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Abstract 

Objective: Accurate and timely identification of existing audible medical alarms is not adequate 

in clinical settings. New alarms that are easily heard, quickly identifiable, and discernable from 

one another are indicated.  The “auditory icons” (brief sounds that serve as metaphors for the 

events they represent) have been proposed as a replacement to current international standard. 

The objective was to identify the best performing icons based on audibility and performance in a 

simulated clinical environment. 

Design: Three sets of icon alarms were designed using empirical methods. Subjects 

participated in a series of clinical simulation experiments that examined the audibility, 

identification accuracy, and response time of each of these icon alarms. A statistical model that 

combined the outcomes was used to rank the alarms in overall efficacy. We constructed the 

“best” and “worst” performing sets based on this ranking and prospectively validated these sets 

in a subsequent experiment with a new sample.  

Setting: Experiments were conducted in simulated ICU settings at the University of Miami. 

Subjects: Medical trainees were recruited from a convenience sample of nursing students and 

anesthesia residents at the institution.  

Interventions: In Experiment 1 (formative testing), subjects were exposed to one of three sets 

of alarms; identical setting and instruments were used throughout. In Experiment 2 (summative 

testing), subjects were exposed to one of two sets of alarms, assembled from the best and 

worst performing alarms from Experiment 1.   

Measurements and Main Results: For each alarm we determined the minimum sound level to 

reach audibility threshold in the presence of background clinical noise, identification accuracy 

(percentage), and response time (seconds). We enrolled 123 medical trainees and 

professionals for participation (78 with less than 6 years of training). We identified the best 
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performing icon alarms for each category, which matched or exceeded the other candidate 

alarms in identification accuracy and response time.  

Conclusions: We propose a set of 8 auditory icon alarms that were selected through formative 

testing and validated through summative testing for adoption by relevant regulatory bodies and 

medical device manufacturers.   
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Introduction 

Audible medical alarms are essential for monitoring patient vital signs by alerting care-

givers to potentially adverse events. However, poorly designed or ineffective alarms largely 

contribute to the development of alarm fatigue, a phenomenon that has received renewed 

scrutiny in patient safety research since a 2011 summit hosted by the Association for the 

Advancement of Medical Instrumentation (AAMI) and attended by representatives from the Joint 

Commission, the National Institutes of Standards and Technology, and the Food and Drug 

Administration. The current standard, specified by the International Electrotechnical 

Commission and International Standards Organization in IEC/ISO 60601-1-8 (1) – or simply 

“IEC alarms”, comprise melodic sequences of 3 to 5 musical notes. This standard was 

implemented in 2003 without any validation testing (2). Since then, a large body of literature has 

accumulated, demonstrating that IEC alarms are not efficacious in terms of learnability, 

discernibility, and discriminability,(3-14)  and that  development of new standard is indicated. 

The ISO Joint Working Group on Alarm Systems has been charged with  the 

commissioning, monitoring, and reporting of work to overhaul current alarm standards with the 

goal of creating and testing a novel class of alarms known as “auditory icons” (15-17). Auditory 

icons are sonic metaphors for the event they represent; for example, the auditory icon for 

deletion of a computer file is often the sound of crumpling paper. Icons are nearly immediately 

discernable, quickly learnable, and easily discriminable. Compared to IEC alarms, icon alarms 

were shown to be superior in terms of recognizability and localizability in a laboratory setting 

(15), and in terms of response time, identification accuracy, and perceptual effort and fatigue in 

a clinical simulator (17).  

The AAMI Medical Device Alarms Committee serves as a mirror committee for the 

IEC/ISO joint working group on alarm systems. This committee has accepted the rationale and 
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evidence supporting icons as the preeminent replacement. However, previous studies on 

auditory icon alarms were not conclusive on several issues. First, they did not include auditory 

background noise, which is an important factor since it is known to partially mask IEC alarms 

(18)  and contributes to distraction, especially during periods of high-risk (19). Additionally, 

those studies used a subject pool not represented by nurses, who are at the ‘front-line’ of alarm 

exposure while monitoring patients in critical care settings. Finally, those studies evaluated only 

one example icon alarm for each of the eight alarm categories. We therefore sought to 

investigate the remaining formative aspects surrounding icon alarm testing in a series of 

controlled experiments performed using high-fidelity clinical simulation. In a final summative 

evaluation, a ‘top-performing’ set of Icon alarms is identified to recommend as a new 

international standard.   

Materials and Methods 

Overview 

This study was approved by the institutional review boards at the University of Miami and 

Jackson Memorial Hospital. Thirty-eight icon alarms were evaluated in two experiments (Figure 

1) that in total involved 123 participants with nursing or medical background (see Table 1 in the 

Supplemental Digital Content). An incentive of $30 was offered to each subject for participation. 

