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“There’s nothing wrong with enjoying looking at the surface of the ocean itself, except that

when you finally see what goes on underwater,you realize that you’ve been missing the

whole point of the ocean. Staying on the surface all the time is like going to the circus

and staring at the outside of the tent.”

Dave Barry



Abstract

Cooperative Swarm Optimisation of Unmanned Surface Vehicles

With growing advances in technology and everyday dependence on oceans for

resources, the role of unmanned surface vehicles (USVs) has increased many fold. Exten-

sive operations of USVs having naval, civil and scientific applications are currently being

undertaken in various complex marine environments and demands are being placed on

them to increase their autonomy and adaptability. A key requirement for the autonomous

operation of USVs is to possess a multi-vehicle framework where they can operate as

a fleet of vehicles in a practical marine environment with multiple advantages such as

surveying of wider areas in less time. From the literature, it is evident that a huge

number of studies has been conducted in the area of single USV path planning, guidance

and control whilst very few studies have been conducted to understand the implications

of the multi vehicle approaches to USVs. This present PhD thesis integrates the modules

of efficient optimal path planning, robust path following guidance and cooperative swarm

aggregation approach towards development of a new hybrid framework for cooperative

navigation of swarm of USVs to enable optimal and autonomous operation in a maritime

environment.

Initially, an effective and novel optimal path planning approach based on the

A* algorithm has been designed taking into account the constraint of a safety distance

from the obstacles to avoid the collisions in scenarios of moving obstacles and sea

surface currents. This approach is then integrated with a novel virtual target path

following guidance module developed for USVs where the reference trajectory from

the path planner is fed into the guidance system. The novelty of the current work

relies on combining the above mentioned integrated path following guidance system

with decentralised swarm aggregation behaviour by means of simple potential based

attraction and repulsion functions to maintain the centroid of the swarm of USVs and

thereby guiding the swarm of USVs onto a reference path. Finally, an optimal and hybrid

framework for cooperative navigation and guidance of fleet of USVs, implementable

in practical maritime environments and effective for practical applications at sea is

presented.
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Chapter 1

Introduction

”There must be a beginning of any great matter, but the continuing unto the end

until it be thoroughly finished yields the true glory”

Sir Francis Drake

This chapter outlines the aim and objectives of the research undertaken herein and

presents an overview of the concepts that are developed throughout the thesis without

inquiring much into the technical details. The main contributions of the research and a

list of resulting publications are included in this introductory chapter.

1.1 Motivation

In the present economic world order, there is a greater need for exploring oceans for

resources as well as for future needs. Historical ice coverage of the Arctic in September

2007 (Serreze et al., 2008) and in situ data collected from surface vehicles directing

improvements in weather forecasting (Legrand et al., 2003) have shown the potential

of USVs towards outlining a range of future missions. This has brought in the need to

develop a heterogeneous multi-robot framework in a maritime environment, where a set

of networked marine robots cooperatively coordinate to achieve the global objectives

of a maritime mission. The advantages of such cooperative behaviour against a fully

equipped single vehicle system ranges from wider surveying in less time, lowering the

cost of each vehicle, higher robustness in critical missions and multi-objective mission

planning through the allocation of different tasks to each vehicle in the mission (Liu and

Bucknall, 2018b). In addition to that, these USVs can also act as communication node

for underwater robots and aerial robots in a heterogeneous swarm deployed for surveying,

monitoring and intelligence applications (Bibuli et al., 2014). The USVs communicate

with underwater robots using acoustics and aerial robots using WiFi. Currently there is

a need for higher autonomy in the maritime environment where such vehicles can operate

in dynamic and uncertain circumstances. In this sense, a greater degree of implementable

1
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intelligence and general robustness is required to be incorporated into such a multi-vehicle

framework, so that lesser human supervision is required in their operation as a fleet of

USVs .

Two terms namely, cost and practical maritime environment, are being used

hereafter to describe the performance of the approaches adopted in this thesis in the

subsequent chapters. The term cost in the thesis refers to the amount of computational

time required by the algorithms adopted in the thesis to obtain a solution. Whereas, the

term practical maritime environment in the thesis refers to an extracted map from the

real navigation map where the static and dynamic obstacles are realistically represented.

1.1.1 Brief panorama concerning cooperative behaviour of unmanned

vehicles

Unmanned vehicles can be categorised on their mode of operation in four categories

as Unmanned Aerial Vehicle (UAV), an Unmanned Ground Vehicle (UGV), an USV or an

Autonomous Underwater Vehicle (AUV) . In the last decade or so, the research interest

of the robotics community has focused on the study of multiple marine craft coordinating

cooperatively in a global framework (as shown in Fig.1.1) to achieve mission goals globally

and thereby covering wider mission areas for a longer duration. In particular, for military

and naval applications, defence departments of the US and UK have already allocated

budget and resources towards the development of cooperative framework for marine

vehicles and their absolute integration to prospective combat zones (Royal Navy, 2016,

US Military, 2010).

Figure (image) has been removed due to copyright restriction

Figure 1.1: Integrated marine network (Source : JAMSTEC Website)

Two major research areas have been widely studied in understanding and im-

plementing the cooperative behaviour of unmanned vehicles namely, formation control

and cooperative motion planning. Initial studies towards deployment of a multi-vehicle

system have been carried out in the area of formation control. In this area, control

approaches generate appropriate control commands and drives multiple vehicles along

desired route with certain vehicle constraints (Bai and Wen, 2010, Desai et al., 1998, Do,

2009). Major research in this has been towards consensus-based formation control, where

retaining a certain shape during navigation is the primary objective. There are three

major approaches associated with the formation control: the virtual structure approach,

the behaviour-based approach, and the leader-following approach(Antonelli et al., 2009,

Chen and Wang, 2005a, Tan and Lewis, 1996a). The major issues associated with these

approaches are high computational cost, problems in describing the dynamics of the

formation behaviour and maintaining control stability (Nascimento, 2012). These issues

led to the developments in the area of cooperative motion planning, where the aim is

to provide practical guidelines towards cooperative motion planning of multiple USVs
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such as optimal reference trajectories between start and goal points, less computational

time and safety distance from the obstacles in addition to several factors associated with

formation control (Bellingham et al., 2002, Tsourdos et al., 2010). Figure 1.2 shows

the different factors associated with formation control and cooperative motion planning

of a multi vehicle system and factors shared by these two approaches in the design of

algorithms.

Figure (image) has been removed due to copyright restriction

Figure 1.2: Factors associated with formation control and cooperative motion planning
(Source: Modified from (Liu and Bucknall, 2018b))

From Figure 1.2, it is evident that formation control and cooperative motion

planning shares many key features of a multi vehicle system and should be implemented

in an interactive way during the design of algorithms for autonomous operation of a fleet

of unmanned vehicles. For example, during motion planning of a multi vehicle system

the cooperative motion planning should generate an optimal reference trajectory for

these vehicles with least computational effort while the formation control ensuring a

stringent following of a reference trajectory with sufficient room for modification in case

of collision.

In terms of motion planning of multiple autonomous marine craft on which this

current study is focused, it should be noted that there is a much needed requirement of

developing a hybrid framework for a multi vehicle system by combining the key factors

of the formation control and cooperative motion planning. Until now very few studies

have been conducted in the area of marine vehicles to understand the implications of

multi vehicle approaches to USVs.

1.1.2 Aim and objectives of this research

As mentioned in Section 1.1.1, this doctoral thesis has the aim of proposing a novel

hybrid framework for a multi-USV system by combining the key features of formation

control and cooperative motion planning in a practical maritime environment. The

research employs the combined use of a constrained A* approach, virtual target approach

and swarm aggregation approach towards development of a robust and novel collective

framework for multi-USV navigation.

Broken down as sub modules, the specific objectives of this research work are as

follows:

1. Critical review of optimal path planning and cooperative motion planning techniques

for USVs.

2. Performing a quantitative comparison of a well known heuristic Dijkstra approach

against the well known global approach of Artificial Potential Field towards path

planning of a USV in a practical maritime environment .
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3. To improve the computational efficiency of the conventional A* approach by

introducing a constraint of safety distance from the obstacle within the algorithm

and proposing a novel, optimal and computationally efficient path planner towards

navigation of an USV in a practical maritime environment.

4. To develop a two layered architecture for multi-USV navigation in a practical

maritime environment by combining the optimal and computationally efficient path

planner with a virtual target based path following approach and swarm aggregation

approach based on artificial potential field (APF) method.

Dissemination of the acquired knowledge through publications,including the writing of

this thesis, also forms part of the objectives.

1.2 Contributions

This research makes contributions to the existing and available knowledge in the

following ways:

1. The current research makes an important quantitative comparison between a well

known local approach namely the APF methodology and a well known global

approach namely the Dijkstra algorithm towards understanding the effectiveness of

path planners in a practical maritime environment. Till now no such comparative

study has been conducted in the area of USV navigation in published literature.

2. A novel path planner has been designed for the navigation of a USV in a practical

maritime environment based on the conventional A* algorithm. A safety distance

constraint has been incorporated into the algorithm and a computationally effective

approach is proposed. Previously no such study in USV path planning has been

conducted by considering the constraint of safety distance from the obstacle.

3. The novel path planner has been tested in different environmental conditions of

moving obstacle and sea surface currents and found to be computationally effective

in determining optimal paths. To the best of the author’s knowledge, to date no

such extensive study has been conducted in USV path planning through heuristic

approach by considering environmental conditions and moving obstacle in practical

maritime environment.

4. The optimal path planner is integrated with a virtual target based path following

technique and a potential theory based swarm aggregation algorithm to develop

an integrated framework of multi USV navigation in a maritime environment. It

is considered until now no such integrated framework has been studied towards

navigation of a multi-USV system.
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5. This integrated framework is then modified to avoid the external collision with

the shoreline by considering the shore profile as a set of repulsive fixed points

which, within a certain distance, concurring in the vehicle motion evolution. Such

modelling of a shoreline is another exclusive contribution to the current state of

multi USV navigation in a maritime environment.

Each of the above mentioned contributions are verified and added in the current

state of approaches adopted in the USV path planning and multi USV motion planning

through publications which are mentioned in the next section.

1.3 Outline of the thesis

Following on from this introductory chapter, Chapter 2 summarises and system-

atically survey the current methodologies adopted for optimal path planning of single

unmanned surface vehicles and swarm of USVs and their respective advantages and

disadvantages. The literature review is divided into four sections.The first section gives

an introduction to the topic. The section after the introductory material comprises of

the compilation of notable developments towards optimal path planning of USVs. Next

consideration is given to the review of studies towards the operation of multiple USVs

in a marine environment. Within the third section, the challenges and scope towards

future study in the area of navigation of multiple USVs is considered. Conclusions of the

review study are explained in the final section.

Chapter 3 gives an overview concerning the path planning of a single USV using

local and global path planning approaches. This chapter deals with explaining the merits

of heuristic algorithms over reactive path planning approaches in terms of optimising

computational time and path length. The chapter is composed of three sections namely,

global approach to path planning of single USV, local approach to path planning of

single USV followed by concluding remarks relating to the merits of using an deliberative

technique over a reactive one in path planning of marine vehicles in a practical marine

environment.

Chapter 4 addresses another practical question and that is, benchmarking and

proposing a novel path planner over the ones used till now in the literature in terms

of computational time and path length for USV path planning. This study sets up

the computational supremacy of the chosen algorithm over the existing ones used in

literature in path planning of USV and proposes a new A* algorithm constrained by

safety distance from the obstacle. The proposed path planner is tested in different

environmental conditions and found to be computationally effective and robust in USV

path planning

Chapter 5 then extends the problem of path planning from single USV to multiple

USVs by combing the constrained A* path planner with a virtual target based path
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follower and potential field based swarm aggregation approach towards developing a two

layered cooperative framework for multi USV navigation in practical marine environment.

This study is the core of the current thesis and is found to be extremely effective in

taking into account the different characteristics of single and multi USV navigation of

formation control and cooperative motion planning.

The final chapter discusses the research outcomes, draws conclusions and provides

suggestions for further work.



Chapter 2

Literature Review

”You do not see there a wireless torpedo; you see there the first of a race of robots,

mechanical men which will do the laborious work of the human race”

Nikola Tesla

This chapter summarises current methodologies adopted for optimal path planning

of single USV and studies associated with swarm of USVs. The chapter also discusses

the challenges and scopes, which can act as objectives, for future research towards path

planning of such marine craft.

2.1 Introduction

Marine vehicles can be broadly classified as shown in Figure 2.1. This classification

is based on the displaced volume of the vehicles. Each class of vehicle require different

autonomy due to the diverse nature of their missions and uncertainties involved in their

operational environments. Trans-oceanic voyages of ships, as well as, mission-oriented

short time voyages of USVs encounter various obstacles and uncertain environments.

Research and development in areas of artificial intelligence, advanced smart sensors,

wireless networks and optimisation techniques provide larger scope for contribution in

areas of maritime technology(Corfield and Young (2006),Campbell et al. (2012)). The

chapter has been organised in ten sections. The second section after the introductory

material comprises of the compilation of notable developments towards optimal path

planning of USVs. Next, consideration is given to the review of studies towards operation

of multiple USVs in a marine environment. Within the penultimate section, the challenges

and scope towards future study in the area of path planning of USVs is considered.

Conclusions of the review study are explained in the final section.

7
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Figure 2.1: Classification of marine vehicles
(Source : El-Hawary (2008))

2.2 Classification and architecture of USVs

USVs are watercraft of small (<1 tonnes) or medium (100 tonnes) size in terms of

water displacement. The technology of USVs dates back to World War II, but major

efforts towards development and understanding the technology started in the 1990s after

the successful implementation of USVs in the 1990-1991 Gulf war (Larson et al. (2006)).

The basic purposes of USVs are military, surveillance, environmental monitoring, ocean

and scientific research and exploration of hydrocarbons.

Classification and developments of USVs based on their application has been

explained by Motwani (2012) and shown in Figure 2.2. A few USV prototypes are shown

in Figure 2.3.

The general architecture of USV operation in maritime environment has three

basic systems namely, control and path planning, communication and monitoring and

obstacle detection and avoidance (ODA), which are responsible for mission planning and

execution as shown in Figure 2.4. The present policies and law do not allow operation of

USVs in maritime environment with the risk of injury and property damage (Zhuang

et al. (2011)). This leads to the requirement of development of path planning techniques

in compliance with International Regulations for Avoiding Collisions at Sea (COLREGs).

Owing to the technical similarities in UGVs and USVs i.e. similar degree of freedom,

similar uncertain environment etc. compared to UAVs, path planning techniques can be

extended from mobile robots to surface vehicles.

2.3 Environmental mapping

In order to implement the path planning techniques, mapping the environment

becomes the initial step. Environment mapping can be qualitative or quantitative and

converts world space into configuration or Cspace (Lozano-Perez (1983)). The reduction

of a physical space in Cspace helps in quick implementation of algorithms and manageable
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Figure 2.2: Classification of USVs based on application; Name (Application)
(Source : Motwani (2012))

storage in computers. The Cspace for marine vehicles are dynamic in nature and are

highly variable, spatially as well as temporally. The effect of current, winds, tides, etc.

needs to be incorporated into mapping so that a robust virtual real-time environment in

a simulation can be generated. Qualitative mapping comprises of nodes and arcs, with

vertices representing features or landmarks while quantitative mapping comprises of data

structures based on way -points or sub-goals (Campbell et al. (2012)). Qualitative and

quantitative form of spatial representation is shown in Figure 2.5. The abstraction of

path planning is shown in Figure 1.2 .

Qualitative representation expresses space in terms of connections between land-

marks and is dependent upon the perspective of a robot while quantitative representation

expresses space in terms of physical distances of travel and present a birds eye view of

the world. Quantitative representation can be used to generate qualitative representation

and is independent of orientation and position of the robot.

Popular mapping techniques are meadow maps, Voronoi diagrams, regular occu-

pancy grid and quadtree mapping (Mooney, 2009) and are shown in Figure 2.6 which

are grid-based or metric techniques on which heuristic and evolutionary optimisation

methods can be applied effectively.

