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Abstract 28 

Integrating wave energy converters into coastal structures such as breakwaters, seawalls or jetties 29 

not only offers benefits in terms of construction costs but also improves wave energy extraction. 30 

In this paper a novel theoretical model based on linear potential flow theory is developed to study 31 

the performance of an oscillating water column (OWC) integrated into a vertical structure in water 32 

of finite water depth. The model has three fundamental advantages relative to previous works: no 33 

thin-wall restriction (the thickness of the OWC chamber wall is considered), no singularities, and 34 

far fewer truncating terms in the eigen-function expansions. The OWC chamber is a vertical 35 

cylinder semi-embedded in the structure with a submerged, open bottom. As water waves impinge 36 

on the structure, the water column in the chamber oscillates and drives an air turbine installed at 37 

the chamber top to extract wave power. Using linear wave theory, the velocity potential in the 38 

water domain is decomposed into scattering and radiation potentials whose unknown coefficients 39 

are determined by the eigen-function matching method. Upon successful validation, the model is 40 

used to investigate the influence of the thickness of the chamber wall and the radius and 41 

submergence of the chamber on wave power absorption. 42 

 43 

Keywords: Oscillating Water Column; Breakwater-integrated OWC; Wave energy; Potential flow; 44 

Excitation volume flow; Hydrodynamic coefficients 45 

 46 

1. Introduction 47 

A large number of wave energy conversion concepts have been proposed since 1970s, which 48 

can be roughly classified as: oscillating water column (OWC) (e.g., [1, 2]), point absorber (e.g., 49 

[3]), attenuator (e.g., [4]), oscillating wave surge converter (e.g., [5]), overtopping (e.g., [6]), and 50 

others. Despite the large number of concepts proposed and investigated so far, only a few wave 51 

energy converters (WECs) have been tested at a large scale, and even fewer have achieved the 52 

fully commercial stage [7, 8]. The challenges in bringing WECs to the market include: high cost 53 

of construction, installation and maintenance; negative environmental impact; poor reliability; and 54 

low power extraction efficiency [9, 10]. It is not easy to solve all these problems concurrently 55 

since some of them might be in conflict – and therein lie the challenges. For example, the 56 

improvement of the reliability of WECs generally results in an increased cost of construction; to 57 

enhance the power capture efficiency more sophisticated systems are typically necessary, but this 58 

very sophistication is generally detrimental to the overall cost and survivability of the system. 59 

The integration of a WEC into a marine structure, e.g., a breakwater, as opposed to its stand-alone 60 

deployment in the open sea is an effective means to overcome a number of these challenges and 61 

significantly increase the attractiveness of wave power exploitation [9, 11]. The integration not 62 

only offers benefits in terms of shared costs of construction, but also improves the robustness of 63 

the WEC and minimizes its environmental impact. Additionally, thanks to the wave power 64 

absorbed by the WEC, wave reflection at the structure is diminished, which is often advantageous 65 

from the points of view of coastal protection and non-interference with shipping. The synergies 66 

between wave energy and marine structures have been investigated in a number of works, e.g., 67 

integration of an array of WECs with a breakwater [12], integration of an OWC into an offshore 68 

wind turbine [13] or breakwater [14].  69 

Among wave energy conversion technologies, OWC systems are especially simple, for the only 70 
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moving mechanical part is an air turbine/generator located above the water; therefore, 71 

OWC-breakwater integration has received considerable attention [9]. Evans and Porter [15] 72 

developed a theoretical model to simulate a two-dimensional (2D) OWC device composed of a 73 

thin vertical surface-piercing barrier in front of a vertical wall. An integral equation for the 74 

horizontal velocity across the gap under the thin barrier was adopted to deal with the singular 75 

behaviour in the velocity field. Theoretical results showed that increasing the distance between the 76 

barrier and the wall decreased the frequency at which resonance occurred. Later, Morris-Thomas, 77 

Irvin [16] examined effect of the front barrier geometry on the performance of the OWC 78 

experimentally. The hydrodynamic efficiency in short waves was found to decrease with the 79 

increase of the barrier’s submergence or thickness. More recently, the impact of the underwater 80 

lips of an offshore OWC device in terms of both thickness and submergence was investigated by 81 

Elhanafi, Fleming [17] with a two-dimensional computational fluid dynamics (CFD) model. By 82 

selecting the optimal combination of the submergence and thickness of the lips, a peak efficiency 83 

exceeding 0.79 was achieved, much larger than the 0.3 for a device with simpler, typical geometry. 84 

Other aspects such as the role of the turbine Power Take-Off (PTO) system and the environmental 85 

conditions in the power extraction of an onshore or bottom-fixed, breakwater-integrated OWC 86 

have also been investigated. Sheng, Alcorn [18] proposed a numerical method based on potential 87 

flow theory to assess the primary energy conversion of two generic OWC WECs (one bottom 88 

fixed and another floating). The hydrodynamics and thermodynamics with consideration of the air 89 

compressibility for different types of the air turbine PTOs (i.e., Wells turbine, impulse turbines and 90 

bi-radial turbines) were coupled in the time-domain, and the numerical results appeared accurate 91 

enough for the OWC power extraction assessment, especially for the bottom-fixed OWC. Lόpez 92 

and Iglesias [19] developed a virtual laboratory based on artificial neural networks that can be 93 

employed to obtain the pneumatic efficiency of a given OWC under specific wave condition, tidal 94 

level and turbine damping. Physical model tests of these parameters were carried out as well [20]. 95 

