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SUMMARY
Autonomous landing on the deck of a boat or an unmanned surface vehicle (USV) is the
minimum requirement for increasing the autonomy of water monitoring missions. This
paper introduces an end-to-end control technique based on deep reinforcement learning
for landing an unmanned aerial vehicle on a visual marker located on the deck of an USV.
The solution proposed consists of a hierarchy of Deep Q-Networks (DQNs) used as high-
level navigation policies that addresses the two phases of the flight: the marker detection
and the descending manoeuvre. Few technical improvements have been proposed to
stabilise the learning process, such as the combination of vanilla and double DQNs,
and a partitioned buffer replay. Simulated studies proved the robustness of the proposed
algorithm against different perturbations acting on the marine vessel. The performances
obtained are comparable with a state-of-the-art method based on template matching.

KEYWORDS: Deep Reinforcement Learning; Unmanned Aerial Vehicle; Autonomous
Agents;

1. Introduction
Over the recent years, the deployment of unmanned aerial vehicles (UAVS) in the marine
environment has become a practice. The possibility to acquire images from a respectable
height represents an undoubted advantage in search and rescue missions,1 but also for
water and coastal monitoring.

On the market there are multiple technologies related to UAVs, but those offering
hovering and vertical take-off capabilities are the most interesting and easily deployable.
The ability of landing autonomously is very important for UAVs, and achieving this on
the deck of a un-/manned ship is still an open research area.2 A UAV deployed in a marine
environment is subject to wind and/or waves influences that can affect its manoeuvre.

The existing work in this field is based on hand-crafted features extraction and external
sensors to identify the landing pad, usually represented by an high-contrast marker.
In this paper a completely different solution is proposed, based on the recent interest
born around the Deep Reinforcement Learning (DRL) and the Deep Q-Network (DQN)
architecture.3 It only uses low-resolution grey-scale images acquired by a down-looking
camera and it outputs high-level control commands that lead the drone in proximity of
the marker. The main advantage of this method compared to the existing ones is the
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2 Autonomous Landing using Deep Reinforcement Learning

Fig. 1: Components of the proposed landing system. A first DQN takes care of the marker
detection on the xy-plane. The second DQN handles the descending manoeuvre from 20
to 1.5 m. The last module is a closed loop controller that takes control from 1.5 m to the
ground level.

total absence of any human intervention, allowing the quad-rotor to autonomously learn
how to use high-level actions to achieve the task.

Previous DRL applications were limited only to deterministic environments such as
the the Atari game suite.3 Its applicability to the robotic domain is not straightforward
and it has obtained only limited success so far, mainly related to the manipulation and
grasping domain.4 In this paper, a divide-and-conquer approach is adopted to split the
landing task in two sub-tasks: landmark detection and vertical descent. Two specialized
DQNs are responsible for addressing each phase of the flight and are connected through
an internal trigger callable by the network itself. To solve the problem of sparse reward,
the concept of partitioned buffer replay is introduced, splitting the experiences based on
the reward values and guaranteeing the presence of rare transition at training time. An
overview of the system is shown in Figure 1. To the knowledge of the authors, this work
is the first unsupervised learning approach to tackle the landing problem on the deck of
an unmanned surface vehicle.

In terms of the paper organisation, Section 2 presents the background of existing
methods for autonomous landing, while Section 3 defines the problem in terms of
reinforcement learning and introduces the solution proposed. In Section 4 the experiments
conducted, each with a different kind of perturbation acting on the landing platform, are
presented and discussed. Finally, concluding remarks are made in Section 5.

2. Related work
Autonomous landing is so far one of the most demanded features by UAV pilots. Despite
this, it is still one of the most challenging aspects for this kind of vehicle. In order to
compare the proposed method with the existing approaches, a brief background on the
existing techniques is now offered. An exhaustive review is outside the scope of this paper
so the reader is referred to recent surveys.5,6

Before describing the literature there are three aspects to take into account while
landing: control, pose estimation, and navigation. Control represents the low level layer
and consists of integrating the data from the sensors (GPS, IMU, altimeter, etc) in order
to keep the vehicle around a desired set-point. The pose estimation is strictly related to
control and consists in using sensors and visual feedback to estimate the position of the
UAV with respect to a reference frame, which is the landing pad in this case. Finally
the navigation: once the pose of the vehicle has been estimated, it is necessary to create
and adjust a trajectory for reaching the target point. For the purpose of this paper, this
section only focuses on literature concerning pose estimation and navigation.
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In order to help the reader to understand the state of the art, the existing methods
are grouped in three major areas: sensor-fusion, device-assisted, and vision-based.
Combining different data from multiple sensors is a common practice used to improve
the performances. This is the main strategy used in sensor-fusion systems. Similarly
to Gomez-Balderas et al.,7 Saripalli et al.8 combined vision with differential GPS for
estimating the relative pose of the UAV with respect to the helipad. In this work,
geometric invariant extraction is used to identify a H-shape landing pad. The same
technique was also applied in a successive work8 in which the UAV landed on a moving
target using a Kalman filter. Herisse et al.9 combined the measurements of optical flow,
gyroscopes and accelerometers to increase the robustness of a vision system for hovering
and landing a flying vehicle on a moving target. Additional research based on optical
flow for tracking and approaching a landing area has been undertaken by Cesetti et al.10

and Ruffier et al.11 There are two main problems in sensor-fusion approaches. First the
sensor noise, which may be extremely high in an unstructured environment. Second, the
unavailability of navigation information and/or improper sensor feedback. For instance
in remote areas it is not possible to use GPS to adjust the trajectory.

