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The Lattice Boltzmann method For Flows With Slip and No-slip Boundaries

Seemaa Abdulsattar Mohammed

Abstract

This thesis assesses and extends a modern method to study the physics of simple and

complex flows by using the lattice Boltzmann method (LBM). With the moment-based

boundary conditions, different problems with no-slip and slip boundaries are simulated.

The moment method is based on the specification of the appropriate hydrodynamic

moments of LBM.

Throughout this thesis, distinct collision operators of D2Q9 LBM are presented and

examined; the models include the Bhatnager-Gross-Krook (BGK), multiple relaxation

time (MRT) and a special case of the last model which is two relaxation times (TRT-

LBM). Simple numerical simulations are given and the LBM proved its accuracy when

it is compared with other numerical methods.

The accuracy of the LBM with the no-slip and slip moment-based boundary con-

ditions is examined numerically by studying the dipole wall collision flow. The two

relaxation times lattice Boltzmann model is used to simulate this flow and the results

are compared with other numerical methods. Our implementation shows excellent

agreement with other numerical results. The vorticity generation on the wall shows

interesting behaviour after the dipole collides with no-slip wall. The angle of the inci-

dence effects the behaviour of the dipole after the wall collision, the dissipation of the

energy and the growth of the enstrophy.

Throughout this thesis the impact of the slip length and Reynolds number on the

dipole wall collision is studied. By applying the Navier-slip condition with moment

boundary conditions the behaviour of the flow changes and the dissipation of the en-

ergy is affected by slip length and the peaks of the enstrophy decreases with higher slip

lengths.

The dissipation of the energy and its relation to the enstrophy over dipole wall

collision are also investigated for different types of boundaries and angles. The the-

oretical and the numerical investigation shows that the presence of the wall modifies

this relation. Moreover, the dissipation of the energy in the absence and the existence

of the viscosity effect are studied. Finally, an analysis is done of the stress field of the

LBM by using the same boundary conditions for simple flow.
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Chapter 1

Fluid flow

Introduction

Computational fluid dynamics (CFD) is a branch of fluid dynamics which includes a

study of various natural phenomena in real life by simulating the governing equations

numerically. The governing equations for the Navier-Stokes equations have been uti-

lized to describe the motions of fluids for over 150 years [27, 46]. In CFD, numerous

numerical methods are used to approximate the Navier-Stokes equations, like the fi-

nite difference method, finite element method, finite volume and spectral method. All

these methods are established methods for discretising the macroscopic Navier-Stokes

equations. In contrast to the other computational methods, another approach which

is considered a link between the microscopic models and the continuum macroscopic

equations is used to solve the governing equations is the lattice Boltzmann method. In

this thesis the lattice Boltzmann method will be applied with accurate conditions to

simulate simple and complex flows. In this chapter, some fundamental concepts of con-

servation laws are expressed. The equation of motion will be found from the momentum

equation. A brief description of macroscopic boundary conditions and boundary layer

theory are given in this chapter. Some explanation about the kinetic theory will be

given followed by an introduction to the lattice Boltzmann method. The motivation

for, and outline of, the thesis are listed.
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Chapter 1. Fluid flow

1.1 Macroscopic description

In this scale, the fluids are described as a continuum. In classic physics, the macroscopic

behaviour is used to simulate the fluid in large scales. In a closed and arbitrary volume

V , we can derive the continuity and momentum equations which lead to the Navier-

Stokes equations.

1.1.1 The continuity equation

In a closed and arbitrary volume V that is bounded by surface S, one can derive the

mass equation from the following integral form [90]

∂

∂t

∫
V

ρ dV +

∫
S

ρn · u dS = 0, (1.1)

where the first term describes the rate of change of mass in a volume V , while the

second term represents the mass flux through the control boundary S. n is the unit

vector normal to the surface that points out from the inside to the outside of V .

The density ρ and the fluid velocity vector u depend on time t and position x. By

using the Leibniz rule ( ∂
∂t

∫
V
ρ dV =

∫
V

∂ρ
∂t
dV ) and the Gauss’s divergence theorem,

(
∫
V
∇ · A dV =

∫
S
A · n dS), equation (1.1) becomes

∫
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0. (1.2)

By assuming all the integrals are continuous and for any value of V , the integrand

vanishes as follows

∂ρ

∂t
+∇ · (ρu) = 0. (1.3)

2



Chapter 1. Fluid flow

Equation (1.3) is called the continuity equation. For incompressible flow where the

density is constant, the continuity equation is reduced to

∇ · u = 0. (1.4)

1.1.2 The momentum equation

The momentum equation can be described in a volume V that is not changing with

time. Newtons second law indicated that [66, 73]

∂

∂t

∫
V

ρu dV +

∫
S

ρ(n · u)u dS =

∫
V

FdV +

∫
S

n · σσσ dS, (1.5)

where F = ρG is the body force and σσσ is the stress tensor. Again by using the

divergence theorem, the integration of equation (1.5) combines over volume V

∫
V

(
∂

∂t
(ρu) +∇ · (ρuu)

)
dV =

∫
V

(
F+∇ · σσσ

)
dV, (1.6)

and for an arbitrary fixed volume V , the integrands of equation (1.6) must be equal

∂

∂t
(ρu) +∇ · (ρuu) = F+∇ · σσσ. (1.7)

By using the dot product properties

∇ · (ρuu) = ∇ · (ρu) + ρu · ∇u, (1.8)

and by applying the continuity equation (1.4), we get the momentum equation

ρ
∂u

∂t
+ ρu · ∇u = F+∇ · σσσ, (1.9)

where the left-hand side is the convection of the fluid while the right side represents

the diffusion and external force.
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Chapter 1. Fluid flow

In Newtonian fluids the stress tensor in index notation takes the form as

σαβ = −Pδαβ + µDαβ, (1.10)

where P is the pressure, µ is the dynamic viscosity of the fluid, δαβ is the Kronecker

delta function

δαβ =


1, if α = β,

0, if α ̸= β,

(1.11)

and Dαβ is the strain tensor, which is defined as

Dαβ =

(
∂uα
∂xβ

+
∂uβ
∂xα

)
. (1.12)

Substituting equation (1.10) and (1.12) into equation (1.9) yields the equation of motion

in Newtonian incompressible flow which is called the Navier-Stokes equations

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u+G,

∇ · u = 0

(1.13)

where ν = µ/ρ is the kinematic viscosity. The importence of viscosity is characterised

by the non-dimensional Reynolds number. Reynolds number is defined as Re = UL/ν

where L and U are the characteristics length and velocity, respectively.

In the macroscopic approach, the Navier-Stokes equations describe the motion of

the fluids as a continuum in a hydrodynamic length and time scales. These par-

tial differential equations are non-linear and difficult to solve, except under specific

assumptions, like in unidirectional channel flow. Therefore, accurate and functional

numerical methods with correct conditions are needed to approximate this system of

equations.
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Chapter 1. Fluid flow

1.2 Boundary conditions

Boundary conditions are a vital part of any numerical method for fluid flow since they

are part of the physical problem and they have an effect on the stability of the numerical

algorithm. In computational fluid dynamics, the velocity, pressure or the stress will be

specified at the boundary [46]. In the macroscopic approach, boundary conditions are

generally divided into three different types: Dirichlet boundary conditions, Neumann

boundary conditions and Robin boundary conditions. With Dirichlet conditions, the

velocity at a boundary will be specified to a constant value. Neumann boundary

conditions can be introduced as the gradient derivative of the velocity at the wall. If

the fluid at the boundary is moving with the same velocity as the boundary, then the

condition is called the no-slip boundary condition. The free-slip boundary condition is

an example of Neumann boundary conditions where the gradient velocity that results

from equation (1.12) at the wall is specified as zero. The combination between the

Dirichlet and Neumann boundary conditions is called the Robin boundary condition.

The partial-slip or Navier-Maxwell slip boundary condition is an example of the Robin

condition. In special applications, for instance at micro-fluids, the velocity at the wall

is changing where the slip boundary conditions are applied. The slip velocity at the

wall is represented by the shear stress from equation (1.12) where the amount of the

slip is described by the magnitude of small length called the slip length. Note that,

if the slip length is very small, then the fluid mimics the no-slip boundary conditions.

Nevertheless, at a very big slip length, the wall faces a very small amount of friction

and the fluid will slip at the boundary without significant resistance from the surface.

Moreover, if the particles from the boundary move to the opposite side of the flow

and re-enter from it, then there is another type of the condition, named the periodic

boundary conditions. In this work different types of boundary conditions will be studied

and will be implemented for various kinds of flows.
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Chapter 1. Fluid flow

1.2.1 Boundary layer theory

The flow at very high Reynolds numbers acts approximately as an ideal flow in the

region away from the boundary. However, the viscous effects are confined to the region

near the wall, because the fluid has to stick to the wall, especially at no-slip walls. As

a result, very high velocity gradient in the area near the boundary will appear which

induces a layer from the solid boundary called the boundary layer. The study of the

boundary layer expanded from incompressible laminar flow, then it was developed to

include the turbulent flow [101]. The boundary layer (BL) at complex or turbulent

flows detaches from the boundary and produces complicated patterns.

D’Alembert declared a paradox in 1752 which states that any object moves in an

infinite fluid without any friction effect or drag. In 1904 Prandtl introduced a theory

called boundary layer or frictional layer theory [92]. This theory illustrated that at

higher Reynolds numbers the flow can be split into two regimes. The first one is

located in the bulk flow where the friction is neglected. The second regime is placed

near the boundary where a very thin layer appears and the viscosity effect is taken into

consideration.

The thickness of the boundary layer δ in a laminar flow can be found from the ratio

of advective part to the viscous term in Navier-Stokes equation [73], where

ReBL ≃(u · ∇u)

(ν∇2u)
∼ U2/L2

νU/δ2

=
δ2

L2
Re. (1.14)

The boundary layer is distinguished by the passing from the mainstream domain to the

area near the boundary where the viscosity is dominated in that region. The estimation

of the thickness of the boundary layer demands the assumption that the appropriate

Reynolds number for the flow is around one [100], which yields

δ ∼
√
νL

U
=

L√
Re

. (1.15)
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Chapter 1. Fluid flow

Moreover, at higher Reynolds numbers, the thickness of the boundary layer will be

much smaller than the characteristic length of the flow.

1.3 The kinetic description

There is another approach that can be used to predict the behaviour of the fluid flow

which was established by the physicist Ludwig Boltzmann [8]. In this approach, fluids

are described as a large number of particles and molecules which interact with each

other. These particles are described in terms of the microscopic distribution functions.

In the kinetic theory, the distribution function f gives the number of particles with a

velocity c at time t and position x where x ∈ RD, K = RD × RD is the phase space

where all the positions and momentum variables exist and D is the number of the

dimension. The time evolution of the distribution function can be written without a

force term [15]

∂tf + c · ∇f = Ω(f), (1.16)

where f = f(x, c, t) is a probability distribution function and ∂t = ∂
∂t

and c is the

particle’s velocity. The right-hand side is the collision operator where the distribution

functions change their values because of the collisions of the particles. The simplest

collision operator is the Bhatnagar-Gross-Krook model (BGK) [7] which reads

Ω(t) = −1

τ
(f − f (0)), (1.17)

where τ is the relaxation time that controls the rate at which the distribution functions

reach their equilibrium. f (0) is Maxwell Boltzmann distribution function, which is

defined as [15]

f (0) =
ρ

(2πRT )(D/2)
exp

(
−(c− u)2

2RT

)
, (1.18)
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where ρ is the density, R is the Boltzmann constant and T is the Temperature. The

mass, momentum and energy of the macroscopic approach can be computed by using

the probability distribution function as

Density ρ =

∫
f(x, c, t)dc, (1.19a)

Momentum ρu =

∫
cf(x, c, t)dc, (1.19b)

Kinetic Energy per unit volume ρE =
1

2

∫
|c− u|2 f(x, c, t)dc, (1.19c)

where E is the energy and |c− u| is the particular velocity [14, 15, 45].

By using the suitable multiscale method, one can get the continuum equations and

the hydrodynamic moments from the kinetic Boltzmann equation. The Chapman-

Enskog expansion provides a multiscale expansion of the distribution function f and

time t derivative by using a small parameter τ . This parameter is proportional to

the Knudsen number Kn. The Knudsen number Kn = ℓf/Lf is a ratio between the

mean free path ℓf and a typical hydrodynamic length scale Lf , where Lf ≫ ℓf for

handling the fluid as a continuum. So, the distribution function is expanded around

its equilibrium as

f = f 0 + τf (1) + τ (2)f (2) + ..., (1.20)

and the time derivative is expanded as follows

∂

∂t
=

∂

∂t0
+ τ

∂

∂t1
+ τ 2

∂

∂t2
+ .... (1.21)

With the first-order of truncation, the Navier-Stokes equations (1.13) are recovered

from the continuous Boltzmann equation, for more details see [14]. From the higher

order truncation of τ , there are additional stress terms of Burnett type which will ap-

pear [15, 108]. The influence of the stress for the higher order truncation is investigated

in Chapter 7.
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1.4 Introduction to the lattice Boltzmann method

The lattice Boltzmann method (LBM) is considered an alternative to the traditional

computational methods to simulate fluid flow problems. Conversely, to the other com-

putational methods that discretise the governing equations directly, the LBM features

a simplified mesoscopic scope of fluid flow to recover the Navier-Stokes equations in the

macroscopic frame [46]. The characteristics of the LBMmake it an attractive method of

computational fluid dynamics for the following reasons. Firstly, the LBM features lin-

ear, constant coefficient advection similar to the kinetic Boltzmann equation, whereas

the Navier-Stokes equations involve non-linear convection (non-linear convection terms

dominate at high Reynolds numbers and are difficult to discretise). Secondly, in this

model the pressure is calculated efficiently by using an equation of state unlike other

numerical methods which compute solutions to the Navier-Stokes equations and often

find it through a Poisson solver. Thirdly, it is easy to apply different types of boundary

conditions in complex geometries with LBM. Fourthly, the method is readily paralleliz-

able. This feature allows faster simulation of large computational flows. So, because of

these reasons, it can be said that the LBM is a competitive and advantageous method

compared to the other computational fluid methods.

The lattice Boltzmann method originally advanced to overcome shortcomings of

the lattice gas cellular automaton (LGCA). In 1973 Hardy, de Pazzis and Pomeau

[49] introduced the first model of LGCA, named HPP-LGCA. This model expressed

the motion and the interactions between the particles in the fluid. The HPP model

achieved mass and momentum conservation, but it was unable to recover the Navier

Stokes equations. In 1986 Frisch, Hasslacher and Pomeau [38] introduced another

model of LGCA called the FHP model, which is based on similar principle on HPP,

namely, mass and momentum conservation and simplification of particle dynamics.

However, the authors increased the number of degrees of freedom to improve the sym-

metry properties and recover the correct equation of motion in the macroscopic limit.

Despite the efficiency of LGCA, it suffered from some drawbacks including statistical

9



Chapter 1. Fluid flow

noise [78]. In 1988 McNamara and Zanetti [82] proposed a method to solve statisti-

cal noise problems in LGCA. They replaced the (Boolean) occupation variable with a

probability distribution function to create the first lattice Boltzmann equation (LBE)

[103]. In 1989 Higuera and Jimenez [54] linearised the LBE around its equilibrium

to simplify the LBM and improve computational efficiency. Later, several researchers

[93, 16] proposed a simple collision operator based on the previous operator with a sin-

gle relaxation time, called the Bhatnager-Gross-Krook model (LBGK). More recently;

the LBM was derived from a velocity-space truncation of the Boltzmann equation with

a BGK-collision operator [51, 102].

Despite the popularity of the BGK-LBM, it is well-known that its stability suffers

at small values of τ (high Reynolds number flows) [29, 1]. D’Humieres [32] introduced

the multiple relaxation time (MRT) model, and such models have been shown to signif-

icantly enhance the stability of LBM algorithms with only a little extra computational

overhead [68, 29, 67, 96]. A specific and simplified MRT collision operator is the two

relaxation time (TRT) model.

As mentioned before, the LBM can accurately and simply incorporate complicated

boundary conditions in complicated flows. Therefore the choice of the appropriate and

accurate boundary conditions is the key to successful fluid flow numerical simulation.

1.5 Motivation for this thesis

The first purpose of this thesis is to present the lattice Boltzmann method with ac-

curate boundary conditions for fluid dynamics flows and to highlight some advantages

and disadvantages of this method. The efficiency of the boundary conditions affects

the accuracy of LBM. The presented boundary conditions, so-called “Moment-based

Method”, are based on applying conditions directly onto the moments of the LBM

[4]. The moment-based implementation discussed here uses only hydrodynamic mo-

ments to satisfy boundary conditions and may be viewed as a direct extension of the

method first proposed by Noble et al [88] for simpler lattices [84]. By using the moment

10



Chapter 1. Fluid flow

method, no-slip and Navier-Maxwell slip boundary conditions can be imposed in less

complicated ways on any problem with flat walls. The moment method has already

been applied to diffusive slip [5], natural convection problems [1], lid cavity fluid flow

[84], the slip-flow regime [95], and wetting phenomena in multiphase flow [48], and

reported very favourable results.

In viscous fluid, the interaction between the vortex and the boundary has a signifi-

cant impact on the development of the flow. The evolution of the sequence of vortices

resulting from wall collision makes this flow an excellent benchmark to validate any nu-

merical method [89]. The basic contribution of this thesis is to study the validation of

LBM with moment-based boundary conditions. To do that, the dipole rebounds from

the no-slip solid wall are studied and compared with benchmarking data of [19, 71].

The investigation of Latt and Chopard [71] is expanded to include the study for higher

Reynolds numbers to show the accuracy of moment boundary conditions compared

with bounce-back method. Moreover, in this thesis a new physics of dipole collisions

with solid walls at an angle of 45◦ are introduced for intermediate and higher Reynolds

numbers.

The other main strand of this work is showing the significant impact of the slip

length on dipole wall collisions together with higher Reynolds numbers and various an-

gles of collisions by using Navier-slip condition with moment method. Latterly, Farge

et al [35] studied the energy dissipation of normal dipole wall collision in the limit of

vanishing viscosity by using the volume penalisation method repeated by Sutherland

et al [105]. Here, the same study is carried out by using the LBM with moment-based

boundary conditions for normal wall collisions, extending the study to include oblique

dipole wall collision. In the bounded domain, the relationship between the dissipation

of the energy and growth of the enstrophy at the wall is investigated, where the no-

slip then slip walls acts as a provider of the enstrophy. This relationship confirms the

finding from our study of dipole wall collision for slip and no-slip boundaries where the

dissipation of the energy decreases by increasing the Reynolds numbers.

Finally, this thesis gives a detailed analysis of the stress tensor for unidirectional flow by

11



Chapter 1. Fluid flow

using the LBM and shows the contribution of the Navier-slip condition with moment-

based boundary conditions in this analysis.

1.6 Outline of the thesis

Since the examination of the moment-based boundary conditions with the more ac-

curate model of the lattice Boltzmann method is the main function of this work, the

arrangement of the thesis is as follows:

In Chapter 2 the essential principle of LGCA is introduced, then how it leads to

developing the idea of the lattice Boltzmann method is discussed. Three collision oper-

ators are discussed: the BGK, MRT and a special one of MRT which is the TRT model.

The derivation of the Navier-Stokes equations from a discrete Boltzmann equation are

presented in this chapter. Also we illustrate the method based on Grad’s approxima-

tion to find the general formula of the explicit second-order lattice Boltzmann equation.

In Chapter 3 a review of various approaches of boundary conditions is held. Then

the local second-order boundary conditions are presented, called ‘moment-based bound-

ary conditions’. An analytic solution of LBE is demonstrated with some numerical

analysis. Some benchmark simulations are presented to validate the moment method

with different models of LBM.

In Chapter 4 a dipole wall collision flow is solved numerically with no-slip moment

conditions and compared with benchmark data. Subsequently, slip conditions are ap-

plied to the same flow in Chapter 5 and the role of the slip length is described in the

same investigation.

To give a better understanding to the behaviour of the dipole wall collision with

the slip and no-slip cases the relation between the dissipation of the energy and the

growth of the enstrophy is shown in Chapter 6. Then the scale of these quantities

according to the thickness of boundary layer is studied.

In Chapter 7 the observation of [94] about the limitation of the moment method

for the channel flow is analysed; then this study is extended to the slip boundary
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conditions. A conclusion and suggestions for future work are discussed in Chapter 8.
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Chapter 2

Lattice Boltzmann Method (LBM)

A theoretical background of lattice Boltzmann method is discussed in this chapter

including the lattice gas cellular automata (LGCA). The LGCA is considered the an-

cestor of the the lattice Boltzmann method. The BGK-LBE can be found alternatively

by using Grad’s approach [45] by projecting the distribution functions on the Her-

mite polynomials. From this model, a detailed explanation of the hydrodynamic and

non-hydrodynamic moments that depends on the probability distribution function are

given. From the discrete Boltzmann equation, the Navier-Stokes equations will be

recovered. As well as the BGK model, the multiple relaxation times model (MRT-

LBE) will be introduced. Following Bennett [4], via Chapman-Enskog expansion, the

minimum number of velocities to recover the Navier-Stokes equations for one and two

dimensional lattice Boltzmann models are shown.

2.1 The Lattice Gas Cellular Automata (LGCA)

Numerous methods have been used to simulate the Navier Stokes equations, such as the

finite difference method, the finite element method, Smooth-Particle Hydrodynamics

(SPH) and lattice Gas Cellular Automata (LGCA). Our theme in this section will be

the LGCA, which is a simple method to simulate flow based on simplified microscopic

behaviour of fluid particles. We will explain the first model of LGCA which is the HPP
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Chapter 2. Lattice Boltzmann Method (LBM)

model. Inasmuch as this model cannot fully recover the Navier Stokes equations we

will introduce another model of LGCA named the FHP model. Finally, we will show

the development of this method leads to a more appropriate computational tool for

fluid flow which is the lattice Boltzmann equation model [97].

2.1.1 The HPP model

Lattice Gas Cellular Automata is a numerical method customized by imitating the

behaviour of molecules when they interact with each other in a gas and it was originally

inspired by Cellular Automata, which are finite individual cells with discrete states

related with their nearest neighbours [109, 112]. The LGCA began with Hardy, Pomeau

and de Pazzis in 1973 when they introduced a new two dimensional model which is

called by the first letters of their names: HPP model [112]. In the HPP model, each

node is connected with its four nearest neighbours by discrete vectors ci, i = 1, 2, 3, 4

[37]. As shown in Figure 2.1, the four velocities in the HPP model are

ci =

{
(1, 0), (0, 1), (−1, 0), (0,−1)

}
.

�
F

�
F

�
F

�
F

Figure 2.1: The HPP lattice.

This method is summarised as follows: particles stream from a node with position

vector x along one of the four directions to a neighbor node x+ci, see Figure 2.1. When

they arrive they collide and change their momentum according to some pre-determined

collision rules. In this model, the particles that collide rotate 90◦ and move to the site
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Chapter 2. Lattice Boltzmann Method (LBM)

that depends on their momentum, as shown in Figure 2.2, [77, 112].

output

output

Figure 2.2: Two particles hit each other when they reach a new node and change their direction by
90◦ in the HPP model.

The occupation Boolean variables ni(x, t), i = 1, 2, 3, 4, are defined as the number

of particles in each node x where ni = 1 for the existence of a particle at the node

with velocity ci and ni = 0 otherwise. So the microscopic behaviour of LGCA can be

written as

ni(x+ ci∆t, t+∆t)− ni(x, t) = Ni(n(x, t)), (2.1)

where Ni denotes the collision rules. The density at each node can be calculated from

the presence of the particles as follows

ρ =
4∑

i=1

ni, (2.2)

and the momentum at each node is

ρu =
4∑

i=1

nici. (2.3)

The left-hand side of equation (2.1) represents the streaming of the particles at each

node while the collision operator Ni(n(x, t)), n = (n1, n2, n3, n4), for HPP model is
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defined by

Ni(n) = ni+1ni+3ñiñi+2 − nini+2ñi+1ñi+3, (2.4)

where ñi = 1 − ni. The collision operator Ni(n) is constructed to conserve mass and

momentum

∑
i

Ni(n) = 0, (2.5)

∑
i

ciNi(n) = 0. (2.6)

By using equations (2.5), (2.6) and summing equation (2.1) over i we obtain:

∑
i

ni(x+ ci∆t, t+∆t) =
∑
i

ni(x, t). (2.7)

Similarly, by multiplying the equation (2.1) by ci and summing over i we will get the

conservation of momentum

∑
i

cini(x+ ci∆t, t+∆t) =
∑
i

cini(x, t). (2.8)

2.1.1.1 Evaluation of mean occupation numbers

The analysis of the LGCA method is started by taking the ensemble average of the

occupation numbers fi = ⟨ni⟩ , i = 1, 2, 3, 4. fi is the probability of finding the particles

in a given node in the direction of ci. The mean occupation number is used to find the

macroscopic density by summing the probability distribution functions at each node

ρ(x, t) =
4∑

i=1

fi(x, t), (2.9)
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and we calculate the momentum by summing the product of the probability with the

velocity vector

ρuα(x, t) =
4∑

i=1

fi(x, t)ciα, (2.10)

Similarly, the momentum flux tensor is defined to be

Παβ =
4∑

i=1

fi(x, t)ciαciβ, (2.11)

where α and β are the Cartesian components of the velocity (α, β = x or y) and u is the

velocity of the fluid. Since the symmetry properties are important in the recovery of the

Navier Stokes equations from LGCA, we confirm that the HHP model has second-order

isotropy defined by Hardy et al. [49]

∑
i

ciα = 0,

∑
i

ciαciβ = 2δαβ, (2.12)

where δαβ is the Kronecker delta function defined in equation (1.11) while the isotropy

will be discussed in Section 2.3.2.

2.1.1.2 Equilibrium distribution function and Euler’s equation

To find the equilibrium state of the assemble average of the occupation numbers, we

expand the equilibrium function f
(0)
i up to order two in velocity where the magnitude

of velocity u = |u| is assumed to be small. By using the equations (2.9), (2.10) and

(2.12), the equilibrium distribution function of the HHP model can be shown to be

[46, 97]:

f
(0)
i = W

[
1 + 2uαciα + 2

1− 2W

1−W

(
ciαciβ −

1

2
δαβ

)
uαuβ

]
+O(u3), (2.13)

18



Chapter 2. Lattice Boltzmann Method (LBM)

where W = ρ/4 is the density per link.

To get the macroscopic Navier-Stokes equations, a Taylor expansion is applied to

equation (2.1). Then using Chapman-Enskog expansion, (we will explain this expansion

in Section 2.3.1), the momentum equation

∂t(ρuα) + ∂α(Παβ) = 0, (2.14)

is obtained, and

Π
(0)
αβ =


2W

[
1 + 1−2W

1−W
(2uα − u2)

]
, if α = β

0. if α ̸= β

(2.15)

However according to [97, 37], the tensor in equation (2.15) should be isotropic if it is

invariant in all directions. This tensor is not invariant so Galilean invariance is broken.

This means the tensor Παβ will not be sufficient to recover the Euler equation or Navier

Stokes equations.

2.1.2 The FHP model

Although the HPP model has been used to simulate the fluid behaviour in a simple

way, obstacles in this model exist. From equation (2.12), we saw that the HPP has only

two orders of isotropy, however the discrete kinetic model needs fourth-order isotropy

to recover the Navier Stokes equations, see Section 2.5.3. Furthermore, because of the

nature of the collision principle in this model, it is difficult to apply periodic boundary

conditions [77]. Moreover, the main problem in this model is the statistical noise at

microscopic behaviour.

In 1986 three authors, Frisch, Hasslacher and Pomeau, designed a new model for

LGCA [38], named by the first letters of their names FHP. In FHP model the center

node is connected with its six closer neighbours by the lattice vector ci, i = 1, ..., 6,

(see Figure 2.3), where ci are given by:
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ci =

(
cos

π

3
i, sin

π

3
i

)
.

Note that |ci| = 1 for all i.

�
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Figure 2.3: FHP lattice.

The main difference between HPP and FHP models is the increase in the number

of lattice vectors. In addition, the following first three orthogonality relationships are

found:

∑
i

ciα = 0, (2.16)

∑
i

ciαciβ = 3δαβ, (2.17)

∑
i

ciαciβciγ = 0. (2.18)

The consequence is to enable the FHP-LGCA to recover the correct Euler and Navier

Stokes equations [112].

During the streaming step the particles move from node x to the new position x+ci.

In the collision step and contrast of HHP model which have a one possible rotation

as we mentioned before, there are two possible rotations for FHP model. One way,

two incoming particles will have head-on collision and rotate by (π/3) or (−π/3) with

probability p = 0.5 and 1− p respectively, as shown in Figure 2.4. Another possibility
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of the collision in this model is three particles having head-on collision with an angle of

2π/3 and modify their direction by rotating (π/3) only, see Figure 2.4. In each collision

step the mass and momentum must be conserved where the mass and momentum can

be calculated as in equations (2.2) and (2.3) but summing with six directions of ni in

each node. As in HPP model, FHP has a formula for equation (2.1) with the following

collision rule:

Ni(n) = ni+1ni+3ni+5ñiñi+2ñi+4

−nini+2ni+4ñi+1ñi+3ñi+5

+κni+1ni+4ñiñi+2ñi+3ni+5

+(1− κ)ni+2ñi+5ñiñi+1ñi+3ñi+4

−niñi+3ñi+1ñi+2ñi+4ñi+4, (2.19)

where κ(x, t) is a Boolean variable which takes the values 0 or 1, depending on the

direction of the rotation [77, 37]. n = (n1, n2, n3, n4, n5, n6) is the Boolean occupation

numbers.
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Figure 2.4: The probability of head-on collisions in the FHP model.

Despite the significant improvements of FHP model over the HPP model, the sta-

tistical noise problem still exists. This is because of the fluctuation in the calculation
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of the average of the occupation numbers [112, 109]. In LGCA, it is difficult to extend

the simulations to three dimensions because of the geometry and the collision principle

of these models also the simulation at higher Reynolds number is very complicated

[78, 103]. So to avoid these drawbacks, an alternative method is used to solve the

hydrodynamics flow problems.

2.2 Theory of lattice Boltzmann Method

To overcome the disadvantages of LGCA, in 1988 McNamara and Zanetti [82] pro-

posed a new technique to solve the problems of the previous models and preserve the

conservation laws at the same time. The general idea of the McNamara and Zanetti

[82] method is summarised by replacing the occupation variables with a velocity distri-

bution function, as we saw in the previous section. So by taking the assemble average

of LGCA fi = ⟨ni⟩, the lattice Boltzmann equation was created.

2.2.1 BGK-Lattice Boltzmann method

By taking the ensemble average of LGCA as fi(x, t) = ⟨ni(x, t)⟩, equation (2.1) yields:

fi(x+ ci∆t, t+∆t)− fi(x, t) = ⟨Ni(n(x, t))⟩ , i = 1, ..., b (2.20)

fi(x, t) is the probability distribution function where each node has b numbers of these

functions which depend on the number of lattice velocities in each model. The hydro-

dynamic quantities are obtained by taking discrete moments of fi as follows:

Density ρ =
b∑

i=1

fi, (2.21)

Momentum ρu =
b∑

i=1

fici, (2.22)
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Momentum flux ΠΠΠ =
b∑

i=1

ficici. (2.23)

The left-hand side of equation (2.20) is the streaming step. This step can be described

as the propagation of particles from node to a nearest neighbour according to its

velocity vectors ci in time ∆t. After the streaming step the collision step will start.

In this step, the distribution functions are updated according to the right-hand side

of the equation (2.20). Because of the complications caused by the ensemble average

in the simulation, two authors, named Higura and Jimenez in 1989 [54], linearised the

collision step about its equilibrium f
(0)
i where fi = f

(0)
i + τf

(1)
i + τ 2f

(2)
i + ..., [14]

Ni(f) = Ni(f
(0)
i ) +

∑
j

∂Ni(f
(0))

∂fj
(fj − f

(0)
j ) +

1

2

∑
j,k

∂N2
i (f

(0))

∂fj∂fk
(fj − f

(0)
j )(fk − f

(0)
k ) + ...,

(2.24)

where f = (f1, ...fb). At the equilibrium state when fi = f
(0)
i the collision term will

vanish such that Ni(f
(0)
i ) = 0. Truncating equation (2.24) at second-order of Ni, the

last equation will simplify to

Ni(f) ≈
∑
j

∂Ni(f
(0))

∂fj
(fj − f

(0)
j ). (2.25)

Defining Mij = ∂Ni(f
(0))/∂fj, we get

Ni(f) =
∑
j

Mij(fj − f
(0)
j ). (2.26)

If we assume the distribution functions will relax to their equilibrium with a specific

single relaxation time τ then [7],

Mij = −1

τ
δij, (2.27)
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where δij is the Kronecker delta function defined in equation (1.11). Thus the lattice

Bhatnagar-Gross-Krook model (LBGK) can be written as

fi(x+ ci∆t, t+∆t)− fi(x, t) = −1

τ
(fi − f

(0)
i ). (2.28)

The collision term of the lattice Boltzmann equation will conserve the mass and mo-

mentum and fulfill the following constrains

b∑
i=1

fi =
b∑

i=1

f
(0)
i , (2.29)

b∑
i=1

fici =
b∑

i=1

f
(0)
i ci. (2.30)

Subsequently, the streaming and colliding steps can be expressed separately in the

following equations, (the streaming step shown in Figure 2.5):

Collision step: f̃i(x, t) = fi(x, t)−
1

τ
(fi − f

(0)
i ), (2.31)

Streaming step: fi(x+ ci∆t, t+∆t) = f̃i(x, t). (2.32)

��M

M

��M

��L L ��L

�
I

�
I

�
I

�
I

�
I

�
I

�
I

�
I

3UH��VWUHDP 3RVW��VWUHDP

��L L ��L

��M

M

��M
�
I

�
I

�
I

�
I

�
I

�
I

�
I

�
I

Figure 2.5: An example of the streaming step of D2Q9 LBGK model, see Section 2.3.2.
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2.3 Choice of lattice

The lattices used in the lattice Boltzmann method are named DdQq. The letter d is

the number of spatial dimensions while q is the number of the lattice velocities. In the

next subsections one and two dimensional models with different lattice velocities will

be shown.

2.3.1 One dimensional lattice

In this subsection we will present two examples of one dimensional lattice Boltzmann

models which are the D1Q2 and D1Q3 models, see Figure 2.6. Here we will show the

minimum macroscopic velocities required to recover the Navier Stokes equations by

making a comparison between these two models.

�
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Figure 2.6: One dimensional lattice with two and three velocities.

According to [4] the D1Q2 model does not have enough independent moments to

recover the Navier Stokes equations. By taking the second-order Taylor expansion to

equation (2.28), we will get one dimension discrete Boltzmann equation (DBE)

∂tfi + ci∂xfi = −1

τ

(
fi(x, t)− f

(0)
i (x, t)

)
, (2.33)

where f
(0)
i is the equilibrium distribution function for the D1Q2 model and we can find

it by using the power series which depends on the density and the velocity as follows:

f
(0)
i = ρωi

(
A+Bcixux

)
, (2.34)
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where in the D1Q2 model the lattice links have the same length so w1 = w2 = 1/2.

