Ri

if the reference
path is a circle. Variable γi is taken inside

[
0, π2

]
to avoid

the sailboat to turn back, so Vi ≥ 0. The tack variable qi
allows to alternate the tack when the sailboat reaches the
limit of the corridor, as illustrated in Figure 3. As classic
works on sailboats, a tacking strategy to move upwind is
also defined, such θ̄i can not be chosen inside the dead zone
[ψ + π − δ, ψ + π + δ]. The upwind tack strategy is to be
described in the following subsection IV-B2.

2) Upwind tack strategy: If the course θ∗/θ̄ corresponds to
a direction too close to the wind, a zigzag trajectory, namely
upwind tack strategy, is used to move upwind while staying
inside a corridor. This method defines the optimal heading to
move upwind with the maximum velocity.

Contrary to classic tack strategies like in [10, 12, 23], here
sailboats can not turn back to avoid collision with the sailboat
behind. Thus, there exists case where only one hauled angle
is possible between ψ + π − δ and ψ + π + δ for not turning
back, i.e. in area 1 and area 3 as exposed in Figure 4 in
Section IV-B. Nevertheless, when the sailboat needs to slow
down, it might conflict between the upwind tack strategy and
the desired heading θ̄i. Since the first priority is to avoid
collision with other sailboats, the strategy to slow down will
takes the priority over the upwind strategy.

To implement this strategy, the condition c0 (i) is defined to
be false if sailboat needs to slow down. While c0 (i) is false,
the upwind tack strategy will not be used. The detailed steps
for the upwind tack strategy are described as Algorithm 1.
This tack strategy is used to define the heading control.

3) Acceleration strategy for circular platooning: If
sailboats are turning around a circular path, an approach to
narrow the distance between sailboats faster can be proposed.
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Algorithm 1 Upwind tack strategy

Require: wi ∈ {−1, 1} the upwind tack angle variable.
1: if c0 (i) is true and the desired angle θ̄i is inside the dead

zone, then define a transitional variable θ̃i to indicate in
which side of the corridor the sailboat desires to go:

If (c0 (i) = True) &
(
cos
(
ψtw − θ̄i

)
+ cos (δ) < 0

)
Put θ̃i = θ∗i + qi

π

2
. (15)

2: The closest hauled angle is chosen as the new desired
angle θ̄i:

3: if
(

cos
(
ψtw + π + δ − θ̃

)
< cos

(
ψtw + π − δ − θ̃i

))
then wi = −1

4: else wi = 1

5: Take θ̄ = ψtw + π + wiδ
6: if θ̄i indices sailboat has to go back then the other hauled

angle is taken:
If cos

(
θ∗i − θ̄i

)
< 0

θ̄i = ψtw + π − wiδ. (16)

Figure 3: Left: tack to move front the wind (red arrow). Right:
tack to slow down and take distance between the two sailboats.

For that, the corridor is cut into two corridors Cint and
Cext where sailboat i is inside Cint if Ri ∈ [Rint, R] and
sailboat i is inside Cext if Ri ∈ [R, Rext]. Since the angular
velocity Vi is larger for the same velocity vi when sailboat i
is close to the center of the circle pc, sailboat will move in
Cint by taking the tangential trajectory of C (pint, Rint) if
the sailboat needs to speed up while inside Cext. However,
its strategy is not used if the sailboat is navigated upwind
to avoid making tacks which slow down the sailboat during
maneuver, i.e. it is never used when the sailboat is in Zone 4.
Moreover, to obtain a smoother behavior, define Tmax where
Tmax > T ∗ be the constant maximal time headway, where
the acceleration strategy is used only if the time that the i-th
sailboat takes to arrive at the position of its predecessor is
larger than Tmax.

4) Heading control algorithm: The heading control is de-
scribed by the Algorithm 2. The values of θ∗i , ei, Vi and qi
are the ones defined in Section III-A and Section III-B.

Note that this approach does not require the knowledge of
sailboat dynamic parameters, thus it can be adapt to different
models of sailboats.

