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Abstract: Benthic ecosystems are chronically undersampled, particularly in 13 

environments >50m. Yet, a rising level of anthropogenic threats makes data 14 

collection ever more urgent. Currently, modern underwater sampling tools, 15 

particularly Autonomous Underwater Vehicles (AUV), are able to collect vast image 16 

datasets, but cannot bypass the bottleneck formed by manual image annotation. 17 

Computer Vision (CV) offers a faster, more consistent, cost effective and a sharable 18 

alternative to manual annotation. We used Tensorflow to evaluate the performance 19 

of the Inception V3 model with different numbers of training images, as well as 20 

assessing how many different classes (taxa) it could distinguish. Classifiers (models) 21 

were trained with increasing amounts of data (20 to 1000 images of each taxa) and 22 
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increasing numbers of taxa (7 to 52). Maximum performance (0.78 Sensitivity, 0.75 23 

precision) was achieved using the maximum number of training images but little was 24 

gained in performance beyond 200 training images. Performance was also highest 25 

with the least classes in training. None of the classifiers had average performances 26 

high enough to be a suitable alternative to manual annotation. However, some 27 

classifiers performed well for individual taxa (0.95 sensitivity 0.94 precision). Our 28 

results suggest this technology is currently best applied to specific taxa that can be 29 

reliably identified and where 200 training images offers a good compromise between 30 

performance and annotation effort. This demonstrates that CV could be routinely 31 

employed as a tool to study benthic ecology by non-specialists, which could lead to a 32 

major increase in data availability for conservation research and biodiversity 33 

management.  34 

Key words: Benthic Ecology, Computer Vision, Automated Image Analysis, 35 
Automated species identification   36 

Introduction  37 

Marine ecosystems cover the majority of Earth’s surface but benthic ecologists and 38 

biodiversity mangers have long been confronted with a shortage of data (Jongman 39 

2013, Borja et al. 2016) regarding its composition and functioning. With increasing 40 

anthropogenic pressure, management measures need to be implemented urgently 41 

(Van Dover et al. 2014, Danovaro et al. 2017). These conservation measures must 42 

be based on a solid understanding of taxonomic diversity and ecological dynamics of 43 

habitats considered (Hernandez et al. 2006). In many cases, that knowledge is 44 

lacking and specialists agree that data collection must be increased to tackle the 45 

challenge (Costello et al. 2010, Borja et al. 2016). The amount of data currently 46 

available on benthic ecosystems is always limited by how many samples can be 47 
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collected, stored, and processed at a time. Since the 19th century, various 48 

technological innovations have attempted to bypass this bottleneck.   49 

Benthic ecosystems are traditionally sampled by trawls, cores and other physical 50 

means. These physical samples are costly to collect and process, and logistically 51 

challenging to store (Clark et al. 2016). While physical samples remain the mainstay 52 

of benthic surveys, use of underwater imaging technologies is increasingly popular 53 

among marine ecologists (Solan et al. 2003, Bicknell et al. 2016, Brandt et al. 2016, 54 

Romero-Ramirez et al. 2016). These technologies offer a less invasive, more cost 55 

effective method of survey, and storage space for image data is virtually unlimited 56 

(Mallet & Pelletier 2014). Underwater imaging is now regularly utilised alongside 57 

other sampling tools to provide a comprehensive view of the marine environment.  58 

Modern underwater sampling vehicles, and particularly Autonomous Underwater 59 

Vehicles (AUV), have great potential in providing the step-change in the rate of data 60 

gathering that is needed to support sustainable marine environmental management. 61 

They are capable of collecting large numbers of images of the sea bed in a single 62 

deployment (Lucieer & Forrest 2016, Williams et al. 2016). For example, a 22 hour 63 

AUV dive can deliver more than 150,000 images of the seafloor along with other 64 

types of environmental data (Wynn et al. 2012). Comparatively, trawls and Remotely 65 

Operated Vehicles (ROV) cover less ground per dive and the ship and its crew are 66 

unable to operate any other benthic equipment while they are deployed (Brandt et al. 67 

2016, Clark et al. 2016).  68 

To translate the information contained in images into semantic data that can then be 69 

used in statistical analysis, a step of manual analysis (or annotation) is conducted by 70 

trained scientists. Human observers, even highly-trained, do not achieve 100%  71 
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correct classification rates and are highly inconsistent across time and across 72 

annotators (Culverhouse et al. 2003, Culverhouse et al. 2014, Beijbom et al. 2015, 73 

Durden et al. 2016). Besides, manual image annotation results are subject to 74 

observer bias, meaning interpretations vary depending on the annotators experience 75 

and their mood changes across the analysis process (tiredness, boredom or stress, 76 

etc…) (Culverhouse et al. 2003, Durden et al. 2016). The results (format, taxonomic 77 

resolution and nomenclature) of these analyses also tend to differ from one 78 

institution, project or individual annotator to another. This lack of standardisation 79 

makes merging and comparing datasets difficult (Bullimore et al. 2013, Althaus et al. 80 

2015, McClain & Rex 2015), and the data quality is not always consistent. More 81 

importantly, manual analysis is a time consuming process, which forms the current 82 

bottleneck in image based marine ecological sampling (Edgington et al. 2006, 83 

Beijbom et al. 2015, Schoening et al. 2017). The growing trend towards use of AUVs 84 

for seafloor biological survey will only worsen this situation.  85 

Artificial intelligence (AI) and computer vision (CV) provide potential means by which 86 

to both accelerate and standardise the interpretation of image data (Culverhouse et 87 

al. 2003, MacLeod et al. 2010, Beijbom et al. 2012, Favret & Sieracki 2016). 88 

Although using AI for biological research has a long history (Rohlf & Sokal 1967, 89 

