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Abstract 29 

Impermanence is an ecological principle1 but there are times when changes occur non-linearly as 30 

Abrupt Community Shifts (ACSs) that transform the ecosystem state and the goods and services it 31 

provides2. Here, we present an ecological theory that can be used to explain and predict long-term 32 

biological changes including ACSs at the global scale. We test our theory using 14 marine pelagic 33 

ecosystems in tropical, temperate and polar regions using multi-decadal time series of marine 34 

metazoans from zooplankton to fish. Predicted and observed long-term fluctuations correspond 35 

remarkably, including ACSs at the end of the 1980s3-6 and 1990s4,7. Our analyses show that the shifts 36 

result from changes in global temperature and/or large-scale atmospheric circulation that alter local 37 

thermal regimes, which in turn interact with the thermal niche of species to trigger long-term and 38 

sometimes abrupt shifts at the community level. Applying our theory to reconstruct ACSs at a global 39 

spatial scale for the period 1960-2015 predicts the occurrence of a major ACS after 2014 that is 40 

unprecedented in magnitude (~3 times the average) and spatial extent, being ~5 times the average 41 

and extending over ~14% of the oceans. The predicted ACS coincided with a super El Niño event as 42 

well as major shifts in atmospheric circulation and temperature in the extratropical regions of the 43 

Northern Hemisphere, and including the Arctic Ocean. Our results underline the sensitivity of the Arctic 44 

Ocean, an area that is currently experiencing an unprecedented melting that may lead to a complete 45 

biological reorganisation of ecosystems4,8. Finally, the application of our theory indicates the potential 46 

for an increase in the size of such events in the future as the world warms in response to global climate 47 

change. 48 

 49 
Main text  50 

After decades of research on the origin of long-term changes in biological communities and Abrupt 51 

Community Shifts (ACSs), processes that drive those phenomena remain poorly understood3,7,9-13.  52 

Here, we define an ACS as a stepwise shift in community structure14, a definition that does not 53 

necessarily implicate the existence of stable states2,12 that are rarely observed in the pelagic 54 

environment13-15; they essentially indicate rapid and major alterations in species composition that may 55 

significantly affect biodiversity with potential consequences for ecosystem services. A well-known 56 

example is the ACS that developed across the North Pacific in the 1970s16. In this work, we used the 57 

MacroEcological Theory on the Arrangement of Life (METAL; Methods; see Supplementary Table 1 for 58 

a list of the acronyms)14,17-19 to investigate long-term community changes in marine metazoans 59 

(including ACSs) in the global ocean during the period 1960-2015. In each geographical cell of a gridded 60 

ocean, we built pseudo-communities from a pool of pseudo-species, i.e. simulated (virtual) species 61 

characterised by a unique thermal niche ranging from strict stenotherms (species that live in a 62 



relatively restricted range of temperature) to universal eurytherms (species adapted to extreme 63 

temperature variations) and from psychrophiles (organisms that live at cold temperatures) to 64 

thermophiles (organisms that operate at warm temperatures)14. Only pseudo-species that were able 65 

to withstand the local thermal regime and its temporal fluctuations occupied a given oceanic region 66 

and constituted a pseudo-community. We therefore focused on climate-induced long-term changes 67 

(including ACSs) that originate from changes in the thermal regime and not shifts induced by other 68 

environmental parameters20 (e.g. nutrients, salinity, oxygen) or triggered by anthropogenic pressures 69 

(e.g. fishing, eutrophication and pollution)2.  70 

 71 

We first tested whether our framework provided valid predictions, by comparing predicted long-term 72 

changes in pseudo-communities with observed communities in 14 marine ecoregions spanning from 73 

tropical to polar oceans (Pacific, Atlantic and Southern Oceans) and seas (Adriatic, Ligurian, North and 74 

Baltic Seas) and based on zooplankton (11 ecosystems), decapods (1 ecosystem) and/or fish (4 75 

ecosystems; Supplementary Tables 2-3 and Supplementary Figure 1). For each observed community 76 

we performed a standardised Principal Components Analysis (PCA) on a matrix years x biological 77 

variables (e.g. species abundance, biomass, or size fraction) and retained the first 2 Principal 78 

Components to investigate their long-term changes (Obs-PC1-2s). In each system, 10000 PCAs were 79 

also performed on 10000 pseudo-communities, each resulting from different pseudo-species 80 

associations simulated with METAL (Methods); we retained the 10000 Pred-PC1-2s14. We provide an 81 

illustrative case-example here for the North Sea (Figure 1). Here, the first PC shows a pronounced 82 

change at the end of the 1980s for 42% of taxa, and a simulated first PC also exhibits the same pattern 83 

for 72% of the pseudo-species; both PCs were highly correlated (Figure 1a-b,e-f; r=0.83,p=0.01,n=50).  84 

