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Every day, chacma baboons, an old world primate, navigate to 
and from the safety of their sleeping post and distant foraging 
or watering sites1. The decision to move to alternative locations 

is not simply guided by accumulation of sensory evidence for that 
choice but by internal representation or memory of the alternative 
choice’s value. The same is true when they move back toward the 
sleeping post in the evening. While sensory and associative deci-
sion-making have been well-studied2, less is known about how rep-
resentations of counterfactual choices—choices not currently taken 
but which may be taken in the 


future—are


 held in memory and 

guide behavior.















In humans, the lateral frontal polar cortex (lFPC) holds coun-
terfactual information3–5. This may underlie its role in exploratory 
behavior6. However, many questions remain. First, some of the same 
studies report a similar pattern of activity in the anterior cingulate 
cortex (ACC)3,5,6. Other studies have emphasized a related role for 
the ACC in encoding the value of switching behavior and rejection 
of the default choice7,8. Here we introduce a simple paradigm that 
makes separation of the roles of the areas possible and distinguishes 
them from a third region: the hippocampus. Within the hippo-
campal formation, the subiculum projects monosynaptically to the 
ACC9. Information held in memory in such medial temporal struc-
tures may guide decision-making2. Although little is known about 
whether or how activity in the hippocampus encodes counterfac-
tual choices, it is clear that hippocampal lesions disrupt switching 
between choices in other tasks10.

Q1 Q2

Q3 Q4 Q5 Q6

We also address a second issue: whether macaques possess a 
brain region with a functional role corresponding to that of the 
human lFPC. The human frontal polar cortex can be subdivided 
into the lateral and medial sub-regions, lFPC and mFPC11,12. 
While resting state connectivity patterns exhibited by the human 
mFPC and the macaque FPC are similar, human lFPCs more 
closely resemble the macaque lateral prefrontal cortex (lPFC). It is 
therefore unclear if macaques hold counterfactual information as 
humans do and, if they can, whether it is mediated by the macaque 
FPC or lPFC. We know that when macaques are given feedback 
about what would have happened had another choice been made, 
they use it to guide their next choice13,14. However, how infor-
mation about the multiple counterfactual choices that typically 
exist in natural environments is retained while another choice is  
actually made is unknown.

Finally, our experiment allowed comparison of two fundamen-
tally different ways in which counterfactual choice information 
might influence behavior. On the one hand, information about cur-
rently unavailable choices must be held if future behavior is to be 
accurate when that choice once again becomes available. This might 
be mediated by some combination of ACC, lPFC and lFPC. On 
the other hand, holding information about currently unavailable 
choices may impact on the current decision being made. We show 
that the second influence of counterfactual choice is mediated by a 
distinct neural circuit centered on ventromedial prefrontal cortex 
(vmPFC) and/or medial orbitofrontal cortex (mOFC).

The macaque anterior cingulate cortex translates 
counterfactual choice value into actual  
behavioral change
Elsa Fouragnan   1,2,7*, Bolton K. H Chau2,3,7, Davide Folloni   2,7, Nils Kolling2, Lennart Verhagen   2, 
Miriam Klein-Flügge   2, Lev Tankelevitch   2, Georgios K Papageorgiou2,4, Jean-Francois Aubry   5, 
Jerome Sallet   2,8 and Matthew F. S Rushworth2,6,8

The neural mechanisms mediating sensory-guided decision-making have received considerable attention but animals often 
pursue behaviors for which there is currently no sensory evidence. Such behaviors are guided by internal representations of 
choice values that have to be maintained even when these choices are unavailable. We investigated how four macaque monkeys 
maintained representations of the value of counterfactual choices—choices that could not be taken at the current moment but 
which could be taken in the future. Using functional magnetic resonance imaging, we found two different patterns of activity 
co-varying with values of counterfactual choices in a circuit spanning the hippocampus, the anterior lateral prefrontal cor-
tex and the anterior cingulate cortex. Anterior cingulate cortex activity also reflected whether the internal value representa-
tions would be translated into actual behavioral change. To establish the causal importance of the anterior cingulate cortex for 
this translation process, we used a novel technique, transcranial focused ultrasound stimulation, to reversibly disrupt anterior  
cingulate cortex activity.
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Four macaques chose between pairs of abstract visual stimuli 
while in the magnetic resonance imaging (MRI) scanner (Fig. 1a,b). 
On each trial, the two stimuli available for choice (available options) 
were drawn from a set of three, each associated with distinct reward 
probabilities (Fig.  1a). The rewards were delivered probabilisti-
cally in a manner that fluctuated across the session, with two of 
the options reversing toward the middle of a session (Fig. 1c). Each 
stimulus’ reward probability was uncorrelated from that of the oth-
ers (<22% mean shared variance). On each trial one of the two 
available options was chosen by the monkey, the other was uncho-
sen and a third option was invisible and unavailable for choice. Both 
the unchosen option and the unavailable option can be considered 
counterfactual choices—although these choices were not made on 
the current trial, they might be made on a future occasion.

Behavioral analyses demonstrated that animals maintained rep-
resentations of counterfactual choice values to guide future behav-
ior on subsequent trials. We therefore used functional MRI (fMRI) 
to test whether neural activity reflected counterfactual choice values 
according to one of several possible schemes. fMRI allowed us to 
search for activity related to counterfactual choice value through-
out the brain. First, neural activity might represent the value of the 
unavailable option (Hypothesis 1; Fig.  1e). Alternatively, it might 
reflect the value of any counterfactual option—options that are cur-
rently unavailable for choosing and options that are available on 
the current trial but which are unchosen. In such a scheme, it may 
not be important whether a counterfactual choice is unavailable 
or unchosen; however, if such a representation is to guide future 
behavior, then it should reflect the ranked values of the alternative 
options (Hypothesis 2; Fig. 1f). We also compared this with a third 
scheme in which an unavailable option’s value had no influence 
on neural activity (Hypothesis 3; Fig.  1g). Notably such a coding 
scheme corresponds to the claim that ACC activity simply reflects 
decision difficulty8,15. According to this view, it is the difference in 
value between the choices available that determines decision dif-
ficulty (when the difference is large it is easy to identify the bet-
ter choice but this is not the case when the difference is small). 
However, according to this view, an option not actually available 
does not affect the difficulty of the current decision and therefore 
does not influence the ACC.

In our animal model it was possible to investigate not just corre-
lation between neural activity and behavior but the activity’s causal 
importance for behavior16. We used transcranial focused ultrasound 
stimulation (TUS). Like transcranial magnetic stimulation, TUS can 
alter neural activity17 but unlike transcranial magnetic stimulation it 
can even do so in relatively deep structures such as the ACC18. The 
TUS 250-kHz ultrasound stimulation was concentrated in a cigar-
shaped focal spot several centimeters below the focusing cone. A 
series of five experiments, each conducted in three macaques, has 
demonstrated that this protocol transiently, reversibly, reproducibly 
and focally alters neural activity17,18. A similar TUS protocol altered 
saccade planning in macaques when applied to the frontal eye fields 
but not to a location 10–12 mm distant19. Importantly, the mini-
mally invasive nature of the stimulation made it possible to exam-
ine not just a region of interest such as the ACC but also a control 
region in the same animals and to do so without MRI incompatible 
implants. In the current study, consistent with our ranked counter-
factual hypothesis (Hypothesis 2), ACC TUS impaired translation 
of counterfactual choice values into actual behavioral change.

Results
Animals learned option values and maintained them in mem-
ory without forgetting. To behave adaptively in this task, animals 
should estimate each option’s reward probability and maintain these 
estimates in memory. If there are three options (A, B and C), then 
animals should retain what they have learned about option C even 
if subsequent trials involved presentation of only options A and B. 

The representations of C’s value should then guide future decisions 
when C becomes available again. We therefore modeled animals’ 
choices using a reinforcement learner20,21 and tested whether the 
unavailable option’s estimated reward probability (which in our 
experiment determines expected value) either decayed over time 
and/or became distorted to account for risk preference22,23. After 
simulating behavior with several reinforcement-learning models 
(Methods and Supplementary Fig. 1), Bayesian model comparison 
revealed that monkeys did not forget unavailable option values nor 
distorted probability. Thus, animals learned the options’ values and 
maintained them in memory without forgetting even when options 
were not available on a given trial.