In order to achieve an optimal energy transfer, Pereiras, Lόpez [21] described a methodology for 96 

matching a nonlinear turbine to the OWC chamber. Elhanafi, Fleming [22] adopted a CFD model 97 

to learn the impacts of both the PTO damping and incoming wave height on the performance of an 98 

onshore OWC. The reflection coefficient and the energy absorption coefficient generally increase 99 

and decrease with wave height. Research has also been directed towards other types of onshore or 100 

bottom-fixed, breakwater-integrated OWCs, e.g., the U-type OWC [23, 24] and the multi-chamber 101 

OWC [25]. Additionally, the integration of OWCs with floating breakwaters was considered by 102 

He, Huang [26], He, Leng [27]. 103 

The above studies are focused on 2D problems of OWC-breakwater integration. In contrast, 104 

there are few studies on its 3D aspects. For experimental work these require a wave basin rather 105 

than a flume, with a scale model of the breakwater as well as the OWC itself [28]. For numerical 106 

work, if the boundary element method is employed, the surfaces of the OWC device and the 107 

surrounding breakwater or coastline must be divided into elements [29]; if the finite element 108 

method is adopted, a numerical wave basin shall be established with the entire water volume 109 

discretized [30]. Due to the considerable experimental and computational cost, 3D studies of 110 

OWC-structure integration are not common. If the shapes of the structure and OWC are regular, 111 

theoretical models may be used to solve the 3D hydrodynamic problem. Martins-rivas and Mei 112 

[31] proposed a theoretical model based on the 3D wave radiation/diffraction theory and the usual 113 

method of eigen-function expansions to study wave power extraction from an OWC at the tip of a 114 
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long and thin breakwater. The thin-walled OWC was represented by a hollow cylinder in their 115 

model, in which the method for solving the integral equation of Evans and Porter [15] was used to 116 

treat the singular behaviours in the velocity field beneath the thin wall of the OWC chamber. The 117 

linearized air compressibility in the chamber was taken into account as part of the PTO system. 118 

The effects of the radius and submergence of the OWC chamber, the air compressibility and the 119 

incident wave direction were investigated. It was found that the free surface outside was strongly 120 

dependent on the incident wave direction, whereas the power extracted was roughly insensitive to 121 

the incident direction. Subsequently, Martins-rivas and Mei [32] applied the same theoretical 122 

approach to a thin-walled OWC installed on a straight cliff-like coast. The performance of the 123 

OWC was found to strongly depend on the incident wave direction. Wave reflection at the coast 124 

could lead to up to a doubling in the power absorbed by the OWC. The role of either the radius or 125 

submergence of the OWC was not considered. This theoretical model was later applied by Lovas, 126 

Mei [33] to a vertical OWC at the tip of a general wedge-shaped coast.  127 

In this context we propose a novel theoretical model based on linear potential flow theory to 128 

evaluate the hydrodynamic performance and power extraction of the OWC. This novel approach 129 

has three fundamental advantages relative to previous works. First, the thin-wall restriction is 130 

removed, i.e., the thickness of the OWC chamber wall is taken into consideration. Second, there is 131 

no singularity. Finally, far fewer truncating terms of the eigen-function expansions are required to 132 

obtain accurate results. The effects of wall thickness, radius and submergence of the OWC on 133 

power extraction can thus be investigated with the present model – as shown below. 134 

The rest of the paper is organized as follows. Section 2 presents the relation between the PTO 135 

system and the hydrodynamic problem. The basic governing equation, the boundary conditions for 136 

wave scattering and radiation problems, and the expressions of the scattering and radiated velocity 137 

potentials in different regions of the water domain are developed in Section 3, alongside the 138 

method for solving the unknown coefficients. The expressions of excitation volume flow and 139 

hydrodynamic coefficients are derived in Section 4. The model validation can be found in Section 140 

5. The influence of the radius, wall thickness and submergence of the OWC chamber on wave 141 

power absorption are investigated in Section 6. Finally, conclusions are drawn in Section 7. 142 

2. Mathematical model 143 

Consider an oscillating water column (OWC) installed on a vertical wall in a water domain of 144 

uniform depth h (see Fig.1). The OWC chamber is composed of a vertical circular cylinder with a 145 

ring shape cross section and it is half embedded in the wall. The outer and inner radii of the OWC 146 

chamber are denoted as R and Ri, respectively. On the seaside, the chamber is open from a finite 147 

submergence, denoted as d, to the seabed. As water waves propagate in the direction of β, the 148 

water column enclosed by the OWC chamber oscillates and drives a Wells turbine (not plotted in 149 

Fig. 1) installed at the chamber top to extract wave power. 150 
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 151 

Fig. 1.  Oscillating water column integrated into a coast/breakwater: (a) bird view; (b) top view. 152 

 153 

As shown in Fig. 1, a general Cartesian coordinate system Oxyz is adopted with the Oz axis at 154 

the location of the symmetrical vertical axis of the OWC pointing upward and the Ox axis along 155 

the waterline at the coast/breakwater. A polar coordinate (Orz) is defined as given in Fig. 1b. 156 