These mapping techniques transform space into a physical space having co-existence

of a robot and obstacles. Meadows map transform the space into convex polygons, which
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Figure 2.3: A few USV prototypes: (a) Springer (Source : Naeem et al. (2007)); (b)
Delfim (Source : Alves et al. (2006)); (c) Protector (Source : Caccia et al. (2008))

represent safe regions for a robot to traverse, and involves selection of best polygons

to transit. The midpoints marked on convex polygons become graph nodes for the

path planner. Voronoi diagrams are a popular mechanism for representing Cspace and

are constructed through generation of Voronoi edges equidistant from the two nearest

untraversable points, and their meeting point is called a vertex. The vehicle follows

Voronoi edges to avoid a collision. Regular occupancy grids are generated through

superimposition of a 2D Cartesian grid on the Cspace. The centre of each element in the

grid becomes a node leading to a highly connected graph. Owing to high storage cost of

regular occupancy grid, in quadtree mapping, Cspace is represented with a large 2D grid

size with grids, in which the vehicle moves, is subdivided into smaller grids. A detailed

explanation can be found in Mooney (2009). Higher computational requirement is a major

drawback of such techniques against local path planning techniques (explained in Section

2.4). This requirement increases with the representation of the environment with finer

grids. Incomplete representation of various real time maritime environments is a major

deficiency with these algorithms. Most path planning studies in USVs are restricted

with validation of path planning algorithms in such a self-generated environment than in

real time environment(Liu and Bucknall (2015)). A novel study by Gadre et al. (2012)

proposed a method to generate topological maps of the natural environment for path

planning algorithms to generate dynamically feasible trajectories in a short time. This

method of generating an environment is still not tested in motion planning of USVs and
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Figure 2.4: General architecture of USV (Source : Campbell et al. (2012))

Figure 2.5: (a) Qualitative and (b) Quantitative representation (Source : Raja and
Pugazhenthi (2012))

provides an exciting prospect towards more realistic simulations for path planning.

In order to generate a map of a real-time environment, simultaneous localisation

and mapping (SLAM) is adopted, and which becomes the basis for path planning

techniques. A sensor provides topographical data of the region where the vehicle is

operating and global path planning techniques are applied to find optimal routes. SLAM

and path planning are co-requisites towards increasing autonomy and efficiency of USVs

operation in the marine environment. A detailed review of SLAM and its various modules

for autonomous mobile robots is explained in Dhiman et al. (2012).The feasibility of

SLAM in the absence of global positioning system (GPS) based communication for a

USV by building and incorporating parametrised map of a bridge pier structure within
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Figure 2.6: Grid based environmental mapping : (a) meadow maps; (b) Voronoi
diagrams; (c) regular occupancy grid; (d) quadtree mapping (Source : Mooney (2009))

obstacle detection and avoidance algorithm was demonstrated by Han and Kim (2013)

and validated with outdoor experiments. In these operations, sensors are prone to noise

and errors and there is a requirement of high storage space to collect the continuous data

coming from sensors. Along with this, extensive computation is required to process and

map the data. Some studies like Park et al. (2008)and Zeng et al. (2009) have adopted

a hybrid approach of mixing quantitative and qualitative approaches to counter the

extensive data and noise from sensors(Campbell et al. (2012)).

2.4 Global and local path planning

The second stage after mapping the environment is the application of path planning

techniques. Path planning techniques for USVs can be divided into local and global

approaches. The classification is shown in Figure 2.7.

An offline or global approach is used when complete information of the marine environment

is known, while the online or local approach is used when the marine environment changes

dynamically during the navigation of marine vehicles. Global approaches comprise of

evolutionary and grid based methods. Evolutionary methods are adopted and mimicked

from nature, while grid based methods search for optimality within a configuration

space. Evolutionary approaches have the advantage of handling multi- objectives in

path planning although convergence of such methods is not guaranteed in a finite time

and one ends up in a sub-optimal solution. Grid based methods are effective in finding

optimal solutions in a configured environment although extensive computation does not
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Figure 2.7: Path planning techniques for USV

allow effective real-time implementation in a complex or larger environment, whilst local

approaches are suitable for real-time implementation but solutions can get trapped in a

local minima.

All path planning techniques are subjected to finding an obstacle free path in a

Cspace with certain optimisation objectives. Such objectives vary for single and multiple

USVs. Figure 2.8 shows path planning objectives for single and multiple vehicles.

2.5 DOA and ROA based navigation of USVs

Most path planning techniques work in conjugation with a reflexive and deliberative

ODA sub system. Most path planning techniques follow way point navigation and are

subjected to a DOA and ROA approach to ensure a robust autonomous architecture

for an USV operation in real time. DOA refers to far field obstacle avoidance approach

where the environment is determined using long range sensors while ROA refers to near

field approach where the environment is determined using short range sensors. Most path

planning techniques are simulated and tested offline with an assumption that sensors

incorporated on an USV for DOA and ROA will provide correct information of the

environment during which motion and path planning algorithms will take corrective

measures to avoid the collision. . For effective implementation, design of a robust control

system is required to follow the generated path. The first real-time implementation of

obstacle avoidance using wireless communication in compliance with COLREGs on the

SCOUT USV was discussed in Benjamin and Curcio (2004).While Larson et al. (2006)

discussed the autonomous navigation and obstacle avoidance approaches and challenges

of real time operation with ROA and DOA approaches. The real-time implementation of

projected obstacle area method was conducted with the SEADOO Challenger for safe

manoeuvring in the presence of obstacles.
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Figure 2.8: Comparison of objectives between single and multiple vehicle path planning
(Source: Liu and Bucknall (2015))

2.6 Control approaches for USVs

With regards to control techniques for surge and yaw control under control and path

planning in 2.4, several methods such as proportional integral derivative (PID) (Caccia

et al. (2005)), H∞ (Lefeber et al. (2003)), linear quadratic Gaussian (LQG) (Sharma et al.

(2012)), model predictive control (MPC) (Annamalai et al. (2013)) have been proposed.

The review of control algorithms and a comparison of linear and non-linear control

approaches for USVs can be found in Sharma et al. (2014).Owing to the requirement of

offshore industries for underwater inspection and monitoring of offshore establishments,

much research towards path planning and control of autonomous underwater vehicles

(AUVs) and remotely operated vehicles (ROVs) has been instigated, however, this area is

out of the scope of this review. Whereas an extensive review of guidance laws for marine

vehicles is discussed in Naeem et al. (2003), a detailed review on developments in areas

associated such as path planning guidance with the autonomy of USVs is explained in

Campbell et al. (2012).
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2.7 Optimal path planning of USVs with time as an objec-

tive

To find a feasible path that can be followed in the shortest time is another objective

of path planning. Ebken et al. (2005) explained the hardware and software architecture

of the SSC San Diego USV and briefly described the path planning approach based on

the CMU Morphin algorithm (Bruch et al. (2005)) used for determining the minimal

time path during real time testing of the vehicle. Casalino et al. (2009) have proposed a

three-layer path planning architecture comprising of DOA and ROA approaches based

on a visibility graph technique and a A* algorithm to find a path having minimal time

for an USV. Salarieh and Ghorbani (2011) used a Gauss spectral method to determine

an optimal trajectory for a high-speed boat using a non-linear mathematical model.

This novel approach takes into account the dynamics of the vessel and was found

computationally less expensive in terms of storage and time. Svec et al. (2012) developed

a moving object following trajectory planning of an USV based on lattice-based trajectory

planning to generate a dynamically feasible and optimal path and verified the simulation

against experiment trails. Recently, evolutionary approaches have been brought in to

the path planning of USVs. Song (2014) proposed an improved ant colony algorithm

(ACO) for a global path planning algorithm of a USV. The proposed approach needs

less computational time and produces a smooth path. Furthermore, Song et al. (2015)

proposed a modified particle swarm algorithm (PSO) algorithm based on a particle model

for obstacle avoidance and compared results against path generated using a conventional

PSO and smooth path planning algorithms. The proposed algorithm produced a shorter

and smoother path against a conventional PSO and smooth path planning algorithms.

In order to combine the advantages of the global and local path planning algorithms, a

combinatorial approach has been proposed using an angle potential field and a modified

ACO by Wu et al. (2015). This approach provides an optimal result in terms of path

length.

Recently, a number of studies have forthcoming in the area of path planning

of USVs which needs to be acknowledged here. Wang et al. (2018a) proposed a A*

method with post smoothing for USV navigation in a real navigation map. Wang et al.

(2018b) also made a study towards development of a global path planning system for

USV navigation. Liu et al. (2015) used a novel FM method for USV navigation in a

practical maritime environment. Another important extension of the same study where

an improved FM method was used for USV navigation is proposed by Liu et al. (2017a).

In order to incorporate the dynamic characteristics of the moving vessel within the FM

method, a novel approach is proposed is proposed by Liu et al. (2017b).

In addition, two important dissertation works need a special mention. Shah

(2016) has proposed an improved A* method in a PhD study for USV navigation in

an environment comprising of static and dynamic obstacles. The work also considers



Page 16

the effect of environmental disturbances. Whilst, Schnieders (2018) also attempted to

experimentally verify the effectiveness of the APF method in a real navigation map. The

approach uses a combined use of MATLAB and Gazebo simulation on the Clearpath

USV.

2.8 Path planning of a swarm of USVs

Swarm is defined as multiple autonomous agents moving cooperatively to fulfil

global objective of a scientific or technological mission. This term is often observed

in nature. Each autonomous agent is modelled as a particle and characterised by its

position and a function describing its dynamics. The cooperative behaviour of swarm of

vehicles can be classified into two categories: (a) formation control and (b) cooperative

motion planning. Extensive research has been conducted to understand the cooperative

behaviour of swarm of UAVs and UGVs operating in static and dynamic environments.

Literature pertaining to swarm of UAVs and UGVs shows that formation control

follows four approaches namely, leader-follower (Das et al. (2002)), behaviour based

approach (Balch and Arkin (1998)), virtual structure (Ren and Beard (2004)) and

artificial potential function (Bennet et al. (2011)). In the leader-follower approach, one

vehicle acts as a leader and generates the reference trajectory for other vehicles. The

behaviour of the leader decides the behaviour of the swarm. In the behaviour based

approach, the behaviour is decided on weighted average of individual actions of each

vehicle, where actions can be formation keeping, obstacle avoidance etc. In the virtual

structure approach, the complete swarm formation is considered as a rigid body and

the dynamics of each agent is derived from the dynamics of a rigid body. This flexible

approach can accommodate all forms of formation and is a decentralized behaviour.

Finally, the artificial potential function approach to control the swarm geometry and

inter-member spacing through vector fields created by repulsive and attractive potential

fields. Path planning approaches have already been discussed in detail in the previous

section which can be coupled with formation control approaches for motion planning of

swarm of vehicles. A detailed review of literature towards cooperative path planning of

aerial and mobile robots can be found in the work of Wang and Phillips (2014).A broad

description of survey towards formation control and cooperative motion planning has

been made in the chapter 5.

A swarm of USVs in an oceanic environment is another major challenge for better

temporal and spatial coverage of the oceanic environment. A swarm of USVs is a

multi-objective problem where the vehicles have to find an obstacle-free path while

maintaining the shape of the fleet of USVs to the maximum extent. Objectives associated

with multiple USVs path planning can be found in Figure 2.8. There are basically

three control structures to maintain the shape of USV fleets, namely, leader-follower,

virtual structure and behaviour based approach (Liu and Bucknall (2015)). A detailed
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review towards multi-robot coordination can be found in Yan et al. (2013). Heuristic

approaches have been found better in dealing with such multi-objective problems. The

next important consideration is the selection of formation shape for the fleet. Line,

column, diamond and wedge shapes are the most popular geometric patterns(Campbell

et al. (2012)). Very few studies have been commenced towards the development of a

robust path planning algorithm for a swarm of USVs. Bishop (2004) demonstrated

real-time planning and control architecture for a platoon of USVs. Schneider et al. (2008)

proposed a Kalman filter based navigation for three unmanned marine vehicles with

narrow bandwidth communication moving in a wedge-shaped formation whereas Frey

et al. (2008) explained navigation of a swarm of USVs based on the basic law of physics.

This decentralised approach demonstrated a reduction in energy consumption by use

of a short range self-contained processing unit than a leader one. Abidin et al. (2011)

proposed a fly optimisation algorithm (FAO) for a swarm of mini USVs in the range

of 8 to 24 vehicles. Recent work of Liu and Bucknall (2015) successfully demonstrated

implementation of a path planning method based on the fast marching (FM) approach

for USVs as a fleet of vehicles in a dynamic environment for various scenarios. Liu and

Bucknall (2016a) proposed an effective path planning algorithm for multi USV formation

by incorporating heading angle into a FM method. This approach produces paths which

are in compliance with the heading angle of the USV. Cao and Chen (2018) proposed

another method novel method for multi USV navigation based on artificial bee colony

algorithm.

2.8.1 Challenges and scope for the future

A review of path planning of USVs shows that other than the work of Wu et al.

(2015), no attempt has been made towards the development of hybrid algorithms to

obtain global optimality without getting trapped in local minima. Most of the studies

have been simulated in the self-generated environment and there is a need to simulate

path planning algorithms in maps generated from the real-time environment. Other than

work of Gadre et al. (2012) and Liu and Bucknall (2015), no other work has made an

attempt towards this. In order to implement algorithms in real time, there is a need to

develop algorithms which are computationally less demanding. Only the work of Larson

et al. (2006), Benjamin et al. (2006) and Svec et al. (2012) have made attempts towards

real-time implementation of such algorithms. Swarm operations of USVs is still an open

area where not many developments have occurred and understanding the dynamics of

the fleet of USV in compliance with the hybrid framework comprising of characteristics

of formation control and cooperative motion planning needs to be studied. Most studies

with USV path planning assume dynamic obstacles and USV at a constant speed. There

is a requirement to develop an integrated framework which can incorporate dynamics of

USV in cooperative motion planning of USVs with least computational effort.
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2.9 Conclusions

This chapter systematically surveyed the optimal path planning approaches adopted

for single and swarm of USVs and their respective advantages and drawbacks. Initially,

optimal path planning approaches currently adopted in the literature for single USVs is

analysed with ROA, DOA and SLAM techniques in two respects, static and dynamic

environment. This is followed by path planning approaches adopted for a swarm of USVs.

Finally, on basis of the investigation of the related literature, challenges and prospects

for future research avenues with single and multiple USVs has been presented.

On the basis of the review of the literature pertaining to the path planning of single

and swarm of USVs, it is established that there is a requirement of wide research in this

area. Initially, there is a need to benchmark heuristic approaches against local approaches

for USV path planning quantitatively in terms of computationally effectiveness in practical

maritime environment. There is also a strong need to develop new heuristic algorithms

which are computationally efficient and provide safer paths for the USV navigation and

the current thesis makes an novel effort in this direction through the development of a

path planner that takes into the account of environmental uncertainty of the maritime

environment .Towards the multi-USV system, there is a need to integrate path planing,

path following and swarm approaches together to develop a novel integrated framework

applicable in the practical maritime environment and takes into account the characteristics

of the formation control and cooperative motion planning as shown in Figure 1.2. The

upcoming chapters deals with all these objectives of the USV path planning and multi

USV system towards the development of a hybrid cooperative framework for the swarm

of USVs.

The present chapter has been published as a review study by the Indian Journal of

Geo-Marine Sciences (IJGMS) which is added in Appendix B.



Chapter 3

Heuristic versus Local

Approaches

”If you’re not benchmarking your performance against your competitors, you’re just

playing with yourself”

Al Paison

The present chapter presents a quantitative comparison of a well known heuristic

approach namely Dijkstra against a another well known local path planning approach

APF towards path planning of a USV in a practical maritime environment. This study

compare the effectiveness of the two well known path planning approaches in terms of

computational time. The major aim of the current chapter is to benchmark quantitatively

the computational performance of heuristic approaches against the local approaches in

the USV path planning.

3.1 Introduction

Advanced electronic navigation has become an irreplaceable guide to navigate

USVs intelligently along shorelines and docks. Path planners always work in a discreet

workspace to find solutions. Two major approaches are studied in robotics towards

this namely, heuristic and local approaches as explained in Chapter 2. Within local

approaches, APF is a well-known approach which has been extensively used in the

literature towards path planning of mobile and aerial robots while within the heuristic

approaches, Dijkstra was the first method adopted in mobile and aerial robotics for path

planning. Although a huge number of benchmark studies have been conducted in mobile

and aerial robots, these approaches have not been benchmarked in a configuration space

of a practical maritime environment for USVs. Towards specifying a quantitative figure

and to establish the supremacy of heuristic approach in terms of cost and implementation

19
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in a practical maritime environment, two of the most popular approaches have been

adopted in this chapter.The main scholarly effort of this chapter is towards providing a

basic overview of the path planning approaches leading to the development of a reliable

path planner in the coming chapters.

Many advanced path planners have been developed over the last few decades and

few of the most popular ones are A*, D* and Rapidly-Exploring Random Trees (RRT)

to name a few. These advanced versions have been developed for solutions towards a

specific requirement within the robotic path planning. In the current thesis, a modified

version of A* has been implemented in the subsequent chapter as a novel method and

has been benchmarked. Unlike A*, D* is an expensive approach as the dimension of the

search space increases and has to re-plan the path with increasing search space. RRT is

a sampling based method with high computational cost involved for finding path. Also

there is a need to add additional algorithms with RRT to define optimality for path

planning. Hence in terms of optimality and easier implementation, Dijkstra and APF

were chosen for the benchmark study.

