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Abstract 45 

 46 

Abundant pollinators are often more generalised than rare pollinators. This could be because 47 

abundant species have more chance encounters with potential interaction partners. On the other 48 

hand, generalised species could have a competitive advantage over specialists, leading to 49 

higher abundance. Determining the direction of the abundance-generalisation relationship is 50 

therefore a ‘chicken-and-egg’ dilemma. Here we determine the direction of the relationship 51 

between abundance and generalisation in plant-hummingbird pollination networks across the 52 

Americas. We find evidence that hummingbird pollinators are generalised because they are 53 

abundant, and little evidence that hummingbirds are abundant because they are generalised. 54 

Additionally, most patterns of species-level abundance and generalisation were well explained 55 

by a null model that assumed interaction neutrality (interaction probabilities defined by species 56 

relative abundances). These results suggest that neutral processes play a key role in driving 57 

broad patterns of generalisation in animal pollinators across large spatial scales. 58 

 59 

Keywords: generalisation, hummingbirds, mutualism, mutualistic networks, plant-animal 60 

interactions, pollination, specialisation  61 
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Introduction 87 

 88 

Pollination and other mutualistic associations are crucial for the functioning and maintenance 89 

of ecological communities (Heithaus 1974, Rech et al. 2016, Ollerton 2017, Ratto et al. 2018). 90 

A common phenomenon in mutualistic communities is that more abundant species have more 91 

generalised interaction niches (Dupont et al. 2003, Vázquez and Aizen 2003, Olesen et al. 92 

2008). However, the direction of the relationship between abundance and generalisation has 93 

been described as a ‘chicken-and-egg’ dilemma because there are valid a priori explanations 94 

for both directions (Fort et al. 2016, Dormann et al. 2017). On the one hand, high abundance 95 

could lead to high generalisation. For example, abundant species are more likely to encounter 96 

a greater number of potential interaction partners than rare species (Vázquez et al. 2007, 2009, 97 

Poisot et al. 2015). Additionally, in a given area, higher species abundance leads to greater 98 

conspecific competition for available resources, resulting in increased generalization as 99 

predicted by optimal foraging theory (Fontaine et al. 2008, Tinoco et al. 2017). On the other 100 

hand, generalisation can have a selective advantage over specialisation, leading to higher 101 

abundance (Batstone et al. 2018). For example, the wider diet breadth of generalist individuals 102 

could allow them to receive a more stable benefit over time in communities with high levels of 103 

variability or species turnover; generalisation increases the likelihood that a given mutualist 104 

will interact with the most beneficial partner; and generalists benefit from having diverse 105 

partners that occupy different niches but provide the same rewards via different mechanisms 106 

(complementarity) (Waser et al. 1996, Albrecht et al. 2012, CaraDonna et al. 2017, Batstone 107 

et al. 2018). Generalisation can also provide a better nutrient balance (Tasei and Aupinel 2008, 108 

Behmer 2009, Vaudo et al. 2015), improve species’ pathogen resistance (Alaux et al. 2010, Di 109 

Pasquale et al. 2013), entail a large resource base, and afford functional redundancy that buffers 110 

against partner extinction (Biesmeijer et al. 2006).  111 
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 112 

Here we evaluate the direction of the abundance-generalisation relationship in plant-113 

hummingbird pollination networks and use a null model to assess the extent to which observed 114 

patterns of species-level generalisation can be explained by neutral effects. Plant-hummingbird 115 

interactions are a particularly interesting model system to answer these questions as they 116 

involve species spanning the entire specialisation-generalisation spectrum (Bleiweiss 1998, 117 

Martín González et al. 2015, Dalsgaard et al. 2018, Maruyama et al. 2018). Additionally, 118 

pollination by vertebrates is important, especially in the tropics (Bawa 1990, Vizentin-Bugoni 119 

et al. 2018), and is on average responsible for 63% of fruit or seed production in vertebrate-120 

pollinated plants (Ratto et al. 2018). Therefore, understanding the abundance-generalisation 121 

relationship in vertebrate pollinators such as hummingbirds has important implications for 122 

understanding the processes maintaining tropical plant and vertebrate communities.  123 