In Experiment 1, 3 sets of 10 icon alarms were studied using nursing students, certified nurse 

anesthetists, medical students in the 3rd or 4th year of training, and clinical Anesthesiology 

residents as subjects (n = 58) who were block randomized into one of the 3 icon groups. 

Audibility of icon alarms was measured and alarm performance was assessed in a simulated 

critical care environment. Two new sets of icon alarms representing the best and worst 

performers were assembled based on the performance results. In Experiment 2, the best and 

worst performing sets were compared using a different set of subjects consisting of nursing 

students (n = 35) who were block randomized into best or worst groups. The best icon set was 
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stylized—a process analogous to cartoonization, changing a photo into a cartoon. We consider 

the stylizing of auditory icons to be an important design refinement intended to overcome 

potential confusion with real sounds in the clinical environment (for example, between the sound 

of a real heartbeat and the ‘cardiovascular’ icon). Constructing the icons in this way also allows 

the spectrum of the sound to be tailored to the clinical noise environment—a process which is 

very difficult to accomplish with real-world sounds. However, icon stylizing could affect an icon’s 

audibility, identifiability and general performance, so it was necessary to record any potential 

degradation in performance of these stylized icons before recommendation to the IEC. 

Therefore, to establish the performance characteristics of this final set, the audibility and 

performance in the simulation lab was assessed using a new group of subjects (n = 30) 

consisting of nursing students.  

Icon Design 

 Descriptions of the icons and audible media files are found within the Supplemental 

Digital Content. The icon alarms were concrete metaphors for the condition or system they 

represented. Icons were designed based on the eight alarm categories specified by IEC 

standards (General alarm, Oxygenation, Ventilation, Cardiovascular, Temperature, Drug 

administration, Perfusion, and Power failure). Additionally, we included two more categories not 

to be included in the final recommendation: Brain Activity and Monitor Error categories (20). All 

icons were augmented with a pointer, a rapid train of pulsed tones that alerts the operator to the 

insipient presentation of an icon. The pointer representing “high priority” (as defined by the IEC, 

comprising three rapid pulses followed by two slower ones) was used throughout this study. The 

first set of icon alarms tested was previously developed and has been shown to dramatically 

out-perform IEC alarms in many ways, including identification accuracy, time to respond, 

localizability, recognizability and subjective preference (15, 17). The remaining sets of icons 

were designed using similar evidence-based methods but had not been tested previously (21). 
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Once a final high-performing subset of icons was identified, it was then stylized in order to not 

resemble real-world sounds 

Calculation of Icon Alarm Audibility 

The audibility of the icon alarms in the presence of noise (known as the “masking 

threshold”) was determined as follows.  Subjects were seated at a desk wearing headphones 

and presented with a series of icon alarms embedded within a masking noise at a sound level of 

70 dB. This noise level was chosen based on typical sound levels measured in our operating 

rooms (18). Subjects were asked to respond (two-alternative, forced choice) as to whether they 

could hear the alarm over the masking noise; if they could then the alarm level was lowered, 

otherwise it was raised until the masking threshold could be determined (22). Each of these 

masking thresholds were then averaged together for all subjects. For additional information on 

headphone calibration, masking noise generation, and threshold determination, see the 

Methods in the Supplemental Digital Content. 

Simulation Setup 

A two-bed intensive care unit was simulated. Bed 1 simulated a ‘bedside’ procedure 

being performed on a patient. Bed 1 was cordoned off with surgical drapes and not visible to 

subjects. A speaker was placed behind the drapes and calibrated to play a recording complete 

with alarms and procedure sounds at an average sound level of 70 dB. This served as a 

realistic auditory mask and distractor (Supplemental Digital Content—Table 3). An intubated 

manikin placed in Bed 2 simulated the patient attended to by subjects. At the foot of bed 2 was 

a small table with the patient’s chart which included history, physical, and hospital course 

complete with vital signs and lab results. A monitor display was present which showed updated 

vital sign and ventilator parameters and annunciated alarm sounds associated with the patient 

in bed 2. This display also had touchscreen functionality and could be used by subjects to log 
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detection of alarm sounds—both selected alarm category and timestamp could be saved to a 

data file for each simulation experiment (see the Methods in the Supplemental Digital Content). 

Experiment 1: Formative Testing 

Experiments were conducted at the University of Miami Gordon Center for Research in Medical 

Education. 

Experimental Protocol 

Before participating in experiments, subjects were assigned to one of three experimental 

groups representing the 3 sets of icon alarms. First, masking threshold was calculated using 

one of the two remaining sets of icon alarms so that subjects were never exposed to the same 

set during audibility and simulation experiments. Then subjects viewed a self-paced slideshow 

presentation describing the simulated patient’s history, physical and hospital course. 