V. LOW LEVEL CONTROL

A. Rudder angle

In most work, see [10, 12], the rudder angle is computed
using the heading θ. However, due to the action of the
wind and the wave, the true course of the sailboat following

Algorithm 2 Heading control algorithm

Require: ε > 0 design parameter, s̄ = s if a circular path is
follow, s̄ = 1 else.

c1 (i) = (cos (π − δ) < cos (αi − ψtw) < cos (δ))

& (sin (αi − ψtw) s > 0) (17)

is the condition to indicate if sailboat i is inside the
Zone 4.

1: procedure
2: Evaluate V̇ ∗i using (13).
3: if V̇ ∗i < 0 then take c0(i) = False and the sail angle

δs = −sign (ψaw) min [|π − ψaw| , δs,max] . (18)

4: else c0 (i) = True and choose δs using (28).
5: if |ei| > rsecu, the sailboat is outside the corridor.

then take a heading to back inside:

qi = s̄sign (ei) , (19)

θ̄i = θ∗i +
π

2 + ε
qi. (20)

6: else
7: if V̇ ∗i < 0 sailboat i needs to slow down. then one

take

γi = min

π
2
, acos

sat1

∣∣∣∣∣∣
max

(
V̇ ∗i , 0

)
max (v̇i, ε)

∣∣∣∣∣∣
 , (21)

θ̄i = θ∗i + γiqi. (22)

8: else sailboat i needs to reduce the gap with its
neigbhours. Consider the two cases:

9: if ViTmax > dij − dsecu or the reference path
is a line then take the default path θ̄i = θ∗i .

10: else, i.e. if ViTmax < dij − dsecu and the
reference path is a circle, sailboat if far from its target.
Thus, acceleration strategy for circular platooning is used

If
(
Vi <

dij − dsecu
Tmax

)
& (Ri > R− 0.8rsecu)

& (c1 (i) = False) :

γi = acos
(
Rint
Ri

)
qi = s, (23)

θ̄i = θ∗i + γiqi, (24)
Else θ̄i = θ∗i . (25)

11: Upwind tack strategy described in Section IV-B2 is
employed.

φ is often different to its theoretical course following the
heading θ, see [26]. This discrepancy is mainly observed when
sailing close-hauled, where wind drifts the sailboat from a
line it follows. Thus, combining ideas from [26] and [12], the
following rudder control uses the course angle to compensate
the perturbations:

δr = δr,max sin
(
Θ− θ̄

)
if cos

(
Θ− θ̄

)
≥ 0, (26)

δr = δr,maxsign
(
sin
(
Θ− θ̄

))
else. (27)
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Figure 4: Platooning circle. In orange, the possible heading
if sailboat must not to go upwind and not go back. Zone 1,2,3
and 4 are based on the hauled angle ψ + π − δ and ψ + π +
δ. Zone 4 (in pink) is the area with the least possibility to
manoeuvre.

where θ̄ is the desired heading, Θ = φ if cos (θ − φ) −
cos (εθ) ≥ 0 with εθ ∈

[
0, π2

]
as the design parameter angle,

Θ = θ else.

B. Sail angle

Sailboats are vehicles which require a considerable velocity
to be controlled, that is why usual techniques tune sails so as
to obtaining the optimal velocity and acceleration. An optimal
sail angle based on the sailing diagram presented in [12, 10] is
proposed. The optimal sail angle is modified to be independent
of the desired heading θ̄ to be more stable. It can be defined
as

δopts =
π

2

(
cos (ψaw) + 1

2

)
. (28)

Since the sail cannot hold against the wind, the sail opening δs
cannot exceed a certain angle. This condition can be expressed
as

δs ∈ −sign (ψaw) ∗ [0, δs,M ] , (29)

where δs,M = min (|π − |ψaw|| , δs,max), with δs,max the
maximal sail opening defined by the physical constraint.

Thus, using δopts , δs,max and δs,M , one takes if V̇ ∗i > 0

δs = −sign (ψaw) min
[∣∣δopts

∣∣ , δs,M , ] , (30)

and takes if V̇ ∗i < 0

δs = −sign (ψaw) δs,M . (31)

This technique is simple to implement with a smaller calcu-
lation time. Moreover, this strategy does not require knowledge
of the dynamic parameters to be implemented. However, this
technique can not allow to control the sailboat velocity.