The chapter is organised in four sections in which the next section after this

introduction discusses the results associated with path planning of USV using a well

known local approach, APF and various drawbacks associated with the local approach.

Section three deals with the application of a well known optimal algorithm, Dijkstra, in

path planning of an USV. The final section deals with discussion related to application

of local and global approaches for real time implementation in a practical marine

environment.

3.2 Path planning of an USV based on APF

In robotics, various local approaches such as Collision Cone Concept (Chakravarthy

and Ghose (1998)), Velocity Obstacle Approach (Fiorini and Shiller (1998)), Vector Field

Histogram (Borenstein and Koren (1991)) and APF (Khatib (1986)) have been proposed

in the literature. Since most of the robotics problems is real time, the need to have a

very fast and simple motion planner is evident. The simplicity enables fast development

and deployment of a robot, whereas the computationally inexpensive nature allows the

algorithm to be implemented with minimum sensing capabilities. APF is one of the

simplest local methods, and the method is capable of autonomously moving a robot in

a realistic obstacle framework with real time implementation. In the present study, an

effort in the direction to understand the effectiveness of APF in path planning of an USV

in a practical marine environment has been made.
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3.2.1 APF : Concept and methodology

APF solves the path planning problem by assuming all obstacles are a source of

repulsive potential, with the potential inversely proportional to the distance of a robot

from the obstacle while the goal attracts it by applying an attractive potential (Kala

(2016)). The derivative of the potential gives the value of the virtual force applied on

the robot, which moves the robot from start to goal point(Kala (2016)). The motion is

completely local in nature. A schematic of the APF is shown in Figure 3.1.

Figure 3.1: Schematic of the APF. In the path planning of a robot, potentials
are expressed in the workspace of the robot. Obstacles which have to be avoided are
surrounded by repulsive potential fields and the goal point is surrounded by an attractive
field. These potentials are added to form a composite potential as shown in the figure
on the most left hand side of the schematic. The robot moves in this field as shown in

the trajectory

3.2.2 Attractive Potential

The attractive potential is applied by single goal to direct a robot towards itself.

The attractive potential is directly proportional to the distance between the current

position of the robot and the goal. This causes the potential to tend to zero as it

approaches the goal and hence slows down as it approaches the goal (Kala (2016)). The

potential in this study is taken as, a quadratic potential, as represented in Eq. 3.1.

Uatt(x) =
1

2
Katt‖x −G‖2 (3.1)

where, x is the current position of the robot and G is the goal. ‖.‖ is the Euclidean

distance function and Katt is the proportionality constant, where the degree is taken as

two.The driving force is a vector whose magnitude is measured through the derivative

of the potential function and the direction as the line which maximizes the change in

potential, which is given by Eq. 3.2.
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Fatt(x) = ∇Uatt(x) = Katt‖x −G‖.u(x −G)

= Katt‖x −G‖ (x−G)

‖x −G‖

= Katt(x −G)

(3.2)

where, u() is the unit vector

3.2.3 Repulsive Potential

The repulsive potential is applied by obstacles which repel a robot coming close and

repelling it to avoid a collision. The potential is inversely proportional to the distance so

that potential tends to infinity if the robot comes near an obstacle leading to repulsion.

Obstacles at a certain distance d∗ are considered in modelling the potential (Kala (2016)).

The repulsive potential is given by Eq. 3.3

Urep(x) =


1

2
Krep

( 1

‖x − oi‖
− 1

d∗

)
, if ‖x − oi‖ > d∗.

0, if ‖x − oi‖ < d∗.

(3.3)

where, x is the current distance of the robot and oi is the position of the obstacle. ‖.‖ is

the Euclidean distance function and Krep is the proportionality constant, where again

the degree is taken as two.

The repulsive force is given by Eq. 3.4, which is a derivative of the repulsive potential

Frep(x) = ∇Urep(x) = −Krep

( 1

‖x − oi‖
− 1

d∗

) 1

‖x − oi‖2
u(x − oi)

= −Krep

( 1

‖x − oi‖
− 1

d∗

) 1

‖x − oi‖2
(x − oi)

‖x − oi‖

= −Krep

( 1

‖x − oi‖
− 1

d∗

) (x − oi)

‖x − oi‖3

(3.4)

where, u() is the unit vector

3.2.4 Resultant Potential

The resultant potential is given by sum of attractive and repulsive potential. This

final force is henceforth, the derivative of the resultant potential. This is given in Eq.

3.5.
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U = Uatt + Urep

F = ∇U = ∇Uatt +∇Urep = Fatt + Frep
(3.5)

3.2.5 Methodology

In the present study, a realistic marine environment i.e. Portsmouth harbour has

been chosen as the area of navigation. Portsmouth has been chosen towards simulation

study due to its economic significance. A start point and goal point as shown in Figure

3.2 was chosen for an USV to navigate.

Figure 3.2: Simulation area- Portsmouth harbour (Source: Google Maps)

A binary map of 800x800 pixel grid resolution (shown in Figure 3.3) was taken

into account with an USV available at the University of Plymouth named, Springer.

This being considered in terms of kinematic constraints for the purpose of path planning.

In the given simulation, only two parameters from the list of parameters for Springer,

namely size and speed of the Springer has been considered while the other parameters

mentioned on Table 3.1 are based on the constraints of the equations of the potential

field. In this map, each pixel corresponds to 3.6 m of length on the real map. Parameters
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used in APF for path planning of Springer are shown in Table 3.1. Springer is shown in

Figure 3.4.

Figure 3.3: Binary map of the simulation area

Figure 3.4: The Springer USV

The algorithm has been coded in MATLAB and simulations run on a computer

with a Pentium i5 2.7 GHz processor and 16 GB of RAM
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Table 3.1: Parameters used in APF for path planning of Springer

Parameters Values

Katt 300000

Krep 300000

USV Size (Springer Size) 4 m (Length); 2.3 m (Width)

USV Speed 4 m/s (maximum speed of Springer)

Safety distance from obstacles (d∗) 108 m

Maximum turn rate (deg./s) 10

Initial heading of USV (deg.) -45◦

3.2.6 Results

Evaluation of the APF performance for USV path planning in terms of path length,

path cost and computational time is described in Table 3.2. Simulation records movement

sequences of the USV within the map. Figure 3.5 shows the sequence of USV motion

from start to goal point at different times of the motion. The initial heading of the USV

in Figure 3.5 is based on the net potential field created as a summation of the attractive

and repulsive fields. The overall trajectory shows that such algorithm is efficient in

generating safe path for USV in a practical marine environment.

Table 3.2: Performance of APF in Springer navigation

Parameters Value

Path Length 3.1 Km

CPU Time 32.61 s

Table 3.2 shows that USV is able to find a safe trajectory of length 3075 m within

32.608 s which means, less than 1 second is required by the USV to find a path of 1m.

This leads to the fact that real time implementation of such a algorithm is possible within

a practical marine environment. Since the APF is a parameter dependent algorithm,

there is a need to find the right set of parameters for different case scenarios.

Although local techniques have dominated the area of robotic path planning

before 2000, but owing to their incomplete, non optimal nature with several drawbacks

associated, heuristic approaches and their different variants have been in usage in the last

two decades (See Figure 3.6). Local techniques no longer provide suitable and effective

results for robot navigation in an unknown and dynamic environment compared to

heuristic techniques owing to several following drawbacks (Borenstein and Koren (1991))

:

1. Trap situation owing to local minima.



Page 26

Figure 3.5: Sequence of USV motion from start to end point

2. Inability to find a path between closely spaced obstacles.

3. Oscillations in narrow passages.

4. Goals non reachable with obstacles nearby (GNRON)

Although various studies have been conducted to overcome these drawbacks as

suggested by Ge and Cui (2002), Huang (2007), Huang (2009), Valbuena and Tanner

(2012) and Hui and Pratihar (2009) using a modified potential field method, computational

time, incomplete and non-optimal nature makes use of heuristic algorithms more suitable

for online implementation. A simulation study has been conducted in the next section

using a well known heuristic approach, namely, the Dijkstra algorithm to understand the

effectiveness of the use of heuristic approaches in path planning of a USV in a practical

marine environment.
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Figure 3.6: Application of local and heuristic algorithm (Modified from Source:
Mohanty and Parhi (2013))

3.3 Path planning of a USV based on a Dijkstra approach

Under global approaches, grid map based path planning techniques are best known

since they generate sub optimal trajectories with a faster computation time. These

grid map based approaches follow heuristic, a practical method of finding an optimal

solution in an complex scenario to speed up the process of finding an satisfactory solution.

Planning consists of finding a sequence of actions that transforms some initial state into

some desired goal state. In heuristic path planning, the states are agent locations and

transitions between states represent actions the agent can take, each of which has an

associated cost. A path is optimal if the sum of its transition costs (edge costs) is minimal

across all possible paths leading from the initial position (start state) to the goal position

(goal state). A planning algorithm is complete if it will always find a path in finite time

when one exists, and responds in the finite time if no path exists. Similarly, a planning

algorithm is optimal if it will always find an optimal path.When the dimensionality of the

planning problem is low, for example when the agent has only a few degrees of freedom,

heuristic algorithms are usually favoured because they provide bounds on the quality of

the solution path returned.

Dijkstra (1959) initiated the work in the area of grid map-based path planning

algorithms by describing the shortest path between two nodes specified on a map. This

was later improved by Hart et al. (1968) who introduced A∗, which is an extended

version of Dijkstra algorithm. In the last two decade, many variants of A∗ have been

introduced by various researchers to improve the performance of robots working in a

number of environments. Stentz (1995) introduced the first major improvement of A∗,

the focused D∗ algorithm for real time path replanning which was later improved for

a partially unknown environment by the induction of D* Lite (Koenig and Likhachev

(2002)). Another improvement by fixing infelicities of A∗ in a dynamic environment

was introduced by Likhachev et al. (2005) through the Anytime Dynamic A∗. Since

these algorithms do not consider the heading and dynamics of a robot, another major
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improvement was introduced in the form of the Theta∗ (Nash and Felner (2007)). This

algorithm accounts for the heading angle and yaw rate of a robot in the path planning,

which is a necessity for USV path planning since it cannot follow an unrealistic path with

sharp turns (Kruger and Briganti (2007), Prasanth-Kumar and Kumar (2005), Yang and

Wang (2005)). Advanced approaches like the ant colony algorithm (ACO) (Song (2014))

and particle swarm optimization (PSO) (Song et al. (2015)) have been adopted for USV

navigation but cannot generate trajectories in real time due to a high computational

load. Along with this, these algorithms do not give consideration to vehicle dynamics

and turning radius.

Many studies in marine navigation have been conducted, but most of them

have been related to collision avoidance rather than the path planning problem (Tam

and Bucknall (2010)). Even studies conducted on optimal USV navigation have been

struggling with high computational load and are incapable of generating a trajectory in

real time. This study presents the use of the Dijkstra algorithm in a real time environment

with minimum computational load to generate a trajectory within a real time operation.

This approach is well suited for optimal USV navigation in a static environment with

minimum computational requirement.

3.3.1 Methodology : Dijkstra Algorithm

There are various variants of the Dijkstra algorithm. The variant used in this study

fixes a source node which is the start point of the USV and finds the shortest paths from

source node to all other nodes in the graph leading to shortest- path tree. In order to

reduce the computational load in the original variant, a sparse graph i.e. graph with

fewer edges approach has been adopted leading to more efficient storage of graph nodes.

The algorithm is defined in Table 3.3 (Ahuja (1990)).

Table 3.3: Dijkstra Algorithm

Algorithm 1. Dijkstra (Graph, source)

1: function Dijkstra(Graph, source):
2: create vertex set Q
3: for each vertex v in Graph: // Initialization
4: dist[v ] ← INFINITY // Unknown distance from source to v
5: prev[v ] ← UNDEFINED // Previous node in optimal path from source
6: add v to Q //All nodes initially in Q (unvisited nodes)
7: dist[source] ← 0 // Distance from source to source
8: while Q is not empty:
9: u ← vertex in Q with min dist[u] //Node with the least distance will be selected first
10: remove u from Q
11: for each neighbour v of u: // v is still in Q
12: alt ← dist[u+ length(u, v)]
13: if alt < dist[v ]: // A shorter path to v has been found
14: dist[v ] ← alt
15: prev[v ] ← u
16: return dist[], prev[]
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In the given algorithm in Table 3.3, the code u ← vertex in Q with min dist[u]

searches for the vertex u in the vertex set Q that has the least dist[u] value. length(u,

v) returns the length of the edge joining (i.e. the distance between) the two neighbour

nodes u and v. The variable alt on line 12 is the length of the path from the root node to

the neighbour node v if it were to go through u. If this path is shorter than the current

shortest path recorded for v, that current path is replaced with this alt path. The prev

array is populated with a pointer to the ”next-hop” node on the source graph to get the

shortest route to the source.

In order to use a practical environment, Portsmouth harbour, which was used for

the APF in the previous section, has also been considered as shown in Figure 3.2. The

map is organised as a weighted occupancy map using a cell decomposition method . This

map represents obstacles as black and free space as white in a matrix of black and white

as shown in Figure 3.3.The algorithm has been coded in MATLAB and simulations run

on a computer with a Pentium i5 2.7 GHz processor and 16 GB of RAM

3.3.2 Results

In this study, computational time of the simulation for three different start and

a fixed goal node have been compared in order to determine the effectiveness of the

algorithm in term of computational time to find an optimal trajectory in a practical

marine environment. Figure 3.7 shows three different start nodes within the grid map

having a fixed goal node. These starting nodes are chosen arbitrarily within the grid

map on different positions within the simulation area to show the effectiveness of the

algorithm in finding different trajectories with least computational load.The simulations

are assumed to be used by Springer.

Table 3.4 shows the comparison of computational time for three cases as shown in

Figure 3.7. The results show that the trajectories generated by the Dijkstra algorithm

within a huge grid map from any source nodes satisfy the computational efficiency. All

cases are able to generate a complete path in less than 7 seconds which in turns lead to

the generation of path in less than 1 second per metre length of the distance covered by

USV. Henceforth, such an algorithm is applicable in a real time operation where faster

optimal trajectories are needed to be generated. Since the maximum speed of the USV

for which the algorithm is designed is 4 m/s, henceforth, the proposed approach satisfies

the dynamic constraints of the platform.

3.4 Concluding remarks

This chapter divides the problem of a USV path planning into global and local

approaches through simulation studies conducted using two well known methods the

Dijkstra and APF respectively. The APF and its respective local approach variants are
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Figure 3.7: Simulation results for three cases of the Dijkstra algorithm

easy to implement. A comparative result in terms of the computational performance

of these two approaches is summarised in Table 3.4 Therefore, they are used in many

real-time operations and may obtain good results as shown in simulations. However,

such methods require precise information about the environment from accurate sensors

to be used in real-time application. Along with this, such methods theoretically do

not guarantee an optimal solution neither they are complete in nature (i.e.finding an

trajectory in all scenarios). High computational time is another area of concern for such

methods in the area of marine robots where on board computational capacity is very
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Table 3.4: Comparison of APF and Dijkstra in terms of computational time

Approach Computational Time(s)

6.80 (Case 1)
Dijkstra 5.58 (Case 2)

6.14 (Case 3)

APF 32.61

limited.

Compared to such a local approach, heuristic methods are optimal in nature and can

intelligently adapt themselves to the ever changing environment. These approaches are

complete in nature and provides a faster computation of path in uncertain environment.

In the present chapter, a very basic algorithm Dijkstra has shown its computational

effectiveness in finding an optimal trajectory in a practical marine environment. In last

two decades, significant progress towards the development of heuristic algorithms in

robotic path planning has taken place. Very few heuristic studies have been conducted

in USV path planning and have been restricted to solutions in static environment. USV

path planning in alien dynamic environments with moving obstacles and environmental

disturbances is a challenging aspect in an optimal framework. The next chapter will make

an effort to implement effective and optimal path planning for an USV in an environment

considering moving obstacles and environmental disturbances.

The results of the current chapter has been published as a research article by the

International Journal on Marine Navigation and Safety of Sea Transportation which is

shown in Appendix B.



Chapter 4

Constrained A* Path Planner

”It is not the ship so much as the skillful sailing that assures the prosperous voyage”

George William Curtis

The current chapter explores an A* approach with an USV enclosed by a circular

boundary as a safety distance constraint on generation of optimal waypoints to resolve

the problem of motion planning for an USV moving in a maritime environment. Unlike

existing work on USV navigation using graph based methods, this study extends the

implementation of the proposed A* approach in an environment cluttered with static and

moving obstacles and different current intensities. The study also examines the effect

of headwind and tailwind currents moving in clockwise and anti clockwise directions

respectively of different intensities on optimal waypoints in a partially dynamic environ-

ment. The performance of the proposed approach is verified in simulations for different

environmental conditions. The effectiveness of the proposed approach is measured using

two parameters, namely, path length and computational time as considered in other

research works. The results show that the proposed approach is effective for global path

planning of USVs.

