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ABSTRACT 

The magmatic processes responsible for accretion of the lower oceanic crust 
remain one of the least constrained components of the global seafloor spreading 
system. Samples of gabbroic rocks recovered by scientific ocean drilling are too 
limited to allow effective assessment of spatial variations in magmatic flow within in 
situ lower crust. Extensive exposures of gabbros in ophiolites, on the other hand, 
provide opportunities to study accretion processes in three-dimensions across 
wide areas and at a resolution that allows variations in magmatic fabrics through 
the crust to be quantified. Here we show that magnetic anisotropy provides a 
reliable proxy for lower crustal magmatic fabrics in the world’s largest ophiolite in 
Oman. Important differences in magnetic fabrics are detected that reflect variations 
in magmatic processes on a range of scales. Fabrics in layered gabbros are aligned 
with modal layering and display a consistency in the orientation of maximum 
principal axes of anisotropy between localities at a regional scale. These fabrics are 
compatible with subhorizontal preferred alignment of crystals, orthogonal to the 
inferred orientation of the Oman spreading axis, resulting from magmatic flow or 
deformation of melt-rich crystal mushes during spreading. In contrast, magnetic 
anisotropy in foliated gabbros at the top of the lower crust reveals for the first time 
distinctly different linear and anastomosing fabric styles between localities sampled 
at the same pseudostratigraphic level. These differences reflect spatial variations in 
the style and trajectory of flow in the crystal mush beneath the axial melt lens 
during upwards melt migration at the spreading axis. 
	

INTRODUCTION 
Magmatic accretion of the oceanic crust during seafloor spreading is the foundation 

of the plate tectonic cycle, forming >60% of the Earth’s surface. Seismic imaging at fast 
spreading rate axes indicates the presence of a thin melt lens at the top of the lower crust 
(e.g. Detrick et al., 1987; Singh et al., 1998) overlying a broader region inferred to consist 
of hot crystal mush (Sinton and Detrick, 1992). However, the processes that generate the 
gabbroic lower crust and the melt transportation system that feeds the axial melt lens 
remain poorly understood. Conceptual models for lower crustal accretion include: (i) the 
“gabbro glacier” model, involving downwards ductile flow of the products of crystallization 
of the melt lens (e.g. Quick and Denlinger, 1993); (ii) the “sheeted sill” model, involving 
accretion by multiple intrusive events beneath the melt lens without significant vertical 
transport of the products of crystallization (e.g. Kelemen et al., 1997); (iii) models involving 
a combination of downward ductile flow and sill intrusion (e.g. Boudier et al., 1996); and 
(iv) models involving a combination of accretion by multiple intrusions and upwards 
transportation of melt through the crystal mush to feed the highest level melt body 



(MacLeod and Yaouancq, 2000; Sun and Lissenberg, 2018). These have fundamentally 
different implications for the nature of heat and mass transfer at constructive plate 
margins, e.g. by requiring different depths of hydrothermal circulation to remove magmatic 
heat and allow crystallization (Maclennan et al., 2005).  

Testing these models using lower crustal rocks obtained by scientific ocean drilling 
has so far proved difficult since significant penetration (> 100 m) has been achieved at 
only four locations distributed across three oceans (Ildefonse et al., 2014) and drill core 
samples lack three-dimensional context. In contrast, ophiolites provide extensive, 
accessible exposures of oceanic lithosphere where spatial variations of fabrics within 
magmatic products may be analyzed in three-dimensions. In this context, the ~500 km 
long Oman ophiolite provides an ideal natural laboratory to study lower crustal processes. 
This Late Cretaceous Neotethyan suprasubduction ophiolite (MacLeod et al., 2013) 
formed at a fast spreading rate (c. 5-10 cm/a half rate; Rioux et al., 2012) and can 
therefore provide insights into the style of spreading that produced nearly 50% of the 
present-day oceanic crust.  