 124 

Material and Methods 125 

 126 

Dataset 127 

 128 

We assembled a database of plant-hummingbird pollination networks with complementary 129 

information on hummingbird and plant abundance. In total, we gathered 19 quantitative 130 

networks, where link weights represent the number of observed hummingbird visits to plants. 131 

The database contained 103 hummingbird species and 403 plant species. For each of the 19 132 

networks, hummingbird abundances were quantified as the mean number of individuals per 133 

species either recorded along transect counts within the sampling plots or caught using mist 134 

nets (Appendix 1). For four networks where not all species were recorded within the sampling 135 

plots during transect counts or mist netting, we used frequency of occurrence (the proportion 136 
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of days of fieldwork in which a given species was recorded) as a proxy for relative abundances, 137 

as both measures are strongly correlated and frequency of occurrence is still independent from 138 

the network data (Vizentin-Bugoni et al. 2014). To test whether these four networks affected 139 

our results, we repeated all analyses excluding these data (Appendix 2). Plant abundances were 140 

quantified along transect counts or inside plots within the study areas and summarized as the 141 

number of flowers per species recorded over the sampling period. Species abundances and 142 

interactions were quantified several times (typically, monthly) over at least a complete annual 143 

cycle in each community. Further details of each network are given in Appendix 1. The 144 

inclusion of independent abundance estimates is an important advance because all 35 145 

pollination and seed dispersal networks analysed by Fort et al (2016) used estimates of animal 146 

abundance based on the interaction network data, and the authors had direct measures of plant 147 

abundance for only 29% of networks. Using species’ interaction frequency as a proxy for 148 

animal abundance can lead to biased conclusions (Vizentin-Bugoni et al. 2014); by Fort et al’s 149 

own admission, “These animal abundance data are arguably limited, as they are not 150 

independent from the interactions; but these are the best data available to evaluate our 151 

question.” Conversely, ours is the first study where we have estimates of plant and animal 152 

abundance independent from the interaction observations for the majority of networks. 153 

 154 

Measures of generalisation 155 

 156 

We calculated the level of generalisation of all hummingbird species in all networks. We focus 157 

on hummingbird species, rather than plants, as plants may have non-hummingbird partners not 158 

included in our data that could result in misleading estimates of generalisation (Dalsgaard et 159 

al. 2008). To assess the sensitivity of our results to the choice of generalisation metric, we 160 

measured generalisation in three ways. First, species degree, which is simply the number of 161 
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plant species a given hummingbird species interacts with. Second, normalised degree, which 162 

is equal to a species’ degree divided by the total number of possible partners. Third, a 163 

generalisation index g, based on a widely used species-level measure of specialization (d) that 164 

quantifies the extent to which a species deviates from a random sampling of its available 165 

interaction partners (Blüthgen et al. 2006). We calculated d using independent plant abundance 166 

data. To ensure that higher values of d corresponded to higher levels of generalisation, we 167 

calculated the standardised generalisation index g, defined as 1-d/dmax where dmax is the 168 

maximum possible value of d (Fort et al. 2016). d and dmax were calculated using the ‘dfun’ 169 

function in the ‘bipartite’ R package (Dormann et al. 2009). 170 

 171 

General approach 172 

 173 

First, we tested whether there was a relationship between hummingbirds’ abundance and their 174 

level of generalisation for each generalisation metric. The generalisation metric was the 175 

response variable, with log(abundance) and network identity as explanatory variables. A linear 176 

mixed effects model with a Gaussian distribution was used for the model with g as the response 177 

variable and network identity as a random effect. The model was fitted using the ‘lme4’ R 178 

package (Bates et al. 2015) and the significance of the fixed effect was calculated using Wald 179 

