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The effect of phytoestrogens on breast and prostate cancer cell lines – potential 

implications for bone preferential metastasis to bone 

Safaa Salman Mezban AL-Thamiree 

Abstract 

Many epidemiological studies indicate that diets rich in phytoestrogens (PE), 

especially soy and grain products, may be associated with a lower risk of some 

steroid hormone-dependent cancers such as breast and prostate. In particular 

PE have been shown to reduce the incidence of skeletal metastasis which have 

a high degree of morbidity and mortality. However, the most effective 

combinations of PEs and the mechanism through which they may reduce bone 

metastasis remain unclear. Therefore, this study aims to establish the most 

effective combinations of common dietary PE on breast and prostate cancer line 

proliferation, motility, and expression of genes implicated in disease progression 

and preferential metastasis to the skeleton. The potential modifying effect of 

cytokines that tumour cells are exposed to in the bone micro environment will 

also be studied including TGF-β, BMP7 and IL-33. 

Results showed that phytoestrogens genistein and daidzein significantly 

reduced prostate cancer cell viability (PC3 cells) with concentration 10-7 M 

(15 %, P = 0.01) and 10-6 M (11%, P = 0.04) for genistein and for daidzein the 

decrease in cell number was (18%, P value = 0.04) for 10-8 M and (22 %, P = 

0.01) for 10-7 M. In breast cancer cell line (MCF7) genistein and coumestrol 

showed a significant decrease in cell number while daidzein did not. The 

decrease in (MCF7) cell number with genistein was (15 %, P = 0.04) and (25 %, 

P = 0.04) for 10-6 M and 10-5 M respectively, while in coumestrol concentrations 
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10-7 , 10-6  and 10-5 M showed the most significant decrease in cell number and 

were  (29 %, P = 0.03), (34 %, P= 0.01) and  (37%, value = 0.007) respectively. 

Motility results showed no significant reduction in the closure time of the scratch 

in both cell lines and there was an acceleration in the healing time of the scratch 

in both cell lines but was significant only in breast cell line (MCF7) with 

coumestrol after 6 ,12 and 24 hours at concentrations between (10-9 - 10-5  M). 

Non-selective oestrogen receptor modulator (ICI 182,780) abolishes the effect 

of genistein (10-7 and 10-6 M) and daidzein (10-8 and 10-7 M) reduction in cell 

viability and increased PC3 cell numbers significantly. In MCF7 cells, (ICI 

182,780) also abolished the effect of coumestrol and genistein and increased 

the cell numbers but not to a significant levels.  

While genistein, daidzein and coumestrol reduced breast and prostate cell 

viability individually in an oestrogen receptor dependent manner and this 

beneficial effect is lost when the effective concentrations are combined. 

Although, transforming growth factor β (TGFβ), shows antagonist effect on 

phytoestrogens induced changes when combined with (daidzein and genistein) 

and blocks any effect of PEs and increase collagen type I gene expression. In 

MCF7 cells, the non-inhibitory effect of individual genistein on PTHrP is lost in 

the presence of TGFβ but continues with significant decrease with snail. The 

non-inhibitory effect of coumestrol on PTHrP and snail genes expression altered 

to reduced significantly which suggest a strong effect of TGFβ on coumestrol 

and genistein action by interfering as a bone microenvironment cytokine. 

While bone morphogenic protein 7 (BMP7) had an inhibitory effect for the PEs 

(daidzein and genistein) and increased the expression of Runx2 in prostate 
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cancer cell line. In MCF7 cells, BMP7 inhibits the effect of (genistein and 

coumestrol) and increased the expression of snail to a high level. 

Interleukin-33 (IL-33), reverse the inhibitory individual effect of phytoestrogens 

on Runx2, CXCR4, snail and Integrin α5 gene expression in prostate and breast 

cancer cell lines. 

In conclusion, phytoestrogens are effective when administrated individually but 

lose their effect in combination with other phytoestrogens. Clinicians must 

consider the overall profile of phytoestrogens before administration. 

Epidemiologically, what applied to an area regarding the effect of 

phytoestrogens must not apply to other areas. Hence, administrating 

phytoestrogens at early ages might be of beneficial effect than in elder ages.  
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Chapter one: General introduction 
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1.1 General Introduction  

Cancer can be defined as an unregulated growth arising from one cell. The 

scientific or medical term for cancer is a malignant neoplasm, which is defined 

as an independent growth of tissue not subject to the basic regulation of normal 

growth and apoptosis that is able to invade local tissues and metastasise to 

distant sites.  

Cancer accounts for about 30% of all deaths in developed Western countries 

and one person out of three will be treated for cancer in their lifetime. As the 

incidence of most cancers rises with age, the number is expected to grow, if life 

expectancy continues to increase. If one considers the incidence and mortality 

by tissue type most are carcinomas which arise from epithelial tissue (Schulz, 

2005). Breast cancer in women and prostate cancer in men account for a 

significant proportion of carcinomas alongside those of the lung and large 

intestine. Less prevalent but still posing a substantial burden are carcinomas of 

the bladder, stomach, liver, kidney, pancreas, oesophagus, cervix and ovary. 

Each of these like breast and prostate display geographical differences in 

incidence (Schulz, 2005).  

1.2 Breast cancer 

Breast cancer is a complicated disease that displays distinct clinical, 

morphological and molecular subtypes (Eroles et al., 2012). Four basic types of 

breast cancer have been recognised (Luminal A, Luminal B, HER2-enriched, 

and basal-like) and a normal breast-like group (Prat & Perou, 2011; Sørlie et al., 

2001). The basal subtype is defined by the absence of ER, PR, and HER2 

expression and studies suggest that the triple negative and basal types may be 

synonymous(Vallejos et al., 2010) .  
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During the last decade, technological advances, in particular high throughput 

genomic analysis, suggest that the four subtype classification system is too 

simplistic (Eroles et al., 2012). Furthermore, even if a tumour initially displays a 

specific mutation that could be targeted, subsequent changes can lead to drug 

resistance as the disease progress (Eroles et al., 2012), generating additional 

molecular subtypes of breast cancer. A greater understanding of these 

molecular variants could enable the development of new therapeutics to target 

these resistant forms (Ashworth, 2008; Farmer et al., 2005). 

The concept that breast cancers are heterogeneous has led to the potential for a 

more personalized approach to prognosis and therapy to enable the best 

outcome (Eroles et al., 2012). Personalized therapy is already available for ER 

and HER2neu positivity, but additional specific therapeutic/screening plans have 

the potential to improve death rates (Rahib et al., 2014). For instance, a new 

breast cancer intrinsic subtype, known as Claudin-low, has been identified in 

human and, mouse tumours (Herschkowitz et al., 2007), and a panel of breast 

cancer cell lines (Prat et al., 2010). Clinically, the majority of Claudin-low 

tumours are poor prognosis ER-negative (ER-), PR-negative (PR-), and HER2-

negative (HER2-) (triple-negative) invasive ductal carcinomas with a high 

frequency of metaplastic and medullary differentiation. Data shows that they 

have a response rate to standard neoadjuvant chemotherapy (a cheomotherapy 

with other treatments given before breast cancer surgery) that is intermediate 

between Basal-like and Luminal tumours. Also, claudin-low tumours are 

enriched with unique biologic features linked to mammary stem cells (MaSCs), 

a main EMT signature, and show properties of tumour initiating cells (known as 

Cancer Stem Cells, CSCs) (Prat & Perou, 2011), the study of which is leading to 

the formulation of new hypothesis regarding the ‘cell of origin’ of the different 
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subtypes of breast. Furthermore, genes that are highly expressed in tumours 

with a poor prognosis are a possible target for the logical development of new 

drugs. Interestingly, rash gene (an early player in many signal transduction 

pathways to regulate cell division in response to growth factor stimulation) in 

both transfected and control transfected MCF7 cells lines will have a higher 

incidence of metastasis than the wild type  MCF7 cells when supplemented with 

oestradiol but there was no association of rash expression with in vivo 

metastatic capacity of human mammary carcinoma cell line (Gelmann, 

Thompson & Sommers, 1992). 

Thus, applying of screening/prevention strategy and novel treatment planning is 

decreasing breast cancer mortality. However, approximately 120,000 deaths 

due to breast cancer are predicted annually in the US and Europe (Jemal et al., 

2009; La Vecchia et al., 2009). As genomic studies develop, more sub-

classification of breast tumours into new molecular structures is expected to 

take place.  