Jeffries et al. 1984, Gaston & O'Neill 2004), it has always been challenging to 90 

implement for non-specialists and requires skills and materials that most biologists 91 

do not have access to (Gaston & O'Neill 2004, Rampasek & Goldenberg 2016).  92 

CV has been successfully applied to benthic species identification by a growing 93 

number of studies (Edgington et al. 2006, Beijbom et al. 2015, Marburg & Bigham 94 

2016, Manderson et al. 2017, Norouzzadeh et al. 2018, Schneider et al. 2018) but 95 

has yet to be made into an easy to use tool that any biologist in the field can 96 
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implement as an alternative to manual image annotation and integrate with previous 97 

analysis. Multiple potential commercial applications, the availability of new tools as 98 

open software, as well as the improvement of hardware capacity are driving new 99 

developments in AI (e.g. neural networks and deep learning). This is likely to change 100 

how AI can be employed in the field of scientific research (Rampasek & Goldenberg 101 

2016, Weinstein 2018). In parallel, new image analysis and data science software 102 

allow an easier and more efficient integration of various tools into the research 103 

process, from data collection to final scientific or public outreach material (Gomes-104 

Pereira et al. 2016). These new technologies are potentially enabling full automation 105 

of the annotation process and could revolutionise ecological research (Weinstein 106 

2018).  107 

While the principle of automated classification (automated assignation of pre-108 

established classes to objects on images) has been validated, few practical 109 

examples exist of AI-based methods used to identify benthic animals from images 110 

acquired by AUV. Consequently, implementing an automated species classifier is a 111 

potentially time consuming investment for an uncertain return. Relying on proven 112 

manual methods remains the safe option for researchers. Practical guidance is 113 

needed to help ecologists decide whether adopting AI and CV is feasible and would 114 

fit their dataset and scientific objectives.  115 

To make that decision, benthic ecologists need to know:  116 

 What level of accuracy and uncertainty can be expected from CV annotation 117 

and does it match or approximate the accuracy of human annotators. 118 

 How much material is needed to train a classifier and is a limited amount 119 

obtained from a single study sufficient. 120 



6 
 

 How to assess their own dataset to decide whether use of CV is appropriate.    121 

In this study, we investigate these issues by using an open access algorithm to build 122 

a Convolutional Neural Network (CNN) to identify benthic animals in seafloor 123 

images, obtained from a single deployment of the UK’s Autosub6000 AUV. 124 

Technically speaking, we seek to train an automated classifier that is able to 125 

determine which taxa an animal on an image most likely belongs to, using a list of 126 

pre-defined taxa (or classes). Specifically we ask, 1) what impact does the number of 127 

images, on which the classifier is trained, have on its performance? and 2) What 128 

impact does the number of classes, on which the classifier is trained, have on its 129 

performance? In addition, we provide a case study in the application of CV to an 130 

unbalanced ecological dataset.  131 

Method 132 

Study area and data collection: 133 

All the images used in this study were collected by the UK’s national AUV 134 

Autosub6000 in May 2016 as part of the NERC funded DeepLinks (JC136) research 135 

cruise. The images were taken as part of a 1880 m long transect at station 26 of that 136 

cruise at 1200 meters depth on the north-east side of Rockall Bank, N.E. Atlantic. 137 

This region was selected for the study due to the flat topography and low likelihood 138 

of disturbance, making it ideal for AUV deployment. The AUV was equipped with a 139 

downward facing Grasshopper2 GS2-GE-50S5C camera from Point Grey Research. 140 

The AUV was flown at 1.1ms-1 speed, at 3m ±0.1 m off bottom and took images 141 

every second, resulting in near overlapping image coverage. The surface area of 142 

each image is between 1 and 2.5 m2, and the resolution is 2448 x 2048 at 5 mega 143 

pixels.   144 
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In total, 1165 raw photos of the seabed were manually annotated by a single 145 

observer with the Biigle 2.0 software (Langenkämper et al. 2017) using a regional 146 

catalogue of Operational Taxonomical Units (OTU) developed (Howell & Davies 147 

2016). Within the Biigle 2.0 software, location (X and Y coordinates in pixels within 148 

the photo for point annotations, or X, Y and radius for individuals marked using a 149 

circle) and identity of individual OTUs annotated within each image was recorded 150 

and stored. For each OTU, all individual annotations were visually inspected using 151 

the “Largo” evaluation tool in Biigle 2.0, to ensure consistency in identification and 152 

reduce error. 153 

Image data 154 

Manual image annotation resulted in a dataset consisting of 41208 individuals 155 

belonging to 148 OTUs. Each individual was then cropped from the raw image, 156 

together with its assigned OTU label, using a custom Python (www.Python.org) 157 

script. For each annotation, a square of 40 pixels or more, positioned manually on X 158 

and Y coordinates of the centre of the animal, was fitted and cropped out. For 159 

animals bigger than 40 pixels, the size of the square was manually set to encompass 160 

the whole individual. These cropped image slices and associated OTU labels (to 161 

become classes in the model training design) formed the input used in the CNN.  162 