2 tests available in the ‘Anova’ function of the ‘car’ R package (Fox and Weisberg 2002). We 180 

calculated both the marginal pseudo-R2
(G)LMM(m), which represents the variance explained by 181 

fixed effects, and the conditional pseudo-R2
(G)LMM(c), which represents the variance explained 182 

by both fixed and random effects (Nakagawa and Schielzeth 2013, Emer et al. 2016, Kaiser-183 

Bunbury et al. 2017, Bartoń 2018). A zero-truncated negative binomial distribution was used 184 

for the model with degree as the response variable and a beta distribution was used for the 185 

model with normalised degree as the response variable. We used the zero-truncated negative 186 
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binomial regression to account for overdispersion and zero-truncation in the degree data (no 187 

species had a degree of zero). A beta regression was used to model the normalised degree data 188 

because it accounts for overdispersion and is used for analysing continuous data greater than 0 189 

and less than 1 (necessary for our analyses because no species had a normalised degree of zero). 190 

One data point in our dataset had a value of 1 and so we applied the standard correction 191 

following Smithson and Verkuilen (2006). These distributions are not available for mixed 192 

effects models, therefore the zero-truncated negative binomial model was fitted using the 193 

‘VGAM’ R package (Yee and Wild 1996, Yee 2015) and the beta regression was fitted using 194 

the ‘betareg’ R package (Cribari-Neto and Zeileis 2010).  195 

 196 

Having established that there is a relationship between abundance and generalisation, we used 197 

the approach of Fort et al. (2016) to determine whether abundance drives generalisation or 198 

generalisation drives abundance. This approach uses formal logic, specifically material 199 

implication, to derive expectations for broad species-level patterns of abundance and 200 

generalisation in ecological communities. To explain the approach, it is useful to consider a 201 

simple example. Consider the proposition, P, “if it is a dodo, it is extinct”. P is made up of two 202 

statements: (i) “it is a dodo” and (ii) “it is extinct”. Given that each of these statements can 203 

either be true or false, we can derive four possible outcomes, as shown in Table 1. Outcome A 204 

is a dodo that is extinct. Outcome B is a non-dodo that is not extinct, such as the hummingbird 205 

species Amazilia versicolor. Outcome C is a non-dodo that is extinct, such as the dinosaur 206 

species Tyrannosaurus rex. Finally, outcome D is a dodo that is not extinct. We can only refute 207 

the proposition “if it is a dodo, it is extinct” when we observe outcome D to be true; that is, if 208 

we observe a living dodo. Conversely, observing an extinct dodo, an extant Amazilia versicolor 209 

individual, or an extinct T. rex specimen are all consistent with P.  210 

 211 
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There are four possible outcomes when applying this to the abundance-generalisation chicken-212 

and-egg dilemma: abundant generalists, rare generalists, abundant specialists and rare 213 

specialists (Table 1). We can therefore derive two hypotheses: 214 

 215 

1. If abundance implies generalisation, there should be no species which are abundant and 216 

specialist (outcome D: living dodos); we would only expect to observe abundant 217 

generalists (outcome A: extinct dodos), rare specialists (outcome B: a living Amazilia 218 

versicolor) and rare generalists (outcome C: extinct T. rex).  219 

2. If generalisation implies abundance, there should be no generalist species that are rare; 220 

we would only expect to observe rare specialists, abundant specialists and abundant 221 

generalists.  222 

 223 

Therefore, by calculating the proportion of hummingbird species in each of the four abundance-224 

generalisation categories (rare specialists, abundant specialists, rare generalists and abundant 225 

generalists; see below), it is possible to test these two hypotheses and determine whether the 226 

relationship between hummingbird abundance and generalisation is unidirectional (Fort et al. 227 

2016). If hypothesis 1 is correct, the proportion of abundant specialists should be << the 228 

proportion of rare specialists, rare generalists, and abundant generalists; if hypothesis 2 is 229 

correct, the proportion of rare generalists should be << rare specialists, abundant specialists, 230 

and abundant generalists. We used contrasts within an ANOVA framework to test these 231 

hypotheses. To test hypothesis 1, we set abundant specialists as the reference contrast and 232 

tested whether it was significantly less than the other three categories. To test hypothesis 2, we 233 

set rare generalists as the reference contrast and tested whether it was significantly less than 234 

the other three categories. 235 

Abundance and generalisation classification 236 
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 237 