1.3 Prostate cancer 

The prostate is located in the pelvis, surrounded by the rectum posteriorly and 

the bladder superiorly. It is formed from branching glands, with ducts that are 

padded with secretory epithelial and basal cells. Scattered neuroendocrine cells 

are also present within the tissue and are believed to serve a paracrine function 

for the differentiation of male specific characteristics. Epithelial cells represent 

the major cell type in the gland and are androgen-dependent for growth. The 

epithelium consists of two histologically distinct layers. The secretory luminal 

layer formed from tall columnar cells that produce Prostate Specific Antigen 

(PSA), Prostatic Acid Phosphatase (PAP) and human kallikrein-2 that are 

https://en.wikipedia.org/wiki/Growth_factor
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secreted as part of seminal fluid. Traditionally, basal and luminal cells were 

considered two distinct cell types; however, differentiating transit amplifying 

cells give rise to heterogeneous subpopulations of cells as they migrate from the 

basal to the luminal layer (Hudson et al., 2001). The basal layer is not androgen 

dependent for growth and is believed to contain epithelial stem cells. 

Surrounding the gland is a stroma that includes fibroblasts, smooth muscle, 

nerves, and lymphatics. Stromal-epithelial interactions remain poorly 

understood, but insights suggest that stroma produces multiple factors 

important for development and growth of a healthy prostate as well as 

potentially contributing to the pathogenesis of prostate cancer Like activated 

stromal cell phenotypes, modified extracellular matrix (ECM) composition, and 

increased microvessel density (Krušlin, Ulamec & Tomas, 2015; Oh et al., 2003). 

Prostate cancer is the most common non-skin cancer in elderly males (> 70 

years of age) in Europe. It is an important health concern, especially in 

developed countries with a greater proportion of elderly men. The incidence is 

highest in Northern and Western Europe (> 200 per 100,000 men), while rates 

in Eastern and Southern Europe are lower but have shown a continuous rise. 

The incidence of prostate cancer has significantly increased in the past two 

decades due to screening, advanced biopsy techniques for diagnosis and 

greater public awareness. Changes in mortality however have not increased 

concordantly and in some countries mortality has decreased. During the last 

twenty years, the 5-year relative survival percentages for PCa steadily 

increased from 73.4% in 1999-2001 to 83.4% in 2005-2007 (Mottet et al., 2016). 

The difference between reported incidence and mortality rates leads to the 

potential conclusion that only a small proportion of low-risk prostate cancers will 
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proceed to life-threatening disease or alternatively new treatments have 

improved prognosis (Damber, 2008).  

One of the major risk factors for prostate cancer, in addition to age and inherited 

susceptibility, is diet. Diets rich in fat and red meat are suggested to be 

associated with increased prostate cancer incidence whereas vitamin E, 

carotenoids, and selenium are protective (DeMarzo et al., 2003). In contrast, a 

comprehensive follow-up of Selenium and Vitamin E Cancer Prevention Trial 

(SELECT) participants showed that healthy men with average risk of prostate 

cancer exposed to contemporary community standards of screening who took a 

common dose and formulation of vitamin E have a significantly increased risk of 

prostate cancer. Thus, it is inconclusive that selenium and Vitamin E are of 

beneficial effect against prostate cancer progression (Klein et al., 2011). 

The formation of carcinogens during cooking such as polycyclic aromatic 

hydrocarbons (PAHs) and heterocyclic amines (HCAs) has been suggested to 

contribute to tumour formation (Chiang & Quek, 2017). Saturated fats may lead 

to increased circulating insulin-like growth factor-1 (IGF-1), which in turn leads 

to PCa progression (Masko, Allott & Freedland, 2013). Most protective dietary 

factors such as vitamin E are potent antioxidants suggesting that oxidative 

stress could promote prostate carcinogenesis. Possible sources of oxidant 

stress are endogenous metabolism and  inflammation (DeMarzo et al., 2003) 

Clinically, prostate cancer is diagnosed as local or advanced and treatments 

vary from monitoring to radical local treatment or androgen-deprivation. 

Androgen-deprivation decreases symptoms in about 70-80% of patients with 

advanced prostate cancer, however, most tumours relapse in two years to an 

incurable androgen-independent state (Amin et al., 2005). 
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Prognosis depends on disease burden at diagnosis (Damber, 2008). In general, 

patients with a high tumour burden do poorly, whereas patients with a low 

tumour burden will do much better, irrespective of treatment regimen. In other 

words currently the disease determines outcomes more than the choice of 

treatment. Stage, grade, and PSA are potent predictors and other markers 

seem to, so far, add little prognostic information (Graefen et al., 2004). Tissue 

markers of prostate needle-biopsy samples have failed to supply useful further 

prognostic information, even though many of the markers provide independent 

prognostic proof on post-prostatectomy specimens (i.e., too late to be of real 

value). Thus there is the need to identify other markers that could improve 

prognostics and outcomes. However, identifying molecular pathways that 

control the development and progression of prostate cancer is a real challenge, 

because of the heterogeneity and multifocality of tumours. The rise of new 

investigative tools such as DNA microarray technology, next generation 

sequencing and the use of proteomics may improve the knowledge concerning 

the initiation, development and progression of prostate cancer. These strategies 

allow detection of nucleotide substitutions, insertions, deletions, copy number 

variations, and chromosomal rearrangements. These have identified biomarkers 

and novel targets for drug developments such as v-erb-b2 avian erythroblastic 

leukaemia viral oncogene homolog 2 (ERBB2/ Her-2/neu) status (Hassan & 

Gomez, 2015). It may also become possible to distinguish between less-

aggressive and aggressive types reserving radical treatment for the latter. 

1.4 Breast and prostate cancer metastatic process 

Tumour cells are capable of invading adjacent and distant tissues to form 

secondary tumours through a process known as metastasis (Hanahan & 

Weinberg, 2000), which is a key characteristic of malignancy (Voulgari & 
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Pintzas, 2009).  Approximately 90% of all cancer-related deaths are associated 

with metastasis (Spano et al., 2012). Most tumours metastasise through the 

bloodstream and this involves a series of cellular adaptations, including invasion 

and migration from the primary tumour; intravasation into the vasculature; arrest 

and extravasation from the vasculature into the distant organ; and proliferation 

and survival in the new tissue microenvironment The acquisition of these 

biological traits by tumour cells involves the coordination of both intrinsic and 

extrinsic signals. 

The first step of metastasis is invasion into the surrounding tissue. Cells must 

undergo modification in their cell-cell and cell-matrix adhesion interactions to 

disassociate themselves from the tumour (Cavallaro & Christofori, 

2004). Acquisition of an invasive phenotype require alterations in expression of 

genes that regulate cell-cell adhesion, as well as proteolytic degradation of the 

extracellular matrix (ECM) (Friedl & Wolf, 2003). The acquisition of this 

phenotype alongside an increase in cell mobility is fundamental to epithelial to 

mesenchymal transition (EMT) (Fig 1.1). Tumour cells undergoing EMT show 

unique phenotypes express higher levels of cell motility proteins and have 

enhanced migratory and invasive potential. This involves changes in cell 

adhesion molecule expression in particular switching of E-cadherin expression 

to N-cadherin expression. During EMT E-cadherin expression is typically 

downregulated whereas N-cadherin expression is up-regulated, referred to as a 

“cadherin switch”. TGF-beta originates from many tissues, but is most abundant 

in bone, kidney, lung, and placental tissue. TGF-beta is synthesied by many but 

not all parenchymal cell types, and is also produced or released by infiltrating 

cells such as lymphocytes, monocytes/macrophages, and platelets (Branton & 

Kopp, 1999). E/N-cadherin switch promotes cancer progression via TGF-β-
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induced EMT in extrahepatic cholangiocarcinoma. During EMT, epithelial cells 

are transformed into mesenchymal cells changing their morphology from a 

cobblestone-like monolayer with apical-basal polarity to flat and spindle-shaped 

mesenchymal cells to gain the ability to move (Lee, Hwang & Choi, 2016). 

Cells undergoing EMT develop interactions with the extracellular environment in 

localized areas of the carcinoma, where they lose intercellular coherence, 

modify extracellular matrix (ECM) and cytoskeletal structure to enable invasion 

into the extracellular space (Yang & Weinberg, 2008). EMT is associated with 

the expression of extracellular matrix proteases, such as urokinase-type 

plasminogen activator (uPA) and matrix metalloproteases (MMPs) Such as 

MMP-2, MMP-13 and MMP-12 in breast cancer and MMP-2 in prostate cancer , 

which degrade the ECM linked to the plasma membrane and localized to 

invadopodia during metastasis (Friedl & Wolf, 2003; Gilles et al., 2005; Son & 

Moon, 2010). EMT is a reversible and an inverse process, called mesenchymal-

epithelial transition (MET) can occur at metastatic sties. Cells undergoing MET 

show increase cell-cell adhesion and gain back an epithelial phenotype (Davies, 

1996; Foroni et al., 2012). 

