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Abstract – An analytical study is presented on the flexural buckling of sandwich beams 

considering thermal-induced non-uniform cross-sectional properties. The formula for 

determining the buckling loads of sandwich beams under a linearly varied non-uniform 

temperature distribution scenario, both with and without considering the influence of transverse 

shear deformation, is derived. The effects of local reductions in Young’s modulus and shear 

modulus on the flexural buckling of sandwich beams are discussed. The obtained results 

demonstrate the importance of considering non-uniform cross-sectional properties and 

associated shear effects in the buckling analysis of sandwich beams when they are exposed to 

a thermal environment.  

 

Keywords: Sandwich beam; non-uniform temperature; flexural buckling; shear effect; thermal 

effect. 

 

 

1. Introduction 

 

The flexural buckling of beams/columns under an axially compressive load is normally 

analysed using the Bernoulli–Euler theory, in which the transverse shear deformation effect is 

ignored. The approach is only applicable to homogeneous beams that are not very deep. For 

deep, composite or sandwich beams the transverse shear deformation of the beams could have 

an important influence on the bending, vibration and buckling behaviour of the beams and thus 

should be considered in the analysis. The bending theory of beams with shear effect was 

developed first by Timoshenko in 1921 [1]. However, the theory involves a shear correction 

factor that needs appropriately to represent the associated shear strain energy. Recently, 

Elishakoff et al. [2] presented an excellent literature review on the historical development of 

Timoshenko’s beam theory and the elucidation on how to determine the shear correction factor. 

 

There is increasing use of laminated composite and sandwich beams in building and 

construction industries due to their attractive properties such as light weight, high strength and 

high stiffness [3,4,5,6]. Numerous studies have been published in literature on the buckling 

analysis of laminated and sandwich beams. For instance, Gutierrez and Webber [7] derived a 

differential equation for analysing the wrinkling of honeycomb sandwich beams. The equation 

was solved by using sine functions for the displacement of the buckled face. The obtained 

critical buckling loads were presented for typical beams according to the face-plate thickness 

and core thickness. Farkas and Jármai [8] performed the static bending, shear stresses and 

deflections analyses of sandwich beams made by two rectangular tubes glued by a damping 

layer and presented an optimal design procedure for sandwich beams with constant cross-
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section. Tripathy and Rao [9] presented a study on the stability of curved laminated beams 

made of repeated sub-laminate construction using finite element method and discussed the lay-

up optimization for buckling by ranking individual composite curved beams. Potzta and Kollár 

[10] developed the replacement sandwich beams of building structures and derived 

corresponding stiffnesses of the replacement beams. The effectiveness of the replacement 

beams was demonstrated through the examples of the in-plane and flexural–torsional buckling 

and vibration analyses of high-rise buildings. Chen and Li [11] investigated the axially 

compressed elastic buckling of battened columns in which the shear effect on the buckling of 

columns was considered. Yuan et al. [12] investigated the buckling of castellated steel columns 

subjected to axial compression and examined the effect of web openings on the buckling of the 

columns. Cheng et al. [13] presented a thermal buckling analysis of thin-walled open-section 

columns with non-uniform sectional properties, subjected to axially compressive loads. Vo et 

al. [14] presented the free vibration and buckling analyses of functionally graded sandwich 

beams using a finite element analysis model, which considers shear deformation and thickness 

stretching effects. Costa et al. [15] proposed a new formulation for evaluating the flexural and 

torsional stiffness and the lateral-torsional buckling of multilayer laminated glass beams, which 

can be used to characterize the behaviour of simply supported laminated glass columns and 

beams up to five layers, subjected to various different types of loads. Do and Grognec [16] 

presented a finite element model to analyse the buckling problem of sandwich structures, 

whose core layer is made of a homogeneous foam periodically strengthened by orthogonal 

reinforcements. Rasheed et al. [17] developed a generalized analytical approach for analysing 

the lateral-torsional buckling of simply supported anisotropic hybrid, thin-walled, rectangular 

cross-section beams subjected to pure bending. An excellent literature review was recently 

provided by Sayyad and Ghugal [18] on the bending, buckling and free vibration analyses of 

shear deformable isotropic, laminated and sandwich beams using various different theoretic 

and numerical analysis methods.  