Tensorflow and transfer learning 163 

Rather than train our own neural network, we used transfer learning (Pan & Yang 164 

2010) to retrain the Inception V3 model (Szegedy et al. 2016), a CNN built in the 165 

freely available library Tensorflow (Abadi et al. 2016). 166 

CNNs are a particular architecture of neural networks, more specifically, deep 167 

learning, particularly suited to image analysis (Krizhevsky et al. 2012, LeCun et al. 168 
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2015). A CNN has the capacity to detect and match patterns in images thereby 169 

“learning” what features are relevant to differentiate objects and, subsequently, 170 

classify them accordingly.  171 

Tensorflow (TF) is a C++ based library but has a Python Application Programming 172 

Interface (API) that makes it easier to train, tune and deploy neural networks. 173 

Transfer learning is a method allowing a CNN built on a large dataset to be re-174 

repurposed into a classifier capable of distinguishing between classes it was not 175 

initially trained on. The strength of this method is that the dataset on which it is 176 

transferred does not need to be as large as it should be to train a CNN from the 177 

beginning.  Here, we were able to train a classifier with a tens to hundreds of images 178 

per class (in our case, OTUs) instead of millions. 179 

Classifier training and testing 180 

A random 75-25% split was applied to every OTU in order to separate images used 181 

for training the classifier and those used for testing. The training and test data sets 182 

for all OTUs were then combined into single ‘training’ and ‘test’ datasets.  183 

The OTUs the classifier was trained to identify are referred to as classes and only 184 

those OTUs for which there were a sufficient number of image slices (individual 185 

observations) available were selected for use in training. The minimum number of 186 

images needed for training was set to 20. This means that for an OTU to be included 187 

in the study at least 27 image slices were needed, 20 for training and 7 for testing. 188 

Out of the 148 OTUs observed, 52 were above that threshold. The remaining 96 189 

OTUs represented 3.19% of the total number of individual annotations and were 190 

removed from the dataset. 191 
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The classifier was trained on the training dataset and then predictions were made on 192 

the test dataset. For each cropped image slice in the test dataset, TF gave a score 193 

for each of the possible OTU classes for which it had been trained. The scores range 194 

from 0 to 1 (the sum of scores for all classes being 1) and represent the model’s 195 

confidence that the slice belongs to the corresponding class. The final prediction was 196 

the OTU class that received the highest score. The prediction was then compared to 197 

the manually assigned OTU class. 198 

To measure the effect of the number of training images (or limit) on the accuracy and 199 

confidence of the predictions, the training data set was filtered so each OTU class 200 

was represented by 20, 50, 100, 200, 500, and 1000 images (Table 1). A classifier 201 

was then trained on each of these six pools of images and tested using the test data 202 

set.  Only seven OTUs were frequent enough to be used with these six limits (Figure 203 

1).   204 

The combination of groups and limits is referred to as treatments and designation of 205 

each treatment follows the nomenclature in table 1 (e.g. A1000 is group A, limit 206 

1000). Each treatment was repeated 10 times with different random splits between 207 

testing and training data.  208 

To measure the effect of the number of OTU classes used to train the CNN on its 209 

capacity to correctly classify the test dataset, we used three training datasets each 210 

with different numbers of classes (referred to as groups) (Table 1). The number of 211 

classes is defined by the number of available images per OTU so classifiers can be 212 

trained on a set number of images for every class while retaining enough images for 213 

testing. Group A contained 7 classes for which more than 1000 images was 214 

available; group B contained 27 classes for which more than a 100 images were 215 
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available; and group C contained 52 classes for which more than 20 images were 216 

available.  217 

Within each group, classifiers were trained with all six pools of images (Table 1).  218 

Note that when the limit is above the available number of images, the classes with 219 

less images were trained with the maximum number available regardless of the limit. 220 

This results in class imbalance in the model training for some treatments in group C 221 

with more than 20 images and in B with more than 100 images (balanced treatments 222 

are listed in Table 1).  To assess the effect of the number of OTU classes used to 223 

train the CNN on its capacity to correctly classify the test dataset only balanced 224 

designs were used. 225 

In total, 180 (3x6x10) classifiers were trained and tested. All the CNNs were trained 226 

in the Google Cloud ML (https://cloud.google.com/) remote computing facility.  227 

To be applied to a “real life” ecological study, the classifiers have to maximize 228 

performances while minimizing the initial effort needed to build the training dataset. 229 

To assess appropriate use of CV on a ‘real life’ dataset we considered all possible 230 

combinations of numbers of training image and numbers of OTU classes in an 231 

unbalanced design. Average performances and individual OTU performances were 232 

assessed.    233 

 234 

Analysis and performances evaluation 235 

Considering each class, the observation can be a presence (the OTU is present on 236 

the image) or an absence (the OTU is not on the image and another OTU is). The 237 

different possible outcomes or predictions of the classifier are detailed in Table 2. 238 
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The respective number of each outcome type (the confusion matrix) was used to 239 

calculate performance metrics. 240 

 241 

The classification accuracy is the percentage of predictions that are correct 242 