Additionally, orientation to icon alarm sounds and instructions on the use of the interactive 

patient monitor display were presented. Subjects were instructed to review the patient’s chart 

during simulations and to formulate a differential diagnosis to be listed on a form before the end 

of the simulation—this represented a distractor task. Subjects were instructed to ignore the 

procedure-associated sounds (and alarms) and only attend to alarms associated with the 

patient under their care in Bed 2. Upon initiation of the simulation script, typical procedure 

associated sounds and alarms (icon alarms of the same group-specific set) emanated from 

behind the surgical drape of bed 2. Upon hearing an alarm associated with their patient, 

subjects used the patient’s monitor touchscreen to indicate detection of an alarm by selecting 

the alarm’s category. For an example excerpt of a subject’s responses to the presentation of 

alarms, see Figure 4 in the Supplemental Digital Content. Previously, we used the Swedish 

Occupational Fatigue Inventory (SOFI) and the National Aeronautics and Space Administration 

Task Load assessment (NASA-TLX) questionnaires to assess for perceived fatigue and task 

load in a simulation-based study.(3) We also used these instruments to demonstrate that 
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relative to the current IEC alarms, subjects perceived less fatigue and task load when using icon 

alarms.(17) In the current study, at the conclusion of simulations, subjects completed the SOFI 

and NASA-TLX questionnaires and an exit survey to assess participant opinion.  

Outcomes and Power Analysis 

 The primary outcomes from this Experiment, identification accuracy and response time, 

were used for statistical modeling (see Statistical Methods subjection below). For descriptive 

purposes, identification accuracy was calculated by averaging binary responses 

(correct/incorrect) for each alarm category to obtain overall percent correct, while response 

times were averaged and 95% confidence intervals calculated. The secondary outcomes were 

the results of the NASA-TLX and SOFI instruments and the exit survey. We estimated a 

moderate effect size to capture differences between alarm categories in the primary outcomes. 

Accounting for 3 groups (Icon set) of 10 items (Alarm category), and specifying α=0.05, β=0.2, a 

power analysis indicated that 19 subjects per group, for a total of 57 subjects would be required. 

In anticipation of subject exclusions, we enrolled 60 subjects (Supplemental Digital Content 

Table 1). 

Statistical Methods 

We specified a generalized linear mixed model (GLMM) approach (23) —similar to a 

previous study (17)—to capture a multi-dimensional rank of each Icon’s performance partly 

informed by identification accuracy (binary responses) and masking threshold.  For the latter, 

average masking thresholds for each icon were assigned into ordinal tiers whereby an Icon that 

could be heard <-20 dB below the mask was in the top tier (easiest to hear above noise), an 

Icon between -20 dB and -15 dB was in the middle tier, and an Icon with an average threshold 

>-15 dB was in the lowest tier (hardest to hear above noise). The fixed factors in the GLMM 

were therefore all ordinal parameters and consisted of icon set group, alarm category, masking 

tier, and the 3-way interactions. Subjects were set as a random effect. The dependent variable 



12 
 

was each subject’s binary response (correct/incorrect). These results informed the ranking of 

icon performance and are presented as the log-odds for obtaining a correct response. A 

separate GLMM was performed to measure the impact of fixed factors on response times. This 

model was specified identically as above, however, the dependent variable was response time, 

and the results did not inform the ranking of icon performance. 

Experiment 2: Summative Testing 

Simulation experimental protocol 

Experiments were conducted at the University of Miami School of Nursing & Health 

Studies. Consent, tutorial, and simulation procedures were identical to those for Experiment 1. 

In this case two icon sets instead of three, representing the best and worst performers from 

Experiment 1 were compared. Additionally, a final composite set, representing the stylized 

versions of the best performing icons, was tested by itself in order to verify that icon stylization 

would not affect performance. Masking thresholds were also measured to determine audibility of 

the stylized set. 

Outcomes and power analysis 

We collected the same objective outcomes as in Experiment 1, but no subjective 

outcomes. Since two sets representing the best and worst performing icons were to be 

compared, we expected a larger effect. For α=0.05 and β=0.2, we anticipated 16 subjects per 

group, for a total of 32 subjects to enroll. In anticipation of any exclusions, we enrolled 35 

subjects (Supplemental Digital Content Table 1). To assess masking thresholds and 

performance of the stylized icon set, 30 new subjects were arbitrarily enrolled. 

Statistical Methods 

Similar to Experiment 1, we performed GLMM analyses to compare relative performance 

of the best and worst icon sets. In this case, the fixed factors were icon set group, alarm 
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category and the 2-way interaction. Two separate GLMM analyses were conducted to 

determine the impact of these factors on identification accuracy and on response time.  