Subjected to regular waves of angular frequency ω with small amplitude, the flow problems 157 

may be treated in the linear potential theory regime in the frequency domain based on the 158 

assumption that the fluid is isotropic, incompressible inviscid, and the time-harmonic flow is 159 

irrotational. The fluid motion can be described by the velocity potential Re[Φ(r,θ,z)e-iωt]

 

, where Φ 160 

is a complex spatial velocity potential independent of time, t, and satisfies the Laplace equation, i 161 

represents imaginary unit. In a similar way, the air pressure inside the OWC chamber can be 162 

written as Re(pe-iωt), where p is the complex air pressure amplitude inside the OWC chamber. 163 

The spatial velocity potential Φ can be decomposed into the wave spatial potential, ΦI, which 164 

represents the wave field when the vertical wall without OWC (i.e., a flat wall) is subjected to 165 

monochromatic incident waves, the diffracted wave spatial potential ΦD induced by the existence 166 

of the OWC, and the radiated wave spatial potential as follows 167 

 I D Rp   = + + , (1) 168 

where ΦR is the spatial velocity potential due to unit air pressure oscillation inside the OWC 169 

chamber. ΦI, ΦD, and ΦR all satisfy the Laplace equation, the boundary condition at the side wall 170 

of the coast/breakwater and the seabed boundary condition. Moreover, ΦD and ΦR must satisfy a 171 

radiation condition at infinite distance. Hereinafter, the sum of the incident and diffracted velocity 172 

potentials, which is the so-called scattering velocity potential (i.e., ΦS=ΦI+ΦD), is adopted for the 173 

sake of simplicity. 174 

Considering the air turbine employed in the OWC is an idealized lossless linear Wells turbine 175 

and assuming the mass flux through the Wells turbines is proportional to the chamber air pressure, 176 

following Sarmento and Falcão [34] and Martins-rivas and Mei [32], the complex air pressure 177 

amplitude, p, is related to the scattering and radiated velocity potentials by: 178 

 ( ) ( )PTO PTO ei a a c c p Q− + + + =   , (2) 179 

where aPTO is used to take into account the effect of air compressibility, and can be expressed as 180 

aPTO =ωV0/(v2ρ0), in which V0 is the air chamber volume, v denotes the sound velocity in air and ρ0 181 

represents the static air density; cPTO is the damping of the PTO system depending on the 182 
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rotational speed of turbine blades, the scales of turbine rotor, the design of turbines and ρ0 as well; 183 

Qe, the so-called excitation volume flow, is the rate of upward displacement of the water surface 184 

inside the column contributed by the scattering potential: 185 

 
i2π

S
e

0 0
0

d d
R

z

Q r r
z




=


=

  , (3) 186 

c and a are hydrodynamic coefficients that can be derived from the volume flow inside the column 187 

induced by the radiated potential (i.e., QR), 188 

 ( )
i2π

R
R

0 0
0

i d d
R

z

c a Q r r
z




=


− − = =

  . (4) 189 

The time-averaged power extraction by the PTO system (i.e., the Wells turbine), P, can be 190 

calculated by: 191 

 
( ) ( )

2

2 ePTO PTO

2 2

PTO PTO
2 2

Qc c
P p

c c a a
= =

+ + +
. (5) 192 

The efficiency of wave power extraction is generally expressed by the relative wave capture 193 

width 194 

 2

in g

2kP kP

P gA c



= = , (6) 195 

where Pin is the incident wave energy per unit width of the wave front; cg is the group velocity of 196 

the incident wave. 197 

Note that Qe, c and a are fundamental for evaluating the performance of the OWC. In order to 198 

obtain these parameters, wave scattering and radiation problems, i.e., ΦS and ΦR, should be solved 199 

first. 200 

3 Solution to scattering/radiated potentials 201 

The governing equation and the boundary conditions for Φχ (χ=S, R) can be written as follows: 202 

 0
z


=


,   z h= − , (7) 203 

 0
z


=


,   iR r R  , z d= − , 0 <π , (8) 204 

 

2

0
z g





 



− =


,   r R , 0z = , 0 <π , (9) 205 

 

2
0, S

i
, Rz g

g






 

 




=
 

− = 
= 



,   ir R , 0z = , 0 2π  , (10) 206 
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 0





=


,   r R , 0h z−   , =0,π , (11) 207 

 0





=


,   iR r R  , h z d−   − , =0,π , (12) 208 

 0
r


=


,   r R= , 0d z−   , 0 π  , (13) 209 

 0
r


=


,   ir R= , 0d z−   , 0 2π  , (14) 210 

 0
r


=


,   ir R= , h z d−   − , π 2π  , (15) 211 

where ρ is the water density and g represents the gravity acceleration. 212 

The entire fluid domain can be divided into three regions: I, inner region enclosed by the OWC, 213 

i.e., r≤Ri, 0≤θ≤2π, -h≤z≤0; II, ring region beneath the OWC chamber, i.e., Ri≤r≤R, 0≤θ≤π, -h≤z≤-d; 214 

III, outside region, i.e., r≥R, 0≤θ≤π, -h≤z≤0. Φχ (χ=S, R) in these three regions are denoted as 215 

in

 , 
ring

  and 
out

 , respectively. 216 

3.1 Expressions of scattering/radiated potentials in different regions 217 

In different regions, with the application of the method of separation of variables, Φχ (χ=S, R) 218 

can be expressed by orthogonal series as follows [35, 36]: 219 

I, inner region 220 

 ( )
( )