To confirm the relationship between the better model’s predic-
tions and behavior, we compared choice probabilities predicted by 
the Maintain model and the actual recorded frequencies of animals’ 
responses and found that the model matched behavior well (Fig. 1d; 
Pearson R2 = 0.92). Having established the goodness of fit of the 
Maintain model to behavior, all further analyses were conducted 
using the expected values estimated with this model. To predict 
behavior as in humans and artificial decision-making networks24, 
estimates for the two available options were categorized as ‘high 
value’ (HV) and ‘low value’ (LV) and accuracy was categorically 
defined as HV selection. With these estimates, we found that the 
difference in value between the two available options (sometimes 
called ‘difficulty’ as depicted in Fig. 1g) as well as the total value of 
available options were reliable predictors of animals’ choice accu-
racy (value difference: Cohen’s d = 1.42, 


t24 = 7.12, P = 2.3 × 10−7; 

total value: Cohen’s d = 0.82, t24 = 4.10, P = 4.04 × 10−4) and reaction 
times (value difference: Cohen’s d = −0.74, t24 = −3.68, P = 0.001; 
total value: Cohen’s d = −1.11, t24 = −5.54, P = 1.07 × 10−5; Fig. 1d).

Value associations of counterfactual options guide future 
choices. To guide future behavior, it is essential to retain counter-
factual choice values in case these choices become available again 
in the future. There are at least two different ways that animals can 
maintain counterfactual information for future use. The first way is 
to consider which choices are available and which are not on each 
trial (Hypothesis 1; Fig. 1e)25 and thus to categorize the options as 
‘chosen’, ‘unchosen’ and ‘unavailable’. A second way to describe the 
options (Hypothesis 2; Fig. 1f) is to think of both the unchosen and 
the unavailable options as alternative courses of action constitut-
ing the counterfactual choices—potential choices that were not, or 
could not, be taken on the current trial but which might be taken in 
the future. Animals might rank the expected value associated with 
the counterfactual options. Therefore, we characterized them as the 
‘better’ and ‘worse’ counterfactual options irrespective of their avail-
ability. Finally, we can test the hypothesis that animals only repre-
sent the difficulty of the current decision (Hypothesis 3; Fig. 1g)15,26.

In line with the first hypothesis, we performed a logistic regres-
sion assessing whether the unavailable option’s expected value 
influenced its future selection when it next reappeared on the 
screen. Decisions to select the previously unavailable option were 
strongly related to its expected value (one-sample t-test on regres-
sion coefficients: Cohen’s d = 1.59, t24 = 7.95, P = 3.5 × 10−8; Fig. 2a). 
A complementary analysis confirmed these results and showed that 
the accuracy of the future choice was influenced by the currently 
unavailable option, particularly when its most recent expected 
value was the best of the three options (Cohen’s d = 1.06, t24 = 5.32, 
P = 1.87 × 10−5; Fig. 2b) beyond the effect of the current chosen and 
unchosen options (chosen: Cohen’s d = 0.98, P = 5.04 × 10−5; uncho-
sen: Cohen’s d = −0.87, P = 2.92 × 10−5).

In line with the second hypothesis, we performed a series of 
analyses similar to those described above but replacing value esti-
mates for the unavailable option by estimates for better and worse 
alternative choices. These analyses revealed that animals’ deci-
sions to switch to the better counterfactual choice were influenced 

Q9
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by its expected value (Cohen’s d = 1.23, t24 = 6.16, P = 2.32 × 10−6) 
but this was not true for the worse counterfactual choice (Cohen’s 
d = −0.09). In summary, the worse counterfactual had less of an 
influence on the decision to switch (Fig. 2c,d). Overall, the results 
demonstrate two ways of categorizing the choices made in the task: 
either by classifying them as ‘available’ and ‘unavailable’, or by con-
sidering the current chosen option in contrast to better and worse 
counterfactual choices. These frameworks guided analysis of fMRI 
data (Fig. 1e–g).

Hippocampal activity predicts successful future choices when the 
unavailable option becomes available again. Having established 
that animals not only represent choice value information that can-

not be used on the current trial, but exploit this information on 
pending trials, the first fMRI-related analysis explored the extent to 
which neural activity reflected the expected value of the currently 
unavailable option (Hypothesis 1; Fig. 1e, left panel). We tested for 
voxels across the whole brain where activity correlated with the trial-
by-trial estimates of the unavailable option’s expected value, partic-
ularly when the future selection was successful. We also included 
the expected value of the chosen and unchosen options as separate 
terms in the general linear model (GLM; GLM1 in Methods). This 
analysis revealed one region in which the neural value coding of the 
unavailable option was different for successful future selection com-
pared with unsuccessful future selection, surviving multiple cor-
rection (Z > 3.1, whole-brain cluster-based correction P < 0.001): 
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Fig. 1 | Schematic view of the task, behavioral results and hypothesized neural schemes. a, On each trial, animals could choose between two symbols 
presented on the screen and had to keep in mind a third option, unavailable to them. The position of each symbol on the left/right part of the screen and 
the combination of available/unavailable options was fully and pseudo-randomized, respectively. b, Each trial began with a random delay followed by the 
presentation of two abstract symbols for a period ending when the animals made a choice. During this time, monkeys pressed one of two touch sensors to 
indicate which of the two symbols (right or left) they believed was more likely to lead to a reward. Finally, the decision outcome was revealed for 1.5 s. The 
selected symbol was kept on the screen (or not) to inform the monkeys of a reward delivery (or no reward). c, The 




plots show the probability of receiving 

a reward for choosing either options 1 (pink), 2 (blue) or 3 (red) on each trial in the 200-trial sessions. d, The top graphs show the proportion of correct 
choices (selecting the option with the highest reward probability) plotted as a function of difficulty (distance between the better high value (HV) and 
the worse low value (LV) presented options, left panel) and context value (sum of both HV’s and LV’s expected values, right panel). Decision accuracy 
improved with the higher value difference between available options and the higher total value. The bottom graphs show log-transformed mean reaction 
times (RT) for each session plotted as a function of difficulty and context. The logRT values decreased for easier decisions and higher trial values. Red




 

lines are linear fits to the data and the gray lines are the 95% confidence interval, n = 25 sessions. e, Because each of the values of the three options 
were uncorrelated with one another it was possible to look for neural activity according to three main coding schemes. If activity in a brain area covaries 
only with the value of the unavailable option then this suggests that the area is concerned with representing the value of an option held in memory on 
the current trial and which should not interfere with decisions taken on the current trial. f,g, If instead activity covaries with the ranked value of both the 
unchosen available option and the option held in memory then it reflects the value of any currently counterfactual choice that might be taken in the future (f).  
It is important, however, to distinguish such a pattern from a third possibility (g) in which neural activity is only reflecting the currently available options 
without representing the counterfactual or unavailable option. Thus, the activity would be negatively related to the HV available option value and positively 
related to the LV option value. This third pattern indicates that the brain area’s activity reflects the difficulty or uncertainty of the current decision because 
the difficulty of selecting an option becomes harder as the LV option increases and as the HV option decreases but it is unaffected by the value of the 
choice that cannot currently be taken (see the discussion by Kolling and colleagues15). Note that we also analyzed a fourth pattern representing the value 
of each option separately in Supplementary Fig. 3.
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right hippocampus (peak Cohen’s d = 0.72; Z = 3.61, CARET F99 
Atlas (F99): x = 16.5, y = −7.5, z = −12). At a lower threshold, we 
also found its bilateral counterpart: left hippocampus (peak Cohen’s 
d = 0.61; Z = 3.05, F99 x = −14, y = −9, z = −12.5; Fig.  3a). There 
was, however, no significant relationship between hippocampal 
activity and the values of the choices that the monkeys were choos-
ing between on the current trial (Supplementary Fig. 2).

To illustrate the significant activity in bilateral hippocampal 
regions, we extracted the time course of the neural activation in 
two regions of interest (ROIs) (Methods; Fig. 3b, left panel). Note 
that this analysis was performed for illustrative purposes only as 
the ROIs were formally linked to the comparison between correct 
and incorrect future selection used to establish the ROI location27. 
The activity pattern represented in this analysis is noteworthy as it 
shows that the blood oxygenation level dependent (BOLD) signal in 
the hippocampus is scaled by the expected value associated with the 
unavailable options only when the currently unavailable option is 
going to be chosen correctly on a future trial.

The role of the hippocampus in maintaining information about 
currently unavailable choices may also encompass the prospect of 
rejecting the currently unavailable option if it is likely to be worse 
than the others28. To demonstrate this, we repeated the analysis in 
the trials preceding those in which the animal decided not to select 
a currently unavailable option. Critically, this analysis also revealed 
a greater BOLD signal for the value of the unavailable option on the 
current trial when this option was correctly rejected in the future 
compared to when it was incorrectly rejected (leave-one-out peak 
selection: right hippocampus, Cohen’s d = 0.59, t24 = 2.96, P = 0.006; 
left hippocampus, Cohen’s d = 0.44, t24 = 2.19, P = 0.03; Fig.  3b, 
right). In summary, hippocampal activity is scaled by the cur-
rently unavailable option’s value more strongly (for example, there 
is a stronger memory trace) when the next decision involving that 
option is going to be made correctly regardless of whether it is going 
to be chosen correctly (because it is highest in value) or rejected cor-
rectly (because it is lowest in value) in the future.

