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Abstract 30 

Plastic pollution is distributed widely across the globe, but compared with marine 31 

environments, there is only rudimentary understanding of the distribution and effects of plastics 32 

in other ecosystems. Here, we review the transport and effects of plastics across terrestrial, 33 

freshwater and marine environments. We focus on hydrological catchments as well-defined 34 

landscape units that provide an integrating scale at which plastic pollution can be investigated. 35 

Diverse processes are responsible for the observed ubiquity of plastic pollution, but sources, 36 

sinks and fluxes in river catchments are poorly quantified. Nevertheless, early indications are 37 

that rivers are hotspots of plastic pollution, supporting some of the highest recorded 38 

concentrations. River systems are also likely pivotal conduits for plastic transport among the 39 

terrestrial, floodplain, riparian, benthic and transitional ecosystems with which they connect. 40 

Although ecological effects of micro- and nano-plastics plastics might arise from a variety of 41 

physical and chemical mechanisms, understanding of their nature, severity and scale is 42 

restricted and lacks consensus in comparison to macro-plastic research. Furthermore, whilst 43 

individual-level effects are often graphically represented in public media, knowledge of the 44 

extent and severity of the impacts of plastic at population, community and ecosystem levels is 45 

limited. Given the potential social, ecological and economic consequences, we call for more 46 

comprehensive investigations of plastic pollution in ecosystems to guide effective management 47 

action and risk assessment. This is reliant on (i) expanding research to quantify sources, sinks, 48 
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fluxes and fates of plastics; (ii) improving environmentally relevant dose-response 49 

relationships for different organisms and effect pathways, (iii) scaling up from studies on 50 

individual organisms to populations and ecosystems, where individual effects are shown to 51 

cause harm; and (iv) improving biomonitoring through developing ecologically relevant 52 

metrics based on contemporary plastic research. 53 

 

 

1. Introduction 54 

Plastic waste production across the globe has reached approximately 6300 million metric tons 55 

(MT), most (79%) of which has been disposed of to land-fills and more widely into the 56 

surrounding environment (Geyer et al., 2017). The annual flow of plastic pollution to the 57 

world’s oceans is estimated to be 4.8–12.7 MT, a large proportion of which comes from sources 58 

on land and is transported by rivers or wind (Jambeck et al., 2015). Plastic pollution is 59 

comprised of a variety of different organic polymers and is invariably categorised based on 60 

particle size:  nano (<1 m), micro (0.01–5 mm), meso (5–25 mm) and macro (>25 mm). Once 61 

in situ within ecosystems, degradation and fragmentation processes make the identification and 62 

removal of these plastic particles difficult. Recent reviews and theoretical models have, 63 

however, indicated a large number of potential sources, fluxes and sinks of plastics across the 64 

wider environment (Alimi et al., 2018; Browne et al., 2011; de Souza Machado et al., 2018a; 65 

Horton et al. 2017a; Wagner et al., 2014). A more detailed understanding of the sources, fluxes 66 

and effects of these anthropogenic pollutants, and a more comprehensive quantification of their 67 

fate, is now required urgently to determine the risks to people and ecosystems across the globe 68 

(de Souza Machado et al., 2018a; Horton & Dixon, 2017; Nizzetto et al., 2016a). 69 

Large production volumes, long-term environmental persistence and potential ecological 70 

effects have meant that plastic pollution has received increasing attention (Thompson et al., 71 
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2009). The variety of plastic sizes (microns to metres) and characteristics (e.g. shape, physical 72 

and chemical properties) make this group of pollutants particularly diverse (Rochman, 2015).  73 

In turn, the diversity and ubiquity of plastic particles within natural systems, mean there is a 74 

wide variety of ways in organisms can interact with, become entangled in, or ingest plastic 75 

pollution (e.g. Cole et al., 2013; Foekema et al., 2013; Lusher et al., 2013, 2015a; Hall et al., 76 

2015). Although existing information indicates the potential for effects across biological 77 

communities and human populations (Halden, 2010), our understanding of the effects of plastic 78 

pollution on people and ecosystems remains constrained. Furthermore, despite widely 79 

identified interactions between organisms and plastics, a comprehensive mechanistic 80 

understanding of effect pathways remains limited, with a few notable exceptions (e.g. ingestion 81 

and energy reserve depletion: Wright et al., 2013a). Further to this, existing dose-response 82 

relationships for effect pathways are relative restricted and are often limited in either their 83 

taxonomic breadth or utility (e.g. unrealistic concentrations and/or plastic characteristics: 84 

Phuong et al., 2016). Notable exceptions are presented by recent studies, where existing 85 

predicted no effect concentrations for microplastics have been collated – covering a number of 86 

plastic types and size categories, as well as incorporating a range of aquatic organisms (Burns 87 

& Boxall, 2018; Everaert et al., 2018). 88 

In this review, we critically evaluate existing evidence for the fluxes and effects of plastic 89 

pollution from a catchment-scale perspective. We focus particularly on freshwater systems as 90 

highly connected networks through which plastics are transported from sources in terrestrial 91 

environments to marine ecosystems. Throughout the manuscript we aim to: (i) synthesise 92 

existing knowledge regarding the fluxes and effects of plastic pollution across hydrological 93 

catchments; (ii) highlight emerging areas that require further research; and (iii) identify 94 

improvements to aid the development and integration of catchment-scale research. 95 

2. Fluxes of plastics through hydrological catchments 96 
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Hydrologically defined river catchments offer valuable units in which to consider the sources, 97 

fluxes and fates of plastic pollution (Fig 1). This is because the transport of plastics often 98 

follows hydrologically pathways, and hydrological pathways are determined clearly by 99 

topography, surface morphology and drainage patterns (Bracken et al., 2013).   100 

Once released into the environment, plastics reach across all ecosystems and ecotypes across 101 

the globe (Geyer et al., 2017). Plastic particles are widespread, even in areas considered to have 102 

little to no human influence, such as the deep sea, Arctic sea ice and remote uninhabited islands 103 

(Lavers & Bond, 2017; Peeken et al., 2018; Van Cauwenberghe et al., 2013). Along their 104 

movement from source to sink, plastics interact with their physical, chemical and biological 105 

environment in ways that depend on the characteristics of the plastic (size, shape, polymer type, 106 

etc.) so that it is not practical to consider ‘plastics’ as a singular form of pollution. Nevertheless, 107 

for the purposes of this discussion, we highlight existing theoretical and empirical evaluations 108 

of the flux and effects of a broad group of ‘plastics’ across ecosystems. 109 
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Fig. 1. Conceptual diagram of plastic fluxes across the compartments of hydrological 

catchments. Specific pathways, indicated by black arrows, are further discussed within the 

main body of text. Grey arrows represent theoretical fluxes that have yet to be investigated in 

detail (see Underrepresented ecosystems). 