Here we use anisotropy of magnetic susceptibility (AMS) as a petrofabric tool to 
quantify fabrics within lower crustal gabbros of the Oman ophiolite. Previous studies in the 
Oman and Troodos ophiolites (Yaouancq and MacLeod, 2000; Abelson et al., 2001) and in 
layered igneous complexes (Ferré et al., 2002) have shown that AMS provides a reliable 
proxy for the orientation of magmatic fabrics in gabbroic rocks. By comparing fabrics 
between different sections and pseudostratigraphic levels in the ophiolite, we document 
variations in fabric style that reflect contrasting magmatic processes between layered 
gabbros near the base of the crust and foliated gabbros located just below the inferred 
fossil melt lens, and discuss their implications for models of crustal accretion. 
 
LOWER CRUSTAL GEOLOGY, SAMPLING AND METHODS 
Lower oceanic crustal gabbros and underlying mantle peridotites dominate the southern 
massifs of the Oman ophiolite. We focus on sections in Wadi Abyad (Rustaq massif), at 

	
	
Figure 1. Geological map of the southern massifs of the Oman ophiolite showing the 
location of sampling localities and trajectories of solid-state flow in mantle peridotites 
and magmatic flow in lower crustal gabbros (modified from Nicolas et al., 2000) 
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Somrah (Samail massif) and in Wadis Khafifah and Nassif (Ibra massif), where extensive 
lower crustal exposures occur (Fig. 1). These consist of: (i) layered gabbros, with modal 
variations in olivine, clinopyroxene and plagioclase on a cm to m scale defining layering 
that is consistently sub-parallel to the orientation of the Moho; (ii) overlying foliated 
gabbros in Wadis Abyad and Khafifah, with preferred mineral orientations defining 
foliations at a high angle to the Moho and steeply plunging lineations; and (iii) varitextured 
gabbros at the top of the lower crust representing the frozen axial melt lens of the Oman 
spreading axis (MacLeod and Yaouancq, 2000).  

Interpretation of the foliated gabbros has been contentious, with alternative models 
suggesting that their fabric results from either upwards melt percolation into the overlying 
axial melt lens (MacLeod and Yaouancq, 2000) or downwards subsidence of crystal mush 
through the floor of the melt lens in the “gabbro glacier” and related models of lower crustal 
accretion (Quick and Denlinger, 1993; Boudier et al., 1996; Nicolas et al., 2009). 

We report here AMS data from: (i) 20 sites in an across-strike transect within 
foliated gabbros located immediately beneath the varitextured gabbros in Wadi Abyad; (ii) 
19 sites within foliated gabbros in a similar transect located at this same structural level in 
Wadi Khafifah; and (iii) 18 sites in layered gabbros within Wadis Abyad, Nassif and 
Khafifah and at Somrah (Fig. 1; see also Fig. DR1 in the GSA Data Repository for 
geological maps of the sampling localities). Oriented specimens were collected using 
standard techniques and AMS tensors measured with an AGICO KLY-3S Kappabridge, 
yielding the magnitude and orientation of the principal axes of low field magnetic 
susceptibility, Kmax ≥ Kint ≥ Kmin. Supporting anisotropy of remanence and rock magnetic 
experiments were also conducted and combined with thin section observations to 
characterise the source of the AMS signal (see Data Repository for a full description of 
methods).  
 
RESULTS AND SOURCE OF THE AMS SIGNAL 

Details of the anisotropy characteristics of both gabbro types are discussed in the 
Data Repository and presented in Figs. DR2 – DR5, with specimen-level AMS parameters 
and principal axes listed in Tables DR1 – DR2 and site-level data in Tables DR3 – DR4. 
The majority of sites exhibit oblate or triaxial fabrics that correspond closely to the 
orientation of macroscopic magmatic fabrics observed in the field. Kmax axes at all sites in 
the layered gabbros lie in or close to planes of modal layering and also close to magmatic 
lineations (where visible in the field), with the majority of sites having Kmin axes close to the 
pole to layering (Fig. DR3). Within the foliated gabbros (Figs. DR4 and DR5), Kmax axes at 
all sites lie in or close to the plane of magmatic foliation, and close to magmatic lineations 
(observable in the field at only two sites; KF10, KF11).  