Finally, having established that hippocampal activity is related 
to the memory of unavailable options, we hypothesized that the 
variation in such activity (at trial t) across sessions might predict 
the variation in influence of the unavailable option’s value on future 

accurate switching behavior (at t + 1) (Fig. 2b). We found a signifi-
cant correlation in the case of future decisions in which the unavail-
able option became accessible (Pearson R = 0.43, P = 0.03) but no 
correlation for the current decision while the unavailable option 
remained inaccessible (Pearson R = 0.01; Fig. 3c). This result again 
suggests that the hippocampus is involved in future planning but 
not current on-going decision-making.

ACC ranks counterfactual options according to their expected 
value. The previous analysis was predicated on the idea that the 
brain maintains information in memory pertaining to currently 
unavailable choices while encoding what is relevant for the current 
decision elsewhere in the brain. Therefore, we next sought brain 
regions encoding the key decision variable—how much better is the 
currently chosen available option compared to the currently rejected 
available option. We searched for activity parametrically encoding 
the difference in value between the currently chosen and uncho-
sen options (GLM2: chosen versus unchosen expected values). 
Such a neural pattern, when locked to decision time, is sometimes 
referred to as a choice or value-comparison signal. We found strong 
bilateral activations in a distributed network including ACC (peak 
Cohen’s d = −0.75; Z = −3.75, F99 x = 1, y = 20.5, z = 10.5), lPFC 
(right peak: Cohen’s d = −0.92; Z = −4.61, F99 x = 14.5, y = 17.5, 
z = 9.5; left peak: Cohen’s d = −0.86; Z = −4.29, F99 x = −15, y = 16, 
z = 9.5) and vmPFC and adjacent mOFC (peak Cohen’s d = −0.80; 
Z = −4.01, F99 x = −5, y = 14, z = 2) encoding the (negative) differ-
ence in expected value between the chosen and unchosen options 
(Fig. 4a; |Z| > 3.1, whole-brain cluster-based correction P < 0.001). 
In other words, activity in these areas increased as decisions became 
harder (for example, because the subjective value of the chosen 
option became lower or the subjective value of the unchosen option 
became higher or both).

To first illustrate the relationship between option values and 
lPFC and ACC activity, we extracted BOLD time courses (using a 
leave-one-out cross-validation approach to avoid circularity of anal-
yses) from ROIs over each region and performed further analyses 
(Methods). For each region, we found activity related to the differ-
ence between chosen and unchosen values was mainly driven by the 
negative relationship of the BOLD signal with the expected value 
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Fig. 2 | Future switches are explained by the expected value associated with counterfactual options. a, Estimated expected values associated with the 
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switching to the currently unavailable option; x axis, reward probability associated with the unavailable option estimated from the Maintain model). Each 
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that accuracy is explained by the currently unavailable option’s value (higher accuracy for trials in which it is the best of the three options versus when 
it is not), in addition to the value of the future chosen and unchosen options (each session’s beta




 coefficient is represented as a gray dot and the mean 

beta coefficients is represented as a colored dot). a.u., arbitrary units.



 c, A similar analysis to the one shown in a is performed but on the basis of a new 

coding scheme where the counterfactual options (current unchosen option and current unavailable option) are ranked according to their associated 
reward probabilities as the better and the worse counterfactual choices. d, A logistic regression confirms that the value of the better counterfactual option 
significantly influenced the frequency with which monkeys subsequently switched to it but this was not the case for the worse counterfactual option. One-
sample t-tests were used across session on the resulting beta coefficients, n = 25, for all analyses.
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of the chosen option (all |Z| > 3.1 for the chosen regressor); there 
was no significant activity for the unchosen option. Importantly, 
the analysis contained an extra regressor representing the unavail-
able option’s value, which also had no significant effect in the ACC 
and lPFC. Importantly, the negative relationship between the ACC 
BOLD signal and the value of the chosen option may reflect the 
opportunity cost of switching away from the current choice.

Following this idea, in a second step, we tested whether the ACC 
might represent the possible alternatives that the animal might 
switch to in the future (Hypothesis 2). In this scheme, the two 
options not selected on the current trial, the unchosen option and 
the unavailable option, could both be considered counterfactual 
options that might be taken in the future and which could be ranked 
according to their expected value (GLM3: better versus worse alter-
natives model, as per behavioral analyses). Using Bayesian statistics 
for each region within the same network (see Methods), we found 
that the activity pattern representing better and worse alternatives 
provided a significantly better account of neural activity in both 
the ACC and lPFC compared to either the subjective choice com-
parison model (GLM2) or a third model (GLM4) that does not rep-
resent alternative options but rather the difficulty of selecting the 
current response (Hypothesis 3 in Fig. 1g) with 


φs > 0.95 (Fig. 4b; 

see Supplementary Fig. 3 and the Methods for full Bayesian model 
comparison29). Thus, while the ACC does not code for the value of 
the unchosen and unavailable options individually, it maintains a 
value of the best current alternative, and this effect is only visible 
in the data when the reference frame is altered from focusing on 
the unchosen/unavailable to focusing on the best 


alternative. One 

interpretation of the activity pattern is that it forecasts choosing the 
better of the counterfactual options during future decisions.

Q13

Q14

We directly tested this hypothesis using multiple regressions to 
investigate whether the activity in the lPFC or ACC would predict 
upcoming switching behavior. For each ROI, we employed four 
regressors time-locked to the stimulus period of trial t, includ-
ing (1) the expected value of the better alternative if the future 
trial is a switch to that option; (2) the expected value of the better 
alternative if the future trial is a stay (that is, a repetition of the 
same choice as on the current trial); (3) the expected value of the 
worse alternative if the future trial is a switch to that option; (4) 
the expected value of the worse alternative if the future trial is a 
stay. ACC activity predicted upcoming decisions to switch to the 
better and avoid the worse counterfactual (Fig. 4c; leave-one-out 
procedures for peak selection, post-hoc one-sample t-tests, best: 
Cohen’s d = 0.48, t24 = 2.41, P = 0.02; worst: Cohen’s d = −0.59, 
t24 = −2.94, P = 0.007) but this was not true in lPFC (all Cohen’s 
d < 0.23, P > 0.02). Such a pattern is consistent with a role for the 
ACC in evaluating future strategies before execution3,30–32. By con-
trast, the macaque anterior lPFC holds estimates of counterfac-
tual choice values that are less immediately linked to behavior. 
Similarly, human frontal polar cortex activity reflects the values of 
alternative choice strategies in a manner that is also less immedi-
ately linked to behavior26.

It has been suggested that ACC activity simply reflects deci-
sion difficulty8,15 (Fig. 1g). When one option’s value is much higher 
than the other option’s value, the decision is easy. However, when 
the values of the two options are similar, the decision is difficult 
because it is hard to reject an alternative that is close in value. Our 
neural model comparison rejected this hypothesis (Supplementary 
Fig. 3c). Another possible index of decision difficulty is the reaction 
time (RT). We controlled for this in all our analyses by parametri-
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Fig. 3 | Unavailable option value signal in hippocampus favors accurate future planning. a, A whole-brain analysis tested for voxels where activity 
correlated with the trial-by-trial estimates of the unavailable option binned according to successful future selection. The fMRI analysis was time-locked 
to the decision phase on trial t and binned according to accurate versus inaccurate selection of the unavailable option on trial t + 1 (in light pink: cluster-
corrected, Z > 3.1, P < 0.001; in red: uncorrected, n = 25 sessions). b, ROI analyses (multiple regression analysis on the BOLD signal of the ROI) of the right 
(top panels) and left (bottom panels) hippocampus illustrate the time course of the aforementioned contrast. BOLD fluctuations reflect the value of the 
unavailable option on the current trial when it is accurately versus inaccurately selected on the next trial (left panels illustrate the contrast shown in a).  
A leave-one-out procedure (for spatial and temporal peak selections) to assess statistical significance revealed that a similar activity change occurs when 
contrasting the value of the unavailable option for accurate versus inaccurate future rejections of the unavailable option (right panels). The s.e.m. are 
presented in the red shaded area across sessions, n = 25. c, In the left hippocampus, the beta weights for the contrast used in a and illustrated in b (left 
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


Scatter plot at the time of the peak effect, n = 25 sessions, Pearson R is reported (results are normalized).Q12
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cally modulating the duration of the boxcar regressor locked at the 
time of the decision by RT (regressor DEC in GLMs 1, 2, 3 and 4).