 85 

The inspection of observed and predicted long-term changes in the community and their associated 86 

mean correlations shows remarkably good prediction capability for every area, except for the highly 87 

dynamic and heterogeneous21 Western Pacific Transition Zone (Figure 2; Supplementary Table 4). 88 

When the number of pseudo-species was high in a given system, variability in the METAL predictions 89 

was reduced (Figure 2a-n). Note that long-term changes shown in the figure are the examples showing 90 

the highest correlation between a given observed PC and predicted PCs. As might be expected, some 91 

observed PCs were not highly correlated with predicted PCs (Supplementary Table 4), possibly because 92 

some species may not react to temperature when their thermal optimum coincides with the mean 93 

local thermal regime14,22 or they may be more sensitive to other forcing (e.g. anthropogenic pressure, 94 

other ecological factors, biotic interactions or local complex hydrodynamics)4,20,21,23. That is why the 95 

climatic signal identified by the PCAs was sometimes associated with PC1 or PC2. Random time series 96 

with and without autocorrelation were generated for each system and analysed in the same way 97 



(Methods). Simulated Pred-PC1-2s from these null models exhibited a pronounced variability in each 98 

system, far above those originating from METAL (Supplementary Figure 2 versus Figure 2a-n). All mean 99 

correlations were below those expected from METAL, with the exception of the HOT time series. This 100 

result reveals the importance of using multi-decadal time series as shorter ones (e.g. HOT) may be 101 

highly influenced by temporal autocorrelation24, a mathematical effect enhanced when the number of 102 

years is low.  103 

 104 

As in Figure 1a-b, the number of species influenced by temperature varies among systems, which 105 

explains why the climatic signal can be detected either in PC1 or PC2 (Figure 2; Supplementary Table 106 

4). Therefore, to consider the full complexity of the signal, we used the first 2 predicted PCs (mean 107 

Pred-PC1-2, averaged over 10000 simulated PCs; Figure 2a-n) and applied a regression (Methods) that 108 

explained 50.4% (r=0.71,p<0.01,n=567) of the total variance of all observed long-term changes in the 109 

14 ecoregions (red Obs-PCs;Figure 2a-o). Since predicted pelagic communities are completely 110 

independent from the measured communities, correlations are remarkably high. This suggests that 111 

the METAL theory indeed captures the main drivers of changes. We also examined the correlations 112 

between observations and predictions from 10000 simulations based on (i) METAL, random time series 113 

(ii) with and (iii) without autocorrelation. Although some correlations may be high with random time 114 

series, especially when they are autocorrelated24, correlations based on the METAL theory were 115 

substantially higher (Figure 2p).  116 

 117 

Higher residual variability was observed occasionally in some areas such as in the Western Pacific 118 

Transition Zone (Fig. 2g) and may reflect any of three main causes. First, it may be related to local 119 

environmental complexity that is not fully resolved in our model. Future improvements of the METAL 120 

theory may help reduce this variability by including further ecological factors20. At present however, 121 

ecological dimensions of interest are rarely available on a year-to-year basis. Second, it is likely that 122 

many marine ecosystems, especially coastal ones, are also influenced by human-induced factors such 123 

as overfishing, eutrophication and pollution, and these probably affect the biological composition of 124 

communities2. Third, it is possible that uncertainties in sampling procedures significantly affect the 125 

time series, although the PCA helped to reduce this variance14. 126 

 127 

Next, we tested the capability of our framework to reveal large-scale community changes, including 128 

ACSs, by combining all 14 ecoregions (Figure 3). To extract the overall bio-variability, we performed 129 

‘global’ PCAs on the first two Pred-PCs extracted on (i) simulated (METAL and the null model based on 130 

autocorrelated time series) and (ii) observed communities for the 14 systems (14 systems x 2 PCs =28 131 

variables for each PCA); therefore for this analysis we used all first 2 observed and predicted PCs, which 132 



represented the full set of interactions within the observed and predicted PCs (Supplementary Table 133 

5). We chose the period 1960-2007 because it had less than 50% missing data per year in each time 134 

series (Supplementary Figure 3). We performed this procedure in two ways: (i) one ‘global’ PCA based 135 

on the average of all 10000 PC1-2s for each system to calculate the correlation between observations 136 

and predictions from METAL, and (ii) 10000 ‘global’ PCAs to assess the variability of long-term changes 137 