VI. SIMULATIONS

A. Simulated dynamic model
Based on [18], sailboats are represented in the simulations

by the following non-linear differential state equations:

ẋ = v cos (θ)− w sin (θ) , (32)
ẏ = v sin (θ) + w cos (θ) , (33)

θ̇ = ω, (34)
p9v̇ = gs sin (δs)− grvp11 sin (δr)− p2v |v|

+ p1a
2
tw cos (ψtw − θ) , (35)

p9ẇ = −grup11 cos (δr)− p2w |w|+ p1a
2
tw sin (ψtw − θ) ,

(36)
p10ω̇ = gs (p6 − p7 cos (δs))− grvp8 cos (δr)− p3ωv, (37)

where gs, grv and gru are forces on the sail and the rudder

grv = p5v
2 sin (δr) , (38)

grw = p5w |w| cos (δr) , (39)
gs = p4aaw sin (δs − ψaw) , (40)

where aaw, ψaw and atw, ψtw are the apparent wind and the
true wind described in section II-B. Terms p1a

2
tw represents the

wind force on the hull. Consider here the keel compensates
forces of the sail on u. Tangential and the angular friction
forces are described by p2v

2 and p3ωv, respectively. All
parameters pi,1, i.e paramters pi,1 associated to sailboat 1
can be found in Table II. Parameters pi,j associated to other
sailboat j j ∈ N are randomly generated using pi,1 such
pi,j = (1 + 0.1randn(1))pi,1. Remark since parameters
p1, . . . , p11 are difficult to obtain, the strategies proposed in
previous sections do not require them.

B. Parameters
To evaluate performance of the proposed algorithms, sim-

ulations are performed. Consider N = 8 identical sailboats,
where parameters of the simulated sailboat are expressed
in Table II, Mi = p9, Ci = p2 and vmax = 5. Take
dsecu = Mi

Ci
vmax+p7+p8, rsecu = Mi

Ci
vmax. Take the maximal

angle δ = π
4 , δr,max = π

4 and δs,max = π
2 . Take a duration

of T = 250 s, T ∗ is to be specified in each simulation. The
wind direction and strength are ψtw = π

2 + π
2 sin(π2 t/50) and

atw = 10+2 sin(π2 t/50). The discrepancy between the desired
distance d∗ij and the current distance dij between sailboats i
and j is expressed in Figure 5 and Figure 6 such

D = 100
∣∣dij − d∗ij∣∣ /d∗ij . (41)

When D = 0, the headway time T ∗ or the security distance
dsecu is respected between sailboats i and j.

Two cases are compared in this section for the circular path:
Case 1: the optimal receding horizon control (RHC) algo-

rithm studied in [13] for nonlinear vehicles. The algorithm
is used to evaluate ui = [δs,i, δr,i] such sailboats converge
to the platooning position and velocity. The dynamics model
described by (32)-(37) is used inside the optimization loop. As
method is developed for 1-dimensional space, projection of pi,
vi, v̇i on circular path is considered to perform it. Constraints
ui ∈ [[−π2 ,

π
2 ]× [−π4 ,

π
4 ]] and Pi inside the corridor are taken.

Case 2: heading control platooning described in Section 4.2
and the tack strategy in Section 3.1 is used.
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parameter value parameter value parameter value

p1 drift coefficient 0.03 p5[kgs−1] rudder lift 1500 p9[kg] mass of boat 300

p2[kgs−1] tangential friction 40 p6[m] distance to sail 0.5 p10[kgm2] moment of inertia 400

p3[kgm] angular friction 6000 p7[m] distance to mast 0.5 p11− rudder break coefficient 0.2

p4[kgs−1] sail lift 200 p8[m] distance to rudder 2

Table II: Model parameters value, from [18]

Figure 5: Platooning with a linear path.. sailboat’s 1, 2, ..., 8
trajectories are colors {red, blue, green, black, magenta, cyan,
khaki, brown}. T ∗ = 40.

C. Simulation with linear path
Platooning with a linear path is simulated using A =

[−433, −250]
T , B = [433, 250]

T , so ÂB = π
6 . Ini-

tial positions of sailboats are Pi = (500− dsecu (i− 1)) ∗
[− cos (AB) , − sin (AB)].