The constants A and B can be found by using the mass conservation from equation

(2.29) which yields A = 1. Then by using the momentum conservation of equation

(2.30), we get ρux = Bρux so B = 1.

In the next steps we will try to recover the Navier-Stokes equations. After summing

the vectors of equation (2.33) and considering
∑

i fi = ρ and
∑

i fici = ρux we get the

mass conservation equation

∂tρ+ ∂x(ρux) = 0.

Then multiply equation (2.33) by ci and then sum it to get

∂t(ρux) + ∂xρ = 0, (2.35)

because
∑

i ficici = ρ in the D1Q2 model. By taking second moments of equation

(2.33), we will have another first-order momentum equation. Thus if we continuously

apply moments to equation (2.33) we will never obtain the suitable stress tensor to

recover the correct macroscopic equation because we do not have enough moments.

However, the D1Q3 model has three velocities including the rest one and this third

velocity enables us to recover the Navier Stokes equations. Using the same strategy as

in the D1Q2 model we can find f
(0)
i for D1Q3 model [60]

f
(0)
i = wiρ(1 + 3ciux), (2.36)

where the weight function for this model is

wi =


2/3, if i = 0,

1/6, if i = 1, 2.

(2.37)
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Similarly to D1Q2, summing the vectors of equation (2.33) we get the mass equation

∂tρ+ ∂x(ρux) = 0. (2.38)

Add the first moment to equation (2.33) to get the momentum equation

∂t(ρux) + ∂xΠxx = 0, (2.39)

where Πxx =
∑

i ficixcix is the second-order moment. Now the second moment of

equation (2.33) yields

∂tΠxx + ∂xQxxx = −1

τ
(Πxx − Π(0)

xx ), (2.40)

and from equation (2.36) we can find Π
(0)
xx = P + ρu2x, where P = ρ/3 is the pressure.

Qxxx =
∑

i ficixcixcix is the third-order moment. To recover the Navier-Stokes equa-

tions, the Chapman-Enskog expansion will be used [15]. Here, multiscale expansions

for both time scale and the non conserved tensors are provided by using the small

parameter τ ≈ Kn. So the following expansion is be applied

∂t = ∂t0 + τ∂t1 + ...,

Πxx = Π(0)
xx + τΠ(1)

xx + ...,

Qxxx = Q(0)
xxx + τQ(1)

xxx + ...,

(2.41)

and we truncate equation (2.41) to O(τ). Substituting it into equation (2.40) yields

∂t0Π
(0)
xx + ∂xQ

(0)
xxx = −Π(1)

xx . (2.42)

Now insert Π
(0)
xx = P + ρu2x and, from equation (2.36), Q

(0)
xxx = ρux into equation (2.42)
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such that

∂t0(P + ρu2x) + ∂x(ρux) = −Π(1)
xx . (2.43)

By using equations (2.38) and (2.39), one can find the value of Π
(1)
xx (it will be discussed

in detail in Section 2.5):

Π(1)
xx = −2

3
ρ∂xux. (2.44)

The final step will be inserting the value of Π
(1)
xx into equation (2.39) which gives us the

one dimensional weakly compressible Navier-Stokes equations.

∂t(ρux) + ∂x(ρu
2
x) = −∂xP + ∂x

(
2τρ

3
∂xux

)
, (2.45)

where ν = τ/3 is the kinematic viscosity.

To demonstrate that the D1Q3 model is more effective than D1Q2, a code was

written using FORTRAN to see the behaviour of the velocity and the density of these

models. The code was running until 100 steps to test if the velocity will reach the

steady state or not. Periodic boundary conditions are applied to this simulation. The

equilibrium distribution function for the D1Q2 and D1Q3 models are used from equa-

tions (2.34) and (2.36) respectively. The collision frequency is used (1/τ = 1/3) while

the density was set initially to be

ρ =


2, if − 10 ≤ x < 20,

1, if 0 ≤ x < 10 or 20 ≤ x ≤ 30.

(2.46)
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Figure 2.7: The density profile for D1Q2 model
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Figure 2.8: The velocity profile for D1Q2 model.

Figures 2.7 and 2.8 show that the D1Q2 model did not reach the steady state

and the velocity was not even close to its equilibrium whatever the time step that

we reached. This confirms the analysis of equation (2.35) where the Navier-Stokes

equations can not be recovered from this number of microscopic velocities. For D1Q3,

from Figures 2.9 and 2.10 we can see from time t = 15 the peak velocity is reducing

then around t = 100 it has approximately reached the steady state where the velocity

is zero and density is approximately constant.
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Figure 2.9: The density profile for D1Q3 model
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Figure 2.10: The velocity profile for D1Q3 model.
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2.3.2 Two dimensional models

The popular choice of lattices in two dimensional models include D2Q5, D2Q7 and

D2Q9. In general, the lattice Boltzmann method with a square lattice, like D2Q9, is

more common since it is easier in the simulation because of the number of the lattice

velocities.

Related with the lattice velocities are weight factors wi and the speed of sound cs.

These weights are different from one model to another and can be found by using

Hermite polynomials [102]. For example in Table 2.1 different values of wi and speed

of sound to different models of lattice Boltzmann method are presented [46]

Model wi c2s
D1Q3 2/3 1/3

1/6
D2Q5 1/3 1/3

1/6
D2Q7 1/2 1/4

1/12
D2Q9 4/9 1/3

1/9
1/36

D3Q15 2/9 1/3
1/9
1/27

Table 2.1: DdQq models with weights and speed of sound.

In the next chapters we will work with the D2Q9 model. The D2Q9 model has nine

velocities including the zero one in the middle of the model, see Figure 2.11, [53]

ci =


0, i = (0, 0)

∆x
∆t

(
cos (i−1)π

4
, sin (i−1)π

4

)
, i = 1, 2, 3, 4

√
2∆x
∆t

(
cos (i−5)π

2
, sin (i−5)π

4

)
. i = 5, 6, 7, 8

(2.47)
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Figure 2.11: D2Q9 scheme

An essential property of the lattice Boltzmann method is isotropy. The isotropy

of a tensor is the ability of remaining unchanged under the influence of rotation and

reflections. The nth rank of the lattice velocity tensor associated with the discrete

weights coefficient wi is defined as

Aα1α2...αn =
b∑

i=1

wiciα1ciα2 ...ciαn , (2.48)

so to recover the Navier-Stokes equations from D2Q9 lattice Boltzmann model we need

fourth-order isotropy tensors, n = 4, and this is achieved if the tensors of equation

(2.48) are isotropic to order 4. To derive the macroscopic equation, the following

fourth-order isotropy should be satisfied

∑
i

wi = 1, (2.49a)

∑
i

wiciα = 0, (2.49b)

∑
i

wiciαciβ = c2sδαβ, (2.49c)

∑
i

wiciαciβciγ = 0, (2.49d)

∑
i

wiciαciβciγciδ = c4s(δαβδγδ + δαγδβδ + δαδδβγ), (2.49e)

where δαβ can be found from equation (1.11).
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2.4 Choice of lattice Boltzmann units

In order to solve the physical problems represented by Navier-Stokes equations by

lattice Boltzmann method accurately, a suitable system of units should be chosen.

According to [69] we can either simulate the problems by discretising the dimensional

physical system and convert it to lattice Boltzmann system or we can use a second

approach. In this approach we rescale the physical systems into dimensionless systems

where length h0 and time t0 scales are used. Then we convert this system to the LBM

where the time step ∆t and space step ∆x are used. The Navier-Stokes equations in this

approach depends essentially on one dimensionless number called the Reynolds number

(Re) so the physical, dimensionless and lattice Boltzmann systems have the same

Reynolds number. To explain the second approach clearly, variables in the physical

system are denoted by xp and the dimensionless system are indicated by xd while the

lattice Boltzmann symbolised by xlb. The physical problems in fluids are described by

the Navier-Stokes equations. In incompressible viscous fluids where the density ρ = ρ0

is constant the Navier-Stokes equations together with the continuity equation from

equation (1.13) in a physical system read

∂tpup + (up · ∇p)up = − 1

ρ0p
∇pPp + νp∇2

pup,

∇p · up = 0.

(2.50)

Firstly to convert the physical system to a dimensionless one, introduce the character-

istics length h0 and time t0 to rescale their physical counterpart with the velocity and

the derivatives as

td =
tp
t0
, hd =

hp
h0
,

up =
h0
t0
ud, Pp = ρ0

h20
t20
Pd,

∂tp =
1

t0
∂td , ∇p =

1

h0
∇d.

(2.51)
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As a result of inserting equation (2.51) into equation (2.50), the dimensionless Navier

Stokes equations become

∂tdud + (ud · ∇d)ud = − 1

ρ0d
∇dPd +

1

Re
∇2

dud,

∇d · ud = 0,

(2.52)

where Re = h20/t0ν is the Reynolds number. In this dimensionless system where the

unit length and time are used the viscosity will be ν = 1/Re.

Now, convert the dimensionless system to lattice Boltzmann one by using ∆x = 1/M

and ∆t = 1/N , the lattice spacing and lattice time step respectively where M is the

number of cells and N is the number of iterations. The dimensionless velocity and

viscosity convert to

ud =
∆x

∆t
ulb,

νd =
∆x2

∆t
νlb,

(2.53)

which leads to

ulb =
∆t

∆x
ud,

νlb =
∆t

∆x2
1

Re
.

(2.54)

But the question is still present, how can we choose the lattice speed c = ∆x/∆t.

It is obvious from equation (2.54) the velocity depends on the lattice units and the

dimensionless velocity determined to be equal to 1 so the following constraint states

∥ulb∥2 = (∆t/∆x) ∥ud∥2 ≪ c2s, (2.55)

where ∥.∥2 is the L2 norm. Also the velocity in equation (2.55) should not be larger

than the speed of sound c2s for compressibility reasons. To obtain accurate results, we

make sure the compressibility of the fluid is small. As a result a Mach number, defined

as a ratio between the fluid velocity and the speed of sound Ma = ulb/cs, should be
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very small where Ma ≪ 1 is a requirement based on the expansion of f (0). At the

same time when we increase the number of the grid points, the numerical error should

be reduced. So to reduce the compressibility error and numerical error in the same

time, the relation between the time step and space step will be ∆t≪ ∆x. In the next

section we will see how we can derive the lattice Boltzmann equation using special

polynomials called Hermite polynomials.

2.5 From Boltzmann equation to discrete Boltz-

mann equation

Earlier we obtained the lattice Boltzmann equation from LGCA. But in addition to

this technique one can derive this equation from the kinetic equation. The non linear

continuous Boltzmann equation with an external force term will be used to derive

lattice Boltzmann equation such that

∂f

∂t
+ c · ∇f + g · ∇cf = −1

τ
(f − f (0)), (2.56)

where ∇cf is the gradient operator with respect to particle velocity and g is the ac-

celeration value located in the the force term. The Maxwell Boltzmann distribution

function f (0) is defined in equation (1.18) where RT in the equation represents the

square of the speed of sound c2s.

Shan et al. [102] presented the procedure to recover the lattice Boltzmann method

from the continuous Boltzmann equation. In their derivation, they utilised special

polynomials called Hermite polynomials. The hydrodynamic variables can be obtained

from the zero, first and second moments from equation (1.19). In the next subsection

we will use projections of probability functions onto subspaces of Hermite polynomials

in order to get the discrete Boltzmann equation from the continuous Boltzmann equa-

tion (2.56) then we will recover the Navier-Stokes equations from this discretization.
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2.5.1 Hermite polynomials

A system of conservation mass, momentum, energy flux equations can be found by us-

ing equations (1.16), (1.18) and equation (1.19) [31]. That system of equations needs

a sufficiently high number of moments to recover the energy flux and the pressure ten-

sor. Grad [45] considered a sufficient 13 moments of the Boltzmann equation by using

special polynomials, named Hermite polynomials.

Our goal is to discetise the Boltzmann equation in velocity space to get the Dis-

crete Boltzmann equation (DBE) and its moments in equation (1.19) by using the

same technique and follow the procedure of Shan et al. [102]. So, by applying the

Hermite polynomials and projecting the distribution functions on these polynomials

where a suitable truncation order should be considered, the DBE will be found. Her-

mite polynomials are the best choice because these polynomials are orthogonal and we

can obtain the governing equations of lattice Boltzmann equation from the coefficient

of Hermite polynomials. Moreover, the Hermite quadrature gives the exact solution to

a certain order when we use it to discretise the continuous distribution functions and

velocities. So according to Shan et al. [102], by projecting the distribution functions

on the Hermite polynomials, we will get the discrete Boltzmann equation. First let’s

define the D-dimensional nth order weighted orthonormal Hermite polynomial as

H(n)(c) =
(−1)n

ω(c)
∇nω(c), (2.57)

where ω(c) is the weight function specified by

ω(c) =
1

(2π)D/2
exp(−c2/2), (2.58)

so the initial three basic polynomials will be

H(0)(c) = 1, H(1)
α (c) = cα and H

(2)
αβ (c) = cαcβ − δαβ, (2.59)
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where δαβ is the identity matrix. The distribution function are projected on the Hermite

orthonormal polynomials as

f(x, c, t) = ω(c)
∞∑
n=0

1

n!
a(n)(x, t)H(n)(c), (2.60)

where the symmetric coefficient a(n) is the tensor that is used to define moments of the

Boltzmann equation

a(n)(x, t) =

∫
f(x, c, t)H(n)(c)dc. (2.61)

If we apply the zero, first and second rank Hermite polynomials from equation (2.59)

into equation (2.61), one can get the essential hydrodynamic quantities

a(0) = ρ,

a(1) = ρu,

a(2) = P+ (ρuu− δδδ),

(2.62)

where P is the second-order moment tensor. Similar to equation (2.62) the coefficients

of the Maxwell equilibrium distribution function (1.18) after applying equation (2.59)

to it, will be

a
(0)
0 = ρ,

a
(1)
0 = ρu,

a
(2)
0 = ρ(uu+ ((c2s − 1)δδδ)).

(2.63)

In order to discretise the velocity space of the continuum Boltzmann equation, the

probability distribution function in equation (2.60) should be truncated at order N as

fN(x, c, t) = ω(c)
N∑

n=0

1

n!
a(n)(x, t)H(n)(c), (2.64)
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also the coefficient a(n)(x, t) in equation (2.62) can be represented in terms of the

truncated fN , n = 1, ...N , as

a(n)(x, t) =

∫
fN(x, c, t)H(n)(c)dc, (2.65)

where both f and H are up to N order. So to get the most accurate evaluation, let’s

define the 2N order polynomial q(x, c, t) such that

fN(x, c, t)H(n)(c) = ω(c)q(x, c, t). (2.66)

Then the Gauss-Hermite quadrature defined by

∫
ω(c)f(c)dc ∼=

b∑
i=1

ωif(ci), (2.67)

can be employed so the coefficient a(n) can be written as

a(n) =

∫
ω(c)q(x, c, t)dc =

b∑
i=1

ωiq(x, ci, t) =
b∑

i=1

ωi

ω(ci)
fN(x, ci, t)H

(n)(ci), (2.68)

where ci is the Gauss-Hermite quadrature abscissa and ωi is the weights function for

(i = 1, ..., b).

By using the Gauss-Hermite quadrature from equation (2.67) and in order to match

the lattice Boltzmann models, the discrete velocity ci should be rescaled. That is

because the lattice velocities ci is not of unity scale [102]. The coefficient cs which is

defined as the speed of sound will be used as a rescale factor. cs is different from lattice

to another, see Table 2.1. So the rescaled Hermite polynomials have the following

formula

H
(0)
i = 1,

H
(1)
iα = ciα,

H
(2)
iαβ = ciαciβ − c2sδαβ,

(2.69)
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and the rescaled coefficient tensors an have the following formulae

a(0) = ρ,

a(1) = ρu,

a(2) = P + ρ(uu+ (c2sδδδ)),

(2.70)

while the rescaled coefficients of the equilibrium function become

a
(0)
0 = ρ,

a
(1)
0 = ρu,

a
(2)
0 = ρ(uu+ c2s((c

2
s − 1)δδδ)).

(2.71)

The continuous Maxwell equilibrium distribution function in equation (1.18) can

be expanded up to order two in velocity as

f (0)(x, t) = ωρ

(
1 + c · u+

1

2
(c · u)2 − 1

2
u2

)
+O(u3), (2.72)

while the last term of the left-side in equation (2.56) is the force term. By taking

the gradient of distribution function defined in equation (2.60) and the definition of

Hermite polynomials equation (2.57) [80], we obtain

∇cf =
∞∑
n=0

1

n!
a(n)∇c(ωH

(n)),

=
∞∑
n=0

(−1)

n!
a(n)∇n+1

c ω,

= −ω
∞∑
n=0

1

n!
a(n)H(n+1),

= −ω
∞∑
n=1

1

n!
na(n−1)H(n). (2.73)
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Let’s define the force term R(c) = −g · ∇cf , then equation (2.73) becomes

R(c) = ω

∞∑
n=1

1

n!
gna(n−1)H(n). (2.74)

2.5.2 Discrete Boltzmann’s equation

The discrete velocity Boltzmann equation can be obtained by using the Gauss-Hermite

quadrature (2.67) and applying it to equations (1.19) such that

ρ =
b∑

i=1

ωif(x, ci, t)

ω(ci)
,

ρu =
b∑

i=1

ωif(x, ci, t)ci
ω(ci)

,

ρuu+ P =
b∑

i=1

ωif(x, ci, t)c
2
i

ω(ci)
.

(2.75)

To simplify the equations let’s define

fi(x, t) =
ωi

ω(ci)
f(x, ci, t) i = 1, ..., b. (2.76)

To complete the discretization of the velocity, the rescaled equilibrium distribution

function can be defined according to equations (2.69) and (2.71) as

f
(0)
i (x, t) = wi

b∑
n=0

1

c2ns n!
a
(n)
0 (x, t)H(n)(ci). (2.77)

Now applying the values of a
(n)
0 from equations (2.71) to equation (2.77) and truncating

the equilibrium to order two, yields

f
(0)
i (x, t) = ωiρ

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u2

2c2s

)
, (2.78)

where the Mach number Ma = u/c2s in the equilibrium distribution function should be

less than one for compressibility reasons.
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Now the rescaled force term of the discrete Boltzmann equation is:

Ri(x, t) = ωi

b−1∑
n=1

1

n!c2ns
gna(n−1)H(n)(ci). (2.79)

Also by applying a(n) from equation (2.70) to equation (2.79) and truncating the sum

to order two, the discrete force term can be written as

Ri(x, t) = ωiρ

(
ci − u

c2s
+

(ci · u)ci
c4s

)
· g. (2.80)

Note that the form of Ri is designed to recover the Navier-Stokes equations by satisfying

the following relations

∑
i

Ri = 0,

∑
i

Rici = F,

∑
i

Ricici = Fu+ uF,

(2.81)

where F = ρg. The first constraint in equation (2.81) ensures that mass is conserved

and the second constraint is the force term which appears in Navier-Stokes equations.

The third constraint guarantees the term F cancels in the stress tensor of Navier-Stokes

equations. Finally, by applying equations (2.78), (2.80) and (2.76) to equation (2.56),

the discrete BGK-Boltzmann equation is

∂fi
∂t

+ ci · ∇fi = −1

τ
(fi − f

(0)
i ) +Ri (i = 1, ..., b). (2.82)
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2.5.3 Recovery of Navier Stokes equations from discrete Boltz-

mann equation

To ensure the lattice Boltzmann equation recovers the Navier-Stokes equations, the

Chapman-Enskog expansion is used. In this chapter we will use the Einstein’s summation

convention notation. The zero, first and second moments of equation (2.82) respectively

produce the following three equations

∂tρ+ ∂αρuα = 0, (2.83)

∂tρuα + ∂βΠαβ = Fα, (2.84)

∂tΠαβ + ∂γQαβγ = −1

τ
(Παβ − Π

(0)
αβ) + Fαuβ + Fβuα, (2.85)

where Παβ =
∑

i ficiαciβ is the momentum flux and it relaxes to its equilibrium

Π
(0)
αβ =

∑
i f

(0)
i ciαciβ. Qαβγ =

∑
ciαciβciγfi is the third-order moment. Obviously mass

and momentum are conserved by Newton’s law but the higher order moments are not

conserved. Our aim is to find solutions that change slowly over timescales which are

longer than the collision time τ . So the Chapman-Enskog expansion is used to expand

the time derivative and the non-conserved moments as follows:

∂t = ∂t0 + τ∂t1 + τ 2∂t2 + ..., (2.86)

Παβ = Π
(0)
αβ + τΠ

(1)
αβ + τ 2Π

(2)
αβ + ..., (2.87)

Qαβγ = Q
(0)
αβγ + τQ

(1)
αβγ + τ 2Q

(2)
αβγ + .... (2.88)

Substituting the expansion of equation (2.86) to O(τ) into equation (2.83) yields

(∂t0 + τ∂t1)ρ+ ∂αρuα = 0. (2.89)
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At leading order we have

∂t0ρ+ ∂αρuα = 0, (2.90)

Thus from equation (2.89) and equation (2.90) we get ∂t1ρ = 0. Now substitute the

expansions of equations (2.86) and (2.87) into equation (2.84) then truncate them to

O(τ) to get

(∂t0 + τ∂t1)ρuα + ∂β(Π
(0)
αβ + τΠ

(1)
αβ) = Fα. (2.91)

Rearranging equation (2.91) as

∂t0ρuα + τ∂t1ρuα + ∂βΠ
(0)
αβ + τ∂βΠ

(1)
αβ = Fα, (2.92)

then truncating the expansion of equation (2.92) to leading order yields

∂t0ρuα + ∂βΠ
(0)
αβ = Fα. (2.93)

The next step will be finding the equilibrium stress tensor Π
(0)
αβ by multiplying equation

(2.78) by ciαciβ as follows

Π
(0)
αβ =

∑
i

ciαciβf
(0)
i

= ρ

[∑
i

wiciαciβ +
1

c2s
uγ

∑
i

wiciαciβciγ +
1

2c4s
uγuδ

∑
i

wiciαciβciγciδ

− 1

2c2s
uγuγ

∑
i

wiciαciβ

]
,

= ρ
[
c2sδαβ −

uγuγ
2

δαβ +
uγuδ
2

(δαβδγδ + δαγδβδ + δαδδβγ)

]
. (2.94)

So the second-order moment of equilibrium function is calculated as

Π
(0)
αβ = Pδαβ + ρuαuβ. (2.95)
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where P = c2sρ is the pressure.

By applying the expansion of equations (2.86), (2.87) and (2.88) into equation (2.85)

one can get

(∂t0 + τ∂t1)(Π
(0)
αβ + τΠ

(1)
αβ) + ∂γ(Q

(0)
αβγ + τQ

(1)
αβγ)

= −1

τ
(Π

(0)
αβ + τΠ

(1)
αβ − Π

(0)
αβ) + Fαuβ + Fβuα, (2.96)

where Q
(0)
αβγ =

∑
f
(0)
i ciαciβciγ. Then truncate the expansion of equation (2.96) to

leading order to obtain

∂t0Π
(0)
αβ + ∂γQ

(0)
αβγ − Fαuβ − Fβuα = −Π

(1)
αβ . (2.97)

Now to recover the Navier-Stokes equations, Π
(1)
αβ needs to be calculated. First, from

equation (2.78)

Q
(0)
αβγ =

∑
i

f
(0)
i ciαciβciγ

= ρ

[∑
i

wiciαciβciγ +
1

c2s
uδ

∑
i

wiciαciβciγcδ

− 1

2c2s
uδuδ

∑
i

wiciαciβciγ +
uδuϵ
2c4s

∑
i

wicαcβciγciδciϵ

]
,

=c2sρuδ [δαβδγδ + δαγδβδ + δαδδβγ] . (2.98)

Secondly, to find Π
(1)
αβ , we must find ∂t0Π

(0)
αβ and ∂γQ

(0)
αβγ . So the second term of equation

(2.97) is

∂γQ
(0)
αβγ = c2s∂γρuδ(δαβδγδ + δαγδβδ + δαδδβγ),

= c2sδαβ∂γuγ + c2s∂αρuβ + c2s∂βρuα, (2.99)
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while the partial derivative of equation (2.95) leads to

∂t0Π
(0)
αβ = ∂t0ρuαuβ + ∂t0ρc

2
sδαβ. (2.100)

By using the product rule, we get

∂t0Π
(0)
αβ = ρuα∂t0uβ + uβ∂t0ρuα + ∂t0ρc

2
sδαβ, (2.101)

and

ρuα∂t0uβ = uα∂t0ρuβ − uαuβ∂t0ρ. (2.102)

Then by inserting equation (2.102) into equation (2.101), we produce

∂t0Π
(0)
αβ = uα∂t0ρuβ + uβ∂t0ρuα − uαuβ∂t0ρ+ c2sδαβ∂t0ρ. (2.103)

From equations (2.83) and (2.84) we have

∂t0Π
(0)
αβ = −uα∂γ(ρuβuγ + ρc2sδαβ)− uβ∂γ(ρuαuγ + ρc2sδαβ)

+ uαuβ∂γρuγ − c2sδαβ∂γρuγ + uαFβ + uβFα. (2.104)

With the same approach we found the following relation

∂γρuαuβuγ = uα∂γρuβuγ + uβ∂γρuαuγ − uαuβ∂γρuγ, (2.105)

so equation (2.103) becomes

∂t0Π
(0)
αβ = −∂γρuαuβuγ − c2suα∂βρ− c2suβ∂αρ− c2sδαβ∂γρuγ

+ uαFβ + uβFα. (2.106)

46



Chapter 2. Lattice Boltzmann Method (LBM)

Now adding equation (2.99) and equation (2.106) to equation (2.97) leads to

−Π
(1)
αβ = ∂t0Π

(0)
αβ + ∂γQ

(0)
αβγ − Fαuβ − Fβuα

= −∂γρuαuβuγ − c2suα∂βρ− c2suβ∂αρ

− c2sδαβ∂γρuγ + c2sδαβ∂γuγ + c2s∂βρuα+

c2s∂αρuβ + uαFβ + uβFα − Fαuβ − Fβuα. (2.107)

So, the final result of equation (2.107) reads

Π
(1)
αβ = −c(2)s ρ[∂βuα + ∂αuβ] +O(Ma3). (2.108)

By equation (2.84),

∂t(ρuα) + ∂β(Π
(0) + τΠ(1)) = Fα. (2.109)

After neglecting O(Ma3), substituting equation (2.108) into equation (2.109) gives

∂t(ρuα) + ∂β
(
c2sρδαβ + ρuαuβ − τc2sρ(∂αuβ + ∂βuα)

)
= Fα. (2.110)

Now rearranging the above equation yields

∂t(ρuα) + ∂βc
2
sρδαβ + ∂βρuαuβ − τc2sρ∂β(∂αuβ + ∂βuα) = Fα (2.111)

So the Navier-Stokes equations can be written as

∂tρu+∇ · (ρuu) = −∇P +∇ · [ρν(∇u+∇uT )] + F (2.112)

where ν = c2sτ is the kinematic viscosity.

Furthermore, for small Mach number the density ρ is a constant then from equations
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(2.83) and (2.112) one can obtain the incompressible Navier-Stokes equations as

∇.u = 0 (2.113)

∂tu+ u · ∇u = −1

ρ
∇P + ν∇2u+G (2.114)

2.5.4 Discretisation of space and time

To achieve a completely discrete lattice Boltzmann equation, equation (2.82) should be

discretised in space and time. Integrate both sides of equation (2.82) from t to t+∆t

to obtain

∫ t+∆t

t

(
∂fi
∂s

+ ci · ∇fi
)
ds =

∫ t+∆t

t

(
−1

τ
(fi − f

(0)
i ) +Ri

)
ds. (2.115)

The integration of the left-hand side along a characteristic ∆t is found exactly while

for the right-hand side an approximation is obtained using the trapezoidal rule:

fi(x+ ci∆t, t+∆t)− fi(x, t) = −∆t

2τ

(
fi(x+ ci∆t, t+∆t)− f

(0)
i (x+ ci∆t, t+∆t)

)
+
∆t

2
Ri(x+ ci∆t, t+∆t))− ∆t

2τ

(
fi(x, t)− f

(0)
i (x, t)

)
+

∆t

2
Ri(x, t) +O(∆t3).

(2.116)

The accuracy of equation (2.116) is second-order in time because of the Trapezoidal

rule. However, it is implicit system of algebraic equations. So f
(0)
i and Ri at the new

time step t + ∆t depend on the moments of ρ and u at the new time step which are

a function of fi at t + ∆t. That leads to an implicit non-linear equations which are

difficult to solve. Alternatively, He et al. [52] introduced a change of variables to obtain

an explicit scheme

f̄i(x, t) = fi(x, t) +
∆t

2τ

(
fi(x, t)− f

(0)
i (x, t)

)
− ∆t

2
Ri(x, t). (2.117)
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Substitute equation (2.117) into equation (2.116) and after some algebraic steps, the

fully discrete lattice Boltzmann equation reads

f̄i(x+ ci∆t, t+∆t)− f̄i(x, t) = − ∆t

(τ +∆t/2)

(
f̄i(x, t)− f

(0)
i (x, t)

)
+

τ∆t

(τ +∆t/2)
Ri. (2.118)

The moments of equation (2.118) are obtained easily from equation (2.117). So the

zer-order moment

ρ =
8∑

i=0

fi =
8∑

i=0

f̄i, (2.119)

while the momentum and the stress tensor of equation (2.118) are obtained as follows

8∑
i=0

f̄ici = ρu− ∆t

2

8∑
i=0

ciRi,

= ρu− ∆t

2
F, (2.120)

8∑
i=0

f̄icici =
(2τ + 1)

2τ
Π− 1

2τ
Π(0) − 1

2
(Fu+ uF). (2.121)

2.6 Multiple Relaxation Time (MRT) lattice Boltz-

mann method

Despite the advantages of the LBM as we mentioned earlier, some problems of the

BGK-LBM model remain. A lack of numerical stability is the main problem since

all the particles relax to their equilibrium at the same rate which is not acceptable

physically according to Guo and Shu [46]. Moreover, for small relaxation time τ , the

discrete distribution functions f̄i exceed their equilibrium values instead of relaxing

toward them quickly which cause a problem in the stability of simulations [29]. To
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conquer this drawback a technique which relaxes non-conserved moments at different

rates has been proposed. The MRT-LBM was introduced originally by d’Humieres [32]

then analysed in detail by Lallemand and Luo [68]. In this work the MRT approach is

based on the Hermite polynomials which were introduced by Benzi et al. [6]. Because

we have used Hermite polynomials the vectors are orthogonal with respect to weighted

inner product

⟨p, q⟩ =
8∑

i=0

wipiqi = 0 for p ̸= q, (2.122)

where p and q are orthogonal to each other.

The discrete Boltzmann equation can be written in a more general form as

∂fi
∂t

+ ci · ∇fi =M−1AM(fi − f
(0)
i ), (2.123)

where A is a diagonal matrix involving the relaxation times. M is b× b transformation

matrix relating moments to distribution functions. The general idea of MRT-LBM is

to transform the distribution functions to its moments, then relax the non-conserved

moments at different rates. Then we transform the post collision moments back into the

distribution basis. So the relationship between the moments and distribution functions

can be formed as m = M f where m is a vector of moments and f is a vector of the

nine distribution functions such that

∂m

∂t
+ ci · ∇m = A(m−m(0)). (2.124)

According to the Hermite polynomials the first six row vectors in the transform matrix

M give the hydrodynamic variables ρ, u and the three components of the stress tensor
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Π as follows

1i = (1, 1, 1, 1, 1, 1, 1, 1, 1),

cix = (0, 1, 0,−1, 0, 1,−1,−1, 1),

ciy = (0, 0, 1, 0,−1, 1, 1,−1,−1),

c2ix −
1

3
=

1

3
(−1, 2,−1, 2,−1, 2, 2, 2, 2),

c2iy −
1

3
=

1

3
(−1,−1, 2,−1, 2, 2, 2, 2, 2),

cixciy = (0, 0, 0, 0, 0, 1,−1, 1,−1).

(2.125)

A lattice with b velocities has b moments, so for D2Q9 model in addition to the six

vectors in equations (2.125) there are three non-hydrodynamic orthogonal weighted

basis hi, hicix and hiciy such that

hi = (1,−2,−2,−2,−2, 4, 4, 4, 4)

hicix = (0,−2, 0, 2, 0, 4,−4,−4, 4),

hiciy = (0, 0,−2, 0, 2, 4, 4,−4,−4).

(2.126)

Similar to the hydrodynamic moments of equation (2.23), these lattice vectors define

three moments, called “ghost moments” introduced by Benzi et al. [6]:

χ =
8∑

i=0

hifi, (2.127)

Ψ =
8∑

i=0

hicifi, (2.128)
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The ghost moments satisfy the following equations from the zero and first-order mo-

ments of the discrete Boltzmann equation:

∂tχ+∇ ·Ψ = − 1

τg
(χ− χ0),

∂tΨ+∇.
( 8∑

i=0

hicicifi

)
= − 1

τp

(
Ψ−Ψ(0)

)
,

(2.129)

where the equilibrium of the ghost variables

χ(0) = Ψ(0) = 0. (2.130)

Note that

Ψx = 6Qxyy − 2ρux, Ψy = 6Qyxx − 2ρuy,

χ = 9Sxxyy + ρ− 3(Πxx +Πyy), (2.131)

where Qαββ and Sααββ =
∑

i fic
2
ixc

2
iy are the three basic non-hydrodynamic moments

of the D2Q9 model.

In terms of f̄i, the non-conserved moments relax to their equilibria with different

collision times. So the three post collisional non-conserved moments of the LBE are

Π
∗
= Π− ∆t

τs +
∆t
2

(Π−Π(0)),

χ∗ = χ− ∆t

τg +
∆t
2

(χ− χ(0)),

Ψ
∗
= Ψ− ∆t

τp +
∆t
2

(Ψ−Ψ(0)),

(2.132)

where the ghost moments that depend on f̄i are defined as:

χ =
8∑

i=0

hif̄i, (2.133)

Ψ =
8∑

i=0

hicif̄i, (2.134)
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The distribution function can be declared in terms of the post collision moments in

equation (2.132), [28, 29]

f̄i = wi

(
ρ+ 3 (ρu) +

9

2

(
Π

∗ − ρ

3
I
)
:

(
cici −

1

3
I

))
+ wihi

(
1

4
χ∗ +

3

8
ci.Ψ

∗
)
.