The movement of plastic across and between compartments of river catchments is analogous 110 

to other catchment-scale processes involving fluxes, transformations and storage (Horton & 111 

Dixon, 2017). It has been theoretically suggested that microplastic particles behave in a similar 112 

manner to other particulate matter with similar characteristics (e.g. density, size and shape), 113 

such that movement of these particles resembles the flux of others (e.g. sediment/soil particles, 114 

fine and coarse organic matter (Nizzetto et al., 2016a). In reality, however, it is likely that the 115 

unique diversity of shape, density, size, or surface complexity of plastic particles, limits the 116 

accuracy and utility of existing models to predict plastic movement across and within 117 

ecosystems. Furthermore, the behaviour of larger particles of plastic (meso to macro) within 118 
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ecosystems remains poorly understood. The processes responsible for transporting these larger 119 

particles are likely similar to those transporting microplastics, yet operate at larger scales, 120 

involve more energy and occur less frequently. As a result of these complications, there 121 

remains insufficient data to accurately parameterise and validate empirical transport models 122 

for plastic pollution. 123 

While movement of plastic between atmospheric, terrestrial and freshwater systems appears to 124 

multidirectional, marine systems are generally perceived to act as sinks for plastics, with 125 

limited outfluxes (Browne et al., 2011). However, a significant amount of plastic is transported 126 

through river catchments (Lebreton et al., 2017). While this is likely to be the main source of 127 

marine plastics (Nizzetto et al., 2016a), little is known about the residence time of plastics in 128 

freshwaters, which could also trap significant amounts of material. Quantification of all the 129 

pathways from land to sea remains limited (but see Clark et al., 2016; Galloway et al., 2017), 130 

yet is key to supporting the estimation of ecological risk across systems.  131 

The characteristics of hydrological catchments are like to maintain important implications for 132 

the flux of plastic pollution across the landscape. Features such as topography, hydrology and 133 

land use, are likely responsible for altering the mass balance of plastics within catchments – 134 

influencing both the diversity and volumes of plastic emitted from sources, the nature and 135 

magnitude of transport processes, as well as the likelihood of temporary storage across 136 

ecosystems within the wider hydrological catchment. Limited information exists at the 137 

catchment-scale, however, existing studies investigating plastic pollution across terrestrial, 138 

freshwater, atmospheric and marine systems provide a basis for understanding catchment-scale 139 

transport of plastic pollution. 140 

2.1. Terrestrial systems 141 

Several sources of plastic pollution are associated with human activities across the terrestrial 142 

environments present within hydrological catchments (de Souza Machado et al., 2018a; Hurley 143 
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& Nizzetto, 2018). Plastic pollution stems from a wide array of activities, creating a patchwork 144 

of point and diffuse sources across catchments, with both rural and urban soils are considered 145 

to be contaminated by plastic particles (Nizzetto et al., 2016b).  Intensive agricultural practices 146 

distribute plastics across rural regions through the degradation of machinery, diffuse littering, 147 

application of sewage sludge as a fertiliser (Zubris & Richards, 2005) and plastic mulching 148 

(Steinmetz et al., 2016). The redistribution of sewage sludge is particularly interesting, 149 

transporting plastics associated within urban activities across some rural landscapes (Horton et 150 

al., 2017a; Zubris & Richards, 2005). The flux of plastics from this activity is potentially 151 

important considering that 80–90% of plastics entering sewage treatment are stored in sludge 152 

(Talvitie et al., 2017), and a large amount of MPs (4196–15385 MP kg–1 dry mass) remain 153 

post-treatment of biosolids (Mahon et al., 2017). Within Europe, Nizzetto et al. (2016b) 154 

estimated that 125–180 t of microplastics per million inhabitants are added to agricultural soils 155 

as a result of sewage sludge application. Urban land use and associated activities also provide 156 

several different sources of plastic pollution (Ballent et al., 2016; Nizzetto et al., 2016b). In 157 

particular, loss during waste disposal, industrial spillage and release from landfills provide 158 

significant inputs of plastic (Lechner & Ramler, 2015; Sadri & Thompson, 2014). The large 159 

production of plastics in terrestrial systems, limited land area and range of distribution 160 

processes may result in a greater environmental concentration within these ecosystems, 161 

compared to marine environments (Horton et al., 2017a). 162 

The flux and storage of plastic within terrestrial systems have been catalogued theoretically, 163 

but there are few field data. Once in terrestrial ecosystems, plastics accumulate in soils and can 164 

be ingested by soil-dwelling organisms (Rillig, 2012; Rillig et al. 2017a). Existing empirical 165 

data indicate that plastics are incorporated into earthworm casts (Huerta Lwanga et al., 2017), 166 

and also that polyethylene microbeads (0.71–2.8 mm) reach down into the subsurface through 167 

earthworm burrows (Rillig et al., 2017b). Concentration of plastic in soils varies: river 168 
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floodplains across Switzerland revealed relatively low concentrations of microplastics (0–169 

55.5 mg kg–1, Scheurer & Bigalke, 2018), but more heavily contaminated industrial soils (300–170 

67500 mg kg–1) have been observed from samples collected in Australia (Fuller & Gautam, 171 

2016). The lightweight nature of plastic material, means that in terrestrial systems, particles are 172 

more easily transported by wind and weather events (Zylstra, 2013), diffusing their distribution 173 

across catchments. 174 

Plastics stored in terrestrial systems may subsequently be re-mobilised and subsequently 175 

transported within or across catchments (Dris et al., 2015a; Duis & Coors, 2016; Wagner et al., 176 