( )
( )in i in

, p,

0 i

, , e
m l m

m l l

m l l m l

I k r
r z A Z z

k I k R

 

   
 

=− =

= +


  , (16) 221 

where ,m lA
 is the unknown coefficients to be determined; 

in

p,  is a particular solution, 222 

 
in

p,

0, S

R
i

,









= 
−

=

=


. (17) 223 

 ( )
( )

( )

, 0

, 0

m l

m l

m l

J k r l
I k r

I k r l

=
= 



, (18) 224 

in which Jm and Im denote the Bessel function and the modified Bessel function of the first kind, 225 

respectively. k0 is the wave number and lk (l>0) is the eigenvalue given by [37, 38], 226 

 ( )2 tanl lk g k h = − ,     l=1,2, 3, … (19) 227 
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 ( ) ( )0.5

0 0 0coshZ z N k z h−= +   ; ( ) ( )0.5 cosl l lZ z N k z h−= +   ; (20) 228 

where 229 

 
( )0

0

0

sinh 21
1

2 2

k h
N

k h

 
= + 

 
, 

( )sin 21
1

2 2

l

l

l

k h
N

k h

 
= + 

 
. (21) 230 

II, ring region 231 

 ( ) ( )
( )

( )

( )

( )
( )ring

,0 , ,

0 1

, , cos cos
m l m l

m m l m l l

m l m l m l

I r K r
r z F r C D z h m

I R K R

  



 
   

 

 

= =

  
= + + +      

   
  ,232 

 (22) 233 

where 234 

 ( )
,0 ,0

,0

,0 ,0

1 ln , 0

, 0

m m

m m m

m m

r
C D m

R
F r

r r
C D m

R R

 



 

−

   
+ + =   

  
= 

   
+    

   

, (23) 235 

in which 
,m lC

 and 
,m lD

 are the coefficients to be solved; Km is the modified Bessel function of 236 

the second kind; l  is the l-th eigenvalue which is given by  237 

 
π

l

l

h d
 =

−
, l=0, 1, 2, 3,… (24) 238 

III, outside region 239 

 ( )
( )

( )
( ) ( )out out

, p,

0 0

, , cos
m l

m l l

m l m l

K k r
r z E m Z z

K k R



    
 

= =

= + , (25) 240 

in which ,m lE
 is the unknown coefficients to be determined; and 

out

p,  is a particular solution, 241 

 
Iout

p,

, S

0, R


 




=
= 

=
, (26) 242 

where, following Zheng and Zhang [37], 243 

 ( )
( )

( )
( ) ( )0

I 0

00

2i
, , i cos cos

0

m

m m

m

Z zgA
r z J k r m m

Z
    





=

= − − , (27) 244 

in which εm=1 for m=0, whereas εm=2 for m≠0. 245 

 ( )
( )

( )

, 0

, 0

m l

m l

m l

H k r l
K k r

K k r l

=
= 



, (28) 246 

where Hm denotes the Hankel function of the first kind. 247 

3.2 Method of computation for unknown coefficients 248 

The scattering and radiated spatial potentials as expressed in Sections 3.1 satisfy all the 249 
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boundary conditions shown in Eqs. (7) ~ (12) already. Additionally, the boundary conditions at 250 

r=R and r=Ri, i.e., Eqs. (13)~(15), together with the pressure and velocity continuity conditions on 251 

the interfaces of two adjacent regions should be satisfied as well, which can be used to determine 252 

the unknown coefficients in Φχ. These continuity conditions for Φχ are given as follows: 253 

1) Continuity of normal velocity at the boundary r=Ri: 254 

 

i iin

ring

i

0, 0, ,0 π; and 0, ,π 2π 

, , ,0 π

d z r R h z r R

r h z d r R
r





 





−   =   −   =  
 

= 
 −   − =  



 (29) 255 

2) Continuity of normal velocity at the boundary r=R: 256 

 

out

ring

0, 0, ,0 π

, , ,0 π

d z r R

r h z d r R
r











−   =  
 

= 
 −   − =  



   (30) 257 

3) Continuity of pressure at the boundary r=Ri: 258 

 
ring in

i, , ,0 πh z d r R   = −   − =      (31)  259 

4) Continuity of pressure at the boundary r=R: 260 

 
out ring , , ,0 πh z d r R   = −   − =      (32) 261 

After inserting the expressions of Φχ as given in Section 3.1 into these continuity conditions, i.e., 262 

Eqs.(29)~(32), and making use of orthogonality of trigonometric functions and eigen-functions, 263 

the unknown coefficients in Φχ can be determined. For convenience, details of the derivations are 264 

given in Appendix A. 265 

4 Excitation volume flow and hydrodynamic coefficients 266 

4.1 Excitation volume flow 267 

Once the unknown coefficients are determined, the excitation volume flow Qe as given in Eq. (3) 268 

can be easily calculated by: 269 

 ( ) ( )
D D2
0,0 0,i

e 02 2
10

2π
0

l

l

l l

A AR
Q Z z Z

g k k

 

=

 
= − +  

 
 .  (33) 270 

4.2 Hydrodynamic coefficients 271 

In a similar way, the hydrodynamic coefficients as given in Eq. (4) can be rewritten in terms of 272 