(2.135)

A special implementation of the MRTmodel is the two relaxation time (TRT) model

[42]. In this model, two relaxation times in the collision part of the lattice Boltzmann

equation will be used, one for moments with even number of velocities (Π, χ), and

another for the odd ones (Ψ). Note that the relaxation process will not be applied

to the conservation moments, ρ and ρu. In our simulation the moments of equation

(2.132) relax with different rates. Π and χ will collide with one relaxation time τs = τg

which depends on the non-dimensional Reynolds number (Re). The odd moments Ψ

will relax to another relaxation time that is determined according to specific parameter

named ‘ the magic parameter’ Λ. The most important part in this model is how we

choose the two relaxation times. One should choose the product of these two relaxation

times equal to Λ where Λ = τsτp. This parameter is very important, because it controls

the stability of the method. According to [33, 94] the choice of Λ = 1
4
is the best for

numerical stability for the lattice Boltzmann method and its equilibrium state. For

bounce-back boundary conditions, Λ = 3
16

will give the exact location of the no-slip

wall in the channel flow which is half-way between two grid points. However, Λ = 1
6
is

consistent with Lele’s compact finite difference schemes [75]. The BGK-LBM effectively

assumes all the relaxation times are equal, that means τs = τp = τ . In this thesis, the

magic parameter will be fixed to take the value Λ = 1
4
.

53



Chapter 3

Boundary conditions and simple

numerical simulations for the LBM

I have explained the streaming and colliding steps of the lattice Boltzmann method,

but there is still another important issue to clarify: boundary conditions. In order to

determine the boundary conditions for the D2Q9 lattice Boltzmann method, the con-

ditions should be expressed in terms of the probability distribution functions. Various

boundary conditions have been introduced for LBM to satisfy slip and no-slip flows.

Different implementations have different levels of accuracy. After the streaming step,

the nodes at the boundaries have three incoming unknown distribution functions. By

applying the boundary conditions, these unknown functions will be determined. From

Figure 3.1, the incoming distribution functions, which are dashed lines, are unknown

functions, while the dark lines are the known functions. The unknown functions at

the boundary can be found by various techniques. One way is by using symmetry

conditions which are applied directly to the particle distribution functions at the wall,

like in bounce-back methods. On the other hand, a different methodology which is

based on the hydrodynamic moments of the LBM has been used to find the unknown

distribution functions at a boundary nodes, for instance [4, 88].

This chapter begins with some types of no-slip boundary conditions for flat walls

which are explained briefly with respect to f̄i by ignoring the force term. Then a de-

54



Chapter 3. Boundary conditions and simple numerical simulations for the
LBM

tailed explanation about one specific boundary condition namely the “moment-based

boundary conditions” is given. The analytic solution in time independent unidirec-

tional channel flow of LBM is explained. Then some numerical implementations are

given to show the accuracy of the method. Results for Poiseuille flow, Couette flow

and cavity flow with some benchmark data are presented for BGK and MRT of lattice

Boltzmann models. The Navier-Maxwell slip condition is explained where the measure

of slip velocity at the surface depends upon length named slip length. The Navier con-

dition is combined with moment-based boundary conditions to simulate unidirectional

channel flow in this chapter, it will be used later to simulate a more complicated flow.
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Figure 3.1: Distribution functions at the boundaries. Each number represents the direction
of ci

3.1 Periodic boundary conditions

Periodic boundary conditions are the simplest example of boundary conditions which

apply to an infinite repeating flow between the inlet and outlet of the domain. For

example, in a channel flow where it is infinitely long, the fluid is driven by internal

body force, see Figure 3.1. The particle distribution functions at the east boundary

leave their sites and enter at the west boundary. A similar procedure is applied at the

west boundary. f̄ in
1 , f̄ in

5 and f̄ in
8 are unknown functions at the west boundary and they

take their values from the same known function at the east boundary, f̄ out
1 , f̄ out

5 and
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f̄ out
8 . In general periodic conditions can be expressed as

West: f̄i(x0, y, t+∆t) = f̄i(xL, y − ciy∆t, t) i = 1, 5, 8, (3.1)

East: f̄i(xL, y, t+∆t) = f̄i(x0, y − ciy∆t, t) i = 3, 6, 7, (3.2)

where x0 and xL is the nodes at inlet and outlet, respectively [46]. Similar conditions

can also be applied to the vertical boundaries.

3.2 Bounce-back boundary conditions

A simple method connecting the interactions between the solid walls and fluid is the

bounce-back boundary conditions. Bounce-back is used to implement the no-slip con-

dition for both stationary and moving boundaries. This method states that the dis-

tribution functions on the boundary nodes are reflected back to the fluid domain after

colliding with the solid boundary [46]. Two ways of implementing bounce-back bound-

ary conditions are commonly used.

The first, is on-grid bounce-back. The particles near the boundary stream towards

the boundaries and hit the wall. At the same time step, the known functions reverse

their direction back to the fluid field. For example, at the south boundary and after

the propagation step, the known functions f̄4, f̄7 and f̄8 reverse their direction. This

gives values to the unknown function f̄2, f̄5 and f̄6, as shown in Figure 3.1. To clarify

the method and by ignoring the force term, in Figure 3.1 the black lines of distribution

function reverse and give their values to the functions in red colours as follows

f̄2 = f̄4, f̄5 = f̄7 and f̄6 = f̄8. (3.3)

The second implementation of bounce-back conditions is half-way bounce-back.

This technique is considered to be a simple and accurate way to apply the boundary

conditions [53]. These conditions state that the solid wall is located between two

lattice sites and the process happens over two time steps. At the streaming step the
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particles propagate towards the solid walls, depending on their lattice velocities. Then

they exceed the boundaries and reverse their directions. In the next time step, the

streaming starts and the reflected particles return to the fluid domain. For instance, at

the south boundary and firstly, the functions stream towards the boundary and pass

it to the next lattice site. The known functions f̄4, f̄7 and f̄8 reverse their direction .

At time t+∆t they stream to the interior nodes then give their values to unknown f̄2,

f̄5 and f̄6, see Figure 3.2, such that

f̄2(x, t+∆t) = f̄4(x, t),

f̄5(x, t+∆t) = f̄7(x, t),

f̄6(x, t+∆t) = f̄8(x, t).

(3.4)

)(at timeback bounceAfter Δtt+)(at timeStreaming t

S o lid

Fluid

Solid Solid

Solid

Figure 3.2: Half way bounce back.

Although often efficient and accurate, bounce-back introduces an additional error into

the numerical method; a purely artificial slip. This error term is viscosity-dependent

and second order in space if the boundary is placed halfway between grid points,

and first order otherwise [41, 53, 55]. Bouzidi et al. [10] introduced their interpolation

scheme for boundary conditions as a generalisation of the bounce back method with lin-

ear or quadratic interpolation for flows in complex geometries. Furthermore, Ginzburg

and d‘Humiereśs [43] presented a general framework for modification of interpolation
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using Bouzidi et al. and bounce-back methods. In this chapter we will show also that

the half way bounce-back is second-order accurate where in our implementations the

above conditions will be converted to f̄i.

3.3 Zhou and He boundary conditions

An example of alternative to the bounce-back boundary condition is Zhou and He

boundary conditions. Zhou and He [113] presented a form of boundary conditions

implementation where the pressure or the velocity are specified at grid points. These

boundary conditions are based on the idea of bounce-back of non equilibrium parts of

the probability distribution functions. Zhou and He [113] applied this method to the

channel flow, as a result they show that the poiseuille flow with half way bounce-back

simulation is second order accurate.

Velocity boundary

In velocity boundary conditions the velocities ux and uy are imposed. From Figure

3.1, after streaming the north boundary has f̄0, f̄1, f̄2, f̄3, f̄5 and f̄6 as known functions

while f̄4, f̄7 and f̄8 are unknown and should be found. By using the bounce-back

condition for non equilibrium distribution functions (f̄4 − f̄
(0)
4 = f̄2 − f̄

(0)
2 ) which are

normal to the wall, one can calculate f̄4 as

f̄4 = f̄2 −
2

3
ρuy. (3.5)

From the momentum equation (2.22), one can write ρux and ρuy as

ρux = f̄1 − f̄3 + f̄5 − f̄6 − f̄7 + f̄8, (3.6)
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and

ρuy = f̄2 − f̄4 + f̄5 + f̄6 − f̄7 − f̄8. (3.7)

Now adding equation (3.6) to equation (3.7), yields

f̄7 = f̄5 +
1

2
(f̄1 − f̄3)−

1

6
ρuy −

1

2
ρux. (3.8)

And subtracting equation (3.6) from equation (3.7) gives

f̄8 = f̄6 +
1

2
(f̄3 − f̄1)−

1

6
ρuy +

1

2
ρux. (3.9)

From equation (2.21), by writing the unknown functions in terms of known ones and

using equation (3.7), the density is determined as

ρ =
1

1 + uy

[
f̄0 + f̄1 + f̄3 + 2(f̄2 + f̄6 + f̄5)

]
. (3.10)

Pressure boundary

In the lattice Boltzmann method the pressure is calculated from the density,

P = ρc2s. At the flow boundary, for example the west boundary, after streaming the

three unknown distribution functions f̄1, f̄5 and f̄8 should be found. The velocity ux

is determined by setting ρuy = 0 and specify ρ = ρin. So from equation (2.21) the

unknown function is written in term of known ones as:

f̄1 + f̄5 + f̄8 = ρin − (f̄0 + f̄2 + f̄3 + f̄4 + f̄6 + f̄7), (3.11)

and from the momentum equations (3.6) and (3.7) one can get

f̄1 + f̄5 + f̄8 = ρinux + (f̄3 + f̄6 + f̄7),

f̄5 − f̄8 = f̄4 − f̄2 − f̄6 + f̄7.

(3.12)

59



Chapter 3. Boundary conditions and simple numerical simulations for the
LBM

From equations (3.11) and (3.12) ux is equal to

ux = 1−
[
f̄0 + f̄2 + f̄4 + 2(f̄3 + f̄6 + f̄7)

]
ρin

. (3.13)

Now to find the unknown distribution functions, the bounce back boundary conditions

for the non-equilibrium functions will be employed such that (f̄1 − f̄
(0)
1 = f̄3 − f̄

(0)
3 ).

By substituting the values of f̄
(0)
1 and f̄

(0)
3 from equation (2.78) to the above constraint

one can have

f̄1 = f̄3 +
2

3
ρinux, (3.14)

and from equations (3.12) and (3.14) the following is obtained

f̄5 = f̄7 −
1

2
(f̄2 − f̄4) +

1

6
ρinux,

f̄8 = f̄6 +
1

2
(f̄2 − f̄4) +

1

6
ρinux.

(3.15)

For the nodes of north inlet wall and outlet nodes with there corners, the same method

can be used.

3.4 Moment-based boundary conditions method with

no-slip and inflow boundaries

A different methodology has been used to find the unknown distribution functions at

boundary nodes, one that is based on the hydrodynamic moments of the LBM. Noble

et al. [88] used the hydrodynamic moments to apply no-slip boundary conditions for

the 6-point FHP lattice. The approach of Noble et al. is not immediately applicable

to the now-standard LBM lattices. The FHP model (which is essentially obsolete for

simulating fluid flows) has just two unknown functions at a flat boundary while the

commonly used D2Q9 lattice has three. Thus a different set of boundary constraints

is required. Bennett [4] generalised the ideas of Noble et al in what has been dubbed
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the “moment-based” method for imposing boundary conditions. The moment-based

method is similar in spirit to Noble et al ’s approach but is far more general in terms of

the types of boundary conditions that can be implemented and the lattice stencils they

can be applied too. Bennett [4] clarified that the unknown distribution functions from

the hydrodynamic and non-hydrodynamic moments at the boundary can be calculated.

The basic idea of this method is summarized as following:

Because there are three unknown distribution functions at each boundary aligned

with grid points, three linearly independent equations are required. In the moment

conditions, three of the following hydrodynamics moments to find these three unknown

functions are needed

ρ̄ =
∑

f̄i = f̄0 + f̄1 + f̄2 + f̄3 + f̄4 + f̄5 + f̄6 + f̄7 + f̄8, (3.16a)

ρux =
∑

f̄icix = f̄1 − f̄3 + f̄5 − f̄6 − f̄7 + f̄8, (3.16b)

ρuy =
∑

f̄iciy = f̄2 − f̄4 + f̄5 + f̄6 − f̄7 − f̄8, (3.16c)

Πxx =
∑

f̄ic
2
ix = f̄1 + f̄3 + f̄5 + f̄6 + f̄7 + f̄8, (3.16d)

Πyy =
∑

f̄ic
2
iy = f̄2 + f̄4 + f̄5 + f̄6 + f̄7 + f̄8, (3.16e)

Πxy =
∑

f̄icixciy = f̄5 − f̄6 + f̄7 − f̄8, (3.16f)

Qxxy =
∑

f̄ic
2
ixciy = f̄5 + f̄6 − f̄7 − f̄8, (3.16g)

Qxyy =
∑

f̄icixc
2
iy = f̄5 − f̄6 − f̄7 + f̄8, (3.16h)

Sxxyy =
∑

f̄ic
2
ixc

2
iy = f̄5 + f̄6 + f̄7 + f̄8. (3.16i)

Figure 3.1 shows that at the horizontal and vertical walls there are three unknown

distribution functions and these three unknowns f̄i appear in different combinations

in equations (3.16). In Tables (3.1) and (3.2) all the groups of the unknown moments

have been listed. Moments in different rows are linearly independent. Therefore a

constraint (a boundary condition) on one moment from each row should be imposed.

Since we are interested in numerically solving the Navier-Stokes equations, it seems

sensible to choose the hydrodynamic moments instead of the higher order ones that do
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not appear in these equations of motion.

Moments South boundary North boundary

ρ, ρuy,Πyy f̄2 + f̄5 + f̄6 f̄4 + f̄7 + f̄8

ρux,Πxy, Qxyy f̄5 − f̄6 f̄7 − f̄8

Πxx, Qxxy, Sxxyy f̄5 + f̄6 f̄7 + f̄8

Table 3.1: Moment combinations for unknown f̄i at the South and North boundary.

Moments East boundary West boundary

ρ, ρux,Πxx f̄3 + f̄6 + f̄7 f̄1 + f̄5 + f̄8

ρuy,Πxy, Qxxy f̄6 − f̄7 f̄5 − f̄8

Πyy, Qxyy, Sxxyy f̄6 + f̄7 f̄5 + f̄8

Table 3.2: Moment combinations for unknown f̄i at the East and West boundary.

To understand the method, a stationary, no-slip northern wall is taken as an ex-

ample. The no-slip boundary condition is imposed, ux = uy = 0 and zero tangential

derivative ∂TuT = 0 where T denotes the tangential component. At the north wall

f̄4 , f̄7 and f̄8 are unknown functions. Thus in terms of f̄i, from Table 3.1 we will pick

ρuy from the first row, ρux from the second one and for the last equation we will use

Πxx and impose upon them. So by neglecting the force term the conditions are

ρuy = 0,

ρux = 0,

Πxx = ρ/3,

(3.17)

where Πxx = Π
(0)
xx from the Chapman-Enskog expansion in Section 2.5.3 such that

Πxx ≈ Π
(0)

xx + τΠ
(1)

xx

= Π
(0)

xx , (3.18)

where Π
(1)
xx ∝ ∂xux according to equation (2.108) and since the tangential derivative
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∂xux is equal to zero, Π
(1)

xx = 0.

By solving the three equations, the unknown functions in the north boundary are:

f̄4 = f̄1 + f̄3 + f̄2 + 2(f̄5 + f̄6)−
ρ

3
,

f̄7 =
ρ

6
− f̄3 − f̄6,

f̄8 =
ρ

6
− f̄1 − f̄5.

(3.19)

The density ρ at the wall can be constructed from the known distribution functions

and the velocity ρuy at the boundary where ρuy = 0 such that

ρ = f̄0 + f̄1 + f̄3 + 2(f̄2 + f̄5 + f̄6)− ρuy. (3.20)

The nodes on the corners need special treatment because there are five unknown

distribution functions together in the vertical and horizontal walls [1], as in Figure

3.3. To find these five values, five linearly independent equations from five different

constrains will be applied. These five moments are ρux = 0, ρuy = 0, Πxx = ρ/3 and

Πyy = ρ/3 while the fifth moment is the shear stress Πxy. This fifth moment is zero

because of the Chapman Enskog expansion

Πxy ≈ Π
(0)

xy + τΠ
(1)

xy ,

= 0, (3.21)

since the diagonal derivative of Π
(1)

xy = ρuxuy = 0 since the velocities at the wall

ux = uy = 0. For example the five unknown distribution functions in northwest corner
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are found to be:

f̄1 =
2ρ

3
− f̄0 − f̄3,

f̄4 =
2ρ

3
− f̄0 − f̄2,

f̄5 =
ρ

6
− f̄2 − f̄6,

f̄7 =
ρ

6
− f̄3 − f̄6,

f̄8 = −2ρ

3
+ f̄0 + f̄2 + f̄3 + f̄6.

(3.22)

also, the ρ is established from known distribution functions at the wall as:

ρ = f̄0 + 2f̄3 + 4f̄6 + 2f̄2. (3.23)

1
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Figure 3.3: Unknown distribution functions at corners.

For inflow open boundaries, the vertical wall will be determined as an example. In

Table 3.2, consider the western wall, the three unknown functions are f̄1, f̄5 and f̄8.

From the first row the density ρ = ρin is imposed, ρuy is selected from the second row
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and from the third row Πyy such that [5]

ρ = ρin,

ρuy = 0,

Πyy = Pin = ρin/3,

(3.24)

where Pin = ρin/3 is the specified pressure at the boundaries. By solving the three

equations, the unknown functions at the west boundary are

f̄1 =
2ρin
3

− f0 − f3,

f̄5 =
ρin
6

− f̄2 − f̄6,

f̄8 =
ρin
6

− f̄4 − f̄7.

(3.25)

3.5 Analytical solution of lattice Boltzmann equa-

tion

In this section the analytic solution of the lattice Boltzmann equation for plane Poiseuille

flow will be found. This flow is a unidirectional, laminar, time independent, incom-

pressible and viscous flow between two stationary parallel plates. Many authors use

plane Poiseuille flow as a perfect benchmark to examine the accuracy of their numerical

methods, because the Navier-Stokes equations have an exact solution in this scenario.

3.5.1 Exact solution of velocity field for LBE

The BGK-Lattice Boltzmann equation in lattice units, with ∆t = ∆x = 1, is

f̄i(x+ ci, t+ 1)− f̄i(x, t) = − 1

(τ + 1/2)
(f̄i(x, t)− f

(0)
i (x, t)) +

τ

(τ + 1/2)
Ri(x, t).

(3.26)
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He et al. [53] found an analytic solution of the LBE in Poiseuille flow. Assume the

flow is steady and the velocity satisfies

∂xux = 0,

∂xuy = 0,

d

dt
= 0,

(3.27)

also the velocity and the distribution function f̄i depends on y only while the body force

pushes the flow towards x direction such that F = (ρG, 0). To simplify our notations

let’s set (ux, uy) = (u, v), so by applying the equilibrium distribution function (2.78)

and the assumption of equation (3.27) into equation (3.26), the following are obtained

f̄ j
0 =

4ρ

9

(
1− 3

2
(u2j + v2j )

)
− 4ρG

3
uj, (3.28a)

f̄ j
1 =

ρ

9

(
1 + 3uj + 3u2j −

3

2
v2j

)
+
τρG

3
(2uj + 1), (3.28b)

f̄ j
2 =

ρ

9(τ + 1/2)

(
1 + 3vj−1 + 3v2j−1 −

3

2
u2j−1

)
− τρG

3(τ + 1/2)
uj−1

+
τ − 1/2

τ + 1/2
f̄ j−1
2 , (3.28c)

f̄ j
3 =

ρ

9

(
1− 3uj + 3u2j −

3

2
v2j

)
+
τρG

3
(2uj − 1), (3.28d)

f̄ j
4 =

ρ

9(τ + 1/2)

(
1− 3vj+1 + 3v2j+1 −

3

2
u2j+1

)
− τρG

3(τ + 1/2)
uj+1

+
τ − 1/2

τ + 1/2
f̄ j+1
4 , (3.28e)

f̄ j
5 =

ρ

36(τ + 1/2)

(
1 + 3uj−1 + 3vj−1 + 3u2j−1 + 3v2j−1 + 9uj−1vj−1

)
+

τρG

12(τ + 1/2)
(1 + 2uj−1 + 3vj−1) +

τ − 1/2

τ + 1/2
f̄ j−1
5 , (3.28f)

f̄ j
6 =

ρ

36(τ + 1/2)

(
1− 3uj−1 + 3vj−1 + 3u2j−1 + 3v2j−1 − 9uj−1vj−1

)
− τρG

12(τ + 1/2)
(1− 2uj−1 + 3vj−1) +

τ − 1/2

τ + 1/2
f̄ j−1
6 , (3.28g)

f̄ j
7 =

ρ

36(τ + 1/2)

(
1− 3uj+1 − 3vj+1 + 3u2j+1 + 3v2j+1 + 9uj+1vj+1

)
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− τρG

12(τ + 1/2)
(1− 2uj+1 − 3vj+1) +

τ − 1/2

τ + 1/2
f̄ j+1
7 , (3.28h)

f̄ j
8 =

ρ

36(τ + 1/2)

(
1 + 3uj+1 − 3vj+1 + 3u2j+1 + 3v2j+1 − 9uj+1vj+1

)
+

τρG

12(τ + 1/2)
(1 + 2uj+1 − 3vj+1) +

τ − 1/2

τ + 1/2
f̄ j+1
8 , (3.28i)

where f̄ j
i symbolises the distribution function at node j. The above components are

suitable only in the interior points, 2 ≤ j ≤ n− 1, with the south and the north walls

located at the nodes j = 1 and j = n respectively.

The first order moment of f̄i in x direction gives

∑
i

f̄icix = ¯ρuj = ρuj −
1

2

∑
i

Rj
i (3.29)

= ρuj −
1

2
ρG, (3.30)

where ρG is the force term. Then writing the momentum in terms of its components

gives:

ρuj −
1

2
ρG = (f̄ j

1 − f̄ j
3 + f̄ j

5 − f̄ j
6 + f̄ j

8 − f̄ j
7 ). (3.31)

To write the first moment in terms of the velocity at neighbouring nodes, the right-hand

side of equation (3.31) should be calculated. By using the components of equations

(3.28) for f̄ j
i , one can obtain from the first two terms on the right-hand side:

(f̄ j
1 − f̄ j

3 ) =

(
ρ

9

(
1 + 3uj + 3u2j −

3

2
v2j

)
+
τρG

3
(2uj + 1)

)
−

(
ρ

9

(
1− 3uj + 3u2j −

3

2
v2j

)
+
τρG

3
(2uj − 1)

)
,
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which reduces to,

(f̄ j
1 − f̄ j

3 ) =
2

3
ρuj +

2

3
τρG. (3.32)

The third and fourth terms become:

(f̄ j
5 − f̄ j

6 ) =

(
ρ

36(τ + 1/2)
(1 + 3uj−1 + 3vj−1 + 3u2j−1 + 3v2j−1 + 9uj−1vj−1)

+
τρG

12(τ + 1/2)
(1 + 2uj−1 + 3vj−1) +

τ − 1/2

τ + 1/2
f̄ j−1
5

)
−
(

ρ

36(τ + 1/2)(
1− 3uj−1 + 3vj−1 + 3u2j−1 + 3v2j−1 − 9uj−1vj−1

)
− τρG

12(τ + 1/2)
(1− 2uj−1 + 3vj−1) +

τ − 1/2

τ + 1/2
f̄ j−1
6

)
,

=
ρ

6(τ + 1/2)
uj−1 +

ρ

2(τ + 1/2)
uj−1vj−1 +

τρG

6(τ + 1/2)

+
τρG

2(τ + 1/2)
vj−1 +

(τ − 1/2)

(τ + 1/2)

(
f̄ j−1
5 − f̄ j−1

6

)
, (3.33)

while the fifth and sixth combined give

(f̄ j
8 − f̄ j

7 ) =

(
ρ

36(τ + 1/2)

(
1 + 3uj+1 − 3vj+1 + 3u2j+1 + 3v2j+1 − 9uj+1vj+1

)
+

τρG

12(τ + 1/2)
(1 + 2uj+1 − 3vj+1) +

τ − 1/2

τ + 1/2
f̄ j+1
8

)
−
(

ρ

36(τ + 1/2)(
1− 3uj+1 − 3vj+1 + 3u2j+1 + 3v2j+1 + 9uj+1vj+1

)
− τρG

12(τ + 1/2)
(1− 2uj+1 − 3vj−1) +

τ − 1/2

τ + 1/2
f̄ j+1
7

)
,

=
ρ

6(τ + 1/2)
uj+1 −

ρ

2(τ + 1/2)
uj+1vj+1 +

τρG

6(τ + 1/2)

− τρG

2(τ + 1/2)
vj+1 +

(τ − 1/2)

(τ + 1/2)
(f̄ j+1

8 − f̄ j+1
7 ). (3.34)

Now inserting equations (3.32), (3.33) and (3.34) into equation (3.31) yields

ρuj −
1

2
ρG =

2

3
ρuj +

2τρG

3
+

ρ

6(τ + 1/2)
uj−1 +

ρ

2(τ + 1/2)
uj−1vj−1

+
ρ

6(τ + 1/2)
uj+1 −

ρ

2(τ + 1/2)
uj+1vj+1 +

τρG

6(τ + 1/2)
+

τρG

6(τ + 1/2)
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+
(τ − 1/2)

(τ + 1/2)

(
(f̄ j−1

5 − f̄ j−1
6 ) + (f̄ j+1

8 − f̄ j+1
7 )

)
,

=
2

3
ρuj +

2τρG

3
+

ρ

6(τ + 1/2)
(uj−1 + uj+1) +

ρ

2(τ + 1/2)
(uj−1vj−1 − uj+1vj+1)

+
τρG

3(τ + 1/2)
+

τρG

2(τ + 1/2)
vj−1 −

τρG

2(τ + 1/2)
vj+1 +

(τ − 1/2)

(τ + 1/2)(
(f̄ j−1

5 − f̄ j−1
6 ) +

(
f̄ j+1
8 − f̄ j+1

7

))
. (3.35)

To simplify equation (3.35), (f̄ j−1
5 − f̄ j−1

6 ) + (f̄ j+1
8 − f̄ j+1

7 ) should be calculated. So,

from the first moment of the distribution function f̄i at node j − 1,

ρūj−1 = ρuj−1 −
1

2
ρG = ((f̄ j−1

1 − f̄ j−1
3 ) + (f̄ j−1

5 − f̄ j−1
6 ) + (f̄ j−1

8 − f̄ j−1
7 )),

yields,

(f̄ j−1
5 − f̄ j−1

6 ) = ρuj−1 −
1

2
ρG− (f̄ j−1

1 − f̄ j−1
3 )− (f̄ j−1

8 − f̄ j−1
7 ). (3.36)

Similarly, from the first moment of the distribution function f̄i at node j + 1,

ρūj+1 = ρuj+1 −
1

2
ρG = ((f̄ j+1

1 − f̄ j+1
3 ) + (f̄ j+1

5 − f̄ j+1
6 ) + (f̄ j+1

8 − f̄ j+1
7 )),

we get,

(f̄ j+1
8 − f̄ j+1

7 ) = ρuj+1 −
1

2
ρG− (f̄ j+1

1 − f̄ j+1
3 )− (f̄ j+1

5 − f̄ j+1
6 ). (3.37)

In equation (3.36), (f̄ j−1
8 − f̄ j−1

7 ) at index j − 1 can be expressed as

(f̄ j−1
8 − f̄ j−1

7 ) =
ρ

6(τ + 1/2)
uj −

ρ

2(τ + 1/2)
ujvj +

τρG

6(τ + 1/2)

− τρG

2(τ + 1/2)
vj +

(τ − 1/2)

(τ + 1/2)
(f̄ j

8 − f̄ j
7 ), (3.38)

and in equation (3.37), (f̄ j+1
5 − f̄ j+1

6 ) at index j + 1 can be written as

(f̄ j+1
5 − f̄ j+1

6 ) =
ρ

6(τ + 1/2)
uj +

ρ

2(τ + 1/2)
ujvj +

τρG

6(τ + 1/2)

+
τρG

2(τ + 1/2)
vj +

(τ − 1/2)

(τ + 1/2)
(f̄ j

5 − f̄ j
6 ). (3.39)
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By using equations (3.36), (3.37), (3.38) and (3.39), (f̄ j−1
5 − f̄ j−1

6 ) + (f̄ j+1
8 − f̄ j+1

7 ) can

be obtained as follows

(f̄ j−1
5 − f̄ j−1

6 ) + (f̄ j+1
8 − f̄ j+1

7 ) = (ρuj−1 + ρuj+1)− (f̄ j−1
1 − f̄ j−1

3 )− (f̄ j+1
1 − f̄ j+1

3 )

− ρ

6(τ + 1/2)
uj +

ρ

2(τ + 1/2)
ujvj −

τρG

6(τ + 1/2)
− (τ − 1/2)

(τ + 1/2)(
f̄ j
8 − f̄ j

7

)
− ρ

6(τ + 1/2)
uj −

ρ

2(τ + 1/2)
ujvj −

τρG

6(τ + 1/2)

− (τ − 1/2)

(τ + 1/2)

(
f̄ j
5 − f̄ j

6

)
,

which yields,

(f̄ j−1
5 − f̄ j−1

6 ) + (f̄ j+1
8 − f̄ j+1

7 ) =
1

3
ρuj−1 +

1

3
ρuj+1 −

1

3

(τ − 1/2)

(τ + 1/2)
ρuj −

1

3(τ + 1/2)
ρuj+

(τ − 1/2)

2(τ + 1/2)
ρG+

2(τ − 1/2)

3(τ + 1/2)
τρG− 4τρG

3
− ρG− τρG

3(τ + 1/2)
.

(3.40)

Substituting equation (3.40) into (3.35) gives

ρuj −
1

2
ρG =

2

3
ρuj +

ρ

6(τ + 1/2)
(uj−1 + uj+1) +

ρ

2(τ + 1/2)

(uj−1vj−1 − uj+1vj+1) +
(τ − 1/2)

3(τ + 1/2)
ρuj−1 +

(τ − 1/2)

3(τ + 1/2)
ρuj+1

− (τ − 1/2)

3(τ + 1/2)2
ρuj −

(τ − 1/2)2

3(τ + 1/2)2
ρuj +

2τρG

3
− 4(τ − 1/2)

3(τ + 1/2)
τρG

− (τ − 1/2)

3(τ + 1/2)2
τρG− (τ − 1/2)

(τ + 1/2)
ρG+

τρG

3(τ + 1/2)
+

(τ − 1/2)2

2(τ + 1/2)2
ρG

+
τρG

2(τ + 1/2)
vj−1 −

τρG

2(τ + 1/2)
vj+1 +

2(τ − 1/2)2

3(τ + 1/2)2
τρG. (3.41)

Simplifying (3.41) gives

uj+1vj+1 − uj−1vj−1

2
= ν(uj+1 + uj−1 − 2uj) +G+

τG

2
(vj−1 − vj+1), (3.42)
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where ν = τ/3 is the kinematic viscosity of the fluid.

Now we should show the result of the vertical velocity in y direction

∑
i

f̄iciy = ρ̄vj = ρvj = (f̄ j
2 − f̄ j

4 + f̄ j
5 + f̄ j

6 − f̄ j
7 − f̄ j

8 ). (3.43)

From the f̄ j
i components of equations (3.28), and similar to the previous implementa-

tion approach, the following can be expressed

(f̄ j
2 + f̄ j

5 + f̄ j
6 ) =

(
ρ

9(τ + 1/2)
(1 + 3vj−1 + 3v2j−1 −

3

2
u2j−1)−

τρG

3(τ + 1/2)
uj−1

+
τ − 1/2

τ + 1/2
f̄ j−1
2

)
+

(
ρ

36(τ + 1/2)
(1 + 3uj−1 + 3vj−1 + 3u2j−1 + 3v2j−1

+ 9uj−1vj−1) +
τρG

12(τ + 1/2)
(1 + 2uj−1) +

(τ − 1/2)

(τ + 1/2)
f̄ j−1
5

)
+(

ρ

36(τ + 1/2)

(
1− 3uj−1 + 3vj−1 + 3u2j−1 + 3v2j−1 − 9uj−1vj−1

)
− τρG

12(τ + 1/2)
(1− 2uj−1) +

(τ − 1/2)

(τ + 1/2)
f̄ j−1
6

)
.

(3.44)

Rearranging the last equation yields,

(f̄ j
2 + f̄ j

5 + f̄ j
6 ) =

ρ

6(τ + 1/2)
+

1

2(τ + 1/2)
ρvj−1 +

1

2(τ + 1/2)
ρv2j−1

+
(τ − 1/2)

(τ + 1/2)
(f̄ j−1

2 + f̄ j−1
5 + f̄ j−1

6 ). (3.45)

Adding the terms (f̄ j
4 + f̄ j

8 + f̄ j
7 ) gives

(f̄ j
4 + f̄ j

8 + f̄ j
7 ) =

(
ρ

9(τ + 1/2)
(1− 3vj+1 + 3v2j+1 −

3

2
u2j+1)−

τρG

3(τ + 1/2)
uj+1

+
τ − 1/2

τ + 1/2
f̄ j+1
4

)
+

(
ρ

36(τ + 1/2)
(1 + 3uj+1 − 3vj+1 + 3u2j+1

+ 3v2j+1 − 9uj+1vj+1) +
τρG

12(τ + 1/2)
(1 + 2uj+1) +

(τ − 1/2)

(τ + 1/2)
f̄ j+1
8

)
+

(
ρ

36(τ + 1/2)

(
1− 3uj+1 − 3vj+1 + 3u2j+1 + 3v2j+1 + 9uj+1vj+1

)
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− τρG

12(τ + 1/2)
(1− 2uj+1) +

(τ − 1/2)

(τ + 1/2)
f̄ j+1
7

)
,

=
ρ

6(τ + 1/2)
− 1

2(τ + 1/2)
ρvj+1 +

1

2(τ + 1/2)
ρv2j+1

+
(τ − 1/2)

(τ + 1/2)
(f̄ j+1

8 + f̄ j+1
7 ). (3.46)

Inserting equations (3.45) and (3.46) into equation (3.43) leads to

ρvj =
1

2(τ + 1/2)
ρvj−1 +

1

2(τ + 1/2)
ρvj+1 +

1

2(τ + 1/2)
ρv2j−1

− 1

2(τ + 1/2)
ρv2j+1 +

(τ − 1/2)

(τ + 1/2)

(
(f̄ j−1

5 + f̄ j−1
6 + f̄ j−1

2 )

− (f̄ j+1
7 + f̄ j+1

8 + f̄ j+1
4 )

)
(3.47)

In order to find the result of equation (3.47), the value of ((f̄ j−1
5 + f̄ j−1

6 + f̄ j−1
2 )−(f̄ j+1

7 +

f̄ j+1
8 + f̄ j+1

4 )) is required, so the first moment of the distribution function f̄i at node

j − 1 will be used first:

ρv̄j−1 = ρvj−1 = (f̄ j−1
2 − f̄ j−1

4 + f̄ j−1
5 + f̄ j−1

6 − f̄ j−1
8 − f̄ j−1

7 ).