The sailboat trajectories can be observed in Figure 6.
Sailboats make a large number of tacks at the beginning of the
simulation to slow down: they are waiting the sailboat in the
front to gain distance before being able to speed up. One by
one, they leave the initial pack while maintaining the desired
distance between them. In Figure 5, since a perfect control of
sailboat velocity/position cannot be obtained as explained in
Section IV, the error is oscillating around zero and not always
converge. However, one can observer dij−d∗ij is close to zero
in most of the time, thus the headway time T ∗ and/or the
security is respected among all sailboats.

D. Simulation with circular path
Platooning with a circular path is simulated using Rint =

N
2π (max (dsecu, T

∗) + p7 + p8), R = Rint + rsecu, Rext =

R + rsecu and pc = [0, 0]
T . Initial positions of sailboats are

Pi = (R+ 5) ∗
[
cos
(

2π
N i
)
, sin

(
2π
N i
)]

. Rotation direction is
s = 1.

Results of Case 1 are presented in Figure 6(a) and results of
Case 2 are presented in Figure 6(b). In Figure 6(a), the nearly
circular trajectories performed by sailboats show the RHC
method uses sail opening to regulate sailboats velocity and to
maintain the desired distance between boats. However, several
points make this method difficult to implement in practice.
First, this method requires the knowledge of the dynamic
model of the vehicle, perfectly known here but difficult to
obtain in real cases. Second, the control of the sail opening
requires several seconds on a real boat, where it is supposed to
be instantaneous here, making it impossible to obtain a control
of sailboat velocity using sail as accurate as in the simulation.
Finally, the optimization process used in this method requires
a long processing time, which makes it difficult to implement
without a performer processor in embedded system.

In Figure 6(b), a large number of tacks in sailboats trajecto-
ries is observed to regulate boats velocity. Distance errors are
close to ones obtain using the RHC optimization. However,
this method does not require knowledge of sailboat dynamics
with a much lower processing time, making it simpler to
implement than optimization methods like in Case 1.

VII. CONCLUSION

In this paper, a platooning control with a constant time head-
way for sailboats has been defined. Problems of platooning
following a linear and a circular path for sailboats are also
studied. For that, a desired acceleration of the sailboat to obtain
a platooning is exposed, and a tack strategy to regulate sailboat
velocity has been described to follow its desired acceleration.
Proof for the convergence of the desired distance between
sailboats has been provided. A second tack strategy to move
upwind has been described, and its compatibility with the first
strategy has been studied. Simulation results demonstrate the
effectiveness of the approach.

In future work, this method will be implemented on a real
autonomous sailboat fleet to test its effectiveness. Moreover, a
more robust control will be designed for the unspecific sailboat
parameters, and the management of communications, like
reduce number of exchange using event-triggered approach,
will also be considered.
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(c)

Figure 6: Platooning with a circular path. (a) RHC opti-
mization algorithm. (b) heading control. (c) comparison of
distance errors: the platooning with circular path’s error in
orange, RHC optimization’s error in grey and shared error
in purple. Desired headway time T ∗ = 40. Colors line are
sailboat trajectories in top, and corresponding color in bottom
are associated performance. sailboat’s 1, 2, ..., 8 trajectories are
colors {red, blue, green, black, magenta, cyan, khaki, brown}.

VIII. APPENDIX

A. Proof of convergence
Two cases are considered at first. If sailboats follow a close-

loop path, S1 follows SN . If sailboats follow an open path,
S1 is defined as leader and its control becomes

MiV̇i = −kv,i (Vi − v0) , (42)

where (42) can be solved to obtain Vi (t) = Vi (0) e
− Mi
kv,i

t
+(

1− e−
Mi
kv,i

t
)
v0. One deduce the sailboat 1 velocity con-

verges to the desired velocity v0. Consider now the followers
: let define I = 1 if sailboats follow a close-loop path or
without leader, I = 2 if sailboats follow S1 as a leader.