Bulk susceptibilities in the layered and foliated gabbros (mean values of 2.5 x 10-3 
SI and 5.9 x 10-3 SI, respectively) exceed those of the main paramagnetic minerals in 
these rocks (i.e. clinopyroxene and olivine), requiring a significant but variable 
ferromagnetic contribution to the AMS signal (Fig. DR2b and c). Corrected anisotropy 
degrees in the layered gabbros show a broad increase with bulk susceptibility (Fig. DR2c) 
that results from variations in the ratio of paramagnetic and ferromagnetic contributions to 
AMS due to changes in modal mineralogy between specimens. This effect is less 
pronounced in the foliated gabbros that have a more consistent modal composition. 
Isothermal remanence acquisition experiments show a dominance of low coercivity 
ferromagnetic grains in both rock types (Fig. DR6), and Curie temperatures determined 
from thermomagnetic experiments (Fig. DR6), combined with coercivities of remanence of 
~25 mT (Meyer, 2015; Morris et al., 2016), indicate that the main ferromagnetic phase is 
pseudo-single domain, near-stoichiometric magnetite. Distributions of AMS principal axes 
are mirrored in all cases by those of the anisotropy of partial anhysteretic remanence, that 
reflects only the fabric component due to magnetite (Fig. DR7). This indicates an absence 



of inverse fabrics due to single domain magnetite effects (Potter and Stephenson, 1988). 
Hence AMS Kmax and Kmin axes may be interpreted as magnetic lineations and poles to 
magnetic foliations, respectively. Coaxiality of fabrics across specimens with varying 
susceptibilities indicates no significant difference in the orientation of the paramagnetic 
silicate and ferromagnetic magnetite contributions to the AMS signal. 

Photomicrographs of oriented thin sections cut in the Kmax/Kmin plane are shown in 
Fig. 2 (with the orientation of Kmax axes indicated by red arrows). Both layered and foliated 
gabbros show a lack of crystal plastic or brittle fabrics. Instead, clear magmatic fabrics 
defined by pronounced shape preferred orientations of plagioclase, clinopyroxene and 
olivine are present that are consistently oriented parallel to Kmax axes (Fig. 2), with the 
majority of crystal long-axes aligned with Kmax to within 20° (Meyer, 2015). Interstitial 
magnetite of primary magmatic origin is usually rare in both units. Instead, magnetite 
inclusions are present along clinopyroxene cleavage planes as an exsolution product 
formed during cooling. Fine-grained secondary magnetite is also distributed along 
fractures that are aligned with the long axes of olivine crystals that have undergone 
variable degrees of serpentinization (Fig. 2). Olivine crystals are also surrounded by 
alteration rims of very fine-grained acicular tremolite, chlorite and minor opaques.  

These observations, together with the close alignment of principal axes of 
anisotropy with magmatic layering, foliations and lineations measured in the field, 

	
	
Figure 2. Photomicrographs of thin sections of layered and foliated gabbros from the 
Oman ophiolite, showing correlation of Kmax axes (red arrows) with preferred orientations 
of silicate crystals and of secondary magnetite in olivine crystals (bottom left). Yellow 
scale bars = 1.0 mm.	



demonstrate that AMS in these rocks provides a reliable proxy for the orientation of 
primary magmatic silicate fabrics formed during crustal accretion, even in specimens 
containing secondary magnetite (as reported previously by Yaouancq and MacLeod, 
2000). 
 
DISCUSSION 
 
Regional Scale Consistency In Layered Gabbro Fabrics 

Layered gabbros from all four localities share a common ENE-WSW-trending, 
subhorizontal orientation of Kmax axes and sub-vertical orientation of Kmin axes (Fig. 3A), 
demonstrating a consistency of magmatic fabrics at a regional scale. The magnetic 
lineation results from a subhorizontal preferred alignment of crystals, orthogonal to the 
inferred NNW present day orientation of the Oman axis (Fig. 1) and in close agreement 
with the trajectories of mineral lineations in gabbros and peridotites mapped across the 
ophiolite (Nicolas et al., 2000) (Fig. 1). Since significant crystal plastic deformation is 
absent in the layered gabbros, this preferred alignment must reflect magmatic flow during 
accretion or, more likely, post-intrusive deformation of a melt-rich crystal mush resulting 
from mechanical coupling with the underlying mantle during spreading (Nicolas et al., 
1994). A dominance of oblate and triaxial AMS fabrics at this level is also consistent with a 
significant pure shear, compaction-related component to the fabric in these rocks. Our 
AMS evidence for axis-normal magmatic flow/deformation in the fast spreading Oman 
ophiolite contrasts with along-axis flow revealed using AMS in the lower crust and sheeted 
dyke complex of the slow spreading rate Troodos ophiolite (Staudigel et al., 1992; Abelson 
et al., 2001). This difference reflects a fundamental dependence of magmatic supply at 
ridge axes on spreading rate (Lin and Morgan, 1992), whereby fast/slow spreading axes 
are characterised by continuous/discontinuous supply of melt from the mantle along their 
length, respectively.  
 