 

The use of laminated composite and sandwich beams in buildings needs to consider the effect 

of thermal environment on their performance [19,20,21,22]. Recently, Li et al. [21] presented 

a spectral element model for analysing thermal effect on free vibration and buckling behaviours 

of laminated composite beams. More recently, Nguyen et al. [22] proposed a new hybrid shape 

functions for buckling and vibration analysis of laminated composite beams under thermal and 

mechanical loads, in which the displacement field was assumed based on a higher order shear 

deformation beam theory. However, neither in Li et al. [21] model nor in Nguyen et al. [22] 

model the non-uniform temperature distribution has been taken into account. The above survey 

of literature shows that, despite the considerable amount of work published in literature on the 

buckling analysis of laminated composite and sandwich beams, there is very little research 

focussing on the effect of the non-uniform mechanical properties induced by the non-uniform 

temperature distribution on the buckling behaviour of laminated composite and sandwich 

beams. It is anticipated that if the mechanical property is not uniform in the cross section of a 

beam, the bending centre of the beam will not be at the geometric centroid of the section. In 

this case either the bending or the shear of the beam will behave differently. In this paper an 

analytical study on the flexural buckling of sandwich beams with non-uniform sectional 

properties is presented. The non-uniform mechanical properties are assumed to be induced by 

the non-uniform temperature distribution in the beam cross-section. The formula for 

calculating the critical buckling load of sandwich beams under a linearly varied non-uniform 

temperature distribution scenario, both with and without considering the effect of transverse 

shear deformation, is derived. 
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2. Buckling analysis model of sandwich beams 

 

Consider the flexural buckling of a symmetric rectangular sandwich beam with thermal-

induced non-uniform sectional properties as shown in Fig.1a. Let t be the thickness of the outer 

layers of the beam, h be the half depth of the middle part of the beam, and b be the width of the 

beam. When the underneath surface of the beam is exposed to an elevated temperature, the heat 

will transfer from the bottom surface to the top surface. Since for most sandwich beams the 

heat transfer is much quicker in the two outer layers than in the middle part the temperature in 

each of the two outer layers can be assumed to be uniformly distributed, whereas the 

temperature in the middle part can be assumed to be linearly distributed along its depth 

direction, as shown in Fig.1b. Because of the non-uniform distribution of temperature in the 

cross-section, the mechanical properties of the beam are expected to be different at different 

places on the cross-section (see Fig.1c).  

 

For some sandwich beams, although the material of the middle part is weaker than that of the 

outer layers, the bending rigidity of the middle part may still not be negligible. Thus, not only 

the shear deformation but also the bending deformation of the middle part need to be considered 

when establishing the equilibrium equations. By doing so, herein, the two outer layers of the 

beam are assumed to deform according to the Bernoulli’s hypothesis and the middle part of the 

beam is assumed to deform according to Timoshenko’s beam theory. For the convenience of 

presentation, the origin of the cross-sectional coordinate system is established at the geometric 

centroid of the cross-section of the beam (see Fig.1a). The axial displacements of the lower and 

upper layers at their own centroid are denoted as u1(x) and u3(x) as indicated in Fig.2. The 

transverse displacements of the two outer layers are assumed to be the same, denoted as v(x). 

Thus, the axial strain in the lower and upper layers can be expressed as follows, 

 