Consider now the others sailboats. A Lyapunov function
V = 1

2

∑N
i=1Mi

(
dij − d∗ij

)2
is defined. The derivative of V

is

V̇ =

N∑
i=I

Mi

(
dij − d∗ij

) (
ḋij − ḋ∗ij

)
, (43)

where ḋij = Vj − Vi and ḋ∗ij = V̇iT
∗, thus V̇ =(

dij − d∗ij
) (
Mi (Vj − Vi)−MiV̇iT

∗
)

. Using (12), one gets

V̇ =

N∑
i=I

(
dij − d∗ij

)
(Mi (Vj − Vi) + T ∗kv,i (Vi − Vj)

−T ∗kp
(
dij − d∗ij

))
(44)

= −T ∗kp
N∑
i=1

(
dij − d∗ij

)2
+

N∑
i=1

(
dij − d∗ij

)
(Vj − Vi)

(Mi − T ∗kv,i) , (45)

and since kv,i = Mi

T∗ , one has V̇ = −T ∗kp
∑N
i=I

(
dij − d∗ij

)2
,

thus V̇ ≤ −T ∗kp
∑N
i=I

Mi

M

(
dij − d∗ij

)2
where M =

maxi=1...N (Mi) and so

V̇ ≤ −2T ∗kp
M

V. (46)

which is always negative. Define the function U such
U̇ = −

(
2T∗kp
M

)
U and U (0) = V (0). One gets U (t) =

V (0) e
−
(

2T∗kp
M

)
t. Using the comparison theorem in [11], one

obtains V (t) ≤ V (0) e−
2T∗kp
M t. Thus, V ≥ 0, V̇ ≤ 0 and

V converges to zero. Using the Lyapunov theorem, dij (t)
converges to d∗ij when t → ∞ if the desired values V̇ ∗i are
respected by sailboats. Note Mi must be known exactly by
Agent i for guaranteeing the stability of the sailboat while M
can be chosen such be larger than the sailboat mass so as to
guarantee the stability.

To synchronize leader and follows convergence, (42) and
(46) need to converge at the same velocity. Thus, to have
Mi

kv,i
=

2T∗kp
M and since kv,i = Mi

T∗ , one gets kp = M
2 . Thus, it

is advised to choose kp = M
2 to obtain an optimal convergence

and stability.

B. Turning distance

d
(1)
secu is to be studied. For the sailboat i may turn to

avoid the sailboat j in the front, li, Lj , and rr,i must be
considered. If sailboat moves out of the corridor while it tries
to avoid its predecessor, or to move upwind, the sailboat must
be able to perform a minimum of two tacks. Thus, it will
perform three rotations of π

2 . Using Dubins approach [8], it
requires a distance of 3rr,i. Finally, since sailboats inside the
fleet are heterogeneous, the bigger turning angle rr,i must be
considered. Thus, let define the first condition d(1)

secu on dsecu
such

d(1)
secu = 3 max

i=1:N
(rr,i) + max

i=1:N
(li) + max

i=1:N
(Li) . (47)

C. Stopping distance

As exposed in (1) the dynamics of a sailboat can be
summarized as Miv̇ = τf + τr + τs + τw. Since a sailboat can
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stop only when the wind is not behind, consider the sailboat in
this configuration, so τw ≤ 0. When the sailboat tries to slow
down, let δs = π − ψaw as chosen in (18) in Section IV-B
such that sail cannot help the sailboat to move forward, so
τs ≤ 0. Finally, action of rudder is always in opposition to the
movement of the sailboat, thus τr ≤ 0. Then, to evaluate the
stopping distance, considering the worst-case dynamics of the
sailboat

Miv̇ = τf . (48)

The friction force τf is to be described as follows. When
the sailboat velocity is low (v < 5m/s), one has τ lowf = −Civ
where Ci is the friction coefficient, a function of the shape
of the sailboat and the fluid density. Else, when the sailboat
velocity is large, one has τ largef = −Civ2. Again, since∣∣∣τ largef

∣∣∣ > ∣∣∣τ lowf ∣∣∣ when the velocity is large and the worse
case for the stopping distance is considered, take τf = τ lowf .
Thus

Miv̇ = −Civ ⇔ v̇ = − Ci
Mi

v. (49)

Solve (49), one has v = βe
−
kx,i
Mi

t with β a constant. Using
initial condition, one gets

v (t) = v (0) e
− Ci
Mi

t
. (50)

By integrating (50), one obtains the stopping

d (t) = −Mi

Ci
v (0) e

− Ci
Mi

t
+ γ. (51)

Using initial condition d (0) = 0 , one has γ = Mi

Ci
v (0), so

d (t) =
Mi

Ci
v (0)

(
1− e−

Ci
Mi

t
)
, (52)

which converges to d (t) = Mi

Ci
v (0) when t → ∞. Taking

v (0) = vmax and adding the length of the sailboat to avoid
collision, one gets dsecu,i = Mi

Ci
vmax + li+Li for a sailboat i.

dsecu is the biggest distance dsecu,i between all sailboats in
the fleet.