2014). Although empirical assessments are absent from the literature, soil erosion during heavy 177 

rainfall is likely to increase the flux of plastic particles from soils to river systems (Bläsing & 178 

Amelung, 2018). In particular, landfills in low lying areas prone to flooding, present a 179 

significant source of plastics into freshwater ecosystems (Brand et al 2018). In some cases, as 180 

during flood events, plastics may even return to land, however the flow of plastics out of 181 

terrestrial systems  appears dominant and drives the global plastic cycle (see de Souza Machado 182 

et al., 2018a). 183 

2.2. Atmospheric systems 184 

Plastic, as a result of its lightweight characteristics, can be suspended and transported within 185 

the atmosphere at both the catchment and regional scale (Dris et al., 2016; Prata, 2018). Plastics 186 

enter the atmospheric system through a variety of pathways across catchments, including 187 

combustion of waste plastic, wind erosion of various media, urban dust (including tyre wear 188 

particles, paint particles and synthetic fibres) (Lee et al., 2016; Unice et al. 2012) and diffuse 189 

litter (Dris et al., 2016). The majority of plastic observed in atmospheric systems falls into the 190 

micro- and nano- size classes, nevertheless, larger particles may be suspended in the 191 

atmosphere if they support a suitable set of characteristics (e.g. disposable plastic bags and 192 

balloons). Significant concentrations of plastic are observed within the lower atmosphere (0.3–193 
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1.5 MPs m–3), yet compared to indoor air these values are relatively low (1–60 MPs m–3) (Dris 194 

et al., 2017). Polyurethane, polypropylene and polystyrene microplastic particles were 195 

identified in atmospheric fallout, at concentrations between 175 to 313 MP m–2 day–1 in 196 

Dongguan city (Cai et al., 2017). Similar concentrations of microplastic were also observed 197 

using passive samplers in Paris; 2–355 MPs m–2 day–1 (Dris et al., 2016). The fallout of these 198 

particles is, in turn, responsible for the accumulation of particles in ‘street dust’. For example, 199 

‘street dust’ collected from sites across Tehran exhibited 88–605 microplastics per 30 g of dust 200 

(Dehghani et al. 2017). The atmosphere therefore appears to store and transport plastic, and 201 

while there is limited evidence of long-range atmospheric flows of plastic, microplastic 202 

pollution occurs in remote environments such as alpine lakes (Free et al., 2014). The storage 203 

and transportation of plastics in the atmosphere is likely temporally variable; influenced by the 204 

prevailing meteorological conditions at different time scales. Thus, it is unlikely that the 205 

atmosphere provides a long-term store of plastics, instead acting as a temporary store, as well 206 

as a potential short- and long-distance transport pathway.  207 

2.3. Freshwater systems 208 

Freshwater ecosystems include a diverse assemblage of running, standing, surface and 209 

underground waterbodies. Running waters act as conduits connecting terrestrial and marine 210 

systems, providing an important long-range transport mechanism, as well as storage 211 

opportunities in some benthic or riparian habitats (Horton & Dixon, 2017). Standing waters, 212 

including lakes and ponds, may also act as accumulators and stores of plastic (Vaughan et al., 213 

2017). The role of freshwaters in the transport of plastics across catchments is thus highly 214 

dependent upon the characteristics of the waterbody. 215 

The sources of plastic entering freshwater ecosystems are varied and spatially heterogeneous, 216 

ranging from diffuse inputs stemming from run-off to point sources such as Wastewater 217 

Treatment Works (WwTWs) and Combined Sewer Overflows (CSOs) (Horton et al., 2017a). 218 
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Domestic sewage collects a variety of plastic types, including synthetic wet wipes, microbeads 219 

(Duis & Coors, 2016) and polymer fibres from the laundering of synthetic textiles (Napper & 220 

Thompson, 2016). WwTWs effectively remove the vast majority of both large and small 221 

plastics from raw influent (95–99%), yet these point sources remain an important contributor 222 

of smaller microplastic particles to freshwater ecosystems (Murphy et al. 2016; Talvitie et al., 223 

2017). These contributions from treated effluent, however, are spatially variable in response to 224 

variable removal efficiencies across WwTWs (Siegfried et al., 2017). Microplastics removed 225 

during treatment are also not completely disconnected from entering the environment, with the 226 

retention of plastics in sludge (Mahon et al., 2017) and the potential for subsequent re-227 

application across catchments. Further sources of micro- and macro-plastic identified within 228 

existing literature include, diffuse urban pollution, stormwater drains (Horton et al., 2017b), 229 

combined sewage overflows and litter (Horton et al. 2017a). The combined effects of urban 230 

pollution sources have been shown to generate enhanced concentrations of plastics within 231 

freshwater systems, for example the highly populated Lake Erie maintains far greater 232 

concentrations of microplastic particles (43,000 MP km–2) in comparison to lakes in proximity 233 

to less populated regions, e.g. Lake Huron (6,541 MP km–2) and Lake Superior (12,645 234 

MP km–2) (Eriksen et al., 2013). As a result of the ubiquity of point and diffuse sources of 235 

plastic pollution within freshwaters, it is not surprising that plastic has been widely identified 236 

within a range of freshwater habitats (Free et al., 2014; Horton et al., 2017b). Data from 237 

freshwater systems, thus far, indicate that these systems are important hotspots of plastic 238 

pollution, holding some of the highest concentrations of (micro)plastics recorded in either 239 

water and sediments across the globe (Hurley et al., 2018; Mani et al., 2015). 240 

River systems act as conduits, connecting terrestrial, riparian, floodplain and transitional 241 

ecosystems within their catchments. Theoretical and modelling assessments support the 242 

notions of particle transfer across habitats, but also under certain conditions significant storage 243 
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(see Nizzetto et al., 2016a). The retention and transport of plastics are a product of particle 244 

characteristics (density and dimensions) and environmental characteristics (flow regime) 245 

(Nizzetto et al., 2016a). Within river systems plastics may pool in benthic sediments 246 