At lower layer: -(h+t)  y  -h 
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The axial strain in the middle part can be expressed as follows, 
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The resultant force of the axial stress on the whole cross-section of the beam can be calculated 

as follows, 
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where E1, E2, and E3 is the Young’s modulus of the materials in lower layer, middle part and 

upper layer, respectively, th1, th2, and th3 is the thermal strain of the materials in lower layer, 

middle part and upper layer, respectively. Similarly, the resultant bending moment of the axial 

stress about z-axis can be calculated as follows, 
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Substituting Eqs.(1-3) into (4) and (5) and using thk = kTk (k=1,2,3) where k is the thermal 

expansion coefficient, Tk is the temperature in lower layer (k=1), middle part (k=2) and upper 

layer (k=3), and Tk = Tk -20 where 20 oC is the assumed ambient temperature, it yields, 
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Note that for given axial force, Nx, and bending moment, Mz, Eqs.(6) and (7) are not sufficient 

enough to determine the three displacement variables (u1, u3, v). An additional equation that 

can be developed is to link the average shear strain and average shear stress in the middle part 

of the sandwich beam. The average shear stress in the middle part can be obtained by examining 

the shear stress in the two outer layers, which can be expressed as follows, 
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where xy is the average shear stress in the middle part, xy with superscript 1 or 3 represents 

the corresponding shear stress in lower or upper layer, N1 and N3 is the axial force in lower and 

upper layer, respectively. The average shear strain in the middle part can be calculated based 

on the axial and transverse displacements of the middle part (see Fig.2) as follows, 
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By applying the shear stress-strain constitutive relation for the middle part material, xy= 

(G21+G23)xy/2, where G21 and G23 is the shear modulus of the middle part material at 

temperatures T1 and T3, respectively, the following equation can be obtained, 
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It is obvious from Eq.(10) that if the shear deformation effect of the middle part is ignored, that 

is (G21+G23)→∞, then the following equation holds, 
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which indicates that the section normal of the middle part of the beam is identical to the section 

normal of the two outer layers of the beam. In this case only two variables are independent 

among the three displacement variables (u1, u3, v) because of the displacement constraint 

condition given by Eq.(11).  
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For a given temperature distribution (that is T1 and T3) Eqs.(6), (7) and (10) can be used to 

determine the three displacement variables (u1, u3, v). For the flexural buckling problem of the 

sandwich beam subjected to an axial compressive load P, the resultant force and resultant 

moment are balanced by the force, P, and moment, Pv, and thus the following expressions hold, 
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Substituting Eqs.(6) and (7) into (12) and (13), it yields, 
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Eqs.(10), (14) and (15) describe the nonlinear load-displacement curve of the sandwich beam, 

subjected to axially compressive loads, under the influence of nonuniform temperature 

distribution. For a give temperature distribution one can use these three equations to determine 

the load-deflection curve of the beam. Assume that when the flexural buckling occurs the 

displacement function of the beam can be approximated as follows, 
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where C1, C2 and C3 are the constants and L is the beam length. Note that, for the flexural 

buckling problem of the beam, it is only the homogeneous form of Eqs.(10), (14) and (15) 

needs to be examined. Substituting Eqs.(16), (17) and (18) into (10), (14) and (15), the 

following 3x3 determinant, representing the coefficient matrix of the homogeneous form of 

Eqs.(10), (14) and (15), is obtained: 
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The condition that the buckling of the beam occurs is when the determinant given by Eq.(19) 

becomes zero, from which the critical buckling load, Pcr = P, can be obtained as follows, 
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It is interesting to notice from Eqs.(14) and (15) that, all terms associated to the thermal 

expansion are located in the right-hand-side of the equations. They thus have no effect on the 

coefficient matrix of the homogeneous form of Eqs.(10), (14) and (15), which indicates that 

the thermal expansions do not affect the critical buckling load, although they may have 

influence on the load-deflection curve of the beam. Note that the critical load given by Eq.(20) 

is only for the flexural buckling of the beam about its major axis (z-axis). Thus, the buckling 

discussed herein is only for beams that are laterally restrained, in which case the flexural 

buckling about y-axis and torsional buckling of the beams are prevented by the lateral 

restraints. 

 

3. Numerical examples 

 

As a numerical example, a sandwich beam with beam depth-to-width ratio of (2h+2t)/b=8/3 

and skin-to-core thickness ratio of t/h=1/3, at different beam length-to-beam depth ratios 

ranging from L/(2h+2t)=2 to L/(2h+2t)=8 is analysed. To demonstrate the effect of temperature 

variation on the critical buckling load of sandwich beams, four different temperature scenarios 

given in Table 1 are considered herein. In all of the four scenarios the temperature of the upper 

layer of the beam is assumed to be in an ambient state, whereas the temperature of the lower 

layer of the beam has a varying temperature from ambient 20 oC in case 1 to 600 oC in case 4. 