On-board and ground devices have been widely adopted to increase the precision of
marker identification. Kim et al.12 used an omni-directional camera to enhance the field
of view of an UAV and to identify a red marker. In Yakimenko et al.13 an on-board
infra-red camera was used to identify three known ground points and estimate their
distance to the UAV. Infra-red ground spots are another expedient used to help the
detection of the marker. For example, Wenzel et al.14 used an algorithm for detection
and tracking them with a downward looking camera. Other devices commonly used
are distance measurement sensors, such as the Laser Imaging Detection and Ranging
(LIDAR). LIDAR data was also fused with altitude measurements and feature-tracking
data for estimating the UAV pose with respect to a fixed point in a selected landing
area15 . Similarly, Scherer et al.16 used the LIDAR to identify and validate landing zones
for a full-scale helicopter. The limits of these approaches are enumerable. First of all, the
use of dedicated hardware both on the ground and on the vehicle is not always possible.
Many commercial UAVs have limited hardware resources or limited payload capacity,
which means that it is not feasible to use specific on-board devices. Second, some of
these devices are expensive (e.g. LIDAR) and it is not possible to justify their use in
commercial products.

Vision-based systems primary rely on camera images for pose estimation and planning.
These methods identify the ground marker and extract relevant feature which allow
for estimating the vehicle’s pose. This data is then used within a control loop for
approaching the pad. Sereewattana et al.17 used Histogram of orient gradients (HOG)
feature extraction and a pair of images taken at a known interval to estimate the distance
between the vehicle and the marker. The adoption of a specific design for the pad (e.g. H-
shape) allows performing corner detection and labelling after proper image binarization.18

Shakernia et al.19 address the vision problem as an ego-motion estimation one, estimating
the altitude of the vehicle in relation to a fixed planar surface. In this way, vision is
used in the feedback loop as a state observer for the landing controller. Vision-based
systems tend to use only limited hardware for control and planning, this is advantageous
for commercial vehicle which rely only on limited resources. However, most of these
approaches are not particularly robust to image noise and may have problems when the
pad is distant, partially occluded or blurred.

The methods previously described demonstrate different limitations and these are now
discussed. Sensor-fusion methods rely on information coming from expensive sensors that
most of the time are not present on-board of low-cost commercial UAVs. In addition, they
mainly use a GPS signal that may be unavailable in real-world scenarios. The device-
assisted methods usually provide an accurate estimate of the UAV’s pose. However, they
rely on external sensors that may be expensive and not always available. Finally, vision-
based approaches use images acquired by on-board sensors, namely cameras, for control
purposes. Even though this represents an invaluable advantage over other approaches,
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they may fail when trying to identify low-level features in distorted images. The present
work tries to solve the aforementioned problems. It relies only on a monocular on-
board camera, without requiring any other sensor or external device. Image analysis is
performed by the use of DQNs that significantly increase the robustness of the approach
to transformations and corruption of the images. Here it is worthy to state that the
intentions of the authors are not to prove that this work is better with respect to the
state-of-the art. In contrast, the main point of the article is to address the landing
problem from a completely different perspective and to show that it is feasible to develop
an intelligent controller that does not require any human expertise.

The last part of this section is dedicated to reinforcement learning techniques that
are related to the work here presented. The use of reinforcement learning in robotics is
not novel, for example it has been widely used to achieve robust walking gait20 and in
manipulation tasks.21 For a recent survey please refer to Kober et al.22 However, works
using reinforcement learning for drone control are quite limited. The main problem is
related to an extremely large continuous control space and the unrealistic assumption of
noise-free state-space; however, the present literature offers some successful applications
and these will be discussed. For example, in Bagnell et al.23 a policy search method
has been used for controlling a small helicopter. In a similar way, Ng et al.24 taught
a mini helicopter to perform acrobatic manoeuvres, such as flying in a reverse status.
Zhang et al.25 combined reinforcement learning with model predictive control to train
an obstacle avoidance policy which is allowed to access only sensor readings and not
the full state of the system. In all these cases, the policy was intended to be a low
level closed loop controller instead of the high level navigator considered in this work.
The possibility to couple deep neural networks with reinforcement learning has recently
opened new insight in a variety of domains. Since 2011, deep neural networks (DNNs)
represent the state of the art in a variety of tasks, such as speech recognition,26 head
pose estimation,27 and scene segmentation28 (for a review see Schmidhuber et al.29). The
use of DNNs as Q-function approximators allowed extending reinforcement learning to a
new series of problems. A deep network has been used in Levine at al.30 to learn hand-
eye coordination for grasping in a robotic manipulator. Similarly,4 a guided policy search
method has been used to train a convolutional neural network for tasks that require close
coordination between vision and control, such as screwing a cap onto a bottle. In Mnih
et al.31 an asynchronous variant of the actor-critic architecture obtained the best score in
the Atari domain and applied to a variety of continuous motor control problems as well
as on a new task of navigating random 3D mazes. Despite the recent effort in extending
DRL to different domains, at the moment there is still no consolidated literature on
drone control and planning.