(Castañeda et al., 2014) or be transferred along an altitudinal gradient towards marine 247 

ecosystems (Lebreton et al., 2017; Mani et al., 2015). This transport may occur throughout the 248 

water column, with significant transport observed both on the surface (Dris et al., 2015b; Aaron 249 

Lechner et al., 2014) and subsurface (Morritt, Stefanoudis, Pearce, Crimmen, & Clark, 2014) 250 

of river systems. 251 

The interaction between storage and flux processes is highlighted in a recent study by Hurley 252 

et al. (2018), which indicates the significant mobilisation and removal of sedimentary 253 

microplastics in response to high flow events. In this example, 0.85 ± 0.27 tonnes of plastic 254 

was removed from a single catchment during an individual flood event (Hurley et al., 2018). 255 

Similar flood events may also be responsible for distributing plastics onto floodplains. The net 256 

or total flux of plastics from terrestrial sources, through hydrological networks to marine 257 

systems however remains poorly understood. It is, however, estimated that global river 258 

networks are responsible for transferring 1.15–2.41 MT of plastic pollution to marine 259 

environments (Lebreton et al., 2017). This estimate, however, is based solely upon surface 260 

transport and does not account for suspended and bedload transport. As a result, the mass of 261 

plastic transported through river systems are likely to be underestimated, with the combination 262 

of surface and subsurface transport more likely accounting for a greater proportion of the total 263 

4.8–12.7 MT estimated entering marine environments per year (Jambeck et al., 2015). 264 

2.4. Marine systems 265 

Oceans are often considered the end-point of plastic fluxes from hydrological catchments 266 

(Horton & Dixon, 2017). As highlighted previously, it is estimated that fluxes of plastics from 267 

rivers provide a major input of macro- and micro-plastics into marine environments across the 268 
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globe (Lebreton et al., 2017; UNEP, 2016). With 50% of the global population residing within 269 

31 km of the coast (Small & Cohen, 2004), direct inputs of plastics are also likely to be 270 

significant. Finally, industrial activity, such as commercial fishing, contributes to the total 271 

plastic burden within marine ecosystems (Lusher et al., 2015b). In most cases these activities 272 

release macro-plastics, such as netting and plastic sheeting, which then degrades to form 273 

microplastic particles when exposed to physical, chemical or biological processes (e.g. 274 

Davidson, 2012). The potential variety of plastic sources generates a widespread distribution 275 

of plastics in the marine environment, yet heterogeneity exists with accumulation zones and 276 

plastic hotspots (Lusher, 2015). Plastic transport processes are widespread and heterogeneous 277 

within the marine environment (Browne et al., 2011). Ocean and wind circulation currents, 278 

ranging from small-scale vertical mixing to large-scale oceanic gyres, appear responsible for 279 

the observed patchiness of plastic distribution within marine systems (Kukulka et al., 2012; 280 

van Sebille et al., 2015). In coastal regions, local hotspots may also be generated by the influx 281 

of plastics from river systems (Frias et al., 2014). 282 

Although not commonly appreciated, plastics are also transported out of marine and coastal 283 

ecosystems to terrestrial and atmospheric environments through wind and wave action (e.g. 284 

storm surges) (Horton et al., 2017a). These transport pathways redeposit plastic to 285 

coastal/terrestrial systems. For example, a large proportion of plastic litter present across 286 

coastal regions is derived from marine environments, transported and deposited through wave 287 

action (Browne et al., 2011). The suspension of plastic by aeolian processes is  responsible for 288 

transferring particles from marine to atmospheric systems, with microplastics potentially 289 

aerosolised alongside the sea surface microlayer (Wright & Kelly, 2017). Plastic particles will 290 

also settle through the water column and become incorporated in marine sediments (Van 291 

Cauwenberghe et al., 2013). The rate at which this process occurs is influenced by 292 

amalgamation within faecal pellets (Cole et al., 2016) or incorporation into algal structures 293 
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(Long et al., 2015). The accumulation of plastic in benthic sediments provides a temporary 294 

store which may be remobilised by physical and biological processes, although there is limited 295 

research on the mechanisms of plastic transport in marine systems (Martin et al., 2017).  296 

2.5. Underrepresented ecosystems 297 

There are several ecosystems where the occurrence of plastics remains largely unexplored. In 298 

particular, groundwater and cryosphere ecosystems, as well as riparian ecotones have received 299 

relatively limited attention. Yet the potential for these ecosystems to significantly influence the 300 

storage and flux of plastics is not negligible. 301 

Within the cryosphere, the remobilisation of plastics resulting from increasing melt-rates, may 302 

provide a significant source of plastics to other ecosystems. Existing research demonstrates 303 

high concentrations of plastic debris (40–250 MP L–1 melted ice) stored in Arctic sea-ice 304 

(Obbard et al., 2014; Peeken et al., 2018). The release of plastic from sea ice is likely an 305 

important contributor to the flux of plastic within marine systems. As an example, the net 306 

melting of sea ice between 2011 and 2016 is estimated to have released 7.2–8.7 x 1020 MP in 307 

the size range of 0.011–5 mm (Peeken et al., 2018). Within glacierised hydrological 308 

catchments, patterns of continuing deglaciation may lead to a significant release of plastic, 309 

however, little is known about the distribution of plastic contamination across these 310 

compartments of the cryosphere.  311 

Groundwater systems provide important stores and transfer pathways of pollutants, e.g. 312 

pesticides (Toccalino et al., 2014), so it is likely that these systems would store and transport 313 

micro- and nano-plastics (Rochman, 2018). While interstitial pore space within rock strata, 314 

hydrologic connectivity and subsurface flow paths, limit particle sizes, it is likely that some 315 

systems like karsts may also transport or store larger particle sizes. The relative contribution of 316 

groundwater to the total flux of plastic pollution, is likely relatively restricted due to pore size 317 

restrictions.  318 
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Riparian ecotones, as the main interface between terrestrial and freshwater systems, are also 319 

obvious points for transfer and storage. Recent studies have used citizen science techniques to 320 

quantify the levels of macroplastic litter along riverbanks and riparian zones, observing an 321 