R

,m lA  as: 273 

 ( ) ( ) ( )
R R2
0,0 0,i

R 02 2
10

2π
i 0

l

l

l l

A AR
c a Q Z z Z

g k k

 

=

 
− − = = − +  

 
 .  (34) 274 

The method, as shown in Eq. (4) or Eq. (34), which is derived from the radiated volume flow 275 

inside the column is a straightforward way for calculating the hydrodynamic coefficient, c. 276 

Actually there are two indirect methods as well for evaluating c, the one expressed by far-field 277 

coefficients as 278 
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( )

2
R

,0

2
0

0

1
2

m

m m m

E
c h

H k R






=

=  ,  (35) 279 

which can be derived from Green’s identity [36, 39]; and the other one derived from the excitation 280 

volume flow Qe based on Haskind Relation [32, 39]: 281 

 
( )

( )
2

π 20

e2 0

0
d

8π

Z
c Q

g h


 


=  .  (36) 282 

The comparison of the results of c by using these two indirect methods as given in Eqs. (35) and 283 

(36) with that of the direct method, i.e., Eq. (4) or Eq. (34), can be adopted as an approach to 284 

validate the theoretical model. 285 

5 Model validation 286 

Martins-rivas and Mei [32] solved the hydrodynamic problems from a thin-walled (i.e., Ri=R) 287 

OWC along a straight coast for R/h=0.5, d/h=0.2 subjected to regular waves propagating at 288 

different angles β with different values of kh. The present theoretical model without the thin-wall 289 

restriction is adopted to re-simulate the same case, in which the inner radius is chosen as Ri/h=0.49, 290 

i.e., (R-Ri)/R=0.02, to represent the thin chamber wall. 291 

To make a comparison with the published results, the method as adopted in Martins-rivas and 292 

Mei [32] for nondimensionalizing Qe and hydrodynamic coefficients, c and a, i.e., 293 

( )e eQ Q ARg= , ( ) ( ), ,c a c a R= , is re-employed in the present section. 294 

5.1 Wave scattering problem 295 

The comparison between the present results of the free surface elevation pattern inside and 296 

outside the OWC for kh=1.64 and those of Martins-rivas and Mei [32] is given in Fig. 2. 297 
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 298 

Fig. 2.  Free surface elevation inside and outside the OWC for R/h=0.5, d/h=0.2, kh=1.64, t=π/2ω. 299 

(left) results of Martins-rivas and Mei [32] for thin-walled OWC, i.e., Ri=R; (right) present results 300 

with Ri/h=0.49. The incidence angles β=0, 0.25π, 0.5π. 301 

 302 

In addition, comparison of the excitation volume flow of the OWC as a function of incidence β 303 

for R/h=0.5, d/h=0.2, kh=3.170 and 1.802 by using the present model with that of Martins-rivas 304 

and Mei [32] is illustrated in Fig. 3. 305 

 306 
Fig. 3.  Excitation volume flow of the OWC as a function of incidence β for R/h=0.5, d/h=0.2. 307 

symbols: results from Martins-rivas and Mei [32] for thin-walled OWC, i.e., Ri=R; lines: present 308 

results with Ri/h=0.49. 309 

The excellent agreement of the present results with those of Martins-rivas and Mei [32], as 310 

shown in Figs. 2 and 3, proves that the present theoretical model works pretty well in solving the 311 

scattering problem. 312 

5.2 Wave radiation problem 313 
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Figure 4 illustrates the frequency response of the hydrodynamic coefficients of the OWC with 314 

R/h=0.5, d/h=0.2. It can be learnt that the present results of c and a with Ri/h=0.49, i.e., 315 

(R-Ri)/R=0.02, are in rather good agreement with those under thin-wall restriction [32]. What is 316 

more, results of c for the case with Ri/h=0.4 by using direct method (denoted as DM) and by 317 

adopting the other two indirect methods (denoted as FFC and HR, respectively) agree with each 318 

other pretty well, meaning the correctness of the present model in solving wave radiation problem. 319 

 320 
Fig. 4.  Frequency response of radiation damping and added mass of the OWC with R/h=0.5, 321 

d/h=0.2: (a) radiation damping; (b) added mass. Circles: results from Martins-rivas and Mei [32] 322 

for thin-walled OWC, i.e., Ri=R; lines and crosses: present results. 323 

 324 

Note there is an obvious difference of the frequency response of radiation damping by using 325 

Ri/h=0.4 and Ri/h=0.49, reflecting the significant effect of the OWC chamber’s thickness on the 326 

hydrodynamic characteristics of the OWC along a vertical wall. Influence of the thickness on the 327 

performance of the OWC deserves more attention and such effect will be discussed in the next 328 

section. 329 

6 Results and discussion 330 

Hereinafter, following Lovas, Mei [33], the dimensionless coefficients of Qe and hydrodynamic 331 

coefficients, c and a, are redefined as follows: 332 

 
e e

g h
Q Q

Ahg
= ; ( ) ( )PTO PTO PTO PTO, , , , , ,

g h
c a c a c a c a

h


= ,  (37) 333 

with which, Eq. (6) can be rewritten as 334 

 
( ) ( )