3. Proposed method
In this section, the UAV landing issue is described in terms of reinforcement learning.
Also, the technical solutions adopted are introduced and discussed.

3.1. Problem definition
As stated in Section 2, there is a limited amount of work trying to address the landing
problem using reinforcement learning, in particular deep reinforcement learning. This
is due to the fact the use of UAVs introduces many complications. In particular, aerial
vehicles move within three-dimensional space which is time-consuming to explore, due
to partial observability and occlusions. Moreover, the agent can see only a small portion
of the environment and it has to deal with projective transformation. For this reason,
applying DQN to the landing problem is challenging, even though it has already obtained
state-of-the-art performances in two-dimensional games.

In this work, the landing problem is considered and divided into two sub-problems:
the marker detection and the vertical descent. The first requires an exploration on the
xy-plane, where the UAV has to align its body frame with the one of the marker located
on the deck of the USV. In contrast, during the vertical descent phase, the UAV has to



Autonomous Landing using Deep Reinforcement Learning 5

reduce its altitude while keeping the marker centred. Since the introduction of a third
spatial dimension leads to a larger state space and sparse reward, the vertical descent is
the more challenging phase.

Two independent Deep Q-Networks have been trained separately for performing
successfully the two tasks and integrated in a single state-machine. The first network
has been trained to identify the marker at a fixed altitude of 20 m and guide the UAV
above it. The DQN can stop the vehicle or move it in four directions (forward, backward,
left, right). Moreover, it can call an internal trigger which activates the second network.
The new policy can stop and move the vehicle in five direction (forward, backward, left,
right and down). It aims to control the drone while vertically descending up to 1.5 m
above the marker. The last module of the system is represented by a closed loop controller
which slowly reduce the rotors power until the touchdown. The closed loop mechanism
allows a fine control of the vehicle in the very last meter and can rely on distance sensors
to safely land and turn off the UAV.

3.2. Notation
Formally, both the marker detection and the vertical descent problems can be modelled
as Markov Decision Processes (MDPs). At each time step t the agent receives the state st,
performs an action at sampled from the action space A, and receives a reward rt given by
a reward function R(st, at). The action brings the agent to a new state st+1 in accordance
with the environmental transition model T (st+1|st, at). In this study the transition model
and the reward functions are not given (model free problem). The goal of the agent is
to maximize the discounted cumulative reward called return R =

∑∞
k=0 γ

krt+1, where γ
is the discount factor. Given the current state, the agent can select an action from the
internal policy π = P (a|s).

In off-policy learning the prediction of the cumulative reward can be obtained
through an action-value function Qπ(s, a) adjusted during the learning phase in order
to approximate Q∗(s, a), the optimal action-value function. In simple cases Q can be
represented in tabular form. The tabular approach is generally inadequate to model
a large state space due to combinatorial explosion. To solve the problem, a function
approximator (e.g. artificial neural networks) can be used to represent the action-value
function. In this work, two deep neural networks are used as function approximators
following the approach presented in Mnih et al.3 The deep networks used take as input
four 84× 84 grey scale images acquired by the downward looking camera mounted on
the drone, which are processed by three convolutional layers and two fully connected
layers. The rectified linear unit32 is used as activation function. The first convolution has
32 kernels of 4× 4 with stride of 2, the second layer has 64 kernels of 4× 4 with strides
of 2, the third layer convolves 64 kernels of 3× 3 with stride 1. The fourth layer is a fully
connected layer of 512 units followed by the output layer which has a unit for each valid
action (backward, right, forward, left, stop, descend and the trigger). Depending on the
simulation, only a sub-set of the total actions is available (please refer to Section 4 for
additional details). A graphical representation of the network is presented in Figure 2,
while an example of the input images and the output of the first layer of kernel is provided
in Figure 3.

The problem faced in DRL is to adjust the parameters θ, which are the weights of the
network, minimizing a loss function L(θ) through stochastic gradient descend. The loss
function used in this work is the following:

Li(θi) = E(s,a,r,s′)∼U(D)

[(
Y d
i −Q(s, a; θi)

)2]
(1)

where D = (e1, ..., et) is a dataset of experiences et = (st, at, rt, st+1) used to uniformly
sample a batch at each iteration i. The network Q(s, a; θi) is used to estimate actions at
runtime, whereas Y d

i is the target that is defined as follows:
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Fig. 2: Graphical representation of the DQN. The network takes in input four 84× 84
images, and generates in output 7 actions: forward, right, backward, left, stop, descent,
trigger.