ACC disruption impairs translation of counterfactual choice val-
ues into actual behavioral change. To test whether counterfactual 
choice value representations in ACC were causally important for 
effective behavioral switching, TUS was applied to the same ACC 
region. We previously demonstrated, using resting state fMRI (rs-
fMRI) data that 40 s sonification at 250 kHz reaches the ACC and 
does so in a relatively focal manner having a lesser effect on adja-
cent, even overlying, brain areas18. Here we provide an additional 
demonstration that ACC TUS increases activity correlation within 
the stimulated region but reduces correlation between the stimu-
lated region and other regions (Fig.  5a). The rs-fMRI scans were 
collected for two healthy animals (the rs-fMRI scans from the two 
animals were acquired under no stimulation; rs-fMRI scans from 
one animal were acquired post ACC TUS). As in previous investiga-
tions, the effects are specific to the stimulated area (Fig. 5b). In two 
of the four macaques, the same stimulation was applied to the ACC 
using MRI-guided frameless stereotaxy19,33 immediately before nine 

testing sessions that were interleaved, across days, with nine control 
sessions in which no TUS was applied (Fig. 5a and Supplementary 
Fig. 4; Methods). We used a similar experimental design as in all 
previous fMRI sessions. There were clear differences in choice pat-
terns between the ACC-TUS and control conditions (Fig. 5c). For 
example, option 1 was often the best choice to take for most of the 
first part of the task (the inset in Fig.  5c shows that this was the 
case for approximately the first 120 trials of the task). The frequency 
with which option 1 was chosen during this period was, however, 
reduced after TUS (Cohen’s d = 0.66, t34 = 1.92, P = 0.06). However, 
closer analysis revealed that option 1 was not always chosen less fre-
quently after TUS. For example, the rate of choosing option 1 was 
unaffected on trials that followed those on which option 1 had pre-
viously been chosen (Cohen’s d = 0.36). The rate of choosing option 
1 was, however, significantly reduced on trials that followed those 
on which it had previously been a counterfactual option—on tri-
als on which it had previously been unavailable (Cohen’s d = 0.67, 
t34 = 1.97, P = 0.05; see Fig. 5d).

One possibility is that decisions are made differently after ACC 
TUS when they are difficult. Such a pattern of impairment would 
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sham condition in two exemplar animals. After ACC TUS in exemplar animal 1, there are strong changes in connectivity (right bottom panel), reflected 
in changes in a connectivity analysis seeded from ACC with 13 other regions (ROI represented by the black circle, for the full details see Supplementary 
Fig. 4 and Table 1) (within subject, two sample t-tests: Cohen’s d = −0.84, t12 = −3.03, P = 0.01; Cohen’s d = −1.01, t12 = −3.65, P = 0.003, n = 13 ROIs; 
between-subject control, non-significant, n = 6 ROIs). b, However, while ACC TUS affected ACC connectivity, the effect was selective; ACC TUS did not 
affect connectivity seeded from lPFC (NS, non-significant). c, Running average choice frequency for the three options (Op1, Op2 and Op3) in the control/
sham ACC (left) and the 




ACC-TUS condition (middle) across sessions (the shaded areas represent s.e.m. across sessions, n = 18 sessions for each group). 

Predetermined reward schedules used in the sham and in the ACC-TUS task for three options, similar to the task used in the fMRI experiment (right).  
d, The rate of choosing option 1 was significantly reduced on trials that followed those on which it had previously been a counterfactual option—on trials on  
which it was unavailable in the TUS sessions compared to sham TUS (SHAM)




 sessions, n = 18 sessions for each group. e, Decision accuracy is plotted as a 

function of the difficulty of the decision—the difference between the objective values of the HV and LV options. Values of HV and LV are objective values 
(reward probability over the last ten trials). Each bin contains data binned according to percentile, with each point corresponding to the [0–20%],  
[20–40%], [40–60%], [60–80%], [80–100%] of the value difference amplitudes. Accuracy is the rate at which the participant picked the objectively better 
option. Supplementary Fig. 5d illustrates accuracy as a function of subjective value differences. Performance differences between TUS and sham conditions 
do not increase with difficulty (small HV – LV differences on the left); if anything the opposite is true. f, The influence of the better counterfactual option 
value on future switching behavior (in blue, as per Fig. 2f) was significantly reduced after ACC TUS (in green), n = 18 sessions for each group. g, While 
entropy (summed entropy of reward probability for all options) is strongly and negatively predictive of a change in exploratory behavior in the sham 
condition (indexed by the cumulative number of ‘stay’ choices—choices of the same option on one trial after another), this relationship is disrupted in 
the ACC-TUS condition. Each point in the figure illustrates a running average analysis, where each bin contains the derivative of entropy over five trials 
(thus 30 points). The small panel on the right depicts the difference in regression coefficients—linear fit—between the ACC-TUS and the sham conditions 
(animals 1 (




S1) and 2 (S2) are individually represented as




 red diamonds and yellow squares, respectively in all plots, n = 9 sessions per animal).
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be expected by accounts of ACC function emphasizing the moni-
toring of the difficulty or conflict involved in action selection8,15. 
According to such accounts, decisions are difficult if the values of 
the options are similar. We therefore examined accuracy as a func-
tion of the difference in value between the best and worse avail-
able options (HV and LV), defined as the objective values (reward 
probability over the last ten trials). While once again we found 
evidence for a difference in ACC-TUS versus control performance 
(Cohen’s d = 0.53, t17 = 2.31, P = 0.033), there was no evidence that 
TUS-induced impairment increased as difficulty increased (Fig. 5e, 
left-hand side; see Supplementary Fig. 5d for analysis of accuracy 
using RL


 estimates); instead, if anything, the opposite was the case. 

In this respect the pattern of impairment is distinct to that seen after 
vmPFC/mOFC lesions when decision-making is more impaired 
when decisions are difficult34.

The fMRI analyses suggested that ACC activity encodes the 
better counterfactual alternative but not the worse counterfactual 
alternative (Figs. 2f and 4b). Therefore, we examined whether ACC 
TUS diminished the influence of counterfactual options in general 
or diminished the influence of the better counterfactual option 
on behavior. We regressed the frequency with which monkeys 
switched, on one trial, onto the values of choices that, on a previous 
trial, had been counterfactual alternatives (Fig. 5d). As in previous 
analyses, without TUS, the value of the better counterfactual option 
significantly influenced the frequency with which monkeys subse-
quently switched to it (Cohen’s d = 1.57, t17 = 6.7, P = 3.62 × 10−6) but 
this was not the case for the worse counterfactual option (Cohen’s 
d = 0.24, t17 = 1.03, P = 0.3). This was, however, not true for the 
TUS condition. When comparing control with TUS data, linear 
mixed-effect analysis revealed a significant difference between the 
effect of TUS and the influence of the best counterfactual values 
on switching (Cohen’s d = 0.70, t34 = 2.05, P = 0.04). The significant 
difference between the influence of the better and worse counter-
factual option value on future switching behavior that was present 
in the baseline condition (post-hoc test: Cohen’s d = 0.79, t17 = 3.39, 
P = 0.003) was abolished (Cohen’s d = 0.24, t17 = 1.05, P = 0.3) after  
ACC TUS (Fig. 5f).

We further hypothesized that this behavioral change would 
impact the monkeys’ search strategies7 and reduce the influence of 
entropy (the unpredictability of the environment; see Methods for 
a computational definition of entropy) on their exploratory behav-
ior35. In a running window analysis, we used the slope of entropy 
to predict the slope of cumulative stay choices (that is, successive 
choices of the same option)36. As lower entropy favors exploiting 
knowledge to maximize gains and higher entropy favors explor-
ing new options and discovering new outcomes, we expect to 
see a negative relationship between entropy and the frequency of 
stay choices. In the control condition, we found such a relation-
ship (Cohen’s d = −1.20, t28 = −6.59, P = 3.77 × 10−7) but this was 
not the case after ACC TUS (Cohen’s d = 0.04, t28 = 0.22, P = 0.82) 

Q21

(Fig.  5g). Note that, while local entropy and cumulative stay are 
negatively related to value difference (ACC TUS: Cohen’s d = −0.67, 
t28 = −3.65, P = 0.001; ACC SHAM: Cohen’s d = −0.90, t28 = −4.95, 
P = 3.17 × 10−5; Supplementary Fig. 5a, b), we did not find any dif-
ference in the nature of the relationship between SHAM and TUS 
conditions (local entropy and value difference: Cohen’s d = −0.03, 
t34 = −0.11, P = 0.91; cumulative stay and value difference: Cohen’s 
d = −0.28, t34 = 0.83, P = 0.41).