average of 0.54  1.2 litter items m-2 across Germany (Kiessling et al., 2019). Riparian zones 322 

likely provide temporally variable effects on the storage and transfer of plastic pollution. For 323 

example, during floods plastics are prone deposition above the bank, namely if the riparian 324 

vegetation increases retention. River level (water height), velocity, vegetation type, coverage 325 

and roughness, are here key regulating factors in the storage, release or transport of plastics in 326 

riparian ecosystems. 327 

3. Biological retention and cycling of plastics across catchments 328 

Plastics are transported, ingested, cycled and sometimes retained by biota. Biological 329 

interactions such as ingestion also alter the physical and chemical properties of these plastics, 330 

which in turn influences the movement (flux and storage) of plastic between ecosystems. As 331 

an example, as plastics are incorporated into faecal pellets, phytoplankton aggregates or biofilm 332 

matrices, the otherwise buoyant plastic particles gain a propensity to sink, leading to increased 333 

deposition in sediments (Cole et al., 2016; Long et al., 2015; Rummel et al., 2017). The 334 

aggregation of particles as a result of egestion may subsequently alter the distribution of 335 

plastics whilst also increasing their bioavailability to organisms feeding on faecal material 336 

(Ward & Kach, 2009). Once in food webs, plastic particles may be retained through cycling 337 

between trophic levels, moving upwards through the food web as a consequence of predation 338 

(e.g. Nelms et al., 2018) and re-entering the basal resources through egestion. The residence 339 

time of plastic particles within the biological component of food webs is unknown. Higher 340 

plants may also retain plastic, with significant aerial accumulation, in the branches and foliage 341 

of plants in both terrestrial and riparian systems, as well as entangled in subterranean and 342 

subaquatic plant material. The storage of plastics in the biotic components of ecosystems, 343 
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ultimately however, is restricted with the majority of plastic particles likely to return to the 344 

environments from which they were sequestered, through a series of processes including 345 

egestion and decomposition (Wright et al., 2013b). 346 

Organisms may also facilitate the transport of plastics across habitats and ecosystems. For 347 

example, the dispersal of some organisms across the landscape may act to redistribute plastics 348 

at a range of spatial scales, from microhabitats to continents. Across short distances, organisms 349 

such as worms and collembolans may transport plastics via ingestion, attachment and active 350 

transport (Maaß et al., 2017). Recent studies have also indicated the ability of mosquitos (Culex 351 

pipiens; Linnaeus 1758), to transport microplastics (2 and 15 m) from aquatic to terrestrial 352 

and atmospheric systems (Al-Jaibachi et al., 2018). For micro-organisms, transport may be 353 

relatively localised, yet larger organisms (e.g. cetaceans) may facilitate long distance transport. 354 

Such processes are likely responsible for distributing plastic across the landscape and 355 

potentially generating plastic pollution in regions previously unaffected by non-biological 356 

fluxes of plastics. These processes, however, are unlikely to be significant relative to 357 

redistribution by physical processes (e.g. winds and tides). The interaction between organisms 358 

and plastic transport is an emergent field of research, requiring further attention. 359 

4. Ecological effects of plastics 360 

Ecological impacts on biota from exposure to plastic may stem form an array of mechanisms. 361 

While current literature predominantly reports physical impacts on biota or ecosystem function, 362 

chemically-related effects, facilitated by the adsorption properties of plastic surfaces, are also 363 

likely (Fig. 2). 364 

One of the largest bodies of observational evidence for the lethal effects of plastic pollution 365 

lies in records of entanglement and external physical damage. Although the majority of 366 

information available implicates large plastic items, for example fishing nets and rope (e.g. 367 

(Jacobsen et al., 2010), these physical effects also pose a problem for small organisms. For 368 
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example, zooplankton exposed to microplastic fibres (1.7  104–5.4  105 fibres L–1), were 369 

observed with antennal and carapace deformities resulting from external damage (Ziajahromi 370 

et al., 2017). The concentrations utilised within this study, however, do not represent 371 

environmentally relevant concentrations. Observations in terrestrial systems have also 372 

identified the lethal effects of entanglement on American crow (Corvus brachyrhynchos; 373 

Brehm, 1822) nestlings (Townsend & Barker, 2014). The effects of entanglement, however, 374 

occur at the individual level, and there remains limited evidence to suggest that these 375 

potentially lethal impacts support significant effects across populations. Furthermore, the 376 

effects of plastic exposure on sensitive tissues have generally been carried out at concentrations 377 

exceeding those observed within natural environments (Phuong et al., 2016). 378 

 

Fig. 2. Observed and predicted mechanistic effects of microplastic exposure in natural 

environments. Potential mechanistic effects are determined from theoretical and empirical 

studies, as well as perceived mechanisms of action which have yet to be investigated. Bold 

effects and responses are those that have been investigated within the literature. 
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The ingestion of plastic has also been a focus of existing research with the severe effects (e.g. 379 

reduced growth and mortality) of plastic blockages in the digestive tracts of organisms 380 

attracting attention (Derraik, 2002; Gall & Thompson, 2015). These effects are observed across 381 

the biosphere, although they have so far been infrequently recorded on a small number of 382 

individuals. A range of more subtle effects, however, may be generated by plastic ingestion. 383 

The ingestion of plastic maintains the potential to generate reductions in the adsorption of 384 

nutrients by the organism (based on reduced uptake of nutrients and intake of actual food 385 

items), alterations in the gut microbiota and also reduce the energy budget of organisms leading 386 

to several subsequent impacts, including reduced feeding, decreased activity, reduced 387 

reproductive output and eventually mortality (see Wright et al., 2013a; Au et al., 2015; Watts 388 

et al., 2015; Zhu et al., 2018). Thus far, exposure to a range of plastic types, sizes and shapes, 389 

has generated relatively limited adverse effects on aquatic organisms, including fish and 390 

invertebrates (Foley et al., 2018). As a specific example, a battery of six freshwater 391 

invertebrates exhibited limited responses in growth, reproduction and survival to polystyrene 392 

microplastics (20–500 m) at concentrations of 0–40% sediment dry weight (Redondo-393 