Fig. 3: The greyscale images given as input to the DQN and the feature map generated
by the kernels in the first convolutional layer.

Y d
i = r + γ Q(s′, argmax

a′
Q(s′, a′; θi); θ

−
i ) (2)
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Fig. 4: Comparison between the Q-max value (the highest utility returned by the
Q-network) obtained with the classic DQN and the revised Double DQN. The
overestimation of the Q-function prevents the DQN to converge to the real maximum
utility of 1.0 and learn how to accomplish the task.

The use of the target network is an expedient which improves the stability of the
learning. The parameters θ are updated every C steps and synchronized with θ−. In the
standard approach, the experiences in the dataset D are collected in a preliminary phase
using a random policy. The dataset D is also called buffer replay and it is a way to
randomize the samples breaking the correlation and reducing the variance.33 The target
function used in this work is the one proposed in Double DQN approach34 to solve the
utility overestimation affecting Q-learning with large state space and sparse reward,35

such as in this case. In fact, it was found that the max operator in the original work of
Minh et al.3 was responsible for the overestimation affecting all the action but the trigger.
This is because the trigger, since it leads to a terminal state of the MDP, does not use the
max operator for updating its utility. In a preliminary research it was experimented that
the Q-max value (the highest utility returned by the Q-network) largely overshot the
maximum utility of 1.0, which was correctly associated with the trigger (Figure 4). As a
result, the drone moved on top of the marker and then randomly shifted on the xy-plane
without engaging the trigger. Using the target function of eq. 2 solved the overestimation
problem and the learning happened successfully.

Here it is particularly important to focus on the two phases that characterize the
landing problem in order to isolate the obstacles that may be encountered. The landmark
detection phase has a large state space. If the UAV is generated within a bounding box
of size 15× 15× 20 m and it has 20 time steps of approximately 1 meter per episode, it
means that the agent has a box of 35× 35× 40 m to explore. This huge volume can be
reduced quite considerably, if it is assumed to fly at standard altitude. In this case the
vertical alignment with the landmark can be done using only shifts on the xy-plane. This
expedient does not have any impact on the operation level but it dramatically simplifies
the task, reducing the volume to explore to a flat slice of size 35× 35× 1 m. Additional
details are given in Section 4. The vertical descend phase can be considered a form of
Blind Cliffwalk36 where the agent has to take a right action (descend) in order to progress
through a sequence of n states. At the end of the walk, the agent can obtain either a
positive or a negative reward. In the landing scenario, the structure of the problem
makes extremely difficult to obtain a positive reward because the target-zone is only
a small portion of the state space. The consequence is that the buffer replay does not
contain enough positive experiences, making the policy unstable. To resolve this issue it is
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possible to use a different form of buffer which encourage to replay important transitions
more frequently, as proposed in Schaul et al.36 A new type of buffer replay is therefore
introduced and called partitioned buffer replay, that discriminates between rewards and
guarantees a fair sampling between positive, negative and neutral experiences. Further
details about the model implementation and the hyper-parameters used are discussed in
Section 4.

3.3. Partitioned buffer replay
In MDPs with a sparse and delayed reward it is difficult to obtain positive feedback.
In these cases, the experiences accumulated in the buffer replay may be extremely
unbalanced. Neutral transitions are frequent and for this reason they are sampled with
an high probability, whereas positive and negative experiences are uncommon and more
difficult to sample. A preliminary study confirmed the vertical descent is affected by the
sparsity of positive and negative rewards, leading to an underestimation of the utilities
associated with the triggers. A solution for sparse reward was proposed by Narasimhan
et al.,37 dividing the experiences into two buckets depending on their priority (high or
low). This work has been extended to K buckets. In Section 3.2 it has been defined
D = (e1, ..., et) being a dataset of experiences e = (s, a, r, s′) used to uniformly sample a
batch at each iteration i. To create a partitioned buffer replay, the reward space needs
to be divided in K partitions:

R = R(s, a)→ Im R = R1 ∪ ... ∪RK (3)

For any experience ei and its associated reward ri = r(ei), it is possible to define the
Kth buffer replay:

DK = {(e1, ..., eN) : r1, .., rN ∈ RK} (4)

The batch used for training the policy is assembled picking experiences from each one
of the K datasets with a certain fraction ρ ∈ {ρ1, ..., ρK}.

In this work K = 3, meaning that there are three datasets with D+ containing
experiences having positive rewards, D− containing experiences having negative rewards,
and D∼ for experiences having neutral rewards. The fraction of experiences associated
to each one of the dataset is defined as ρ+, ρ−, and ρ∼.

3.4. Hierarchy of DQNs
The solution proposed consists of a hierarchy of DQN to solve the different stages of the
flight. In a finite-state machine fashion, the global policy is subdivided in modules each
governed by a specific network which is also able to trigger the next one.