To calculate the proportion of hummingbird species in each abundance-generalisation 238 

category, we developed a novel methodology to classify each species in a community as either 239 

rare or abundant and as either specialist or generalist. For each network, we first rescaled the 240 

abundance and generalisation values of all hummingbird species to range between 0 and 1 241 

according to (x – xmin)/(xmax – xmin), where xmin and xmax are the minimum and maximum values 242 

of abundance or generalisation (Aizen et al. 2012). We then conducted two Bernoulli trials for 243 

each species: (i) to classify a species as ‘Abundant’ or ‘Rare’ and (ii) to classify a species as 244 

‘Generalist or ‘Specialist’. The probability of being classified as ‘Abundant’ in trial (i) was 245 

equal to the species’ rescaled abundance; the probability of being classified as ‘Generalist’ in 246 

trial (ii) was equal to the species’ rescaled generalisation. Therefore, a species with a rescaled 247 

abundance of 0.2 would have a 20% probability of being classified as abundant in a given 248 

iteration. Similarly, a species with a rescaled abundance of 0.8 would have an 80% probability 249 

of being classified as abundant. This was repeated 1000 times. The mean proportion of species 250 

in each of the four abundance-generalisation categories for each network was then calculated. 251 

This was repeated for each of the three generalisation metrics. 252 

 253 

Our method offers a number of improvements over that used by Fort et al (2016), who used 254 

two methods to classify species. First, they classified species in a network as abundant or rare 255 

based on whether their abundance was greater than or less than the mean network abundance, 256 

respectively. Similarly, species were classified as generalised if their generalisation was greater 257 

than the mean network generalisation, and specialist otherwise. Delineating categories using a 258 

strict threshold such as this is problematic because it ignores the continuous nature of 259 

abundance and generalisation data: all values below the mean are treated as equivalent, as are 260 

all values above the mean. Consider a set of species with the following rescaled abundance 261 
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values: 0.01, 0.02, 0.03, 0.04, 0.499, 0.501, 0.96, 0.97, 0.98, 0.99. Here the mean is 0.5. 262 

Therefore, using Fort et al’s method, species with abundances of 0.01, 0.02, 0.03, 0.04 and 263 

0.499 will always be classified as rare, while species with abundances of 0.501, 0.96, 0.97, 264 

0.98 and 0.99 will always be classified as abundant. This is problematic because a species with 265 

0.499 abundance is classified as rare, while one with 0.501 abundance is classified as abundant, 266 

despite there being a very small difference in the abundances of these two species. Conversely, 267 

species with very low or high abundances are treated as equal to those with medium 268 

abundances. For example, species with abundances between 0.01 and 0.04 are treated as 269 

equally rare to a species with an abundance of 0.499. Our method avoids these issues by using 270 

the full continuous range of the data to determine probabilities in the classification. For 271 

example, the species with an abundance of 0.499 and the species with an abundance of 0.501 272 

both have similar probabilities of being classified as abundant. Similarly, the species with an 273 

abundance of 0.499 is 0.498 more likely to be classified as abundant than the species with an 274 

abundance of 0.01, thus more accurately accounting for abundance differences between these 275 

two species. Furthermore, given the highly-skewed nature of abundance and generalisation 276 

distributions, the mean threshold used by Fort et al could be misleading. Our method builds on 277 

this work to make no assumptions about the skewness of the data. 278 

 279 

To remedy the problems with using the mean as a threshold, Fort et al also used a fuzzy logic 280 

classification, where species were classified as abundant or generalist if the value of abundance 281 

or generalisation was above the mean abundance or generalisation plus one standard deviation. 282 