4.1 Introduction

Recent advances in electronic navigation and intelligent robots have become an

imperative aid to navigate marine vehicles effectively for applications ranging from

reconnaissance in hostile areas to operations in dangerous weather conditions (Loe, 2008).

Path planning is an important layer in the mission management system of an USV

voyage. In accordance with the current level of autonomy, USV needs an effective and

safe path planning approach in a cluttered operating environment. A substantial amount

of research has been conducted in the area of path planning of USVs. Path planning

for a USV can be classified into two categories, namely, reactive approaches (Khatib

(1986), Borenstein and Koren (1991), Mohanty and Parhi (2013), Fiorini and Shiller

32
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(1998)) where vehicles makes decision en route and deliberative approaches where vehicles

follows a predetermined path (Hart et al. (1968), Holland (1975), Kennedy and Eberhart

(1995)). Several computational approaches comprising of evolutionary methods such as

GA or PSO (Zeng et al. (2015), Aghababa (2012)), graph search techniques (Garau et al.

(2005), Singh et al. (2017a)), APF (Warren (1990), Singh et al. (2017b)) and FM (Liu

and Bucknall (2015), Petres et al. (2007)) have been applied in path planning of marine

vehicles.

Ocean environmental effects and moving obstacles play the most significant

role in path planning of USV and very few papers have covered their effect on path

planning in the last decade (Tam and Bucknall (2010), Statheros et al. (2008)).Neglecting

environmental effects in path planning not only leads to significant wastage of energy in

USV while navigating in strong currents but could also elevate the potential danger of

impact with the obstacles (moving or static) in an ocean environment. In order to save

energy, avoid the collision and to increase the endurance of USVs enabled with limited

computational resources, it is important to plan the USV voyage in advance before a

mission commences by considering environmental effects and dynamic obstacles in the

path planning. Traditionally, grid search techniques have been found most efficient in

generating a path in the fastest computation time compared to other reactive approaches

adopted in path planning of robots (Mohanty and Parhi (2013)).

The chapter is organised as follows : In the current section, the literature pertaining

to path planning of USV has been described with major contributions of the current

study being explained. In the following section, a detailed overview of the methodology

adopted in the current study is presented. In the subsequent section, simulation studies

conducted in various environmental scenarios are reported and the proposed approach is

benchmarked. The conclusions of the current study are reported in the final section.

4.1.1 Related work

Many studies have been conducted on the subject of grid based path planning in

the area of marine vehicles from different perspectives of collision avoidance, heading

constraint, environmental disturbances and energy consumption. By reviewing the

literature on the subject of optimal path planning in marine vehicles, most of these

studies have been in the area of AUV (Alvarez et al. (2004), Garau et al. (2005), Kruger

and Briganti (2007), Zeng et al. (2015), Soulignac (2011), Kumar et al. (2005)) and very

fewer studies have been in the area of path planning of USV. AUVs cannot operate in

all environmental conditions due to limited speed and onboard capabilities against USVs

which are more suited for operation in areas of high military, shipping or fishing activity,

due to acoustic interference, collision risk, and net entanglement. AUVs are also less well

suited to tidally dominated shallow-water settings that have high levels of anthropogenic

infrastructure and activity. This leads to a requirement of development for the dedicated

path planning approaches for USVs against path planning approaches adopted for AUVs.
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The grid based path planning was first proposed in form of the Dijkstra algorithm

(Dijkstra (1959)) which was later extended to the A* algorithm by introducing an

heuristic cost (Hart et al. (1968)) to speed up the search process by pruning the search

space. Generally in grid based path planning, the objective is to find the shortest path

by avoiding static obstacles (Stentz (1995)). This approach was first introduced into

USV path planning, where an improved three layered architecture towards USV path

planning in a harbour was proposed by combining a reactive and A* approach (Casalino

et al. (2009)). In another work, a A* approach was extended by combining a grid based

path planner with a locally bounded optimal planner towards USV path planning in

uncertain sea environment (Svec et al. (2011)). The IMO (IMO (1988), IMO (1995),

IMO (2007)) has suggested certain regulations for navigation in a marine environment

for collision avoidance commonly known as COLREGs. A COLREGs based A* approach

was proposed for way point navigation of an USV complying with Rule 14 of COLREGs

in an environment cluttered with static and moving obstacles (Naeem et al. (2006)). A

modified A* approach, Finite Angle A*(FAA*) towards obtaining shorter path lengths

than classic A* approach has been adopted in a study conducted on USV path planning

in an environment comprising static obstacles with a constraint of keeping safe distance

from obstacles (Yang et al. (2012)).

Currently a substantial amount of research in mobile robotics towards modifying

the conventional A* algorithm to improve its performance as per the mission and

kinematic requirement of the robot i.e. A* with Post Smoothing (Rabin (2000)), Field

D* (David and Anthony (2005)), Theta* (Nash et al. (2007)) and D* Lite (Koenig

and Likhachev (2002)) has been conducted. Owing to technical similarities between

mobile robots and USVs, some of the improved approaches have been extended in path

planning of USVs. USVs are generally constrained by yaw rate and heading angle in

real time manoeuvring. A modified A* algorithm, Theta*, for search in 3D Euclidean

space at all orientation was implemented for USV path planning complying with heading

angle of USV and compared with conventional grid based 3D path planners (Kim et al.

(2012)). In a further work, the Theta* algorithm was improved in terms of computational

time and path length against conventional 3D path planners for USV path planning

in form of ARC-Theta* algorithm (Kim et al. (2014)), which considers angular rate

(yaw rate) of USV in path planning. Another improvement in the A* algorithm for

USV path planning was proposed by a modified heuristic for ocean environment with

surface currents constrained to heading angle and diverse water depth (Lee et al. (2015)).

Another novel work in the area of optimal path planning of USVs has been conducted

recently by using FM2 algorithm, an optimal approach to FM method by considering

environmental disturbances (Garrido and Moreno (2016)).

Some novel studies related to use of the FM approach in USV navigation has been

investigated recently.Liu and Bucknall (2016b) have proposed a novel method of the

modified FM method towards USV navigation in a practical maritime environment. As

an extension of the previous study, Liu et al. (2017b) makes an attempt to incorporate a
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Kalman filter based prediction method for dynamic obstacles within the modified FM

approach.

4.1.2 Problem definition and major contribution

In the present context of autonomy required in the marine environment, autonomous

navigation of USVs in a practical marine environment needs to be cognisable of three

important issues, namely, safety, reliability of the mission and likelihood of the success

(Statheros et al. (2008), LaValle (2006)). Central to the path planning algorithms,

two approaches are widely adopted namely, a waypoint approach and a trajectory

based approach. The way point approach is associated with non parameterized straight

line paths generated from connection of waypoints while trajectory based approach is

associated with time parameterized path to convert the waypoint paths into dynamic

trajectories (Şerban (2016)). The present study adopts a way-point approach over

trajectory based approach for a USV named, Springer, shown in Figure 3.4, navigating

in a practical marine environment due to its easier implementation in practical scenarios

(Fossen (1995)). The specifications of Springer, available at the University of Plymouth,

are tabulated in Table 3.1. USVs operate in an environment where ocean environmental

effects and moving ships have a significant effect on the way-point selection for an USV

voyage based on mission requirement. These mission requirements can be classified

in small-scale and large-scale operations. Small-scale operations include bathymetric

surveys, pollution monitoring and data assimilation in a cluttered environment where

the generation of safer way-points have the highest priority in the path planning while

large-scale operations include trans-oceanic voyage and cooperative surveying where the

shortest distance is required for high endurance. Hence there is a challenge to conserve

energy as well as consider safety of USVs in USV path planning for USVs designed with

heterogeneous mission requirements in mind.

Ocean environmental effects can be bifurcated into three streams, as the additive

and multiplicative disturbances on vehicle hull, namely, wind, waves and ocean currents

(Fossen (1995)). Wind load is generally ignored in path planning since USVs have a high

draft compared to an air projection area and operations are generally restricted in an

environment with wind speed less than 10 m/s (Lee et al. (2015)). In order to simulate the

motion of USVs, it is generally assumed that wave loads account for fluctuating pressure

distribution below the water surface and the water surface remains unaffected (Fossen

(1995)). Hence wave loads become more significant in dynamic positioning than path

planning. Wind generated currents have the highest significance on path planning and

way-point generation. Since the Earth is rotating, the Coriolis force turns major currents

to the right in the northern hemisphere while opposite in southern hemisphere (Fossen

(1995)) as viewed from above. Consequently, another major challenge is to understand

the steady non uniform headwind and tailwind (Knight (2008),Belcher (2007)) currents

effect on way-point generation and optimality in grid-based path planners. This challenge
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becomes more complex when uncertain obstacles in the form of moving obstacles appear

in the operational domain of an USV.

The work of Kim et al. (2014) has showed that conventional A* outperforms other

heuristic variants of A* in terms of computational time and Euclidean distance in a mar-

itime environment. Henceforth, leading to requirement of developing a computationally

effective version of A* by adopting the conventional A* approach. In order to address

aforementioned challenges and issues pertaining to the autonomy of USVs, the current

study adopts an A* approach with an USV enclosed by a circular boundary as a safety

distance constraint on generation of optimal waypoints. This resolves the problem of

optimal path planning for an USV moving in a practical maritime environment, leading

to generation of safer way-points with conservation of energy. Figure 4.1 describes a

comparison of the path generated by conventional grid-based method against the path

generated by conventional grid-based method considering safety distance and surface

ocean currents. To the best of the authors knowledge, such an approach has not been

adopted and studied towards USV path planning in a cluttered environment having static

and moving obstacles in addition to surface currents. USVs are mostly equipped with

limited computational resources in addition to limited endurance. This chapter assess

the effectiveness of the proposed approach in terms of computational time to generate

path and path length in simulation studies conducted in various environmental scenarios.

Figure 4.1: A schematic showing the path generated by a conventional grid based
path planner compared against the path generated by a grid based path planner by
considering safety distance and sea surface currents (clockwise). In case of anti clockwise
currents, the sea surface currents push the USV towards the obstacle and the proposed

algorithm makes sure that a safety distance is maintained to ensure no collision
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4.2 Methodology Overview

4.2.1 Environmental mapping

The abstraction of path planning for USVs is shown in Figure 4.2. In order

to implement path planning algorithms, mapping the environment becomes the initial

step. Environmental mapping converts world space into Configuration space (Cspace)

which helps in quick implementation of algorithms and manageable storage in computers

(Mooney (2009)). The Cspace for the USVs are dynamic in nature with high spatial

and temporal variability. This chapter adopts a popular mapping technique, namely,

regular occupancy grid due to its effective resolution in grid based path planners (Mooney

(2009)). Portsmouth harbour is among the busiest harbours in United Kingdom and is a

perfect area for understanding path planning of USVs. In this study, binary images of

satellite images of Portsmouth harbour taken from Google Maps have been utilised as

gridded maps for the proposed A* approach as shown in Figure 3.3. The Cspace for the

planar USV is considered as R2 , representing the planar positions of the USV where an

USV is treated as a pixel point on the map. The map of the environment is the converted

binary image where free space is considered as 1 (white) while obstacle is considered as 0

(black). The 800×800 binary image has a resolution of 3.6 m per pixel length.

Figure 4.2: Path planning abstraction for USVs

4.2.2 A* Algorithm

The choice of approach is the next step in path planning of USVs. In the present

study, the A* approach with safety distance constraints has been adopted. Adoption of

certain path planning approaches in an USV is mission dependent. Since the current

study considers an USV, Springer, developed with primary purpose of monitoring sea

pollution, generation of safer way points with conservation of optimality for higher

endurance becomes the highest priority. Although several approaches have been adopted

in the literature (Section 4.1.1), no approach has been able to compute path with a

better computational time than the conventional A* approach in simulation studies.
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The A* algorithm on a gridded map is restricted either to 4-connectivity or 8-

connectivity, as shown in Figure4.3, based on resolution required, where each cell in

Cspace is evaluated by the value:

f(n) = h(n) + g(n) (4.1)

Figure 4.3: Schematic of 4-connectivity and 8-connectivity in Cspace

where, h(n) is the heuristic distance of the cell to the goal state and g(n) is the length of

the path from initial state to goal state through selected sequence of cells. Each adjacent

cell of actually reached cell is evaluated by value of f(n) and the one with lowest value

of f(n) is chosen as the next one in sequence. This advantage of modifying distance in

A* gives a wide range of modifications which can be applied in the algorithm in the form

of energy consumption and safety distance (Duchoň et al. (2014)). The present study

considers the safety distance constraint to study the path planning of USVs. The pseudo

code for A* algorithm is defined in Algorithm 1.

In Algorithm 1, A* use a priority queue to perform the repeated selection of

minimum (estimated) cost nodes to expand. This priority queue is known as the openset

or fringe. At each step of the algorithm, the node with the lowest f value is removed

from the queue, the f and h values of its neighbours are updated accordingly, and these

neighbours are added to the queue. The algorithm continues until a goal node has a

lower f value than any node in the queue (or until the queue is empty). The f value of

the goal is then the cost of the shortest path, since h at the goal is zero in an admissible

heuristic.
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Algorithm 1: A* Algorithm

Data: start, goal(n), h(n), expand(n)
Result: path

1 Begin;
2 if goal(start) = true then
3 return makePath(start)
4 end
5 open ← start
6 closed ← ∅
7 while open 6= ∅ do
8 sort(open) ;
9 n ← open.pop() ;

10 kids ← expand(n) ;
11 forall kid ∈ kids do
12 kid.f ← (n.g + 1) + h(kid);
13 if goal(kid) = true then
14 return makePath(kid);
15 if kid ∩ closed then
16 open← kid;
17 end

18 end

19 end
20 closed← n

21 end
22 return ∅

4.2.3 Comparing A* approach with safety distance for different reso-

lution

Fig. 4.4 shows the comparison of the A* approach for 4-connectivity and 8-

connectivity on a gridded map in terms of computational time. The results show that on

a R2 grid map, 4-connectivity resolution produces a computationally efficient path in a

A* approach against path produced by 8-connectivity resolution. This is owing to the

fact that search process explores lesser number of nodes by pruning the search domain.

Although, in terms of path length, simulations shows that the A* approach with

8-connectivity resolution produces a better path than 4-connectivity resolution with a

more better quality of path as shown in Fig. 4.6. This difference in resultant paths

due to the fact that search process explores more number of nodes in an 8-connectivity

resolution on a R2 grid map.

Since 8-connectivity resolution produces more optimal path as shown from the

values shown in Fig. 4.5 with more better resolution as explained above. Hence, the

current study adopts a 8-connectivity resolution for effective global path planning of

USV in a constrained channel of Portsmouth harbour.

The proposed study deals with inclusion of a safety distance criteria in the A*

approach towards USV path planning. In order to benchmark, a safety distance of 10
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Figure 4.4: Compared computational time of the A* approach with 4-connectivity
and 8-connectivity resolution. The interval on each bar denotes the standard deviation

of the computational time

Figure 4.5: Compared path length of the A* approach with 4-connectivity and 8-
connectivity resolution. The interval on each bar denotes the standard deviation of the

path length

pixels is arbitrarily chosen on a grid map. Two cases of 4-connectivity and 8-connectivity

on a gridded map is compared in terms of the quality of the path obtained and path

length.
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Figure 4.6: Resultant paths with (a) 8-connectivity (b) 4-connectivity resolution

4.2.4 Assumptions

The complexity of USV path planning is massive and a number of simplifica-

tions have been recommended to reduce the intricacies of the problem (Azariadis and

Aspragathos, 2005). Here, the following assumptions have been made:

1. The map (study area) is considered to be in a confined sea environment near to

Portsmouth harbour. Henceforth, temporal and spatial variability in the chosen

study area in terms of environmental effects and moving vessels is considered

quasi-static for the period of the USV voyage.

2. Kalman filter and other sensor measurements are used on a USV to determine the

obstacle position over time. The current study assumes that position and velocity

of the moving obstacle in Cspace is known from a Kalman filter.

3. The given moving obstacles are modelled as ellipses on the grid map by combining

two grid points, where each grid point comprises of a semi ellipse, since it is a

standard practice in a marine environment to consider moving obstacles in an

elliptical domain as per the recommendations of the IMO (Tam et al. (2009)).

Overlapping of elliptical shape with grid cell boundary is neglected.

4. The USV is modelled as a particle under the assumption that an effective, robust

controller quickly establishes the commanded velocity.

5. The USVs are generally having a combination of deliberative and reactive systems

on board for planning path in a marine environment. The deliberative systems help

in determining global waypoints, while reactive systems are responsible for collision

avoidance when dynamic obstacles come in the USV safety domain described in
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Figure 4.1. It is assumed that such reactive collision avoidance takes over in off-

nominal conditions, such as a case where a previously undetected obstacle appears

or global path planner fails to generate a path.