Now the above equation is rearranged to obtain

(f̄ j−1
2 + f̄ j−1

5 + f̄ j−1
6 ) = ρvj−1 + f̄ j−1

4 + f̄ j−1
8 + f̄ j−1

7 . (3.48)

The first moment of the distribution function f̄i at node j + 1 gives

ρv̄j+1 = ρvj+1 = (f̄ j+1
2 − f̄ j+1

4 + f̄ j+1
5 + f̄ j+1

6 − f̄ j+1
8 − f̄ j+1

7 ),

rearranging the above equation, yields

(f̄ j+1
8 + f̄ j+1

7 + f̄ j+1
4 ) = −ρvj+1 + f̄ j+1

2 + f̄ j+1
5 + f̄ j+1

6 . (3.49)
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In equation (3.48), (f̄ j−1
4 + f̄ j−1

8 + f̄ j−1
7 ) can be written as

(f̄ j−1
4 + f̄ j−1

8 + f̄ j−1
7 ) =

ρ

6(τ + 1/2)
− 1

2(τ + 1/2)
ρvj +

1

2(τ + 1/2)
ρv2j

+
(τ − 1/2)

(τ + 1/2)
(f̄ j

4 + f̄ j
8 + f̄ j

7 ), (3.50)

while in equation (3.49), (f̄ j+1
2 + f̄ j+1

5 + f̄ j+1
6 ) can be expressed as

(f̄ j+1
2 + f̄ j+1

5 + f̄ j+1
6 ) =

ρ

6(τ + 1/2)
+

1

2(τ + 1/2)
ρvj +

1

2(τ + 1/2)
ρv2j

+
(τ − 1/2)

(τ + 1/2)
(f̄ j

2 + f̄ j
5 + f̄ j

6 ). (3.51)

Hence equations (3.48), (3.49), (3.50) and (3.51) together give

(f̄ j−1
5 + f̄ j−1

6 + f̄ j−1
2 )− (f̄ j+1

7 + f̄ j+1
8 + f̄ j+1

4 ) =

ρvj−1 + ρvj+1 −
1

(τ + 1/2)
ρvj −

(τ − 1/2)

(τ + 1/2)
ρvj. (3.52)

Applying (3.52) into (3.47) gives:

v2j+1 − v2j−1 = 2τ (vj−1 + vj+1 − 2vj) . (3.53)

From the definition of the density ρ =
∑
f̄ j
i and by applying equations (3.28) into ρ

and following the above steps, one can get

v2j+1 + v2j−1 − 2v2j = 2τ (vj+1 − vj−1) . (3.54)

Adding equation (3.53) to equation (3.54) yields

vj+1 = vj. (3.55)
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then equation (3.55) produces

vj = constant. (3.56)

Noting if the boundary condition says vj = 0 then vj = 0 always. Together equations

(3.42) and (3.56) yield the second order finite difference form of the incompressible

Navier-Stokes equations for channel flow with a constant body force G

ν
∂2u

∂y2
+G = 0. (3.57)

So the homogeneous solution of equation (3.42) for unidirectional flow is

uj =
4Uc

(n− 1)2
(j − 1)(n− j) + Us, j = 1, ..., n− 1 (3.58)

where the maximum velocity in the centre of the channel is Uc + Us, where

Uc = GH2/8ν, (3.59)

where H = (n − 1) is the width of the channel. Us is slip velocity on the boundary

at j = 0 and j = n and it depends on which boundary conditions will be used. For

half-way bounce-back boundary conditions, there is a slip error at the walls j = 1 and

j = n which has the following form:

Us =
Uc

3(n− 1)2

(
4τ(4τ − 5) + 3

)
. (3.60)

For more details about Us for bounce-back boundary conditions see [53]. For the

moment boundary conditions Us = 0 where the slip error will be eliminated, as will be

seen in the next section.

Next, numerical results that confirm the above analysis will be discussed with

moment-based boundary conditions and bounce-back method.
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3.6 Numerical results for No-slip boundaries

In this section the lattice Boltzmann method will be used to simulate different flows,

namely Poiseuille, Couette and lid-cavity flows. In Poiseuille and Couette flows, a

comparison will be made between analytical solution of BGK-LBE and the numerical

solution of the method. Later, a lid-cavity flow will be simulated and results compared

with benchmark data.

3.6.1 Force-driven Poiseuille flow

Poiseuille flow is simulated using the BGK lattice Boltzmann method. The force term

calculated from equation (3.59) is G = 8νUc/H and H in these simulations depends on

my which is the number of the grid points in y direction. Different values of vertical

grid points are taken to investigate the accuracy of the lattice Boltzmann method.

The number of grid points in x direction will be twice the number of grid points in y

direction, where my = (8, 16, 32, 64). The relaxation time is calculated as

τ = 3myUc/Re where Re is the centreline Reynolds number Re = UcH/ν and the initial

density ρ set to be equal to 1. Different implementations of lattice Boltzmann boundary

conditions are used. The first one is half-way bounce-back boundary conditions from

Section (3.2 ) on the south and north boundary with periodic boundary conditions

from Section (3.1) in the east and west boundaries.

The second case, the moment-based boundary conditions at the wall from Section

(3.4) are used with the same periodic conditions. Since the flow is driven by a body

force, the moments that depend on f̄i at the boundary contain the term G. The

constraint that should be imposed at the walls in term of f̄i with a force are

ρuy = 0,

ρux = ρux −
1

2
ρG,

Πxx = ρ/3 + ρu2x − ρGux,

(3.61)
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where ux is equal to zero because the no-slip condition is applied at the boundary.

It should be mentioned that ∆x = 1/(my) for bounce-back boundary conditions and

∆x = 1/(my−1) for moment boundary conditions. In order to analyse the accuracy of

the method with different numbers of grid points, the L2 relative error was calculated

error =

√√√√√√√√
∑

i,j

(
ulbmx − uexactx

)2

∑
i,j

(
uexactx

)2 . (3.62)

To reach the steady state measurement we used the criteria

|uxmax(t+ 1)− uxmax(t)|<10−9. (3.63)

To discuss these results, in the first case when the bounce back boundary conditions

was implemented there is a slip error in the boundaries represented by Us from equation

(3.60). This error depends on the relaxation time τ [53], which is based on the Reynolds

number and the number of grid points. So, an increase in Reynolds number leads to

a decrease in the numerical slip. When Re = 100 is imposed, the slip error becomes

very small. When Re = 10, the slip error at the boundaries rises because of the large

relaxation time and hence larger Us. As a result, the numerical error shifts a little from

the exact solution, while at Re = 1 the numerical slip error increases further and the

plot shifted more. When Re = 0.1 the numerical slip error is increased and dominates

the solution, which reduces the accuracy of the method. In Figure 3.4 an example of

our simulation has been inserted where the number of grid points is (128 × 64) with

different values of Reynolds numbers. The structure of half-way bounce-back code is

inserted in Appendix A.1
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Figure 3.4: Numerical and exact solutions of Poiseuille flow with bounce-back and periodic
boundary conditions, (mx ×my) = 128× 64.

In the second case, when the moment method and periodic boundary conditions are

used there is no-slip error since the velocity Us = 0 was imposed on the south and north

boundaries. As a result, the exact solution in this case was obtained. In Figure 3.5

the number of grid points is taken (129× 65) as an example of this type of boundary

conditions.
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Figure 3.5: Poiseuille flow between two parallel walls simulated by using moment-based
method, (mx ×my) = 128× 64.

Here, small numbers of grid points are chosen, 16 × 8, at Re = 1. Figure 3.6 shows

that the numerical solution with bounce-back boundary conditions is affected by the

small number of grid points, where the error increased, while the solution with moment

boundary conditions has accurate results with the same number of points. Also, the

moment method gives the exact solution, if fewer grid points were used at different

Reynolds number, for example my = 3 as in Figure 3.7.
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Figure 3.6: Numerical and exact solution of Poiseuille flow at Re = 1, my = 8: (a) Bounce
back boundary conditions, (b) Moment boundary conditions.
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Figure 3.7: Poiseuille flow between two parallel walls simulated by using moment-based
method at grid points my = 3

Nevertheless, the bounce-back boundary conditions and for the same values of Reynolds

number, for instance Re = 100, when we increased the number of the grid points,

the relative error will decrease. It is shown that the half way bounce-back boundary

conditions is second-order accurate as expected, see Figure 3.8.
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Figure 3.8: Relative error defined in equation (3.62) for half-way bounce-back boundary
conditions at Re = 100.

3.6.2 Pressure-driven Poiseuille flow

In this flow, the fluid inside the channel is driven by specifying an inlet and outlet

pressure. Moment boundary conditions are used at the no-slip solid walls and in the

inlet and outlet open boundaries from Section 3.4. Figure 3.9 shows that the pressure

at the inlet at x = 0 and outlet at x = mx, which is calculated as P = ρ/3, presented

as Pin = P0 and Pout = Pn, respectively. The pressure in the west boundary Pin = 1

is bigger than the east one to ensure that the gradient of pressure enforces the flow to

move. The gradient of the pressure that acts as a force is ∆P = (Pin−Pout)/(mx− 1).

0
)0( PP x

in
==

nx
mx

out
PP == )(maxu

Stationary wall

Stationary wall

Figure 3.9: Pressure driven Poiseuille flow .

In our simulations the length of the channel is four times its height. The Reynolds

number is Re = 10, while different numbers of grid points are used my=(17, 33, 65,
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129) to test the accuracy of the method.

The results of this simulation are very accurate and there is no slip error at the

boundary because of moment boundary conditions. By increasing the number of grid

points it was noticed that the results are not sensitive to grid points and there is a small

relative error. The error that was observed in the simulation is a compressibility error

because of the variation in density between the pressure boundaries. As a result, by

reducing the Mach number, the error decreases and the incompressibility is third-order

accurate, see Figure 3.10
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Figure 3.10: Absolute error of the maximum velocity in the centre of the channel with the
moment-based boundary condition.

In Figure 3.11 we show the most accurate numerical solution with small Mach number

and Re = 10 while the number of grid points is (129× 33) as an example.
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Figure 3.11: Poiseuille flow driven by pressure gradient, mx ×my = 129× 65.

3.6.3 Couette flow

Using the same strategy as Poiseuille flow, the lattice Boltzmann method is used to

simulate Couette flow. This is another simple laminar flow between two parallel plates.

The top plate is moving which forces the fluid to move and the bottom one is stationary,

this can be seen in Figure 3.12.

Velocity direction

,Uux= 0=yu
Moving top wall

Stationary bottom wall

Figure 3.12: Coutte flow.

The boundary conditions that were used to simulate Couette flow are moment boundary

conditions. The north boundary is the same as in equation (3.19), but with the moving
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top no-slip boundary ux = U , so the following constraints will be used:

ρuy = 0,

ρux = U,

Πxx = ρ/3 + ρU2,

(3.64)

where the stress tensor is equal to the equilibrium stress tensor, since the derivative

of the velocity in x direction is equal to zero. By solving the above equations, the

unknown distribution functions read

f̄4 = f̄1 + f̄3 + f̄2 + 2(f̄5 + f̄6)−
ρ

3
− ρU2,

f̄7 =
ρ

6
+

1

2
ρU2 − 1

2
ρU − f̄3 − f̄6,

f̄8 =
ρ

6
+

1

2
ρU2 +

1

2
ρU − f̄1 − f̄5,

(3.65)

where the density is found from the known fi of the velocity ρuy = 0 such that

ρ = f̄0 + f̄1 + f̄3 + 2(f̄2 + f̄5 + f̄6)− ρuy. (3.66)

For the south wall the velocity ux = uy = 0 with periodic boundary conditions for the

east and west sides. To test the accuracy, the number of grid points is taken to be

(mx ×my) = (17 × 9) first and then (mx ×my) = (17 × 3). Two values of Reynolds

numbers are applied Re = 100 and 0.1. The results were compared with the exact

solution

u(y) =
y Uc

H
, (3.67)

where H = (my − 1) is the height of the channel.

It was observed that the results with number of grid points mx × my = (17 × 9)

and different Reynolds number are accurate and give the exact solution, see Figure

3.13. With a small number of grid points (17× 3) the accuracy is not affected by the
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resolution, as shown in Figure 3.14.
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Figure 3.13: Numerical and exact solution Couette flow with moment and periodic boundary
conditions when the grid size is (17× 9).
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Figure 3.14: Numerical and exact solution Couette flow with moment and periodic boundary
conditions when my = 3.

3.6.4 Lid-driven cavity flow

The third problem that has been investigated to study the accuracy of the moment

method by using the lattice Boltzmann method is lid-driven cavity flow. This is the

flow in a two-dimensional square cavity filled with an incompressible fluid. The upper

lid moves with a constant velocity in the x direction while the other walls are stationary,

as shown in Figure 3.15.
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Figure 3.15: Square Lid driven cavity with boundary conditions

3.6.4.1 Problem setup

In the present work, flows at different Reynolds numbers are studied: Re =100, 400,

1000, 3200, 5000 using moment boundary conditions. No-slip and flux conditions

(ux = uy = 0) are applied to three boundaries. In this type of boundary, the stress

tensor Πxx = Π
(0)
xx = ρ/3+u2x is used at the top wall and Πxx = Π

(0)
xx = ρ/3 at the other

three walls. At the top moving wall the no-slip conditions (ux = 1, uy = 0) are applied

and the unknown distribution functions are calculated as in equation (3.65). At the

corners, the constraints Πxx, Πyy, ρūx, ρūy and Πxy = 0 are specified.

To examine the accuracy of this method, different grid resolutions are used:

(65× 65), (129× 129), (257× 257) and (513× 513), and a comparison is made between

this method and other methods. The stream function is calculated to test the precision

of the method. The stream function ψ is defined to be

ψ =

∫
−uydx+ uxdy, (3.68)

and the velocity satisfies [106]

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
. (3.69)

A steady state solution is obtained if the maximum absolute value of the difference

between the stream function, at the new time step and the one at the old time step, is
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less than 10−8

max
ij

∣∣∣ψ(t+1)
ij − ψ

(t)
ij

∣∣∣<10−8. (3.70)

3.6.4.2 Results and discussion

The biggest challenge that we faced in our simulation is the convergence of the BGK-

LBM with moment boundary conditions. For small Re, the results are quite accurate

with BGK model; however, it went unstable at moderate Reynolds numbers and often

the method did not converge with smaller grid points. For example, our code could not

simulate Re ≥ 1000 on grids (257× 257). So, a multiple relaxation time (MRT) from

Section (2.6) was used in these cases instead of BGK-LBM for the lattice Boltzmann

method. The relaxation times of the ghost moments in the MRT-LBM were set to be

τg = τp = ∆t/2. This ensures they decay instantly to equilibrium and is inspired by

the MRT scheme proposed by Ladd [67] and discussed by Dellar [28]. Note that in

this realisation of MRT the ghost moments do not need to be explicitly included in the

code where the hydrodynamics and non-dynamics moments are used to give a complete

characterization of LBE. This approach has sometimes been called a “regularized” LBM

[70]. The same implementation can be found in the journal article [84].

Tables (3.3), (3.4), (3.5), (3.6) and (3.7) show the results for the maximum and

minimum horizontal and vertical velocities. The minimum values of the primary stream

function are also inserted in the tables. Moreover, the results were compared with other

methods: the finite volume [30, 99], the finite difference [11, 40], the spectral method

[9], and LBMs [56, 79], at different Reynolds numbers. Luo et al. [79] used a full

implementation of the MRT model which linearly transforms the distribution functions

where the relaxation rates are given between 0 and 2. Our data in this table was found

using (257 × 257) grid points, the same spatial resolution as the cited LBMs. It is

noted that there is excellent agreement between the present work and other methods.

In particular, the results are very similar to those obtained by [99], who used a stylised

and non-uniform finite volume discretisation and [9] who used a spectral method.
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Re = 100

Reference y(min) ux(min) x(max) uy(max) x(min) uy(min) ψ(min)

Present (BGK) 0.4609 -0.21365 0.23828 0.179022 0.8085 -0.2527 -0.103392

Present (MRT) 0.4609 -0.21368 0.23828 0.17903 0.8085 -0.2527 -0.103398

Sahin and Owens [99] 0.4598 -0.21392 0.2354 0.18088 0.8127 -0.2566 -0.103471

Ghia et al. [40] 0.4531 -0.21090 0.2344 0.17527 0.8047 -0.24533 -0.103423

Botella and Peyret [9] 0.4581 -0.21404 0.2370 0.17957 0.8104 -0.25380 -
Bruneau and Jouron [11] 0.4531 -0.2106 0.2344 0.1786 0.8125 -0.2521 -0.1026

Hou et al. [56] - - - - - - -0.1030
Luo et al. (BGK) [79] - - - - - - -0.10349
Luo et al.(MRT) [79] - - - - - - -0.10351

Table 3.3: Comparison of the minimum and maximum values of the velocity uy along x = 0.5
and minimum value of the velocity ux along y = 0.5. The minimum value of the primary
stream function ψ obtained from the present work [(BGK-LBM), (MRT-LBM)] and other
methods at Re=100 is also shown.

Re = 400

Reference y(min) ux(min) x(max) uy(max) x(min) uy(min) ψ(min)

Present(BGK) 0.2812 -0.32876 0.22656 0.303743 0.8632 -0.45366 -0.114029

Present(MRT) 0.2812 -0.32875 0.22656 0.303732 0.8632 -0.45365 -0.114025

Sahin and Owens [99] 0.2815 -0.32837 0.2253 0.304447 0.8621 -0.456316 -0.113897

Ghia et al. [40] 0.2813 -0.32726 0.2266 0.30203 0.8594 -0.44993 -0.113909

Deng et al. [30] - -0.32751 - 0.30271 - -0.45274 -
Hou et al. [56] - - - - - - -0.1121

Luo et al. (BGK) [79] - - - - - - -0.11399
Luo et al.(MRT) [79] - - - - - - -0.11395

Table 3.4: Comparison of minimum and maximum values of the velocity uy along x = 0.5
and minimum value of the velocity ux along y = 0.5. The minimum value of the primary
stream function ψ obtained from the present work [(BGK-LBM), (MRT-LBM)] and other
methods at Re=400 is also shown.

Re = 1000

Reference y(min) ux(min) x(max) uy(max) x(min) uy(min) ψ(min)

Present(MRT) 0.17187 -0.388924 0.1562 0.37734 0.9101 -0.52725 -0.11911

Sahin and Owens [99] 0.1727 -0.388103 0.1573 0.37691 0.9087 -0.52844 -0.118800

Ghia et al. [40] 0.1719 -0.38289 0.1563 0.37095 0.9063 -0.51550 -0.117929

Botella and Peyret [9] 0.1717 -0.388569 0.1578 0.37694 0.9092 -0.52707 -0.118936

Bruneau and Jouron [11] 0.1602 -0.3764 0.1523 0.3665 0.9102 -0.5208 -0.1163

Hou et al. [56] - - - - - - -0.1178
Luo et al.(BGK) [79] - - - - - - -0.11896
Luo et al.(MRT) [79] - - - - - - -0.11884

Table 3.5: Comparison of minimum and maximum values of the velocity uy along x = 0.5
and minimum value of the velocity ux along y = 0.5 besides the minimum value of the
primary stream function ψ obtained from the present work (MRT-LBM) and other methods
at Re=1000 is also shown.
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Re = 3200

Reference y(min) ux(min) x(max) uy(max) x(min) uy(min) ψ(min)

Present(MRT) 0.09375 -0.436873 0.0937 0.434203 0.9492 -0.568876 -0.1222237

Sahin and Owens [99] 0.0921 -0.435402 0.0972 0.432448 0.9491 -0.569145 -0.121628

Ghia et al. [40] 0.1016 -0.41933 0.0938 0.42768 0.9453 -0.54053 -0.120377

Table 3.6: Comparison of minimum and maximum values of the velocity uy along x = 0.5 and
minimum value of the velocity ux along y = 0.5. The minimum value of the primary stream
function ψ obtained from the present work (MRT-LBM) and other methods at Re=3200 is
also shown.

Re = 5000

Reference y(min) ux(min) x(max) uy(max) x(min) uy(min) ψ(min)

Present(MRT) 0.07421 -0.448981 0.07812 0.449503 0.9570 -0.578097 -0.122854

Sahin and Owens [99] 0.0741 -0.447309 0.0799 0.446913 0.9573 -0.576652 -0.122050

Ghia et al. [40] 0.0703 -0.43643 0.0781 0.43648 0.9531 -0.55408 -0.118966

Bruneau and Jouron [11] 0.0664 -0.4359 0.0762 0.4259 0.9590 -0.5675 -0.1142

Hou et al. [56] - - - - - - -0.1214

Table 3.7: Comparison of minimum and maximum values of the velocity uy along x = 0.5 and
minimum value of the velocity ux along y = 0.5. The minimum value of the primary stream
function ψ obtained from the present work (MRT-LBM) and other methods at Re=5000 is
also shown.

The relative L2 error was computed to test the convergence of the algorithm. The error

calculation uses results obtained on the finest grid (513 × 513) as the reference data.

Figure 3.16 confirms that the LBM with the moment method is second-order accurate.

The results in this figure not only show the expected convergence properties of the

LBM, but a comparison with the assumed highly accurate data of [9] and [99] shows

excellent agreement, giving confidence to the predictive capabilities of the LBM with

moment-based boundary conditions. Furthermore, it was not attempted to optimise

the MRT collision operator. The choice of optimal relaxation times is an interesting

topic, but a subject for future research.
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Figure 3.16: Convergence of the minimum primary stream function when Re=100 (filled
circle), Re=1000 (filled square) on different grid resolutions. The line of slop 2 (dashed) is
also shown. Note that ∆x = (m − 1)−1, where mx is the number of grid points in a side of
the cavity.

Figures 3.17 and 3.18 make a comparison between the present work and these of [40].

This comparison is for the velocity field along the horizontal and vertical lines respec-

tively, through the centre of the cavity at different grid points over different Reynolds

numbers. These figures show the minimum resolution required for stable solutions at a

given Reynolds number. This means at grids (17× 17) and (65× 65) we obtain values

at Re=100 until Re=1000. Nevertheless, with more grid points results from Re=100

to Re=5000 were obtained.

Figures 3.17 and 3.18 reveal also that the results become more accurate and closer

to those in [40], when the number of grid points is increased. For instance, the re-

sults with (17 × 17) grid points are accurate and have a good agreement with [40] at

Re=100. However, the results are inaccurate when the Reynolds number is Re=400,

and at Re=10000 there is no convergence with the same number of grid points.
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(d) Re= 3200
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Figure 3.17: A comparison of horizontal velocity ux along the centre line between the present
work and [40] at various Reynolds numbers.
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Figure 3.18: A comparison of vertical velocity uy through the centre line between the present
work and [40] at various Reynolds numbers.

Figure 3.19 shows all the results of the computation of streamlines for Reynolds num-

bers Re=100, 400, 1000, 3200, 5000 when the number of grid points is (257×257) and

it clarifies all the expected flow characteristics. For all Reynolds numbers, a primary
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vortex near the centre of the cavity is observed. This vortex moves towards the centre

of the cavity as the Reynolds number increases. Two secondary vortices appear in the

bottom corners which increase in size as the Reynolds number increases. Furthermore,

a tertiary vortex in the bottom-right corner for Re=5000 appears as a thin line. When

the number of grid points increases, as (513×513), this third vortex becomes more ob-

vious at Re=3200, see Figure 3.20. Note that the results obtained with BGK-LBM and

MRT-LBM are similar when the number of the grid points is (257×257) and Re=100

and 400.

(a) Re=100 (b) Re=400

(c) Re=1000 (d) Re=3200
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(e) Re=5000

Figure 3.19: Streamlines calculated with 257×257 grid points at different Reynolds numbers:
(a) BGK-LBM Re=100, (b) BGK-LBM Re=400, (c) MRT-LBM Re=1000, (d) MRT-LBM
Re=3200, (e) MRT-LBM Re=5000.

(a) Re=100 (b) Re=400

(c) Re=1000 (d) Re=3200
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(e) Re=5000

Figure 3.20: Streamlines calculated with 513×513 grid points at different Reynolds numbers:
(a) BGK-LBM Re=100, (b) BGK-LBM Re=400, (c) MRT-LBM Re=1000, (d) MRT-LBM
Re=3200, (e) MRT-LBM Re=5000.

3.7 Slip boundary conditions

In recent years, the development of micro-electro-mechanical systems has encouraged

an increase in research in the field of micro-fluids, such as micro-devices and micro-

channel micro-pipes etc. For this kind of problem, the mean free path in a gas can be

comparable with the characteristic flow length. Hence the Knudsen number is small

so the no-slip condition can not be applied.

The investigation of gaseous flow in micro-electro-mechanical systems has been ac-

complished in many applications. For example, the micro-Poiseuille problem is one of

the simplest applications of the rarefied flow dynamics which is studied analytically,

numerically and experimentally [2, 34, 58, 107]. Numerical studies are held by using

the lattice Boltzmann method to simulate micro-flow as in [74, 87, 50, 91, 95].

At higher Reynolds numbers, the stress at the boundary increases, which can lead

to slippage of the fluid at the boundary, so the flow mimics the slip condition as in

turbulent flow [62]. This observation is explained by Galdi and Layton [39]. For that,

a significant development of the slip velocity implementation at the boundary will be

required.

By applying the slip velocity at the wall, the flow near the wall will be changed
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and is influenced by the slip length. The study of slip flow began after an experimen-

tal investigation by Kundt and Warburg [65] in a tube of gas. Also it was studied

theoretically by Navier [86] who introduced the slip boundary condition. After more

than five decades this inspired Maxwell [81] by applying it to gas dynamics problems.

Technically the Navier-slip condition assumes that the amount of slip is proportional

to the shear rate at the surface. So, Maxwell described the slipping of the flow at the

wall by expanding the velocity at the surface by using Taylor expansion

us − uw = ϵ̃

(
ℓs

(
∂us
∂n

)
+
ℓ2s
2

(
∂2us
∂n2

)
+ . . .

)
, (3.71)

where uw is the solid velocity at the wall, us is the streamwise velocity, n is the normal

direction to the wall and ℓs refers to the slip length. The slip length is defined as a

distance behind the surface in which the linear extrapolation of the velocity profile is

reduced to zero [25, 72]. The combination of (∂us/∂n) refers to the change of the tan-

gential velocity over the normal direction to the surface. The coefficient ϵ̃ = (2− ϵ/ϵ)

is the streamwise momentum accommodation coefficient and ϵ is the tangential mo-

mentum accommodation coefficient. The coefficient ϵ̃ was introduced by Maxwell [81]

in order to transfer all the momentum of the particles when they collide with the wall

in the gaseous flows. Following most of the applications, this coefficient was taken

equal to 1 and from now we use ϵ̃ = 1. Now truncate equation (3.71) to order one,

because the boundary condition to simulate the Navier-Stokes equations is used, and

this equation can be an accurate truncation of order one. So, the Navier-Maxwell slip

boundary can be written as

us = ℓs
∂u

∂n

∣∣∣∣
wall

. (3.72)
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3.7.1 Navier-Maxwell slip for Moment-based boundary con-

ditions

To find the three unknown distribution functions, at the tangential walls for example,

the same moments of equation (3.17) are used, but with different conditions. By

considering the velocity at the boundary ux is slipping at the wall, the three constraints

of the moments for slip boundary are

ρuy = 0,

ρux = ρus,

Πxx =
ρ

3
+ ρu2s,

(3.73)

where us can be found by using the Navier-Maxwell slip of equation (3.72). Note that

the viscous term τΠ
(1)
xx = −2µ∂xux in the tangential stress is not zero for the dipole/wall

flow with slip, in Chapter 4, but is neglected as it is O(Ma2/Re). The derivative

(∂u/∂n) is calculated from the shear stress moment Πxy. From the Chapman-Enskog

expansion,

Πxy ≈ Π(0)
xy + τΠ(1)

xy ,

= τΠ(1)
xy , (3.74)

at the wall, since Π
(0)
xy = ρuxuy = 0. Π

(1)
xy can be found from equation (2.108) and the

assumption of equation (3.72) where Π
(1)
xy ∝ ∂yux and ∂xuy = 0

Π(1)
xy = −ρc2s

∂ux
∂y

, (3.75)

so

Πxy = −µ∂ux
∂y

. (3.76)
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To align with our implementation, the shear stress in terms of f̄i will be used from

equation (2.121) as follows

Πxy =
∑
i

f̄icixciy = Πxy +
1

2τ
(Πxy − Π(0)

xy ). (3.77)

At the north wall, in terms of f̄i, the three conditions without the force term are

ρuy = 0,

ρux =
ζH

c2sρ(2τ + 1)
Πxy,

Πxx =
ρ

3
+ ρu2s,

(3.78)

where ζ = ℓs/H is the dimensionless slip length andH is the width. Solving equation(3.78)

gives the three unknown distribution functions f̄4, f̄7, f̄8 in terms of known ones

f̄4 = f̄1 + f̄2 + f̄3 + 2(f̄5 + f̄6)−
ρ

3
− ρu2s,

f̄7 =
ρ

6
− f̄3 − f̄6 + ρus(us − 1)/2,

f̄8 =
ρ

6
− f̄1 − f̄5 + ρus(us + 1)/2.

(3.79)

Substituting the distribution functions of equation (3.79) into equation (3.77) gives the

shear stress

Πxy = −ρus + f̄1 + f̄3 + 2(f̄5 − f̄6) (3.80)

Finally, the slip velocity can be found by applying equation (3.80) into the tangential

momentum ρux in equation (3.78)

us =
6ζH(f̄1 − f̄3 + 2(f̄5 − f̄6))

ρ(2τ + 1 + 6ζH)
(3.81)
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3.7.2 Numerical simulation of moment slip boundary condi-

tions

Before focusing attention on applying the lattice Boltzmann method for slip boundaries

over complex flows, we demonstrate our method’s ability to simulate the Poiseuille flow

with the Navier-Maxwell condition using moment-based boundary conditions for BGK-

LBM. The conditions for the channel flow with force term can be used from equation

(3.61), where the velocity ux at the slip wall can be found from Section 3.7.1 with the

existence of the body force such that

us =
6ζH(f̄1 − f̄3 + 2(f̄5 − f̄6) +

1
2
ρG)

ρ(2τ + 1 + 6ζH)
(3.82)

Reis and Dellar [95] specified first-order Navier-Maxwell slip boundaries with the

moment method to simulate rarefied open boundary microchannel flow using LBM. For

fixed ratio density and various Knudsen numbers their implementation captured the slip

flow with second-order accuracy. Here, moment boundary conditions are used with the

periodic condition to capture the slip flow for all flow fields. From Section 3.6.1 it has

been seen that for small and high Reynolds numbers, the numerical error was eliminated

by using moment method; so for slip boundaries, the simulating of the Poiseuille flow

for different slip lengths will not be affected by Reynolds number. In Figure 3.21

the result of the tangential velocity ux is plotted along for a (mx × my) = (3 × 65)

grid with Re = 10 and various slip lengths. Clearly, by increasing the slip length the

numerical results depart from the original point (no-slip case) and the velocity profile

shifts upwards.
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Figure 3.21: Poiseuille flow for Navier-Maxwell slip moment boundary conditions.

3.8 Conclusion

Various boundary conditions were demonstrated to find the unknown functions at

the no-slip flat boundaries. Numerical simulations were carried out to assess these

boundary conditions and their robustness. The moment-based boundary conditions

have been proved to be exact in the simulation of laminar Poiseuille and Couette

flows. The moment-based method gave exact results with minimal grid points, my =

3. A further study was performed to apply moment-based boundary conditions with

BGK and MRT-lattice Boltzmann equation for the lid-driven cavity simulation. This

work has been published in a journal article [84]. The simulation of the cavity flow

using the MRT-LBM with moment boundary conditions is highly accurate. However,

the results with BGK-LBM is stable only for small Reynolds numbers, while it is

unstable for high Reynolds numbers. This problem does not occur with bounce-back

boundary conditions as in [55]. So, to gain excellent results for lattice Boltzmann

method for more complicated flows at high Re, it is necessary to use the moment-based

boundary conditions with a more accurate model, for example MRT-LBM. Moreover,

the moment-based boundary with Navier-slip condition was illustrated and the impact
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of the slip length on the behaviour of the flow was shown.
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Dipole wall collision with no-slip

boundary conditions

The vortex dipole-wall collision in two dimensional flows is an important problem that

has been the subject of numerous recent studies [36, 61]. In this flow two counter-

rotating vortices are propelled towards a solid boundary with which they collide. In-

teractions between dipoles and frictional boundaries are found in a lot of natural phe-

nomena. For example, the effect of the ground on the formulation of secondary vortices

when an aeroplane takes off or lands is one of these problems [89]. Another phenomenon

is the formulation of large scale vortices in geophysical turbulence at coasts of seas and

oceans like the Black Sea and Atlantic Ocean [61] or the coast of Japan. Many lab-

oratory experiments and numerical approximation methods have been used to study

the monopole (one vortex) and dipole (two vortices) flows [36]. Orlandi [89] is one of

the earliest researchers to study the wall dipole collision numerically and the effect of

the flat solid walls on the rotating vortex. Coutsias and Lynove [24] employed Fourier-

Chebyshev expansions with a spectral scheme to study the creation of the vortices

from the interaction between the no-slip walls and the dipole in a periodic channel.

Clercx and Heijst [21] used a Chebyshev pseudospectral method to analyse the dipole-

wall collision where the initial trajectory of the dipole is set either perpendicularly to

the wall or at an angle of 30◦ towards one of the no slip walls in a square box. The
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authors investigated the dissipation of the energy and how it is related to the growth

of the enstrophy in a bounded domain. Clercx and Bruneau [19] gave detailed results

of two numerical methods, a finite difference method and a pseudospectral Chebyshev

method, to simulate normal and oblique dipole-wall collision in a box. The authors

presented authoritative data that can be used as benchmark numerical results. They

presented the minimum grid resolutions required by their method to simulate this type

of flow accurately. However, presumably due to computational limitations, the max-

imum Reynolds number achieved in [19] is 5000. Later, Wells et al. [111] carried

out laboratory and numerical investigations where small scale vorticity in a quasi two

dimensional square domain was created within lateral no-slip walls. They explained

how the collision between the vortex and the wall created a secondary vortex from

boundary layer decay. Kramer [64] in his thesis describes the mechanism of the trajec-

tory for normal dipole wall collisions at high Reynolds numbers by using Chebyshev-τ

spectral methods. He gave more details about the small high amplitude vortices that

formed from the boundary layer as a result of the collision between the dipole and the

boundary. Cieślik et al. [18] examined experimentally the interaction between a dipole

in a shallow fluid and a side wall in two dimensional simulations then they made a

comparison between results of the experiment and three dimension numerical simula-

tion. Using a finite element method, Guzmán et al. [47] simulated the dipole collision

with a no slip sliding wall where the dipole collided with this wall perpendicularly.