Species were classified as rare or specialist if the value of abundance or generalisation was 283 

below the mean abundance or generalisation minus one standard deviation. Species with 284 

measures between these values were given a linear class membership function, interpolated 285 

between 0 and 1. While this method overcomes some of the issues associated with 286 
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categorisation based on a strict mean threshold, it still ignores continuous variation in 287 

abundance and generalisation values that are greater or less than one standard deviation from 288 

the mean. Conversely, our method considers the full range of the data, because the rescaled 289 

values simply determine probabilities of success in the Bernoulli trial. Additionally, the 290 

standard deviation could be a misleading measure given the highly-skewed distributions of 291 

abundance and generalisation. Our method makes no assumptions about skewness and works 292 

equally well for all distributions regardless of skewness. Finally, Fort et al’s method assumes 293 

that a linear class membership function between the mean minus one standard deviation and 294 

the mean plus one standard deviation is appropriate, while our method requires no such 295 

assumptions.  296 

 297 

Null model analysis 298 

 299 

To assess the extent to which our results could be explained purely by neutral effects, we used 300 

a null model to generate 1000 randomised versions of each empirical network. The null model 301 

assumed interaction neutrality by assigning interactions according to a probability matrix, A, 302 

where element aij was the relative abundance of hummingbird species i multiplied by the 303 

relative abundance of plant species j (Vázquez et al. 2007, Maruyama et al. 2014, Vizentin-304 

Bugoni et al. 2014, 2016). Therefore, the model assumes that two species with high abundance 305 

have a greater likelihood of interacting than two species with low abundance. The model 306 

constrained the number of links and ensured that each species had at least one interaction 307 

(Vázquez et al. 2007). We used independent plant and hummingbird abundance data to create 308 

the null networks, rather than relying on species marginal totals as a proxy for abundance. For 309 

each of the 1000 null versions of each of the 19 empirical networks, we repeated the 310 

permutational analysis described above (‘Abundance and generalisation classification’) to 311 
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calculate the mean proportion of species in each of the four abundance-generalisation 312 

categories predicted by the neutral model. We then compared these proportions based on 313 

neutrality to the empirical proportions: if the empirical proportions were within the 95% 314 

confidence intervals of the null model proportions then there were no significant differences 315 

between the null model and the observed values. 316 

 317 

Results 318 

 319 

We confirmed the positive relationship between abundance and generalisation in our dataset, 320 

finding a significant correlation between abundance and generalisation for degree (P = < 0.001; 321 

pseudo-R2 = 0.69), normalised degree (P = < 0.001; pseudo-R2 = 0.63) and the generalisation 322 

index g (Wald test: 2 = 10.7; df = 1; P = 0.001; R2
LMM(m) = 0.06; R2

LMM(c) = 0.44). 323 

 324 

Only a small proportion of species were abundant and specialist for all three generalisation 325 

metrics, while the proportion of species that were rare and generalist was consistently larger, 326 

particularly for the g generalisation metric (Figure 1). These differences were significant. We 327 

found that abundant specialists were significantly less common than rare specialists, rare 328 

generalists and abundant generalists for all generalisation metrics (Table 2). Conversely, for 329 

the degree and normalised degree metrics, we found that rare generalists were significantly less 330 

common than rare specialists, significantly more common than abundant specialists, and not 331 

significantly different to abundant generalists (Table 2). For the generalisation index (g), we 332 

found that rare generalists were not significantly different to rare specialists, and were 333 

significantly more common than abundant specialists and abundant generalists (Table 2). 334 

Overall, these findings support hypothesis 1, that abundance drives generalisation, and do not 335 

support hypothesis 2, that generalisation drives abundance. 336 
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 337 