(prediction matches observation) and is often used to evaluate performances in ML 243 

studies. This measure ignores the differences between classes, thus we used two 244 

model evaluation metrics which rely on a confusion matrix (Manel et al. 2001) 245 

explained in Table 2.    246 

- Sensitivity, also referred to as true positives rate or recall. It varies between 0 247 

and 1. It quantifies the proportion of individuals of a given OTU in the testing 248 

set that are correctly identified. A value of 1 means that all individuals of a 249 

given OTU are identified as such.  250 

 251 

- Precision, or Positive Predictive Value. It varies between 0 and 1. It 252 

quantifies the proportion of true positives among the individual identified as a 253 

given OTU. A value of 1 means all the individual identified as a given OTU 254 

class are indeed that OTU.  255 

 256 

Average and standard deviation for all metrics were calculated for each class within 257 

each treatment and then averaged over other grouping factors. This gave an 258 
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estimation of the overall performance of the classifiers. The performances of the 259 

classifiers for each individual class were also carefully analysed.  260 

Differences in metrics were statistically tested with a permutation-based analysis of 261 

variance in the “lmPerm” package in R (Wheeler & Torchiano 2010). We report p-262 

values classified with five levels of significance: more than 0.05 or non-significant, 263 

less than 0.05, less than 0.01, less than 0.001 and less than 0.0001.  Relationships 264 

between number of images and performance were extrapolated with a neural 265 

network regression in the “nnet” package in R (Ripley et al. 2016) projected over 266 

1000 to 10000 images. All data analyses were carried out in R (Team 2014) using 267 

the “tidyverse” package (Wickham 2017). 268 

 269 

Results  270 

The results are presented in three sections. First, questions related to the impact of 271 

the number of training images are addressed, then the effect of the number of 272 

classes in the training set is assessed, and finally the results relevant to choosing the 273 

best method in our case study are presented.  274 

Impact of the number of training images on performance  275 

Average performance, measured as both sensitivity and precision, increases with an 276 

increasing number of images used (Figure 2). For sensitivity, there is an average 277 

increase from 0.64 to 0.78 when moving from 20 to 1000 images, respectively. This 278 

is mirrored by increases in precision from 0.63 to 0.75 when moving from 20 to 1000 279 

images, respectively. Non-linear extrapolations of average sensitivity and precision 280 

show that performances reached with 1000 training images may be close to an 281 
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asymptote and performances obtained with additional training material probably 282 

plateau below 0.78 for sensitivity and 0.75 for precision (Figure 2). This suggests 283 

that the model is unable to achieve perfect performance regardless of how many 284 

additional images are used in training.  285 

 286 

The number of images has a clear positive effect on performances. For almost all 287 

pairs of models compared in (Figure A1), performance values are statistically 288 

significantly different (p < 0.05) and very often, significance is very high (p-value < 289 

0.0001). There are a few exceptions like between A20 and A50 classifiers where p-290 

value > 0.05 for sensitivity and between 0.01-0.05 for precision or the B1000 291 

classifier, for which there is no significant difference between B500 and B200 in 292 

sensitivity. However, measured difference in performance between sequential 293 

models becomes vanishingly small at higher numbers of training images, such that 294 

the difference between A200 and A1000 classifiers is 0.04 for sensitivity and 0.05 for 295 

precision. This suggests little to no improvement is gained in model performance by 296 

using more than 200 training images.  297 

 298 

There are strong between-OTU differences in classifier performances (Figure 3). All 299 

classifiers have high sensitivity for OTU261 and OTU339, even the A20 classifier 300 

(0.88 and 0.77, respectively). For OTU2 and OTU23, classifiers have more variable 301 

and lower sensitivity regardless of the number of training images used. OTU261 is 302 

very constant in shape and colour and has a distinctive pattern on its outside. 303 

OTU339 can be in different pose or orientation within an image but has a number of 304 

distinguishing features such as its reflective eyes, and its long, often spread-out 305 
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limbs.  OTU2 and OTU23 are both anemones. OTU2 is a cerianthid (a tube 306 

anemone) of various size and orientation and OTU23 is a 307 

Halcampidae/Edwardsiidea like anemone of very small size. 308 

The OTUs for which precision is highest are not necessarily those for which 309 

sensitivity is highest. The highest precision observed was for OTU261 but the 310 

second highest precision observed was for OTU603, which has a lower sensitivity. 311 

For some classes (OTU261 or OTU339), precision is lower with 50 training images 312 

compared to 20 training images.  313 

 314 

Impact of the number of classes on classifier performance 315 

Classifiers trained with 7 classes (group A) had significantly better sensitivity (Figure 316 

A1) and precision than equivalent classifiers trained on more classes but the same 317 

number of images (Figure 4). Variability in performance was also lower for classifiers 318 

trained with fewer classes. Average sensitivity decreased from 0.71 to 0.38, and 319 

average precision decreased from 0.69 to 0.32, when moving from 7 to 27 classes. 320 

This suggests a negative effect of the number of classes on performance; however, 321 

on average, there is only a minor drop in performance (0.018 in sensitivity and 0.035 322 

in precision) between classifiers trained on 27 and 52 classes. Interestingly, B100 323 

and C100 both have sensitivity of 0.38 (no statistical difference) and C20 has higher 324 

(+ 0.02) sensitivity than B20.  325 

OTUs that perform well in a group tend to perform well in others. OTU261 and 326 

OTU339 are in the top 10 for each group although their performances are lower in 327 

group B and C.  328 
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 329 

Application of CV to an unbalanced ecological dataset 330 

When considering all treatments in an unbalanced design (Figure 4), the average 331 

sensitivity per treatment ranges from 0.32 to 0.78. The highest sensitivity was 332 

achieved by the A1000 classifier (7 classes, with 1000 training images in each class) 333 

while the lowest was achieved by the B20 and C20 classifiers (27 and 52 classes, 334 

respectively, and 20 images in each class). A1000 also had the highest precision 335 