Results 

 No significant differences in subject perception of fatigue and task load as measured by 

SOFI and NASA-TLX instruments were observed in any of the experiments. Nor were any 

differences observed in the responses to the exit survey. The detailed results for these are 

reported in the Results in the Supplemental Digital Content. 

Masking thresholds for Icon alarms (excluding consideration of the pointer) ranged from 

41.3 to 64.1 dB, and correspond to the ‘ventilation’ icon (set 2) and ‘perfusion’ icon (set 3), 

respectively (Table 1). This indicates that the latter would have to be played at 4.6 times higher 

volume (loudness) in order to be just audible over background noise, compared to the former. 

The pointer which was the same in all sets had a calculated masking threshold between 40.6 to 

43.2 dB. 

Among the 30 alarms tested in Experiment 1, 11 icon alarms were identified correctly 

more than 80% of the time, and another 12 were identified more than 50% of the time. The 

average response time over the 30 alarms tested was 8 seconds, and subjects responded to 16 

alarms with lower than average response times (Table 1).  

Factors found to have a significant effect on correct identification of alarms were an 

icon’s set, alarm category, and masking threshold. These same factors, except for masking 

threshold had a significant effect on response time. (Tables 4 and 5 in the Supplemental Digital 

Content). The relative likelihood in terms of log-odds of an individual icon being correctly 

identified in Experiment 1 indicates that 5 of the icons alarms in set 1 performed better than 

average across all alarms, while 7 of the icon alarms in set 3 performed below average (Figure 

2). 
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 Comparison between the best and worst icon sets (that were selected from Experiment 

1) demonstrates that the former significantly out-performed the latter both in terms of 

identification accuracy (F=9.458; p<0.001) and response time (F=7.369; p<0.001) –see Tables 

6 and 7 in the Supplemental Digital Content.  The combined results of these two outcomes 

(Figure 3) suggest that identification accuracy and response were inversely correlated 

(Spearman’s  = -0.904). Performance of the stylized version of the best performing set was not 

significantly different from that of the (un-stylized) best set in terms of response time and 

identification accuracy (based on multivariate analysis of variance), indicating that icon alarm 

performance remained intact after stylization (Figure 4).  

Discussion 

 Of the 38 icon alarms tested in the current study, we identify an auditory icon for each 

the 8 alarming categories specified in the current IEC standard that performed best based on 

ability to be heard in background noise and in terms of ease of identification in an ICU simulator. 

There are many factors to consider when evaluating medical alarm efficacy, and an approach 

for integrating these many outcomes has not been previously elucidated. We identified the 

outcomes that we feel reasonably reflect efficacy in real world practice, and combined the 

measures of audibility, identification accuracy, and response time to fit into a single statistical 

model that was used to assess alarm performance. In order to be forward-looking, we 

considered two additional categories that were recently suggested for inclusion; namely, brain 

monitoring (for example during administration of sedation and anesthesia) and monitor error (a 

category that would indicate an inability to properly capture physiological information) (20). For 

the purposes of recommending alarms to supplant the IEC standard in its current form, our final 

recommendation is constrained to the original 8 alarming categories. However, we have 

demonstrated that icon sets with 10 alarms can perform well in simulation, and future 
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investigations may be warranted to establish an upper limit for the number of alarm categories 

that can be effectively implemented in clinical settings. 

Most icon alarms continued to be audible at sound volumes one quarter the level of the 

background noise. These findings, along with the inclusion of a highly audible embedded 

“pointer”, should help mitigate factors relating to icon audibility in clinical practice. In contrast to 

our previous study that compared performances of current IEC alarms and a set of icon alarms 

(17) we expected to observe smaller differences in performance when comparing sets of icon 

alarms in the current study. Nonetheless, we were able to detect significant differences in 

identification accuracy among the candidate icon alarms tested. Additionally, icon alarms that 

were easier to identify tended also to be more quickly identified. While it is not known if the 

differences in response times observed here would be clinically relevant, we feel that faster 

detection of patient state changes is a desirable clinical adjunct of improved alarm design, and 

therefore, an outcome worthy of study. Importantly, a majority of our enrolled subjects drew from 

the nursing trainees and practitioners. We felt this to be important, considering nurses are 

typically at the interface between monitoring devices and patients and are exposed to the 

adverse effects of audible alarms. 

Limitations and future direction 

 A general limitation of this study is that it is simulation-based, and the icon alarm 

performance reported here may not be completely extrapolatable to real-world clinical settings. 

After adoption of the current IEC standard in 2007, investigations revealed that the IEC alarms 

are difficult to learn and identify, are often ignored or disabled by practitioners, and have not 

been adopted by all device manufacturers who instead have opted to use proprietary alarms. 