(METAL and the null model based on autocorrelated time series). The first global PC originating from 138 

observed communities was highly correlated (r=0.87) with the first global PC derived from the average 139 

of the 10000 theoretical communities (Figure 3a). Predicted and observed PC2s and PC3s were also 140 

significantly correlated, although at a lower level (Figure 3b-c). METAL predictions were much less 141 

variable than predictions based on the null model (Figure 3a-c, green versus blue curves).  142 

 143 

We then identified ACSs by calculating an Abrupt Shift Detection (ASD) algorithm on the 10000 global 144 

PC1-3s (Methods). In our North Sea example, the algorithm detects a significant shift (i.e. value higher 145 

than 3) circa 1987 for both predicted and observed first PCs (Figure 1c-d). For global PCs, the first two 146 

observed and predicted PCs showed significant ACSs at the end of the 1980s and 1990s respectively 147 

(Figure 3d-e). Interestingly, predicted (blue curves) ACSs occurred one year before observed ACSs (red 148 

curves), a result possibly explained by the inertia related to species’ life cycles17. This analysis shows 149 

that the most frequent (but not necessarily the most intense) shift in the ecoregions coincided with 150 

the well-documented events of the late 1980s (Figure 3a,d)3,5,6. Although they were not significant, we 151 

detected acceleration phases on both third predicted and observed PCs (Figure 3c,f). Note that the 152 

well documented 1976/77 ACS16 was not significant globally, probably because it was only observed in 153 

the East Pacific (Figure 2k). No significant trend was observed on global PCs based on autocorrelated 154 

time series (Figure 3d-f, green curves). These results suggest that METAL can predict a substantial part 155 

of long-term community change, including ACSs. 156 

 157 

We then applied our ASD algorithm to the whole ocean for the period 1960-2015, covering many areas 158 

and years not biologically monitored. For this analysis, we did not perform any PCA but applied our 159 

algorithm to pseudo-species and retained only ACSs when they involved half or more pseudo-species 160 

for a given location and year. Our analysis suggests that ACSs of relevant magnitude may occur every 161 

year, but in a limited part of the ocean (~2.8%), involving on average over 10 million km² of ocean per 162 

year (Figure 4a and Supplementary Figure 4). Some periods had geographically limited ACSs (e.g. 0.89 163 

million km² for 1984-1987) whereas others carried more extensive ones (e.g. 50.5 million km² for 2012-164 

2015). Widespread predicted ACSs were always observed after El Niño events (e.g. weak El Niño 165 

episode of 1977-1978 and very strong episodes of 1997-1998 and 2015-2016) but not all El Niño events 166 

led to widespread ACS predictions (e.g. very strong episodes of 1982-1983; Figure 4a). Interestingly, 167 



the late-1980s ACS, so frequently found in areas where monitoring took place3-7,25,26, was not predicted 168 

on a global scale. Despite similar strength in the two strong El Niño events 1997-1998 and 2015-2016, 169 

the spatial extent of the predicted ACSs was very different, the recent one being more widespread (50 170 

million km² circa 2014 versus 29 million km² circa 1999). The mean magnitude of ACSs increased 171 

substantially after the mid-2000s with a peak circa 2012 (2010-2013)(Figure 4b). When both spatial 172 

extent (here number of geographical cells) and magnitude were combined, an unprecedented shift (5 173 

and 3 times the average extent and magnitude, respectively) took place after 2010 with a maximum 174 

~2014 (2012-2015)(Figure 4c). Our null model (Figure 3d-f) suggests that such an ACS at the end of the 175 

time series  is unlikely to be an artifact as is sometimes reported with other techniques3 (Methods).   176 

 177 

We investigated the relationships between predicted ACSs and observed changes in climate using 6 178 

parameters measured at a global scale: annual Sea Level Pressure, meridional and zonal wind, wind 179 

intensity, cloudiness, and Sea Surface Temperature (SST) (Methods). Using maps of ACSs and climatic 180 

shifts calculated for each year (Supplementary Figures 4-5), we found significant correlations 181 

(Supplementary Table 6) between long-term changes in the spatial extent of predicted ACSs and the 182 

observed shifts from 1960 to 2015 in atmospheric pressure (r=0.69,pACF<0.01,n=53), atmospheric 183 

circulation variables (r=0.54-0.57,pACF<0.01,n=53) and, as expected, with annual SST 184 

(r=0.97,pACF<0.01,n=53). No significant correlation was found with cloudiness. These results identify a 185 

strong link between the spatial extent of predicted ACSs and climatic shifts in atmospheric circulation 186 

and SST.  187 

 188 

We then focused on 5 time periods: 1975-1979, 1985-1989 and 1995-1999 because these include 189 

already documented ACS3-7,16,25, 2005-2009 because it is an example of a relatively stable period, and 190 

the period 2010-2014 because of its exceptional nature (Figure 5). Note that these periods integrate a 191 

larger number of years in the calculation of the abruptness index (e.g. 2010-2014 is based on 2008-192 