Foliated Gabbro Fabrics And Their Implications For Magmatic Accretion Processes 
In contrast to the layered gabbros, AMS fabrics in the foliated gabbros just below the fossil 
axial melt lens vary in character between localities (Fig. 3). In the Wadi Abyad transect, 
Kmax axes are highly clustered and plunge steeply within the macroscopic magmatic 
foliation observed in the field at all sampling sites, with Kmin axes clustered near the pole to 
the foliation (Fig. 3B). Fabrics are distinctly different in Wadi Khafifah, however, where 
Kmax axes define a girdle distribution within the foliation plane (with Kmin axes again 
clustering around the foliation pole; Fig. 3C). This distribution reflects variability across a 
range of scales. Magmatic alignment of crystals at the specimen scale defines a texture 
with plagioclase crystals anastomosing between clinopyroxene and olivine phenocrysts 
(Fig. 2), with AMS at this scale representing the average orientation of this magmatic 
fabric. At the site scale, AMS fabrics display clustering of Kmax axes within the macroscopic 
foliation (Fig. DR5), indicating consistency of the average orientation of this anastomosing 
fabric style across areas of ~2.0 m2. At the largest, transect scale (c. 500-700 m2), fabrics 
vary in average orientation between sites (Fig. 3; Fig. DR5), with Kmax axes representing 
preferred crystal alignments that range from subhorizontal to steeply plunging within the 
plane of the foliation. 

In gabbro glacier and hybrid models of lower crustal accretion (Quick and 
Denlinger, 1993; Boudier et al., 1996; Nicolas et al., 2009), steep fabrics in the foliated 
gabbros form via downwards subsidence and steepening of initially horizontal cumulate 
layers at the base of the axial melt lens. However, presence of a steep fabric of magmatic 
origin to within a few meters of the inferred melt lens (MacLeod and Yaouancq, 2000) and 
a lack of systematic changes with depth in the strength of plagioclase lattice preferred 
orientations (Van Tongeren et al., 2015) are not consistent with the progressive 



steepening of fabrics predicted by gabbro glacier models. Our analysis for the first time 
demonstrates significant spatial variations in fabrics in the foliated gabbros at this level 
(Fig. 3), that are also incompatible with subsidence through the floor of the melt lens. 
Instead, our observations are more consistent with variations in the trajectory of flow in the 
crystal mush beneath the melt lens during upwards migration of magma via porous flow, 
with focused channelized flow at Wadi Abyad and more distributed melt percolation 
(including components of upwards and lateral flow) at Wadi Khafifah. The style of fabric 
frozen into the gabbros below the axial melt lens may be expected to vary as a function of 
proximity to the focus of melt supply across the ridge (Fig. 3) or in response to differences 
in melt supply along the axis. Such along-axis differences have been mapped by seismic 
reflection experiments along the East Pacific Rise (Singh et al., 1998), with pure melt 
zones inferred to correspond to regions of fresh supply of magma from the mantle and 
mush zones inferred to have undergone cooling and crystallization and to be more evolved 
(Singh et al., 1998). In this context, we note that foliated gabbros in Wadi Khafifah are 
more evolved than those in Wadi Abyad (MacLeod and Yaouancq, 2000; Garrido et al., 
2001; MacLeod, unpublished data) supporting a connection between melt supply and 
fabric development in fast spreading rate magmatic systems. 
 