In a final TUS experiment, to control for the anatomical speci-
ficity of the observed effects, we examined the effect of TUS of the 
lateral orbitofrontal cortex (lOFC) in four macaques, a brain region 
also associated with distinct aspects of reward-guided learning 
and decision-making37,38 (Methods). lOFC TUS, however, had no 
impact on the way in which counterfactual choice value was trans-
lated into subsequent actual behavioral switching (Supplementary 
Fig. 6). There was no difference in the effect of the best counter-
factual on switching behaviors between the lOFC TUS and lOFC 
SHAM (Cohen’s d = 0.19, t19 = 0.58, P = 0.56; similarly, if we only 
apply the test to the same two animals that had been examined 
in the ACC TUS experiment: Cohen’s d = 0.21, t9 = 0.46, P = 0.66). 
Further direct comparisons between lOFC TUS and ACC TUS 
showing significant differences between the two types of TUS are 
reported in Supplementary Fig. 6. Additionally, there was no differ-
ence between the strength of the relationship between entropy and 
cumulative stay in lOFC-TUS and lOFC SHAM conditions (Cohen’s 
d = 0.32, t19 = 0.99, P = 0.33).

The unavailable option value affects the current value compari-
son via vmPFC/mOFC. One other area, the vmPFC/mOFC, also 
carried a choice value-comparison signal (Figs.  4a and   6b). This 
pattern of decision-related fMRI activity in the vmPFC/mOFC has 
been reported previously in macaques38. Given the vmPFC/mOFC’s 
importance for many aspects of decision-making34,38, it is notewor-
thy that, unlike ACC, vmPFC/mOFC activity reflecting better and 
worse counterfactual values did not predict behavioral switches on 
future trials (as per the results presented in Fig.  4c). Instead, the 
vmPFC/mOFC is concerned with the decision being taken now 
rather than in the future. In the following analyses, however, we 
tested whether the value of the unavailable option was associated 
with any other impact on the vmPFC/mOFC.

We first assessed whether the unavailable option’s value was 
associated with any variation in monkeys’ choices between available 
options. We computed accuracy (HV selection) and used a logistic 
regression to predict this categorical variable as a function of the 
unavailable option’s value (including HV and LV in the model). Our 
results show that the higher the value of the unavailable option, the 
better animals were at discriminating between the two available 
options (Cohen’s d = 0.76, t24 = 3.79, P = 0.0005; similar results were 
obtained using a mixed-effect logistic regression model including 
sessions and animals as random effects using the lmer4 package in 

Table 1 | ROIs for rs-fMRI connectivity analyses

ROI A (ACC) B C D E F (MCC) G (PCC)

X −2.6 −1.8 −1.5 −1.8 −1.3 −0.9 −1.5

Y 20.4 13.8 6.5 −2.0 −8.9 −15.7 −21.0

Z 10.3 12.8 14.2 15.6 14.3 15.2 11.9

ROI H (PCC) I (PCC) J (PCC) K (lPFC) L (dlPFC) M (dlPFC) N (lPFC)
X −1.3 −1.1 −2.0 −6.7 −9.5 −14.8 −8.0

Y −25.7 −30.7 −24.7 20.4 14.8 14.7 19.4

Z 8.0 8.6 2.5 15.9 18.9 15.8 11.0

The XYZ coordinates of the ROIs used in the rs-fMRI connectivity analysis are listed. For the ACC seed analyses, we excluded the ROI ‘A’ (ACC itself) and thus used B, C, D, E, F, G, H, I, J, K, L, M, N. For the 
lPFC seed analyses, we excluded the two ROIs too close to the seed to avoid circular analyses (namely, L and M). In addition, we excluded the ACC and neighboring




 and thus used F, G, H, I, J and N, since 

TUS over ACC seems to have an influence on the connectivity of 



the lPFC.
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the R environment: χ2
(1) = 25.78, P < 0.001). To illustrate this effect, 

we represented frequency of choosing an option (for example, the 
right option) as a function of the value difference between the two 
available options (right and left option values) for two different 
levels of the unavailable option values (high versus low; median 
split). Importantly, although the unavailable option can never be 
chosen, its value is associated with a change in the efficiency of 
choice behavior (Fig.  6a; Cohen’s d = −0.53, t24 = −2.66, P = 0.01; 
see Supplementary Fig. 7 for individual animal details), and relative 
choice curves were steeper when the unavailable option had high 
versus low values.

To examine vmPFC/mOFC activity, we used a literature-based 
ROI selection (in area 11m/11; Fig. 5b, left). We focused on activity 
reflecting the value difference guiding decisions between available 
options (chosen value


 – unchosen value) and binned it accord-

ing to the value of the unavailable option (low, 0–33%; middle, 
33–66%; high, 66–100% percentiles of unavailable option value). 
The vmPFC/mOFC response to the chosen value – unchosen value 
difference was modulated by the currently unavailable option’s 
value (linear mixed-effect analysis: Cohen’s d = −1.15, t10 = −4.01, 
P = 0.002; Fig. 6b, right panel), in exactly the same way as behav-
ior. Normally, vmPFC/mOFC activity reflects the value of the cho-

Q23

sen option with a negative sign (Figs.  4b and   6d); as the chosen 
option’s value falls and choosing it becomes more difficult, there 
is more activity in the vmPFC/mOFC. This negative signal was 
diminished when the unavailable option value was very low and 
decisions between available options were less accurate. In summary, 
low (high) value unavailable options were associated with weaker 
(stronger) vmPFC/mOFC value-comparison signals and weaker 
(stronger) current decision accuracy. Importantly, the same analysis 
in the ACC and lPFC (both hemispheres) shows that the other areas 
behave differently and do not represent such modulation of value 
comparison by the unavailable option (all P > 0.25).

To further test the strength of the link between the contextual 
factor’s impact on the current decision and its neural impact in the 
vmPFC/mOFC, we exploited variability in the behavioral effect 
across sessions. We hypothesized that variation across sessions in 
the size of the contextual influence on the vmPFC/mOFC would be 
related to variation in behavioral accuracy. To test this hypothesis, 
we first performed a partial regression analysis to reveal the uncon-
taminated effect of the contextual effect associated with the unavail-
able option’s value on accuracy after controlling for the effects of 
the available options’ values (Cohen’s d = 0.56, t24 = 2.84, P = 0.008; 
see Fig. 6c). Separately, we extracted the contextual effect associated 
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Fig. 6 | Contextual modulation of value-guided choice. a, Average choice behavior when choosing between the left and right options plotted as a 
function of the value of the unavailable option (low, green; high, yellow). Decisions were less accurate when they were made in the context of a low-value 
unavailable option. Curves plot logistic functions fitted to the choice data, n = 25 sessions. b, ROI analysis of the vmPFC/mOFC (left panel, ROI sphere) 
illustrates the relationship between the BOLD value-comparison signal and the expected value associated with the unavailable option (binned in low/mid/
high) (right panel). 




The greater the value of the unavailable option, the more negative the value difference; a more negative pattern is normally associated 

with decisions that are easier to make (see d). Data for individual animals are indicated by red dots (±s.e.m. in gray, n = 4 animals). c, A partial regression 
plot shows the uncontaminated effect of the unavailable option’s value on accuracy (y axis, accuracy residuals; x axis, residuals of the unavailable option’s 
value). Each bin contains 20% of averaged data across sessions (±s.e.m.). One-sample t-test on betas of regression analysis, n = 25 sessions. d, ROI 
time-course analysis of the vmPFC/mOFC illustrates the relationship between BOLD and the fully parametric representation of the currently chosen and 
unavailable options. The shaded areas represent s.e.m. across sessions, n = 25 sessions. e, While there was not a main effect of the unavailable option 
value, vmPFC/mOFC variation in activity related to the currently unavailable option’s value explains between-session variation in the currently unavailable 
option’s influence on decision-making. Scatter plot at the time of the peak effect of unavailable option value in the vmPFC/mOFC (leave-one-out peak 
selection, n = 25 sessions, Pearson R is reported).
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with the unavailable option’s value-related signal change across ses-
sions (time-course analysis performed with the GLM2; see Fig. 6d 
for illustration of the chosen and unavailable options). Sessions 
with a greater contextual impact on the value-related signal in the 
vmPFC/mOFC also exhibited a higher contextual impact on accu-
racy in the current trial (Pearson R = 0.58, P = 0.002; see Fig. 6e).