2

PTO e

2 2

g PTO PTO

c Qkhg

c g h c c a a
 =

 + + +
 

.  (38) 335 

Following Martins-rivas and Mei [32] and Lovas, Mei [33], aPTO is calculated based on 336 

ρ/ρ0=1000, v= 340 m/s, h=10 m, and V0=πR2h. The corresponding optimal PTO damping for a 337 

fixed OWC chamber (fixed V0) is obtained by requiring ∂P/∂cPTO=0, 338 

 ( )
22

PTO PTOc c a a= + + .  (39) 339 

6.1 Comparison with an isolated offshore OWC and effect of incident wave direction 340 
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Figure 5 presents the frequency responses of wave excitation volume flux, hydrodynamic 341 

coefficients, turbine parameter and wave power capture factor when the coast/breakwater 342 

integrated OWC suffers from different incident directions. For reasons of symmetry, only the 343 

results for β=π/6, π/4, π/3 and π/2 are presented. For comparison, the results for the same OWC in 344 

the open sea are also displayed [36]. Only one blue dash curve as plotted in each figure of Figs. 345 

5b~5d is used to represent the results of c , a  and PTOc  for the coast/breakwater integrated 346 

OWC, respectively, since they are all independent of β. 347 

For wave scattering problem of the isolated offshore OWC, in the computed range of kh, there 348 

is only one peak of eQ -kh curve at kh≈2.44 (see Fig. 5a). Whereas for the coast/breakwater 349 

integrated OWC, apart from the main peak of eQ -kh curve at kh≈1.73, a second sharp peak is 350 

also observed at a higher frequency, i.e., kh≈4.82. Such a feature can be identified from the view 351 

of natural modes in a closed cylinder in the radiation problem. For the isolated offshore OWC, the 352 

only peak of the c -kh curve occurs at kh≈2.44 (Fig. 5b), which corresponds to a piston-like 353 

motion, i.e., the so-called Helmholtz mode of oscillation. In a coast/breakwater integrated OWC, 354 

the Helmholtz mode cannot exist alone because of the asymmetry of the opening; another mode, 355 

i.e., the sloshing mode, is excited [32], and dominates the water motion inside the OWC chamber 356 

at kh≈4.82. As shown in Fig. 5c, the a -kh performs like a N letter shaped and a two-N letter 357 

shaped curves for an isolated offshore OWC and the integrated case, respectively, and the sign of 358 

a  changes rapidly at the kh where the peak of the c -kh curve occurs. These values of kh can be 359 

called the natural frequencies of the OWC in the absence of the PTO. The spiky behaviour of a  360 

around these natural frequencies is connected to the peak of the c -kh curve. Note that the 361 

chamber coefficient (- PTOa ) is also plotted in Fig. 5d as a gray solid curve, which intersects the 362 

a -kh curve at kh≈(2.48, 4.18) and (1.86, 2.90, 4.90) for different cases. The kh-values where 363 

these intersections occur correspond the resonant frequencies of the OWC with the PTO system. 364 

For wave conditions corresponding to these resonant frequencies, a  and PTOa  cancel each 365 

other, and it can be readily known from Eq. (2) that the air pressure inside the OWC chamber is in 366 

phase with the excitation volume flux. The frequency response of the optimal turbine parameter 367 

PTOc  is illustrated in Fig. 5d, in which PTOc = c  is satisfied at the resonant frequencies. 368 

Compared with the single offshore OWC, the variation of PTOc  for the coast/breakwater 369 

integrated OWC is less marked and less abrupt (except for kh≈4.9), which means that it may be 370 

easier to achieve in practice. 371 

Finally, η as a function of kh for different values of the incident wave angle β is given in Fig. 5e. 372 

It is apparent that η for the isolated offshore OWC reaches the theoretical maximum value (i.e., 373 

1.0) at these two resonant frequencies. Peaks of the η-kh curve for the integrated case are also 374 

observed at the corresponding resonant frequencies. Thanks to the wave reflection from the 375 

coast/breakwater, the value of η for the coast/breakwater integrated OWC at 1.6<kh<3.1 can be 376 

around twice as large as the theoretical maximum for the offshore case. Note that there is a 377 
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frequency between the second and the third resonant frequencies where no power can be 378 

extracted. 379 

   380 

   381 

 382 
Fig. 5.  Comparison for different incident wave directions, β. (a) wave excitation volume flux 383 

eQ ; (b) radiation damping c ; (c) added mass a  and chamber coefficient - PTOa  (gray solid 384 

line); (d) turbine parameter PTOc ; (e) wave power capture factor η. In every case, R/h=0.5, 385 

(R-Ri)/h=0.1, d/h=0.2. Black solid line: isolated offshore OWC. 386 

The effect of the incident wave direction β on eQ  is not obvious (Fig. 5a). As β increases 387 

from π/6 to π/2, this dependence is slightly visible at the natural frequencies. As a comparison, a 388 
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significant influence of β on η can be observed for 1.6<kh<3.1 and 4.9<kh<5.0 (Fig. 5e), where 389 

the more perpendicular the incident wave direction relative to the coast/breakwater, the more wave 390 

power that can be captured. Hereinafter, the effects of the other parameters will all be examined 391 

with β=π/2. 392 

6.2 Radius of the OWC chamber 393 

The coast/breakwater integrated OWCs with R/h=0.3~0.7 are selected as five cases to 394 

investigate the effect of the radius of the chamber on the performance of the OWC (Fig. 6). As R/h 395 

increases, the highest peak of the eQ -kh curve (Fig. 6a) shifts toward a lower frequency and 396 

gains intensity. Similar changes affect c , a  and PTOc  (Figs. 6b~6d). As R/h increases, more 397 

natural frequencies can be observed in the computed range of kh. For R/h=0.3, there is only one 398 

natural frequency in the range of kh plotted, whereas for R/h =0.4, 0.5 and 0.6, there are two. For 399 