(0.75), with the lowest precision observed in the C20 classifier (0.20). Sensitivity of 336 

the C1000 classifier (where class imbalance is highest) was lower than in the C100 337 

and C200 classifiers but precision simply increases with the number of training 338 

images, although this could be an artefact driven by the improvement of precision on 339 

the most abundant classes.  340 
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When considering individual OTUs, performance was unacceptably low for most, but 341 

not all as some had sensitivity and precision greater than 0.85. Based on average 342 

sensitivity across all treatments, the top 10 and the bottom 10 OTU classes were 343 

identified.  The top 10 classes were large animals with consistent or distinctive 344 

shape, colour and patterning. They were not necessarily the most abundant classes 345 

as six of them were only present in group C, for which there are less than 100 346 

training images, and only two in A, for which there are at least 1000 training images. 347 

The two of these OTU present in group A had better average precision than any 348 

other OTU class in the top 10. Those OTU classes with the worst performances are 349 

generally those for which there are fewer training images (group C). They also tend 350 

to be smaller organisms, have colours similar to the background and have very 351 

variable shapes and sizes.  352 

In this dataset, CV could be applied to OTU261 and OTU339. These OTUs were 353 

both very abundant in the study area, justifying automated annotation, and they both 354 

had very high performances, making their identification by the classifier reliable 355 

(Figure 5). 356 

 357 

The performance of CV for OTU261 and OTU339 was maximised in the A1000 358 

classifier with only 7 classes and 1000 training images. The A200 classifier also 359 

achieved performances close to A1000 despite being trained on five times less 360 

images. For OTU261, even the A20 and A50 classifiers achieved sensitivity and 361 

precision greater than 0.86, and differences between the A20, A50 and A100 362 

classifiers were not statistically significant (Figure 5). 363 



17 
 

Sensitivity in the C1000 classifier was 0.92 and 0.89 for OTU261 and OTU339, 364 

respectively, which is significantly lower than A1000 (p-value <0.0001 for both – 365 

Figure A2 and A3) but only a marginal difference (0.03 each). For OTU261, the C200 366 

classifier achieved lower sensitivity than the A200 but they had equal precision. For 367 

OTU339, precision is also the same in A200 and all C classifiers (Figure A4). Note 368 

that for both OTUs, precision of all treatments in C were either not significantly or 369 

barely significantly different (p-value above 0.01). Thus, C classifiers (with 52 370 

classes) achieve performances almost as good as A classifiers when training on 200 371 

or less images.   372 

Group B classifiers tended to show slightly lower sensitivity than A classifiers and 373 

slightly lower precision than C, although often not significantly different. 374 

 375 

Discussion 376 

In this study, our purpose was to test the capacity of a transferred CNN classifier 377 

(partially trained on a different dataset) to identify benthic animals and, by extension, 378 

to test if this methodology can be successfully applied in ecology by non-specialists 379 

with a relatively small data set, open-source software and libraries, as well as a short 380 

investment in time after manual image annotation.  381 

Overall performances  382 

Our classifiers achieved maximum average performance of 0.78 in sensitivity and 383 

0.75 in precision. In other studies, performances achieved through manual 384 

annotation range from 50 to 95% for benthic fauna (Beijbom et al. 2015, Durden et 385 

al. 2016) and 84 to 94% accuracy for plankton (Culverhouse et al. 2003). There is no 386 
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consensus on what is an acceptable error rate in the ecological literature but, to be 387 

competitive with experts, automated identification performances should be towards 388 

the higher end of those achieved manually. In this regard, Culverhouse et al. (2014) 389 

report an anecdotal value of 0.9 cited by experts. Previous studies on marine 390 

ecosystems sampled via images that have attempted to automatically classify 391 

multiple benthic megafaunal taxa with various methods sometimes achieve 392 

performances comparable to those of experts. Beijbom et al. (2012) found average 393 

accuracies up to 97% when classifying different coral species in shallow reefs. 394 

Schoening et al. (2012) found an average sensitivity of 0.87 and precision of 67% 395 

when classifying deep benthic megafauna in the Arctic. Marburg and Bigham (2016) 396 

found 89% accuracy when classifying benthic mobile megafauna off the Oregon 397 

coast. When considering other faunal groups, CV can achieve even higher 398 

performances, for example, Siddiqui et al. (2018) classified fish species with up to 399 

96.7% average accuracy.  400 

Even at their best performances, our classifiers would misclassify more than one out 401 

of 5 observations if they were used to make novel predictions. This is not good 402 

enough to be considered a suitable replacement for manual annotation. To be the 403 

tool benthic ecologists need, average performances need to be increased by at least 404 

10 or 15%.  405 

Impact of the number of images in training on performances  406 

In our study, average performance measured as both sensitivity and precision 407 

increased with the number of images used in training. Performances obtained with 408 

1000 training images are significantly better than that obtained with fewer images but 409 

only marginally so than those obtained with five times less (200) images. 410 
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Extrapolation of the data suggests that performances may never greatly exceed 411 

those obtained with 1000 training images regardless of how many images are used.  412 

It has been generally demonstrated that more data is preferable when modelling 413 

(Enric et al. 2013) and training classifiers (Lu & Weng 2007, Maxwell et al. 2018). 414 