It is well known that tumour expansion requires a combination of increased 

proliferation and decreased apoptosis. One of the most well-studied regulators 

of cellular proliferation and apoptosis is TGFβ, which can inhibit cell cycle 

progression in non-malignant cells and early malignant tumour cells, but can 

also stimulate proliferation through poorly understood processes in more 

progressed cancer cells; TGFβ can also inhibit apoptosis in a variety of cell 

types (Massagué, 2012). TGF-β is a multifunctional cytokine, which triggers 

diverse cellular processes including growth arrest, tissue fibrosis, and EMT. To 

activate SMAD and MAPK signalling pathways TGF-β binds to TGF-β type II 



 
10 
 

(TβRII) and type I (TβRI) serine/threonine kinase receptors, respectively. 

Recent studies have shown a crucial role for TGF- β signalling pathways that 

induce EMT through Smad-dependent by phosphorylation of the cytoplasmic 

signaling molecules Smad2 and Smad3 and Smad-independent pathways 

(Meulmeester & Ten Dijke, 2011; Son & Moon, 2010). Transcriptional activities 

of Snail, ZEB and basic helix-loop-helix (bHLH) families which are important 

factors as inducers of epithelial–mesenchymal transition (EMT) and potent 

repressors of E-cadherin expression regulated by TGF-β to activate 

mesenchymal markers and degrade epithelial markers in a Smad-dependent 

fashion(Nantajit, Lin & Li, 2015; Peinado, Olmeda & Cano, 2007a), leading to 

changes in cytoskeleton organization, cell survival, migration and invasion. 

These effects are mediated through a range of zinc finger transcription factors 

including snail, twist and ZEB family members, which directly bind the E-box of 

the E-cadherin promoter to suppress E-cadherin expression. Furthermore, high 

level N-cadherin expression is often associated with poor prognosis. N-cadherin 

is also expressed in endothelial cells and plays an important role in the 

maturation and maintenance of normal vessels and tumour-associated 

angiogenic vessels (Batlle et al., 2000; Mariotti et al., 2007). 

Cadherins are important mediators of EMT. They are type 1 membrane 

glycoproteins and function as active membrane-spanning macromolecular 

complexes. The extracellular regions are responsible for adhesive recognition, 

binding to the ectodomains of other cadherins presented on neighbouring cells. 

Cadherin cytoplasmic elements  interact with proteins that connect the cadherin 

receptor to key intracellular processes including the actin cytoskeleton, cell 

signalling and trafficking (Jeanes, Gottardi & Yap, 2008). Cell-cell adhesions are 

mediated primarily by cadherins expressed at adherent junctions.  E-cadherin, 
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as a typical molecule in epithelial adherent junctions, has been found to 

inactivate and repress tumour progression by maintaining intact cell-cell 

interactions and inhibiting cell mobility, invasion and metastasis (Perl et al., 

1998; Thiery & Sleeman, 2006). Decreased E-cadherin expression is usually 

observed in aggressive cancers within epigenetic silencing, proteolytic cleavage, 

proteosomal degradation or mutation (Niederhuber et al., 2013). This helps to 

initiate the progression of invasive carcinoma by promoting subsequent aspects 

of EMT, as the loss of many epithelial markers including E-cadherin, occludin, 

claudins and β-catenin. This induces the expression of mesenchymal markers 

including N-cadherin, Snail, vimentin, R-cadherin and cadherin-11 and 

acquisition of mesenchymal phenotype, such as invasion and cell motility 

(Bailey, Singh & Hollingsworth, 2007; Zeisberg & Neilson, 2009). As a 

consequence, primary cancer cells lose cell-cell adhesion through E-cadherin 

repression, break through the basement membrane and enter the bloodstream 

through intravasation. Later, the circulating tumour cells exit the bloodstream to 

migrate to specific metastatic sites where they undergo mesenchymal to 

epithelial transition (MET) for clonal outgrowth. Factors directly secreted by 

osteoblast or released from the bone matrix during resorption are potential 

chemoattractive agents for bone colonizing breast and melanoma tumours. 

Collagen I as a chemoattractant for human breast cancer cells (MB-MDA-231) 

demonstrated that tumour cells can secret enzymes to release collagen I from 

bone, because the bone matrix is generally composed of type I collagen, which 

is enzymatically degraded during the process of bone resorption and tumour 

infiltration, these collagen fragments could play a biological role in bone directed 

metastasis in vivo. Many cytokines normally present in bone were evaluated as 

possible chemotactic agents for human prostate tumours, including nterleukin-1 
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alpha, interleukin-2, interleukin-6, tumour necrosis factor-beta, transforming 

growth factor-beta, interferon alpha 2-a, EGF and granulocyte macrophage 

colony-stimulating factor (Chaffer & Weinberg, 2011; Cooper & Pienta, 2000). 

E-cadherin influence tumourigenesis by modulation of mitogenic signalling. This 

notion first suggested by observations that cadherin adhesion could promote 

cell proliferation in the PC9 lung carcinoma cell line (Jeanes, Gottardi & Yap, 

2008). Although these cells possess E-cadherin and β-catenin, they adhere 

poorly to one another due to lack of α-catenin. Restoration of α-catenin supports 

cell–cell cohesion and hinders proliferation, suggesting E-cadherin adhesion 

might associate in contact inhibition of growth. Growth factor stimulation is a 

major driver of proliferation and is often upregulated in tumours. Notably, many 

epithelial cancers display high levels of epidermal growth factor receptor (EGF-

R, ErbB1), which is implicated in cell proliferation, invasion and metastasis 

(Bublil & Yarden, 2007). Support for this idea comes from the following lines of 

evidence. First, E-cadherin co-accumulates with EGF-R at cell–cell contacts and 

can physically interact with the EGF receptor and also with other members of 

the ErbB receptor tyrosine kinase family. EGF-R did not, however, interact with 

N-cadherin, suggesting a degree of selectivity among the classical cadherins. 

Second, E-cadherin can inhibit cell responsiveness to EGF stimulation. This 

was first suggested by (Qian et al., 2004) who observed that mitogenic 

responsiveness to EGF (measured cell proliferation and activation of Ras 

signalling) decreased as cells grew to confluence. In addition, activation of the 

Src family of kinases or of the Ras/MAPK pathway can, however, be initiated by 

a kinase-impaired EGFR and is linked to survival.(Jeanes, Gottardi & Yap, 2008; 

Walker et al., 1998)  
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N-cadherin overexpression has been observed in several carcinomas. 

Expression of N-cadherin is related to metastasis in prostate cancer and 

increases metastases in patients with castration-resistant tumours (Zhuo et al., 

2013). N-cadherin expression is regulated by a wide range of factors leading to 

changes in cell-cell adhesion, differentiation, embryogenesis, migration, 

invasion and signal transduction. The aberrant expression of N-cadherin 

attributes a more fibroblastic phenotype to cancer cells, and they become more 

motile and invasive. One of the transcription factors responsible for upregulation 

is twist (Derycke & Bracke, 2004). The up-regulation of N-cadherin in 

aggressive carcinomas is crucial for invasion. Studies have shown that N-

cadherin mediates transendothelial migration of cancer cells an essential step in 

metastasis (Drake et al., 2009; Qi et al., 2005) and N-cadherin aimed 

therapeutic strategies minimize N-cadherin positive tumour growth and 

metastasis (Shih & Yamada, 2012).  

Kim et. al. (2012) explained that N-cadherin expression appears to be more 

critical for tumour malignancy than E-cadherin. N-cadherin promotes cell motility 

and invasion via interactions with growth factor receptors such as FGF 

receptors and PDGF receptor. N-cadherin further promotes cell growth and 

survival by suppressing apoptotic signals and numerous clinical studies have 

shown that aggressive human tumours express N-cadherin in situ, indicating a 

critical role for cadherin switch in human tumourigenesis. Therefore, both EMT 

and resistance to apoptosis in the absence of attachment to extracellular matrix 

(ECM) or upon cell adhesion to inappropriate location are important processes 

for metastasis and they share common regulators, such as Twist, Snail, Zeb1, 

E-cadherin, and N-cadherin (Kim et al., 2012; Paoli, Giannoni & Chiarugi, 2013).  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cell-adhesion
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Transcriptional regulation of E-cadherin differs in cultured cells versus 

xenografts, which more realistically reflect E-cadherin regulation in cancers in 

humans. Moreover, the aggressive nature of xenografts positive for E-cadherin 

and the frequency of metastases positive for E-cadherin suggest that high E-

cadherin expression in metastatic prostate cancer is associated with aggressive 

tumour growth (Putzke et al., 2011). Genetic susceptibility factors may influence 

loss of E-cadherin expression in breast cancer, might provide new insights on 

pathways of E-cadherin loss against obtaining N-cadherin expression consistent 

with histology analysis (Horne et al., 2018). 
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Figure 1.1 Schematic representation of EMT and anoikis resistance. 