R/h=0.7, three natural frequencies are readily observable. 400 

 401 

   402 

   403 
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 404 
Fig. 6.  Comparison for different radii of the OWC chamber, R/h. (a) wave excitation volume 405 

flux eQ ; (b) radiation damping c ; (c) added mass a  and chamber coefficient - PTOa  (thin 406 

solid lines, each of which corresponds to the line of a  plotted in the same color); (d) turbine 407 

parameter PTOc ; (e) wave power capture factor η. In every case, (R-Ri)/h=0.1, d/h=0.2, β=π/2. 408 

Given that the chamber volume V0 (V0=πR2h) is dependent on R, there are also five (- PTOa )-kh 409 

curves plotted in Fig. 6c corresponding to different values of R/h. For R/h=0.3, there are only two 410 

resonant frequencies in the computed range of kh. For the other cases, e.g., R/h =0.6, there could 411 

be four resonant frequencies in the same range of kh. As plotted in Fig. 6d, the larger the R/h, the 412 

higher and more abrupt the variation of PTOc . The plot of η (Fig. 6e) shows that when kh is 413 

between the first two resonant frequencies, as R/h increases, the η-kh curve turns higher and flatter, 414 

and shifts toward lower frequencies. Here, ∆kh is adopted to denote the difference between the 415 

first two resonant frequencies, and η1 and η2 are employed to represent the η-values corresponding 416 

to the first two resonant frequencies, respectively. Figure 7 presents η1, η2 and ∆kh as three 417 

functions of R/h. It is clear that, as R/h increases from 0.3 to 0.7, both η1 and η2 increase in a linear 418 

way approximately, whereas ∆kh decreases dramatically from 1.19 to 0.56. Ideally the R/h ratio 419 

should be selected to achieve the balance between the peak value of η and its bandwidth, so that 420 

the OWC can capture the most power for a specified range of wave conditions. 421 

 422 
Fig. 7.  Variation of η1, η2 and ∆kh with R/h for (R-Ri)/h=0.1, d/h=0.2, β=π/2 423 
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6.3 Thickness of the OWC chamber 424 

Figure 8 presents the results of the OWC chamber with (R-Ri)/h=0.05, 0.1, 0.15 and 0.2, and the 425 

other parameters fixed at R/h=0.5, d/h=0.2, β=π/2. For comparison, some results of the thin-wall 426 

case, i.e., (R-Ri)/h =0, which were previously displayed by Martins-rivas and Mei [47] and Lovas 427 

et al. [48], are replotted in Fig. 8 as well. As (R-Ri)/h increases, the inner radius of the chamber 428 

decreases, and the highest peak of eQ -kh curve loses intensity and moves toward higher 429 

frequency as expected (see Fig. 8a). Meanwhile, the main peak of c  shifts toward higher 430 

frequency and turns higher and narrower. Similar changes are also found for a  and PTOc  as 431 

given in Figs. 8c and 8d. It should be noted from Fig. 8c that with the increase of (R-Ri)/h, the first 432 

two intersection points of a  and - PTOa  get closer and closer to each other horizontally, hence 433 

the frequency band of η-kh as plotted in Fig. 8e turns narrower and narrower, whereas the 434 

frequency position of the middle of the band remains almost the same. In addition, the peaks of η 435 

corresponding to the first two resonant frequencies are lower as (R-Ri)/h increases. Therefore, 436 

generally, the thickness of the OWC chamber should be as small as possible, so that larger and 437 

broader main peaks can be achieved and more wave power absorbed. Needless to say, the 438 

minimum thickness will be dictated in practice by structural considerations. 439 

 440 

   441 

   442 
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 443 
Fig. 8.  Comparison for different thicknesses of the OWC chamber wall, (R-Ri)/h. (a) wave 444 

excitation volume flux eQ ; (b) radiation damping c ; (c) added mass a  and chamber 445 

coefficient - PTOa  (gray solid line); (d) turbine parameter PTOc ; (e) wave power capture factor η. 446 

In every case, R/h=0.5, d/h=0.2, β=π/2. 447 

6.4 Submergence of the OWC chamber 448 

Figure 9 compares the results for the coast/breakwater integrated OWC with different 449 

submergence of the chamber, i.e., d/h =0.1, 0.15, 0.2, 0.25 and 0.3, with R/h=0.5, (R-Ri)/h=0.1, 450 