IX. PROOF OF STABILITY AND CONVERGENCE OF
CONTROL ORIENTATION

In this Appendix, the orientation θi is to converge to the
desired orientation θ̄.

A. Sailboat dynamics model
As exposed in (2), a general nonlinear dynamic model of

a sailboat rotation can be expressed as Jφ̈ = Cr + Cs +
Ck + Ch. In particular, one may write Cr ≈ −βv2 sin (2δr)
where δr is the rudder angle, v the sailboat velocity, and β >
0 a constant based on sailboat shape, water density, lift and
drag coefficients. Knowledge of J, Cs, Ck, Ch and β are not
required for implementing the following proof.

B. Proof of stability
Define ω = φ̇. The desired rotation velocity ω̄ and desired

rotation acceleration ˙̄ω are chosen such ω̄ = ω − sin
(
Θ− θ̄

)
and ˙̄ω = 0. Thus, one can deduce

ω − ω̄ = sin
(
Θ− θ̄

)
. (53)

Note ˙̄ω tries to make ω̇ to converge to zero and ω̄ tries to make
ω to converge to zero when the sailboat reaches the desired
orientation.

Define the Lyapunov function V such

V =
1

2
J (ω − ω̄)

2

(
1− 1

1 + ln
(
2− cos

(
Θ− θ̄

))) , (54)

and put W = 1− 1

1+ln(2−cos(Θ−θ̄))
such W ≥ 0 and W = 0

when Θ − θ̄ = 0. Remark V has been chosen such V = 0
when Θ = θ̄ and decreases when Θ converges to θ̄.

The derivative of V is

V̇ = (ω − ω̄) J (ω̇ − ˙̄ω)W +
1

2
J (ω − ω̄)

2
dW, (55)

with

dW = −
−
(

sin(Θ−θ̄)(ω−ω̄)

2−cos(Θ−θ̄)

)
(
1 + ln

(
2− cos

(
Θ− θ̄

)))2 (56)

= −
sin
(
Θ− θ̄

)
(ω − ω̄)(

2− cos
(
Θ− θ̄

)) (
1 + ln

(
2− cos

(
Θ− θ̄

)))2 .
(57)

Using (53), one has

dW = −
sin
(
Θ− θ̄

)2(
2− cos

(
Θ− θ̄

)) (
1 + ln

(
2− cos

(
Θ− θ̄

)))2 ≤ 0

(58)

Thus
V̇ ≤ (ω − ω̄) Jφ̈W. (59)

Using (2), (53) and put Sτ = Cs + Ck + Ch, one gets

V̇ = sin
(
Θ− θ̄

)
(Cr + Sτ )W (60)

Since the sailor can only use the rudder to control sail-
boat orientation and rudder action is restricted by |Cr| ≤
βv2 sin (δr,max). If |Cr| ≤ |Sτ | with sgn (Cr) 6= sgn (Sτ ),
then the sailboat orientation is uncontrollable. Then, suppose
we are in a case where the sailboat is controllable, so
sgn (τr) = sgn (Sr) or |Cr| > |Sτ |. Thus, one may write
Cr + Sτ = αsgn (τr) where α > 0 (case α = 0 induce
Cr + Sτ = 0, so sailboat is uncontrollable too. Note if
Cr + Sτ = 0, one has V̇ = 1

2J (ω − ω̄)
2
dW ≤ 0). Define

also αmin the smallest value of α such Cr + Sτ = αsgn (Cr)
with sgn (Cr) 6= sgn (Sτ ), i.e. αmin = min (α) ∀ (Cr, Sτ ) 6=
{0, 0} and sgn (Cr) 6= sgn (Sτ ). One gets

V̇ ≤ sin
(
Θ− θ̄

)
αsgn (Cr)W

≤ sin
(
Θ− θ̄

)
αsgn

(
−βv2 sin (2δr)