2015 and similarly for other periods; Methods). The 2014-2015 expected ACS, precisely detected by 193 

the visual inspection of Supplementary Figure 4, is much more intense and widespread than previous 194 

ones (Figures 4-5), encompassing the recently observed meteo-oceanic anomalies, the Northeast 195 

Pacific warm and the central North-Atlantic cold blobs, and including many areas of the Arctic 196 

Ocean8,27,28 (Figure 5). Although changes in the North Atlantic and Pacific Oceans resulted in part from 197 

changes in atmospheric circulation and its influence on the regional thermal regime, changes in the 198 

Arctic result mainly from abrupt shifts in annual SST (Figure 5e,j, Supplementary Figure 6). 199 

 200 

Our framework provides an explanation for long-term biological changes and ACSs. Each species 201 

responds individually, its response depending upon the interaction between its thermal niche and 202 



fluctuations in the thermal environment14. The close correspondence between shifts in theoretical and 203 

observed communities supports the METAL theory14 and provides a useful system for predicting 204 

climate/temperature-induced ACS at the community scale. However, there might be large unexpected 205 

events such as the collapse or the explosive growth of some populations (a phenomenon known as 206 

black-swan events29) that may not be predicted with this theory. Our perception of the spatial extent 207 

of an ACS has been severely limited by a paucity and unrepresentative coverage of observing systems. 208 

Most marine communities are hidden from earth observation tools and developing an adequate 209 

monitoring coverage for the entire ocean is logistically impossible. Our framework could therefore be 210 

meshed with existing monitoring programmes to provide a macroscopic tool for ocean sampling to 211 

identify regions that may develop ACSs and to alert us to potential biological perturbations that may 212 

affect ecosystem goods and services30. In addition, our framework warns us that the large and 213 

unprecedented ACS predicted to have occurred in 2014-2015 may have substantial ecological 214 

consequences27,30 throughout the Northern Hemisphere, including the Arctic, an area changing at an 215 

unprecedented pace due to rapid melting of ice8. Finally, our study alerts us to the potential for an 216 

increase in the size and consequences of future ACS events as the world warms in response to global 217 

climate change. Even though it will remain difficult to predict ACSs, both because uncertainties and 218 

the simple fact that some events may remain unpredictable31,32, the ability to forecast putative ACS 219 

events is an important development in our understanding of climate change biology. 220 

 221 
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 319 

Figure legends 320 

Figure 1 | Long-term biological changes and abrupt community shifts (ACSs) for both the observed 321 

community and a simulated pseudo-community in the North Sea. a-b. Long-term changes of the 322 

first principal components (PCs) and in biological variables related to them (i.e. absolute values of the 323 

normalized eigenvector higher than 0.6; blue): (a) observed species and (b) simulated pseudo-324 

species. The first PC, considered to reflect major changes in community structure, is in black for 325 

observed taxa (a,e) and red (b,e) for simulated pseudo-species. Taxa that were related to the 326 

observed first PC were Calanus finmarchicus (negative relationship, -), C. helgolandicus (positive 327 

relationship, +), Candacia armata (+), Centropages typicus (+), Corycaeus spp. (+), and Oithona spp. (-328 



).  Ten pseudo-species were related to the simulated first PC. The green band shows the timing of the 329 

ACS revealed in pannels c-d. c-d. Detection of ACSs for the first PC based on (c) the observed 330 

community and (d) the simulated pseudo-community. The dashed red horizontal line indicates the 331 

threshold of 3 used throughout this study. e-f. Long-term observed (black) and simulated (red) first 332 

PCs (e) and their relationships (f). This ecosystem, and most biological systems considered in this 333 

study (except HOT, Southern Ocean and San Francisco Bay) were also analysed in detail in 334 

Beaugrand14 and Beaugrand and colleagues6, respectively.   335 

Figure 2 | Predicted (grey) and observed (red) long-term community changes for 14 systems. 336 

Principal components were standardised between -1 and 1. Pred-PC: 10000 Principal Components 337 

(grey) based on 10000 simulated communities. Obs-PC: Principal Component based on observed 338 

communities (red). a. North Sea (Pred-PC1s and Obs-PC1), b. Baltic Sea (Pred-PC1s and Obs-PC1), c. 339 