This approach is inspired by hierarchical reinforcement learning,38 whereby sub-
policies control the agents within a subset of a core MDP. In the present work, the
overall landing task is mapped to the core MDP which is split into multiple simplified
MDPs. In this way, standard Q-learning is still an effective algorithm for teaching the
agent to learn how to solve the task.

Moreover, in this work it has been assumed that it is possible to combine the auxiliary
MDPs in an ordered sequence and connect the elements of the sequence through shared
states. In shared states the use of particular actions, called triggers, enables the passage
to the next MDP. The triggers are additional actions that do not belong with the action
space of the core MDP. Engaging the triggers in shared states leads to a reward that is
equal to the maximal reward associated with the core MDP. How to define the auxiliary
MDPs is an operation left to the designer that requires some knowledge of the core MDP.

The core MDP is therefore divided into three smaller consecutive problems: landmark
detection, descent manoeuvre and touchdown. For the first two tasks, the networks have
been trained to receive a positive reward when the trigger is called inside a target area.
The last phase is outside the scope of this paper.
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3.5. The simulated environment
Previous work in DRL was followed by the release of an open-source library for increasing
the research in the field, such as the Arcade Learning Environment39 including the Atari
2600 games and the OpenAI Gym40 consisting in high level interfaces for classic problems
(e.g. gridworld, pole balancing, mountain car, etc) and more complex ones (e.g. board
games, humanoid walker, Doom the videogame, etc). Unfortunately, at the current stage
there is no a standard environment for developing and testing UAV landing algorithms.
To support the simulated experiments conducted, it has been worked on a simulated
environment based on the Gazebo simulator41 and ROS (Robot Operating System).42

The simulator is called Quadrotor Landing Benchmark (QLaB) and is released under an
open source license 1. QLaB includes configuration files, textures and examples which
allow the user to easily train and test new algorithms. The texture dataset consists of
more than a hundred patches, 70% of which are being used for training and the remaining
30% for testing. The patches are high-definition pictures representing common ground
floors belonging to eight categories: asphalt, brick, grass, pavement, sand, snow, soil and
water. The world is a 100× 100 m floor which can be covered by a uniform texture. Using
a variety of floor it is possible to verify the generalization capabilities of the algorithm in
different conditions. In this work only a small subset of all the textures available in QLaB
has been used, in particular those relative to the marine environment. They represent
different sea surface affected by light reflection and sea foam.

The UAV used in the environment is a widely diffused commercial quad-rotor, more
precisely the Parrot AR-Drone 2. The vehicle has a weight of 420 grams, dimensions are
53× 52 cm. It is equipped with two cameras, a frontal high-definition (1280× 720) and
a bottom QVGA (320× 240). The hardware limitation allows for using only one camera
at a time. The control command sent to the vehicle is represented by a continuous vector
∈ [−1, 1], which allows moving the drone with a specific velocity on the three axis. The
simulator allows training and testing in two cases:

1. Landmark detection. The vehicle is generated at a fixed altitude inside a bounding box
of size 15× 15× 20 m. To obtain a positive reward the drone has to find the landmark
and moves over it in a target-zone of size 3× 3× 20 m centred on the landmark.

2. Vertical descend. The drone is generated in a small bounding box of size 3× 3× 20
m and it obtains the positive reward only when entering in a small target-zone of size
0.75× 0.75× 1.5 m centred on the landmark.

To standardise the test, different parameters have been defined: number of attempts
per texture, time limit, sensors available and marker type. For each one of the tests a
total of 100 landing manoeuvres must be attempted. A time limit of 40 seconds (20 steps)
is applied in the landmark detection test, whereas a time limit of 80 seconds (40 steps)
is applied in the vertical descent test. When the episode finishes, a new one is started
and the drone is randomly generated inside the large bounding box. The only sensors
used is the downward looking camera, which can be read at a user-defined frame rate
and resolution. Since there is not a standard marker, it has been decided to take the one
used in the MBZIRC43 competition which is a 1-meter white square containing a black
circle and a cross. Finding this marker could be challenging because it does not contain
any particular colour. Moreover, its shape could complicate features extraction due to
the absence of well defined corners.

In the next section the primary contribution of this paper is introduced: the training
and testing of a system for autonomous landing which is based on a hierarchy of DQNs.

4. Experiments
This section presents the methodology and the results obtained in training and testing
the DQNs used in the proposed system.

1 https://github.com/pulver22
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4.1. First series of simulations
In the first series of simulations, the DQN responsible for the marker detection phase
is trained on ten different textures resembling the sea surface. At each episode, the
UAV started at a fixed altitude of 20m which was maintained for the entire flight. This
expedient significantly reduces the state space for exploration while allows the marker
to be visible during all the navigation. In order to stabilise the flight, long discrete
movements were introduced, meaning each action is repeated for 2 seconds and then
stopped, leading to an approximate shift of 1 m. The images from the camera are acquired
between two consecutive actions, when the drone is moving at constant speed.