We feel that the methodology and systematic approach to selecting a candidate set of icon 

alarms for recommendation increases the chances that the new standard will perform better and 

be more accepted in clinical practice than the current one. Future studies will be vital to 
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determine if this desired outcome comes to fruition and may validate our simulation-based 

approach to alarm design.  

 We included a distractor task during simulations—subjects were instructed to review the 

patient chart and formulate a differential diagnosis. However, we cannot rule out the possibility 

that some subjects focused on completing the narrow task of identifying alarms. At times, 

subjects failed to enter a selection after an alarm sounded. Our methodology did not allow us to 

determine whether these non-responses were due to hesitance in selecting an alarm before the 

next alarm sounded, or if an alarm simply was not heard. Based on our measurements of icon 

audibility, the latter is unlikely, and if the former were true, then our observation that the best 

icon set was detected significantly faster than other sets may actually be conservative since 

non-responses did not contribute to calculation of response times. Ability to discriminate icons 

alarms when multiple alarms sound simultaneously was not investigated for this 

recommendation and is a relevant limitation of the current study. However, we expect 

discriminability to be more so of an issue with acoustically simple sounds like the current IEC 

standard and proprietary alarms, and less so with the acoustically complex icon alarms. 

Similarly, we are unable to explain why some icons perform better than others. Inquiry of this 

kind merits further study, and is complicated by the fact that in contrast to simple sign waves 

and tonal pulses, icons are highly complex sounds and therefore not easily generalizable in a 

psychoacoustic sense. It is possible that accurate identification simply correlates with how well-

matched the icon sound is metaphorically to alarm meaning. This was our rationale for 

empirically testing several icon versions for each IEC alarm category.   

Conclusion 

In a controlled study that included 123 medical trainees and practitioners, a single set of 

alarms, with representatives for each of the eight standardized alarming categories, was 

identified as the top performers in terms of audibility in noise, identifiability, and detectability in a 
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simulation ICU environment. This set of icon alarms will be put forth for recommendation to the 

International Electrotechnical Commission to replace the alarms suggested in 60601-1-8. 
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Figure Legends 

 

Figure 1. Experimental approach to selecting best performing set of Icon alarms. Three sets of 

Icon alarms were tested in Experiment 1 (labeled Sets 1 thru 3). Each set consisted of the 8 

categories specified in IEC 60601-1-8 “General alarm” (GA), “Oxygenation” (Ox), “Ventilation” 

(Ve), “Cardiovascular” (CV), “Artificial perfusion” (AP), “Temperature” (Te), “Drug administration” 

(DG), and “Equipment or power failure” (PF), plus 2 additional alarm categories, “Brain activity” 

(BA) and “Monitor Error” (ME). Based on previous studies and an expected small effect size, 57 

subjects were used to test each Icon alarm for audibility in background noise (masking 

threshold) and for alarm recognition accuracy and response times in a simulated ICU. Based on 

these results the best and worst performing individual Icon alarms in each category (excluding 

the BA and ME categories) were assembled into “best” and “worst” Icon sets. For experiment 2, 

these sets were then compared same simulated ICU as before using a new population sample 

of nursing subjects (N=32) in order to verify the reproducibility of Icon performance results (I.e., 

that the best set would outperform the worst set) and to identify unanticipated effects resulting 

from the new grouping of Icons (intra-group interactions). Finally, the Icons in the best set were 

stylized to limit confusion with real-world clinical sounds, and retested in the ICU simulation with 

another sample set of nursing subjects (N=30).  

 

Figure 2. Results of Experiment 1, showing the relative performance of Icon alarms as 

measured by identification accuracy, alarm category and masking threshold. Shown are the 

results of a generalized linear mixed model analysis. Fixed factors were Group (Icon set), Alarm 

category, Masking threshold, and a corresponding 3-way interaction term (Icon set X Alarm 

category X Masking threshold). The dependent variable was whether alarm identification was 

correct or not (binary response). The scale is in terms of log odds with larger values indicating 
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increased prediction of a correct response. To facilitate interpretation of results, the aggregate 

average was set to a log odds of zero. Therefore, an Icon alarm with a log odds greater than 

zero performed above average relative to the rest. Corresponding 95% confidence intervals are 

shown. These results were used to guide selection of the “best” and “worst” sets of icon alarms 

which were tested in Experiment 2. 

 

Figure 3. Relative performance of Icon sets in Experiment 2. Shown are results for the “best” 

(black) and “worst (gray) sets in terms of indexed identification accuracy (A) and response time  

in seconds (B). These data correspond to two separate generalized linear mixed model 

analyses in which the fixed factors were Icon set, Alarm category and a 2-way interaction term. 