A schematic of the path planning system adopted in the current study is shown in

Figure 4.7. Information of sea surface current, moving obstacles and topography of the

study area is used to define the map in the form of a graph and the proposed approach

is used to generate safer waypoints for an optimal path.

Figure 4.7: Schematic of the proposed path planning system

4.2.5 Incorporating Guidance and Control System with Path Planning

Algorithm

The general architecture of an USV operation in a maritime environment has

basically three subsystems, namely, control and path planning, ODA and communication

and monitoring as shown in Figure 2.4.Path planning is an important subsystem of this

architecture responsible for generating waypoints within a desired environment. The

current study proposes a computationally effective and safer approach for generation

of optimal waypoints for USV navigation in the desired environment. In order to plan

and execute a mission in real-time, it is hereby important to interface the guidance and

control subsystems with navigation methods and provide quick feedback to the guidance

and control subsystems for effective decision making and higher autonomy.

Conventional waypoint guidance subsystems are designed by reducing surge, sway

and yaw (3 DOF) to surge and heading (2 DOF) (Healey et al. (1992)). Guidance is
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responsible to achieve motion control objectives in the physical environment in which the

vehicle moves (Bibuli et al. (2009)). The easiest way is to use a classical autopilot system,

so that commanded yaw angle generated from a line-of-sight (LOS) guidance algorithm

can be controlled (assuming sufficient bandwidth) and cross track error is minimised.

Figure 4.8 shows a waypoint tracking control system implemented with a standard PID

autopilot in series with a LOS algorithm. In this figure, the way points generated from

the offline path planners are given as an input to the LOS algorithm which calculates

the reference heading angles to be followed by the controller. The PID control approach

is then used to follow this reference trajectory by minimising the cross track and along

track errors.

Figure (image) has been removed due to copyright restriction

Figure 4.8: PID autopilot with a LOS projection algorithm for way-point tracking
(Source: Modified from Fossen et al. (2003))

The waypoints expressed in the current study are in terms of pixels which need

to be converted to absolute location on earth by combining the latitude, longitude and

elevation of the earth for real world navigation. The work of Massey (2006) shows that if

the vehicle approaches waypoint with slight offset, it causes huge heading error ranging

from 1-2 degrees to 80+ degrees primarily due to GPS heading, coordinate transformation

and well as steady state error in the controller. A simple and robust approach to correct

this problem involves defining a circle of specified radius around waypoint or the USV.

The current study has adopted the approach of having a circle around USV with the USV

being treated as a particle to solve this heading and path error. As soon as waypoint

comes within that circle of USV, it is assumed that waypoint is safely achieved.

In terms of autopilot and control system development, a detailed review of studies

conducted on USVs has been discussed by Roberts (2008). Many control techniques like

H∞ (Lefeber et al. (2003)), linear quadratic Gaussian (LQG) (Sharma et al. (2012)),

model predictive control (MPC) (Annamalai et al. (2015)) have been proposed recently,

together with development of an adaptive control system (Sharma et al. (2014)) towards

making the controller effective for a range of USV speeds and operating sea conditions.

4.2.6 Collision avoidance in close encounter situation

The general architecture for a USV operation in a maritime environment described

in Figure 2.4 shows that high level planners send waypoints to low level decision makers

i.e. local control systems and obstacle avoidance subsystems to execute the waypoint

following task. When a time variant moving obstacle enters the working domain of the

operating USV, it is expected that high level planners quickly regenerates new set of

way points based on the current information of the environment. Many other factors

like relative velocity of the USV and the obstacle , the sensing horizon etc also plays

an important role in such regeneration process. In such transition, it is hereby required
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to have a quick response time from the high level planners, which is one of the main

objectives of the current study.

In real-time operations, collision avoidance is the most important objective. Since

the current study considers inland UK water for operation of USVs, it is imperative

to follow the local guidelines towards the development of a path planner and collision

avoidance with moving obstacles. To enable the safe and secure operation of autonomous

surface ships within the existing IMO requirement, a code of practice has been prepared

by the UK Maritime Autonomous Systems Working Group (MASRWG) and published by

Maritime UK through the Society of Maritime Industries (UK (2017)). Under this code

of practice, all autonomous ships working within UK waters have 6 levels of autonomy

as developed by the European Defence Agency as follows (UK (2017)):

1. Human on Board

2. Operated

3. Directed

4. Delegated

5. Monitored

6. Autonomous

The current state of operation of USVs is either at level 3 or level 4 of the autonomy,

where there is always a human-in- the loop towards monitoring the operation of USVs.

It should be noted that the autonomy levels from 2 to 5 as mentioned have humans

involved in the process of operation of USVs. Human monitoring ensures that in the case

of any failure of the on-board system, they can override the system and can ensure the

safety of the operation of the USVs. In a case where an unknown obstacle of uncertain

trajectory and nature enters into the domain of the USV and collision cannot be avoided,

a few emergency actions like abort and stop are employed in response to fault conditions.

4.3 Simulation Results

The proposed approach is simulated using C++ and OpenCV. All simulations are

performed on a PC with Microsoft Windows 7 as OS with Intel i5 2.70 GHz quad core

CPU and 16 GB RAM. In real time simulation, the processes are executed with a fixed

time step to solve the functions involved with the process. The CPU of the computer

sometimes overestimate and underestimate the time involved in the computation of these

functions. Hence it is a standard practice to take the average of the overestimated and

underestimated time of the computation by taking the average time of the multiple

computations. The simulations were repeated for 500 times, especially in terms of
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computational time, to account for variable computational power in OS Windows. The

average time from all repetitions was calculated for proper verification of the proposed

approach.

4.3.1 Comparing A* approach with and without safety distance

The proposed study deals with inclusion of a safety distance criteria in the A*

approach towards USV path planning. In order to benchmark the safety distance

approach and to decide upon an optimum value of safety distance, four arbitrary values,

10, 20, 30 and 40 pixels are taken as safety distance on a grid map (as shown in Figure 4.1)

and compared against an A* approach without safety distance in terms of computational

time. The start and goal states used in the path planning system are depicted on the

binary map as shown in Figure 4.9.

Figure 4.9: Binary map with start and goal states

Figure 4.10 shows the comparison of A* approach with and without safety distance

constraint in terms of computational time. The results show that on a R2 grid map, a

larger safety distance constraint produces computationally efficient path in a A* approach

against paths produced without such constraint. This is due to the fact that search

process explores lesser number of nodes with safety distance than without safety distance

by pruning the search domain. The increased safety distance makes a decrease in the

computational time to compute the path. It must be noted from Figure 4.11 that

increased safety distance also changes the list of the waypoints which the vehicles need

to follow as it goes from start to goal point.
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Figure 4.10: Compared computational time of A* approach with and without safety
distance constraint. The interval on each bar denotes the standard deviation of the

computational time

In terms of path length, simulations shows that the A* approach with and without

safety distance constraint produces path of equal length i.e. 1.043 km although a

difference in resultant path can be seen in Figure 4.11. This difference in resultant

paths is less visible in smaller safety distance values while a more noticeable difference

is observed in paths produced with larger safety distance. This leads to the fact that

optimality remains conserved in path planning with decrease in computational effort in

the proposed approach unlike ones adopted in literature towards path planning of USVs

where an increase in computational cost has been observed with increase in path length

for proposed approaches.

Since the current study considers a narrow channel of Portsmouth harbour for

path planning of USV, henceforth, it becomes necessary to choose a safety distance where

a proper trade off between computational time and safety distance from an obstacle can

be maintained. Therefore, a 20 pixel safety distance (72 m on real map) has been chosen

for the present study. This value also provides enough time for local reactive techniques

for collision avoidance in case where one or more moving obstacles are detected in the

operational domain of the USV.
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Figure 4.11: Resultant path with safety distance of (a) 0 (b) 10 (c) 20 (d) 30 (e) 40
pixels

4.3.2 Constrained A* approach under static and partially dynamic

environment

In order to understand the effectiveness of the proposed approach, simulations

are conducted in binary maps of Portsmouth harbour comprising of static obstacles as

well as moving obstacles. Such an environment which consists of moving and stationary

obstacles is termed as a partially dynamic environment. The effectiveness is defined in

terms of path length and computational time obtained in simulations. In simulations, a

stationary map with one and two moving obstacles for a constrained channel having start

and goal points as defined in Figure 4.12 in Portsmouth harbour has been considered.

A binary map of the simulation area with single and two moving obstacles is shown in

Figure 4.13.

Figure 4.12: Binary map with start and goal states for simulating A* approach under
static and partially dynamic environment
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Figure 4.13: Binary map of the simulation area (Portsmouth harbour) showing velocity
and direction of moving obstacles. In this study, 20 pixels has been chosen as the safety

distance around an USV.

Modelling of dynamic obstacles on a map for maritime path planning is defined in

terms of the velocity of the moving obstacle in maritime environment. Liu and Bucknall

(2015) has suggested a circular shape for slow moving obstacles and elliptical shapes for

fast moving obstacles. Therefore, an elliptical shape as shown in Figure 4.14 has been

adopted in the current study.

Figure 4.14: Dimension of the elliptical domain representing the encapsulation of a
moving obstacle in a static one in the binary map. The dimensions of ellipse are chosen
in accordance with the dimensions of high speed craft having operational velocity range

from 6 to 9 knots

The results presented in Figure 4.15 shows path generated by the proposed

approach in different scenarios of single moving obstacle. The scenarios presented in

the figure show a single moving obstacle moving in a straight line at a velocity of 6

knots, based upon its start point shown in Figure 4.12 and considers each instantaneous

dynamic situation as static (based on the conventional method adopted in deliberative

path planning by Borenstein and Koren (1991)). Path length and computational time
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are computed for each start time of the mission and results are shown in Figure 4.16 and

Figure 4.17. It is found that as the moving obstacle approaches the safety domain of the

USV, an increase in path distance is observed.

Figure 4.15: Comparison of paths obtained with different start time (a) 0 (b) 10 (c)
20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 100 (i) 120 seconds. Position of the single moving
obstacle is plotted at each start time on the binary map, based on the velocity and

direction mentioned in Figure 4.13

This is owing to the fact that vehicle moves further east, as shown in Figure

4.15(h), to maintain the constraint of keeping a safety distance of 20 pixels. In addition

to that a decrease in computational effort is observed with increase in path length once

the moving obstacle is detected within the safety domain of USV. This is because the

search space in the gridded map gets pruned in the proposed approach which leads to

generation of longer path length with decrease in computational time. The computational

time again increases once the moving obstacle escapes out of the safety domain of the

USV.
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Figure 4.16: Comparison of path length obtained with different start time (a) 0 (b) 10
(c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 100 (i) 120 seconds. A safety distance constraint of
20 pixel is maintained for all scenarios in the figure. The interval on each bar denotes

the standard deviation of the path length.Km represents Kilometer

Figure 4.17: Comparison of computational time obtained with different start time (a)
0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 100 (i) 120 seconds. The interval on each

bar denotes the standard deviation of the computational time

From the Fig 4.16 and Fig 4.17 it is evident that the most optimum computational

time to determine path is for a 50s mission start time. It is owing to the fact that the

most least number of nodes are being explored by the algorithm in this case to determine

the path. It must be noted that the path length obtained for 30s and 40s are same

although there is a difference in the computational time to determine the path. The 40s

takes more time than 30s. It is due to the number of nodes being explored in each case.

In order to make the environment more complex and more cluttered, a scenario with

two moving obstacles is considered for understanding the effectiveness of the proposed

approach as shown in Figure 4.13(right side). The results shown in Figure 4.18 shows

path generated by proposed approach in different scenarios of an maritime environment

with two moving obstacles. The scenarios presented in the figure shows both moving

obstacles are moving in a straight line at a velocity of 6 knots, based upon their start

points shown in Figure 4.12.
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Figure 4.18: Comparison of paths obtained with different start time (a) 0 (b) 10 (c)
20 (d) 30 (e) 40 (f) 100 seconds. A safety distance constraint of 20 pixel is maintained
for all scenarios in the figure.Position of both moving obstacles is plotted at each start
time on the binary map, based on the velocity and direction mentioned in Figure 4.13.

In this case also the same pattern as found with the single moving obstacle

scenario is observed. The comparison of path length and computational time is shown

in Figure 4.19 and Figure 4.20 respectively. The path length increases once the moving

obstacles approaches the safety domain of the USV in order to maintain the safety

distance constraint. This fact is reflected in the resultant paths obtained in different

scenarios where a change in resultant path is obtained when moving obstacle approaches

USV. With increase in path length, a decrease in computational time is observed. The

computational time retains the increased value once the moving obstacles escape out of

the safety domain of the USV.

Figure 4.19: Comparison of path length obtained with different start time 0, 10, 20,
30, 40 and 100 seconds.The interval on each bar denotes the standard deviation of the

path length. Km represents Kilometer
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Figure 4.20: Comparison of computational time obtained with different start time
of 0, 10, 20, 30, 40 and 100 seconds. The interval on each bar denotes the standard

deviation of the computational time

4.3.3 Constrained A* approach with environmental disturbances

Ocean currents generated in the upper layer of the ocean environment by at-

mospheric wind system are referred as sea surface currents (Fossen (1995)). In the

current study, the effect of steady non uniform headwind and tailwind currents on USV

navigation has been studied for the proposed approach. In general, ocean currents are

provided in a NetCDF data format by various meteorological agencies around the world.

Such data obtained from satellites have a resolution of 2 km (Bonnett and Campbell

(2002)) while the range of most navigation devices is less than 5 nmi which makes such

data low in precision and not suitable for USV path planning. Hence, the synthetic

vector field of moderate and strong intensity is created within the map to verify the

effect of current on optimal path planning. Real ocean currents are multi-directional and

irregular, spatially and temporally. In the present study, current effect on USV path

planning is simplified as a constant disturbance by assuming the current to be unchanged

over a period of time (Antonelli et al. (2008)). Two current scenarios, a moderate current

intensity of 1.5 m/s and a strong current intensity of 2.5 m/s is considered for the present

study. These values are chosen on observation of high speed currents of 2 to 3 m/s in

coastal regions (Fossen (1995)).
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Figure 4.21: Comparison of paths obtained for currents moving with intensity of 1.4
m/s in (a) anti-clockwise and (b) clockwise direction. The start and goal states are
same as shown in Figure4.12. The safety distance constraint of 20 pixels is maintained

for both scenarios.

In order to understand the steady non uniform headwind and tailwind effects of

current on path planning, clockwise and anti-clockwise directions of chosen intensity

values are taken in the present study. Figure 4.21 shows the path obtained by the

proposed approach with currents moving in anti-clockwise and clockwise direction with

intensity of 1.4 m/s. Path length and computational time are compared for both scenarios

shown in Figure 4.1 and results are presented in Figure 4.22 and Figure 4.23 respectively.

The results shows that when the USV operates in steady non uniform tailwind currents,

it has to cover a larger distance in current while a smaller distance is observed in steady

non uniform headwind currents. This is due to the fact that presence of steady non

uniform tailwind currents in the USV voyage creates larger forces in the sway motion,

directing the USV to move closer to the shore line (as seen in Figure 4.21(a)), which

leads to generation of a path with a longer curvature. The current approach has been

able to demonstrate a decrease in computational effort to find path when higher distance

voyages are observed under influence of sea surface currents.

Along the same line, currents of 2.5 m/s are considered to understand the path

planning pattern of USV under influence of strong ocean currents. Figure 4.25 shows

the path obtained by the proposed approach with currents moving in anti-clockwise and

clockwise direction with intensity of 2.5 m/s. Path length and computational time are

compared for both scenarios shown in Figure 4.25 and results are shown in Figure 4.23

and Figure 4.26 respectively. In this case also, a similar pattern as found with 1.4 m/s

has been observed. In terms of current intensities of different magnitude moving in same

direction (from a comparison of path length values for AC currents in Figure4.22 and

Figure 4.25), it has been found that currents of higher magnitude are more favourable in
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minimising energy usage for USV voyage with a no substantial increase in computational

effort. This leads to the fact that proposed approach can assist USV in utilising the ocean

environment intelligently to minimise energy usage by integrating current information

with path planner.

Figure 4.22: Comparison of path length obtained for currents moving with intensity
of 1.4 m/s in anticlockwise (AC) and clockwise (C) directions. The interval on each bar

denotes the standard deviation of the path length. Km represents Kilometer

Figure 4.23: Comparison of computational time to determine path obtained for
currents moving with intensity of 1.4 m/s in anticlockwise (AC) and clockwise (C)
directions. The interval on each bar denotes the standard deviation of the computational

time.
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Figure 4.24: Comparison of paths obtained for currents moving with intensity of 2.5
m/s in (a) anti-clockwise and (b) clockwise direction. The start and goal states are
same as shown in Figure 4.12. The safety distance constraint of 20 pixels is maintained

for both scenarios.