The assumed Young’s modulus and shear modulus of the outer layer and/or middle part 

material of the beam at different temperatures are also given in Table 1, which is based on the 

reduction of Young’s modulus of most composite materials [23].  Considering the core material 

is generally weaker than the skin material in most sandwich beams, the Young’s modulus of 

the middle part material of the sandwich beam is assumed to be a half of that of the outer layer 

material of the beam for the same temperature.  

 

Fig.3 shows the calculated critical buckling load curves of the sandwich beam obtained from 

Eq.(20) for the ambient temperature case 1. The three buckling curves shown in the figure 

represent the results obtained from different theories. The first one, denoted as “present 

solution”, is directly calculated from Eq.(20) using the mechanical properties given in Table 1, 

which represents the model presented in this paper. The second one, denoted as “E21=E23=0”, 

is calculated from Eq.(20) using the mechanical properties given in Table 1 except for E21 and 

E23 that are assumed to be zero (i.e. assuming the middle part has no bending rigidity), which 

is normally used for sandwich beams. The third one, denoted as “G21=G23=∞”, is also 

calculated from Eq.(20) using the mechanical properties given in Table 1 except for G21 and 

G23 that are assumed to be infinity (i.e., assuming the middle part has no shear deformation), 

which treats the sandwich beam as a Bernoulli-Euler beam. The critical buckling loads in all 

of the three buckling curves are normalised by a reference load Po = 2Eb(h+t).  
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It can be seen from Fig.3 that, the critical buckling load calculated by ignoring the shear 

deformation is much higher than that calculated from the present model, particularly for beams 

with short length, indicating that the shear deformation of the middle part of the sandwich beam 

has an important effect on the buckling behaviour of the beam. In contrast, the critical buckling 

load calculated by ignoring the bending rigidity of the middle part is consistently lower than 

that calculated from the present model, indicating that the bending rigidity of the middle part 

of the sandwich beam may have some positive effect on the critical buckling load. However, 

the quantity of the effect is dependent on the relative dimensions and relative mechanical 

properties of the middle part to that of the two outer layers. Also, it can be seen from the figure 

that all three critical buckling loads decrease with the increase of the beam length; the 

differences between the three critical buckling loads are also found to decrease with the 

increased beam length. This indicates that the effect of both the shear deformation and bending 

rigidity of the middle part of the sandwich beam on the critical buckling load reduces with the 

increased beam length.  

 

To examine the effect of the temperature-induced non-uniform cross-sectional properties on 

the buckling behaviour of the sandwich beam, Figs.4-6 show the variation of the three critical 

buckling loads of the sandwich beam for three different temperature scenarios (cases 2-4), 

calculated using three different theories as explained in Fig.3. For the convenience of 

comparisons, all critical buckling loads shown in the figures are normalised by using the critical 

buckling load at ambient temperature obtained from Bernoulli-Euler beam theory (i.e. the 

critical buckling load with “G21=G23=∞” shown in Fig.3). It can be seen from these figures 

that, the critical buckling loads calculated from all three different theories are found to decrease 

in different extent with the increase of the temperature or the reduction of the Young’s modulus 

and shear modulus. The gaps between the critical buckling loads obtained from different 

theories are also found to reduce with the increase of the temperature or the reduction of the 

Young’s modulus and shear modulus. It is interesting to notice that the gap between the critical 

buckling load obtained from the “present solution” and that obtained from “G21=G23=∞” 

decreases with the increase of beam length; whereas the gap between the critical buckling load 

obtained from the “present solution” and that obtained from “E21=E23=0” increases with 

increased beam length. Also, because of the non-symmetric mechanical properties caused by 

the non-uniform temperature distribution, the normalized critical buckling load obtained from 

“G21=G23=∞” decreases slightly with the increased beam length. This indicates that, for the 

sandwich beam with non-uniform cross-sectional properties even when the shear deformation 

effect is neglected the critical buckling load is not exactly linearly proportional to the factor 

1/L2. 