Hasselerharm et al. 2018). However, the complexity of plastics make effects difficult to predict 394 

as the shape, size and type of polymer can influence particle toxicity. For example, microfibers 395 

have been shown to have a greater adverse effect than microbeads due to entanglement and 396 

carapace damage in water fleas (Ceriodaphnia dubia; Richard, 1894) (Ziajahromi et al., 2017). 397 

In addition to physical effects, plastics can also leach toxic compounds, generating effects 398 

within organisms that come into contact with plastics. Plastics are complex compounds with a 399 

variety of added chemicals (plasticisers, hardeners, flame retardants, surfactants and synthetic 400 

dyes) to give them their specific properties. Over time these plasticisers leach out and can often 401 

act as toxic or endocrine disrupting chemicals within the environment (Hermabessiere et al., 402 

2017). A wide range of toxic compounds have been identified as plastic additives, including 403 
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bisphenol a (BPA), nonylphenol, polybrominated flame retardants and phthalates 404 

(Hermabessiere et al., 2017). These leachates have been shown to negatively affect 405 

development in the early life stages of invertebrates (Nobre et al., 2015), whilst also generating 406 

reproductive abnormalities in a range of organisms (Browne et al., 2007). 407 

Plastics may act as vectors within the environment, facilitating the enhanced transport of 408 

persistent organic pollutants (POPs) and other chemicals through biotic and abiotic 409 

components of ecosystems (Ziccardi et al., 2016). The “vector effect” has predominantly been 410 

portrayed as detrimental, with a range of harmful substances adsorbed to the surfaces of plastics 411 

(Koelmans et al., 2016) and the possibility to potentiate the toxicity of other chemicals, e.g. 412 

triclosan (Syberg et al., 2017). The role of microplastics in organic chemical bioaccumulation, 413 

however, is unclear. While previous studies have shown increased bioaccumulation of 414 

chemicals when adsorbed to plastics (Bakir et al., 2014a, 2014b), recent evidence suggests that 415 

the role of microplastics in chemical transfer to organisms may be negligible when compared 416 

to other natural organic matter (Koelmans et al., 2016). Further to this, only a small fraction of 417 

contaminants appear to adsorb  to the surface of common microplastics (polyethylene and 418 

polypropylene), with only hydrophobic compounds shown to consistently absorb to particles 419 

(Seidensticker et al., 2018). Other studies have indicated that the presence of plastics during 420 

contaminant exposure maintains variable effects. For example, polystyrene microplastics (0.4–421 

1.33 mm) under provided a “cleaning” mechanism, whereby pollutants, in this case PCBs, are 422 

transferred from the tissues of the organisms to the microplastic particles (Koelmans et al., 423 

2013). In another study, the addition of polyamide microplastic particles (15–20 m) to 424 

experimental chambers reduced the aqueous concentrations of BPA, leading to a reduction in 425 

the levels immobilisation of Daphnia magna (Straus, 1820) in comparison to exposure to only 426 

BPA (Rehse et al., 2018). The degree to which chemicals sorb to plastics is also highly variable 427 

and dependent upon the environmental conditions (e.g. salinity, temperature, pH and organic 428 
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matter), chemical characteristics and plastic type (Teuten et al., 2009). Although other 429 

substrates may provide a greater influence on the bioaccumulation of pollutants, the sorption 430 

of pollutants to plastics may enable the transfer of pollutants over greater distances compared 431 

to organic pollutants associated with denser sediment particles (Nizzetto et al., 2016). 432 

The surface of plastics provides a suitable substrate for colonisation by microbial and 433 

invertebrate communities (McCormick et al., 2016; Reisser et al., 2014). Within urban river 434 

systems, plastics have been identified as a unique and important substrate for the colonisation 435 

of aquatic microbial biofilms (McCormick et al., 2014). Similar findings have been presented 436 

within marine systems, with diatoms, phytoplankton and cyanobacteria colonising plastic 437 

particles suspended within the water column (Oberbeckmann et al., 2016; Reisser et al., 2014; 438 

Zettler et al., 2013). While in some instances the microbial communities on these plastic 439 

particles maintained comparable species richness and evenness to communities present on 440 

natural substrates (Zettler et al., 2013), other studies (e.g. McCormick et al. 2014) demonstrated 441 

that microbial communities inhabiting microplastic particles maintained a different taxonomic 442 

structure to those present in the water column and on suspended organic matter. An increasing 443 

body of research has also identified the colonisation of plastic particles by harmful microbes, 444 

which could lead to further deleterious effect upon organisms interacting with these particles 445 

(Keswani et al., 2016). For example, the ingestion of these particles may expose organisms to 446 

a range of adverse effects derived from harmful microbes and lead to long-range transport of 447 

these microbes to regions that would not normally be found (Kirstein et al., 2016; Viršek et al., 448 

2017). Further to this, recent studies have indicated that the intense interactions within 449 

microbial communities on microplastic particles enables the increased plasmid transfer 450 

between phylogenetically-diverse bacteria, potentially facilitating the spread of antibiotic 451 

resistance across aquatic systems (Arias-Andres et al., 2018). 452 
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While individual-level effects are widely demonstrated for macro- and in some cases micro-453 

plastics, evidence for population and food web level effects remains restricted. As highlighted 454 

by Koelmans et al. (2017), a range of issues currently limit our understanding of the ecological 455 

risks resulting from exposure to plastic pollution. The majority of current individual-level 456 

assessments suffer from three dominant limitations; (i) the absence of ecologically relevant 457 

metrics, (ii) a limited understanding of organism-plastic encounter rates for given exposure 458 

concentrations, and (iii) the restricted development of dose-response relationships across 459 

suitable concentration ranges. As a result, the individual-level and in some cases population 460 

effects identified within contemporary experimental assessments are not directly applicable to 461 

natural systems. Developing an improved mechanistic understanding of the effects of plastic 462 

pollution, as well as following lessons learnt in previous environmental toxicology assessments 463 

(e.g. non-monotonic relationships, mixture effects, indirect effects) is likely to improve our 464 

understanding of the ecological risks posed by plastic pollution. 465 

5. Understanding plastic-biota links 466 

The mechanisms through which plastic exposure effects occur are strongly dependent upon the 467 

characteristics of plastic particles, including size, shape, colour and polymer type (Lambert et 468 

al., 2017). As an example, polyvinyl chloride is generally more toxic than polyethylene and 469 

polypropylene, due to the greater toxicity of its additives and subsequent leachates (Lithner et 470 

al., 2012). The diversity of physical and chemical characteristics exhibited by plastic particles, 471 

throughout their lifecycle and as they degrade in natural systems, means that the potential 472 

ecological effects resulting from plastic pollution are extremely variable. 473 
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Fig. 3. Conceptual relationship between the organism-to-plastic size ratio and the 

dominant effects derived from direct interactions between organisms and plastic 

pollution at these scales. These general relationships are independent of actual size, yet 

bounded by the maximum sizes of both plastic particles and organisms across the globe. 