4.1.1. Methods. The training of the network is performed inside the QLaB simulator.
The world is represented by a uniform marine texture of size 100× 100 m with a fixed
non-moving marker located at the centre (Figure 5). At the beginning of each episode, the
drone was generated at an altitude of 20 m inside the perimeter of the large bounding box
(15× 15× 20 m) with a random position and orientation (Figure 6). A positive reward of
1.0 was given when the vehicle landed in the target-zone, -1.0 otherwise. A negative cost
of living of -0.01 was applied to all the other conditions. A time limit of 40 seconds (20
steps) was used to stop the episode and start a new one. The texture was modified every
50 episodes. The target and policy networks were synchronized every 30000 frames. The
agent had five possible actions available: forward, backward, left, right and the trigger.
The action was repeated for 2 seconds then the drone was stopped and a new action was
sampled. For this phase a single buffer replay is used and filled before the training with
0.4× 106 frames using a random policy. The training phase run for for 0.71× 106 frames
and took 5.2 days to complete.

In order to control the exploration-exploitation dilemma it was used an ε-greedy
policy with ε decayed linearly from 1.0 to 0.1 over the first 500k frames and fixed
at 0.1 thereafter. The discount factor γ was set to 0.99. As optimizer, the RMSProp
algorithm44 with a batch size of 32 was used. The weights were initialized using the
Xavier initialization method.45

The DQN algorithm was implemented in Python using the Tensorflow library.46

Simulations were performed on a workstation with an Intel i7 (8 core) processor, 32
GB of RAM, and the NVIDIA Quadro K2200 as the graphical processing unit.

4.1.2. Results. The results, reported in Figure 7, show that the agent was able to learn
an efficient policy for maximizing the reward. The cost decreased stably without any
anomaly.

In contrast to the training phase, during which the marker was kept fixed in the same
position without any motion, the testing phase was performed positioning the marker on
the deck of an unmanned surface vehicle whose motion is affected by different simulated
sea conditions. Based on that, four test cases have been defined: (i) static, (ii) rolling, (iii)
pitching and (iv) combined. (i) During the static condition, the USV remains still in the
same position, without its deck being subject to changes in orientation. (ii) Throughout
the rolling condition, the USV oscillated around its x-axis in the range [−5, 5] deg. (iii) In
the pitching condition, the USV is subject to perturbations that make it rotating along
the y-axis in the range [−5, 5] deg. Finally (iv), for the combined condition the USV’s
motion was affected on both axis.

The results of the five tests are summarized in Figure 8. The bar chart compares the
performance of the trained agent, called DQN-marine, with a random agent, a state-
of-the-art AR-Tracker algorithm based on template matching47 and another network,
DQN-multi, previously trained on a different set of textures not including those related
to the marine environment.48

The average score for the first test (static deck) was 94% for the DQN-marine, 41%
for DQN-multi, 100% for the AR-Tracker and 6% for the random agent. The second test
(rolling deck) saw a general drop in performance, with the DQN-marine be successful
only in 62% of the cases, probably due to the fact the network has been trained on a
fixed marker and it never experienced changes of attitude during the training. DQN-multi
confirmed a performance of 42%, similar to the previous test. Also the random agent still
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Fig. 5: Textures used during the training (top) and testing (bottom) phases. Four are
the conditions in which every agent has been tested: with a static marker, with a rolling
deck, a pitching one and when the deck is subject to both rolling and pitching combined.

confirms the same performance (6%). The AR-Tracker proved to still be the agent with
the best performance, obtaining a success rate of 96%. In the third test with a pitching
deck, the DQN-marine improved its success rate to 98%, as the DQN-multi with 49%.
On the other hand, the AR-Tracker saw a drop in performance up to 89%. The random
agent has the same success rate of the previous test cases, as expected. The fourth test,
combining rolling and pitching, better represents sea conditions. The results show that
the DQN-marine is the best agent with performance of 98%, followed by the AR-Tracker
with a performance of 94%, the DQN-multi with 43% and the random agent with 6%.

The overall performances are reported in Table I. In general, the AR-Tracker is the
best agent in performing the marker detection with a success rate of 95%, followed by
the DQN-marine with 88%. This result is drastically influenced by the low performance
encountered in the test with a rolling deck. The DQN-multi has the third place with an
overall success rate of 44%. This result can be explained saying that the training set used
in this work, representing sea surfaces with light reflection and sea foam, presents feature
that are different from those in the training set used in Polvara et al.48 As a result, the
DQN-multi is not able to generalize well on the new dataset. Lastly, the random agent
with 6%. The mean and standard deviation for each group is showed in Table I.



12 Autonomous Landing using Deep Reinforcement Learning

Fig. 6: Bounding boxes for landmark detection (a) and vertical descent (b). The drone is
generated in the red box at the beginning of each episode. The green box (target-zone)
gives the positive reward.

Table I : Landmark detection success rate (test). Performances obtained by four agents
in the marker detection test on four different conditions. The results are in term of mean
(standard deviation). The best scores are in bold.