EMT-inducing factors, such as TGF-β and FGF activate transcriptional 

factor, Twist, Snail and Zeb1. Activated these transcriptional factors 

repress E-cadherin (encoded CDH1 gene) expression and induce N-

cadherin expression (Cadherin switch). Cadherin switch induces EMT 

and anoikis resistance, which are associated with tumour metastasis 

(Kim et al., 2012). 

 

 

1.5 Transcriptional regulators of EMT: Snail, slug, ZEB1, ZEB2 and Twist  

Snail family members are the most studied effectors of EMT. These include 

scratch (SNAIL1), Slug (SNAIL2) and the less characterized SMUC (SNAIL3) 

(Nieto, 2002). All are zinc-finger type transcription factors and share a highly 

conserved C-terminal domain, containing four to six C2H2 type zinc fingers and 

bind to the E-box 5′-CACCTG-3′(Nieto, 2002). They have differential binding to 



 
16 
 

E box with snail having the greatest affinity (Bolós et al., 2003). Snail inhibits 

expression of epithelium-specific genes such as PTEN, Muc1, claudin, and 

occludin as well as some nuclear factor receptors (Vitamin D receptor, HNF-1α) 

(Peinado, Olmeda & Cano, 2007b). PTEN as an important tumour suppressor 

for many types of cancer and can inhibit cellular proliferation, survival and 

growth by inactivating PI 3-kinase-dependent signalling (Leslie & Downes, 

2004). 

TGFβ and Wnt family proteins and growth factors that work through Receptor 

Tyrosine Kinases (RTKs), all promote SNAIL1 expression. SNAIL1 and SNAIL2 

co-operate with other transcription regulators to control gene expression. For 

example, SNAIL1 co-operates with ETS1, which is activated by MAPK, to 

activate MMP expression. Matrix metalloproteinase-3 (MMP3) can stimulate 

EMT of cultured mouse mammary epithelial cells through a process that 

involves increased expression of Rac1b, a protein that stimulates alterations in 

cytoskeletal structure and cause cells to spread and cover large surfaces. Thus, 

MMP-3 causes EMT associated with malignant transformation through a 

pathway dependent upon production of reactive oxygen species (ROS). Snail, a 

ROS-dependent mediator of MMP-3-induced changes, is regulated by NF-kB in 

response to MMP-3. Furthermore, MMP-3 gives rise to binding of p65 and cRel 

NF-kB subunits to the Snail promoter, leading to its transcription. It also co-

operates with the SMAD3–SMAD4 complex to cause TGFβ-mediated repression 

of E-cadherin and occludin expression (Gao et al., 2016; Nelson et al., 2008). 

Many studies have described the presence and role of MMPs in many types of 

cancers including breast cancer such as MMPs (MMP-2, -7, -9, -10, -11, -13, -

14 and -15) have been involved in BC progression and metastasis. Specifically 
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MMP-1, -2, -3, -7, -9 and -14 are implicated as key factors in tumour invasion, 

metastasis and angiogenesis (Merdad et al., 2014). 

The ZEB family of transcription factors consists of two members: ZEB1(TCF8 

and δ EF1) and ZEB2 (ZFXH1B and SIP1) (Vandewalle, Van Roy & Berx, 2009). 

The family’s structure is characterised by the presence of two zinc finger 

domains and a homeodomain. The zinc finger domains are located at both ends 

of the protein and contain three to four zinc fingers of the C2H2 and C3H type. 

The homeodomain is found in the middle part of the protein. ZEB proteins 

interact with DNA through the simultaneous binding of the two zinc finger 

domains to E-boxes (Vandewalle, Van Roy & Berx, 2009). Both are potent 

repressors of E-cadherin, but the relative impact of ZEB and Snail members in 

EMT is contested. Some studies suggesting that Snail may be more influential 

(Vega et al., 2004), whereas other studies found that silencing of ZEB1 has a 

greater impact on E-cadherin expression than Snail (Eger et al., 2005; 

Vandewalle et al., 2005; Vandewalle, Van Roy & Berx, 2009). 

TWIST, a highly conserved basic helix–loop–helix transcriptional factor is 

transcriptionally controlled by EGFR/ STAT3 and NF-kB signalling. In cancer 

cells, TWIST1 represses E-cadherin and induces N-cadherin expression 

independent of SNAIL and probably by the association with other proteins. 

TWIST recruits the methyltransferase SET8, which interferes H4K20 

monomethylation, a histone mark that is associated with suppression at E-

cadherin promoters and with activation at N-cadherin promoters. Studies also 

showed that ectopic expression of TWIST results in both morphological and 

molecular modifications in the expression of particular proteins through 

downregulation of epithelial markers and upregulation of mesenchymal markers 

(Gao et al., 2016). 
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1.6 Matrix metalloproteinases (MMPs) 

Matrix metalloproteinases (MMPs) are proteolytic enzymes responsible for the 

hydrolysis of basic elements of the extracellular matrix (ECM) to facilitate 

tumour cell dissemination. MMPs have a multi-domain structure which includes 

a signal peptide domain, a pro-peptide domain and a catalytic domain (Gong, 

Chippada-Venkata & Oh, 2014).  Evidence suggests that MMPs participate in 

several stages of cancer progression modifying six principal processes of cell 

physiology, including self-supporting growth signals, resistance to growth 

inhibitory signals, insensitivity to apoptosis, over replication, angiogenesis, and 

invasion to other tissues and metastasis (Egeblad & Werb, 2002; Hanahan & 

Weinberg, 2000). Furthermore, MMPs can directly facilitate cancer progression 

by degrading the basement membrane, allowing cancer cells to invade into the 

surrounding stroma (Fig 1.2), but MMPs can also act directly on the tumour cells, 

releasing factors that promote growth or suppress apoptosis (Gialeli, Theocharis 

& Karamanos, 2011). Imbalances in MMPs activate cellular processes that 

cause DNA damage and stimulate genomic instability(Radisky & Bissell, 2006) 

Furthermore, MMPs have been implicated in tumour angiogenesis, the 

penetration of a tumour by new vessels sprouting from existing ones 

(Kessenbrock, Plaks & Werb, 2010; Weis & Cheresh, 2011). MMPs can also 

affect the tumour microenvironment by promoting the development of activated 

stromal cells. Fibrosis, the abundance deposition of collagen and fibroblast 

proliferation that is correlated with most types of cancer, is largely the product of 

myofibroblasts. These cells accumulate by activation of stromal fibroblasts or 

circulating fibrocytes, or directly from epithelial cells by EMT (Mehner & Radisky, 

2013). Myofibroblasts are significant origins of breast cancer MMPs  (Del Casar 
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et al., 2009; Heppner et al., 1996; Vizoso et al., 2007) and tumour progression 

and poor prognosis is associated with stromal expression of MMP-1, MMP-7, 

and MMP-12 (Finak et al., 2008) and with fibroblast-specific production of MMP-

9, MMP-11, and MMP-14 (Del Casar et al., 2009; Vizoso et al., 2007). Cancer 

cells can also directly secrete variant isoforms of collagen that are resistant to 

cleavage by MMPs and that can function as tracks for guiding cancer cell 

invasion in MMP-rich microenvironments (Han et al., 2010; Makareeva et al., 

2010).  

 

 

 

 

Figure 1.2  MMPs facilitate EMT-associated tumour progression.               

A. Exposure of epithelial cells to MMPs can directly induce EMT. B. 

Increased expression of MMPs in cells which have undergone EMT 

facilitates cancer cell invasion.  C. EMT can produce non-malignant 

stromal cells which drive tumour  initiation and progression through 

production of MMPs (Radisky & Radisky, 2010). 
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In prostate cancer tissue, there is an imbalanced expression of MMPs and 

tissue inhibitor of metalloproteinase (TIMP), displayed as a general loss of 

TIMP-1 and upregulation of MMPs. As a result, it is generally understood that 

MMPs are more effective in advanced stages of prostate cancer, as shown by 

the fact that most MMPs display higher expression in cancers with high Gleason 

scores.  Analysis of MMP mRNA and protein levels in the serum and tissue 

specimens from prostate cancer patients revealed that increased expression of 

MMP-2, -3, -7, -9, -13, -14, -15 and -26 is associated with advanced or 

metastatic disease, while MMP-1 expression is associated with lower grade 

tumours and incidence of invasion. The distinct roles these MMPs play in the 

hallmarks of cancer progression are illustrated in (Fig 1.3). Among the various 

members of the homologous MMP family, MMP-2, -7, -9 and MT1-MMP are the 

best investigated for their roles in prostate cancer progression. Overall, 

expression of these MMPs promote prostate cancer progression but with 

differences in their mode of expression, role and prognostic importance. For 

instance, in genetically-engineered mice, although the reduction of MMP-2, -7, 

or -9 in CR2-Tag mice all led to decreased tumour vascularity, the loss of MMP-

2 decreased lung metastasis and improved survival, whereas the lack of MMP-9 

led to increased perivascular invasion (Littlepage et al., 2010). As described 

previously by (Merdad et al., 2014) MMPs play an important role in breast 

cancer progression , metastasis, invasion and angiogenesis and warrant further 

study as diagnostic markers and potential drug targets (Fig 1.4) 
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Figure 1.3   Roles of MMPs in several hallmarks of prostate 
cancer progression (Gong, Chippada-Venkata & Oh, 2014) 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.4 Role of MMPs in breast cancer progression   
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1.7 Preferential metastasis of prostate and breast cancer to bone 