Examples of potential effects at different size ratios are presented in red boxes. Bold text 

indicates the nature of organism-plastic interactions, italic text indicates indirect effects. 

The relationship between organisms and plastic size appears particularly important in 474 

determining the nature and severity of ecological effects (Fig. 3). Plastics significantly larger 475 

than the target organism can provide a novel substrate for colonisation for the smaller 476 

organisms (as described for microbial communities (Reisser et al., 2014) and invertebrates 477 

(Davidson, 2012)), or become a cause for entanglement and associated effects for larger 478 

organisms (Gall & Thompson, 2015). Plastics of large, yet ingestible size classes present the 479 

potential for gastrointestinal blockages (Gall & Thompson, 2015). Finally, particles that are 480 

ingestible in size, yet too small to present physical risks (e.g. digestive blockages and 481 

entanglement) propose a large range of potential effects, including the leaching of toxic 482 

chemicals directly to organisms (e.g. Teuten et al., 2009). These general rules provide a good 483 

indication of the potential effects of different plastic particles, however, it should be noted that 484 

organisms are able to interact with all sizes of plastic pollution, with wide range of possible 485 
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effects not detailed above. Furthermore, a range of indirect effects are also presented by 486 

particles of various sizes (Fig. 3). As an example, chemicals from macro-plastics leach into the 487 

surrounding environment, providing the potential to indirectly affect organisms through the 488 

uptake and subsequent effects. 489 

Thus far, the observed effects of plastic pollution are mainly limited to the size classes utilised 490 

in experimental manipulations (0.04–500 m) (Foley et al., 2018) or the size classes observed 491 

in fatalities in natural systems (0.3–10 m) (Jacobsen et al., 2010). Thus, the nature, mechanisms 492 

and severity of effects across the spectrum of plastic sizes is unknown. Further research 493 

investigating the interactions between organism size, plastic characteristics and ecological 494 

effects is important for developing a comprehensive knowledge of ecological risks posed by 495 

plastic pollution. 496 

6. Plastic pollution in a social and economic context 497 

Plastic presents a number of societal benefits, and has promoted a range of technological 498 

advances. However, increasing awareness of potential environmental impacts,  predominantly 499 

focused on marine systems (Thompson, 2017), is also highlighting potential knock-on effects 500 

across a range of economic sectors, including the water industry, tourism and fishing. Data are 501 

geographically restricted, yet indicate the potential for widespread socio-economic effects of 502 

plastic pollution.  503 

Fishing activity (commercial and recreational), in particular, is negatively impacted by plastic 504 

debris, reducing and damaging catches (Thompson, 2017); for example 86% of Scottish fishing 505 

vessels surveyed had incurred restricted catches as a result of marine litter (Mouat et al., 2010). 506 

Furthermore, entanglement within marinas and harbours appears a significant problem, with 507 

70% of surveyed marinas and harbours reporting that users had experienced incidents with 508 

litter (Mouat et al., 2010). Contamination of fish stocks may also provide a significant 509 

economic cost, although concentrations of plastic within individual fish is relatively low (e.g. 510 
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1–2 pieces per organism: Foekema et al., 2013; Lusher et al., 2013). Nevertheless, the negative 511 

perception of this contamination by consumers may be enough to affect the marketability of 512 

commercial organisms (GESAMP, 2016). 513 

Another economic sector significantly impacted by plastic pollution is tourism. Public 514 

perceptions of plastic pollution is likely to influence where people choose to visit. For example, 515 

visitors to coastal regions cited the presence of litter as a factor influencing the locations they 516 

visited (Brouwer et al., 2017). To mitigate the negative effects of litter local authorities 517 

implement cleaning operations, which within the UK is estimated to cost £15.5 million 518 

annually (Mouat et al., 2010). The combination of removal costs and potential reductions in 519 

tourism present a major concern the tourism industry. 520 

Expenses are also incurred through increased research and development relating to water 521 

treatment methods, damages to equipment and blockages of infrastructure. In particular, 522 

cosmetic wipes have been shown to cause problems – blocking sewage infrastructure and 523 

generating private and public effects (Drinkwater & Moy, 2017). The net costs of plastics to 524 

the water industry are, however, difficult to calculate as removal and blockages occur alongside 525 

other problematic items (e.g. fat, grease and organic pollutants). 526 

Human health is potentially impacted by plastic pollution. Beach litter has been shown to cause 527 

physical harm (Werner et al., 2016), nevertheless, the vast majority of these incidents relate to 528 

metal and glass as opposed to plastic. Psychological effects of plastic litter are also observed 529 

with negative effects on the ‘restorative value’ generated by visiting a polluted habitat (Wyles 530 

et al., 2016). The health of individuals may also be affected by any of the suite of effects 531 

highlighted in the previous section Ecological effects of plastic. This includes the transport of 532 

potentially harmful microbes and chemicals (see Keswani et al., 2016), as well as the physical 533 

effects of plastic ingestion. More work is nevertheless required to detail the specific health 534 

risks to human populations generated by global plastic pollution. 535 
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7. Plastic pollution as an agent of global change 536 