)
W

≤ −α sin
(
Θ− θ̄

)
sgn (sin (δr) cos (δr))W. (61)

Remind δr ∈ [−δr,max, δr,max] where 0 < δr,max <
π
2 , thus

cos (δr) ≥ 0. Put S =
∣∣sin (Θ− θ̄)∣∣ if cos

(
Θ− θ̄

)
≥ 0 and

S = 1 else. Using (26)-(27), one gets

V̇ ≤ −α sin
(
Θ− θ̄

)
sgn
(
sin
(
δr,maxSsgn

(
sin
(
Θ− θ̄

))))
W

≤ −α sin
(
Θ− θ̄

)
sgn
(
sin
(
Θ− θ̄

))
W

≤ −α
∣∣sin (Θ− θ̄)∣∣W ≤ 0. (62)

Thus, V ≥ 0 and V̇ ≤ 0. Using the Lyapunov theorem, one
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deduces the rudder control (26)-(27) allows a stable control in
orientation and rotation velocity if the sailboat orientation is
controllable by the rudder.

C. Proof of convergence

Let now show the convergence of V . Using (62), one has

V̇ ≤ −
∣∣sin (Θ− θ̄)∣∣ (2α

J

)(
1

2
JW

(ω − ω̄)
2

(ω − ω̄)
2

)
, (63)

and since ω − ω̄ = sin
(
Θ− θ̄

)
, one has

V̇ ≤ −
∣∣sin (Θ− θ̄)∣∣ (2α

J

)(
1

2
JW

(ω − ω̄)
2

sin
(
Θ− θ̄

)2
)

≤ −
(

2α

J

)(
1

2
JW

(ω − ω̄)
2∣∣sin (Θ− θ̄)∣∣
)
≤ −

(
2αmin

J

)
V.

(64)

Let define the function U such U̇ = −
(

2αmin

J

)
U and

U (0) = V (0). One shows than U (t) = V (0) e−( 2αmin
J )t.

Using the comparison theorem in [11], one has V (t) ≤ U (t),
so

V (t) ≤ V (0) e−( 2αmin
J )t. (65)

From (65), one may deduce limt→∞ V (t) =

limt→∞ V (0) e−( 2αmin
J )t = 0. So, V (t) converges to zero.

Since V = 1
2J (ω − ω̄)

2

(
1− 1

1+ln(2−cos(Θ−θ̄))

)
, V (t) = 0

induce (a) (ω − ω̄) = 0 or (b)
(

1− 1

1+ln(2−cos(Θ−θ̄))

)
= 0.

Let study the two solutions. If (b):

1− 1

1 + ln
(
2− cos

(
Θ− θ̄

)) = 0

2− cos
(
Θ− θ̄

)
= 1⇔ Θ = θ̄. (66)

If (b): (ω − ω̄) = 0, one has (ω − ω̄) = 0⇔ sin
(
Θ− θ̄

)
=

0 ⇔ Θ = θ̄. In both cases, one has Θ = θ̄, which indicates
that the rudder control (26)-(27) allows Θ to converge to the
desired value θ̄.

X. PROOF OF CONVERGENCE SAILBOATS TO PLATOONING

In Appendix VIII-A, one shows that global system con-
verges to a stable platooning if the desired value V̇ ∗i is
respected. Since V̇i = v̇i cos(θ̄i− θ∗i ) = v̇i cos(qiγi) and (21),
one has V̇i = V̇ ∗i if θi has converged to θ̄.

In Appendix IX, one shows that rudder control allows θi to
converge to θ̄.

Combining these two proofs, since V̇i guarantees a stable
convergence to the platooning and rudder guarantee a stable
convergence from V̇i to V̇ ∗i , that the control is stable and the
platooning tracking error converges to zero.

Note that in order to avoid disturbance propagation inside
the platooning, the convergence of the control of direction
must be faster than the platooning convergence studied in
Appendix VIII-B. Thus, (46) is supposed to decrease slower
than (65), which induces 2αmin

Ji
≥ 2T∗kp

Mi
. Studying it, one

obtains the condition kp ≤ Miαmin

T∗Ji
. However, since αmin is

not simple to evaluate or measure, condition on kp cannot be

used easily and a further study of this problem will be included
in future work.
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