In 1889, Stephen Paget classically described the “seed and soil” hypothesis as 

the propensity of circulating tumour cells (CTCs) to home to specific organs, 

irrespective of the nearest anatomical location to the primary tumour (Paget, 

1989). The diffusion of prostate and breast cancer metastatic cells particularly to 

the skeleton is defined as osteotropism and is defined by many markers 

expressed by the tumour cells and the bone microenvironment such as stromal 

cells. The interactions between cancer cells and the endothelium of the bone 

marrow vasculature are one of the core processes supporting extravasation 

from blood vessels and is proposed to underlie bone-specific dissemination (Fig 

1.5). During this process, surface molecules expressed on cancer cells such as 

the chemokine (C-X-C motif) receptor CXCR4 which broadly expressed by both 

mononuclear cells and progenitor cells in the bone marrow, CCL2, αvβ3 integrin, 

CD44 and RANK are directly engaged in homing to the bone. The connection 

between CXCR4 and its ligand CXCL12 also known as stromal derived factor 1 

(SFD1), expressed at high levels in tissues invaded by metastasis, is very 

important in prostate and breast cancer preferential metastasis to the skeleton 

(Zoni & van der Pluijm, 2016). CXCL-12 is produced in large amounts by bone 

marrow. Metastatic cells from breast or prostate cancers that express CXCR-4, 

the CXCL-12 receptor, migrate preferentially to the marrow due to the 

chemotactic properties of CXCL-12. RANKL and RANK are required for the 

development of the lactating mammary gland during pregnancy, and for lymph 

node organogenesis in mouse embryos (Jones et al., 2006). RANK 

overexpression in human breast cancer cells increases their aggressiveness 

buy increasing the osteoclastongesis process that increase osteoclast 

degradation of bone and may result in poorer clinical outcome (Santini et al., 
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2011). RANKL can be released as a soluble factor by the proteolytic effects of 

matrix metalloproteases (MMP-7, MMP-13) and membrane metalloproteases 

(MMP-1), which are produced during the formation of bone metastases. In vitro, 

soluble RANKL promotes the migration of tumour cells that express RANK. 

Thus, RANKL may share with chemokines the ability to help tumour cells to 

metastasise to the bone marrow (Clézardin, 2017). Data suggests that RANK 

expression status influences whether tumours predominantly migrate into bone. 

The association of high RANK expression with osteotropism in murine models 

was confirmed across diverse tumour cell types, including breast cancer and 

melanoma (Jones et al., 2006). RANK overexpression in human breast cancer 

cells increases their aggressiveness and may result in a poorer clinical outcome. 

In fact, RANK expression progressively increases with pathologic grade and 

significantly correlates with a high proliferative index in clinical samples of 

breast cancer patients. Higher levels of RANK mRNA expression were found in 

(ER- PR-) tumours, which were consistent with the higher degree of RANK 

protein expression in these tumours. ER- PR- tumours are more aggressive, 

show a higher incidence of metastasis and worse prognosis than luminal 

tumours, and contain a higher frequency of CD44+/CD24- stem cell markers. 

Moreover, RANK/RANKL mRNA expression levels allow discrimination between 

metastatic and non-metastatic adenocarcinomas (Palafox et al., 2012). 

 

 

. 
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Figure 1.5: Multiple origins of tumour-induced neovascularisation. Showing the relation 

between tumour cells and  the formation of new blood vessel  (Weis & Cheresh, 2011) 

 

1.8  Vicious cycle in bone microenvironment 

 

The “Vicious Cycle” hypothesis provided the basis for the inhibition of bone 

resorption as a strategy to interfere with bone metastatic tumor growth.  

However, in the clinical setting inhibition of bone resorption while an effective 

strategy to reduce skeletal-related events may have little direct negative impact 

on cancer cell growth and tumour mass. This observation suggests that other 

mechanisms than bone resorption support cancer cell growth at the bone 

metastatic site (Hensel & Thalmann, 2016). 

Bone is composed of hard-mineralized tissue; therefore it is highly resistant to 

invasion and destruction by cancer cells opposed to other metastatic sites. 

Osteoclasts have been described as the most efficient cells to induce bone 

resorption ‘‘bone-resorbing machines’’. Consequently, to grow within the bone 

matrix, the cancer cells must control the capacity to induce osteoclastic or 
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osteoblastic activation, which is the main cellular mechanism for cancer-induced 

bone destruction. Elevated osteoclastic bone resorption would then provide a 

microenvironment in which cancer cells can grow and induce further molecular 

interactions with the different cytokines within the bone microenvironment (Azim, 

Kamal & Azim, 2012). TGF-β which is deposited in the bone matrix by 

osteoblasts and released and activated by osteoclast during osteoclastic bone 

degradation. TGF-β is not the most abundant growth factor in bone, but it plays 

the most important role in the progression of osteolytic metastases (Buijs, 

Stayrook & Guise, 2011; Fox & Lovibond, 2005) .  

It has been suggested that cancer cells produce soluble factors that activate 

directly (RANKL) or indirectly via osteoblasts parathyroid hormone-related 

peptide (PTHrP), IL-8, osteoclast differentiation and maturation. During bone 

degradation, osteoclasts release tumour supportive growth factors stored in the 

mineralized bone matrix (insulin-like growth factor-1, fibroblast growth factor, 

TGF- β, etc.). This vicious cycle has been proposed to accelerate tumour 

development in bone. RANKL/RANK blocking by soluble RANK (sRANK) or 

OPG released by osteoblasts (OBs) successfully prevented the development of 

bone metastases (Ando et al., 2008). 

Tumour cells release several factors that stimulate osteoclast activity and bone 

resorption. Among them, parathyroid hormone-related peptide (PTHrP) was the 

first to be identified as involved in malignant osteolysis. PTHrP shares structural 

homology with parathyroid hormone and can, therefore, bind to its receptor 

PTH-1R, thus, stimulating the expression of RANKL, which in turn indirectly 

leads to the formation of new osteoclasts and increased bone resorption. PTHrP 

can also act in an autocrine form by promoting the production of connective 

tissue growth factor (CTGF). Connective tissue growth factor (CTGF)  belongs 
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to the CCN family of cysteine-rich proteins and stimulates osteoclast formation 

in vitro. In vivo, the treatment of animals with an antibody to CTGF prevents the 

formation of osteolytic metastases induced by MDA-MB-231 cells (Clézardin, 

2017). 

1.9 Bone morphogenetic proteins (BMPs) 

Members of the transforming growth factor (TGF) superfamily, which include 

bone morphogenetic proteins (BMP), are involved in the control of various 

biological processes, including differentiation, proliferation, apoptosis, and 

regulation of invasiveness (Buijs et al., 2007a). BMP-7 protein is expressed at 

higher levels in PCa bone and soft tissue metastasis when compared with 

primary PCa, supporting that BMP-7 signaling is related to clinical disease 

progression (Morrissey et al., 2010). Bone morphogenetic protein-6 (BMP-6) 

has been strongly involved in prostate cancer development and bone 

metastasis (Darby et al., 2008). Other BMPs may play a protective role against 

cancer progression such as BMP-9, that can inhibit cell growth, adhesion, 

invasion, and migration of prostate cancer cells in vitro (Ye, Kynaston & Jiang, 

2008). In breast tumours, BMP-2, BMP-4, BMP-5 and BMP-7 expression has 

been described as elevated and the latter two associated with poor prognosis. 

The importance may be that BMPs have two way actions in breast cancer, such 

as BMP-4, which not only suppresses breast cancer cell growth, but also 

encourages invasion and migration. Studies related to BMP-4 expression with 

low proliferation tumours, but also increased recurrence (Zabkiewicz et al., 

2017). 
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Runt-related transcription factor 2 (Runx2) and Osterix (Osx) are downstream 

targets of BMP during osteogenesis. Runx2 is expressed in chondrocyte and 

osteoblast and it plays many roles in the process of chondrogenesis and 

osteogenesis (Baek, Choi & Kim, 2014). It functions as a regulator of osteoblast 

differentiation at an early stage and plays a role in skeletal morphogenesis and 

tooth development. Further, it is known to regulate G1 transition in osteoblast 

cells (Vimalraj et al., 2015). 