The proportion of species in each of the four abundance-generalisation categories predicted by 338 

the neutrality null model closely matched the empirical proportions, particularly for degree and 339 

normalised degree where there were no significant differences between observed and predicted 340 

proportions for the majority of networks (68–84% of networks; Figure 2). For g, the model 341 

correctly predicted the proportion of rare specialists and generalists for 79% of networks, but 342 

performed less well in predicting the proportion of abundant specialists and generalists, with 343 

predictions matching observed values for only 47% of networks (Figure 2). 344 

 345 

All results were qualitatively the same and conclusions identical after the exclusion of the four 346 

networks where we used frequency of occurrence (the proportion of days of fieldwork in which 347 

a given species was recorded) as a proxy for relative abundances (Appendix 2). 348 

 349 

Discussion 350 

 351 

The abundance-generalisation ‘chicken and egg’ dilemma concerns whether the widely 352 

observed positive relationship between abundance and generalisation is a consequence of 353 

abundance driving generalisation or generalisation driving abundance. Our analysis of plant-354 

hummingbird communities sampled widely across the Americas provides evidence of a 355 

unidirectional relationship, with hummingbird abundance driving hummingbird generalisation. 356 

Importantly, a null model assuming neutrality of interactions closely matched most empirical 357 

observations. This suggests that neutral effects have an important role in structuring broad 358 

patterns of species-level generalisation, even in a system such as plant-hummingbird 359 

pollination networks where phenotypical matching has a strong influence on the occurrence of 360 

pairwise interactions among species. Our results can be discussed in the context of sufficient 361 
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and necessary conditions from formal logic. If we say that P is a necessary condition for Q, 362 

then in the absence of P there is also an absence of Q. However, if P is a sufficient condition 363 

for Q, then if we have P, Q must follow. For example, obtaining full marks on every question 364 

in an exam is a sufficient, but not necessary, condition for getting the top grade. Our results 365 

suggest abundance is a sufficient condition for generalisation as, if a species is abundant, it 366 

tends to also be a generalist. However, it is not a necessary condition as species can be 367 

generalist without being abundant. Conversely, our results suggest generalisation is a necessary 368 

condition for abundance as, if a species is a specialist, it tends to be rare. However, it is not a 369 

sufficient condition for abundance as, if a species is a generalist, this does not mean it is 370 

abundant. Therefore, our results agree with those of Fort et al. (2016) using pollination and 371 

seed dispersal networks, suggesting that abundance driving generalisation may be a general 372 

phenomenon that can be observed in mutualistic systems. 373 

 374 

In all ecological studies it is worth asking whether sampling effort may impact the results. This 375 

is also the case for studies of species interaction networks, as sampling effects can influence 376 

the observed network structure (Fründ et al. 2016, Jordano 2016, Vizentin-Bugoni et al. 2016, 377 

Dalsgaard et al. 2017). Sampling is likely to result in missed detections of interactions for rare 378 

species, resulting in an underestimation of how generalised rare species are (Blüthgen 2010, 379 

Dorado et al. 2011). For this reason, Dormann et al. (2017) described sampling rare species 380 

with high generalisation as “impossible”. This means that our results are unlikely to be a 381 

function of sampling effects, as the proportion of rare generalist species we observe is likely 382 

less than the true proportion: under theoretical perfect sampling, we would likely observe a 383 

larger proportion of species which are rare generalists, reinforcing our results (Dorado et al. 384 

2011). Furthermore, sampling effects are likely to overestimate the proportion of species that 385 

are rare specialists as, even when rare species are observed, they are unlikely to be observed 386 
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on all the plants they visit. This suggests that sampling effects will cause the generalisation 387 

level of rare species to be underestimated, and that consequently some species classified as rare 388 

specialists may actually be rare generalists (Blüthgen 2010, Dorado et al. 2011). Sampling 389 

effects are therefore not likely to impact our conclusions, because with perfect sampling we 390 

would expect the proportion of rare generalists to increase and the proportion of rare specialists 391 

to decrease, further increasing support for hypothesis 1 (many rare generalists, few abundant 392 

specialists) and refuting hypothesis 2 (few rare generalists, many abundant specialists). 393 