The relative impact of plastic pollution on ecosystems in comparison to other global stressors 537 

is poorly understood. Contextualising the effects of plastic pollution within a multi-stressor 538 

environment is an important development and to date, the importance of plastic effects in 539 

comparison to urbanisation, habitat fragmentation, other pollutants, increased temperatures, 540 

hydrological changes and invasive species, for example, is unknown. Within the terrestrial 541 

environment, nevertheless, recent investigations across soil ecosystems, plastics have been 542 

identified as a potential agent of global change, altering the function of soils (water retention, 543 

microbial activity, soil structure and bulk density) and affecting their role in the function of the 544 

wider environment (de Souza Machado et al., 2018b). Furthermore, microplastics have been 545 

shown to potentiate the effects of other xenobiotic pollutants, in this case the antimicrobial 546 

chemical triclosan (Syberg et al., 2017). The interactions between other stressors and plastic 547 

pollution therefore provides the potential to generate negative effects across natural 548 

ecosystems. Future mitigation and management strategies will require a better understanding 549 

of the relative importance of global pressures, and also their interactions. 550 

8. Future research at the catchment-scale 551 

Understanding the movement of plastic through hydrological catchments is an important step 552 

in determining the source to sink dynamics of plastics within natural systems. This review 553 

highlights that catchment-scale assessments are currently limited to theoretical assessments, 554 

but also provides a framework to structure future investigations, with hypotheses already 555 

generated by theoretical models. Supporting existing studies with comprehensive field-based 556 

and experimental datasets is the logical next step in developing a comprehensive body of 557 

research assessing catchment-scale transport and effects of plastic pollution. To date, empirical 558 

studies have focused on individual ecosystems providing an analysis of plastic distribution and 559 

plastic-organism interactions. Catchment scale assessments are an important next step for 560 
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research. Detailed below, are several important developments required to facilitate the advance 561 

of catchment-scale investigations. 562 

Methods for tracing plastic transport processes. Contemporary empirical assessments are 563 

not able to elucidate the sources and pathways of plastic particles, as once particles enter the 564 

environment tracing sources becomes problematic. Furthermore, the longer particles are 565 

exposed to physical, chemical or biological processes, the more their transformation 566 

exacerbates difficulties identifying sources. Novel methods of tracing plastics have yet to be 567 

developed, yet using tracer studies to support existing models will allow for directed research 568 

projects attempting to bridge current knowledge gaps. 569 

Hotspots and sinks of plastic pollution. Knowledge surrounding the distribution of plastic 570 

pollution across catchments is limited. Understanding where and how high plastic 571 

concentrations arise in space and time is required for assessments detailing how plastic 572 

concentrations may vary across hydrological catchments. The importance of such 573 

developments is further emphasised by a recent study which identified the highest global 574 

concentration of microplastics recorded within riverine sediments (517,000 MP m-2) (Hurley 575 

et al., 2018). Assessments of heterogeneity are required at a range of spatial scales, from local 576 

patch-dynamics at centimetre to metre scales, to comparisons between entire habitats and 577 

ecosystems. Understanding spatial variation and potential sinks of plastic will allow for an 578 

improved understanding of transport processes leading to the deposition of plastics across the 579 

landscape, and importantly provide more accurate risk maps for biota. 580 

Quantification of source contributions. Although estimates exist for the net contribution of 581 

plastic from specific ecosystems, e.g. freshwater (Lebreton et al., 2017) and terrestrial (Horton 582 

et al., 2017a) systems, the importance of specific sources in contributing to these plastic 583 

burdens across these environments is poorly understood. Further study of plastic sources, in 584 

particular diffuse contributions, is required to better resolve the source-flux-sink nexus within 585 
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catchments, detailed in previous sections. Developing more accurate methods of quantification, 586 

designed to detect low concentrations of plastic and nano-plastics will enable the detection of 587 

a wider range of plastics (e.g. tyre dust), allow for an improved understanding of plastic 588 

pollution across catchments and bridge the current gap between estimated inputs of plastic into 589 

catchments and measured environmental concentrations. Through investigating the 590 

characteristics and concentration of plastics released from each potential source, a mixing-591 

model type assessment can be used to understand the entrance and flux of plastics within 592 

catchments (Fahrenfeld et al., 2018). Further to this, determining the specific contributions 593 

from sources will enable targeted mitigation, ultimately aimed at preventing the entrance of 594 

plastics into the natural environment. 595 

Determining the applicability of catchment assessments. Catchment-scale assessments are 596 

dependent upon catchment characteristics, including but not limited to: size, relief, land cover, 597 

water quality, hydrological connectivity and geomorphological features. The degree to which 598 

plastic studies within individual catchments are applicable across the wider landscape is 599 

unknown. To answer this question, multiple catchment assessments are required to determine 600 

the relative importance of catchment-specific processes (e.g. hydrological flow paths, 601 

subsurface characteristics and catchment geology) in comparison to more generalisable 602 

characteristics (e.g. land cover, population density, human activities). An understanding of the 603 

importance of processes at a range of spatial and temporal scales, is also required in order to 604 

appreciate the extent to which relationships are applicable across catchments. 605 

9. Conclusions  606 

Our understanding of the effects of macro-plastics within ecosystems indicates the potential 607 

negative effects of these pollutants. Knowledge regarding the nature and severity of effects 608 

derived from smaller plastic particles, at environmentally relevant concentrations, however, 609 

remains restricted. The array of mechanistic effects identified by studies nevertheless indicate 610 
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the potential for adverse effects within natural systems. The significant potential for effects 611 

coupled with recent research indicating the relative global ubiquity of plastics provides a 612 

perceivable risk to a range of ecosystems. In spite of this, we are only starting to understand 613 

the fluxes and pools of plastics within a range of ecosystems. This knowledge is nonetheless 614 

fundamental for mitigating existing and future plastic pollution.  It is apparent that further 615 

research is required to better understand the interactions between plastic pollution and 616 

organisms in many ecosystems. Furthermore, a comprehensive understanding of potential 617 

ecological risks presented by plastics remains absent with a range of potential adverse effects 618 

remaining unexplored. The existing ecological risk presented by plastic pollution is estimated 619 

to continue into the future as a result of predicted increases in production of plastics, the 620 

significant persistence of plastic particles and the degradation of existing plastic pollution 621 

generating increases in micro- and nano-plastic concentrations across the globe. 622 
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