Higher values of indexed identification accuracy correspond to increased likelihood of a correct 

response (range is from 0 to 1). Identification accuracy and response times were inversely 

correlated (spearman’s rho = -0.904).  

 

Figure 4. Performance of Icon sets relative to the final stylized set. Shown are the differences in 

response time in seconds (Top) and identification accuracy in percentage (Bottom) of each icon 

set tested relative to stylized icon set (baseline) with 95% confidence intervals. Average 

response time for the stylized set was 8 seconds which was significantly less than sets 2 and 3, 

and the worst set (A). Average identification accuracy of the stylized set was 68%, and was 

statistically better than set 3 and the worst set (B). The performance of the stylized set was not 

statistically different from the (un-stylized) best set.  
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Tables 

Table 1. (Left group) Masking thresholds in the presence of 70 dB-SPL pink masking noise; (Middle 
group) alarm identification accuracy; (Right group) response times for each alarming category and Icon 
set. 

 
Masking Threshold (dB) a 

 
Overall % Correct b  Response Time in s (95% CI) c 

Alarm Category 
Set 
1 

Set 
2 

Set 
3 

Styled  Set 
1 

Set 
2 

Set 
3   

Set  
1 

Set  
2 

Set  
3 

Oxygenation 51.0 44.9 48.5 46.4  67 75 69  6 (5-6) 8 (6-9) 7 (6-9) 

Ventilation 54.2 41.8 60.6 52.5  94 90 54  6 (6-7) 7 (6-8) 9 (8-11) 

Cardiovascular 53.6 60.3 48.8 46.8  81 84 76  7 (6-7) 7 (6-8) 9 (7-10) 

Monitor Error 51.9 46.4 49.5 -  69 43 41  8 (7-9) 10 (7-12) 11 (8-13) 

Temperature 42.9 59.3 57.4 42.4  94 31 80  6 (5-7) 8 (6-10) 6 (6-7) 

Drug Admin. 53.2 54.5 49.2 57.2  96 70 41  6 (5-6) 7 (6-8) 9 (7-11) 

Perfusion 55.2 50.4 64.1 44.7  89 75 33  7 (6-8) 7 (6-9) 12 (10-14) 

Power Failure 59.8 50.8 52.4 51.1  74 67 37  6 (5-7) 10 (8-12) 10 (8-11) 

Brain Monitor 43.1 46.8 52.0 -  93 84 57  7 (6-7) 7 (6-8) 6 (5-7) 

General Alarm 46.2 45.2 47.9 - e  65 80 48  9 (8-10) 9 (7-10) 10 (8-12) 

Pointer d 43.2 41.1 40.6 40.9  - - -  - - - 

a  Green: <= 50 dB; Red: >=55 dB. Lower number suggests better masking threshold. 
b Green: > 80%; Red < 50% 
c Green: <=7 s; Red: >= 11 s 
d  Pointer was the same alarm across all sets 
e  The General Alarm for the stylized set was the Pointer alone with no additional icon 

 

Table 2. Auditory maskers and distractors used for each phase of the Experiment. 

Experimental Phase Masker/Distractor 

Tutorial None 

Audibility Pink Noise 

Experiment 1 
Simulated Surgery Sounds 
and Alarms 

Experiment 2 
Simulated Surgery Sounds 
and Alarms 
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Position Participants Years of Clinical Exposure 

  no. (%) <1 1 to 5 6 to 10 >=10 Unknown 

Experiments 1 (N=60)       

 

Anesthesia attending 
physician 4 (3%) 0 0 2 2 0 

 Anesthesia resident 30 (24%) 0 30 0 0 0 

 Clinical nurse anesthetist 10 (8%) 0 0 3 7 0 

 Student nurse anesthetist 10 (10%) 0 3 3 0 4 

 Medical student 4 (3%) 4 0 0 0 0 

Experiment 2 (N=35)       

 Nursing student 35 (28%) 0 11 9 1 14 

Experiment 2 ‘stylized’ (N=30)       

 Nursing student 30 (24%) 30 0 0 0 0 

        

 

SDC Table 2. Metaphors relating to each of the categories of alarming events for each Icon Set 

Alarm 
Category 

Icon Set 1 
Metaphor 

Icon Set 2 
Metaphor 

Icon Set 3 
Metaphor 

Stylized Set 
Metaphor 

General Chime to motif of 
Beethoven’s 5th 

Symphony 

Train whistle Gong strike Pointer 

Cardiovascular Fast, rhythmic drum 
pattern (Indian 

wedding drumming) 