Additionally, we would not expect sampling artefacts to explain the low proportion of species 394 

which were abundant specialists because sampling effects tend to come from missing links for 395 

rare species rather than abundant species (Blüthgen 2010, Dorado et al. 2011, Fort et al. 2016). 396 

We also note that we do not consider the phylogenetic dependence of the hummingbird species 397 

within communities, which could cause an increase in Type I errors. While currently there are 398 

not ways to incorporate phylogenetic effects into our novel methodological framework, this is 399 

an important area for future research. 400 

 401 

A frequent interpretation of the abundance-generalisation relationship is that abundant species 402 

are more generalised due to neutral effects; that is, they are more likely to encounter a greater 403 

number of interaction partners than less abundant species by chance alone (Vázquez et al. 404 

2007). Our null model analysis supports this interpretation, particularly for degree and 405 

normalised degree: we found that the numbers of rare specialists, abundant specialists, rare 406 

generalists and abundant generalists were well predicted for the majority of networks by a null 407 

model that assumed interactions were formed entirely from neutral processes. This finding 408 

complements other recent studies of plant-hummingbird pollination networks showing the 409 

importance of morphological trait matching in predicting pairwise interactions at the network 410 

level (Maruyama et al. 2014, Vizentin-Bugoni et al. 2014, 2016, Weinstein and Graham 2017), 411 
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while here we show that abundance predicts broad patterns of generalisation at the species 412 

level. Among Antillean hummingbirds, it was recently shown that local environmental 413 

conditions and floral richness, not hummingbirds’ morphological traits, determined species 414 

level nectar-feeding specialization (Dalsgaard et al. 2018). Combined with our findings, this 415 

might suggest a hierarchy of mechanisms structuring plant-hummingbird interactions, and 416 

more broadly whole pollination networks (Junker et al. 2013, Bartomeus et al. 2016, Vizentin-417 

Bugoni et al. 2018): neutrality and local conditions govern broad patterns of generalisation, 418 

such as the number of plant partners, while morphological matching operates at a lower level 419 

to determine the identity of these plant partners. For the generalisation index g, the null model 420 

performed less well, predicting the proportion of abundant specialists and abundant generalists 421 

correctly in only 47% of networks. For the remaining 53% of networks, the model generally 422 

over predicted the number of abundant generalists and under predicted the number of abundant 423 

specialists. This may be due the nature of the g index itself: by accounting for the abundance 424 

of plants, g does not necessarily correlate with species degree (number of plant partners). For 425 

example, a hummingbird which visits one abundant plant could receive a higher value of g than 426 

a hummingbird that visits three rare plants. This means the null model may overestimate the 427 

number of abundant generalists and underestimate the number of abundant specialists as, in the 428 

model, an abundant hummingbird will have a higher probability of interacting with all plants, 429 

while in the empirical network it may be able to gain sufficient resources by only interacting 430 

with the most abundant plants. 431 

 432 

Taken together, our study confirms that abundance is a sufficient, but not necessary, condition 433 

for generalisation in plant-hummingbird pollination networks; it is the first study to test this 434 

hypothesis in animals using independent data on species abundance encompassing a wide array 435 

of communities. Remarkably, our result corroborates the findings of Fort et al. (2016), giving 436 
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further support that this may be a general phenomenon in mutualistic systems. Further research 437 

should investigate whether the relationships found here hold for other types of ecological 438 

systems, especially given evidence of the importance of neutral effects in structuring 439 

antagonistic host-parasite communities (Vázquez et al. 2005). We also find evidence that 440 

neutral effects are good predictors of coarse species-level patterns of generalisation, even in a 441 

system in which interactions are widely recognized to be constrained by species traits. This 442 

might suggest a hierarchy of mechanisms structuring plant-hummingbird interactions, with 443 

neutral effects operating at a ‘high level’ to determine coarse patterns of generalisation, such 444 

as the number of partners, while niche-based processes act at a lower level to determine the 445 

identity of these partners.  446 

 447 

Data accessibility 448 

 449 

Data will be deposited in Data Dryad before we submit a revised version of the manuscript 450 
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Tables 573 