Unsurprisingly then, our results suggest that the number of training images has a 415 

clear positive effect on performance, particularly on sensitivity. Sun et al. (2017) 416 

tested their generalist object classifiers with 10, 30 and 100 million images and 417 

observed a clear increase in performance. Siddiqui et al. (2018) also found that 418 

increasing the size of a dataset by 25% (20000 to 25000 images) resulted in a 6.6% 419 

increase in the accuracy of the same CNN. 420 

More data, however, is not a simple solution to low performances as the relationship 421 

between the amount of training data and performance is not linear. Sun et al. (2017) 422 

report a logarithmic relationship between the size of the training set and 423 

performance. These authors gained less than 20% increase in performance by 424 

adding 90 million images to their training set. This logarithmic relationship has also 425 

been reported by Favret & Sieracki (2016) in their fly species classifiers. These 426 

authors note a diminishing return of adding more training data and observed little 427 

gain when doubling their training size from 50 to 100 images. Cho et al. (2015), who 428 

classified computed tomography images of six human body parts, found the same 429 

logarithmic relationship and, although it was 95.7% with 200 training images, their 430 

desired 99.5% accuracy target was only reached with 4092 images. Thus, there is 431 

an optimal size to every dataset and a point beyond which more training data results 432 

in very little gain. This point can be determined by the goal of the study and what is 433 

considered acceptable performance. With our methodology, this point occurs at 200 434 
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images, and represents a reasonable amount of manual work for ecologists aiming 435 

to build the dataset to train a CNN. 436 

Impact of the number of OTU classes in training on performances 437 

We observed that classifiers with a small (7) number of classes had better 438 

performances than those trained with 27 or 52. The difference in performance 439 

between the latter two was marginal, although significant.  440 

The number of classes in machine learning studies is usually driven by the dataset 441 

and the research question rather than maximizing performance by limiting the 442 

number of classes. Thus, few studies have assessed the effect of that number on 443 

their performance. Accuracies in the 24 CV-based animal identification studies cited 444 

by Favret and Sieracki (2016) and Weinstein (2018) were not significantly correlated 445 

to the number of classes used in each classifier. In their large dataset experiment, 446 

Sun et al. (2017) also found no difference when training with 1000 or 18000 classes. 447 

But in contrast, Favret and Sieracki (2016) observed a counterintuitive increase in 448 

performance as more insect species were included into their training set. They 449 

hypothesised that, although a higher number of possible outcomes could increase 450 

confusion, the higher number of comparison points helped determine the important 451 

features of each category. Further tests are needed to disentangle the effect of the 452 

number of classes in training or the relative difference in morphology of these 453 

classes on performance. In general, practical applications of CV in ecology would 454 

benefit from more information on this effect. 455 
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Potential application of CV to a real ecological dataset  456 

To deploy classifiers such as these in a “real-life” ecological study, reasonable 457 

performances must be achieved while retaining time and cost effectiveness of 458 

building the training set.  459 

In our study, no classifier achieved average performance above 0.78, which would 460 

mean one misidentification out of 5 predictions, at best. We also observed high 461 

interclass variability as some OTU were consistently well identified while others 462 

were, on the contrary, always misclassified. Even if the measured average 463 

performances were considered acceptable, it would introduce completely false 464 

appreciation of the distribution of some OTUs and local diversity.  465 

This variability in both expert and machine classification performance between 466 

classes or taxa has been observed by other authors (Beijbom et al. 2015, Cho et al. 467 

2015). Experts in Durden et al. (2016) had various annotation successes for different 468 

taxa and Schoening et al. (2012) found that human observers and their semi-469 

automated classifier had variable success at detecting and identifying different taxa 470 

but agreed on which one had the best performance. It is therefore sensible to 471 

consider the predictions of each OTU class separately and only rely on those for 472 

which the classifier achieves good performances, both in precision and sensitivity. 473 

Good performance obtained by our classifier with some specific OTU classes is 474 

encouraging and automated annotations could be an appropriate method to study 475 

them. The top 10 best and worst OTUs ranked by sensitivity shows that the 476 

classifiers are better at identifying large sized organisms exhibiting a low intra-class 477 

morphological variability. The majority of the top 10 OTUs were rare (e.g. less than 478 

100 training images). If CV were applied to these rare taxa, there would be a 479 
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proportionally higher impact of any misidentification or false positive results. Given 480 

their relatively low number of occurrences (tens to a few hundreds), a manual 481 

verification step (or semi-automated identification), as performed by Schoening et al. 482 

(2012) and suggested by Marburg and Bigham (2016), would be easy to perform for 483 

a reasonable time investment and ensure the reliability of the predictions. On the 484 

other hand, OTU261 and OTU339, both among the top 10 OTU classes, were very 485 

abundant in the study area (above 1200 individuals). As manual validation of 486 

identification of these OTUs would be impractical, their identification should be fully 487 

automated if the classifier is to be deployed on a larger dataset.  488 

With OTU261 and OTU339, high sensitivity (up to 0.95 and 0.92 respectively) and 489 

high precision (up to 0.95 and 0.82, respectively) were achieved by the classifiers, 490 

meaning they were usually correctly identified and false positives were relatively 491 

rare. These performances are equivalent to those of human experts working on a 492 

very similar ecosystem (Durden et al. 2016) without the inconsistency over time by 493 

individual observers reported by these authors. Therefore, these classifiers could be 494 

applied to remaining un-annotated images in our dataset and provide useful 495 

presence records of these specific OTUs. This would be a valuable contribution to 496 

this study of deep-sea ecosystems.  497 

Classifier A1000 had the best performance of all classifiers and would detect almost 498 

all individuals of OTU261 and OTU339, but it needs a large training set, while the 499 