 

4. Conclusions 

  

In this paper, an analytical study has been presented on the flexural buckling of sandwich beams 

considering thermal-induced non-uniform cross-sectional properties. The formula has been 

derived for determining the buckling loads of sandwich beams under a linearly varied non-

uniform temperature distribution scenario, both with and without considering the influence of 

transverse shear deformation. The effects of local reductions in Young’s modulus and shear 

modulus on the flexural buckling of sandwich beams have been also discussed. From the results 

obtained the following conclusions can be drawn: 

 

 The thermal expansion induced by the temperature variation in sandwich beams has no 

influence on the buckling loads of sandwich beams, although it may affect the axial and 

bending deformations of the beams. 
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 The bending stiffness of the middle part of sandwich beams may have some positive 

influence on the buckling loads of the beams, depending on its dimensions and material 

properties. Neglecting the bending stiffness of the middle part of a sandwich beam will 

provide an underestimated critical buckling load of the beam.  

 Non-uniform distribution of temperature can lead to non-uniform distribution of 

mechanical properties. The latter can significantly affect the buckling behaviour of 

sandwich beams. 

 The reduction in the Young’s modulus of bottom layer or in the shear modulus of 

middle part near the bottom layer can considerably reduce the buckling loads of 

sandwich beams. The reduction of the buckling load increases with the reduction of 

these two moduli.  

 The transverse shear deformation in the middle part of sandwich beams has a large 

effect on the critical buckling load of the sandwich beams. However, its effect decreases 

with increased beam length.  
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Table 1. Mechanical properties used in examples 

 

Description Parameter Case 1 Case 2 Case 3 Case 4 

Temperature in 

lower layer, oC 

T1 20 200 400 600 

Young’s modulus 

in lower layer 

E1 E 4E/5 3E/5 2E/5 

Young’s modulus 

in middle part 

E21 E/2 2E/5 3E/10 E/5 

Shear modulus 

in middle part 

G21 E/6 2E/15 E/10 E/15 

Temperature in 

upper layer, oC 

T3 20 20 20 20 

Young’s modulus 

in upper layer 

E3 E E E E 

Young’s modulus 

in middle part 

E23 E/2 E/2 E/2 E/2 

Shear modulus 

in middle part 

G23 E/6 E/6 E/6 E/6 

Note: E is a reference Young’s modulus 

 

 

 

 

 

 
     (a)         (b)        (c) 

 

Fig.1 (a) Cross-section of a sandwich beam. (b) Temperature (T) distribution on cross-

section. (c) Young’s modulus (E) distribution on cross-section. 
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(a)                (b)               (c) 

 

Fig.2 (a) Displacement distribution on cross-section of a sandwich beam. (b) Bending strain 

distribution on two outer layers. (c) Shear strain distribution in middle part. 

 

 

 
 

Fig.3 Influence of bending and shear stiffnesses of middle part on critical buckling load of 

sandwich beam (h/t = 3, h/b = 1, Po = 2Eb(h+t)) for temperature case 1.  
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Fig.4 Influence of bending and shear stiffnesses of middle part on critical buckling load of 

sandwich beam (h/t = 3, h/b = 1, Pcro is the critical buckling load shown in Fig.3 with 

“G21=G23=∞”) for temperature case 2.  

 

 

 
 

Fig.5 Influence of bending and shear stiffnesses of middle part on critical buckling load of 

sandwich beam (h/t = 3, h/b = 1, Pcro is the critical buckling load shown in Fig.3 with 

“G21=G23=∞”) for temperature case 3. 
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Fig.6 Influence of bending and shear stiffnesses of middle part on critical buckling load of 

sandwich beam (h/t = 3, h/b = 1, Pcro is the critical buckling load shown in Fig.3 with 

“G21=G23=∞”) for temperature case 4. 