The sliding wall moves at a constant speed. This type of collision breaks the symme-

try of primary vortices while the collision with a fixed wall maintains the symmetry

between them. Also they explained the role of the Reynolds number on the critical

speed in their method. Latt and Chopard [71] used a lattice Boltzmann method with

bounce-back boundary conditions and a BGK collision operator to simulate this flow.

A reasonable agreement with existing benchmark data was shown. However, they only

reported results for a Reynolds number of 625.

In this chapter we perform a detailed assessment of moment-based boundary con-

ditions for the lattice Boltzmann equation and use the LBM to numerically study the
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wall-dipole collision flow. We use a TRT model with moment-based boundary condi-

tions and study the cases when the dipoles travel towards the wall normally and at

angles of 30◦ and 45◦. A thorough assessment and comparison with benchmark data is

performed, and an investigation at Reynolds numbers higher than previously reported

is conducted. A paper based on this work has been accepted for publication [83].

4.1 Dipole-wall collision

The flow under study is two counter-rotating vortices confined to a square box of size

[−1, 1]× [−1, 1] with no slip boundary conditions on the walls. In accordance with the

current literature and to allow for consistent comparisons, the characteristic velocity is

given by U = 1
4

∫ ∫
|u|2 dxdy = 1. The Reynolds number is defined in terms of the half

width of the domain H as Re = UH/ν. The vorticity distribution of the individual

Gaussian monopoles is given by [13]

ω0 = ωe(1− (r/r0)
2) exp(−(r/r0)

2), (4.1)

where the initial vortex is located in the centre at positions (x1, y1) and (x2, y2). The

velocity can be obtained from the above distribution as

ux0 = −1

2
|we| (y − y1) exp

(
−(r1/r0)

2
)
+

1

2
|we| (y − y2) exp

(
−(r2/r0)

2
)
,

uy0 =
1

2
|we| (x− x1) exp

(
−(r1/r0)

2
)
− 1

2
|we| (x− x2) exp

(
−(r2/r0)

2
)
,

(4.2)

where ri =
√
(x− xi)2 + (y − yi)2, r0 = 0.1 is the radius of the monopoles, and we the

strength of the vorticies.

To test our results the total kinetic energy, E(t), and also the total enstrophy, Ω(t),

are calculated

E(t) =
1

2

∫ 1

−1

∫ −1

1

∣∣u2
∣∣ (x, t)dxdy, (4.3)
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Ω(t) =
1

2

∫ 1

−1

∫ −1

1

∣∣ω2
∣∣ (x, t)dxdy, (4.4)

where ω = ∂xuy − ∂yux is the vorticity.

The initial energy is specified as E = 2 which is achieved if the strength of the

monopole is fixed to be 299.56. In this work we consider three different problems: one

where a dipole collides perpendicular with a solid wall and others where the collision

is at an oblique angle of 30◦ or 45◦. The TRT-LBM is used by fixing the parameter

Λ = τ+τ− = 1/4. In our simulations we used a range of Reynolds numbers (Re) from

625 to 16,000 for the normal case and 625 to 7500 for the oblique one. Different grid

resolutions Nlb were employed to test the convergence of the method by monitoring

the energy and enstrophy, and the angular momentum in the oblique case only. We

consider the results to have converged when

|E(Nlb)− E(Nlbmax)| /E(initial) ≤ 0.5%, (4.5)

where E(Nlb) is the energy evaluated at t = 2, E(Nlbmax) is the energy at the maximum

resolution also evaluated at t = 2 and E(initial) is the initial value for the kinetic

energy.

For both normal and oblique wall collisions, higher Reynolds number simulations

require higher resolutions for convergence. In Table 4.1 we include the minimum res-

olution required by our algorithm to obtain converged solutions. The structure of the

code is indicated in Appendix A.2

Re Nlb(normal) Nlb(oblique)30
◦ Nlb(oblique)45

◦

625 513 513 513
1250 769 769 769
2500 1025 1025 769
5000 3073 4097 1537

Table 4.1: The minimum resolution for convergence LBM.
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4.1.1 Normal dipole wall collision

In this case the two monopoles were located at positions (x1, y1) = (0, 0.1) and (x2, y2) =

(0,−0.1), from where they propel themselves towards the east wall directly. In this

section we include the results of LBM at Re=625 to Re=5000 and compare them with

the results in [19] and [71]. Figure 4.1 shows the behaviour of the vorticity when the

dipole moves towards the no slip boundary at x = 1. Our data is taken for Re = 2500

with Nlb = 2049. Most of the vorticity is propelled from the centre of the domain

to the right boundary. Around t = 0.32 the dipole interacts with the boundary and

rebounds from the wall to induce vorticity layers at the boundary where secondary

vortices are created. Later, the negative primary vortex detaches from a tertiary thin

sheet boundary layer and pairs with positive secondary vortex to form a new dipole

then moves towards the same wall to hit it again. The same procedure happens to the

positive primary vortex Figure 4.1(d). The thin sheet boundary layer is formed from

the gradient of the velocity between the boundary and its nearby region at t = 0.49.

After t = 0.6 a second collision happens and as a result the wall creates more and wilder

vortices at the boundary. Then a secondary dipole is separated from the primary dipole

and moves towards the west wall, see Figure 4.1(f) which shows the configuration at

t = 1.5. The two ‘horseshoe’ shapes that initially surround the primary dipole merge

to form a new weak dipole which moves towards the left wall at x = −1. This dipole

hits the wall at t = 1 and creates another weaker dipole. At this wall and similar to the

east wall a thin sheet boundary layer appears and creates other weak vortices. Note

that the key for the vorticity plots in this figure is similar for all such plots in this

chapter.
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(a) t = 0 (b) t = 0.2 (c) t = 0.32

(d) t= 0.49 (e) t = 0.617 (f) t = 1.5
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Figure 4.1: Vorticity contours of normal dipole wall collision at Re=2500.

In Figure 4.2 we plot the total kinetic energy E(t) and the total enstrophy Ω(t) for

Re = 2500 at different grid resolutions, which demonstrates convergence for

Nlb = 1025. The kinetic energy begins from the initial value E(0) = 2 then decreases

sharply at t ≈ 0.33. This sharp dissipation in the energy is due to the first dipole

collision with the no-slip wall and corresponds to an increase in the enstrophy at the

same time. At the second dipole-wall collision, t ≈ 0.61, the dissipation of the energy

again increases and synchronizes with the second small peak in the enstrophy.
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Figure 4.2: The kinetic energy and enstrophy for normal dipole wall collision at Re = 2500
and Nlb = 1025 dotted, 1537 dashed, 2049 line.

In Table 4.2 the first and second local maxima of the enstrophy Ω(t) as predicted

by the TRT-LBM are shown together with the times they appear (denoted t1 and t2,

respectively). By looking at the results in reference [71] we can see that the value of the

first enstrophy peak is close to our result at Re = 625 where the first enstrophy peak

in this reference is Ω1 = 933.8 at t = 0.371. Also we compare our results with those

obtained from a finite difference method (FDM) and of the pseudospectral Chebyshev

method (SM) in reference [19]. Flows at different Reynolds numbers are simulated and

we have used the same number of grid points as the finite difference method to give

a direct comparison between the present work and the work of [19]. Therefore, the

resolutions are used here as follows: Re = 625 (Nlb = 1025), Re = 1250 (Nlb = 1537),

Re = 2500 (Nlb = 2049) and Re = 5000 (Nlb = 3073).

Re t1(LBM) Ω1 (LBM) t1(FDM) Ω1(FDM) t1 (SM) Ω1 (SM) t2(LBM) Ω2 (LBM) t2(FDM) Ω2 (FDM) t2(SM) Ω2 (SM)

625 0.370 931.6 0.371 932.8 0.3711 933.6 0.645 306.2 0.647 305.2 0.6479 305.2
1250 0.343 1884 0.341 1891 0.3414 1899 0.617 727.5 0.616 724.9 0.6162 725.3
2500 0.327 3305 0.328 3270 0.3279 3313 0.617 1413 0.608 1408 0.6089 1418
5000 0.326 5496 0.323 5435 0.3234 5536 0.606 3702 0.605 3667 0.6035 3733

Table 4.2: First and second maximum enstrophy Ω(t) of the dipole by using TRT-LBM. The results
are compared with FDM and SM of [19].

The first and second peaks of the enstrophy at the boundary are attributed to

a large generation of the vorticity in the boundary layer. In Figure 4.3 we plot the
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vorticity profiles at the boundary x = 1 and −0.6 ≤ y ≤ 0 at times t = 0.4, 0.6, 1

for Re = 625, 1250 and 2500 and we used the same resolution as [19]. The results

of the vorticity in our work are in excellent agreement with the results in (Fig. 5)

of reference [19]. The vortices at the boundary shows the expected behaviour: the

vorticity keeps increasing as the Reynolds number increases. We can notice that the

maximum vorticity for Re = 625 is highest at t = 0.4, soon after the first dipole/wall

collision. At Re = 1250 and 2500 the maximum vorticity is highest at t = 0.6, around

the time of the second collision.
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Figure 4.3: The vorticity at the boundary x = 1 at time t = 1, t = 0.4 and t = 0.6 at different
Reynolds numbers.

To show the effect of the viscosity on the vortices after the dipole collides with the

no-slip boundary x = 1, vorticity profiles in the domain (0.3, 1)× (−0.6, 0.6) and t = 1

are computed. In Figure 4.4, these profiles are plotted for different Reynolds numbers.

We observe the same phenomena as [19]. We can see from these Figures that the flow

is symmetric for all Reynolds numbers but the behaviour is different in each snapshot.

For Re = 2500 we observe the ‘rolling mill’ effect as a recently-created dipole is ejected

away from the right wall- see Figures 4.1 (f) and 4.4(c). This effect can be also observed

for Re = 3200. At higher Reynolds we get two separate systems that move apart from

each other, see Figure 4.4(d).

(a) Re = 625 (b) Re = 1250 (c) Re = 2500 (d) Re = 5000

Figure 4.4: Vorticity contours of normal dipole wall collision at t = 1. Vorticity profile shown
in the subdomain 0.3 ≤ x ≤ 1,−0.6 ≤ y ≤ 0.6.
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The maximum values of the primary vortex ωmax and its position (x, y) are shown in

Table 4.3. The results are compared with the two methods in [19], the finite difference

method and the pseudospectral Chebyshev method. The number of grid points used

is the same as those used for the finite difference method. In our simulations we

observed the results of ωmax at different times t = 0.6, 0.625, 1 and t = 1.4. We can

see that the ωmax increases with Reynolds number. For each Reynolds number the

maximum vorticity decreases in time. The maximum vorticity and its location in our

simulations are close to the predictions made by other methods. It should be noted that

the vorticity is a primary variable in the formulation of the pseudospectral Chebyshev

method in [19] while here it is obtained indirectly by numerically differentiating the

predicted velocity field. In addition, in Table 4.4 we present LBM results for the kinetic

energy and enstrophy before and after the first and second dipole wall collision and

compare them with those in [19].

current work Clercx and Bruneau

Re t (x, y) ωmax (x, y)(FD) (x, y)(SM) ωmax(FD) ωmax(SM)

625

0.6 (0.816,0.166) 159.5 - (0.818,0.165) - 158.9
0.625 (0.832,0.166) 155.1 (0.832,0.166) - 154.2 -
1.0 (0.804,0.253) 103.1 (0.805,0.254) (0.805,0.254) 102.6 102.6
1.4 (0.769,0.306) 71.28 - (0.769,0.307) - 71.00

1250

0.6 (0.872,0.148) 219.6 - (0.874,0.151) - 219.4
0.625 (0.884,0.169) 216.5 (0.885,0.174) - 216.1 -
1.0 (0.847,0.255) 170.9 (0.848,0.258) (0.848,0.257) 170.3 170.3
1.4 (0.808,0.291) 133.2 - (0.809,0.292) - 132.7

2500

0.6 (0.894,0.161) 260.9 - (0.896,0.165) - 261.9
0.625 (0.896,0.193) 259.3 (0.896,0.199) - 260.0 -
1.0 (0.829,0.219) 231.7 (0.826,0.219) (0.826,0.217) 231.4 231.4
1.4 (0.799,0.192) 202.3 - (0.798,0.195) - 201.6

5000

0.6 (0.899,0.235) 282.5 - (0.903,0.244) - 286.9
0.625 (0.888,0.272) 283.8 (0.884,0.275) - 285.9 -
1.0 (0.818,0.369) 268.2 (0.811,0.367) (0.811,0.366) 268.6 269.1
1.4 (0.799,0.192) 202.3 - (0.798,0.195) - 201.6

Table 4.3: The maximum vorticity ωmax in a normal wall-dipole collision and its location at
t = 0.6, 0.625, 1, 1.4.

For further investigation and assessment of moment-based conditions we use the
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TRT LBM with half-way bounce-back boundary conditions for comparison. There re-

sults are shown in Table 4.4 and Table 4.5. We see that the results computed using

bounce-back and moment-based conditions are in good agreement. The data set ob-

tained by using moment-based boundary conditions appears to be more accurate than

the data set obtained by using bounce-back in the sense that it is in closer agreement

with the data set obtained by spectral simulations. This shows that the proposed

approach can be a competitive method and gives us confidence to use it to impose

physically more complex conditions.

Lattice Boltzmann method Clercx and Bruneau

Re t E(t)(MM) Ω(t)(MM) E(t)(BB) Ω(t)(BB) E(t)(FD) E(t)(SM) Ω(t)(FD) Ω(t)(SM)

625

0.25 1.501 472.1 1.501 468.9 1.502 1.502 472.7 472.6
0.50 1.013 382.6 1.012 378.6 1.013 1.013 380.4 380.6
0.75 0.767 256.0 0.767 250.1 0.767 0.767 255.0 255.2

1250

0.25 1.719 613.6 1.719 610.0 1.721 1.720 615.0 615.0
0.50 1.312 612.8 1.311 608.1 1.313 1.313 611.3 611.9
0.75 1.061 486.2 1.061 477.8 1.061 1.061 484.4 484.7

2500

0.25 1.848 725.6 1.848 718.5 1.851 1.850 727.8 728.2
0.50 1.540 917.6 1.539 909.2 1.541 1.541 916.6 920.5
0.75 1.325 809.9 1.325 794.9 1.326 1.326 805.5 808.1

5000

0.25 1.919 820.3 1.919 808.2 1.923 1.922 822.8 823.1
0.50 1.690 1331 1.689 1317 1.692 1.692 1328 1340
0.75 1.496 1539 1.495 1455 1.495 1.498 1659 1517

Table 4.4: The values of the energy and the enstrophy at different times 0.25, 0.50, 0.75 which
are before, between and after the first two collisions. Here, MM refers to moment method
and BB to bounce back.

Re t1(BB) Ω1 (BB) t1(FDM) Ω1(FDM) t1 (SM) Ω1 (SM) t2(BB) Ω2 (BB) t2(FDM) Ω2 (FDM) t2(SM) Ω2 (SM)

625 0.376 853.7 0.371 932.8 0.3711 933.6 0.646 297.5 0.647 305.2 0.6479 305.2
1250 0.344 1752 0.341 1891 0.3414 1899 0.618 705.4 0.616 724.9 0.6162 725.3
2500 0.327 2993 0.328 3270 0.3279 3313 0.617 1352 0.608 1408 0.6089 1418
5000 0.327 4975 0.323 5435 0.3234 5536 0.607 3394 0.605 3667 0.6035 3733

Table 4.5: First and second maximum enstrophy Ω(t) of the dipole by using TRT-LBM and BB
method. The results are compared with FDM and SM of [19].

4.1.1.1 Higher Reynolds numbers

In this section we investigate the behaviour of the flow for Re = 7500, 10000 and

16000, (see Figure 4.5) by using the moment-based boundary conditions. For these

higher Reynolds numbers the results converged with mesh refinement until t = 0.6.

In our simulations, the maximum resolution is a grid size of around 4000 × 4000.
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To gauge whether or not this is sufficient, we follow [19] and insist upon having 5

points in the viscous wall boundary layer and estimate the boundary layer thickness as

δ ≈ 1/(4
√
Re). For Re = 10000, this gives Nlb ≈ 4000 and here we use Nlb = 4097 and

we use this grid size for all Reynolds Re = 7500, 10000 and Re = 16000. We can see

from the figure that results on successive meshes are in successively better agreement.

As for lower Reynolds numbers before t = 0.6 there are two rapid declines in energy

after the first and second wall collisions. Again these correspond with the first and

second higher peaks of the enstrophy.
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Figure 4.5: The kinetic energy and enstrophy for normal dipole wall collision at Re = 7500
with Nlb = 2049 (dotted), Nlb = 3073 (dashed), Nlb = 4097 (line).
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To test the dissipation of the energy at different Reynolds numbers we traced the

energy at the time t = 2 and different Reynolds numbers. We can notice from Table

4.6 the energy decreases faster for smaller Reynolds number than for larger ones. This

is consistent with the values of E(t) at different time steps shown in Table 4.4. The

resolutions used are the same as in Tables 4.3 and 4.4.

Re 625 1250 2500 5000 7500 10000 16000

E(2) 0.305 0.518 0.841 1.108 1.285 1.359 1.382

Table 4.6: The kinetic energy at t = 2.

In Figure 4.6 we make a comparison between high and low Reynolds numbers,

Re = 10000 and Re = 625 as an example. We observe that the number of vortices

increases with Reynolds number and the effect of the boundary at the rebound of the

dipole makes the number of dipoles at Re = 10000 higher than at Re = 625. In fact,

from Figure 4.4 (a) and Figure 4.6 (a) we can notice that the vortices for Re = 625

decrease in strength as time increases. At Re = 10000 the space between the upper

and lower cores is larger than at the smaller Reynolds number and the space is higher

with extra small high value vortices at the corners for Re = 16000. This behaviour is

more obvious at Re = 5000 and higher, see Figure 4.4 (d) and Figure 4.6(b).

(a) Re =
625

(b) Re =
10000

(c) Re =
16000

Figure 4.6: Snapshot of vorticity at normal wall dipole collision at t = 2 in the subdomain
(a,b): 0.5 ≤ x ≤ 1,−1 ≤ y ≤ 1 and (c): 0.4 ≤ x ≤ 1,−1 ≤ y ≤ 1.
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As a result of the increased activity at higher Reynolds numbers, there are more

enstrophy peaks than at smaller Reynolds numbers. This is owing to the increase in

the number of wall-vortex collisions. In Table 4.7 we show the first three maxima in the

enstrophy for the three Reynolds numbers. We can notice from Tables 4.2 and 4.7 that

the ratio between the first and second enstrophy peaks increases with the Reynolds

numbers until flattening off after Re = 5000.

Re t1 Ω1(LBM) t2 Ω2 (LBM) t3 Ω3 (LBM)

7500 0.323 7626 0.604 5013 0.685 2418
10000 0.322 9519 0.628 6455 0.721 4479
16000 0.318 12833 0.603 7760 0.65 4105

Table 4.7: First, second and third maxima in enstrophy of the dipole by using TRT-LBM.

For higher Reynolds numbers, tertiary high strength vortices are observed which

are created from the wall boundary layer around t = 0.45. In Figure 4.7 the upper

dipole is plotted (since it is symmetric with the negative ones). These vortices appear

as small circles inside the boundary vortex thin sheet for Re=2500 then they become

clear for Re=5000. For Re=7500 these vortices move far from the wall then separate

from the sheet at the boundary. For Re=10000 a quaternary vortex is formed which

merges with the tertiary one, Figure 4.7 (c). This also happens for Re = 16000 and is

even more evident in that case- see Figure 4.7 (d).

(a) Re= 5000 (b) Re= 7500 (c) Re = 10000 (d) Re = 16000

Figure 4.7: Vorticity contours of normal positive dipole wall collision at t = 0.45 in the
subdomain 0.4 ≤ x ≤ 1, 0 ≤ y ≤ 1.
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We computed the maximum vorticity at different times after the second collision but

we found qualitatively different behaviour to the flows at smaller Reynolds numbers.

For example Table 4.8, at Re= 7500 we noticed that ωmax at t = 0.6 is equal to 292.7

then at t = 1 increased to 497.4 before decreasing again. This is similar to the behaviour

of ωmax at Re = 10000 and 16000. This behaviour differs from that of ωmax in Table

4.3. This is due to the formation of the secondary dipole at the wall after the second

collision, as shown in Figure 4.7. For smaller Reynolds numbers this dipole moves

towards the wall then merges with the primary vortices. At higher Reynolds numbers,

the secondary dipole moves towards the boundary and rotates after the collision. This

then creates tertiary and fourth vortices through interaction with the wall. Figure 4.8

shows the generated vortices before, (a, c, e, g), and after, (b, d, f, h), merging with

the primary vortices. The behaviour of creating the strong vortices at the boundary is

observed also in [64].

Re t (x, y) ωmax

7500

0.6 (0.899,0.265) 293.0
0.625 (0.888,0.307) 292.6
1.0 (0.808,0.392) 497.4
1.4 (0.766,0.488) 341.8

10000

0.6 (0.899,0.231) 297.9
0.625 (0.899,0.274) 294.5
1.0 (0.839,0.421) 645.0
1.4 (0.770,0.522) 401.9

16000

0.6 (0.891,0.329) 303.0
0.625 (0.879,0.359) 303.1
1.0 (0.878,0.761) 1022
1.4 (0.805,0.872) 620.3

Table 4.8: The maximum vorticity ωmax in a normal wall-dipole collision at Re = 7500 and
10000, and its location at t = 0.6, 0.625, 1, 1.4.
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(a) t = 0.55 (b) t = 0.63

Re= 5000

(c) t = 0.64 (d) t = 0.74

Re= 7500

(e) t = 0.66 (f) t = 0.8

Re= 10000

(g) t = 0.62 (h) t = 0.74

Re= 16000

Figure 4.8: Snapshots of the vortices at normal dipole wall collision for Re= 5000, 7500,
10000 and 16000.
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In Figure 4.9 we calculate the relative error for Re = 625 with respect to the results

with the finest resolution, which in our case isNlb = 3073. The L2−error is computed as

|φ(Nlb)− φ(Nlbmax)| /φ(Nlbmax) where φ is the total kinetic energy or total enstrophy.

The convergence of this method is shown to be of second-order.
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Figure 4.9: L2-error for the enstrophy (filled square) and total kinetic energy (filled circle):
normal collision evaluated for Re = 625 at t=0.4. The dashed line is the line of slope 2.

4.1.2 Oblique dipole wall collision

In this case the dipole will release at non-normal incidence. There we use incidence

angles of 30◦ and 45◦.

4.1.2.1 Oblique dipole wall collision at angle 30◦

We now consider the case of releasing the dipole at an oblique angle and again compare

our results with benchmark data. Here, the dipole rolls from the location

(x1, y1) = (0.0839, 0.0866) and (x2, y2) = (0.1839,−0.0866) towards the no-slip wall

at x = 1 at an angle of 30◦ to the horizontal. Similar to the previous section, we

calculate the total enstrophy and total kinetic energy, from equations (4.4) and (4.3),

for different Reynolds numbers and with various grid resolutions.

Vorticity contours are illustrated in Figure 4.10 to show the evolution of the dipole

at Re=7500 (Nlb = 3073). From the figures we can see the behaviour of dipole after

the second collision, at t = 0.6, is more vigorous and complex than the normal collision
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case. Because of the angle of release of the dipole towards the wall, the positive and

negative monopoles are not symmetric after the first collision with the boundary. Also,

as time progresses the primary and secondary vortices move to the upper wall at y = 1.

The two horseshoes that surrounded the dipole at the initial time separate from it and

move in the opposite direction. After a while the two horseshoe shape vortices create

a new, weaker, dipole that interacts with the left corner, which again induces weaker

vortices, (see Figure 4.10 (e)) .

(a) t= 0 (b) t= 0.3 (c) t= 0.6

(d) t= 0.8 (e) t= 2

Figure 4.10: Vorticity contours of oblique dipole wall collision at Re= 7500.

Figure 4.11 plots E(t) and Ω(t) at Re=2500 for different resolutions. We observe

the convergence of the results at Nlb = 1025. We note that the energy decays rapidly

between 0.32 < t < 0.4 which is associated with the first peak of the enstrophy.

The dissipation of total kinetic energy is less than the dissipation for Re = 2500 in

the normal case, see Figure 4.2. At higher Reynolds numbers, for example 7500, the

energy dissipation is less than that for Re = 2500. The first peak of the enstrophy is

higher than for Re = 2500 and we can see that the number of peaks increases. The

profile is less smooth; due to the increase in the number of collisions of additionally
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created dipoles with the no-slip wall, see Figure 4.12.
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Figure 4.11: The kinetic energy and enstrophy for oblique dipole wall collision at Re = 2500
where Nlb = 769 (dot with dash points), Nlb = 1025 dotted, 1537 dashed and 2049 solid line.
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Figure 4.12: The kinetic energy and enstrophy for oblique dipole wall collision at Re = 7500,
Nlb = 4097.

Table 4.9 shows the computed energy at various times for a range of Reynolds

numbers. As was the case for the normal collision, the energy consistently decreases

less quickly at higher Reynolds number than at lower ones.
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Re t E(t)

625
0.3 1.423
0.5 1.049
2.0 0.386

1250
0.3 1.659
0.5 1.353
2.0 0.675

2500
0.3 1.790
0.5 1.579
2.0 1.053

5000
0.3 1.886
0.5 1.729
2.0 1.260

7500
0.3 1.916
0.5 1.789
2.0 1.360

Table 4.9: The kinetic energy at different times and Reynolds numbers.

The behaviour of the dipole after colliding with the wall for the oblique case is

different from the behaviour of the normal case since the symmetry of the dipole will

be broken after the collision, as we will see later. So in this problem we will use

another important quantity to test the accuracy of the method which is the total

angular momentum. The angular momentum of the flow defined with respect to the

centre of the square box is:

L(t) =

∫ 1

−1

∫ 1

−1

(xuy(x, t)− yux(x, t))dxdy = −1

2

∫ 1

−1

∫ 1

−1

r2ω(x, t)dxdy. (4.6)

In [19], the angular momentum convergence was a sensitive issue. Here, we exam-

ined the convergence of the results for angular momentum at different grid resolutions.

As a result, we found that the behaviour of the angular momentum matches the results

in [19]. For example, Figure 4.13 shows that the results for L(t) at Re = 625 have

converged for Nlb = 769. At Re = 2500 convergence is achieved at Nlb = 1537. For

Re = 7500 the results have not converged for Nlb = 3073. Overall, from these figures

the angular momentum increases with time also the rate of change of L(t) increases

with the Reynolds number. Moreover, the frequencies of the oscillations in the results
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become higher with higher Reynolds numbers. This results from the generation of

numerous small and high value vortices from the boundary layer.
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0 0.5 1 1.5 2
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(a) Re = 625: Nlb = 513 (dot with dash points), Nlb = 769
(dashed), Nlb = 1537 (dotted) and Nlb = 2049 (line)
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(b) Re = 2500: Nlb = 1025 (dot with dash points), Nlb =
1537 (dashed) Nlb = 2049 (dotted) and Nlb = 3073 (line)
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(c) Re = 7500: Nlb = 3073 (dashed) and Nlb = 4097 (line)

Figure 4.13: The total angular momentum for oblique dipole wall collision at different
Reynolds numbers.

Table 4.10 shows the enstrophy Ω(t) at the first and second dipole collision with

the east wall at x = 1. We compare our results with data obtained from the finite

difference method and the pseudospectral Chebyshev method reported in [19] for dif-

ferent Reynolds numbers. Here we have used the same number of grid points as the

finite difference method. The results are in very good agreement with those presented

in [19] where the LBM results are closer to the SM than the FDM.

Re t1(LBM) Ω1 (LBM) t1(FDM) Ω1(FDM) t1 (SM) Ω1 (SM) t2 (LBM) Ω2 (LBM) t2 (FDM) Ω2 (FDM) t2(SM) Ω2 (SM)

625 0.362 778.3 0.360 766.6 0.359 768.0 0.645 306.2 0.643 304.5 0.6435 304.5
1250 0.333 1485 0.335 1473 0.335 1478 0.582 692.9 0.581 689.4 0.5819 688.8
2500 0.324 2455 0.323 2435 0.323 2447 0.569 1029 0.569 1024 0.5692 1024
5000 0.318 3813 0.317 3769 0.317 3825 0.591 1679 0.591 1707 0.5936 1683
7500 0.320 4966 - - - - 0.65 2008 - - - -

Table 4.10: First and second maximum enstrophy of oblique wall dipole collision using mo-
ment method with TRT-LBM. The results are compared with FDM and SM of [19].

Similar to the normal case we applied the half-way bounce-back with TRT-LBM for

the purpose of comparison with moment-based conditions. These results are given in

Table 4.11 where we once again see that the moment-based approach predicts results

in better agreement with spectral simulations than bounce-back.
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Re t1(BB) Ω1 (BB) t1(FDM) Ω1(FDM) t1 (SM) Ω1 (SM) t2(BB) Ω2 (BB) t2(FDM) Ω2 (FDM) t2(SM) Ω2 (SM)

625 0.364 722.8 0.360 766.6 0.395 768.0 0.647 295.6 0.6435 304.5 0.6435 304.5
1250 0.333 1385 0.335 1473 0.335 1478 0.583 664.5 0.581 689.4 0.5819 688.8
2500 0.325 2253 0.323 2435 0.323 2447 0.570 979.5 0.569 1024 0.5692 1024
5000 0.319 3480 0.317 3769 0.317 3825 0.591 1628 0.591 1707 0.5936 1683

Table 4.11: First and second maximum enstrophy of Oblique wall dipole collision using
bounce-back with TRT-LBM. The results are compared with FDM and SM of [19].

The vorticity ω at the boundary x = 1 and −0.5 ≤ y ≤ 1 is plotted in Figure

4.14. In this figure we show the behaviour of the vorticity at different times, including

after the first and second collision with the right wall. The data are obtained for

Re = 625, 1250, 2500 and 7500 at time t = 0.4, 0.6 and 1. To make a comparison

between our results and [19] we used the same resolutions as the finite difference method

in that reference. From Figure 4.14 we note, as from [19], that the behaviour of the

vorticity at the boundary in the oblique dipole wall collision is more complex than the

normal collision case. Similar to the normal case, atRe = 625 the maximum vorticity at

the wall is highest at t=0.4 whilst at higher Reynolds numbers it is greatest at t = 0.6.

Also, in each case the highest maximum vorticity is roughly equal in magnitude to the

lowest minimum vorticity, as would be the case for the normal collision. Furthermore,

additional local maxima appear at later times for higher Re, probably associated with

more complex flow patterns due to enhanced vortex creation .
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Figure 4.14: The vorticity at the boundary x = 1 at time t = 1, t = 0.4 and t = 0.6 at different
Reynolds number: (a) Nlb=1537, (b) Nlb=2049,(c) Nlb=3073, (d) Nlb=3073 .

After t = 0.45 small third vortices start to form from the thin filament sheet that

is induced at the boundary for Re= 5000 and 7500. Then as time progresses a fourth

vortex appears at the positive monopole, Figure 4.15(a, c, e). After t = 0.6 the top two

vortices unite with others near the top corner and merge with the primary vortex, see

Figure 4.15(b, d, f). At smaller Reynolds numbers these vortices are not present at the

positive side of the sheet but we can see them clearly on the negative side. We should

mention that these small vortices have similar maximum amplitude to the primary

dipole.
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(a) t = 0.55 (b) t = 0.7

Re= 2500

(c) t = 0.55 (d) t = 0.7

Re= 5000

127



Chapter 4. Dipole wall collision with no-slip boundary conditions

(e) t = 0.55 (f) t = 0.7

Re= 7500

Figure 4.15: Vorticity snapshots of oblique dipole wall collision at t = 0.55 and t = 0.7
inserted in the first then second row respectively. The subdomain is shown: 0.4 ≤ x ≤ 1, 0 ≤
y ≤ 1 .

To better understand the behaviour of the dipole at the boundary after the second

collision, in Figure 4.16 we plot vorticity contours for different Reynolds numbers.

In this case the most interesting behaviour of the vorticity is at the top-right corner

where the dipoles interact with each other after the second collision. In these figures

the computations are shown in the domain 0.3 ≤ x ≤ 1 and 0 ≤ y ≤ 1 at t = 1. Here,

as the Reynolds number is increased, the vortex collisions near the corner become more

energetic creating further vortices. Additional vortices are also created by interactions

with the top wall, leading to extremely complex flow patterns.
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(a) Re= 625 (b) Re= 1250 (c) Re= 2500

(d) Re= 5000 (e) Re= 7500

Figure 4.16: Vorticity contours of oblique dipole wall collision at t = 1. The vorticity is
shown in the domain 0.3 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

In Tables 4.12 and 4.13 we pick out the maximum and minimum vorticity and the

location of these extrema. These data are shown for various Reynolds numbers at

different times. We can see in general that the strength of the maximum vortices at

each Reynolds number gradually decreases between t = 0.6 and t = 1.8. However, for

Re = 7500 small but intense vortices are formed near the top-right corner as the dipole

interacts with the corner. These small vortices have a significant impact on the results,

causing fluctuations in the maximum vorticity until t = 1.4.
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Current work Clercx and Bruneau

Re t (x, y) ωmax (x, y)(FD) (x, y)(SM) ωmax(FD) ωmax(SM)

625

0.6 (0.740,0.658) 161.9 (0.740,0.659) (0.740,0.659) 161.40 161.5
1.2 (0.713,0.770) 94.09 (0.711,0.771) (0.712,0.772) 93.74 93.80
1.8 (0.592,0.717) 63.06 (0.591,0.716) (0.592,0.717) 63.00 63.00

1250

0.6 (0.800,0.606) 220.8 (0.807,0.607) (0.807,0.607) 220.0 220.0
1.2 (0.691,0.777) 157.5 (0.691,0.779) (0.691,0.779) 157.0 157.0
1.8 (0.553,0.754) 119.9 (0.551,0.754) (0.550,0.753) 119.6 119.7

2500

0.6 (0.813,0.625) 344.4 (0.900,0.690) (0.899,0.689) 258.7 258.7
1.2 (0.613,0.788) 216.7 (0.609,0.789) (0.608,0.788) 216.6 217.0
1.8 (0.578,0.685) 192.1 (0.555,0.694) (0.560,0.691) 191.2 191.6

5000
0.6 (0.789,0.666) 285.4 (0.794,0.680) (0.797,0.684) 288.0 288.0
1.2 (0.570,0.732) 261.4 (0.643,0.710) (0.612,0.712) 264 264
1.8 (0.618,0.743) 240.6 - - - -

7500
0.6 (0.840,0.704) 293.1 - - - -
1.2 (0.695,0.856) 493.7 - - - -
1.8 (0.496,0.757) 359.6 - - - -

Table 4.12: The maximum vorticity ωmax at positive vortex in a oblique wall-dipole collision
and its location at t = 0.6, 1.2, 1.8.

current work Clercx and Bruneau

Re t (x, y) ωmin (x, y)(FD) (x, y)(SM) ωmin(FD) ωmin(SM)

625

0.6 (0.897,0.361) -152.9 (0.898,0.365) (0.898,0.364) -151.8 -151.9
1.2 (0.871,0.434) -60.33 (0.872,0.435) (0.872,0.436) -59.9 -59.9
1.8 (0.886,0.680) -29.37 (0.888,0.685) (0.887,0.685) -29.2 -29.1

1250

0.6 (0.928,0.383) -213.4 (0.928,0.381) (0.928,0.381) -212.5 -212.7
1.2 (0.877,0.513) -108.6 (0.877,0.514) (0.877,0.513) -108.3 -108.3
1.8 (0.811,0.872) -63.15 (0.811,0.867) (0.812,0.865) -63.16 -63.16

2500

0.6 (0.912,0.553) -341.4 (0.923,0.368) (0.923,0.368) -248.2 -248.3
1.2 (0.906,0.488) -154.3 (0.906,0.484) (0.907,0.492) -155.1 -154.9
1.8 (0.844,0.763) -102.9 (0.841,0.746) (0.841,0.738) -104.0 -103.7

5000
0.6 (0.893,0.320) -277.9 (0.892,0.320) (0.894,0.319) -278.0 -278.0
1.2 (0.527,0.599) -340.0 (0.909,0.470) - -224.0 -
1.8 (0.733,0.812) -204.1 - - - -

7500
0.6 (0.899,0.588) -596.8 - - - -
1.2 (0.850,0.333) -263.3 - - - -
1.8 (0.410,0.602) -232.0 - - - -

Table 4.13: The minimum vorticity ωmin at negative vortex in a oblique wall-dipole collision
and its location at t = 0.6, 1.2, 1.8.