Several pulses of a 
‘lup-dup’ heart beat 

‘Tick-tock’ of a 
clock 

‘Lup-dub’ 
heartbeat sound 

Artificial 
perfusion 

Hand sloshing inside 
a tub of liquid 

Straw sucking in an 
empty vessel or cup 

Air bubbling 
through liquid 

Liquid disturbance, 
water churning, 

bubbles 
Ventilation Sound of a science 

fiction ventilator 
mask 

Inhalation followed 
by exhalation 

HVAC system A single inhale 
followed by an 

exhale 
Oxygenation High pressure build-

up of air escaping a 
tank 

Three wine cork 
pops 

Depressurization of 
a mask or tank 

Irregular, stylized 
dripping/saturation 

Temperature Whistling kettle Boiling water Sizzle of a cooking 
frying pan 

Whistling kettle 

Drug delivery Shaking pill bottle Pharmacist scraping 
pills off of a tablet 

Water dripping in a 
reverberant cavern 

Shaking pill bottle 

Equipment 
failure 

Improper start of a 
cold motor (pull 

cord) 

Motor losing power 
and revving down 

Powering down of a 
science fiction 

motor; synthesized 

Starting up a 
motor that shuts 
down suddenly 

Brain Activity Synthesized wind 
chime. 

Synthesized low to 
high frequency 

sweep 

Electricity on a 
Jacob’s Ladder 

None 

Monitor Error Ruler rapping on a 
desk. 

Hammer striking a 
metal stake 

Striking a metal 
drum 

None 

 

 

SDC Table 3. Auditory maskers and distractors used for each phase of the Experiment. 
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Experimental Phase Masker/Distractor 

Tutorial None 

Audibility Pink Noise 

Experiment 1 
Simulated Surgery Sounds 
and Alarms 

Experiment 2 
Simulated Surgery Sounds 
and Alarms 

 

Headphone Calibration 

This study was conducted with closed-back, over the ear headphones, with a flat frequency 
response from 20 to 20,000 Hz (±3 dB) (AKG, K553PRO). Headphone SPL levels were calibrated for the 
specific computer and soundcard configuration (Dell Latitude) using a reference microphone (GRAS 
40AG/IEC61094-4), ear canal simulator (GRAS RA0045/IEC-60711), and low-leak pinna (GRAS 
RA0056/ITU-P57 Type 3.2) simulator. Following calibration, gain structure was fixed throughout the 
experiment. 

Mask Generation 

To determine the audibility threshold of each Icon alarm, a subject heard a simultaneous 
playback of noise and target and was asked to respond as to whether or not they could hear the alarm 
over the mask. In order to generate the mask, a random selection from a monophonic recording of a 1-
hour Operating Room (OR) case was first chosen. In order to ensure that an eventful selection was 
made, a check was instituted to determine the root-mean-square (RMS) level of the selection.  If the RMS 
was below 60 dB-SPL, then the selection was discarded, and a new random selection was made. Once a 
selection was identified, it was converted to the frequency domain, the phase was preserved, and the 
magnitude was discarded. A new magnitude response was artificially generated using a pink magnitude 
distribution. Using the preserved phase and the pink magnitude, the signal was then converted back to 
the time-domain, resulting in a mask that preserved the timing and phase of the original, but with a pink-
distribution of energy across frequencies. Dynamic range compression was then applied to the mask. 
Finally, the mask was amplitude normalized, windowed and scaled to output at a root-mean-square level 
of 70 dB-SPL. 

Threshold Determination 

Both the target and mask for each Icon under test were initialized to 70 dB-SPL then each alarm 
from the set was tested against one level of mask. The order of alarm presentation was randomized. If 
the subject heard the alarm over the mask, the alarm level dropped by -5dB and was presented again 
with a newly generated mask. However, if the listener could not hear the alarm over the mask, the alarm 
level increased by 10 dB and is presented again. A “pivot” was defined as each time the user’s current 
response was different from their previous response. As described in the Hughson-Westlake Method (1), 
a 2-up-1-down test identifies the audibility threshold as the lowest level at which the listener hears the 
target at least 50% of the time once 4 Pivots are counted. 

Experiment 1 Simulation Protocol 

 Subject were asked to enter a simulated ICU at the Michael Gordon Center for Research in 
Medical Education housed at the University of Miami Miller School of Medicine.  Subjects were given time 
to click through a slideshow tutorial on a computer screen at a self-selected pace that covered topics 
relating to experimental protocol. This included instructions for interacting with the touch-screen patient 
monitor, introduction to each of the alarm sounds, and a case review of the simulated patient.  Next, the 
subjects were guided into the simulated ICU that contained two beds, one that was surgical and draped 
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off by curtains, and one containing the patient they were monitoring.  A clinical soundscape was played 
through a speaker (Genelec 8020A, Iisalmi, Finland) at 70 dB-SPL with sounds typical of a surgery in 
addition to audible alarms to provide a realistic auditory mask.  The subjects were asked to not respond to 
the alarms in the adjacent surgery, which were also from the same Icon set. At the moment of hand-off 
from study personnel to subject, the simulation script was initiated.  