Discussion
Decision-making is not only guided by accumulation of sensory 
evidence in favor of one choice over another but also by the values 
associated with choices that are currently unavailable but stored in 
memory2. It is both essential and a burden to store currently unavail-
able choice values when other choices are actually being taken at 
the current point in time. On the one hand, it is essential to retain 
unavailable choice values to guide future behavior; choices that are 
currently unavailable may be taken in the future if they become 
available again, if the value of the choice currently taken dimin-
ishes, if the current choice is no longer available or if the value of the 
unavailable choice exceeds that of other alternatives offered. On the 
other hand, holding information about unavailable choice values is 
a burden because it distracts from the current choice to be taken. 
Our results demonstrate that the value of a currently unavailable 
option is represented in the hippocampus (Fig. 3), where it is iso-
lated from the values of the choices immediately available; currently 
available choice options have little effect on hippocampal activity 
(Supplementary Fig. 2). In accordance with several previous stud-
ies from our laboratory7,24,34,39 and others40,41 an area in the mOFC/
vmPFC is important for comparing the values of potential choices 
during the decision process. If, however, information about the cur-
rently unavailable option (or potentially some other factor that is 
correlated with the unavailable option’s value but which is equally 
irrelevant to current performance) impacts on the mOFC/vmPFC 
(Fig. 6), then this distracts animals from the current choice to be 
taken. In contrast, translating the currently unavailable choice’s 
value into a counterfactual plan that can be executed in the future 
depends on the ACC (Fig. 4c). In line with this account, ACC TUS 
disrupts the influence that counterfactual choice values have on 
behavioral switching (Fig. 5f) but it does not impact the disruptive 
effect associated with an unavailable option’s value on the current 

choice that is being made (Supplementary Fig. 7). More broadly our 
results are in accordance with a view that decision-making is not 
accomplished by any single area in isolation but by multiple areas 
such as the mOFC/vmPFC and the ACC on the basis of different 
criteria42,43. The ACC is especially concerned with signaling the 
value of behavioral change and alternative courses of action7,44,45.

Like the ACC, the lPFC holds counterfactual choice values. In 
this respect, lPFC activity resembles that seen in or near the human


 

FPl3–611.


 The cytoarchitecture of the macaque lPFC region stud-

ied here is not homologous with human FPl cytoarchitecture46. 
There are therefore two ways in which the current findings might 
be related to previous findings in humans. First, the encoding of 
counterfactual choice values in humans may have been incorrectly 
attributed to FPl and ought to be attributed to a specialized part of 
area 46 located in the anterior prefrontal cortex that is distinct to the 
more posterior regions 9/46v and 9/46d47. Alternatively, FPl may be 
a comparatively new and specialized region in humans. While we 
know that human FPl and FPm


 share cytoarchitectonic features, it is 

possible that some of the circuit level interactions and functions of 
macaque 46 are associated with the FPl in humans11. When species 
diverge over the course of evolution, what was originally a single 
area may become duplicated in one species but not in another, and 
connections previously associated with another area may become 
associated with the new area48.

Notably, while the lPFC held counterfactual choice values in a 
relatively straightforward manner that was unaffected by the likeli-
hood that they would influence a change in behavior, this was not 
the case in the ACC (Fig. 4). By contrast, both the fMRI and TUS 
results suggest that the ACC is concerned with the translation of 
counterfactual information into a change of behavior.

The ACC and lPFC have both been linked to the use of coun-
terfactual information in macaques in previous neurophysiologi-
cal recording studies13,14. One advantage of the approach taken in 
the present study is that we were able to record activity from both 
regions simultaneously and from the hippocampus and vmPFC/
mOFC. The previous studies focused on the use of counterfactual 
feedback—after making a choice. By contrast, here we focus on 
how this information is held at the time of decision-making while 
another choice is actually taken. In addition, we consider how coun-
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Counterfactual choice and choice switching
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Ranking
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choice into behavioral switching

Disrupting effect of unavailable
choice on current decision

Choice value
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Unavailable choice

Fig. 7 | Schematic view of brain regions hypothesized to encode counterfactual choice. Encoding 



counterfactual choice (in yellow, dashed lines, including 

the ACC, lPFC and the hippocampus (Hippo)), and choice updating and selection (in red, continuous lines, including the lOFC and mOFC/vmPFC, 
respectively). 




A blue line represents the hypothesized effect exerted by the hippocampus, via the mOFC/vmPFC, on the current choice.
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terfactual information is held even when a choice is temporarily 
unavailable.

While the hippocampus, dlPFC and ACC hold information 
about currently unavailable choices to guide future behavioral 
change, other mechanisms associated with the vmPFC/mOFC have 
been linked to comparison of the values of specific choice options 
on the current trial (Fig. 7). Information about currently unavailable 
choices is not relevant for such a mechanism but if it impinges on it 
then it distracts from the current choice to be taken. Although the 
presence of high-value distracting information can impair decision-
making via a process of divisive normalization of choice values39,49, 
so can distracting low-value choice information39. The two effects 
may depend on the distinct manner in which choices are encoded 
in the intraparietal cortex and vmPFC/mOFC, respectively, and it is 
possible that they may even act to cancel one another in many situa-
tions. However, manipulations to augment or diminish the influence 
of one mechanism or another may reveal one type of distracting 
influence more clearly. For example, while low-value distractors 
may disrupt decision-making via the vmPFC/mOFC, in the absence 
of the vmPFC/mOFC, the opposite effect prevails and decisions are 
particularly vulnerable to disruption by high-value alternatives34,50.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41593-019-0375-6.
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Methods
Subjects. Four male rhesus monkeys (Macaca mulatta) were involved in the 
experiment. They weighed 10.4–11.9 kg and were 7 years of age. They were group 
housed and kept on a 12 h light dark cycle, with access to water for 12–16 h 
on testing days and with free water access on non-testing days. All procedures 
were conducted under licenses from the United Kingdom (UK) Home Office in 
accordance with the UK Animals (Scientific Procedures) Act 1986 and with the 
European Union guidelines (EU Directive 2010/63/EU).

Four animals were trained to perform the behavioral task in the MRI 



scanner. 

fMRI data from all four animals are reported. In a second part of the study we 
investigated the effect of TUS. Because of the positions of the head posts in two 
animals it was only possible to place the TUS cones to target the ACC. It was, 
however, possible to apply TUS to the lateral location appropriate for targeting 
lOFC in all four animals.

Behavioral training. Before the data acquisition, all animals were trained to work 
in an MRI-compatible chair in a sphinx position that was placed inside a custom 
mock scanner simulating the MRI scanning environment. They were trained to use 
custom-made infrared touch sensors to respond to abstract symbols presented on 
a screen and learned the probabilistic nature of the task until reaching a learning 
criterion. The animals underwent aseptic surgery to implant an MRI-compatible 
head post (Rogue Research). After a recovery period of at least 4 weeks, the 
animals were trained to perform the task inside the actual MRI scanner under head 
fixation. The imaging data acquisition started once they performed at more than 
70% accuracy (choosing the option with the highest expected value) for at least 
another three consecutive sessions in the scanner.

Experimental task. Animals had to choose repeatedly between different stimuli 
that were novel in each testing session (Fig. 1a). We used a probabilistic reward-
based learning task inspired from tasks originally designed to study reinforcement 
learning. Choice options were allocated pseudo-randomly to the right- and left-
hand sides of the screen and monkeys responded with a right or left infrared sensor 
placed in front of each of their hands. The rewards were delivered probabilistically 
and the probabilities associated with the three options fluctuated during the entire 
session, with the probability of two of the options changing toward the middle of 
a session (Fig. 1c). Thus, the probability range for option A was [90 to 10%], the 
probability range for option B was [70 to 30%] and the probability range for option 
C was [10 to 90%]. Importantly, each day the task contained three choice stimuli, 
but only two of them were choosable on each trial (Fig. 1b). This manipulation 
alters the learning and decision task in two major ways. First, the subjects have to 
maintain in memory the value of the option that is not directly available. Second, it 
creates a horizon of choices that is not deterministic, as the animal cannot predict 
what option will be presented next. After making their decision, if an option 
selected led to a reward (as per the reward contingencies associated with each 
option), the unselected option disappeared and the chosen option remained on the 
screen and a juice reward was delivered. If an option selected led to no reward, no 
juice was delivered. The outcome phase lasted 1.5 s. Each reward was composed of 
two 0.6 ml drops of blackcurrant juice delivered by a spout placed near the animal’s 
mouth during scanning. Each animal performed up to 200 trials per session. Each 
animal performed five to seven sessions in the MRI scanner. No statistical methods 
were used to pre-determine sample sizes but our sample sizes are similar to those 
reported in previous publications51. The experiment was controlled by Presentation 
software (Neurobehavioral Systems Inc.).

Because very slow response trials may have been subject to interference in 
the choice selection process, they were excluded from the fMRI analysis of choice 
selection (which was time-locked to the onset of stimulus presentation) or in 




the 

other behavioral analyses linked to these: trials with reaction times more than 3 
standard deviations from the log-transformed RT median were not included in the 
fMRI analysis (0.3% of trials were excluded in this way).

Reinforcement-learning algorithms. We used four reinforcement-learning 
algorithms (Maintain model, Decay model, Maintain model with distortion and the 
Decay model with distortion) to estimate trial-by-trial expected values associated 
with each option using the animals’ responses52. For all models, if stimulus A




 

was selected on trial i, its value was updated via a prediction error, δ, as follows: 
vA(i + 1) = vA(i) + α.δ(i),




 where α is the learning rate and the prediction error was 

given by δ(i) = r(i) − vA(i). 