In normal prostate tissues, Runx2 is expressed but its physiological role is 

unknown, both Runx1 and Runx2 have been shown to regulate prostate specific 

antigen (PSA) through the presence of Runx2 binding sites in the regulatory 

region of the gene. Many studies indicate a higher level of Runx2 expression in 

prostate cancer and some shown that Runx2 is associated with disease 

progression (Chua et al., 2009; Lim et al., 2010). Other studies support a role for 

Runx2 in driving a more aggressive phenotype in prostate cancer. Hypoxic 

selection of LNCaP cells led to the outgrowth of an androgen independent 

subline that showed increased survival, invasiveness and tendency to 

metastasise in vivo. These changes were associated with up-regulation of 

Runx2 that was at least in part responsible for the more aggressive phenotype 

(Blyth et al., 2010). 

1.10 Phytoestrogens as a potential treatment 

The search for plant-derived anti-cancer agents started in the 1950s with the 

discovery and development of the vinca alkaloids, vinblastine and vincristine, 

and the isolation of the cytotoxic podophyllotoxins. The United States National 

Cancer Institute (NCI) launched a comprehensive plant collection program in 

1960, concentrated mainly in temperate regions. This led to the discovery of 

various novel chemotypes displaying a range of cytotoxic activities, including 
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the taxanes and camptothecins, but their development into clinically active 

factors spanned a period of some 30 years, from the early 1960s to the 1990s. 

This plant collection program was ended in 1982, but the development of new 

screening technologies led to the revival of collections of plants and other 

organisms in 1986, with a focus on the tropical and sub-tropical regions of the 

world (Cragg & Newman, 2005). 

In postmenopausal women, consumption of isoflavones was found to be 

associated with reduction of breast cancer incidence, mammary gland density 

and proliferation ability of mammary gland cells. These effects have been 

associated with the ability of isoflavones to increase serum Sex Hormone-

Binding Globulin (SHBG) concentration, thereby reducing the bioavailability of 

sexual hormones in hormone-dependent tissues. Moreover, in peripheral 

tissues, isoflavones inhibit enzymes involved in the processes of cell 

proliferation (e.g. tyrosine kinases such as AKT and mitogen-activated protein) 

and reduce estradiol availability through the inhibitory effect on aromatase P450.  

(Lee, Lee & Sohn, 2005; Pilsakova, Riecanský & Jagla, 2010) 

Hormone replacement therapy (HRT) after breast cancer raises many problems 

due to the oestrogen dependence of breast cancer, while the possible increased 

risk of breast cancer in healthy women taking HRT has to be considered for the 

treatment of oestrogen deprivation. Most physicians continue to avoid HRT in 

breast cancer survivors because of concerns regarding the enhancement of 

growth and dissemination of malignant cells while on HRT. Besides these (HRT) 

drugs, which are prescribed under medical control, soy phytoestrogens derived 

from plants are being promoted as the “natural alternative” to HRT, and have 

been available without restriction as nutritional supplements for many years. 
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After breast cancer, many women decide, sometimes ’by themselves’, to have 

these phytoestrogens to mitigate menopausal symptoms (This et al., 2001).  

Phytochemicals are chemical compounds found naturally in plants and consist 

of about 4000 different chemicals. A broad range of plant-derived compounds 

have been reported to have chemopreventive effects. Phytoestrogens are 

classified into four main groups: isoflavones (genistein, daidzein, glycetin and 

kaempferol), lignans (secoisolariciresinol, matairesinol, pinoresinol, lariciresinol), 

coumestan (coumestrol) and stilbenes (resveratrol). Western societies have 

been known to intake more foods containing lignans, while Asian populations 

eat more soy foods containing isoflavones (Lee, Hwang & Choi, 2016). 

Concentrations of phytoestrogens and their metabolites in plasma and urine 

have been recorded in several studies of humans and animals. In healthy 

people consuming diets without soy, plasma concentrations of isoflavones are 

usually in the nanomolar range (e.g., < 40 nmol/L). In contrast, plasma 

isoflavones concentrations increase considerably in the micromolar range after 

ingestion of isoflavones from soybean milk, soy meal, or baked soybean powder 

(Bhathena & Velasquez, 2002). 

Paraskevi Moutsatsou, (2007) define phytoestrogens as a large family of plant-

derived compounds having significant oestrogen agonist/antagonist activity. 

These, naturally occurring molecules, include the isoflavonoids, lignans, 

coumestans, stilbenes and the flavonoids quercetin and kaempferol . Their 

effects, work via the oestrogen receptor subtypes ERα and ERβ, one cell 

type/tissue specific and dose-dependent. Phytoestrogens may act as “natural” 

selective oestrogen modulators (SERMs) and may possibly be considered for 

the prevention of postmenopausal osteoporosis and cardiovascular disease 

without an adverse effect on breast and uterus. On the other hand, oestrogens 
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are steroid hormones with a complex mode of action, characterised by high 

tissue specificity and dose-dependent activity. They have pleiotropic effects on 

a diverse range of tissues, such as ovary, testis, prostate, breast, uterus, bone, 

liver, cardiovascular, central nervous system and immune system. Effects 

include decreasing nitric oxide production by genistein in cultured mice 

macrophage suggesting a modulation of immune responses and inhibition of 

cultured T cells in response to CD28 monoclonal antibodies. Also, inhibition of 

leukotriene B4, interleukins and its receptors. Genistein, at high concentrations, 

also inhibits cytotoxic T-cell mediated tumoricidal activity and activation of NK 

cells. Oestrogens promote breast and endometrial cancer in women and 

exacerbate autoimmune diseases, whereas the loss of oestrogens during 

menopause has been correlated with osteoporosis, coronary heart disease, 

depression and neurodegeneration. Compounds which inhibit the oestrogenic 

effects (antagonists) in some tissues, such as breast and uterus, while 

enhancing the oestrogens effects (agonists) in other tissues, such as bone, 

brain and cardiovascular cells, are known as selective oestrogen receptor 

modulators (SERMs) (Cooke, Selvaraj & Yellayi, 2006; Moutsatsou, 2007). 

Many epidemiological studies indicate that diets rich in phytoestrogens (PE), 

particularly soy and unrefined grain products, may be associated with low risk of 

some cancers, especially steroid hormone-dependent, e.g. breast and prostate 

cancers (Wietrzyk, Grynkiewicz & Opolski, 2005). Phytoestrogens have an 

oestrogenic activity or are converted to oestrogenic compounds by bacteria in 

the gut. The first class of phytoestrogens is the isoflavonoids, which are present 

in soybean products, some fruits and vegetables, and red clover. Genistein, 

daidzein and glycitein are the main dietary-derived isoflavones.  Most of these 

compounds have a strong affinity for one ER subtype (Pearce & Jordan, 2004).  
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Since the first endocrine agent tamoxifen was described in 1986, tamoxifen as 

the standard endocrine therapy has been shown to reduce ER-positive breast 

cancer. However, more new investigations are suggesting the positive roles of 

naturally occurring selective oestrogen-receptors modulators (SERM) such as 

phytoestrogens as an alternative therapeutic option to avoid increased risks of 

tamoxifen for its detrimental tissue specific results such as thromboembolic 

events, strokes. Also, tamoxifen has shown estrogenic activity in the uterus and 

therefore may increase the risk of endometrial cancer. For example, Targeting 

ERβ and PR by Larrea nitida extracts (LNE) may work as a potential suppressor 

of women’s cancer that enhances differentiation and inhibits ERα-mediated 

proliferation. Data from the studies of naturally-occurring (SERM), both in cell 

culture and in animals have provided more details into a new dimension of the 

complex nature of ER action in health and disease. Furthermore, Larrea nitida 

extracts (LNE) had a selective binding affinity to hERβ rather than hERα and 

treatment of LNE reduced the cell proliferation in the presence of endogenous 

oestrogen (Ahn et al., 2014; Ososki & Kennelly, 2003a). Further to ER-mediated 

signalling mechanisms, there is rising experimental evidence that soy 

isoflavones play important ER-independent effects. Genistein has been shown 

to inhibit the growth of ER-negative breast cancer cells, indicating that other 

cellular mechanisms may play an important role in chemoprevention as well. 

Numerous in vitro studies have revealed that isoflavones inhibit cell proliferation 

and trigger apoptosis by inhibiting the activity of several enzymes, such as 

tyrosine protein kinase, mitogen-activated protein kinase or DNA topoisomerase 

II. additionally, isoflavones, especially genistein, promote antioxidant defence 

and DNA repair, inhibit the development of tumour angiogenesis and metastasis 

and also interfere in other ER-independent signal transduction pathways 

(Uifălean et al., 2015). 
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Over recent years, as indicated by This et al. 2001 many in-vitro studies have 

identified beneficial effects of the main phytoestrogens, especially genistein and 

daidzein. Study of the effect of genistein in cultures of MCF7 cells that express 

the oestrogen receptor alpha (ERα) shows dual effects on mammary cells. 