Agent type Performance
DQN-marine 0.88(0.15)
DQN-multi 0.44(0.03)
AR-Tracker 0.95(0.03)

Random 0.06(0.01)

It is possible to further analyse the DQN-marine policy observing the action-values
distribution in different states (Figure 9). When the UAV is far from the marker, the
DQN for landmark detection penalizes the landing action. However, when the drone is
over the marker this utility significantly increases triggering the network responsible for
the vertical descent.

4.2. Second series of simulation
In the second series of simulations, it was trained and tested the DQN specialized in the
vertical descent. To encourage the UAV to descend, during the ε-greedy action selection,
the action was sampled from a non-uniform distribution where the descend action had
a probability of ρ and the other N actions a probability 1−ρ

N
. Moreover, the vehicle was

generated at different altitudes ensuring a wider exploration of the state space. Instead of
the standard buffer replay, it was used a form of prioritized sampling with three separate
buckets for storing neutral, negative and positive experiences, as described in Section
3.3. In this way, a fixed amount of positive and negative experiences was always inserted
in the batch at training time.

4.2.1. Methods. During the training phase, the world was represented by a uniform floor
of size 100× 100 m with the landmark positioned in the centre. The texture was randomly
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Fig. 7: Results of the first series of simulations. On the x-axis is represented the number
of frames, whereas on the y-axis is represented the cost (a), reward (b) and steps per
episode (c). The curve shows the average and one standard deviation on five trials.

Fig. 8: Comparison of the test phase for marker detection between the DQN trained on
marine texture (DQN-marine), the DQN trained on multiple textures (DQN-multi), the
AR-Tracker and a random agent.

sampled every 50 episodes among the 10 possible alternatives contained in the training
set. The drone could use five actions: forward, backward, left, right, and down. The
action was repeated for 2 seconds leading to an approximate shift of 1 m because of the
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Fig. 9: Snapshots representing the landmark detection. The bottom bar is the utility
distribution of the actions. The trigger command has a negative utility (red bar) when
the UAV is far from the marker.

constant speed of 0.5 m/s. The descent action was performed at a lower speed of 0.25
m/s to reduce undesired vertical shifts.

The target and policy networks were synchronized every C = 30000 frames. For the
partitioned buffer replay it was chosen ρ+ = 0.25, ρ− = 0.25, and ρ∼ = 0.5. In this way,
a fixed value of 8 positive and negative experiences was always guaranteed in the batch
of 32 experiences. A time limit of 80 seconds (40 steps) was used to stop the episode and
start a new one. The UAV was generated with a random orientation inside a bounding
box of size 3× 3× 20 m at the beginning of the episode (Figure 6). A positive reward
of 1.0 was given only when the UAV entered in a target-zone of size 1.5× 1.5× 1.5 m,
centred on the marker. A negative reward of -1.0 was given if the drone descended above
1.5 meter outside the target-zone. A cost of living of -0.01 was applied at each time step.

The same hyper-parameters and hardware configuration described in Section 4.1.1
were used to train the agent. Before the training, the buffer replay was filled using
a random policy with 1.26 neutral experiences, 2.25× 105 negative experiences and
2.5× 105 positive experiences. The number of positive experiences was augmented using
horizontal/vertical mirroring and consecutive 90 degrees rotation on all the images stored
in the positive partition. This form of data augmentation increased the total number of
positive experiences to 5× 105. The training phase run for for 1.0× 106 frames and took
8.6 days to complete.

The performance of the agents have been measured as the landing success rate of
DQN-marine, DQN-multi, AR-Tracker and random agents in four tests. (i) In the first
test the agents landed on the static deck of an USV. (ii) The second test consisted in
landing on a rolling deck, while (iii) in the third test the deck was subject to pitching.
(iv) In the fourth and last test, landing is accomplished on a deck subject to combined
roll and pitch in order to simulate a more realistic condition.

4.2.2. Results. As for the marker detection phase, the results show that the DQN-marine
agent was able to learn an efficient policy for maximizing the reward, while the cost
decreased stably without any anomaly. In Figure 10 the charts of the cost, reward and
steps per episode are illustrated.

The results of the test phase are summarized in Figure 11. The bar chart compares
the performances of the DQN-marine, DQN-multi, AR-Tracker and a random agent. The
average score for the first test (static deck) is 81% for the DQN-marine, 51% for DQN-
multi, 53% for the AR-Tracker and 0% for the random agent. The second test (rolling
deck) saw a drop in performance of the DQN-marine to 75%, probably due to the fact
the network has been trained on a fixed marker and it never experienced changes of
attitude during the training. For the same reason, DQN-multi obtained a lower score



Autonomous Landing using Deep Reinforcement Learning 15

0 2 4 6 8 10
Frames 10 5

0

0.05

0.1

0.15

0.2

0.25

C
os

t

(a)

0 2 4 6 8 10
Frames 10 5

-2

-1

0

1

R
ew

ar
d

(b)

0 2 4 6 8 10
Frames 10 5

0

10

20

30

St
ep

s

(c)

Fig. 10: Results of the second series of simulations. On the x-axis is represented the
number of frames, whereas on the y-axis is represented the cost (a), reward (b) and steps
per episode (c). The curve shows the average and one standard deviation on five trials.