Adriatic Sea (Pred-PC1s and Obs-PC1), d. Ligurian Sea (Pred-PC2s and Obs-PC1), e. Northwest 340 

Atlantic, southern area (Pred-PC1s and Obs-PC2), f. Northwest Atlantic, northern area (Pred-PC1s and 341 

Obs-PC1), g. West Pacific Transition zone (Pred-PC1s and Obs-PC1), h. Oyashio (Pred-PC1s and Obs-342 

PC1), i. CALCOFI (Pred-PC1s and Obs-PC1), j. San Francisco Bay (Pred-PC1s and Obs-PC1), k. East 343 

Pacific region (Pred-PC1s and Obs-PC1), l. West Pacific region (Pred-PC1s and Obs-PC2), m. HOT 344 

(Pred-PC1s and Obs-PC2), n. Antarctic Peninsula area (Pred-PC1s and Obs-PC2). a-n. Linear 345 

correlations (rm) were calculated between the average of the 10000 predicted against the observed 346 

community PC. o. Long-term community shifts predicted from a regression on principal components, 347 

using the first 2 Pred-PCs from the 14 systems (averaged from the 10000 first 2 PCs). Observed long-348 

term community shifts were Obs-PCs chosen in pannels a-n. p. Histograms of the 10000 correlations 349 

between selected Obs-PCs and predictions based on the first 2 Pred-PCs from (i) the null model 350 

based on random time series (green), (ii)  randomly generated time series with an order-1 351 

autocorrelation ≥ 0.5 (blue), and (iii) the METAL theory (red). Biological variables that are considered 352 

in each site are indicated by the letters D (benthic decapods), Z (zooplankton), and F (Fish). Biological 353 

variables are indicated in the Methods.  x|y: x is the number of pseudo-species used in METAL and y 354 

is the number of time periods (1 means annual value).  Multiplicating x and y gives the total number 355 

of variables.  356 

 357 

Figure 3 | Comparisons of long-term observed (red) and predicted (blue and green; 10000 358 

simulations) community shifts, all ecoregions combined. Predictions from the METAL theory are in 359 

blue and predictions from a null model with autocorrelation in green. (a) First PC: predicted and 360 

observed long-term changes in communities. (b) Second PC: predicted and observed long-term 361 

changes in communities. (c) Third PC: predicted and observed long-term changes in communities. 362 



Index of abruptness in predicted and observed communities: (d) First PC. (e) Second PC. (f) Third PC. 363 

Correlation (r), probability of significance without (p) and with (pACF) correction for temporal 364 

autocorrelation, and degree of freedom (n) are indicated in pannels a, b and c and correspond to the 365 

correlation calculated between observations and METAL predictions when all local PCs are averaged. 366 

In d-f, the wide blue (METAL) and green (null model) curves correspond to the median of the 10000 367 

simulations and the lower and upper part, the 5th and 95th percentiles, respectively.  368 

  369 

Figure 4 | Predicted long-term variation of Abrupt Community Shifts (ACSs) in the global ocean. (a) 370 

spatial extent, (b) magnitude and (c) spatial extent and magnitude of ACS. Curves in red are order-1 371 

moving average of predicted values (blue bars) (Methods). Thin-dashed, thin-solid and thick red 372 

arrows display weak, moderate, and strong El Niño events, ‘E’  =  super El-Niño events. Thin and thick 373 

blue arrows highlight moderate and strong La Niña events. 374 

 375 

Figure 5 | Predicted Abrupt Community Shifts (ACSs; a-e) and climatic shifts (f-j) during the period 376 

1960-2015 with a focus on the years 1975-1979 (a and f), 1985-1989 (b and g), 1995-1999 (c and h), 377 

2005-2009 (d and i) and 2010-2014 (e and j). Colour bars are percentage of individual time series that 378 

show a significant shift (threshold>3). For ACSs, 50% means that half of the pseudo-species exhibited 379 

a significant shift for a given pseudo-community. For climatic shifts, 50% means that half of the climate 380 

parameters (3 out of 6 parameters) displayed a significant shift. White areas are regions with no shift. 381 

When the percentage of shifts is >0, the percentage is indicated by a colour: blue and red for low and 382 

high percentage, respectively. The six climatic parameters are: annual Sea Level Pressure (SLP), 383 

meridional wind, zonal wind, wind intensity, cloudiness and SST. The spatial extent of ACSs increases 384 

when the climatic shifts are more widespread. Individual maps of all predicted ACSs and observed 385 

climatic shifts are displayed in Supplementary Figures 4-5. Black arrow: direction and intensity of mean 386 

annual wind (1960-2015). black line: isobar based on mean annual SLP (1960-2015).  387 
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