According to the concentrations of genistein, with high soy dose it increases 

cellular proliferation and cells division, which is dependent on oestrogen 

receptor. While genistein’s effect with oestradiol, the normal oestrogen, acts as 

a competitive inhibitor for the binding site of oestradiol to oestrogen receptor 

and inhibits cell proliferation since it has a lower activity than oestradiol. While 

high doses of genistein (>10 µM/L) inhibit cells proliferation, and this effect is not 

ER-dependent and may related to the inhibition of the tyrosine kinase activity of 

growth factor receptors such as the blocking of AKT signaling cause growth 

arrest and apoptosis (Chandarlapaty et al., 2011; This et al., 2001) 

Genistein is the most abundant isoflavone in soybean products and is well 

known to have various biological activities. Among these, its anti-cancer effects 

against some cancers including breast and prostate carcinomas have been 

considered to be most remarkable. Genistein effectively suppressed BG-1 

ovarian cancer cell proliferation promoted by bisphenol A (BPA) or 17β-estradiol 

(E2). This anti-proliferative effect of genistein was accomplished by reversing 

the effects of E2 or BPA on the expression of cell cycle-related genes. Unlike 

the actions of E2 or BPA, genistein suppressed the expression of cyclin D1 

which with Cdk4 (cyclin dependent kinase 4) plays an essential role in G1 phase. 

It can phosphorylate Rb family proteins to disable their role as transcriptional 

suppressors and allow activation of E2Fgenes - dependent transcription to 

promote S phase entry and initiation of DNA synthesis and promoted the 

expression of p21, which also known as cyclin-dependent kinase inhibitor 

https://www.sciencedirect.com/topics/medicine-and-dentistry/apoptosis
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1 or CDK-interacting protein 1, is a cyclin-dependent kinase inhibitor (CKI), that 

is capable of inhibiting all cyclin/CDK complexes when delivered with E2 or BPA, 

thus, leading to cell cycle arrest in G1 phase (Du, Tong & Ye, 2013; Hwang et 

al., 2013; Xiong et al., 1993). 

Zhao and Mu (2010) indicated that intracellular mechanisms of phytoestrogen 

protection against cellular proliferation of breast cancers might be through: (i) 

binding to nuclear ER and inhibiting genomic ER-mediated gene expression, (ii) 

interaction with membrane-ER, blocking protein kinases and suppressing 

transcription factors, (iii) inhibiting growth factor receptor(GFR) activation and its 

downstream signaling networks, (iv) activating caspases to initiate cellular 

apoptosis process and (v) reducing the G-protein mediated signalling pathway 

in the ER-negative mammary cancer cell (Figures 1.6 and 1.7 ). The nuclear ER 

interaction is the most widely studied mechanism of phytoestrogen effect. 

Ginsenoside, a phytoestrogenic component extracted from ginseng root, 

preferentially activated ERα via the phosphorylation of a transcription factor  

(AF-1) without the ligand-receptor interaction. However, isoflavones were 

demonstrated to selectively activate ERβ rather than ERα in the breast cancer 

cell line MCF7, indicating a potential ERβ-related mechanism underlying 

protective effect of dietary phytoestrogen against a mammary tumour. Moreover, 

genistein (an isoflavone) might stimulate a self-limiting mechanism of E2-

stimulated ERβ gene expression in breast cancer cells (Zhao & Mu, 2010). In 

addition, oleocanthal (a minor secoiridoid and type of natural phenolic 

compound found in extra-virgin olive oil) has been observed to inhibit invasion 

and migration of human breast (MCF7, MDA-MB-231) and prostate cancer (PC3) 

cell lines. Applying these results to humans suggests that consumption of olive 

https://en.wikipedia.org/wiki/Cyclin-dependent_kinase_inhibitor
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oil phenolics may play a role in reducing metastatic spread in humans (Hashim 

et al., 2014). 

 

 

 

 

 

Figure 1.6  Phytoestrogen (coumestrol) effect on 

breast cancer proliferation   (Zafar, Singh & Naseem, 

2017). 

 

 

 

 

 

 

 

Figure 1.7 Phytoestrogen actions on modulating signalling 

pathways in the breast cancer cell. The arrows and 

hammers respectively present stimulation and inhibition 

TF: transcription factor, ERE: oestrogen responsive 

element.  (Zhao & Mu, 2010). 
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1.11  Aim of this study 

Phytoestrogens have beneficial effects on osteoblast and osteoclast activity and 

some such as genistein have been trialled in the clinic for the treatment of 

prostate cancer. However, while it is clear that PEs have effects on a range of 

cell types, there is little data in the literature on the expression of factors 

associated with preferential metastasis, disrupted remodelling and osteomimicry. 

Some data show a beneficial effect of genistein on markers but other PE have 

been poorly described and combinations typically seen in the diet have not been 

examined. Similarly, an interaction between PE has not been studied. Therefore, 

the proposed study aims to establish the effect of a range of phytoestrogens 

(genistein, daidzein and coumestrol) on cell proliferation, migration and the 

expression of genes with a role in EMT, preferential metastasis and modification 

of bone remodelling (CXCR4, snail, integrin α5, PTHrP, RANKL) and 

osteomimicry (Runx2, osterix and collagen type I) in breast and prostate cancer 

cell lines.  The impact of cytokines associated with bone tumours (BMP-7, TGF-

β and IL-33) on the response to selected PE will also be examined to ascertain 

if a more realistic bone environment alters their activity. 
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Chapter two 
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2. Materials and Methods 

2.1 Media, reagents and cell culture 

Human MCF7 breast and PC-3 prostate cancer cells obtained from (ATCC, UK) 

were incubated in phenol red-free minimum essential medium or Ham’s F-12 

medium (Gibco ThermoFisher Scientific, UK) supplemented with 10% charcoal 

stripped foetal calf serum That decreased the levels of various hormones  

(Autogen Bioclear, U.K.), 2 mmol/l glutamine, 100 IU/ml benzylpenicillin and 100 

mg/ml streptomycin (all from Sigma-Aldrich, Poole, Dorset, UK). Incubations 

were performed at 37oC in 5% CO2, and cultures fed every 2–3 days by 

replacing half of the culture volume with fresh medium. The non-selective 

oestrogen antagonist ICI 182,780 was obtained from Tocris Biosciences (Bristol, 

UK). All other reagents were obtained from (Sigma-Aldrich, Poole, Dorset, UK) 

unless stated.  

2.2 Cell cryopreservation and reanimation  

Cells of passage 3-7 were cryopreserved and then used for experiments as 

required. In brief, adherent cells were passaged using trypsin-

ethylenediaminetetraacetic acid (EDTA) solution for no longer than 5 minutes at 

37oC. After detachment, cells were washed with the culture medium to 

deactivate trypsin and centrifuged at 1500rpm for 5 minutes at room 

temperature. After centrifugation, cells were resuspended in sterile 90% FCS 

and 10% dimethyl sulphoxide (DMSO) solution, placed in cryopreservation tube 

and frozen at -80°C for 24 hour before transfer to liquid nitrogen for long-term 

storage. To reconstitute frozen cells, vials were removed from liquid nitrogen 

and rapidly thawed and then immediately transferred into 5 ml of cell culture 

media, centrifuged to remove DMSO and then cultured in 25 cm2 flasks until 80% 

confluence was reached. 



 
38 
 

2.3 Measurement of cell viability  

The effect of phytoestrogens on cell viability was assessed using a commercial 

proliferation assay.  Cells were transferred to 96-well plates at a density of 105 

cells per well and cultured with combinations of genistein, daidzein and 

coumestrol (10-5 to 10-9 M) for 72 hours. Viability was then assessed using an 

AQeous one cell viability assay which is a colorimetric technique for indicating 

the number of viable cells in proliferation, cytotoxicity or chemosensitivity 

assays. The CellTiter 96® AQueous One Solution Reagent contains a 

tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and 

an electron coupling reagent (phenazine ethosulfate; PES). PEs has enhanced 

chemical stability, which allows it to be combined with MTS to form a stable 

solution. 

Assays are processed by adding a small volume of the CellTiter 96® 

AQueous One Solution Reagent directly to culture wells, incubating for 1–4 

hours and then recording absorbance at 490nm with a 96-well plate reader. The 

quantity of formazan product as measured by the amount of 490nm absorbance 

is directly proportional to the number of living cells in culture(Promega, UK). Cell 

viability in control cultures was signified as 1 and cell viability was calculated 

relative to this.  Initial studies determined the profile of concentrations able to 

significantly alter viability.  Experiments examining the role of oestrogen 

receptor signalling were performed by incubating cells with combinations of 

phytoestrogens shown to significantly modify viability in the presence of the 

oestrogen antagonist ICI 182,780 (10-5 M). Subsequent experiments examined 

the effect of combining these effective concentrations.  Viability data was 
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normalized to un-treated control values and all assays were performed in 

triplicate.  