 

	
Figure 3. Summary of AMS results from the Oman ophiolite lower crustal sequences. 
Large/small stereonets show Kamb contoured distributions of Kmax/Kmin principal 
susceptibility axes, respectively, combining specimen level data from all sites. A: 
Layered gabbros after rotating modal layering at each site to the horizontal. B and C: 
Foliated gabbros after restoring the Moho at each locality to the horizontal. Schematic 
diagrams of crustal structure after Sun and Lissenberg (2018) and MacLeod and 
Yaouancq (2000).	
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DATA REPOSITORY: 
 
METHODS 

Samples were collected using a portable rock drill and the orientation of drill cores 
measured using both magnetic and sun compasses. Additional oriented hand samples 
were collected at some sites and drilled back in the laboratory. The orientations of 
macroscopic magmatic fabrics in the field (modal layering and magmatic 
foliations/lineations) were determined from multiple measurements at each site. In the 
laboratory, all core samples were sliced into standard (11 cm3) cylindrical specimens. 
 We measured the anisotropy of low-field magnetic susceptibility (AMS) of 
specimens using an AGICO KLY-3S Kappabridge. AMS is a petrofabric tool that reflects 
the preferred orientation of grains, grain distributions and/or the crystal lattices of minerals 
that contribute to the magnetic susceptibility of a rock (e.g. Tarling and Hrouda, 1993; 
Borradaile and Jackson, 2004). AMS corresponds to a second order tensor that may be 
represented by an ellipsoid specified by the orientation and magnitude of its principal axes 
(Kmax, Kint and Kmin, being the maximum, intermediate, and minimum susceptibility axes 
respectively) (Tarling and Hrouda, 1993). The AMS of a rock may result from contributions 
from diamagnetic, paramagnetic and ferromagnetic minerals. Susceptibility tensors and 
associated eigenvectors and eigenvalues were calculated using AGICO Anisoft 4.2 
software.  The relative magnitude of the susceptibility axes defines the shape of the AMS 
ellipsoid, which can be: (1) isotropic (Kmin = Kint = Kmax) when crystals are not aligned 
preferentially; (2) oblate (Kmin << Kint ≈ Kmax) when crystal alignment defines a foliation 
plane; (3) triaxial (Kmin < Kint < Kmax); or (4) prolate (Kmin ≈ Kint << Kmax) when crystal 
alignment defines a lineation. Here we describe the strength of anisotropy using the 
corrected anisotropy degree (PJ; Jelínek, 1981), where PJ = 1.0 indicates an isotropic 
fabric and, e.g., PJ = 1.05 indicates 5% anisotropy. The shape of the ellipsoid is described 
by the shape parameter (T), where -1.0 < T < 1.0 with positive/negative values of T 
indicate oblate/prolate fabrics respectively (Jelínek, 1981).  
 Rock magnetic experiments were performed to investigate the nature of the 
ferromagnetic minerals contributing to the AMS. Curie temperatures were determined from 
the high-temperature (20–700°C) variation of magnetic susceptibility of representative 
samples, measured using an AGICO KLY-3S Kappabridge coupled with an AGICO CS-3 
high-temperature furnace apparatus. Curie temperatures were determined from these data 
using the method of Petrovský and Kapička (2006).  

Isothermal remanent magnetization (IRM) acquisition experiments were conducted 
on representative samples using a Molspin pulse magnetizer to apply peak fields up to 
800 mT with resulting IRMs measured using an AGICO JR6A fluxgate spinner 
magnetometer.  

Finally, observations of oriented thin sections were used to further establish the 
source of the AMS signal. These were prepared by calculating the orientation of the plane 
containing the Kmax and Kmin principal axes relative to the fiducial line for each specimen. 
Thin section billets were then cut parallel to these planes, maintaining reference marks for 
the orientation of Kmax and Kmin axes for transfer to the thin section slides. 
 
ANISOTROPY CHARACTERISTICS 

The complete dataset of specimen-level AMS parameters and principal axes is 
provided in Tables DR1 and DR2. The relationship between PJ and T is shown in Fig. 
DR2a, with 67% of specimens exhibiting oblate fabrics (median value of T = 0.25) and PJ 
ranging from 1.01 to 1.46 (median value of 1.09). 