To test the convergence of the oblique dipole wall collision, we calculate the L2-

error for the vorticity and the energy at two times. The relative error when Re = 625 is
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computed with respect to the results with the finest resolution, in our case isNlb = 3073.

The L2- error is defined as

error =

√√√√√√√√
∑

i,j

(
ωij

(
Nlb

)
− ωij

(
Nlbmax

))2

∑
i,j

(
ωij

(
Nlbmax

))2 . (4.7)

Since the behaviour of the dipole changes with time, we calculated the error at different

times. In Figure 4.17 we plot the errors of E(t) and ω at t = 0.3 and t = 0.5 for different

resolutions. Second-order convergence is shown for TRT-LBM as expected.

(a) t= 0.3

(b) t= 0.5

Figure 4.17: The L2- error for the oblique dipole wall collision for the vorticity (fill square)
and the total kinetic energy (fill circle). The error for Re=625 at t=0.3 (top) and t=0.5
(bottom). The line of slope 2 (dashed) is also shown.
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4.1.2.2 Oblique dipole wall collision- 45◦

Numerous authors have discussed the flow when the dipole collides normally with the

wall and at an oblique angle of 30◦. In this thesis, and unlike most other works,

collisions at an angles of incidence of 45◦ are also considered. At this angle the dipole

moves towards the upper-right corner which causes a distinct phenomenon.

In this case, the dipole releases initially towards the top-right angle at the position

(-0.0707,0.0707),(0.0707, -0.0707). First the behaviour of the dipole when it collides

with the no-slip wall for Re = 2500 is explained. In general, the primary dipole reaches

the corner and collides with it around t = 0.4 which induces a secondary dipole from

the intersecting walls. Thus, two arc vortices surrounding the primary dipole produce a

new pair of dipoles which move after the secondary one. This process repeats itself and

a new ‘rolling-mill ’ creates a succession of dipoles. The new pairs of monopoles reflect

from the corner and then move towards the bottom-left corner where they collide with

the walls to generate a filament sheet of vortices from the boundary layer. Finally,

the emanation of the monopoles stops by the dissipation of the primary dipole at the

top-right corner. During this process the pairs of additional dipoles lose their strength

during their travels. Figure 4.18 shows a sequence of dipoles generated from the initial

dipole for Re = 2500.
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(a) t = 0.4 (b) t = 0.56

(c) t = 0.66 (d) t = 0.8

(e) t = 1.4 (f) t = 1.8

Figure 4.18: Vorticity contours of dipole collision with the no slip wall at an angle of 45◦ for Re =
2500.

The general behaviour of the dipole collision with no-slip wall at an angle of 45◦

for other Reynolds numbers is similar to Re = 2500 case. The primary dipole loses

its strength over time while the secondary dipoles are bounced towards the opposite

corner. However, for Reynolds numbers higher than 2500, the secondary dipole is more

active on the bottom-left corner which induces small and high magnitude monopoles.

The higher the Reynolds numbers, the more frequent is the creation of the dipoles and

vortex sheets at this corner. Figure 4.19 compares the generation of the additional

dipoles at the bottom-left corner for various Reynolds numbers at t = 2.
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(a) Re = 2500 (b) Re = 5000

(c) Re = 7500 (d) Re = 10000

Figure 4.19: Vorticity contours of dipole collision with the no slip wall at an angle of 45◦ at t = 2
for various Reynolds numbers.

4.2 Conclusion

In this work we performed a detailed numerical study of complicated flows with no-slip

boundaries using moment-based boundary conditions and the TRT-lattice Boltzmann

method. We studied the physics of the dipole when it hit the no slip wall at different

Reynolds numbers. For normal and oblique wall collisions, the convergence of the

total enstrophy and energy were investigated and the convergence of the total angular

momentum was also tested for the oblique case at an angle of 30◦. For the Normal

dipole wall collision, the angular momentum is zero and that proved the accuracy of

our simulation.

At the beginning of this flow, the primary monopoles are released from the two

semi circular vortices which propelled towards the right wall. The surrounding shields

moved in the opposite direction to create a weaker dipole that hits the left wall to

create additional weak vortices. The interaction of the primary dipole with the no-

slip right wall created and induced a secondary dipole which interacted with vortices
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on the boundary. After the first collision with the wall the symmetry between the

two monopoles remained in the normal and diagonal release with an angle of 45◦,

while it was broken in the oblique collision at 30◦. For the three cases, the energy

dissipation rate decreased when the Reynolds number increased. As the Reynolds

number increased, the ratio between the first and second maxima of the enstrophy

increased. The behaviour of the dipole at an incident of 45◦ shed light on new physics

of ‘rolling-mill ’ phenomenon where the pair of monopoles disappeared during time.

To increase our understanding of dipole wall collisions further we investigated the

behaviour of the vortices at the boundary at different times. In the normal case, small

and high intensity vortices were created at the wall and merged with the primary

vortex for higher Reynolds numbers. For the oblique 30◦ collision, third and fourth

small monopoles were created from the boundary layer wall and become more obvious

for higher Reynolds number. Moreover, for both cases we showed the behaviour of the

vortices at x = 1 for different times and Reynolds numbers and we found that the ω(t)

for Reynolds higher than 625 increased further after the second dipole wall collision.

Moreover, the maximum vorticity decreased with respect to time in all cases except for

very large Reynolds number which found variations in the results for the oblique case.

For the oblique case of 45◦ collision, by increasing the Reynolds number the additional

small and high value monopoles increased and concentrated on the bottom left corner.

The method presented here has been shown to compute solutions that are in very

good agreement with benchmark data, including results obtained from spectral method

simulations. Also by studying other boundary conditions with this flow, like bounce-

back scheme, we proved that the moment-based conditions is a competitive method

with other boundary conditions. Releasing the dipole towards the corners which gave a

successful simulation increased the confidence that the moment method seems to work

well for corners. The LBM with moment based boundary conditions demonstrated

second-order accuracy as expected and in agreement with theory, as verified by our

convergence studies, and the model discussed here successfully predicted the complex

flow in the vicinity of the corners. This increases our confidence in the application
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of the LBM with moment-based boundary conditions to flows in confined but regular

geometries.
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Dipole wall collision with Navier

slip boundary condition

In the last few years, in oceanography and engineering applications, the problem of a

vortex rebounding from a slip surface has attracted some attention [61, 110]. Early

research on the effect of the free-slip wall on a vortex rebounding from a boundary was

conducted by Barker et al. [3] and Saffman [98]. In turbulent flows, like in a hurricane

and large eddy that rebounds from the ocean, the vortices slip at the boundary, so no-

slip conditions are not valid at this kind of flow [39]. This phenomenon is also important

in the field of aeroacoustics [76, 26, 57]. For example, the type of the surface, slip or

free-slip walls, and the angle of incidence determine the nature of the sound pressure

radiated; which could be quadrupolar, octupole or dipole formula [85].

The generation of a sequence of vortices by dipoles colliding with the walls depends

on the boundary type. At no-slip walls, numerous additional dipoles are induced after

first wall collision, as seen in Chapter 4 . However, in inviscid or slip boundaries, the

dynamics of the dipole that rebound from the wall are different. When the Navier-slip

condition is applied, the slip length controls the number of vortices that are produced

in the boundary layer. At stress-free boundaries there is no generation of vortices

at the wall. Carnevale et al. [12] carried out numerical and laboratory experiments

on dipole collision with no-slip and free-slip walls on flows near the coast. At stress-
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free walls, the dipole moves to the edge of the domain without any rebounds from

the wall. Sutherland et al. [105] used a volume penalisation method to describe the

behaviour of the dipole interacting with a slip wall at fixed slip lengths for Re = 1252.

Compared with the no-slip case, it was shown that when the dipole hits the slip wall,

the space between the two monopoles is wider and the number of collisions with the

wall is reduced. Sutherland extended the work to demonstrate a collision with an

oblique collision in his thesis [104]. The study was expanded to simulate the dipole

wall collision in a circular domain.

This chapter follows Sutherland [104] to study the behaviour of the dipole wall

collision by using the LBM, then extends the study to include the collision at higher

Reynolds numbers. Here, we generalise a dipole incidence with the no-slip walls to

include Navier-Maxwell slip condition with moment-based boundary conditions from

Section 3.7.1. The Navier slip boundary condition will be applied with increasing slip

length until the free-slip boundary is reached. The Two Relaxation Time (TRT) model

for the lattice Boltzmann equation is used to simulate the dipole collision with a slip

boundary.

First, the normal dipole collision with the slip boundary for moderate and high

Reynolds numbers is investigated. The investigation discusses some interesting physics

of the flow after the first wall collision. The results of the total kinetic energy and the

total enstrophy are normalised in this chapter for the purpose of comparison with [104].

This is followed by studying the effect of the slip length on dipoles which approach from

the wall at angles of 30◦ and 45◦. Results are presented here based on the convergence

study from the previous chapter, however at big slip lengths and Re ≥ 5000 the

simulations needed less refined grids to converge compared with no-slip, because in

this case the velocity gradient is smaller for the slip condition and the simulation does

not need highly grid points.
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5.1 Normal dipole slip collision

A normal dipole wall collision with slip boundary conditions was implemented. The slip

length will be constant in value and independent of Reynolds numbers. The Reynolds

numbers are taken between 625 ≤ Re ≤ 16000 in the simulations of slip length of at

least 0.2. For slip lengths smaller than 0.2 the Reynolds numbers will be taken up

to 10000. This is because as the slip length approaches zero, higher grid resolutions

are needed for convergence. For Re > 10000 and according to the estimation of the

boundary layer thickness, more than 4097 × 4097 grid points are required to gain

successful simulation.

5.1.1 Dipole wall collision for various slip lengths

In the case of slip boundaries, the number of the dipole rebounds from the boundary

decreases and fewer vortices are generated from the boundary, compared with the no-

slip case considered in Chapter 4. The dynamics of the collision with a slip wall is

less complicated than the collision with a no-slip boundary, as we will be seen in this

chapter. To illustrate the behaviour of the dipole interaction with a slip boundary,

the development of vorticity production at the wall for small and large slip lengths for

Re = 2500 will be discussed. At slip length ζ= 0.002 a dipole collides with the slip wall

and is forced to rebound by the impact of the secondary core of vortices similar to the

no-slip case. After t = 0.5 the secondary monopoles join together at the centre of the

wall and create a secondary dipole that sticks to and rotates at the wall, this shown in

Figure 5.1 (b). This behaviour differs from the no-slip case where the secondary dipole

has the strength to travel further from the wall, see Figure 4.1. A vorticity filament

that separates from the boundary layer surrounds the secondary monopoles at around

t = 0.7. The dipole continues to rotate at the wall until t = 1.8; then the primary

dipole starts to lose strength. No additional dipoles detach from the boundary layer

other than the primary and secondary ones after the second dipole wall collision at

ζ = 0.002. Figure 5.1 shows the behaviour of the dipole after it has collided with the
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wall at slip length 0.002 and Re = 2500. The key for the figures is identical for all

vorticity plots in this chapter.

(a) t = 0.5 (b) t = 0.6 (c) t = 0.7

(d) t = 1 (e) t = 1.8
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Figure 5.1: Plots of vorticity for normal wall dipole collision at Re = 2500 and ζ= 0.002. Contours
are shown in the subdomain 0.5 ≤ x ≤ 1,−0.6 ≤ y ≤ 0.8 in the vicinity of the collision.

To understand the effect of the large slip length on the behaviour of the dipole,

the flow with slip length ζ=0.01 is studied. Figure 5.2 shows only the top half of the

domain, since the normal collision is symmetric about the horizontal centreline. Until

the beginning of the second collision at t = 0.5, the flow features are similar to those

of the collision with a wall of smaller slip length. After the second collision, the pair

of dipoles split further, because of the slip effect and the secondary monopoles merge

with the primary ones at around t = 0.6. Simultaneously, a bundle of vortices starts
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to rotate above the primary dipole which is generated from the filament sheet at the

boundary. After t = 1, these additional vortices lose their strength while the primary

dipole retains its strength and continues moving at the slip wall.

(a) t = 0.5 (b) t = 0.6

(c) t = 0.7 (d) t = 1

Figure 5.2: Plots of vorticity for normal wall dipole collision for Re = 2500 and ζ= 0.01. Contours
are shown in the subdomain: 0.5 ≤ x ≤ 1, 0 ≤ y ≤ 1 in the vicinity of the collision.

Figure 5.3 displays the dissipation of total kinetic energy and the total enstrophy at

different slip lengths for Re = 2500. In general, the plot shows an excellent agreement

between the LBM results and the results of [104]. Since the number of vortex wall

collisions decrease when the slip length is increased, the dissipation of the energy

decreases as the slip length increases and is highest in the no-slip case. For different slip

lengths, the dissipation of the energy is the same until around t = 0.3 where the first

wall collision happens, then it starts to separate according to the slip length. Figure

5.3(b) demonstrates that the maximum enstrophy decreases with increasing slip length

and the peaks are highest for the collision with no-slip wall. For the higher values of slip

length, as with ζ ≥ 0.1, the dissipation of the energy decreases less and the enstrophy
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appears as a line without any peaks, since there are no additional collisions with the

wall after the first one.
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Figure 5.3: The kinetic energy and total enstrophy for Re = 2500 and different slip lengths ζ.
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5.1.2 The effect of slip length and Reynolds number on the

flow

In this section the roles of the slip length and the Reynolds number are investigated.

Figure 5.4 gives a view of how the Reynolds number effects the generation of vortices.

The results show the strength of the secondary dipole at two times for a slip length of

ζ=0.002. When Re < 2500, the secondary monopoles meet at the centre of the wall

and create one dipole without any additional monopoles appearing in the boundary

layer. However, for Re ≥ 5000 the small secondary monopoles continuously move

with the primary one without losing their strength. At t = 0.8 a number of small high

magnitude vortices appear at the filament sheet that surrounds the primary monopoles.

The number of collisions increases with an increase in Reynolds number. Subsequently,

the gap between the two monopoles increases with Reynolds number. The results in

Figure 5.4 are given at t = 0.8 and t = 1 to show the additional vortices at the

boundary for different Reynolds numbers. Similar to the collision with the no-slip wall,

where Orlandi [89] described the behaviour of the secondary dipole at high Reynolds

numbers for no-slip collision, the secondary dipole at the slip boundary is smaller in

size and higher in magnitude than was the case for smaller Reynolds numbers. That

is because at higher Reynolds numbers, the dissipation of the small secondary vortex

is slower. Moreover, increasing the slip length reduces the ‘rolling-mill ’ effect from

the previous chapter especially for high Reynolds numbers since the space between the

two primary monopoles is increased. For all Reynolds numbers, there are no further

vortices generating from the wall after t = 1.2.
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(a) t = 0.8 (b) t = 1

Re= 1252

(c) t = 0.8 (d) t = 1

Re= 5000
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(e) t = 0.8 (f) t = 1

Re= 7500

(g) t = 0.8 (h) t = 1

Re= 10000

Figure 5.4: Plots of vorticity for normal wall dipole collision at ζ= 0.002 and t = 0.8 and 1
for various Reynolds numbers. Contours are shown in the subdomain: 0.5 ≤ x ≤ 1,−0.8 ≤
y ≤ 0.8 in the vicinity of the collision.

To demonstrate the effect of Reynolds number on the wall with higher slip lengths,

Figure 5.5 shows the influence of slip length ζ= 0.01 on the formulation of vortices at

the wall for various Reynolds numbers. As the Reynolds number increases, the space

between the two primary monopoles increases until they reach to the top and bottom
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walls for Re ≥ 5000. The times in Figure 5.5 are chosen to show the differences in

behaviour at these Reynolds numbers.

In general, for Re < 2500 the small secondary monopoles move towards the primary

one, then lose their strength over time. At Re ≥ 5000 the primary monopoles travel

far from each other while the secondary small and high amplitude two vorticity cores

move towards the center of the wall. For Re = 7500 and Re = 10000, the two small

secondary monopoles that move towards the centre of the wall are wrapped by one

high value vortex. For higher slip lengths and higher Reynolds numbers, the dipoles

travel to the top and bottom walls.

(a) t = 0.6 (b) t = 1

Re = 1252
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(c) t = 0.6 (d) t = 1

Re = 5000

(e) t = 0.6 (f) t = 1

Re = 7500
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(g) t = 0.6 (h) t = 1

Re = 10000

Figure 5.5: Plots of vorticity for normal wall dipole collision at ζ= 0.01 and t = 0.6, 1 for
various Reynolds numbers. Contours are shown in the subdomain: 0.4 ≤ x ≤ 1,−1 ≤ y ≤ 1
in the vicinity of the collision.

For different slip lengths and similar to the no-slip case, when the Reynolds number

was increased, the dissipation of the energy decreased, see Figures 5.3(a) and 5.6(a).

The results in Table 5.1 show the impact of the slip and no-slip cases on the dissipation

of the kinetic energy for various Reynolds numbers at t = 2. The two maximum peaks

of the enstrophy increase with higher Reynolds numbers. Also for slip lengths ζ > 0, the

enstrophy descends to the same point after t = 1.2 for Re ≤ 2500 and after t = 1.5 at

higher Reynolds numbers. This change coincides with the lack of vorticity formation

at the boundary at this period of time, except for the no-slip conditions where the

boundary layer is active and continuously induces more vortices. Moreover, the decay

of the enstrophy in the interval t ∈ [1.2, 2] is faster with larger Reynolds numbers, see

Figures 5.3(b) and 5.6(b). In Table 5.2 non-normalized results of the first and second

maximum enstrophy are shown for various Reynolds numbers at no-slip and different

slip length walls. Except for ζ = 0.01, one peak has appeared as shown in Figure 5.5.
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Figure 5.6: The normalized kinetic energy and total enstrophy for normal wall dipole collision at
Re = 10000

ζ Re = 1252 Re = 2500 Re = 5000 Re = 7500 Re = 10000

0.02 0.344 0.562 0.742 0.76 0.808
0.01 0.333 0.517 0.678 0.753 0.875
0.002 0.272 0.430 0.620 0.699 0.739
0 0.606 0.419 0.554 0.642 0.645

Table 5.1: The kinetic energy at t = 2, E(2)/E(0), for normal dipole wall collision for different
Reynolds numbers and slip lengths.
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Re ζ t1 Ω(t1) t2 Ω(t2)

2500

0.01 0.36 952.1 - -
0.002 0.34 1945 0.64 1153
No slip 0.327 3305 0.617 1413

7500

0.01 0.37 1093 - -
0.002 0.33 2705 0.58 2017
No slip 0.323 7626 0.604 5013

10000

0.01 0.37 1109 - -
0.002 0.33 2897 0.57 2207
No slip 0.322 9519 0.628 6455

Table 5.2: First and second maximum enstrophy Ω(t) of the dipole wall collision by using
TRT-LBM. Results are given for different slip lengths and Reynolds numbers.

The maximum velocity at the wall is presented for various Reynolds numbers in

Figure 5.7. The figure illustrates that the velocity at the wall grows faster with smaller

slip lengths. By increasing the Reynolds numbers the dipole is more energetic at

the boundary, therefore the maximum velocity at the east wall increases as Reynolds

numbers increase.
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Figure 5.7: The maximum velocity at x = 1 with different slip and Re= 1252 and 10000.

5.1.3 Trajectory of the dipole

Kramer [64] made a comparison between the path of a dipole colliding with no-slip

and stress-free boundaries at Re = 1250. Also the trajectory of a dipole with different

slip lengths and stress-free boundaries in a channel for Re = 1252 has been studied by

Sutherland [104]. Following [104], this section illustrates the trajectory of the maximum

vorticity for a dipole colliding with different types of boundaries. The comparison is
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given for the path for no-slip, slip and the stress-free walls. Figure 5.8 describes the

trajectory of the maximum vorticity of the positive half of the dipole. This figure traces

the trajectory of the dipole at Re = 2500 and ζ=0.004, 0.002, 0.01 and 0.02. Note

that the no-slip is approached as ζ → 0. Before the first wall collision, the trajectories

overlap for different slip lengths for all Reynolds numbers. After the first wall collision

the dipole stays close to the wall for a greater distance for higher slip lengths. For

smaller slip lengths, as the number of the collisions increases, the rebounds of the

dipole from the wall cause the primary vortex to move as a circular trajectory near

the wall. For no-slip walls the path of the dipole is very short and the number of

circulations is greater.
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Figure 5.8: Trajectory of the maximum vorticity in the top half of the domain with different
slip lengths. The Reynolds number is 2500.

To observe the behaviour of the dipole that collides with a shear stress-free bound-

ary using moment based boundary conditions, different moments should be chosen.

The implementation of this case will be given for the east wall as an example. The

hydrodynamic condition that was imposed for free-slip wall at the east wall indicates

that ∂uy/∂x = 0. This derivative is embedded within the off-diagonal component of

the second-order moment of the LBM, Πxy =
∑

i ficixciy. Thus, to impose the free slip

condition Πxy = 0 must be set, since the component of the velocity normal to a wall
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and its derivative at the wall are zero.

In Table 3.2 instead of using the moment ρuy from the second row we will pick Πxy

as a second moment. So the conditions will be:

ρux = 0; Πxy = 0; Πyy =
ρ

3
+ ρu2y, (5.1)

where Πyy = Π
(0)
yy is from the Chapman-Enskog expansion and the free-stress assump-

tion which leads to Π
(1)
yy = 0.

Translating these conditions into ”barred” moments (see equation (2.117)) and

solving for f̄ yields the incoming distributions

f̄3 = f̄1 + f̄2 + f̄4 + 2(f̄5 + f̄8)−
ρ

3
− ρu2y,

f̄6 =
ρ

6
− f̄2/2− f̄4/2− f̄8 + ρu2y/2,

f̄7 =
ρ

6
− f̄2/2− f̄4/2− f̄5 + ρu2y/2.

(5.2)

The density ρ can be calculated by using the momentum ρux

ρ = −ρux + f̄0 + f̄2 + f̄4 + 2(f̄1 + f̄5 + 2f̄8), (5.3)

and the momentum ρuy is obtained from the shear stress Πxy

ρuy = −Πxy + f̄2 − f̄4 + 2f̄5 − 2f̄8. (5.4)

Along the stress-free wall, the two primary monopoles separate with the first colli-

sion and roll up at the wall . The positive and negative monopoles move with opposite

directions without any rebound and do not generate any further vortices at the wall.

The walls with slip lengths ζ ≥ 0.1 act as a stress-free wall. Figure 5.9 shows the tra-

jectory with slip boundary conditions and slip length ζ = 0.2 matches the trajectory

with stress-free walls.
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Figure 5.9: Trajectory of the maximum vorticity in the top half in a range of time t ∈ [0, 2].
With ζ= 0.2 and the stress-free condition. The Reynolds number is Re=2500.

5.2 Oblique wall dipole collisions with slip bound-

aries

In Chapter 4 the behaviour of the dipole when it collides with a no-slip wall at angles

of 30◦ and 45◦ was explained. From the snapshots, it can be seen that the collision

with the no-slip wall at an angle of 30◦ is more complicated than the normal case.

The generation of vortices is more frequent and the symmetry between two monopoles

is broken. In this section, a detailed study on the behaviour of dipole collision with

various slip lengths with release angle of 30◦ will be explained. Also the physics of

a dipole that collides with a slip wall at an angle of 45◦ will be discussed. In each

case, the influence of the slip length and the Reynolds number on the collision and the

formulation of the vortices at the wall is shown.

5.2.1 Dipole slip wall collision at an angle of 30◦

Initially, the two counter-rotating vortices of the dipole are located at

(0.0839, 0.0866), (0.1839,−0.0866) just like in the no-slip case. Numerical experiments

were conducted for dipole wall collisions for various slip lengths. Figure 5.10(a) and (c)
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shows there is a small difference in the behaviour of the dipole colliding with no-slip and

small slip ζ =0.002 boundaries at t = 0.7 with regard to the generation of vortices near

the corner. Except for the no-slip case and at around t = 1.7, the negative monopole

tends to move towards the upper corner to merge with the positive core, while at ζ=

0.002 it keeps moving at the east wall far from the positive core, see Figure 5.10(b) and

(d). For large slip lengths, the two primary monopoles separate further. The secondary

negative monopole merges with the positive one after the second collision, while the

positive core rotates alone at the wall until it loses its strength over time, see Figure

5.10(e)(f).

(a) t = 0.7 (b) t = 1.7

No slip

(c) t = 0.7 (d) t = 1.7

ζ= 0.002
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(e) t = 0.7 (f) t = 1.7

ζ= 0.01

Figure 5.10: Vorticity plots for oblique wall dipole collision at angle of 30◦ for no slip, slip
ζ= 0.002, 0.01 at t = 0.7, 1.7 and Re = 2500. Contours are shown in the subdomain:
0.2 ≤ x ≤ 1,−0.4 ≤ y ≤ 1 in the vicinity of the collision.

By looking at the general behaviour of the total energy, enstrophy and the maximum

velocity at the wall, the differences between each slip and no-slip boundary can be

observed. Figures 5.11 and 5.12 show that the dissipation of the energy, the rise of

the enstrophy peaks and the maximum velocity at the wall behave differently in these

flows. The ratio of the energy dissipation is greater and the peaks of the enstrophy are

higher with collisions normal to the wall compared with the collision at 30◦.
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Figure 5.11: The total kinetic energy and total enstrophy at Re = 2500 for oblique dipole
wall collision at and angle of 30◦ for different slip lengths.
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Figure 5.12: The maximum velocity at x = 1 with different slip lengths for Re = 2500.

Figure 5.13 illustrates the effect of the Reynolds numbers on the vortex boundary

interaction for ζ= 0.002. For Reynolds numbers higher than 2500, additional vorticity

cores are generated from the positive monopole, see Figure 5.13 (a) and (c). As time

progresses, the secondary dipole loses its strength more slowly with higher Reynolds

numbers. Moreover, at t = 1, the small and high value negative monopole keeps
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rotating around the positive monopole for Re = 7500. The positive core of vorticity also

preserves its strength and moves towards the nearest corner. However, for Re = 5000

the secondary positive core loses its intensity over time, while the negative one behaves

similarly to the monopole for Re = 7500, see Figure 5.14. Figure 5.15 shows that for

Re = 5000 and Re = 7500 at larger slip lengths, the boundary layer creates more

vortices from the negative primary monopole than those in the collision. However,

after t = 0.7 and for different Reynolds numbers, the tertiary vortices start to lose

their strength, while the space between the positive and negative cores increases with

the increasing Reynolds numbers.

(a) t = 0.6 (b) t = 1

Re= 5000
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(c) t = 0.6 (d) t = 1

Re= 7500

Figure 5.13: Vorticity fields of dipole wall collision at an angle of 30◦ at ζ= 0.002 and
t = 0.6, 1 for Reynolds numbers 5000 and 7500. Contours are shown in the subdomain:
0.2 ≤ x ≤ 1, 0 ≤ y ≤ 1 in the vicinity of the collision.

(a) Re = 5000 (b) Re = 7500

Figure 5.14: Vorticity fields of dipole wall collision at an angle of 30◦ at ζ= 0.002 and t = 1.5
for Reynolds numbers 5000 and 7500. Contours are shown in the subdomain: 0 ≤ x ≤ 1, 0 ≤
y ≤ 1 in the vicinity of the collision.
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(a) Re = 5000 (b) Re = 7500

Figure 5.15: Vorticity fields of dipole wall collision at an angle of 30◦ at ζ= 0.01 and t = 0.5
for Reynolds numbers 5000 and 7500. Contours are shown in the subdomain: 0.4 ≤ x ≤
1,−0.2 ≤ y ≤ 1 in the vicinity of the collision.

To obtain all the information about the dipole wall collision at an angle of 30◦

for various slip lengths, the total angular momentum is plotted for Re = 2500 and

Re = 7500 in Figure 5.16. The plots illustrate that before the first wall interaction, the

angular momentum is independent of slip length. After collision, the results of angular

momentum is highly sensitive to slip length. The fluctuation of the angular momentum

decreases for large slip lengths, especially ζ ≥ 0.1. By tracing the vorticity contours

for these two slip lengths, the two high and low peaks of L(t) can be explained. During

the movement of the dipole along the slip wall and when the dipole reaches the corners,

the angular momentum has sudden jumps. The high peaks of the angular momentum

represent the results when the negative monopole reaches the bottom corners, while

the minimum jumps describe the arrival of the positive monopole at the upper corners.

Chapter 4 compares the recurrence of the oscillations in the results of the angular

momentum for a dipole colliding with no-slip wall at different Reynolds numbers which

increases with the Reynolds number. Here, the oscillation of the angular momentum

is slightly effected by increasing the Reynolds number at a slip boundary.
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Figure 5.16: The total angular momentum at Re = 2500 and Re = 7500 for oblique wall
dipole collision at and angle of 30◦ and different slip lengths.

5.2.2 Dipole slip wall collision at an angle of 45◦

In the collision at an angle of 45◦ with the Navier slip boundary, the dissipation of the

primary dipole differs from the one in the collision with the no-slip wall. Figure 5.17

displays a comparison between a dipole which collides with slip and no-slip boundaries
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for Re = 2500. The data is presented at t = 0.8 and t = 1. For ζ= 0.002 and 0.004, the

primary dipole loses its strength more slowly than the collision with no-slip wall. Also

the number of emitted dipoles decreases as slip length increases. At higher slip lengths

of ζ = 0.02 and 0.01, the primary dipole does not lose its strength after collision, but the

positive and negative monopoles move to the upper and right boundaries, respectively.

As the slip length increases, the primary monopoles are able to move further from

the corner. Each vortex induces only a secondary monopole which moves further from

the primary one towards the corner. After t = 1, the two small secondary monopoles

combine as one dipole at the corner, see Figures 5.17 (f) and (h). At ζ= 0.02, they

start to lose their strength when they reach the corner. At ζ ≥ 0.2, and similar to the

normal and oblique at an angle of 30◦ collisions the primary dipole separates as two

monopoles and moves along the walls without any further actions, since the walls act

as stress-free boundaries.

(a) t = 0.8 (b) t = 1.2

No-slip

(c) t = 0.8 (d) t = 1.2

ζ= 0.002
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(e) t = 0.8 (f) t = 1.2

ζ= 0.01

(g) t = 0.8 (h) t = 1.2

ζ= 0.02

Figure 5.17: Vorticity fields of dipole wall collision at an angle of 45◦ at no-slip and slip ζ=
0.002, 0.004, 0.01, 0.02 at t = 0.8, 1.2 for Re = 2500.

Figure 5.18 shows the total kinetic energy and the total enstrophy for dipole wall

collisions at 45◦. The dissipation of the energy behaves in an unexpected manner.

Here, the dissipation of the energy for ζ = 0.002 is lower than that for no-slip collisions

and it is even lower for ζ = 0.004 after t = 1.0. That coincides with the enstrophy

growth for ζ = 0.004 and 0.002 at t = 1.
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Figure 5.18: The normalized total kinetic energy and total enstrophy at Re = 2500 for oblique
at an angle of 45◦ case different slip lengths.

For slip length 0.002, the main feature to be noticed is when the secondary dipole

hits the opposite corner at t = 2. Figure 5.19 shows that the number of additional cores

of vorticity at the bottom-left corner increases with higher Reynolds numbers. Addi-

tionally, the number of the emission dipoles from the primary one rises with Reynolds

number. For ζ= 0.004, by increasing the Reynolds numbers the roll up of the dipole
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at the corner increases. This induces more small dipoles at the corner. For Re = 5000,

the secondary dipole sticks and rolls up at the corner until its strength reduces at t = 1.

Meanwhile, what is left from the secondary dipole is an arc of sheets of vortices that

surrounds the primary dipole, see Figure 5.20.

(a) Re = 2500 (b) Re = 5000

(c) Re = 7500 (d) Re = 10000

Figure 5.19: Vorticity fields of dipole wall collision at an angle of 45◦ for slip length ζ=0.002 at t = 2.
The Reynolds numbers are Re = 2500, 5000, 7500 and 10000.

(a) t = 0.7 (b) t = 0.8
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(c) t = 0.9 (d) t = 1.5

Figure 5.20: Vorticity fields of dipole collision for the slip ζ=0.004 wall at an angle of 45◦ for
Re = 5000. Contours are shown in the subdomain: −0.2 ≤ x ≤ 1,−0.2 ≤ y ≤ 1 in the vicinity of the
collision.

Figure 5.21 shows that the mechanism of the dipole after collision with the corner for

Re = 7500 differs from other cases since the dipoles do not detach from the boundary

to the opposite direction. Instead, the secondary dipole stimulates a number of small

dipoles from the corner that rotate with each other near the corner. At the same

time, vorticity filament sheets detach from the slip walls which surround the dipoles

near the linked walls. The primary two monopoles tumble down on the top and right

walls, respectively which generates numerous small and high strength monopoles that

surround the primary dipole. However, for Re = 10000, the vortices at the corner

cluster in an orderly manner to produce more dipoles at the corner. The secondary

dipole manages to travel alone to the opposite direction leaving the primary dipole to

move at the walls, see Figure 5.22. In the last two cases, the primary dipole only slowly

loses its strength over time.
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(a) t = 0.7 (b) t = 0.9

(c) t = 1 (d) t = 1.8

Figure 5.21: Vorticity of dipole collision with the slip ζ=0.004 wall at an angle of 45◦ for Re = 7500.
Contours are shown in the subdomain: 0 ≤ x ≤ 1, 0.2 ≤ y ≤ 1 in the vicinity of the collision.