The values of the unselected stimulus (for example, B) 

were not updated. The two first models differ in their assumptions of the stimulus 
that was not shown on that trial (for example, C). In the Maintain model, the values 
of C were maintained at their current values such that vC(i + 1) = vC(i). In the Decay 
model, the values of C were updated as followed: vC(i + 1) = vC(i) + γ.(vC(1) − vC(i)). 



The third and fourth models assumed that a subjective value can be distorted by 
risk preference. Note, however, that while probability distortion might make a 
reward probability appear higher or lower than it might otherwise be, it cannot 
lead to re-ordering of option values, as it is a strictly monotonic function. For these 
models23,24,53, we fitted an additional free parameter η using the following equation:
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To 



generate choices for both models, we first used a softmax procedure 

in which, on every trial, the probability of choosing stimulus A was given by 



PA(i) = σ(β(vA(i) − vB(i))) or PA(i) = σ(β(wA(i) − wB(i)))




 for the distortion models, 

where σ(z) = 1/(1 + e−z) is the logistic function and β is the degree of stochasticity 
in making the decision. The model choice probabilities were then fitted against the 
discrete behavioral choices to estimate the free parameters (α, β, γ, η).

Model fitting. To estimate the free parameters (α, β, γ, η), we used a maximum 
likelihood estimation and a constrained nonlinear optimization procedure (as 
implemented in fmincon in MATLAB) separately for each session. The associated 
likelihood function was given by

∑ ∑
=

+
+

L
B P B P

N N
log

log logA A B B

A B

where NA and NB denote the number of trials in which stimulus A and B were 
chosen, and BA (BB) equals 1 if A (B) was chosen on that trial and 0 otherwise. We 
fitted this function similarly for the other two stimulus combinations (AC and BC) 
and found the optimal parameters by minimizing the sum of the three negative 
log-likelihoods.

Statistical analyses. For most analyses, we ran multiple linear or logistic regressions 
using MATLAB (glmfit, robustfit). For logistic functions, we used a logit link with 
categorical predictors. All regressors were normalized (as in all fMRI regression 
analyses) to ensure between-model, between-session and between-modulator 
commensurability of the regression coefficients. For each session, we obtained 
one β regression weight for each regressor. These were then tested for statistical 
significance across all participants using either analysi of variance or t-tests. When 
assumptions about statistical tests were violated (data normality was tested by 
visually inspecting the residuals from the regressions), we transformed the data 
using a square root transform. All data were shown as mean with standard error of 
the mean (mean ± s.e.m.). Probabilities of P < 0.05 were considered as significant.

Reinforcement-learning simulation. To characterize the effect of delay and 
probability distortion over the maintain model assumptions, we generated for 
each trial t the probability of choosing the best option according to the models, 
given the animals’ history of choices and outcomes at trial t − 1 and the individual 
best-fitting free parameters. We submitted all model-simulated choice probabilities 
to the same statistical analyses described below. In a first analysis (left panel in 
Supplementary Fig. 1c), we were interested in investigating whether the different 
models made distinct predictions as a function of the elapsed time since the 
unavailable option was last seen. To do so, we used both simulated and real choice 
data to compare switches to the unavailable option when the latter had been 
unavailable for 1, 2 or 3 consecutive trials. (Note that the variance is significantly 
different in the three bins as the number of times that an option is the same 
for three consecutive trials is very limited (bin1, mean = 150; bin2, mean = 36; 
bin3, mean = 5). Second (right panel in Supplementary Fig. 1c), given the same 
model simulations, we investigated choice patterns before and after reversal. 
For this analysis, we looked at the choice frequency for each option before and 
after the 120th trial. Third (Supplementary Fig. 1d), the last feature of the data 
characterizing the task is the influence of valence (win/loss) on the switch/stay 
pattern. We thus compared the frequency of switch behavior after a win/loss.

Imaging data acquisition. Awake animals were head-fixed in a sphinx position in 
an MRI-compatible chair. We collected fMRI using a 3T MRI scanner and a four-
channel phased array receive coil in conjunction with a radial transmission coil 
(Windmiller Kolster Scientific). fMRI data were acquired using a gradient-echo T2* 
echo planar imaging (EPI) sequence with 1.5 × 1.5 × 1.5 mm3 resolution, repetition 
time (TR) = 2.28 s, echo time (TE) = 30 ms and flip angle = 90o,




 and reference 

images for artifact corrections were also collected. Proton-density-weighted images 
using a gradient-refocused echo (GRE) sequence (TR = 10 ms, TE = 2.52 ms, 
flip angle = 25o) were acquired as reference for body motion artifact correction. 
T1-weighted MP-RAGE




 images (0.5 × 0.5 × 0.5 mm3 resolution, TR = 2,5 ms, 

TE = 4.01 ms) were acquired in separate anesthetized scanning sessions.

fMRI data preprocessing. FMRI data were corrected for body motion artifacts 
by an offline-SENSE reconstruction method54 (Offline_SENSE GUI, Windmiller 
Kolster Scientific). The images were aligned to an EPI reference image slice-by-
slice to account for body motion and then aligned to each animal’s structural 
volume to account for static field distortion55 (Align_EPI GUI and Align_Anatomy 
GUI, Windmiller Kolster Scientific). The aligned data were processed with high-
pass temporal filtering (3-dB cutoff of 100 s) and Gaussian spatial smoothing 
(with full-width half-maximum of 3 mm). The data that were already registered 
to each subject’s structural space were then registered to the CARET macaque F99 
template56 using affine transformation.

fMRI data analysis. We employed a univariate approach within the GLM 
framework to perform whole-brain statistical analyses of functional data as 
implemented in the FMRIB Software Library57,58:
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β ε β β β ε= + = + + ∕ + +Y X X X X1 4 N N1 1 2 2

where Y is a T × 1 (T time samples) column vector 



containing the times series 

data for a given voxel, and X is a T × N (N regressors) design matrix with columns 
representing each of the psychological regressors convolved with a hemodynamic 
response function specific for monkey brains59,60. β is a N × 1 column vector 
of regression coefficients and ε a T × 1 column vector of residual error terms. 
Using this framework we initially performed a first-level fixed-effects analysis 
to process each individual experimental run, which were then combined in a 
second-level mixed-effects analysis 




(FLAME 1 + 2) treating session as a random 




effects. For all analysis, we performed a cluster inference using a cluster-defining 
threshold of |Z| > 3.1 with a 




FWE-corrected threshold of P = 0.001. Time-series 

statistical analysis was carried out using FMRIB’s improved linear model with local 
autocorrelation correction. Applying this framework, we performed the GLMs 
highlighted below.

GLM1—correct versus incorrect future selection of the currently unavailable 
option. Our first fMRI analysis was designed to reveal the brain regions 
representing the value of the currently unavailable option to guide accurate 
future decision-making. Specifically, locked to the decision time, we included a 
first boxcar regressor parametrically modulated by reaction times to account for 
difficulty effects, as well as two boxcar regressors with a duration of 100 ms that 
were then convolved with the hemodynamic response function: (1) a modulated 
regressor indexing the occurrence of a decision (Dec; all event amplitudes set to 
one and the duration set to the reaction time for that trial); (2–3) two parametric 
regressors whose event amplitudes were modulated by the expected value of the 
unavailable option for (a) future correct selection (unavcorr) and (b) future incorrect 
selection (unavincorr). Additionally, we included two fully parametric regressors 
whose event amplitudes were modulated by the expected value of the chosen (Ch) 
and unchosen (Unch) options that were available on the current trial. Locked to 
feedback time, we included a binary regressor representing positive and negative 
feedback (+1/−1) and a categorical regressor representing right and left responses 
(+1/−1), such as:

β β β β β β β ε= + + + + + + +Y Dec unav unav Ch Unch Fbk Side1 2 cor 3 incor 4 5 6 7

Finally, to further reduce variance and noise in the BOLD signal, we added two 
unconvolved regressors locked at the time of feedback and with a duration of TR 
(2.28 s) for left and right responses (to capture variance in the BOLD signal caused 
by any field distortion coincident with responding), six nuisance regressors one for 
each of the motion parameters (three rotations and three translations) and extra 
single-trial nuisance covariates for abrupt changes in the BOLD signal.