Figure 4.25: Comparison of path length obtained for currents moving with intensity
of 2.5 m/s in anticlockwise (AC) and clockwise (C) directions. The interval on each bar

denotes the standard deviation of the path length. Km represents Kilometer
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Figure 4.26: Comparison of computational time to determine path obtained for
currents moving with intensity of 2.5 m/s in anticlockwise (AC) and clockwise (C)
directions. The interval on each bar denotes the standard deviation of the computational

time.

4.3.4 Constrained A* approach with single moving obstacle and envi-

ronmental disturbance

In order to create a more complete picture of the operational environment near

to Portsmouth harbour and to analyse the effectiveness of the proposed approach in

cluttered environment, a single moving obstacle is introduced in the map in presence

of sea surface currents of moderate intensity as discussed in Section 4.3.3. Since the

complexity of the environment has increased, a more flexible safety distance constraint

of 15 pixel has been adopted for this study in order to keep a proper trade off between

optimal way points and environmental complexity. Figure 4.28 shows the generated

paths for different start time in the environment comprising of static obstacle, sea surface

currents of 1.4 m/s moving in anti-clockwise direction and moving obstacle (where each

dynamic position is considered static). Comparison of path length and computational

time for all scenarios presented in Figure 4.28 are shown in Figure 4.27 and Figure 4.29

respectively.

From the results obtained, one can observe that as the obstacle approaches the

safety domain of the USV, there is a increase in path length observed with a decrease in

computational effort for cases (as found with mission start time of 30 seconds and 60

seconds), where, an increased path length is observed. In addition to that, most cases

have been able to generate path within a reasonable computational time. These results

show that the proposed algorithm can generate safer way points for the USV voyage for

long and short duration missions in a cluttered complex environment.
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Figure 4.27: Comparison of computational time obtained for scenario with sea surface
currents of 1.4 m/s moving in anti-clockwise direction having a moving obstacle for
different start time of 0, 10, 20, 30, 40, 50, 60, 80 and 100 seconds. The interval on each

bar denotes the standard deviation of the computational time.

Figure 4.29: Comparison of path length obtained for scenario with sea surface currents
of 1.4 m/s moving in anti-clockwise direction having a moving obstacle for different
start time of 0, 10, 20, 30, 40, 50, 60, 80 and 100 seconds. The interval on each bar

denotes the standard deviation of the path length. Km represents Kilometer

4.4 Concluding remarks

In this chapter, a constrained A* approach for optimal path planning of USVs in a

confined maritime environment is proposed. The objective of generating safer way points

by keeping a safe distance from the obstacle was evaluated in simulations, conducted
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Figure 4.28: Comparison of paths obtained for scenario with sea surface currents of
1.4 m/s moving in anti-clockwise direction having a moving obstacle for different start
time of (a) 0 (b) 10 (c) 20 (d) 30 (e) 40 (f) 50 (g) 60 (h) 80 (i) 100 seconds. The start
and goal states are same as shown in Figure4.12. The safety distance constraint of 15

pixels is maintained for all scenarios.

in various environments comprising of static obstacle, moving obstacle and sea surface

currents of different intensities. The upstream and effects of sea surface currents was

evaluated and effect of sea surface currents with moving obstacle was also analysed.

The simulation results shows that the present approach generates safer way points

for USV voyage in a computationally efficient manner against the conventional A*

approach with no loss of optimality. The approach is found to be robust, computationally

efficient and can be extended for real time path planning of USVs in confined water. In

conclusion it is considered, such an optimal approach is suitable for global path planning

of USVs.

Real world application of simulation studies needs hardware and software in loop

implementation. Since the payload associated with USVs have limited computational

capacity, the algorithm needs to be multi-threaded, implemented on Graphics Processing

Unit, written in low level languages such as C++ and parallelized on on-board computers

of the USV. Although the current algorithm has been written and simulated in C++,
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there is a need to multi-thread the current algorithm as well as a need to be implemented

using Graphics Processing Unit for practical application.

In order to extend the current work from a single vehicle to multi-vehicle system,

there is a need to integrate the current path planner with a path follower approach and

swarm integration approach to ensure that multi USVs can be navigated in a robust and

effective manner in a maritime environment. The next chapter deals with this integration

of the proposed path planner with a lower level guidance system based on virtual target

approach integrated with a swarm aggregation algorithm based on attraction- repulsion

strategy. The results of the current chapter has been published as a research article by

the Ocean Engineering which is shown in Appendix B.



Chapter 5

Optimal Approach to Multi-USV

Framework

”At sea, I learned how little a person needs, not how much”

Robin Lee Graham, Sailor

Efficient motion planning of multiple USVs in a dynamic maritime environment is

an important requirement for increasing mission efficiency and achieving motion goals.

This chapter outlines a range of techniques related to multi vehicle systems in different

domains of aerial, ground and marine robots with a special attention on methods related

to flexible formations to avoid collisions for multi vehicle systems. The current chapter

then proposes a novel framework by integrating two approaches of intelligent path

planning and virtual target path following guidance for a multi-agent USV framework to

perform a coordinated and cooperative navigation of USVs in a constrained maritime

environment. Also in the current chapter, a safety distance constrained A* approach

produces an optimal, computationally efficient and collision free path which is later

smoothed using a spline to provide an optimal trajectory as input for virtual target based

multi-agent guidance framework to navigate multiple USVs. The virtual target approach

provides a robust methodology of global and local collision avoidance based on known

positions of vehicles. The combined approach is evaluated with a different number of

USVs and in different environmental scenarios to understand the effectiveness of the

approach from the perspective of practicality, safety and robustness.

5.1 Introduction

Motivated by the increased presence of autonomous agents, research organisations

and industrial firms are putting their effort in the development of unmanned vehicles, able

to operate autonomously in the marine environment. Current state of high-performance

60
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marine vehicles operating in marine environment were once just a figment of our imagi-

nation as a prototype tool. They are consolidated reality of today’s maritime framework,

employed in the most diverse array of applications ranging from reconnaissance in hostile

areas to operations in dangerous weather conditions to name a few.

Substantial research has been conducted in the last two decade towards increasing

autonomy of USVs, being the basis of the near-future autonomous ships. Moreover, a

step further in the development of autonomous systems is the capability of operating

in a team, so as to improve the overall system performance in terms of cost and safety.

With this final objective of allowing a multi-USV agent team to navigate autonomously

within a commercial route such as coastal area or an harbour, a number of problems

have to be solved in order to provide the essential capabilities to the system to operate

in an autonomous and safe manner. Formation control and cooperative motion planning

are two major areas being investigated in the literature towards the study of the multi

vehicle systems. A list of key factors that needs to be considered for designing algorithms

related to formation control and cooperative motion planning are already listed in the

Figure 1.2 with formation control being the most widely investigated area. It is quite

evident from the Figure 1.2 that both research areas share a large number of key factors

and there is a strong need to develop a hybrid approach combining the key features

from both areas. However, it is most important to discuss details of different approaches

associated with formation control and cooperative motion planning before delving into

the details of the multi USV framework adopted in the current study.

The organisation of the current chapter is as follows. In section 5.2, an overview of

the architecture of a multi vehicle system and a comprehensive comparison and analysis

of the strategies associated with the multi vehicle system is explained. In section 5.4,

the methodology adopted in the current study is described with concepts of basic path-

following with multi vehicle coordination are described in the subsection 5.4.2 while in

the section 5.5 results of coordinated vehicles motion are presented. Lastly, conclusions

are reported in section 5.7.

5.2 Multi vehicle system and formation

The evolution of the concept of the cooperative behaviour of the multi vehicle

system is inspired from the animal behaviour such as self organisation of ants or swarming

of bees, where the formations help in the survival and evolution of the species (Dorigo

and Gambardella (1997), Pham et al. (2006)). The initial effort in understanding the

cooperative behaviour of multi vehicle systems inspired from the animal behaviour started

in the 1980s leading to development of ACTor-based robots and equipment synthetic

system (ACTRESS), a multi robot system architecture developed in Japan (Parker

(2000)).
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The initial real world application of the multi vehicle system started with the

use of UGVs in disaster management followed by the deployment of their applications

in area mapping and surveillance (Nagatani et al. (2011), Fox et al. (2006)). Later

this advancement in the technology was extended in space research for the purpose

of planetary exploration (Huntsberger et al. (2003)). With respect to multi UAV

systems, a huge amount of research has happened over last two decades for a variety of

applications including disaster management and environmental monitoring (Hayat et al.

(2016),Yanmaz et al. (2018)) and is still an open research area.

In the research area of the marine robots where a good number of studies during

the last decade have happened in the area of multi AUV system towards applications

such as bathymetric surveys, ocean monitoring and data acquisition (Fiorelli et al. (2006),

Cao et al. (2016)). In terms of a multi USV framework where the current thesis focuses

on, fewer studies have taken place in the last decade with a focus on applications such

as collaborative anti-submarine warfare, surveillance of territorial waters and underway

ship replenishment (Peng et al. (2013), Panagou and Kyriakopoulos (2013)). It is worth

noting from the literature that compared to the research on developing approaches for

fleet of UGVs, UAVs and AUVs very fewer studies have taken place in the area of USV

formations and there is a strong need to explore the area of cooperative behaviour with

a multi USV framework. In fact, owing to the nature of the USV operations, an USV

plays an important role in the large scale cross platform cooperation among different

unmanned vehicles in the maritime environment as shown in Figure 5.1. This significance

is quite evident from the recent defence reports published by UK and US Department of

Defence (DoD)(US Military (2010),Royal Navy (2016)).

Figure (image) has been removed due to copyright restriction

Figure 5.1: Schematic of the UAV and USV formation (Source: Ma et al. (2018))

5.2.1 Multi vehicle system architecture

Liu and Bucknall (2015) have proposed a generic architecture towards cooperative

behaviour of a multi vehicle formation as shown in Figure 5.2 which comprises of

three layers namely, task management , path planning and task execution. The task

management layer takes care of the formation shape and formation allocation of the multi

vehicle system based on the requirements of the mission i.e. improving the efficiency

of the mission in terms of the spatial and temporal coverage. Towards the literature

pertaining to the marine robots, the concept of self organising map (SOM) has been

extensively used in the task management of the multi vehicle systems. Zhu et al. (2013)

have used SOM towards dynamic task assignment and path planning of a multi AUV

system in a three dimensional underwater environment along with the work of Huang

et al. (2014) which used the approach of SOM to assign a team of AUVs to achieve

multiple target locations in a dynamic ocean environment. With respect to USVs, the
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work of Liu and Bucknall (2018a) has used SOM approach integrated with FM based

reactive method towards collision avoidance.

Figure (image) has been removed due to copyright restriction

Figure 5.2: Generic architecture of a multiple vehicle system (Source: Modified from
Liu and Bucknall (2018b))

Path planning layer is the second layer of the multi vehicle architecture which

comprises of three components of environmental mapping, cooperative path planning

and real time trajectory modification. A detailed survey towards path planning of single

and multiple USVs has been explained in the Chapter 2.However, a number of recent

studies needs a special mention in order to deal with real time trajectory modification

and emergency situations. The work of Hinostroza et al. (2018), Rajendran et al. (2018),

Singh et al. (2018), Wang et al. (2018a,b) have made an effort recently to integrate

the task planning with dynamic constraints and a practical maritime environment to

generate trajectories with practical applications.

Task execution takes generated paths as an input from the path planning module

where dynamic variables of the vehicle i.e. velocity, position etc. are used in closed loop

control systems to modify the trajectories of the fleet of vehicles in real time. Extensive

details of the review papers associated with such marine control systems have already

been mentioned in the Section 2.7.

5.2.2 Approaches associated with cooperative behaviour of multi vehi-

cle systems

Two research approaches of formation control and cooperative path planning have

been investigated to understand the cooperative behaviour of the multi vehicle system in

the literature. A huge amount of research has been conducted in the area of autonomous

vehicles over the last four decades in the area of formation control which can be found in

the different review studies of Chen and Wang (2005b), Kanjanawanishkul (2016) and

Guanghua et al. (2013b). With respect to the area of cooperative path planning, the

studies related to the multi vehicle path planning of USVs have already been covered in

the Section 2.9. The key factors associated with the formation control and cooperative

path planning are listed in Figure 1.2. Projects within the European Union and United

States are major examples of the development of multi vehicle framework for marine

robots. It started with the CADRE system (Willcox et al. (2006)) project, where a

network of AUVs and USVs were used to cooperate autonomously to conduct mine

countermeasure using high accuracy navigation and a multi modal architecture. The

same framework was extended in the Autonomous Ocean Sampling Network II (AOSN

II) project (Bellingham and Chandler (2003)), where there is complete interconnection

and cooperation of aerial, surface and underwater (including gliders) vehicles, with the

aim of developing a heterogeneous and intelligent monitoring network. Another major
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milestone was the GREX project (Aguiar et al. (2009)), towards creation of a conceptual

framework for heterogeneous swarm of robots working in cooperation to achieve mission

goals optimally. The following section will make a discussion on the various formation

control strategies, their comparison and their implementation in the area of marine

robotics.

5.2.3 Formation control strategies

The basic classification of the approaches associated with the formation control are

shown in Figure 5.3. Three important features of formation control i.e. shape forming,

shape maintenance and shape variation are being compared for their compatibility with

each method of the formation control while the criteria of stability and real time for

each method is being scored with high and medium as shown in Figure 5.3. Each of

these approaches has its own advantages and disadvantages and their implementation on

marine robots is explained in the following subsections.

Figure 5.3: Comparison of formation control strategies (Source: Modified from
Guanghua et al. (2013a))

5.2.3.1 Behaviour based approach

This approach is designed on the basis of the motion primitives associated with

each robot such as obstacle avoidance, goal seeking and formation keeping where weighted

sum of each of these primitives and interaction between robots is used to create motion

patterns for multi vehicle systems. Sensor data is taken as input behaviour and output

is send to robots behaviours which can be viewed together as a structured network

of interacting behaviours. A module coordinator finally decides a set of behaviours

used to control the robot. This approach was initially proposed in the area of mobile

robotics by Balch and Arkin (1998) where a weighted sum of five behaviours namely,

move to goal, obstacle avoidance, swirl, noise and formation keeping is used to control

the formation of robots. With respect to USVs, the work of Arrichiello et al. (2006)

used Null-Space-Based behavioural control (NSB) as guidance system aimed at guiding

the fleet of surface vehicles in complex environment and simultaneously performing

multiple tasks i.e. obstacle avoidance or formation keeping. The work of Benjamin et al.
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(2006) addressed the concept of COLREGs compliance navigation of two USVs using

the concept of behavioural control and optimality and validated simulations using first

in-field demonstration. The studies of Kumar and Stover (2000) and Rosenblatt et al.

(2002) have covered the area of application of behavioral approach in the area of AUVs.

The parallel and distributed communication among vehicles with less information

being shared makes this approach advantageous for real time application although difficult

mathematical formulation and unwarranted convergence are a few drawbacks associated

with this approach.

5.2.3.2 Leader-follower approach

The leader follower approach works on the principle of few robots considered as

leaders while the others act as followers where followers track the position and heading

of the leader to some predefined temporal and spatial offset. A schematic of two robots

using a basic leader follower controller is shown in the Figure 5.4.

Figure (image) has been removed due to copyright restriction

Figure 5.4: Two robots using basic leader-following controller (Source: Das et al.
(2002))

Two popular feedback control methods as proposed by Das et al. (2002) are being

used in this approach namely, l−φ control and l− l control. The l−φ control method is

used to maintain a desired relative distance lij and a desired relative heading ψij between

two robots as shown in Figure 5.4 while the l − l method is used to maintain the desired

relative distance between three robots i.e. l23 and l13 as shown in Figure 5.5.

Figure (image) has been removed due to copyright restriction

Figure 5.5: Three robots using basic leader-following controller (Source: Das et al.
(2002))

This scheme has been much preferred in understanding the cooperative behaviour

of marine vehicles due to its simplicity and scalability. During the last decade, a good

number of studies like Skjetne et al. (2002), Breivik et al. (2008), Peng et al. (2011),

Jin (2016) and Liu and Bucknall (2016b) have adopted a leader-follower framework in

formation control of multiple USVs in which different techniques like non linear control,

integrator backstepping, sliding mode control, Lyapunov backstepping and angular FM

have been used respectively. Towards understanding the cooperative behaviour of AUVs,

leader-follower approach has been used in the work of Cui et al. (2009, 2010), Edwards

et al. (2004), Li and Wang (2013), Peng et al. (2015), Rout and Subudhi (2016), Xing

et al. (2017), Yang and Gu (2007) through adoption of different control techniques for

the formation control of multiple AUVs.

This approach is entirely determined by the trajectory of the leader which simplifies

the problem of formation control to a tracking control. The followers follow the leader
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based on the WiFi communication between leader and followers. The WiFi communication

is responsible for the sharing of velocity and position data between followers and leader

based on which formation control approaches operate. However, a major drawback of

this approach is that formation does not accept leader faults and in case of absence of a

leader, a complete formation needs to be redefined.