(a) t = 0.7 (b) t = 0.9

(c) t = 1 (d) t = 1.8

Figure 5.22: Vorticity of dipole collision with the slip ζ=0.004 wall at an angle of 45◦ for Re = 10000.
Contours are shown in the subdomain: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 in the vicinity of the collision.
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Table 5.3 summarises the values of the kinetic energy at t = 2 to clarify the dissi-

pation of the energy behaviour for different Reynolds numbers and slip lengths for an

incidence angle of 45◦. Firstly, similar to other angles of collision, the dissipation of

the kinetic energy decreases by increasing Reynolds numbers for different slip lengths

and no-slip collisions. Secondly, in contrast to other angles of collision, the decay of

the kinetic energy in the no-slip case is slower than for small slip lengths, ζ= 0.002 and

0.004, at t ≥ 1.2 for small Reynolds numbers. This confirms the results in Figure 5.18.

By increasing the Reynolds number, the dissipation rate becomes regular and similar

to the ones with normal collision and at an angle of 30◦, where the energy dissipates

faster for no-slip collisions. Figure 5.23 illustrates the dissipation of the kinetic energy

and the persistence of the enstrophy for Re = 10000 and various slip lengths. For this

Reynolds number the decay of the kinetic energy and the enstrophy after t = 1 differs

from the cases with smaller Reynolds numbers, especially for ζ=0.002 and 0.004, (see

Figure 5.18).
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Figure 5.23: The total kinetic energy and total enstrophy at Re = 10000 for oblique at an
angle of 45◦ and different slip lengths.

ζ Re = 1252 Re = 2500 Re = 5000 Re = 7500 Re = 10000

0.02 0.324 0.518 0.690 0.766 0.809
0.01 0.274 0.477 0.661 0.744 0.793
0.002 0.253 0.377 0.504 0.576 0.624
No slip 0.260 0.388 0.519 0.577 0.594

Table 5.3: The kinetic energy at t = 2, E(2), for dipole wall colliding at an angle of 45◦ for
different Reynolds numbers and slip length.

5.3 Conclusion

The dipole wall collision with slip boundaries has been studied in this chapter. The

effect of the slip lengths, Reynolds numbers and the angle of the collision on this

flow were investigated. The moment-based boundary conditions with the Navier slip

condition were applied to simulate this flow.

In this research, the trajectory of the flow at normal collision for various slip lengths

was tracked. The route of the dipole is longer with higher slip lengths and shear-free

boundaries while, in small and no-slip cases the dipole moved in a circular shape for a

small distance after collision. Secondly, as the slip length increased, the generation of

cores of vorticity at the boundary decreased. The maximum enstrophy decreased by
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increasing the slip length which coincided with the reduction of the energy dissipation

when a higher slip length was applied. For the collision at an angle of 30◦, the oscillation

of the angular momentum decreased with higher slip lengths except for two higher

jumps when the two monopoles reach the corners of the box.

The behaviour of the dipole at ζ ≥ 0.1 is identical to the free-shear boundary

where the two cores of monopoles moved along the wall without any further action.

The kinetic energy and the enstrophy results matched the results of Sutherland et al

[105] for Re = 1252. For the normal case, at higher slip lengths and Reynolds numbers

when the space between the two monopoles has increased, the secondary small dipole

moved towards the centre of the collided wall to create a small dipole. At a collision

angle of 45◦, the emanation of the dipole towards the opposite direction stopped and

number of the dipoles that were created from at the top corner decreased. Similar

to the normal case, by increasing the slip length two secondary monopoles separated

from the primary one and created a dipole at the top-right corner. However, at large

Reynolds numbers the boundary layer created numerous vortices for ζ=0.004 which

gathered to form dipoles for Re = 10000.
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The dissipation of the kinetic

energy for dipole wall collision flow

Previous chapters illustrated that the sudden decrease of the kinetic energy with the

increase of the total enstrophy are the main features that distinguish the dipole wall

collision flow. So, to increase our understanding of this feature and how these quantities

relate to each other, a study is carried out to further investigate the energy dissipation

and enstrophy growth scales. Farge et al. [35] and Sutherland et al. [104] used a volume

penalisation method to study the energy dissipation rate for dipole wall collision at

different slip lengths. Farge et al. [35] showed that as the viscosity tends to zero the

energy will dissipate to non zero limits in the dipole wall collision. Similar to them,

Sutherland [104] studied the dissipation of the kinetic energy and the growth of the

enstrophy in an open channel domain for various slip lengths, comparing the results

with those in [35]. Sutherland et al. [104] showed that the penalisation method needed

a higher number of grid points to simulate the boundary layer to generate more vortices

at the boundary. They also showed that in order to get coherent energy dissipation in

the limit of vanishing viscosity, a fixed square resolution should be applied.

This chapter will investigate the scale of the dissipation of the energy and the

growth of enstrophy for dipole wall collisions by using the LBM with slip and no-slip

boundaries. The results will be shown for three cases: the dipole collides with the wall
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normally, and non-normal incidents at an angle of 30◦ and 45◦. The behaviour will be

compared with the results of [104].

6.1 The relation between the dissipation of the ki-

netic energy and the enstrophy

The decay of the energy after the first collision in a bounded domain can be explained

by finding the relation between the dissipation of the total kinetic energy and the pro-

duction of the vortices at the boundary. So the argument starts from the incompressible

Navier-Stokes equations

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u,

∇ · u = 0.

(6.1)

Using the standard relation

∇2u = ∇(����:0∇ · u)−∇×
(
∇× u

)
, (6.2)

then multiplying the momentum equation by u gives,

ρu · ∂u
∂t

+ ρu ·
(
u · ∇u

)
= −u · ∇P − µu ·

(
∇×

(
∇× u

))
. (6.3)

The first term of equation (6.3) represents the dissipation of the kinetic energy per unit

volume and by assuming the constant ρ we get

ρu · ∂u
∂t

=
1

2

∂

∂t
(ρ |u|2) = ∂Ev

∂t
, (6.4)
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where Ev is the energy per unit volume.

Since u · ∇u = 1
2
∇|u|2 + (∇× u)× u,

u · (u · ∇u) =
1

2
u · ∇ |u|2 + u · ((∇× u)× u). (6.5)

Furthermore,

∇ ·
(
|u|2 u

)
= u · ∇

(
|u|2

)
+ |u|2����:0∇ · u. (6.6)

The pressure term can be written as

∇ ·
(
Pu

)
= P����:0∇ · u+∇P · u, (6.7)

The fourth term of equation (6.3) can be rewritten as follows

u ·
(
∇×

(
∇× u

))
= ∇ ·

((
∇× u

)
× u

)
+ |∇ × u|2 . (6.8)

Substituting equations (6.4), (6.6), (6.7) and (6.8) into equation (6.3) gives

∂Ev

∂t
+∇ ·

(
(P + Ev)ρu+ µ(ωωω × u)

)
= −µ |ωωω|2 , (6.9)

where ωωω = ∇× u is the vorticity of the flow.

In order to find the total kinetic energy and total enstrophy, both sides of equation

(6.9) are integrated over domain V

∫
V

(
∂Ev

∂t
+∇ ·

(
(P + Ev)u+ µ(ωωω × u)

))
dV = −µ

∫
V

|ωωω|2dV. (6.10)

The first term of the left side of equation (6.10) represents the dissipation of the total

kinetic energy

∫
V

∂Ev

∂t
dV =

dE

dt
, (6.11)
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while the integration of the right side gives the total enstrophy part

−µ
∫
V

|ωωω|2dV = −2µΩ. (6.12)

What remains is the integration of the second part of equation (6.10). Therefore, using

the divergence theorem
∫
V
∇ ·AdV =

∫
S
(A · n)dS where

∫
S
is the integration on the

boundary and n is unit normal on it, gives

∫
V

∇ ·
(
(P + Ev)u+ µ(ω × u)

)
dV =

∫
S

((
(P + Ev)u+ µ(ω × u)

)
· n

)
dS (6.13)

The results of equations (6.11), (6.12) and (6.13) yield the evaluation of the decay of

the total kinetic energy and its relation with the total enstrophy and the velocity for

viscous and slip boundaries

dE

dt
= −2µΩ− µ

∫
S

(ω × u) · ndS, (6.14)

where the dimensionless version of equation (6.14) can be written as

dẼ

dt
= − 2

Re
Ω̃− 1

Re

∫
S̃

(ω̃ × ũ) · ndS̃, (6.15)

where the overbar indicates a dimensionless quantity. In the following, overbars are

omitted for clarity.

The second term on the right-hand side of the above equation depends on the rela-

tion between the velocity and the vorticity at the boundary. In fact, equation (6.15) can

explain the increase of the kinetic energy dissipation when the slip length is decreased

as in Figure 5.3(a). By decreasing the slip length, the boundary layer induced more

vortices than at higher slip length. Therefore, the enstrophy with the third term of

equation (6.15) increases, which leads to a more rapid dissipation of the kinetic energy.

For no-slip boundaries, the last term of equation (6.15) vanishes and the non di-

mensional relation between the kinetic energy and the enstrophy for viscous flow with
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no-slip boundaries becomes

dẼ

dt
= − 2

Re
Ω̃. (6.16)

To test the validity of equation (6.15), we plot the values for each side of this equation

over time intervals δt = 0.1. Figure 6.1 (Re = 2500, ζ = 0.01 for normal collision)

shows that this does not give smooth results and the dissipation in particular is subject

to random variations. However, evaluating over much smaller time intervals δt = 0.0001

shows that these noisy random variations are due to high frequency oscillations, which

are adequately resolved with a time interval of 0.0001, see Figure 6.2. This phenomenon

is observed for every Re, ζ and at every angle of incidence. The oscillations were also

grid-independent at the highest resolutions used. The oscillations can be eliminated

using a double-smoothing process as follows:

dE∗
i

dt
=
Ei−49 − Ei−50

δt
+
Ei−47 − Ei−48

δt
+ . . .+

Ei+50 − Ei+49

δt
, (6.17)

so the intermediate average step will be

dE∗
i

dt
=
Ei+50 − Ei−50

100δt
. (6.18)

The average dissipation over 100 step is then

dEi

dt
=

1

100δt

i+50∑
j=i−50

dE∗
j

dt
. (6.19)

Figure 6.3 shows that the doubly-smoothed results satisfy equation (6.15) reasonably

well for Re = 2500, ζ = 0.01, normal collision.
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Figure 6.1: The relationship between the energy dissipation and the enstrophy in equation
(6.15) for dipole wall collision for Re = 2500 at ζ= 0.01 using δt = 0.1. The left side of the
equation (red line), the right side (circle line).
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Figure 6.2: The relationship between the energy dissipation and the enstrophy in equation
(6.15) for dipole wall collision at ζ= 0.01 for Re = 2500 using δt = 0.0001. The right side of
the equation (line), the left side (circle line).
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Figure 6.3: The left side of equation (6.15) for dipole wall collision at ζ= 0.01 for Re = 2500
using δt = 0.0001. The left side of the equation is smoothed (red line), the double smooth
process (line with circle) and the right side of equation (6.15) (dashed).

A possible cause for these oscillations is a compressibility effect. The analysis leading to

equation (6.15) is based upon the assumption that the flow is incompressible ∇·u = 0.

Lattice Boltzmann method simulations are weakly-compressible but compressibility

effects can be made smaller by reducing the Mach number in the simulations. Here,

we reduce the mean velocity ulb = 1
(m−1)2

∫ m

0

∫ m

0
|u|2 dxdy at the beginning of the

simulation. That means reducing the Mach number from Ma = 0.01
√
3 to 0.001

√
3.

Reducing the Mach number and using the mean average dissipation over 100 time steps

results in a smooth curve and excellent agreement between the two sides of equation

(6.15), as shown in Figure 6.4. This figure illustrates the role of the last term in

equation (6.15) for Re = 2500 and Ma = 0.001
√
3, especially after the first dipole

wall collision. The kinetic energy and the enstrophy which are the focus of previous

chapters are not significantly affected by random variations. Thus reducing the Mach

number as above does not affect the results obtained in previous chapters.
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Figure 6.4: The relationship between the energy dissipation and the enstrophy in equation
(6.15) for dipole wall collision at ζ= 0.004 for Re = 2500 and Ma = 0.001

√
3. The left side

of the equation (dashed), the right side (line) and the right side of equation (6.16) (dotted).

To show the effect of the Reynolds number and slip length on this relation, the ratio

between the right-hand side of equation (6.15) and equation (6.16) is calculated as

follows

ϑ =
max

∣∣−2µΩ− µ
∫
S
(ω × u) · ndS

∣∣
max

∣∣− 2
Re
Ω
∣∣ . (6.20)

Table 6.1 and Table 6.2 show that the ratio increases with increasing Reynolds numbers

for a given angle of incidence. The results in the table indicate that when ζ become

large, the ratio decreases and then will be close to unity. This is because the boundary

layer is not present and there are no additional vortices at the wall for the shear stress-

free boundaries that come from the higher slip lengths, so the effect of enstrophy in

equation (6.15) is weak. As a result, the right side of equations (6.15) and equation

(6.16) are equal. Figure 6.5 demonstrates the results for higher slip length ζ = 2 and

Re = 2500, as an example. The ratio reaches maximum value between ζ = 0.004

and 0.02 and depends upon Reynolds number and angle of incidence. As expected as

ζ −→ 0, the ratio will approach to unity where the Navier boundary condition reduces

to the no-slip case.
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ζ Re = 625 Re=1250 Re = 2500 Re = 5000

0.0005 1.061 1.105 1.187 1.275
0.002 1.201 1.377 1.550 1.750
0.004 1.343 1.575 1.622 2.165
0.01 1.524 1.779 2.041 2.224
0.02 1.545 1.737 1.903 2.061
0.1 1.162 1.275 1.307 1.317

Table 6.1: The ratio in equation (6.20) for normal dipole wall collision for different
Reynolds numbers and slip lengths.

ζ Re = 625 Re=1250 Re = 2500 Re = 5000

0.0005 1.052 1.095 1.158 1.255
0.002 1.177 1.304 1.467 1.696
0.004 1.279 1.457 1.661 1.905
0.01 1.408 1.620 1.798 2.004
0.02 1.374 1.576 1.689 1.790
0.1 1.126 1.191 1.216 1.220

Table 6.2: The ratio in equation (6.20) for 30◦ dipole wall collision for different Reynolds
numbers and slip lengths.
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Figure 6.5: The relationship between the energy dissipation and the enstrophy in equation
(6.15) for dipole wall collision and ζ= 2 for Re = 1252 and Ma = 0.001
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3. The left side of

the equation (line), the right side (circle) and the right side of equation (6.16) (dotted) .
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6.2 Scaling relations of boundary layer vorticity

Many authors studied the dissipation of energy for no-slip and slip boundaries for

dipole wall collisions. Clercx and Heijst [21] studied the scaling of dissipation of the

energy and the increase of the maximum enstrophy and the palinstrophy for no-slip

unbounded and bounded domains. So, in a range of Reynolds numbers less than or

equal to 128000, the investigation satisfied the relationship of equation (6.16). For both

normal and oblique collisions, the increase of the maximum enstrophy with Reynolds

number is Ωmax ∝ Re0.8 for Reynolds numbers less than 20000. For Reynolds numbers

greater than or equal to 20000, the scaling is Ωmax ∝ Re0.5. Oscillating plates as a

boundary layer for no-slip boundaries are simulated by Keetels et al. [63] to study

the enstrophy and palinstrophy P (t) peak scales. Keetels et al. [63] found that the

enstrophy is approximately proportional to Re0.75 and P (t) ∝ Re2.25 for Reynolds num-

bers less than 20000. For Reynolds numbers equal or greater than 20000 the scaling is

Ω(t) ∝ Re0.5 and and P (t) ∝ Re1.5.

For slip and free-slip boundaries, Farge et al. [35] investigated the kinetic energy

dissipation and enstrophy for various slip lengths for Re ≤ 7880. Farge et al. [35]

demonstrate that there is less dissipation in the energy as the Reynolds number in-

creases. Following Farge et al. [35], Sutherland [104] applied the no-slip and slip

boundary conditions to seek the energy dissipation structure. In their work they used

the same slip lengths as [35]. For no-slip and slip with slip length ζ = 4/Re cases, the

Prandtl theory is satisfied with a slope equal to −0.43. For a slip length equal to 0.003

this theory was satisfied with a slope equal to −0.53 ± 0.05. Clercx and Heijst [22]

summarise and review the most recent dipole wall collision numerical investigations.

This article concentrates on the scaling of the dissipation of the energy in the vanishing

viscosity limit.

This thesis studies the dissipation of the energy by using the TRT-LBM with

moment-based boundary conditions and extends the study of [104, 35] to include other

angles of incidence to find the scale of the energy dissipation and enstrophy growth.
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The investigations include the no-slip and and slip lengths ζ = 0.004, 4/Re. The choice

of the small slip 0.004 and slip equal to 4/Re is taken for the purpose of comparison

since it is used in [104, 35] to show the effect of Reynolds number on the slip length.

Also with the first dipole wall collision, the scaling of the maximum enstrophy Ω(t)max

for no-slip and different slip lengths boundaries will be demonstrated.

The examination of the dissipation of the kinetic energy for dipole wall collisions

will consider three regimes. Taking Figure 5.3, as an example, the dissipation of the

energy increases rapidly around t = 0.3 where the dipole reaches the wall while the

dissipation is stable before t = 0.3. So the first regime is located before the first dipole

wall collision. In that regime and according to equation (6.15) the enstrophy is chang-

ing slowly and the effect of the boundary is negligible. In this regime from equation

(6.15), the scale of the energy dissipation satisfies the following:

E(t2)− E(t1) ∝ Re−1. (6.21)

The second regime is located when the dipole approaches the wall and the effect of the

vortices starts to appear on the boundary to generate a boundary layer. As noted from

Chapter 1, the boundary layer thickness is proportional to Re−1/2. Hence Prandtl

theory states that in the boundary layer the dissipation of the energy scales with a

fractional power of Re such that

E(t2)− E(t1) ∝ Re−1/2. (6.22)

In the third regime, the generation of the vortices is reduced at the boundary. For

different slip lengths, the total enstrophy collapses onto one line without any peaks.

Therefore, the scaling of the dissipation of the total energy and the enstrophy that will

be investigated is based on equation (6.16).

.
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6.3 Energy dissipation for normal case

As mentioned previously, there are three regimes used to identify the energy dissipation

of the dipole. For all regimes, the energy dissipation as a function of Reynolds number

is taken in a range of Re = 625 to 10000. The first regime is identified as the period

before the dipole wall collision. The average dissipation is evaluated in the range of

time t ∈ [0, 0.2] for different slip lengths, see Figure 5.6, where the energy dissipation

for different slip lengths collapses onto one line in this time interval. The energy

dissipation scales as Re−1 for all slip and no-slip boundary conditions, as shown in

Figure 6.6. The dissipation of the energy rate and the growth of the enstrophy will be

divided by ∆(t) = (t2 − t1).
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Figure 6.6: Energy dissipation for normal case in the free-viscosity regime, t ∈ [0, 0.2]. The
dissipation of the energy for slip lengths: ζ=0.004 (dashed), ζ = 4/Re (dashed and dotted)
and no-slip (dotted) are shown. The slop of Re−1 (line) is also given.

In the second regime, the dipole approaches the wall where Prandtl theory will be

tested. Farge et al. [35] used their vorticity calculations to find the time where the

Prandtl theory is verified. Also to ensure the interval chosen satisfies the Prandtl’s

theory, the growth of the enstrophy in the same time interval was investigated. The

same procedure is followed up by Sutherland et al. [105]. Sutherland et al. [104]

described the method to find the time interval where Prandtl’s theory is valid. Thus

the search begins by looking at the vorticity plots to find the time where the dipole

collides with the wall. Then the energy dissipation is studied at each time interval after
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the boundary layer appears and before it detaches from the wall and moves towards the

domain where equation (6.22) is not broken. By studying the vorticity contour plots

and testing the time interval, the energy dissipation that satisfies Prandtl’s theory is

found. Our method showed accurate results and captured the findings of Sutherland et

al. [104]. For ζ=0.004 the boundary layer starts to appear at t = 0.23, so the choice for

t1 starts from 0.23, while t2 will be taken when the boundary layer starts to separate

from the wall to the fluid regime after t = 0.47. Figure 6.7 shows the dissipation rate

of energy and the rate growth of enstrophy for closed intervals where Prandtl’s theory

is verified. Thus the dissipation rate of energy decay ∆E/∆t ∝ Reγ where γ is equal

to 0.5 and the growth rate of the enstrophy use ∆Ω/∆t is proportional to Re for higher

Reynolds numbers, as in Figure 6.7.
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Figure 6.7: Energy dissipation and enstrophy growth at ζ=0.004 for normal wall collision

Figures 6.8 and 6.9 present the dissipation of energy and growth of enstrophy scales for

no-slip wall and a wall with a Navier-slip boundary condition with slip length ζ = 4/Re.

From the vorticity contours, the generation of a boundary layer appears earlier than

for ζ=0.004. In these cases the boundary layer starts to appear around t = 0.2. It

was observed that the energy dissipation scale for these cases is proportional to Re−γ

where γ = 0.5 for Re ≥ 1252 and γ = 0.43 for Re < 1252. These results coincide

with the growth of enstrophy differences such that ∆Ω ∝ Re. Thus, following [104],

∆Ω is satisfying Prandtl’s boundary layer theory. However, the enstrophy growth for

LBM for ζ = 0.004, 4/Re and the no-slip case gave the same range of slope for higher

Reynolds numbers where the enstrophy grows linearly with Re.
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Figure 6.8: Energy dissipation and enstrophy growth for no-slip for normal dipole wall colli-
sion.
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Figure 6.9: Energy dissipation and enstrophy growth at ζ = 4/Re for normal dipole wall
collision.

The third regime is identified as the time interval in which the boundary layer is

less active and the generation of vortices at the boundary is reduced. This regime

is identified as the range at t ∈ [1.5, 2] for various slip lengths. In Figure 6.10 the

dissipation of energy during this interval and the total enstrophy at t = 2 are plotted

for various Reynolds numbers. The energy dissipation rate is independent of slip length

and it is approximately proportional to Re−0.5.
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Figure 6.10: Energy dissipation for t ∈ [1.5, 2] and enstrophy at t = 2 at different slip length
for normal dipole wall collision.

Similar to [21], the scaling behaviour of the maximum enstrophy is now examined. It

was found that Ωmax(t) ∝ Re0.8 for no-slip dipole wall collision. For various slip lengths

it was observed that the maximum enstrophy scale decreases when the slip length is

increased, see Figure 6.11(a). Since there are no peaks at very high slip lengths,

the maximum enstrophy value of this quantity after the first dipole incident with the

boundary is taken. The energy dissipation is shown in Figure 6.11(b) for the same time

interval where the maximum enstrophy appears. It is remarkable that the dissipation

rate decreases by increasing the slip length. Figure 6.11 shows that differences in ζ

influence the maximum enstrophy much more strongly than the dissipation rate. The

discrepancy is due to the extra wall term in equation (6.15).

187



Chapter 6. The dissipation of the kinetic energy for dipole wall collision
flow

 100

 1000

 10000

 100000

 1000  10000

 Ω
m

ax
(t

)

Re

 ζ= 0.2 
ζ= 0.02 
 ζ=0.01 

ζ= 0.004 
ζ= 0.002 

No slip 
Re0.8  

(a) Maximum enstrophy

 0.01

 0.1

 1

 1000  10000

(E
(0

.4
9)

-E
(0

.2
))

/ ∆
(t

)

Re

 ζ= 0.2 
ζ= 0.02 
 ζ=0.01 

ζ= 0.004 
ζ= 0.002 

No slip 
Re-0.5  

(b) Energy dissipation

Figure 6.11: The maximum enstrophy and the dissipation of the energy in the same period
of time for no-slip and slip normal dipole wall collision.

6.4 Energy dissipation for oblique-30◦ dipole wall

collision case

To complete our investigation of energy dissipation structure for dipole wall collision,

Prandtl’s boundary layer theory is applied to an oblique case. The same procedure that

was used in Section 6.3 was followed where there are three regimes to test for this case.

For an oblique case at an angle of 30◦ the dipole reaches the wall at approximately the

same time as for a normal case. The interval used is the same as for the normal collision,
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since the negative monopole reaches the wall around t = 0.3 where the boundary layer

appears at the same time as for the normal case, see Figure 4.10 (b). Figure 6.12

plots the dissipation of the energy and the growth of the enstrophy rates near the wall

for ζ = 0.004, 4/Re and no-slip cases for t ∈ [0.21, 0.48] (again as for normal case,

these results were not sensitive to the time range interval). The energy dissipation and

enstrophy growth are consist with Prandtl’s theory in this regime.
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Figure 6.12: Energy dissipation and enstrophy growth for for oblique-30◦ dipole wall collision
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6.5 Energy dissipation for oblique-45◦ dipole wall

collision case

The next test studies the dissipation of the energy for the dipole wall collision at an

angle of 45◦. Note again there are three regimes to identify the energy dissipation rate.

Since the distance that the dipole travels to reach the wall is higher at this angle, the

time interval for the second regime is different from the previous cases. For the first

regime t ∈ [0, 0.23] where the dipole travels towards the wall, the dissipation rates for

ζ = 0.004, 4/Re and no-slip cases are plotted in Figure 6.13.
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Figure 6.13: Energy dissipation for oblique case at an angle 45◦ for the free viscosity regime.
The dissipation of the energy is shown for slip lengths ζ = 0.004 (dashed), ζ = 4/Re (dashed
and dotted) and the no-slip boundary (dotted). The slope of Re−1 (line) is given..

The same procedure as before was followed to identify the range of collision time

intervals for the second regime where Prandt’s theory holds. For various slip lengths

and no-slip cases, the results are consistent with boundary layer theory in the range

of the collision time intervals. Since the distance that the dipole travels to reach the

corner is longer, the time interval for the second regime is different. For higher Reynolds

numbers, the decay of the energy gives the slope -0.5. The enstrophy growth is linear

for higher Reynolds numbers. The maximum enstrophy was evaluated and similar

results as for the normal case and the findings of Clercx and Heijsk [21] were found.

As was the case for the normal collision, the maximum enstrophy slope decreases from
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γ = 0.8 for a no-slip case to γ = 0.1 for ζ=0.2 and 2 where Ωmax(t) ∝ Reγ, see Figure

6.11.
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Figure 6.14: Energy dissipation and enstrophy growth scales at ζ= 0.004 for oblique-45◦

dipole wall collision.
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Figure 6.15: Energy dissipation and enstrophy growth scales at ζ = 4/Re for oblique-45◦

dipole wall collision
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Figure 6.16: Energy dissipation and enstrophy growth at no-slip for oblique-45◦ dipole wall
collision.

For this case, the third regime was identified as the previous t ∈ [1.5, 2]. For the no-slip,

ζ= 0.002 and ζ=0.004 boundaries the dipole is still active and continues to generate

small dipoles at boundaries until the primary dipole disappears, see Figures 5.18 and

5.23. As a result, the enstrophy is still fluctuating in time for these slip lengths, thus

it is not appropriate to evaluate average values over this period. Figure 6.17 shows the

dissipation of the energy for t ∈ [1.5, 2] with the enstrophy at t = 2 for slip lengths

ζ=2, 0.2, 0.02 and 0.01.
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Figure 6.17: Energy dissipation for t ∈ [1.5, 2]and enstrophy at t = 2 scales at different slip
lengths for oblique-45◦ dipole wall collision.

6.6 Conclusion

The relationship between the dissipation of the kinetic energy and the growth of the

enstrophy was examined in this chapter. Conventionally, the dissipation rate is directly

proportional to the enstrophy; however, it has been shown here that the presence of wall

slip creates additional dissipation. This relation was found theoretically and confirmed

numerically by using the LBM. The extra dissipation is due to contributions from

ωωω × u at slip boundaries. This effect vanishes completely for both no-slip (u = 0)

and free-slip (ω = 0) boundaries and has maximum influence for finite values of slip
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length, since the formation of vortices at the wall is reduced. The analysis showed

that the dissipation of the energy fluctuated probably due to compressibility effects.

By reducing the compressibility effect which is represented by the Mach number and

taking the moving average over 100 time steps, the oscillation of the dissipation of

the energy in equation (6.15) was eliminated. So, from this relation we can measure

the quality of the computational results. The numerical study was performed for

intermediate and higher Reynolds numbers, fixed slip length and ζ ∝ Re−1. Following

previous studies, the dissipation of the energy scales was investigated for the normal

dipole wall collision then we extend the study to various dipole release angles. The

study includes three regimes. For different angles of incidence, the first stage the

dissipation of the energy is proportional to Re−1. In the second regime, where the

boundary layer effects are dominate, energy dissipation is consistent with the Prandtl

theory for which dE
dt

∝ Re−0.5 and ∆Ω(t) ∝ Re. The last stage is when the boundary

layer production is reduced, then the dissipation of the energy was proportional to

Re−0.5 and enstrophy ∝ Re0.5. In all cases, the maximum enstrophy scaled Re0.8 while,

it decreased significantly with the increasing slip length.
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Chapter 7

Analysis of the stress field

computed by the lattice Boltzmann

equation

As pointed out in the previous chapters, moment-based boundary conditions for both

slip and no-slip are second-order accurate for simple and complex flows. Although the

simulations that were carried out showed that this scheme has a simple and accurate

framework for the lattice Boltzmann method, it nevertheless has its shortcomings. For

example, the results of BGK model are, like other on-grid methods, unstable in two-

dimensional flows at high Reynolds numbers and coarse resolutions like in the cavity

flow. The reasons why are still not clear. Reis [94] focussed his attention on one problem

in the Poiseuille flow for the no-slip boundary conditions. The investigation showed that

the tangential stress of the LBM does not vanish at a solid boundary, which is contrary

to the stress of the Navier-Stokes equations. It appears that the LBM stress includes a

non-vanishing Burnett contribution that comes from truncating the Chapman-Enskog

expansion at O(Kn2). Moreover, the tangential stress develops spurious oscillations at

the boundary if the boundary conditions do not take into consideration the Burnett

term, and they may also have an affect on the bulk flow. To solve this problem, Reis

[94] solved the equations governing the LBM stress field analytically in planar channel

196



Chapter 7. Analysis of the stress field computed by the lattice Boltzmann
equation

flow and proposed a consistent boundary condition implementation that depends on

the deviatoric stress

ΓΓΓ = ΠΠΠ0 −ΠΠΠ. (7.1)

By applying the new conditions, the spurious oscillations are eliminated at the bound-

ary.

Since this thesis involves an investigation of slip and no-slip boundaries, this chapter

reviews the investigation of a no-slip case of [94] and gives a detailed study of the three

components of the deviatoric stress. Then based on the same procedure an attempt

is made to extend the method to include the Navier-slip condition with the moment-

based approach. Finally, to avoid the spurious oscillations for the slip conditions, new

constraint at the boundary which depends on the stress will be found for two models

of lattice Boltzmann equation.

7.1 The evaluation of the deviatoric stress ΓΓΓ

The density ρ, momentum ρu and the stress ΠΠΠ can be found for LBM by analysing

its moments with respect to the particle velocity. To establish this, the three hy-

drodynamic moment equations from the discrete Boltzmann equations (2.83), (2.84)

and (2.85) are used, but instead of using the Chapman-Enskog expansion to find the

solution for long timescales, the methodology that was proposed by using Maxwells

equations [59]. In the kinetic theory, the moments of the particle velocity distribution

function can be written in the frame moving with the flow, that is they can be ex-

pressed with respect to the peculiar velocity. This velocity is defined as the difference

between the local fluid velocity and the particle velocity such that ξξξi = ci − u. By

using the definition of the third moment of the peculiar velocity ξξξi one can get

ϕαβγ =
∑

fiξiαξiβξiγ,
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=
∑

fi(ciα − uα)(ciβ − uβ)(ciγ − uγ),

=
∑

ficiαciβciγ −
∑

ficiαciβuγ −
∑

ficiαciγuβ

+
∑

ficiαuβuγ −
∑

ficiβciγuα +
∑

ficiβuαuγ

+
∑

ficiγuαuβ −
∑

fiuαuβuγ , (7.2)

Using the definitions Qαβγ =
∑
ficiαciβciγ and Παβ =

∑
ficiαciβ to simplify equation

(7.2) and truncating the expression at O(uαuβuγ) yields

ϕαβγ = Qαβγ − Παβuγ − Παγuβ − Πβγuα +O(ρuαuβuγ), (7.3)

then by reformulating the last equation for the deviatoric stress of (7.1) we have

Qαβγ = ϕαβγ + uα(ρc
2
sδβγ − Γβγ) + uβ(ρc

2
sδαγ − Γαγ) + uγ(ρc

2
sδαβ − Γαβ), (7.4)

By using equations (7.4) and (7.1), the left side of equation (2.85) can be found to be

∂tΠαβ + ∂γQαβγ = ∂t(Π
(0)
αβ − Γαβ) + ∂γ

(
ϕαβγ + uα(ρc

2
sδβγ − Γβγ) + uβ(ρc

2
sδαγ − Γαγ)

+ uγ(ρc
2
sδαβ − Γαβ)

)
. (7.5)

The temporal derivative of the equilibrium stress can be found by using equation (2.104)

∂tΠ
(0)
αβ = ∂t(ρc

2
sδαβ + ρuαuβ),

= −c2sδαβ∂γρuγ − uα∂γΠβγ − uβ∂γΠαγ + uαuβ∂γρuγ + uαFβ + uβFα, (7.6)

which leads to,

∂tΠ
0
αβ = −c2sδαβ∂γρuγ − uα∂γ(Π

0
βγ − Γβγ)− uβ∂γ(Π

0
αγ − Γαγ) + uαFβ + uβFα+

uαuβ∂γρuγ. (7.7)
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The equation of the deviatoric stress can be found by applying equation (7.7) into

equation (7.5) then substituting the result into equation (2.97)

Γαβ + τ

(
∂tΓαβ + uγ∂γΓαβ + Γαγ∂γuβ + Γβγ∂γuα − ∂γϕαβγ

)
= µ(∂βuα + ∂αuβ).

(7.8)

The third-order moment ϕαβγ ≈ ϕ
(0)
αβγ as long as its relaxation time is short. Note that

if the stress were Newtonian, the term in the brackets on the left-hand side would be

absent. Therefore, the three components of the stress in equation (7.8) for the time

independent, unidirectional, channel flow where u = (u(y), 0) are

Γxx + 2τΓxy
∂u

∂y
= 0, (7.9)

Γyy = 0, (7.10)

Γxy − µ
∂u

∂y
= 0. (7.11)

Equation (7.11) is the Newtonian shear stress and equation (7.10) is the normal com-

ponent of the Newtonian stress in this flow. However, the tangential component of

the stress, equation (7.9), does not vanish, as would be the case in the Navier-Stokes

equations in unidirectional channel flow. In fact, the stress is typical of the stress

of the Burnett equation for the Poiseuille flow which can be found by truncating the

Chapman-Enskog expansion of the continuous Boltzmann equation at O(τ 2).