At a higher (site) level, clustering of specimen Kmax and Kmin axes define the 
magnetic lineation and the pole to the magnetic foliation, respectively. Oblate fabrics are 
characterized by clustered Kmin axes orthogonal to girdle distributions of Kmax and Kint axes, 



whereas prolate fabrics by clustered Kmax axes orthogonal to girdle distributions of Kint and 
Kmin axes. In triaxial fabrics, the three principal susceptibility axes form distinct groups. 
Site-level distributions of principal AMS axes in geographic coordinates are shown in Figs. 
DR3-5, with site mean anisotropy parameters listed in Tables DR3 and DR4. The majority 
of sites in the layered gabbros (Fig. DR3) exhibit triaxial or oblate fabrics, with prolate 
fabrics only present at three sites (WA10, WA11 and SR02). In all cases, Kmax axes lie in 
or close to the plane of modal layering measured in the field, with the majority of sites 
having Kmin axes close to the pole to layering. Macroscopic magmatic lineations were 
visible in the field at nine layered gabbro sites and in all cases lie close to the associated 
Kmax axes (Fig. DR3). Within the foliated gabbros (Figs. DR4 and DR5), 19 sites in Wadi 
Abyad and 11 sites in Wadi Khafifah exhibit triaxial fabrics. Kmax axes at all sites lie in or 
close to the plane of magmatic foliation, and close to magmatic lineations (observable in 
the field at only two sites; KF10, KF11). 
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DATA REPOSITORY FIGURES: 
 
 

 
 
Figure DR1. Geological maps of sampling localities in the Oman ophiolite. A: Wadi Abyad 
(modified from MacLeod and Yaouancq, 2000); B: Wadi Khafifah (modified from Garrido et 
al., 2001); C: Wadi Nassif; and D: Somrah. 
 
 

 
 
Figure DR2. Summary of anisotropy of magnetic susceptibility parameters for gabbros of 
the Oman ophiolite.  
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Figure DR3. Site-level distributions of AMS principal axes in layered gabbros of the Oman 
ophiolite. Gray dashed great circles = the orientation of modal layering; white stars = 
orientation of macroscopic magmatic lineation (where present). 
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Figure DR4. Site-level distributions of AMS principal axes in foliated gabbros exposed in 
Wadi Abyad of the Oman ophiolite. Gray dashed great circles = the orientation of 
macroscopic magmatic foliation. 
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Figure DR5. Site-level distributions of AMS principal axes in foliated gabbros exposed in 
Wadi Khafifah of the Oman ophiolite. Gray dashed great circles = the orientation of 
macroscopic magmatic foliation; white stars = orientation of macroscopic magmatic 
lineation (where present). 
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Figure DR6. Representative examples of isothermal remanent magnetization acquisition 
curves and of the variation of low field magnetic susceptibility with temperature for lower 
crustal rocks from the Oman ophiolite, consistent with presence of magnetite as the main 
ferromagnetic phase present. Bumps at ~300°C in the heating curves of some samples 
suggest the additional presence of a minor titanium-rich ferrimagnetic phase 
(titanomagnetite). Tc = Curie temperature, calculated using the inverse susceptibility 
method (Petrovský and Kapička, 2006). 
 
 

 
 
Figure DR7. Comparison of anisotropies of partial anhysteretic remanence (ApARM) and 
magnetic susceptibility (AMS) demonstrating presence of normal magnetic fabrics in lower 
crustal rocks of the Oman ophiolite. 
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DATA REPOSITORY TABLES:  
These data tables are available on request (email: amorris@plymouth.ac.uk) 
 
Table DR1. Specimen-level anisotropy of magnetic susceptibility data from layered 
gabbros of the Oman ophiolite. 
 
Table DR2. Specimen-level anisotropy of magnetic susceptibility data from foliated 
gabbros of the Oman ophiolite. 
 
Table DR3. In situ site-level anisotropy of magnetic susceptibility results from layered 
gabbros of the Oman ophiolite. 
 
Table DR4. In situ site-level anisotropy of magnetic susceptibility results from foliated 
gabbros of the Oman ophiolite. 
 

 

 

 

 