GLM2—subjective choice comparison (chosen option value versus unchosen 
option value). Our second fMRI analysis was designed to reveal the brain regions 
representing the decision-variable guiding choices between the options actually 
available on the current trial (chosen option value − unchosen option value). 
Locked to decision time, we included a first boxcar regressor parametrically 
modulated by reaction times (to account for difficulty effects), as well as three 
boxcar regressors with a duration of 100 ms that were then convolved with 
the hemodynamic response function: (1) a modulated regressor indexing the 
occurrence of a decision (Dec; all event amplitudes set to one and the duration set 
to the reaction time for that trial); (2–4) three fully parametric regressors whose 
event amplitudes were modulated by the expected value of the chosen option (Ch), 
unchosen option (Unch) and unavailable option (Unav) and the same covariates of 
non-interest as described in GLM1:

β β β β β β ε= + + + + + +Y Dec Ch Unch Unav Fbk Side1 2 3 4 6 7

In the third GLM (GLM3: counterfactual model), the unchosen and 
unavailable options were replaced by the better and the worse alternatives; in 
the fourth GLM (GLM4: difficulty model), the chosen and unchosen options 
were replaced by the high-value option and the low-value option presented; and, 
finally, in the fifth GLM (GLM5: object identity model), the chosen, unchosen and 
unavailable options were replaced by the values of options 1, 2 and 3 (see Fig. 1 and 
Supplementary Fig. 3).

Neural model comparison. To assess goodness of fit at the neural level and avoid 
double dipping in favor of the hypothesis that we wanted to support (GLM3)27, 
we first defined from GLM2 several ROIs within a network including all the brain 
areas that survived cluster level P < 0.001 (cluster-based correction) for the value-
comparison (chosen−unchosen) contrast. Within this network, we derived the 
log-evidence from GLM2, GLM3, GLM4 and GLM5. This log- evidence was then 
fed into a Bayesian model selection random-effects analysis (using the spm_BMS 
routine), which computed the exceedance probability of each GLM for each ROI. 
This analysis indicated which GLM best explained the neural data. We report the 
results for the ACC, lPFC and vmPFC/mOFC.

ROI analyses. We conducted analyses on ROIs defined as two-voxel radius 
spherical masks placed over the hippocampus (right: x = 16.5, y = −7.5, z = −12; 
left: x = −14, y = −9, z = −12.5 CARET macaque F99 coordinates), ACC (x = 1, 

Q40

Q41

Q42

Q43

y = 20.5, z = 10.5), lPFC (x = 14.5, y = 17.5, z = 9.5) and vmPFC/mOFC (x = −5, 
y = 14, z = 2). We used procedures now standardly employed in most human and 
animal neuroimaging studies39,51,61 in which the mean and s.e.m. (denoted in all 
figures by lines and shadings, respectively) of all the within-subject b weights




 were 

calculated across sessions for plotting the effect size time courses (each animal had 
a similar number of sessions).

Leave-one-out procedures for ROI spatial peak selection and time-series group 
peak signal. We used two leave-one-out procedures to avoid circularity in our 
analyses. The first aimed atidentifying ROI peak voxels for the analyses of main 
effects for areas identified in all fMRI analyses. For each group level analyses, 
our procedure involved leaving one session out at a time. From the results of the 
remaining 24 sessions, we extracted local maxima of the relevant clusters and 
centered the ROIs for the left out session on the local maxima. We repeated this for all 
sessions. Therefore, the ROI selection was statistically independent from the data of 
the session that was subsequently analyzed in the ROI. We also used a leave-one-out 
procedure on the group peak signal to avoid potential temporal selection biases. For 
every session, we calculated the time course of the group mean beta weights of the 
relevant regressor based on the remaining 24 sessions. We then identified the (positive 
or negative) group peak of the regressor of interest within the analysis window of 
1−6 s from decision onset. Then, we took the beta weight of the remaining subject at 
the time of the group peak. We repeated this for all subjects. Therefore, the resulting 
25 ‘peak’ beta weights were selected independently from the time course of the subject 
analyzed. We assessed significance using t-tests on the resulting beta weights.

Transcranial focused ultrasound stimulation . A single-element ultrasound 
transducer (H115-MR, diameter 64 mm, Sonic Concept) with a 51.74 mm focal 
depth was used with a coupling cone filled with degassed water and sealed with a 
latex membrane (Durex). The ultrasound wave frequency was set to the 250 kHz 
resonance frequency and 30 ms bursts of ultrasound were generated every 100 ms 
with a digital function generator (Handyscope HS5, TiePie Engineering). Overall, 
the stimulation lasted for 40 s. A 75-W amplifier (75A250A, Amplifier Research) 
was used to deliver the required power to the transducer. A TiePie probe connected 
to an oscilloscope was used to monitor the voltage delivered. The recorded peak-
to-peak voltage was constant throughout the stimulation session. Voltage values 
per session ranged from 128 to 136 V and corresponded to a peak negative pressure 
of 1.152 to 1.292 MP,




 respectively, measured in water with an in-house heterodyne 

interferometer (see ref. 62 for more details about the simulation protocol). Based on 
a mean 66% transmission through the skull63, the estimated peak negative pressures 
applied ranged from 0.76 to 0.85 MPa at the target in the brain.

The transducer was positioned with the help of a Brainsight neuronavigating 
system (Rogue Research) so that the focal spot was centered on the targeted brain 
region, namely, the rACC




 (F99 coordinates x = 1, y = 20.5, z = 10.5) (identified 

according to coordinates of the maximum peak used in GLM2). The ultrasound 
transducer/coupling cone montage was directly positioned on previously shaved 
skin on which conductive gel (SignaGel Electrode; Parker Laboratories Inc.) had 
been applied. The coupling cone filled with water and gel was used to ensure 
ultrasonic coupling between the transducer and the animal’s head.

A sham TUS condition (SHAM) was also implemented as a non-stimulation 
control. Sham sessions were interleaved with TUS sonication days and completely 
mirrored a typical stimulation session (setting, stimulation procedure, neuro-
navigation, targeting of ACC, transducer preparation and timing of its application to 
the shaved skin on the head of the animal) except that sonication was not triggered.

To test for the specificity of TUS on the ACC, we collected 20 lOFC SHAM 
and 20 lOFC TUS (4 animals × 5 sessions) using the same experimental design as 
the ACC-TUS protocol. Two out of the four animals tested were also used in the 
ACC-TUS protocol. TUS and control days were interleaved in one of two pseudo-
random orders that were counterbalanced across animals in each experiment. For 
example, (T, T, R, S, S, R, T, T, T, R), where T, C and R stand for TUS, sham and 
rest days, respectively—note a rest day always intervened at the point of transition 
between TUS and sham days. No statistical methods were used to pre-determine 
sample sizes but our sample sizes are similar to those reported in previous 
publications64. Data collection and analysis were not performed blind to the 
conditions of the experiments.

Finally, given that the TUS procedure lasts for 40 s and has a relatively 
sustained impact on neural activity, it will be possible in future experiments to 
examine the impact of ACC stimulation while recording activity from the ACC 
and interconnected areas either with fMRI or some other technique. However, 
if experiments of this type are to be attempted it will be possible to conduct 
them only after initially carrying experiments of the sort that we report here; it 
is necessary to establish the precise location of a neural signal before it can be 
targeted with the spatially focal TUS technique.

Entropy analyses. For the analyses presented in Fig. 5 (behavioral analysis 
of TUS data), we used a running window analysis with entropy defined as 

= ∑ .=E i p x p x( ) ( ) log( ( ))i i j i j1
trials

, , , in which xi,j is the probability that a given option 
j is associated with a positive feedback on trial i. We then used the slope of entropy 
(difference between the beginning and the end of a window of 20 trials) as a 
measure of environmental predictability. A positive change in entropy reflects 
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that the environment is less and less predictable and should trigger exploration, 
whereas a negative change in entropy should engage exploitative behavior. As a 
proxy for exploration/exploitation, we used the cumulative sum of stay behavior, 
which is simply a vector keeping track of the number of times a choice has been 
chosen. Note that a consecutive stay for an option A that has been chosen on trial t 
could also include trials for which A on the next trial (t + 1) would not be available 
but chosen on the subsequent trial (t + 2).

vmPFC partial regression analysis. To test the strength of the link between the 
unavailable option’s impact on the current decision and its neural impact in the 
vmPFC/mOFC, we computed the accuracy residuals (Y*, from regressing accuracy 
against the values of the two available options omitting the unavailable one) and 
the unavailable residuals (X*, from regressing the unavailable option value against 
the values of the two observable options) and then regressed Y* against X* (ref. 65) 
for each session separately (see the average effect in Fig. 6c).

Macaque rs-fMRI data acquisition, preprocessing and analysis. The rs-fMRI 
and anatomical MRI scans were collected for two healthy animals (rs-fMRI scans 
from the two animals were acquired under no stimulation; rs-fMRI scans from 
one animal were acquired post ACC TUS) under inhalational isoflurane anesthesia 
using a protocol that was previously proven successful66,67 in preserving whole-
brain functional connectivity as measured with BOLD signal. In the case of the 
TUS conditions, we used the same procedure as that employed in refs. 17,18. No 
statistical methods were used to pre-determine sample sizes but our sample sizes 
are similar to those reported in previous publications64.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request

Code availability
The code to generate the results and the figures of this study are available from the 
corresponding author upon 




reasonable request.
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