A200 classifier has very similar performances but needs five time less training 500 

material and is therefore more cost-effective. These group A classifiers however, risk 501 

producing a high amount of false positives if they encounter too many individuals of 502 

an OTUs they have not been trained on. Thus, it is only applicable if diversity at the 503 

study site is low or it is predominantly represented by a small number of OTUs. 504 
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These classifiers would not be suitable to survey very diverse ecosystems, like coral 505 

reefs.  506 

In the long term, classifiers able to identify as many OTU as possible, even semi-507 

automatically, are undoubtedly more desirable, even if they perform slightly less well. 508 

In our study, the C classifiers had marginally lower performances than A, particularly 509 

if training with 200 images, but both sensitivity and precision were above 0.9 for 510 

OTU261, which is still comparable to manual annotation. Thus, although this design 511 

is still valid for identifying specific OTUs, it has the advantage, as it is trained on 52 512 

classes, to be able to automatically identify more OTUs. Even if some of these 513 

identifications need to be manually validated, it is more representative of real field 514 

studies where many OTUs could be encountered.  515 

Based on our observations on classifier performances, we recommend the following 516 

approach to the use of CV in small-scale benthic ecological studies: 1) Build a 517 

general classifier to identify OTUs that achieve good performance and quantify the 518 

error rate associated with each. This can be an unbalanced design with many OTUs, 519 

like group C in the current study. A large number of classes potentially allows more 520 

OTUs to be tested. The number of training images should preferably be above 200. 521 

2) Only use the presence prediction of those OTUs that have good performances 522 

and regard any other predictions as unknown or absence of those. 3) Consider all 523 

remaining OTUs as “unidentified” and leave for manual identification or for later, 524 

more efficient, automated classifiers.  525 

Even if the presence records of some OTUs are not sufficient to understand the 526 

composition and dynamics of an ecosystem, it will still contribute to it and more 527 

importantly, it will take-on some of the annotation time, leaving experts free to 528 
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perform other tasks while providing provide useful insights in ecology. In the specific 529 

case of this study, the automated identification of OTU261 and OTU339 would be 530 

useful for deep-sea ecologists, especially if it only requires 200 training images. 531 

Indeed, very little is known about the fine scale distribution of these OTUs. 532 

Syringamina fragillissima (OTU261) is considered habitat forming (Levin et al. 1986, 533 

Levin & Thomas 1988) and a Vulnerable Marine Ecosystem under United Nations 534 

General Assembly Resolution 61/105 (Assembly 2003). The squat-lobsters Munida 535 

sarsi or M. tenuimana may play an important role in the benthic community as 536 

predators or scavengers (Hudson & Wigham 2003) and are suited to examining 537 

ecological patterns (Rowden et al. 2010). Extracting the location of these two 538 

species from a vast dataset would be a valuable way to study or map their extent 539 

and distribution at the basin scale as other studies have done with other faunal 540 

groups at fine (Milligan et al. 2016) and broad scale (Rex & Etter 2010, Wei et al. 541 

2010). Besides, this would complement the studies carried out by trawling, which can 542 

underestimate diversity of benthic crustaceans (Cartes & Sarda 1992, Ayma et al. 543 

2016) and destroy xenophyophores (Roberts et al. 2000).  544 

This study only deals with the identification of animals and not with their detection on 545 

the seabed, which was performed manually. Detection is an essential step in 546 

automated image analysis and many solutions have been explored (Cheng & Han 547 

2016, Hollis et al. 2016, Sorensen et al. 2017). A step for object detection needs to 548 

be added to the protocol described here to completely automate the process. This 549 

study also did not deal with the behaviour of the classifiers when presented with 550 

novel OTUs. This situation is unavoidable in real-life ecological datasets, and 551 

although methods exist for novelty detection (Pimentel et al. 2014), this remains to 552 

be integrated into our methodology.  553 
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 554 

Conclusion 555 

Our results demonstrate CV based image annotation cannot entirely replace manual 556 

annotation of benthic images at present, but that usable results can be obtained for 557 

specific taxa with open-source software, very little tuning and optimisation of the 558 

CNN itself and a relatively small training dataset (200 images). These results can 559 

inform the distribution of these specific taxa in a more robust way than currently 560 

possible. 561 

This does not immediately solve the many challenges of benthic ecology but could 562 

initiate momentum and catalyse further development of CV based methodology in 563 

this area as these tools are becoming more accessible to non-specialists. Indeed, 564 

there is still much room left for improving classifier performance with better image 565 

pre-processing prior to the training or better tuning of the CNN, and more research 566 

could lead to promising methodological development.  In the age of big data and 567 

global open research, the participation of many different actors of research 568 

contributing data (Hampton et al. 2013, Hussey et al. 2015), computing power, and 569 

above all, taxonomic and informatics expertise (Weinstein 2018) could be 570 

synthesised in the development of CV tools able to take on some of the workload of 571 

human researchers and increase the pace at which the oceans are explored and 572 

sampled and, ultimately, how they are preserved. 573 
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 794 