 574 

Table 1: Truth table listing all possible outcomes for the propositions “if it is a dodo, it is 575 

extinct” and “if it is abundant, it is generalist”. ‘T’ is ‘True’ and ‘F’ is ‘False’. 576 

Outcome Dodo/Abundant Extinct/Generalist 

A T T 

B F F 

C F T 

D T F 

 577 

  578 
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Table 2: Testing hypotheses 1 and 2 in an ANOVA framework, using abundant specialists 579 

and rare generalists as the reference contrast respectively. RS = rare specialist; RG = rare 580 

generalist; AS = abundant specialist; AG = abundant generalist. Significance codes: 0 ‘***’ 581 

0.001 ‘**’, not significant ‘ns’ 582 

Metric Class Estimate t value P Significance 

Hypothesis 1: Abundant specialist << rare specialist, rare generalist, abundant generalist 

Reference contrast = abundant specialist 

Degree (Intercept) 0.08 4.88 0.00 *** 

 RS 0.48 19.70 0.00 *** 

 RG 0.07 2.87 0.01 ** 

 AG 0.11 4.70 0.00 *** 

Normalised degree (Intercept) 0.08 4.77 0.00 *** 

 RS 0.48 19.00 0.00 *** 

 RG 0.07 2.81 0.01 ** 

 AG 0.11 4.57 0.00 *** 

g (Intercept) 0.09 3.92 0.00 *** 

 RS 0.26 8.11 0.00 *** 

 RG 0.29 9.08 0.00 *** 

 AG 0.11 3.50 0.00 *** 

      

Hypothesis 2: Rare generalist << rare specialist, abundant generalist, abundant specialist 

Reference contrast = rare generalist 

Degree (Intercept) 0.15 8.93 0.00 *** 

 RS 0.41 16.83 0.00 *** 

 AS -0.07 -2.87 0.01 ** 

 AG 0.04 1.83 0.07 ns 

Normalised degree (Intercept) 0.16 8.75 0.00 *** 

 RS 0.41 16.19 0.00 *** 

 AS -0.07 -2.81 0.01 ** 

 AG 0.04 1.76 0.08 ns 

g (Intercept) 0.37 16.77 0.00 *** 

 RS -0.03 -0.97 0.33 ns 

 AS -0.29 -9.08 0.00 *** 

 AG -0.18 -5.58 0.00 *** 

 583 

  584 
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Figure captions 585 

 586 

Figure 1: The mean proportion of hummingbird species classified as rare specialists (‘RS’), 587 

rare generalists (‘RG’), abundant specialists (‘AS’) and abundant generalists (‘AG’) across all 588 

networks, for three generalisation metrics: degree, normalised degree and g. The bold centre 589 

line in each box is the median; the lower and upper hinges are the first and third quartiles, 590 

respectively. The lower whisker indicates the smallest value no less than 1.5 times the inter-591 

quartile range; the upper whisker indicates the largest value no greater than 1.5 times the inter-592 

quartile range. Data outside the whiskers are outlying points plotted as solid black circles. 593 

 594 

Figure 2: Comparisons between empirical networks (A-S) and null model networks in the 595 

proportions of species in each of the abundance-generalisation categories ‘RS’ (rare 596 

specialists), ‘RG’ (rare generalists), ‘AS’ (abundant specialists) and ‘AG’ (abundant 597 

generalists). Error bars represent the 95% confidence intervals of the mean proportion of 598 

hummingbird species in each abundance-generalisation category as predicted by 1000 null 599 

networks. Red circles show the empirically observed mean proportion of hummingbird species 600 

in each category. If the red circle is within the error bars, there were no significant differences 601 

between the observed proportions and the neutrality null model proportions. Percentages in the 602 

top left of each panel give the proportion of networks where empirical proportions were not 603 

significantly different from the null model proportions. Results are shown for each network 604 

(A-S) and for each generalisation metric (Degree, Normalised degree, g). 605 

  606 
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