7.2 The components of the stress tensor for channel

flow

A recurrence relation for the LBM in planar channel flows was found in Chapter 2 and

solved analytically for the velocity profile. Reis [94] used the same procedure to find

the three components of the stress tensor Γ then used them to find consistent boundary

conditions for the LBM stress. Here, the solution of the recurrence equation for the
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three components of the stress tensor are presented in detail. Since the algorithm is

formulated in terms of f̄i, then one must be aware of the relationship between ΓΓΓ and ΠΠΠ

ΓΓΓ = ΠΠΠ0 −ΠΠΠ =

(
2τ(ΠΠΠ(0) −ΠΠΠ)− τ(Fu+ uF)

)
(2τ + 1)

, (7.12)

where F = (ρG, 0) is the force term in the unidirectional flow.

Firstly, the shear stress tensor can be found in terms of the recurrence relations of

f̄ j
i in equation (3.28) as

Π
j

xy =
∑

f̄icixciy = (f̄ j
5 − f̄ j

6 + f̄ j
7 + f̄ j

8 )

=
ρ

2(τ + 1/2)
(uj+1vj+1 + uj−1vj−1) +

τρG

2(τ + 1/2)
(vj+1 + vj−1)

+
ρ

6(τ + 1/2)
(uj−1 − uj+1) +

(τ − 1/2)

(τ + 1/2)
(f̄ j−1

5 − f̄ j−1
6 + f̄ j+1

7 − f̄ j+1
8 ). (7.13)

By equation (3.56) vj = 0 in plane channel flow, so equation (7.13) becomes

Π
j

xy =
ρ

6(τ + 1/2)
(uj−1 − uj+1) +

(τ − 1/2)

(τ + 1/2)
(f̄ j−1

5 − f̄ j−1
6 + f̄ j+1

7 − f̄ j+1
8 ). (7.14)

Equations (3.36), (3.37), (3.38) and (3.39) are used to eliminate the distribution func-

tions with indices (j + 1) and (j − 1) in favour of f̄j

Π
j

xy =
ρτ

3(τ + 1/2)
(ūj−1 − ūj+1) +

(τ − 1/2)2

(τ + 1/2)2
Π

j

xy, (7.15)

so

Π
j

xy = −ρ(τ + 1/2)

6
(ūj+1 − ūj−1). (7.16)
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For Poiseuille flow Π
(0)

xy = 0, so by applying equation (7.16) into equation (7.12) one

can get

Γj
xy = Π

0

xy − Π
j

xy =
1

2
µ(ūj+1 − ūj−1), (7.17)

where µ = ρτ/3. This coincides with the second-order approximation to

Γj
xy = µ(∂u/∂y).

For channel flow and since the flow is moving in the tangential direction only, zero

normal momentum flux should be proven. Similar to the previous steps we have

Π
j

yy =
∑

f̄iciyciy = f̄ j
2 + f̄ j

4 + f̄ j
5 + f̄ j

6 + f̄ j
7 + f̄ j

8 (7.18)

Inserting equations (3.45) and (3.46) into equation (7.18) yields

Π
j

yy =
ρ

3(τ + 1/2)
+

(τ − 1/2)

(τ + 1/2)
(f̄ j−1

2 + f̄ j−1
5 + f̄ j−1

6 + f̄ j+1
4 + f̄ j+1

7 + f̄ j+1
8 ) (7.19)

To eliminate f̄∓j
i , equations (3.48),(3.49),(3.50) and (3.51) are combined then applied

into equation (7.19). The vertical velocity is v̄j = 0, therefore

Π
j

yy =
ρ

3(τ + 1/2)
+

(τ − 1/2)

(τ + 1/2)

(
ρ

3(τ + 1/2)
+

(τ − 1/2)

(τ + 1/2)
Π

j

yy

)
, (7.20)

so the normal momentum tensor is

Π
j

yy = ρ/3. (7.21)

Using the transformation in equation (7.12) gives the normal deviatoric stress

Γj
yy = 0, (7.22)

which is consistent with the assumption of the unidirectional channel flow.

The next step will be finding the tangential deviatoric stress, starting with the
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tangential momentum flux

Π
j

xx =
∑

f̄icixcix = f̄ j
1 + f̄ j

3 + f̄ j
5 + f̄ j

6 + f̄ j
7 + f̄ j

8 . (7.23)

Applying the recurrence relation of equations (3.28b), (3.28d), (3.28f), (3.28g), (3.28h)

and (3.28i) to equation (7.23) and vj = 0 gives

Π
j

xx =
2

9

(τ + 1)

(τ + 1/2)
ρ+

2

3
ρu2j +

ρ

6(τ + 1/2)
(u2j−1 + u2j+1)

+
ρτG

3(τ + 1/2)
(uj+1 + uj−1) +

4

3
τρGuj +

(τ − 1/2)

(τ + 1/2)

(f̄ j−1
5 + f̄ j−1

6 + f̄ j+1
7 + f̄ j+1

8 ).

(7.24)

To express Π
j

xx in terms of the velocities, the f̄ j±1
i should be eliminated from the

last equation. Firstly, introduce F∗ = F j+1 + F j−1 where F j−1 = f̄ j−1
5 + f̄ j−1

6 and

F j+1 = f̄ j+1
7 + f̄ j+1

8 . To find F j−1, the tangential momentum of grid (j − 1) is applied

as follows

F j−1 = Π
j−1

xx − (f̄ j−1
1 + f̄ j−1

3 + f̄ j−1
5 + f̄ j−1

6 + f̄ j−1
7 + f̄ j−1

8 ). (7.25)

Apply the recurrence relations of f̄i and replacing (j) with (j − 1) yields

F j−1 = Π
j−1

xx −
(
4

3
τρGuj−1 +

1

3(τ + 1/2)
τρGuj −

ρ

6(τ + 1/2)
vj

+
2

3
ρu2j−1 −

1

3
ρv2j−1 +

ρ

6(τ + 1/2)
u2j +

ρ

6(τ + 1/2)
v2j

ρ

18(τ + 1/2)
+

2ρ

9
+

(τ − 1/2)

(τ + 1/2)
(f̄ j

7 + f̄ j
8 )

)
.

(7.26)

Now the tangential momentum of index (j + 1) is applied as follows:

F j+1 = Π
j+1

xx − (f̄ j+1
1 + f̄ j+1

3 + f̄ j+1
5 + f̄ j+1

6 + f̄ j+1
7 + f̄ j+1

8 ). (7.27)
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Apply the recurrence relations of f̄i, replacing (j) with (j + 1) to produce

F j+1 = Π
j+1

xx −
(
4

3
τρGuj+1 +

1

3(τ + 1/2)
τρGuj +

ρ

6(τ + 1/2)
vj

+
2

3
ρu2j+1 −

1

3
ρv2j+1 +

ρ

6(τ + 1/2)
u2j +

ρ

6(τ + 1/2)
v2j

ρ

18(τ + 1/2)
+

2ρ

9
+

(τ − 1/2)

(τ + 1/2)
(f̄ j

5 + f̄ j
6 )

)
.

(7.28)

Combine equation (7.26) and equation (7.28) to give

F∗ =Π
j+1

xx +Π
j−1

xx − 4

3
τρGuj−1 −

2

3
ρu2j−1 −

1

3
ρv2j−1 −

2

3(τ + 1/2)
τρGuj

− ρ

3(τ + 1/2)
u2j −

ρ

3(τ + 1/2)
v2j −

4

3
τρGuj+1 −

2

3
ρu2j+1 +

1

3
ρv2j+1

− ρ

9(τ + 1/2)
− 4ρ

9
− (τ − 1/2)

(τ + 1/2)
(f̄ j

5 + f̄ j
6 + f̄ j

7 + f̄ j
8 ).

(7.29)

The last term of equation (7.29) can be found easily from equation (7.23) where

f̄ j
5 + f̄ j

6 + f̄ j
7 + f̄ j

8 = Π
j −

(
ρ

9
(6u2j − 3v2j ) +

4τρG

3
uj +

2ρ

9

)
. (7.30)

After applying equation (7.30) to equation (7.29) and setting vj = 0 then multiplying

it by (τ − 1/2)/(τ + 1/2), adding the result into equation (7.24) to get

Π
j

xx =
(τ − 1/2)

(τ + 1/2)
Π

j+1

xx − (τ − 1/2)2

(τ + 1/2)2
Π

j

xx +
(τ − 1/2)

(τ + 1/2)
Π

j−1

xx +
(3− 4τ)

3(τ + 1/2)
ρτG

(
ρ

3(τ + 1/2)

(uj+1 + uj−1) +
ρ(3− 4τ)

6(τ + 1/2)
(u2j−1 + u2j+1) +

2

3
ρu2j −

(τ − 1/2)

(τ + 1/2)

(
ρ

3(τ + 1/2)
− 2ρ

3

(τ − 1/2)

(τ + 1/2)

)
u2j −

(τ − 1/2)

(τ + 1/2)

(
2

3(τ + 1/2)
− 4

3

(τ − 1/2)

(τ + 1/2)
+

4

3

)
τρGuj +

ρ

3(τ + 1/2)2
,

(7.31)

where vj and vj∓1 have vanished because of equations (3.53), (3.54) and (3.56). By

inserting equation (7.12) into equation (7.31), the solution will be found in terms of
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Γj
xx instead of Π

j

xx. Therefore, equation (7.31) can be expressed as

Γj
xx − (τ 2 − 1/4)

(
Γj−1
xx − 2Γj

xx + Γj+1
xx

)
= −1

3
ρτ 2(u2j−1 − 2u2j + u2j+1)

− 1

2
τρG(uj−1 + 2uj + uj+1) +

4

3
τ 3ρG(uj−1 − 2uj + uj+1). (7.32)

To solve equation (7.32) in terms of Γxx, the complementary and the particular solution

of this equation should be calculated. Reis [94] gives a detailed explanation on how to

find the solution of equation (7.32). In this article, the complementary solution was

found by assuming Γj(comp) = Aλj + Bλ−j where λ = (τ − 1/2)/(τ + 1/2). Thus, by

finding the values of A and B on the boundary, the homogeneous solution is

Γj(comp)
xx = −

(
Γwall

(λn + λ)

)
λ+

Γwall

(λn + λ)
λ−j. (7.33)

By substituting the second-order particular form into equation (7.32) and applying the

analytical solution of uj the particular solution can be found that

Γj(part)
xx = ρG2

(
−6j2 + 6j(n+ 1)− 3n− 3

2
n2 − 16τ 2 +

3

2

)
= −2µτ

(
uj+1 − uj−1

2

)2

− ρG2(16τ 2 − 3). (7.34)

Finally adding the complementary solution and particular solution together and setting

Γwall
xx equal Γ

j(part)
xx which depends on the location of the wall, yields

Γj
xx = − Γwall

xx

(λn + λ)
(λj + λn+1−j)− 2µτ

(
uj+1 − uj−1

2

)2

− ρG2(16τ 2 − 3) (7.35)

7.2.1 The boundary conditions for the stress ΓΓΓ

We now seek solutions of LBE with boundary conditions that are consistent with the

deviatoric stress from the previous section. Using equation (7.12) yields the tangential
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momentum at the boundary

Πxx =
ρ

3
+ ρu2s − ρGus − (1 +

1

2τ
)Γxx, (7.36)

where us is the slip velocity, while the shear momentum will be

Πxy = −
(
1 +

1

2τ

)
Γxy. (7.37)

The relation between the tangential stress and the deviatoric stress can be found by

using equations (7.9), (7.11) and (7.12):

Πxx =
ρ

3
+ ρu2s − ρGus −

(
2τ + 1

µ

)
Γ2
xy. (7.38)

Substituting the relation (7.37) into equation (7.38) leads to

Πxx =
ρ

3
+ ρu2s − ρGus +

6τ

ρ(τ + 1/2)
Π

2

xy. (7.39)

Taking the north boundary as an example and from Table 3.1, the three linearly inde-

pendent conditions are

ρuy = 0,

ρux = ρus −
1

2
ρG,

Πxx =
ρ

3
+ ρu2s − ρGus +

6τ

ρ(τ + 1/2)
Π

2

xy.

(7.40)
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The conditions of equation (7.40) give the three unknown distribution functions for

slip north boundary

f̄4 = f̄1 + f̄3 + f̄2 + 2(f̄5 + f̄6)−
ρ

3
− ρu2s + ρGus,

− 6τ

ρ(τ + 1/2)
Π

2

xy,

f̄7 =
ρ

6
− f̄3 − f̄6 + ρus(us − 1)/2 + ρG(1/2− us)/2

+
3τ

ρ(τ + 1/2)
Π

2

xy,

f̄8 =
ρ

6
− f̄1 − f̄5 + ρus(us + 1)/2− ρG(1/2 + us)/2

+
3τ

ρ(τ + 1/2)
Π

2

xy,

(7.41)

where Πxy can be found from the tangential momentum ρux at the boundary

Πxy = 2f5 − 2f6 +
ρG

2
− ρus. (7.42)

The velocity at the slip wall is proportional to (du/dy) and it is controlled by a slip

length ζ

us = ζ
∂u

∂y

∣∣∣∣
wall

, (7.43)

where the derivative in equation (7.43) can be obtained locally from the shear stress

Πxy in equation (7.42), see equation (3.76). Therefore, the velocity at the wall is found

to be similar to that obtained from the procedure in Section 3.7.1.

7.2.2 Numerical simulation of the deviatoric stress

In the case of the Navier slip condition with the moment-based method, from Section

3.7.1, and similar to the no-slip implementation in [94], Γxx produces an oscillation

at the slip boundary. This feeds into the flow and causes fluctuations in the stress

than can spread across the whole domain. Figure 7.1 plots the tangential stress for
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Re = 100, my = 33 and ζ= 0.1. In this figure a comparison between the analytical

solution of equation (7.35), partial differential equation solution of equation (7.9) and

lattice Boltzmann solution (7.12) is made. The lattice Boltzmann prediction and the

analytical solution match and the spurious oscillations are clear. By increasing the

resolution, the fluctuation in the bulk flow decreases, but it remains near the boundary,

regardless of the number of grid points. The same observation holds for both small

and large slip lengths, ζ = 0.01 and ζ = 1, as an example.

To eliminate the oscillations near the boundary, the stress boundary condition with

slip boundary conditions from Section 7.2.1 was applied using the same parameters

that were previously utilised. Results plotted in Figure (7.2) show that the fluctuation

near the boundary disappears and the three solutions give a parabolic shape for Γxx.

Some of the simulations were at lower Reynolds numbers, so we increase the relaxation

time in order to calculate the stress Γxx accurately in the channel flow which reduces

the Knudsen numberKn, as (Kn ∝Ma/Re). This gives a slower relaxation rate which

breaks the hypothesis of Section 7.2. So the numerical simulation gives improper results

with the absence of oscillation at the boundary, see Figure 7.3. The parameters in this

Figure are taken to be Re = 100 and Re = 0.1 with Ma = 0.01
√
3 and the grid size is

my = 33.
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Figure 7.1: Tangential deviatoric stress for Poiseuille flow using Navier slip moment-based
boundary conditions. The results are plotted for Re = 100, Ma = 0.1

√
3 and ζ=0.1.
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Figure 7.2: Poiseuille flow for stress slip moment boundary conditions. The results are plotted
for Re = 100, Ma = 0.1

√
3 and ζ=0.1.
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Figure 7.3: Tangential deviatoric stress for Poiseuille flow using stress slip moment boundary
conditions. The results are plotted for ζ=0.1 and Ma = 0.01

√
3.

7.3 The tangential stress with the TRT-model

The analysis in the previous sections was based on the assumption that the relaxation

time τ is short, therefore Q relaxes to its equilibrium very quickly. However, this may

not be the case in some flows such as low Reynolds numbers flows.

Moreover in the BGK model, only when τ = 1/2, the recurrence of the stress in

the left- side of equation (7.32) will disappear. This means the stress does not depend

on the stress at neighbouring nodes Γj∓1 and can be written in an explicit scheme and

the recusance minimizes to Γj. However, with the TRT-LBM model the stress is based

on the product of two different relaxation times. So, there is a freedom to choose the

viscosity and we can still find the other relaxation time by choosing the product equal

to 1/4. This leads to numerical stability and confirms the good choice of the parameter

Λ in the TRT model where the solution depends on explicit expression for Γj. The

only non locality can be found in the velocity components with the nearest nodes.
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7.3.1 The deviatoric stress with two relaxation times

The TRT-DBE which relaxes the odd and even order moments at different rates can

be written as

∂tfi + ξξξi · ∇fk = − 1

τ+

(
1

2
(fi + fĩ)− f

(0+)
i

)
− 1

τ−

(
1

2
(fi − fĩ)− f

(0−)
k

)
, (7.44)

where τ+ is the relaxation time for even moments and τ− is the relaxation time for odd

moments. The equilibrium function is split into its even and odd constituents, f
(0+)
i

and f
(0−)
i , respectively [33].

The PDE equation (7.44) can be discretised in a similar way to the BGK equation

from Section 2.5.4 to obtain the TRT-LBE

f̄k(x+ ξξξk∆t, t+∆t) = f̄k(x, t)−
∆t

(τ+ +∆t/2)

[
1

2
(f̄k(x, t) + f̄k̃(x, t))− f

(0+)
k (x, t)

]
− ∆t

(τ− +∆t/2)

[
1

2
(f̄k(x, t) + f̄k̃(x, t))− f

(0−)
k (x, t)

]
.

(7.45)

The BGK LBM is recovered from equation (7.45) when τ+ = τ−.

The evolution equation of the deviatoric stress for two relaxation times can be

derived in the same way as the BGK model and writing the relaxation time τ = τ+.

The term (∂γϕαβγ) in equation (7.8) is not vanishing as in the BGK model, in the

evaluation of the stresses Γxx and Γxy. This is because in the TRT model, the analysis

depends on two relaxation times such that τ− ≫ τ+. However, the BGKmodel depends

on one relaxation time and this can give a slow relaxation rate which gives an incorrect

solution as seen before. To calculate the shear stress Γxy, it should be understood

that the third-order moment in equation (7.8), ∂yϕxyy = (2/3)∂yyΓxy, is equal to zero,

since the second derivative of the deviatoric shear stress vanishes for this kind of flow.

Therefore, the shear stress is computed similarly to the BGK model with τ replaced

by τ+.
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Now the tangential component of the stress can be written as

Γxx = −2τ+µ(∂yux)
2 + τ+∂yϕxxy, (7.46)

where the third-order moment ϕxxy is calculated as follows

ϕxxy =
∑

fiξixξixξiy,

=
∑

fi(cix − ux)(cix − ux)(ciy − uy). (7.47)

Simplifying this equation then applying equation (7.1) gives

ϕxxy = Qxxy + 2uxΓxy, (7.48)

and by using the relation Ψy = 6Qyxx − 2ρuy in equation (2.131) where Ψy can be

found by choosing the y-component of equation (2.129) such that

Ψy = −4τ−ρux∂yux + 2τ−2µ∂yyyux. (7.49)

Inserting equation (7.49) into equation (7.48) and neglecting O((τ−)2τ+), yields

ϕxxy =
−2

3
τ−ρux∂yux + 2uxΓxy

=
2

3
ρ(τ+ − τ−)ux∂yux. (7.50)

According to equation (7.50), the tangential stress of equation (7.46) will be

Γxx = −2τ+µ(∂yux)
2 − ∂y

(
2

3
ρτ+(τ+ − τ−)ux∂yux

)
, (7.51)

which leads to the tangential stress at slip boundaries

Γxx =
2

3
ρτ+(τ+ − τ−)ux∂yyux −

2

3
ρΛ(∂yux)

2. (7.52)
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7.3.2 The analytic solution with TRT-LBM and moment bound-

ary conditions

If the same procedure that was done with the BGK model is followed the same eval-

uation of the stress Γxx as equation (7.32) is obtained. The only difference is by

exchanging τ 2 by Λ and τ by τ+. So the general evaluation of the tangential stress for

TRT-LBE reads

Γj
xx − (Λ− 1/4)

(
Γj−1
xx − 2Γj

xx + Γj+1
xx

)
= −1

3
ρΛ(u2j−1 − 2u2j + u2j+1)

− 1

2
τ+ρG(uj−1 + 2uj + uj+1) +

4

3
Λτ+ρG(uj−1 − 2uj + uj+1). (7.53)

This equation is easy to solve for Γxx if the recurrence relation of the stress is eliminated

by sitting Λ = 1/4.

To find the numerical solution of the TRT-LBM, conditions need to be imposed

that are compatible with the tangential stress. By using equation (7.52) and following

the same procedure as in Section 7.2.1, Πxx can be found at a slip wall

Πxx =
ρ

3
+ ρu2s − ρusG+

2

3
ρ(τ + 1/2)(τ+ − τ−)us∂yyus

+
6τ−

(τ + 1/2)
Π

2

xy (7.54)

The three unknown functions at a north boundary are calculated by imposing the

following three following constraints

ρuy = 0,

ρux = ρus −
1

2
ρG,

Πxx =
ρ

3
+ ρu2s − ρusG+

2

3
ρ(τ + 1/2)(τ+ − τ−)us∂yyus.

(7.55)

So, the three f̄i are
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f̄4 = f̄1 + f̄3 + f̄2 + 2(f̄5 + f̄6)−
ρ

3
− ρu2s + ρGus,

− 2

3
ρ(τ + 1/2)(τ+ − τ−)us∂yyus −

6τ

ρ(τ + 1/2)
Π

2

xy,

f̄7 =
ρ

6
− f̄3 − f̄6 + ρus(us − 1)/2 + ρG(1/2− us)/2

+
1

3
ρ(τ+ + 1/2)(τ+ − τ−)us∂yyus +

3τ

ρ(τ + 1/2)
Π

2

xy,

f̄8 =
ρ

6
− f̄1 − f̄5 + ρus(us + 1)/2− ρG(1/2 + us)/2

+
1

3
ρ(τ+ + 1/2)(τ+ − τ−)us∂yyus +

3τ

ρ(τ + 1/2)
Π

2

xy,

(7.56)

where Π
2

xy and us at the slip boundary can be calculated from equation (7.42) and

equation (3.81), respectively. The second derivative of us in the above equations can

be found easily from the analytical solution of equation (3.58) where ∂yyus = ∂yyux =

(−3/τ)G.

Figure 7.4 displays a developed fully parabolic solution for the tangential deviatoric

stress for channel flow. The parameters were taken to be Re = 100, Ma = 0.01
√
3, the

grid points is my = 33 while the slip length is equal to ζ= 0.001. Similar parameters

are used for the flow with Re = 0.1. It demonstrates also the matching of the results

between the analytical solution of equation (7.53) at Λ = 1/4, the PDE solution of

equation (7.52) and numerical lattice Boltzmann predictions for the TRT slip conditions

of equation (7.56). The spurious fluctuations have been eliminated. The effect of the

slip length on the results is also studied. For various slip lengths the behaviour of

the flow differs from the one with the BGK model. At higher slip lengths, the results

of the tangential stress drifts up for Re = 100 and drifts down for Re = 0.1. This

change in the behaviour happens because of the first term in the right side of equation

(7.52). This term includes two different relaxation times so it shifted the results from

its original point. This behaviour was not observed with the BGK model, because in

the tangential stress the relaxation times are equal so this term is not included.
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Figure 7.4: Tangential deviatoric stress for the Poiseuille flow by using the TRT-stress slip
moment boundary conditions. The results are plotted for ζ=0.001 and Ma = 0.01

√
3.
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Figure 7.5: Tangential deviatoric stress for the Poiseuille flow by using the TRT-stress slip
moment boundary conditions. The results are plotted for ζ=0.1 and Ma = 0.01

√
3.

7.4 Conclusion

In this chapter the stress field obtained using the BGK and the TRT lattice Boltz-

mann models with moment slip boundary conditions was analysed. Similar to the

no-slip study of Reis [94], the tangential stress for unidirectional channel flow does

not equal zero as is the case in the Navier-Stokes equations. Instead, it emulated the

non-zero stress Γxx = −2µτ(ú)2 of Burnett type at O(Kn2). The inconsistency be-

tween the equations we are solving and the conditions we are imposing caused spurious

oscillations. To remove this oscillations, boundary conditions that depend on devi-
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atoric stress are introduced. This condition reduced the oscillations of the stress at

the boundary particularly at higher resolutions. However, at small Reynolds numbers

hence large relaxation time our argument will not be valid and gave improper numerical

solution. Alternatively, slip moment boundary conditions that are based on the model

with Λ = 1/4 gave the correct numerical solution. With this model and contrary to

the BGK model the slip length ζ has the effect of shifting the results of the tangential

stress upwards and downwards for Re = 100 and Re = 0.1 respectively.
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Chapter 8

General conclusions and future

work

8.1 Conclusions

In this thesis different numerical implementations based on the lattice Boltzmann

method were studied by using the moment-based boundary conditions method for slip

and no-slip boundaries. These numerical studies have yielded promising and accurate

results.

This work was started by introducing some basic fluid flow concepts and historical

background of the LBM. Then another approach which was based on kinetic theory was

used to derive the BGK-LBE. From the DBE, the macroscopic Navier-Stokes equations

were recovered by using the Chapman-Enskog expansion. In this thesis the stability of

the method was increased by using MRT model. Here, the method of Dellar [28] was

followed.

Different boundary conditions were presented. For flat walls, the moment-based

boundary conditions were used at the beginning of this thesis to eliminate the draw-

back of the half-way bounce-back boundary conditions. Moment method depends on

the moments that are used to recover the Navier-Stokes equations. A detailed study

of finding the analytical solution of the LBE was shown for the Poiseuille flow. Some
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numerical simulations with moment based boundary conditions were carried out for

simple flows like Poiseuille and Coutte flows with moment-based boundary conditions.

By specifying the velocity at the wall to be zero for no-slip case, an exact solution was

found for these two flows in horizontally infinite domains. By applying the moment

method with open vertical boundaries for channel flow, third-order accuracy in Ma

was obtained.

Another problem which was investigated was the lid-driven cavity. In this flow,

larger Reynolds numbers were applied to test the accuracy of the no-slip moment

boundary conditions. The BGK model was stable for moderate Reynolds numbers;

however, the simulations were unsuccessful with small relaxation times and fewer grid

points. To overcome this, the MRT-LBM model was used. In this model, the relax-

ation time of the momentum flux was set by the Reynolds number while the ghost

moment relaxation times were set to be ∆t/2 to guarantee the stability of the method.

The method gave excellent results - an agreement for the velocity components and the

minimum values of the primary stream functions with the benchmark results that were

used for comparison. Moreover, second-order precision was obtained for the method

that was implemented.

The investigation was extended to include the dipole wall collision flow. In this two-

dimensional flow, the interaction between the wall and the two cores of vorticity were

studied extensively. The TRT-LBM model with moment-based boundary conditions

was shown to be accurate with good stability properties. In the first set of studies, the

dipole was released normally towards a no-slip wall, and then in the next sets at angles

of 30◦ and 45◦. After the first dipole wall collision, the boundary induced small and

high value vortices which increased by increasing the Reynolds numbers. The incidence

with the wall at an angle of 30◦ was more interesting than the normal case since the

two primary monopoles were not symmetric. This made the vortices that were created

at the wall more vigorous. However, the behaviour of the dipole that collided with the

corner at an angle of 45◦ was completely different. That was because after the first

collision the corner induced additional dipoles which decayed over time. The success
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of the simulation towards the corner increased the confidence in the choice of moments

for the boundary conditions at corners.

The interaction between the dipole and the boundary increased the dissipation of

the energy and the growth of the enstrophy. The results of these quantities were com-

pared with benchmark data of the finite difference method and of the pseudospectral

Chebyshev method in [19]. A very good agreement was obtained between these results

and the other numerical data. Moreover, moment-based boundary conditions results

were in better agreement than the bounce-back method with the benchmark data.

Also achieved in this thesis was another cornerstone study which was modifying the

moment-based boundary conditions to include the Navier-slip condition. This method

was used to study the dipole-wall collision problem with slippage on the walls. The

effect of different amounts of slip, as governed by the slip length, was studied. By

increasing the slip length, the generation of vortices at the wall, the dissipation of the

energy and the maximum of the enstrophy were decreased. The trajectory of the dipole

was shorter for smaller slip lengths and it matched the path of the dipole at shear-free

stress wall at much larger slip lengths.

The relation between the dissipation of the energy rate and the enstrophy was ex-

amined and contrasted with theoretical predictions. It was shown that the normal

relationship between dissipation and enstrophy is modified in the presence of wall slip.

The findings indicated that by increasing the Reynolds numbers, the dissipation of the

energy decreased while it was increased by increasing the enstrophy. This observation

confirms the results in this thesis. Moreover, this relation showed some fluctuation

in the dissipation of the energy results for longer timesteps which was eliminated by

reducing the Mach number and taking a moving average every 100 time steps.

The dissipation of the energy for dipole wall collision can be divided into three

regimes. In the absence of the viscosity, the dissipation was proportional to Re−1

while it was proportional to Re−0.5 near the boundary where the Prandtl theory was

satisfied. In the region where the generating of the vortices was reduced at the wall,

the dissipation was proportional to Re−0.5 and the enstrophy growth was to Re−0.5.
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Moreover, the maximum enstrophy scale reduced when the slip length was raised.

Finally the stress field was studied for planner channel flow. The study of Reis [94]

was extended in this thesis to include the moment method with slip boundaries. As a

result, spurious oscillations were found near the boundary and they were eliminated by

using conditions that are consistent with the deviatoric stress. Nevertheless, at lower

Reynolds numbers some assumptions were broken and incorrect numerical solutions

were found. Instead, stress boundary conditions for a TRT-LBM model were applied

and gave the correct solution. In this case and contrary to the BGK model, by increas-

ing the slip length the results are shifted because in the tangential stress the relaxation

times are not equal.
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8.2 Future work

The numerical results obtained in this thesis confirm the accuracy of the lattice Boltz-

mann method with moment-based boundary conditions. Therefore, from this approach

the following possible future work can be included:

Extend the numerical model to three dimensional problems space [17] for no-slip

and slip boundaries. The result of the interaction between the vortex and the wall is

an example of what can be seen in fluid turbulence [44]. By applying higher Reynolds

numbers for no-slip boundaries, one can investigate other real problems such as in tur-

bulent flows and analysing the stability of the method which can be examined [23, 20].

Also in the same field of study one can investigate the dissipation of the energy in the

limit of vanishing viscosity. For the last two cases, the parallelisation of the code is

required.

Since the moment-based boundary conditions proved its efficiency in the simulations

of flat walls, one can test the application of the moment-based method with curved

geometries [104].
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Appendix A

flowcharts of LBM simulation

In order to explain the general procedure of the algorithm for lattice Boltzmann method

with moment based boundary conditions and bounce back method, flowcharts of these

methods are inserted in the appendix.

A.1 LBMwith half-way bounce-back boundary con-

ditions

In this simulation, the half-way bounce-back boundary conditions are applied before

the streaming step. This is because the half-way bounce-back will happen at two time

steps. Figure A.1 shows the flowchart of bounce-back with LBM.
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Initialize the distribution
functions and the velocity

Collision step (re-
lax functions)

Calculate fi us-
ing BGK model

Bounce-back bound-
ary conditions

Streaming step

Update/next step

Print
solution?

Calculate the moments
; u;Π and print

More steps?

Stop

Yes

Yes

No

No

Figure A.1: The LBM flowchart with half-way bounce-back method.

A.2 LBM with moment based boundary conditions

By using Fortran code, the LBM with moment-base boundary conditions is used to

simulate the dipole-wall collision flow. The main logical steps of our procedure can be

demonstrated by a flowchart that is shown in Figure A.2 . In the initial step we set

ρ = 1, and ux, uy are calculated by using equation(4.2). The probability distribution

functions are initialized by using equation (2.78) where f̄i = f̄
(0)
i . In the collision

step, the moments relax to their equilibrium, equation (2.132), by using two relaxation

times. Then the distribution functions are updated by using equation (2.135). By

applying the streaming step, the distribution functions propagate to the nearest node;

however at the boundary three unknown functions are located. To find the unknown
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distribution functions at the boundary we used the moment-based boundary conditions

from Section(3.4). The above steps are repeated until the time condition is fulfilled .

Initialize the distribution
functions and the velocity

Collision step (re-
lax moments)

Calculate fi us-
ing moments

Streaming step

Apply moment-based
boundary conditions

Update/next step

Print
solution?

Calculate the moments
; u;Π and print

More steps?

Stop

Yes

Yes

No

No

Figure A.2: The LBM flowchart with Moment method.
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[18] A.R. Cieślik, R.A.D. Akkermans, L.P.J. Kamp, H.J.H. Clercx, and G.J.F.

Van Heijst. Dipole-wall collision in a shallow fluid. Eur. J. Mech. B/Fluids,

28:397–404, 2009.

[19] H.J.H. Clercx and C.-H. Bruneau. The normal and oblique collision of a dipole

with a no-slip boundary. Comput. Fluids, 35:245–279, 2006.

225



Bibliography

[20] H.J.H. Clercx, S.R. Maassen, and G.J.F. Van Heijst. Spontaneous spin-up during

the decay of 2d turbulence in a square container with rigid boundaries. Phys.

Rev. Lett., 80(23):5129, 1998.

[21] H.J.H. Clercx and G.J.F. van Heijst. Dissipation of kinetic energy in two-

dimensional bounded flows. Phys. Rev. E, 65:066305, 2002.

[22] H.J.H Clercx and G.J.F. van Heijst. Dissipation of coherent structures in confined

two-dimensional turbulence. Phys. Fluids, 29(11):111103, 2017.

[23] H.J.H. Clercx, G.J.F. Van Heijst, D. Molenaar, and M.G. Wells. No-slip walls as

vorticity sources in two-dimensional bounded turbulence. Dyn. Atmos. Oceans,

40(1-2):3–21, 2005.

[24] E.A. Coutsias and J.-P. Lynov. Fundamental interactions of vortical structures

with boundary layers in two-dimensional flows. Physica D, 51:482–497, 1991.

[25] V.S.J. Craig, C. Neto, and D. R.M. Williams. Shear-dependent boundary slip in

an aqueous Newtonian liquid. Phys. Rev. Lett., 87(5):054504, 2001.

[26] N. Curle. The influence of solid boundaries upon aerodynamic sound. Proc. R.

Soc. Lond. A, 231(1187):505–514, 1955.

[27] A. W. Date. Introduction to computational fluid dynamics. Cambridge University

Press, UK, 2005.

[28] P.J. Dellar. Nonhydrodynamic modes and a priori construction of shallow water

lattice Boltzmann equations. Phys. Rev. E, 65:036309, 2002.

[29] P.J. Dellar. Incompressible limits of lattice Boltzmann equations using multiple

relaxation times. J. Comput. Phys., 190:351–370, 2003.

[30] G. Deng, J. Piquet, P. Queutey, and M. Visonneau. Incompressible flow calcu-

lations with a consistent physical interpolation finite volume approach. Comput.

Fluids, 23:1029–1047, 1994.

226



Bibliography

[31] M. Deville and T.B Gatski. Mathematical modeling for complex fluids and flows.

Springer Science & Business Media, 2012.
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