Table II : Descending manoeuvre success rate (test). Performances obtained by four
agents in the descending manoeuvre test on four different conditions. The results are in
term of mean (standard deviation). The best scores are in bold.

Agent type Performance
DQN-marine 0.81(0.06)
DQN-multi 0.48(0.03)
AR-Tracker 0.64(0.09)

Random 0.02(0.01)

of 45% compared to the previous test. While the random agent still confirms the same
null performance, the AR-Tracker proved to be more successful than in the test with
a static marker, obtaining now a performance score of 60%. Similar performance have
been registered also in the third test with a pitching deck (DQN-marine = 80%, DQN-
multi = 47%, AR-Tracker = 71% and random agent = 0%). The fourth test is the one
probably most interesting, because better represents situations faced at sea. The results
show that the DQN-marine is the best agent with a performance of 79%, followed by
the AR-Tracker with 75%, the DQN-multi with 49% and the random agent with null
performance. The overall performance grouping all the four test cases are reported in
Table II. In general, the DQN-marine is the best agent in the descending manoeuvre
with a success rate of 81%, while a state-of-the-art AR-Tracker succeeded only 64% of
the times across all the tests performed.
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Fig. 11: Comparison of the test phase for the vertical descent between the DQN trained
on marine texture (DQN-marine), the DQN trained on multiple textures (DQN-multi),
the AR-Tracker and a random agent.

Fig. 12: Snapshots representing the vertical descent. The bottom bar is the utility
distribution of the actions. The descent command has a negative utility (red bar) when
the drone is close to the ground but far from the marker.

Figure 12 helps to clarify the policy’s behaviour. When the UAV is far from the
marker, the network encourages the descent. However, when the marker is at the edge of
the image acquired by the camera, the utility of lateral movements significantly increases
in order to centre the marker again. This procedure continues until the drone reaches
the minimum distance required in order to trigger the touchdown phase.

5. Concluding Remarks
In this work, deep reinforcement learning is used to realise a system for the autonomous
landing of quad-rotor UAV on the deck of an unmanned surface vehicle that is subject
to perturbations induced by sea currents. The main modules of the system are two Deep
Q-Networks which can control the UAV in two delicate phases: landmark detection and
vertical descent. The two DQNs have been trained in different environments and with
different degrees of noise. It has been showed that the system can achieve performances
comparable and sometimes even better than traditional state-of-the-art algorithms based
on template matching. Moreover, it was showed that it is possible to train robust networks
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performing the training on a much simpler condition (like with a static deck), while still
obtaining good performance on the real task (rolling and pitching deck).

Future work should focus on two aspects: i) improving performance, and ii) bridging
the reality gap. To solve the landing problem it has been decided to use DQN which can
be considered a robust approach. However the DRL field is rapidly growing, and new
techniques have been recently achieved top performances in complex tasks. A promising
technique is Proximal Policy Optimization (PPO)49 which obtained top results on a
large wide variety of continuous motor control problems as well as navigating random
3D mazes, and for this reason it can be particularly suited for the UAV landing problem.
Another important point which can contribute to obtain better performances is an
efficient exploration of the state space. Exploration has ever been a major challenge
in reinforcement learning. Shallow methods such as ε-greedy could not be the best
choice for temporally extended exploration. For instance, some modern versions of
Thompson sampling such as posterior sampling50 or bootstrapped DQN51 could reduce
the convergence time required to obtain stable policies.

The system has been tested only in a simulated environment and moving to real world
application could be challenging because of the reality gap. The reality gap is the obstacle
that makes difficult to implement many robotic solutions in real world. This is especially
true for DRL where a large number of episodes is necessary in order to obtain stable
policies. Thanks to a technique known as domain randomization,52 a method for training
models on simulated images that transfer to real images by randomizing rendering in
the simulator, we have already been able to accomplish autonomous landing on a fixed
marker in the real world. But the marine environment poses many more challenges than
an indoor one, therefore further studies must be completed before proceeding with a real
implementation. For example, these studies should take care of modelling adverse wind
and light conditions (such as reflection in the water) at training time. Also sea currents
modelling can be further improved to be more realistic than the one used in this actual
work. As result, if on one hand the training time could increase due to a more complex
environment (leading to multiple different features that need to be extracted and learnt),
on the other one the gap existing between the simulator and the real world decreases
making the adoption of this end-to-end method in the real world even more feasible.

In conclusion, the results obtained are promising and show that it is possible to apply
DQN to complex problems such as landing on the perturbed deck of a USV. However,
further research is necessary in order to reach stable policies which can effectively work
in a wide range of conditions (e.g., mutable lights, sea and wind currents etc).
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