 The interactive patient monitor was derived from a software program called PT-SAFE (2), but 
modified to look like the patient monitors used at Jackson Memorial Hospital, shown in SDC Figure 1 and 
described in (3). The simulation script and Icon set were loaded in (SDC Figure 2), and the software 
directed the annunciation of alarms, according to script parameters (SDC Figure 3). PT-SAFE also 
captured tap gestures along with a timestamp for identifying the precise time of alarm identification by the 
subject.  A read-out of the alarm identification was displayed (like a chat window) so that the subject could 
quickly review the recorded response and re-select a different alarm if the wrong one was accidentally 
clicked.  We provided up to 15 s following alarm annunciation for the user to correct a mis-selection.  

 

SDC Figure 1. PT-SAFE interactive Patient Monitor and Ventilator Monitor. The drop-down box is 

visible with the list of alarms for the subject to select from. 

 

 



28 
 

 

SDC Figure 2. Simulation script used for the manikin, showing all simulated patient monitor values 

(lines) as well as timing and type of audible alarms (symbols) 

 

SDC Figure 3. A subject interacting with the PT-SAFE software, responding to an alarm.  Behind the 

blue curtain were loudspeakers that were reproducing a surgical clinical soundscape with interfering 
audible alarms. 
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SDC Results 

Example Response 

The primary outcomes, response accuracy and time, are visualized in SDC Figure 4, which shows the 
annunciation of an alarm, followed by the user response. In the first user response from this excerpt, a 
drop in DIA, MEA, and SYS (SpO2 dropped from 91 to 90% but remained above the alarm threshold) 
triggered a cardiovascular alarm to annunciate at 55 s, followed by a user selecting the “Brain Activity” 
(an incorrect response) 20 s later.  

Subjective Results 

We administered subjective instruments to assess the perceptual affect of the subjects following 
the simulation experiments and to survey the subjects on questions specific to their experience with these 
novel alarm sets. For the psychometric instruments.  There were no significant differences found between 
the original 3 Icons sets from Experiment 1 with the stylized set from Experiment 2, so pairwise 
comparisons between groups was not performed (see SDC Figures 5, 6, 7).  

 

 

SDC Figure 4. Excerpt of the simulation script showing user responses in vertical dashed lines.  Error 

response marked in red (actual alarm was Cardiovascular). Time to respond is indicated by the distance 
between the alarm and the user response. 
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SDC Figure 5. No significant differences were found between Icon Sets in the Exit Survey 

questions. 

 

SDC Figure 6. No significant differences were found between Icon Sets in the NASA-TLX. 
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SDC Figure 7. No significant differences were found between Icon Sets in the SOFI. 

 

ANOVA Tables 

SDC Table 3. ANOVA on Alarm Audibility (Experiment 1) 

Source F df1 P-Value 

Alarm Category 8.52 9 < 0.001 

Icon Set 8.63 2 < 0.001 

Icon Set*Alarm Category 7.64 18 < 0.001 

 
 
 

SDC Table 4. Fixed Effects on Alarm Identification Accuracy (Experiment 1) 

Source F df1 df2 P-Value 

Icon Set 9.944 2 1560 < 0.001 

Alarm Category 7.694 9 1560 < 0.001 

Masking Tier 5.089 2 1560 0.006 

Icon Set*Alarm Category* Masking Tier 7.371 16 1560 < 0.001 

 

 

SDC Table 5. Fixed Effects on Response Time (Experiment 1) 

Source F df1 df2 P-Value 

Icon Set 5.221 2 1514 0.005 
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Alarm Category 10.533 9 1514 < 0.001 

Masking Tier 0.656 2 1514 0.519 

Icon Set*Alarm Category* Masking Tier 2.646 16 1514 < 0.001 

 

 

SDC Table 6. Fixed Effects on Alarm Identification Accuracy (Experiment 

2) 

Source F df1 df2 P-Value 

Icon Set (Best or Worst) 9.980 1 1030 0.002 

Alarm Category 12.042 9 1030 <0.001 

Icon Set*Alarm Category 11.498 9 1030 < 0.001 

 

 

SDC Table 7. Fixed Effects on Response Time (Experiment 2) 

Source F df1 df2 P-Value 

Icon Set (Best or Worst) 8.540 1 994 0.004 

Alarm Category 10.405 9 994 <0.001 

Icon Set*Alarm Category 4.097 9 994 < 0.001 

 

 

 

 

Psychometric Instruments 
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SOFI 
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NASA-TLX 
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Alarm Survey 
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