5.2.3.3 Virtual structure approach

This approach considers the complete formation as a rigid body where the whole

formation is considered as a virtual structure. The dynamics of a single vehicle is

translated into a desired motion of each robot in the virtual structure and robot positions

are updated according to the local or global path planner. The approach was initially

proposed by Tan and Lewis (1996b) and a schematic of the approach is shown in Figure

5.6.

Figure 5.6: Schematic of the virtual structure approach for a three robot framework

The approach comprises of four major steps as follows:

1. Define the dynamics of the virtual structure and align the virtual structure with

the initial positions of the robot.

2. Define the heading of the virtual structure.

3. Compute the individual trajectory for each robot from the start to the goal point

as the corresponding robot contribute to an error of di as shown in Figure 5.6.

4. Adjust the velocity of each robot to follow the desired trajectory closely, in addition

to, maintaining the geometry of the virtual structure.
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A good number of studies have been conducted in the area of mobile and aerial

robotics using a virtual structure approach (Lewis and Tan (1997), Mehrjerdi et al.

(2011), Ren and Beard (2004)) while the work of Do (2012) covers the area of formation

control of underactuated ships using a virtual structure approach. Despite its high fault

tolerant capability, this approach suffers from lack of flexibility and high computational

cost in a complex operational environment.

5.2.3.4 Artificial potential function

The concept was initially proposed by Khatib (1986) and is explained in the

Section 3.2.1. This approach has been quite popular in the last decade in the formation

control of multi robots systems and is quite evident from the work of Zhang et al. (2010),

Ge and Fua (2005), Paul et al. (2008) and Wang et al. (2006). In the area of marine

robotics, some recent work in the application of artificial potential function towards

formation control can be found in Huang et al. (2017), Das et al. (2016), Mei and Arshad

(2015) and Zhai et al. (2013).

This approach can be applied in real time but suffers from the issues of local

minima.

5.2.3.5 Graph theory based approach

In this approach, kinematic or dynamic properties of the robots are expressed as

nodes of a graph with edges representing constraints between the robots. Under this

approach, control theory and dynamical systems theory is applied in combination with

graph theory to study the formation controller and its stability. Many recent studies

of Liu and Tian (2009), Ren (2006) and Krick (2007) have used the communication

network based control strategy, consensus based control strategy and stop-and-go strategy

respectively to understand the formation control using graph theory. This method can

represent any formation using graph although simulation hitherto remains a major

drawback.

5.2.4 Concluding remarks on formation control strategies

The aforementioned section reviews the current state-of-the-art on the strategies

associated with the formation control towards comprehending the cooperative behavior

of the marine robots. There are certainly other approaches in the formation control that

are not discussed in detail here but from the discussion it is quite evident that a hybrid

strategy for the multi USV system is the trend of the future. A hybrid approach is a mix

of stability and formation behavior where in an open space a stable virtual leader based

approach can be used while in complex environment more behaviour based characteristic
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takes over the control. The next section explains the methodology adopted in the current

thesis towards development of a hybrid framework for a multi USV system.

5.3 Major contributions of the current study

The current study extends the work of Bibuli et al. (2014) through incorporation

of three major characteristics within the existing framework of Bibuli et al. (2014) which

are as follows:

1. The current work incorporates the practical maritime environment of Portsmouth

harbour within the existing framework of Bibuli et al. (2014) where an open sea

environment has been considered comprising of no static obstacles.

2. The current work extends the framework of Bibuli et al. (2014) by incorporating

the feature of external collision avoidance with shoreline by modelling shoreline as

a set of repulsive points using an repulsive potential function.

3. The existing framework of Bibuli et al. (2014) considers a random polynomial

trajectory as a reference trajectory for navigating the swarm of USVs. The current

work incorporates an optimal and computationally efficient path within the existing

framework of Bibuli et al. (2014) for navigating the swarm of USVs.

5.4 Methodology

The current study adopts a two layered approach towards the multi-USV framework

problem. In the higher level of the hierarchy, a robust path planner based on a constrained

A* approach is adopted to generate optimal waypoints, which are later smoothed using

a polyfitting operation. This smoothed trajectory is given as an input to a lower level

guidance system based on a virtual target approach integrated with a swarm aggregation

algorithm based on an attraction- repulsion strategy. Figure 5.7 shows a schematic of

the methodology adopted in the present chapter.

A constrained A* approach as described in the previous chapter with a safety

distance of 20 pixels being chosen to generate optimal waypoints in a constrained

channel of Portsmouth harbour. A zigzag trajectory is produced from the waypoints

generated from the proposed approach. The chosen waypoints for smoothed trajectory

are tabulated in Table 5.1. The waypoints are chosen so that complexity of the navigation

in a constrained harbour is accounted in an offline approach. The generated trajectory

from the safety distance constrained A* approach and smoothed trajectory from chosen

waypoints are shown in Figure 5.8.
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Figure 5.7: Schematic of integrated path planning, guidance system and swarm
aggregation approach

Table 5.1: Chosen optimal waypoints (WP) from path planner

Start WP 1 WP 2 WP 3 Goal

x (pixels) 238 261 272 285 299
y (pixels) 212 251 271 284 312

The chosen waypoints are fitted to a polynomial parameterised in terms of γ ∀ γ
∈
[
0,61

]
. Parametric equations, Pd(γ) used as an input towards online approach of path

following and swarm aggregation are shown in Eq. 5.1.

Pd(γ) =


x(γ) = γ + 238,

y(γ) = −0.000325(γ + 238)3 + 0.2637(γ + 238)2

..− 72.5508(γ + 238) + 6505

(5.1)
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Figure 5.8: Generated (left) and smoothed trajectory (right) from the optimal way-
points produced by the path planner. Binary map of 800 x 800 resolution is considered

for the current study with one pixel representing 3.6 m on a real map

5.4.1 Preliminaries related to multi vehicle path following

In this thesis, the swarm as defined by Gazi and Passino (2003) composes of a

set X of n robots, each one characterised by the vector xi(t) ∈ Rm with i = 1, ...., n

in Cartesian coordinates on a 2D plane. The instantaneous barycentre of the swarm is

defined as x̃(t) = 1/n
∑n

i=1 xii(t) and the vector distance of each robot from the centre

is defined as εi(t) = xi(t)− x̃(t). The collection of all robots and their distances from

the barycentre is defined as X(t) = [x1(t).......xn(t)] and ε(t) = [ε1(t).......εn(t)].

The proximity graph Gi = {V,E}, where V = {vi : i = 1, ......, n} is the set of

robots while the E = {εij} is the set of edges representing communication channel

between the robots and the centre, defines the interaction among the robots. The

communication channel exists if the agents i and j are within the visibility range Rij

i.e. ‖xi − xj‖ 6 Rij with unidirectional communication from node i to node j. The

Laplacian matrix associated with this graph G is defined as L(Gi) = ∆(Gi) − A(Gi),

where the A(Gi) is the adjacency matrix of n×n elements whose generic element aij = 1

if i 6= j and εij ∈ E and aij = 0 otherwise while ∆(Gi) is the degree diagonal matrix of

n × n elements whose elements are ∆i(Gi) i.e. degree of the node i. This matrix is a

weak diagonal symmetric matrix where sum of rows and sum of columns is equal to zero.

The current chapter takes into account the idea of guiding a complete swarm

of USVs through an instantaneous barycentre of swarm acting as a virtual target that

moves along the reference path where following assumptions are required :

1. Onboard GPS is continuously measuring position of each USV in the swarm with

reference to a common reference frame.
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Figure 5.9: Frame definitions for path following algorithm based on a virtual target
approach

2. WiFi systems are providing a reliable data exchange needed to support inter-robot

decentralised communication for position data sharing.

In order to achieve the above mentioned idea, a proper velocity is computed and

imposed to the swarm aggregation algorithm, which in turn drive the motion of each

USV in the USV swarm according to such reference velocity.

5.4.2 Path following algorithm

A graphical representation of the USV kinematics adopted in the current study

for development of the path following algorithm is given in Figure 5.9. In general,

two reference frames namely, Earth fixed reference frame < e >, where position and

orientation [x y z Ψ]T of the USV is expressed and the body fixed reference frame < b >,

where the relative surge and sway velocity [ur vr]
T of the USV with respect to the water

and yaw rate r are used to define the kinematics in the < e > frame as follows (Bibuli

et al. (2009)) :

ẋ = ur cos Ψ− vr sin Ψ + ẋc

ẏ = ur sin Ψ + vr cos Ψ + ẏc

Ψ̇ = r

(5.2)

where [ẋc ẏc] denotes the sea current which is supposed to be irrotational and constant.

Assuming that USV is moving with a constant surge with respect to the water with

negligible sway, i.e. vr = 0 and u̇r = v̇r = 0, the kinematic model represented in the Eq.

5.2 can be rewritten as follows :
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ẋ = U cos Ψe

ẏ = U sin Ψe

Ψ̇e = r
[
u2r
U2 + ur

U (ẋc cos Ψ + ẏc sin Ψ)
]

= rη(t)

(5.3)

where

U =
√
ẋ2 + ẏ2

Ψe = arctan ẏ
ẋ

denotes the resultant velocity and orientation of the USV in < e >. The current work

uses the concept of Serret-Frenet frame < f > which moves along the reference path

followed by the virtual target vehicle and tracked by the real vehicle. With reference to

Figure 5.9, a point P with position vector P = [xp yp 0]T is defined in respect to < e >

frame. The point B, attached to the USV is expressed as [s1 y1 0]T in < f > frame. The

rotational matrix to transform the parameters from < e > to < f > is defined in terms

of Ψf as follows :

R =


cos Ψf sin Ψf 0

− sin Ψf cos Ψf 0

0 0 1


Assuming rf = Ψf and defining s as the signed curvilinear abscissa along the path,

following expressions hold:

rf = Ψ̇f = cc(s)ṡ ; ˙cc(s) = gc(s)ṡ

where, cc(s) and gc(s) = dcc(s)/ds denotes the path curvature and its derivative respec-

tively. The velocity of P in the < f > frame is defined as:

(dp
dt

)
f

=


ṡ

0

0


The velocity of B in the < e > frame is defined as:

(dx
dt

)
e

=
(dp
dt

)
e

+R−1
(dd
dt

)
f

+R−1([0 0 rf ]T × d)

where, d is the position vector from P to B. The velocity of B in the < f > frame is

obtained by multiplying the above equation with R and is as follows :(dx
dt

)
f

= R
(dx
dt

)
e

=
(dp
dt

)
f

+
(dd
dt

)
f

+ [0 0 rf ]T × d (5.4)
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Based on the following relations

(dx
dt

)
e

=


ẋ

ẏ

0



(dd
dt

)
f

=


ṡ1

ẏ1

0


and

[0 0 rf ]T × d =


0

0

cc(s)ṡ

×

ṡ1

ẏ1

0

 =


−cc(s)ṡy1
cc(s)ṡs1

0


Eq. 5.4 can be rewritten as

R


ẋ

ẏ

0

 =


ṡ[1− cc(s)y1] + ṡ1

ẏ1 + cc(s)ṡs1

0


Solving for ṡ1 and ẏ1 gives

ṡ1 = [cos Ψf sin Ψf ]

[
ẋ

ẏ

]
− ṡ(1− ccy1)

ẏ1 = [− sin Ψf cos Ψf ]

[
ẋ

ẏ

]
− ccṡs1 (5.5)

Replacing the top two equations in Eq. 5.5 and introducing the variable β = Ψe −Ψf ,

the final kinematic model in terms of the < f > frame are as follows:

ṡ1 = −ṡ(1− ccy1) + U cosβ

ẏ1 = −ccṡs1 + U sinβ

β̇ = re − ccṡ
(5.6)

where re = Ψ̇e = rη(t)

Following the geometrical and kinematical analysis carried above, the distance

error model, expressed with respect to the frame < f >, has the following form (Bibuli
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et al. (2009)): {
ρ̇ = (cc ν − 1) ṡ+ U cosβ

ν̇ = −cc ṡ ρ+ U sinβ
(5.7)

In order to solve the path-following problem for a single-vehicle system, the aim

is to develop a proper approach angle function Ψ∗, designed to reduce the linear error

components (ρ and ν) to zero. The desired angle Ψ∗ is a function of the cross-track error

ν summed with the local path tangent, thus Ψ∗ = Ψf + ϕ(ν), where the function ϕ(ν) is

required to satisfy the following constraints:

|ϕ(ν)| < π

2
; νϕ(ν) ≤ 0 ; ϕ(0) = 0

Relying on a low level PI controller, providing an auto-heading regulator capable

of tracking desired orientation profiles, it can be stated that considering the candidate

Lyapunov function Vψ = 1
2(ψ − ψ∗)2, the low level controller provides a behaviour such

that V̇ψ ≤ 0, i.e. the vehicle orientation converges to the desired angle ψ → ψ∗ and it can

be rewritten as β → ϕ(ν). Moreover it is worth noticing that when V̇ψ = 0, an invariant

set is defined, in which the condition β = ϕ(ν) holds. The task of the path-following

controller design is achieved by the definition of the Lyapunov function V = 1
2(ρ2 + ν2);

computing the time derivative of the function V , the following expression is obtained:

V̇ = ρρ̇+ νν̇ = −ρṡ+ ρU cosβ +−νU sinβ = V̇ρ + V̇ν

substituting ρ̇ and ν̇ with the equation system (5.7) and defining V̇ρ = −ρṡ+ ρU cosϕ(ν)

and V̇ν = −νU sinϕ(ν).

The speed of the reference frame ṡ, i.e. the velocity of the virtual target moving

along the path, can be used as an additional control variable. Imposing

ṡ∗ = Kρρ+ U cosβ (5.8)

as the desired virtual target speed, where Kρ is a tunable controller parameter, the

function V̇ρ assumes the negative form V̇ρ = −Kρν
2 ≤ 0. About V̇ν , recalling the above-

mentioned assumption on the attraction to the invariant set defined by V̇ψ = 0, β can be

substituted by ϕ(ν), obtaining V̇ν = νU sinϕ(ν). Selecting the function ϕ(ν) as

ϕ(ν) = −ψa tanh(Kνν) (5.9)

with Kν as a tunable controller parameter and ψa the maximum approach angle with

respect to the local tangent ψf , the term νU sinϕ(ν) is ≤ 0 because of the assumption

made on the function ϕ(ν). Being the terms V̇ρ and V̇ν ≤ 0, thus entailing V̇ ≤ 0, the

global asymptotic stability for the path-following guidance system is proven.
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5.4.3 Vehicle Coordination

The goal of coordinating an USV team to converge to and maintain a motion

configuration, while at the same time moving along a desired reference path is realised

through the definition of the following control input:

ẋi = usi + ug (5.10)

where the term usi , different for each USV, is the control effort required to reach a

collective behavior while the term ug, common to all the USV, refers to the expected

trajectory of the fleet centroid, computed with reference to section 5.4.2 as:

ug =

[
u∗ cosψ∗

u∗ sinψ∗

]
(5.11)

where u∗ is the desired speed for the formation along the path and ψ∗ is the reference

guidance angle computed by the path-following module.

Considering a swarm composed of n robots, the following aggregation dynamics for each

robot i is given:

usi =
∑
j 6=i

g(xi − xj) (5.12)

where g(·) is the interaction function representing the function of attraction and repulsion

between neighbouring robots. In particular, g(·) is defined as:

g(y) = −y [ga(‖y‖)− gr(‖y‖)] , ∀ y ∈ Rm. (5.13)

where ga(·) is the attractive function and gr(·) is the repulsive contribution, constrained

by the following assumptions:

ga(‖xi − xj‖) ≥ α

gr(‖xi − xj‖) ≤
β

‖xi − xj‖2
(5.14)

In order to maintain a practical equilibrium between the swarm formation term usi

and the path-following guidance term ug, the usi component is modified as follows:

ẋi = ksat

∑
j∈Ni(t)

g(xi − xj)

1 +
∥∥∥∑j∈Ni(t)

g(xi − xj)
∥∥∥ , (5.15)

where ksat > 0 is the saturation gain.