β=π/2. The results of eQ  (Fig. 9a) show that with the increase of d/h, the highest peak of eQ  451 

turns higher and narrower, and shifts toward lower frequencies. Similar changes apply to c  and 452 

a  (Figs. 9b and 9c). This is reasonable, for the radiation loss becomes weaker. All the resonant 453 

frequencies in the computed range of kh reduce as d/h increases. The larger the d/h ratio, the 454 

higher and more abrupt the variation of the corresponding PTOc  with kh (Fig. 9d), which may be 455 

more difficult to achieve in practice. The plot of η in Fig. 9e shows that, due to the change in the 456 

resonant frequencies, the peaks of η are shifted toward lower frequencies as well with the increase 457 

in d/h. Meanwhile, both η1 and η2 are found to decrease slightly, and the main bandwidth in terms 458 

of ∆kh also decreases. The η corresponding to the kh between the first two resonant frequencies 459 

decreased more dramatically than η1 and η2. It might be concluded that a better result can be 460 

obtained by using a smaller value of d/h. 461 

 462 
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   463 

   464 

 465 
Fig. 9.  Comparison for different submergence of the OWC chamber, d/h. (a) wave excitation 466 

volume flux eQ ; (b) radiation damping c ; (c) added mass a  and chamber coefficient - PTOa  467 

(gray solid line); (d) turbine parameter PTOc ; (e) wave power capture factor η. In every case, 468 

R/h=0.5, (R-Ri)/h=0.1, β=π/2. 469 

Note that d/h cannot be too small in practice, otherwise the opening might not be continuously 470 

submerged, especially when the OWC is subjected to incident waves with a large amplitude, to a 471 

large tidal range, or both. 472 
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7 Conclusions 473 

In this paper a theoretical model based on linear potential flow theory is proposed to study the 474 

performance of an OWC along a vertical coast/breakwater without the thin-wall restriction of 475 

previous works. The water domain is divided into three regions, i.e., the interior region enclosed 476 

by the OWC chamber, the half-ring shaped region beneath the OWC chamber and the exterior 477 

region in front of the coast/breakwater extending towards infinite distance horizontally. Subjected 478 

to small amplitude incident regular waves, wave-structure interaction is decomposed into wave 479 

scattering and wave radiation problems. In order to determine the unknown coefficients of the 480 

scattering and radiated potentials in these three regions, the eigen-function matching method is 481 

employed. The wave power extraction of the OWC with linear PTO system is then evaluated in 482 

the frequency domain. 483 

The influence of the vertical coast/breakwater is briefly discussed by comparing the 484 

performance of the integrated OWC with that of a similar isolated OWC deployed in the open sea. 485 

Finally, the effects of the radius, thickness and submergence of the chamber on the performance of 486 

the OWC along a coast/breakwater are investigated by means of the theoretical model. The 487 

following conclusions may be drawn. 488 

The value of η for the coast/breakwater integrated OWC at specified ranges of kh can be around 489 

twice as large as the theoretical maximum of η for the offshore case due to the wave reflection 490 

from the coast/breakwater. The more perpendicular the incident wave direction relative to the 491 

coast/breakwater, the more wave power that can be captured by the OWC. 492 

As the R/h ratio increases, more natural and resonant frequencies can be observed in the 493 

computed range of kh. The main peaks of η shift toward lower frequencies and the peak values 494 

increase nearly linearly with R/h, whereas the bandwidth reduces drastically. 495 

The smaller the (R-Ri)/h ratio, the larger and broader the main peaks of η, i.e., more wave power 496 

absorbed, and the frequency position of the middle of the band remains almost the same. Needless 497 

to say, an appropriate thickness, rather than zero thickness of the OWC chamber, will be dictated 498 

in practice by overall considerations, including not only wave power extraction but also structural 499 

survivability. 500 

With the increase of d/h, the peaks of η are shifted toward lower frequencies. Meanwhile, both 501 

η1 and η2 are found to decrease slightly, and the main bandwidth in terms of ∆kh is reduced. 502 

To capture wave power on a large scale, it is expected that multiple OWCs along a 503 

coast/breakwater will be required. It is possible to extend the present theoretical model to multiple 504 

OWCs, as will be reported elsewhere. 505 

 506 
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Appendix A. Integral equations of the scattering and radiation problems 511 

After inserting Eqs. (16) and (22) into Eq.(29), multiplying both sides by Zζ(z)e-iτθ and 512 

integrating for z[-h,0] and θ[0,2π], for any pair of integer (τ, ζ), it can be obtained that 513 
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. (A.3) 518 

After inserting Eqs. (22) and (25) into Eq.(30), multiplying both sides by Zζ(z)cos(τθ) and 519 

integrating for z[-h,0] and θ[0,π], for any pair of integer (τ, ζ), we have  520 
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. (A.7)  525 

After inserting Eqs. (16) and (22) into Eq.(31), multiplying both sides by cos[βζ(z+h)]cos(τθ) 526 

and integrating for z[-h,-d] and θ[0,π], for any pair of integer (τ, ζ), it can be obtained that 527 
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After inserting Eqs. (22) and (25) into Eq.(32), multiplying both sides by cos[βζ(z+h)]cos(τθ) 533 

and integrating for z[-h,-d] and θ[0,π], for any pair of integer (τ, ζ), we have 534 
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Eqs.(A.1), (A.4), (A.8) and (A.11) form a linear algebraic system, which can be used to solve 538 

,m lA
, 

,m lC
, ,m lD

 and 
,m lE

 numerically after truncation. In the present model, the infinite 539 

terms of e-imθ/cos(mθ), and Zl(z)/cos[βl(z+h)] are truncated at m=M and l=L, respectively. Accurate 540 

results can be obtained by choosing M=12, L=20. 541 

 542 
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