Tables 795 

Table 1: Nomenclature of classifiers names and characteristics. The different classifiers names are a combination 796 
of group name and image numbers per Operational Taxonomical Units (OTU) in training. Groups are defined by 797 
the number of different OTUs (or classes) in the training set. In the different groups, the OTUs used are those for 798 
which the minimum number of images indicated are available. Within each group, treatments refer to the number 799 
of images of each class in training. The same treatments (20, 50, 100, 200, 500 and 1000 images per OTU in 800 
training) were applied to each group but only the classifiers names in bold are balanced (equal number of 801 
images for every class). In unbalanced designs, the maximum number of available images is used and is 802 
therefore different for each OTU.    803 

 Groups 
A B C 

Number of classes 7 27 52 

Minimum number of 
images available for 
the OTU to be in the 

group 

1000 100 20 

Classifiers names in 
group (balanced 

classifiers in bold)  

A20, A50, A100, 
A200, A500, A1000 

B20, B50, B100, 
B200, B500, B1000 

C20, C50, C100, 
C200, C500, C1000 

 804 
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 806 

 807 

Table 2: Possible outcomes of the classifiers. It indicates how the classifiers predictions compare to the manual 808 
annotation (the labels) and if it identifies the Operational Taxonomical Unit (OTU) present on an image correctly.  809 

810 Outcome Description 

True Positives 
Label is OTU and class predicted is OTU 

► Classifier correctly identified the OTU  

True Negatives 
Label is not OTU and class predicted is not OTU 

► Classifier correctly recognized the OTU is not in the image 

False Negatives 
Label is OTU but class predicted is not OTU 

► Classifier misidentified the OTU 

False Positives 
Label is not OTU but class predicted is OTU 

► Classifier misidentified another OTU 
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Figures  812 

 813 

 
OTU603: Very small elongated sponge. Shape is constant. 

 
OTU375: Small tube worm. The gills can hide the tube 

 
OTU261: The xenophyophores  Syringamina fragillissima 

 
OTU23: Small halcampid/edwardsiid anemone 

 
OTU995: Unknown animal, possibly a chrisogorgid 

 
OTU2: Cerianthid anemone of various size 
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OTU339: The squat lobster Munida sarsi/tenuimana 
Figure 1: Example images and description of OTUs abundant enough to be in group A. Scale varies. OTUs are 814 
ordered by abundance in the original dataset.   815 
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 818 

Figure 2: Classifier performances (sensitivity and precision) per number of training images measured (20 – 1000) 819 
and extrapolated (1000 – 10000). Grey dots show averaged values across all OTUs for each classifiers 820 

0.00

0.25

0.50

0.75

1.00

20 50 100 200 500 1000

Number of images

S
en

si
tiv

ity

OTU

OTU603

OTU375

OTU261

OTU23

OTU995

OTU2

OTU339

a - Performances per Class in Group A

 821 



34 
 

0.00

0.25

0.50

0.75

1.00

20 50 100 200 500 1000

Number of images

P
re

ci
si

on

OTU

OTU603

OTU375

OTU261

OTU23

OTU995

OTU2

OTU339

b - Performances per Class in Group A

 822 

Figure 3: a) Evolution of Sensitivity in Group A classifier trained with an increasing number of images. b) 823 
Differences in Precision in Group A classifier trained with an increasing number of images. The black line is 824 
‘loess’ smoothed curve of the average of all the classes and greyed area is a t-based approximation of the 825 
standard error. 826 
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 828 

Figure 4: a) Differences in sensitivity in classifiers trained with different number of classes and images. b) 829 
Differences in precision in classifier trained with different number of classes and images.  Error bars are standard 830 
deviation of the 10 random splits. 831 
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 833 

Figure 5: a) Differences in sensitivity for OTU261 in classifier trained with different number of classes and 834 
images.  Error bars are standard deviation calculated from the 10 random splits. b) Differences in precision for 835 
OTU261 in classifier trained with different number of classes and images.  Error bars are standard deviation of 836 
the 10 random splits 837 
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 847 

Figure A1: Pair-wise permutation-based analysis of variance of differences in sensitivity (upper left) and precision 848 
(lower right) between each treatment. The numbers in central cells indicates sensitivity (left) and precision (right) 849 
of corresponding treatments on the axis.  Significance level indicate at which alpha threshold the two treatments 850 
are significantly different in percentages of maximal value (i.e. 1). No dif. indicates a p-value above 0.05.  851 
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Figure A2: Pair-wise permutation-based analysis of variance of differences in sensitivity (upper left) and precision 854 
(lower right) between each treatment. The numbers in central cells indicates sensitivity (left) and precision (right) 855 
of corresponding treatments on the axis in percentages of maximal value (i.e. 1).  Significance level indicate at 856 
which alpha threshold the two treatments are significantly different. No dif. indicates a p-value above 0.05. 857 
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Figure A3: Pair-wise permutation-based analysis of variance of differences in sensitivity (upper left) and precision 859 
(lower right) between each treatment. The numbers in central cells indicates sensitivity (left) and precision (right) 860 
of corresponding treatments on the axis.  Significance level indicate at which alpha threshold the two treatments 861 
are significantly different. No dif. indicates a p-value above 0.05. 862 
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Figure A4 a) Differences in sensitivity for OTU 339 in classifiers trained with different number of classes and 866 
images.  Error bars are standard deviation calculated from the 10 random splits. b) Differences in precision for 867 
OTU 339 in classifier trained with different number of classes and images.  Error bars are standard deviation of 868 
the 10 random splits. 869 