The stability of the overall system, originated by the interconnection between the

path-following and swarm aggregation modules, is added in the Appendix A.
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5.5 Simulation results

In order to ensure that complexity of the multi-USV operation in a constrained

maritime environment is captured, this section reports results of three and four vehicles

performing swarm aggregation and path-following from a randomly generated initial

formation towards a reference path generated from proposed path planner. Figure 5.10

and Figure 5.13 shows the aggregation behaviour combined with motion against the

reference path for three and four USVs respectively. Initial, intermediate and final

positions of the formation are shown in Figure 5.10 and Figure 5.13. The reported results

account for external collision with the shoreline into swarm evolution through attractive

and repulsive functions introduced in Bibuli et al. (2014). The path-following module

parameters are set to

Kρ = 1.0, Kν = 0.8, and ψa = π/3

Figure 5.10: USV motions during swarm aggregation combined with path-following
guidance for three USVs

Collision avoidance with the shoreline is simply implemented by considering the

shore profile as a set of repulsive fixed points which, within a certain distance, concur in

the vehicle motion evolution. The repulsive function f(x) used to define the shoreline

is f(x) = −(5η − d1)/d1, where d1 is the Euclidean distance between the robot and the

shoreline ‖xi − xshoreline‖ . The motion of the vehicles with respect to mutual agent

interactions and to distance from the shoreline can be varied acting on the parameters of



Page 77

Figure 5.11: USV speed profiles assumed during swarm aggregation evolution for
three USVs

the attractive and repulsive functions. For all simulations, the values of the attraction

and repulsion function parameters are set to α = 0.2, β = 1.2 and η = 3. Figure 5.11

and Figure 5.14 shows the reference velocity profile for three and four USVs respectively,

where velocity of the i -th robot is ‖ẋi‖.

Regarding the velocity profiles, two main issues have to be discussed:

1. The oscillations in the required velocity of each USVs is due to the swarm aggrega-

tion functions; the oscillatory behaviour can be reshaped by different definition of

attraction/repulsion functions.

2. The overall guidance system takes into account the physical limits of the vehicle i.e.

in the current study the maximum and minimum manoeuvring speeds of Springer

are being considered by setting the value of Ksat = 0.5.

Figure 5.12: USV speed and heading profiles during swarm aggregation combined
with path-following guidance for three USVs

It should be noted that formation is a function of initial position and evolution

along a desired reference. In Figure 5.12 and Figure 5.15, actual surge speed and heading

angle is compared with reference speed and orientation for three and four USVs framework

respectively. In order to highlight the effectiveness of the combined approach, physical
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Figure 5.13: USV motions during swarm aggregation combined with path-following
guidance for four USVs

limits of an USV i.e. Springer is accounted in the guidance system by bounding the

maximum and minimum manoeuvring speed between 0.2 m/s and 1.4 m/s as shown in

Figure 5.11.

5.6 Discussion

In Fig. 5.10, the experiments are being conducted for swarm of three USVs in

a practical maritime environment. The robots are initially configured by placing them

parallel to each other and then the robots evolve during the motion using attractive and

repulsive potential functions derived from equation 5.14 which is defined as:

ga(d) = α

gr(d) =
β

d− 2η

(5.16)

where d is the Euclidean distance between two robots ‖xi − xj‖. In addition to this,

the internal collision among the vehicles is determined by the repulsive function which

determines that vehicles remain at certain distance from each other i.e. a distance of

more than 2η in all cases. This additional term has the format gca(d) which is defined as:
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Figure 5.14: USV speed profiles assumed during swarm aggregation evolution for four
USVs

Figure 5.15: USV speed and heading profiles during swarm aggregation combined
with path-following guidance for four USVs

gca(d) =
2η − d
d2

(5.17)

which holds for the condition 0 ≤ d ≤ 2η

The robots have to follow the parametrised curve from the equation 5.1. It should

be noted that the formation centroid converges to the reference path showing that the

proposed approach is effective in nature. Furthermore, in Fig. 5.12, for each vehicle

in a swarm of three USVs, the actual surge speed and heading angle (blue lines) are

compared with the generated speed and orientation references (red lines); u1 and ψ1

correspond to the blue vehicle, u2 and ψ2 correspond to the green vehicle and u3 and ψ3
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correspond to the red vehicle. It should be noted that despite the presence of oscillations

in the reference signals, the tracking of surge speed and orientation by means of dynamic

controller is achieved by the proposed approach.

Similarly, In Fig. 5.13, the experiments are being conducted for swarm of four USVs

in a practical maritime environment to track a reference path based on the parametrised

equation. Furthermore, in Fig. 5.15, for each vehicle in a swarm of three USVs, the

actual surge speed and heading angle (blue lines) are compared with the generated speed

and orientation references (red lines); u1 and ψ1 correspond to the blue vehicle, u2 and

ψ2 correspond to the green vehicle, u3 and ψ3 correspond to the black vehicle and u4

and ψ4 correspond to the red vehicle.

5.7 Concluding remarks

In this chapter, the integration of constrained A* path planner with virtual target

path following guidance for multi-agent USV is reported. By way of introduction, an

exhaustive study of different approaches proposed in the literature has been discussed.

Currently there are few works which have proposed the hybrid cooperative framework

for multi USV systems.

In this context, the main contributions of the current chapter are summarised as

follows:

1. Integration of a constrained A* approach with a decentralised virtual target guid-

ance approach combined with a APF based swarm aggregation technique for the

cooperative navigation of multi USVs.

2. Combining the important features of optimal path, computational time and external

collision avoidance with shoreline within the initial approach proposed by Bibuli

et al. (2014).

3. A constrained practical maritime environment is being considered to guide and

navigate the swarm of USVs through a narrow channel on Portsmouth harbour

which has not been studied till now in the literature.

4. Towards the collision avoidance with the external shoreline, a shore profile as a

set of repulsive fixed points is being included in the existing approach proposed by

Bibuli et al. (2014) and a modified approach is proposed.

The easiness of integration, given by the modular composition of path-planner,

vehicle formation aggregation and formation guidance procedures makes it applicable for

real time marine environment. A set of results on three and four USVs demonstrates the

validity of the combined approach with respect to robustness and collision avoidance.
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The robustness of the collision avoidance solution and to evaluate the functional limits

of the adopted approach has already been analysed using Monte Carlo simulations in

Bibuli et al. (2014). The results of the current chapter has been published as a conference

article by the International Federation of Automatic Control (IFAC) which is shown in

Appendix B.



Chapter 6

Conclusions and

Recommendations for Future

Work

”The light of past discovery draws me forward. Its shining light guides me to the

glory of exploration”

Sir Francis Drake

This chapter summarises the contributions presented in the thesis and introduces

perspectives of future research to further enhance the current work.

6.1 Review of the contributions and conclusions

Cooperative navigation of a fleet of USVs is an important research area owing

to its large number of potential applications. Cooperative behaviour refers to guiding

and navigating a group of agents coordinating in a global framework to achieve mission

objectives globally and locally. In this context, the current thesis provides a hybrid

framework towards multi agent USV guidance and navigation by integrating a constrained

A* path planner with a virtual target path following guidance in addition to a APF

based swarm aggregation algorithm for a swarm of USVs. This hybrid framework takes

into account the features of formation control and cooperative motion planning with

the final objective of guiding and navigating a fleet of USVs in a constrained maritime

environment. To achieve this aim, the problem is broken into two layers where the higher

layer of the planning involves the development of a computationally effective, safe and

optimal path planner in a constrained maritime environment. This is one of the major

contributions of the current work where such an novel path planner has not been proposed

in the literature. The second part of the two layered architecture is the integration of the

82
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virtual target based guidance approach combined with an APF based swarm aggregation

approach towards multi USV navigation. The major contribution is the inclusion of a

shoreline effect to avoid the external collision of the USVs by considering the shoreline

as a set of repulsive fixed points within a certain distance and concurring in the vehicle

motion evolution. This modification is being tested for a set of three and four USVs

navigating in a constrained channel of Portsmouth harbour. The hybrid framework was

found robust, effective and optimal in a practical maritime environment which makes it

highly appealing for practical application at sea.

6.1.1 Constrained A* path planner

There is a continuous need for safe, optimal and robust path planners in the area

of navigation of USVs which can be effectively implemented in a practical maritime

environment. In order to understand the current requirement, a detailed literature

review is conducted in the area of USVs to identify the gaps. Chapter 2 covers the

area of path planning of single and multiple USVs to identify these gaps. In order

to establish and benchmark the efficiency of heuristic path planners over local path

planners, Chapter 3 covers the area of comparing the computational performance in

simulations. In this Chapter, the main aim is to establish the computational supremacy

of the Dijkstra algorithm over the APF in a practical maritime environment. Based on

this, a safety distance constrained A* path planner is proposed in Chapter 4. This novel

and computationally efficient path planner was initially benchmarked for different safety

distances and a suitable safety distance is chosen for the current study. The novel path

planner is tested in different environmental conditions and found to be computationally

efficient and robust in providing optimal solutions to the objective of generating safe

path for an USV.

Until now in previous works related to the path planning of an USV, such an

approach of developing a computationally effective and safe path planner has not been

considered. The main idea is to constrain the area around an USV with a safety distance

circle leading to exploration of a less number of nodes in the generation of the path. This

leads to a decrease in computational time in determining the path in a map based on

the concept of an occupational grid. This result, is a preliminary step and an input to

the modified guidance and swarm approach for multi USV navigation.

6.1.2 Hybrid framework for multi USV navigation

Formation control and cooperative motion planning are the two most popular

areas of research studied in developing a framework for multi robot guidance, navigation

and control. Although many research initiatives are implemented in the field of aerial and

ground robotics, there is a strong need to develop robust framework for the navigation,

guidance and control for the swarm of marine robots in the maritime environment. In
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order to take care of the current requirement, the current thesis proposes a novel hybrid

framework for the navigation and guidance of a swarm of USVs in the constrained

practical maritime environment of Portsmouth harbour.

In the previous work pertaining to the swarm of USVs, where the current thesis is

focused on, such an hybrid approach has not been taken into consideration. The main

idea in developing this approach is to combine a constrained A* path planner with the

virtual target path following guidance and swarm aggregation approach for the multi

USV navigation in a practical maritime environment. In addition to this, the existing

approach proposed by Bibuli et al. (2014) is modified for external collision avoidance by

considering the shore profile as a set of repulsive fixed points. The result is tested for a

swarm of three and four USVs and the modular composition of the path planner, the

guidance approach and the swarm aggregation approach makes it applicable for practical

usage in the maritime environment.

6.2 Future work

This thesis proposes a hybrid framework towards navigation and guidance of a

swarm of USVs in a constrained practical maritime environment. The main contributions

previously presented have been developed considering several assumptions related to the

model of the vehicles, sensor information, communication constraints etc.. Consequently,

future research directions should focus on relaxing some of the assumptions to consider

more realistic situations.

6.2.1 Perspectives in path planning

The path planner proposed in this thesis takes into consideration that the USVs

know the position of the moving obstacles over time. This assumption is consistent to

the fact that USVs are equipped with the precise measurement units for the navigation.

Nevertheless, an important extension of the proposed path planner in Chapter 4 is

to incorporate the measurements of the moving vessels from a nautical chart and test

the robustness of the current path planner with respect to some realistic data in a

practical maritime environment. Another important extension is to consider heading

angle constraint for the USV in cases, where path smoothness is more important than

the computational time. This converts the problem of path planning from a R2 to SE(2)

approach. A hybrid approach of combining the proposed path planner with a reactive

path planning approach in scenarios involving close encounter situations can be another

extension of the current work.
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6.2.2 Perspectives in a multi USV framework

The hybrid framework towards multi USV navigation and guidance proposed in

the Chapter 5 are tested for three and four USVs. Future studies can take into account

the sea surface currents into an online planning layer of the framework by considering

the disturbance as a Gaussian noise signal to the orientation and surge speed of the each

USV involved in the swarm. Another extension is to test different control approaches

after adding Gaussian noise towards zeroing of the along track and cross track errors. An

extension of the proposed approach where heterogeneous marine robots i.e. AUVs and

USVs can cooperate, taking into account the communication constraint of the acoustics

for underwater communication, will help in increasing the current autonomy levels of the

marine robots.



Appendix A

Stability of the multi USV

framework

To understand the swarming algorithm developed for the fleet of USVs, the initial

concept proposed by Gazi and Passino (2003) and Gasparri et al. (2012) needs to be

reviewed. This section has been extensively explained in Bibuli et al. (2014). For a

swarm of n robots with a network topology encoded by a undirected fully connected

graph G = {V,E}, the dynamics of each robot i is defined by

xi =
∑
j 6=i

g(xi − xj) (A.1)

where g(·) is the interaction function representing the attraction and the repulsion

between two robots in the neighbourhood. Let us denote the ga(·) : R+ → R+ and

gr(·) : R+ → R+ as the attraction and repulsive functions respectively. The interaction

function can then be defined as

g(·) = −y[ga(‖ y ‖)− gr(‖ y ‖)],∀y ∈ Rm (A.2)

This important feature of the interaction function being odd i.e. g(y) = −g(−y)

leads to the aggregation behaviour where y ga(‖ y ‖) represent the actual attraction

while the y gr(‖ y ‖) represent the actual repulsion acting in the opposite direction on

the same line of the action.

Let us consider some assumptions for the attractive and repulsive functions which

are as follows

Assumption 1. There exist a unique distance δ corresponding to which we have ga(δ) =

gr(δ). Also, we have ga(‖ y ‖) ≥ gr(‖ y ‖) for ‖ y ‖ ≥ δ and gr(‖ y ‖) > ga(‖ y ‖) for

‖ y ‖ < δ.

86
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Assumption 2. There exist corresponding functions Ja(‖ y ‖) : R+ → R+ and Jr(‖ y ‖) :

R+ → R+ such that ∇yJa(‖ y ‖) = yga(‖ y ‖) and ∇yJr(‖ y ‖) = ygr(‖ y ‖).

Assumption 3. The attraction and the repulsion functions needs to fulfill the following

requirements

ga(‖ y ‖) ≥ α; gr(‖ y ‖) ≤
β

‖ y ‖
(A.3)

with α, β ∈ R+

In Gazi and Passino (2003), the following properties were proven

1. The barycenter x̄ of the swarm is stationary over time.

2. The swarm converges to a steady configuration.

3. The swarm moves towards and remain within a bounded region. The characterisa-

tion of the bounded region is provided by Gazi and Passino (2003)

4. The swarm reaches the bounded region in finite time.

The single vehicle path follower developed by Bibuli et al. (2014) and the swarming

algorithm described above are combined with control input to each USV defined as

follows

ẋi = usi + ug (A.4)

where usi is the control effort for each USV to reach a collective behaviour while the

ug refers to expected trajectory of the fleet centroid computed with reference to path

following algorithm as

ug =

[
u∗ cosψ∗

u∗ sinψ∗

]
(A.5)

The positive constraint is imposed in the reference speed u∗ since marine vehicles

are having one directional forward surge motion. In terms of the proposed framework,

resulting velocity vector maintain the π sector direction of the path following velocity

contribution i.e. ∠(ẋi) ∈ [∠(ug)− π/2;∠(ug) + π/2]. The condition ‖ usi ‖≤‖ ug ‖ has

to be satisfied in order to avoid motion inversions and steering behaviour generated

by change in robots direction. In case of a time variant desired path following speed

profile u∗g = u∗(t), the parameter k is tuned over time to satisfy the positive surge

speed constraint. This is achieved by adopting k = k̃u∗(t) with 0 < k̃ < 1 leading to

enforcement of the constraint
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‖ usi (t) ‖<‖ ug ‖ ∀t ≥ 0 (A.6)

In order to understand the stability property, the analysis is carried out by

navigating the swarm in a obstacle free environment. More specifically, the maximal

discrepancy between the desired heading ψ∗ and the angle of the velocity vector for any

USV by assuming two control terms to be orthogonal vectors is defined as

∆ψ = maxi∈1,...,N

{
arctan

(
‖ usi (t) ‖
‖ ug(t) ‖

)}
(A.7)

This discrepancy term ∆ψ affects the guidance of the swarm centroid during the

swarm aggregation and is rewritten in the Lyapunov function as

V̇ν = νU sin (ψ∗ + ∆ψ − ψf ) = νU sin (Φ(ν) + ∆ψ) (A.8)

The term sin (Φ(ν) + ∆ψ) can be rewritten as

1√
(‖ug(t)‖2+‖usi (t)‖2)

[‖ ug(t) ‖ sin Φ(ν)+ ‖ usi (t) ‖ cos Φ(ν)]

where ‖ ug(t) ‖≡ U ; which is substituted in the Eq.A.8 leading to

V̇ν =
νU√

(U2+ ‖ usi (t) ‖2)
[U sin Φ(ν)+ ‖ usi (t) ‖ cos Φ(ν)] (A.9)

Being the term ‖ usi (t) ‖ positive and bounded and | φ(·) |< π
2 by definition, the

term Ũ · (=)
√
U2+ ‖ usi (t) ‖2 is assumed and the V̇ν is rewritten in terms of disturbance

ε for path follwing module as

V̇ν =
νU

Ũ
[U sin Φ(ν) + ε] (A.10)

To achieve the stability the criterion thereby becomes V̇ν ≤ 0 leading to the

condition

U sin Φ(ν) + ε ≤ 0

Hence the path following error component ν is bounded by the limit value

ν̃ = Φ−1(sin−1( εU ))
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