Isolation and characterization of Clostridioides difficile spores from contaminated single-used surgical gowns

Waterfield, S

http://hdl.handle.net/10026.1/13748

10.1099/acmi.ac2019.po0571

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Isolation and Characterization of *Clostridioïdes difficile* spores from contaminated “single-use” surgical gowns.

Shannon Waterfield¹, Lee Hutt¹, Robert Burky² & Tina Lovleen Joshi¹

¹School of Biomedical Sciences, Faculty of Medicine & Dentistry, University of Plymouth
²Adventist Heath, Yuba City, California, USA.

Introduction

Clostridium difficile is a Gram-positive, spore-forming anaerobe that comprise either toxigenic or non-toxigenic strains. Toxigenic *C. difficile* usually possess Toxin A (TcdA) and Toxin B (TcdB); although some strains can be variant [1]. *C. difficile* can exist in vegetative bacterial form or as metabolically dormant, highly disinfectant resistant spores.

Spores can attach to clinical surfaces for months via structures such as the exosporium and are implicated in organism transmission [2]. *C. difficile* infection (CDI) is the leading cause of antibiotic-and healthcare-associated diarrhoea globally [3]. One reason for high incidence rates is due to the adherence of spores to surgical gowns which can ‘trap’ the spores and transfer them to stainless steel surfaces and hospital floor vinyl [4].

Figure 1: Spore surface of a *C. difficile* clinical isolate. SEM image [1]

Figure 2: Spore surface of a *C. difficile* clinical isolate. SEM image [4]

Aim of Study

To determine whether *C. difficile* can be isolated from "used" hospital gowns. Any presumptive *C. difficile* will also be identified.

<table>
<thead>
<tr>
<th>Suspected C. difficile number</th>
<th>NO2 growth</th>
<th>Growth on CCFA</th>
<th>Odour</th>
<th>Chartruese under UV</th>
<th>Gram Stain</th>
<th>Produces spores</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 1: Phenotypic identification of the suspected *C. difficile* colonies extracted from contaminated gowns.

Methods

• “Used” hospital gowns were suspended in 15ml degassed Brain Heart Infusion broth + 0.1% Sodium Taurocholate (BHIST) and vortexed to dislodge bacteria. Broth was incubated for 3d anaerobically (37°C) and then 4°C o/n to encourage sporulation. *C. difficile* strains DS1813, DS1748, R2021 were positive controls

• Broth was centrifuged at x5000g and resuspended in sterile BHIST. 100ul was spotted onto *C. difficile* selective agar and incubated anaerobically 37°C, 48h. Resulting colonies were analysed for characteristic *C. difficile* colony morphology (Fig 1). Presumptive colonies were streaked onto degassed BHIST agar at 37°C, 48h.

• CDIFF QUIK CHECK COMPLETE® (TECHLAB) was used to identify *C. difficile* from presumptive colonies. Each sample was examined for the production of glutamate dehydrogenase (GDH) and toxins A/B (n=2).

• DNA Extraction: 0.2g Chelex 100 Resin was added to 4ml sterile deionized water and vortexed. 100μl was added to a loop of *C. difficile* in an Eppendorf, and heated to >90°C/12 min. Samples were centrifuged at x8000/12min and supernatant was used as DNA extract. All samples were analysed using 16S-235 and toxin PCR

Results

• 23 colonies were isolated from the gowns. After phenotypic analysis (Table 1) only 8 isolates showed characteristic *C. difficile* growth. CDIFF QUIK CHECK COMPLETE® (TECHLAB) analysis confirmed these results (Figure).

• After PCR analysis via 16S-235SrRNA inter-spacer region [6] and toxin A and toxin B PCR [7], this was reduced to 5 final samples which are presumed to be *C. difficile*.

• These samples are currently undergoing final confirmatory testing at the National Anaerobic Reference unit, Cardiff, UK.

Figure 3: Life cycle of *C. difficile* in the gut. (A) toxicogenic *C. difficile* may be present in healthy human microbiota. (B) dysbiosis occurs (e.g. due to antibiotics) which allows for colonisation of *C. difficile*. (C) *C. difficile* toxins lead to inflammation of the distal gut and thus *C. difficile* mediated disease [5]

Figure 4: Colonies of *C. difficile* CD630 on degassed BHI agar.

Figure 5: Suspected *C. difficile* on BHIST agar.

Figure 6: Suspected *C. difficile* under UV light. Chartreuse

Figure 5: Suspected *C. difficile* on BHIST agar.

Figure 6: Suspected *C. difficile* under UV light. Chartreuse

Conclusions and Future Work

• It was concluded that the surgical gowns from Rideout Hospital, USA, were contaminated with *C. difficile*.

• Future work will include conformational testing of all presumptive *C. difficile* strains at the National Anaerobic Reference Unit, Cardiff, UK.

• Implications include gowns acting as fomites and the need to dispose of gowns immediately after use to prevent spore transfer

• Biocide testing will establish if current infection control measures and disinfectants (sporicides) are working.

• This work aims to limit the prevalence of spores and spread of infection in hospitals.

References