2.4 Motility assay 

To examine the effect of phytoestrogens on cell motility, cells were transferred 

to 24-well plates at a density of 105 cells per well and treated with genistein, 

daidzein and coumestrol (10-9  to 10-5 M) for 72 hours. A scratch was then made 

in the middle of each well using a sterile pipette tip. Wells were then washed 

three times in fresh medium to remove non-adherent cells and the cultures 

incubated for a further 48 hours in the presence of phytoestrogens. The 

separation of the edges of the scratch was used to quantify cell motility. To 

enable this, digital images were taken 0, 6, 12, 24 and 42 hours after scratching 

on an inverted microscope (Leica, Germany) fitted with a digital camera 

(Scopetek, DCM-510, China) at x40 magnification. Images were analysed by 

measuring the distance between the edges in mm of the scratch using ImageJ 

analysis software (fig 2.1) (National Institute of Health, USA).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: the wound healing assay technique steps used in the lab to 

study the motility of PC3 and MCF7 cells. 
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2.5 Molecular biology 

2.5.1 RNA extraction and reverse transcription  

Total RNA was isolated using a commercially available GenEluteTM 

mammalian total RNA miniprep kit (Sigma-Aldrich, Poole, Dorset, UK), which 

utilises a column based technique to isolate and purify RNA. After incubation, 

cells were washed with DPBS and total RNA extracted according to the 

manufacturer’s protocol. All consumables and reagents used were free of 

contaminating DNAase and RNAase. Genomic DNA was removed using an on-

column DNase-I treatment step. RNA and DNA quantity and purity were 

measured using a nanodrop spectrophotometer (ND-1000) (Labtech, 

Heathfield ,UK). Absorbance was measured with A260 for nucleic acid and the 

ratio A260:A280 was used to assess sample purity. RNA concentrations were 

then adjusted to 250μg/μl in molecular biology grade H2O, RNA (1μg) was 

reversed transcribed to cDNA using M-MLV reverse transcriptase reaction in 

thin-walled PCR tubes (Sigma-Aldrich, Poole, Dorset, UK) using a GeneAmp 

PCR System 9700 machine. RNA was denatured at 70°C for 10 min in the 

presence of dNTPs (0.5 mM) (dATP, dCTP, dGTP, TTP) and random nanomers 

(1 μM). Reactions were cooled on ice for 5 minutes and then 1 unit of MMLV-

reverse transcriptase was added to each reaction. Reactions were then 

incubated at room temperature for 10 min, 37°C for 50 min and 94°C for 5 min. 

RTs were stored at 4oC until used. Negative controls consisting of reactions 

lacking RT were run in all experiments. 

2.5.2 Verification of PCR primers and RT  

Primers were purchased from Eurofins MWG Operon (Ebersberg, Germany).     

2 μl of cDNA was used for each PCR reaction. Each reaction contained 10 μM 

of forward and reverse primers, dNTPs (0.5 mM), Taq DNA polymerase (5 
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unit/μl) and PCR buffer (10x) in a final volume of 25 μl. Reaction conditions were 

94oC for 2 minutes, followed by 40 cycles at 95oC for 30 seconds, 60oC for 30 

seconds and 72oC for 30 seconds. Product size and primer specificity where 

then confirmed using agarose gel electrophoresis. PCR samples had 2.5 μl of 

loading buffer (orange G dye) added and was then loaded onto a 2% (w/v) TAE 

agarose gel. Gels were made by dissolving agarose (electrophoresis grade, 

Fisher Scientific, Loughborough,UK) in an appropriate volume of TAE buffer (40 

mM Tris-base, l0 mM EDTA and 0.1% acetic acid) which was heated in a 

microwave for 2 minutes and then cooled to 50°C. 1 μl of ethidium bromide (10 

mg/ml) was then added to the gel to enable visualization of DNA under UV light. 

Gels were run at 60-100V according to the size of the product for an appropriate 

time. Bands were checked for presence and size using UV gel documentation 

system (UVi Tech, Cambridge, United Kingdom) linked to a PC (Toshiba, 

Tokyo,Japan). 

2.5.3 10x Tris-acetate-EDTA (TAE) buffer  

0.4 M Tris-base, 0.5 M EDTA and 1M acetic acid were dissolved in 1 L of d.H2O. 

The pH was adjusted to 8.5 and then diluted to make 1x TAE buffer. 

2.5.4 Real-time quantitative PCR analysis of metastatic marker expression 

Quantitative PCR is an advanced sensitive technique that enables the absolute 

quantification of gene expression in biological samples. This technique used in 

this study to detect the effect of PEs on the gene expression of key mediators of 

preferential metastasis using the CT methodology which is a simple formula 

used in order to calculate the relative fold gene expression of samples when 

performing real-time polymerase chain reaction (Livak & Schmittgen, 2001). 
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MCF7 or PC-3 cells (5 x 105 cells) were incubated in 25 cm2 flasks for               

24 or 72 hours with genistein, daidzein or coumestrol. Total RNA was extracted 

from these cultures using a Sigma GenElute RNA isolation kit and reversed 

transcribed with M-MLV reverse transcriptase using random nanomer primers. 

CT qPCR was performed on a StepOne PCR system (Applied Biosystems, 

Paisley, UK) using the DNA-binding dye SYBR green for detection of PCR 

products. A total of 1 μl of cDNA was added to a final reaction volume of  12.5 μl 

containing 0.05 U/μl Taq, SYBR green and specific primers (0.2 μM). Primers 

used prescribed in table 2.1. 

 5 -́3  ́Forward primer 3 -́5  ́Reverse primer Amplicon 

Human β-actin GCGCGGCTACAGCTTCACCA TGGCCGTCAGGCAGCTCGTA 777-929 

Human Runx2 AGACCCCAGGCAGGCACAGT GCGCCTAGGCACATCGGTGA 816-972 

Human CXCR4 GCGCAAGGCCCTCAAGA GTGCGTGCTGGGCAGAGGTT 1010-1257 

Human Snail CGAGTGGTTCTTCTGCGCTA CTGCTGGAAGGTAAACTCTGGA 27-183 

Human  Integrin 

α5β3 
AATTTTACTGGCGAGCAG TTGGTGGCATGCTTCGAG 1054- 1465 

Human PTHrP GTCTCAGCCGCCGCCTCAA GGAAGAATCGTCGCCGTAAA 693-785 

Human collagen 

type I 
CCTGGCAGCCCTGGTCCTGA CTTGCCGGGCTCTCCAGCAG 1766-1918 

Human  (osx) GGCTCTAGCCCTCTGCGGGA CGTGGGGGTTTGGCTCCACC 459-1123 

 

Table 2.1 primers and their amplicons used in the experiments 

 

The progress of the PCR amplification was monitored by real-time fluorescence 

emitted from SYBR Green during the extension time.  Reaction conditions were 

94oC for 2 minutes, followed by 40 cycles of 95oC for 30 seconds, 60oC for 30 

seconds and 72oC for 30 seconds.  At the end of each PCR run, a melt curve 

analysis was performed to show the absence of non-specific bands.  The 

relative quantification (RQ) value for each group was calculated by the 

instrument’s software using CT values for non-treated controls normalised to the 
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expression β-actin mRNA as the most widely used gene for normalization in the 

experiments of gene expression and to give the correct measurements when 

using the charcoal stripped (Rebouças et al., 2013).  Samples were analysed in 

triplicate and experiments repeated separately three times. 

2.6 Statistical analysis 

Differences between groups were assessed using a Fisher’s post-hoc analysis 

of variance test for pairwise comparisons between means (Statview; Abacus 

concepts, California, USA).  The data corresponded to three independent 

observations from three separate repeats each consisting of three replicates. A 

p-value <0.05 was considered statistically significant.  
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Chapter Three 

 Individual phytoestrogens are more effective than combinations in 

reducing the viability of prostate and breast cancer cell lines, with no 

individual effect on their motility 
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3.1 Introduction 

It has been suggested in some studies (Bilal et al., 2014; Hwang & Choi, 2015; 

Kyro et al., 2015) that Phytoestrogens, (PEs), a diverse group of plant-derived 

compounds with a structure and a function similar to that of oestradiol, have the 

capacity to reduce the incidence of tumour formation and the rate of cancer 

progression.  In addition to their oestrogenic action, PEs have also been shown 

to inhibit tyrosine kinase and telomerase activity and to alter cellular redox 

status (Hwang & Choi, 2015).  Spinozzi and his team indicated that exposure of 

in vitro cultured Jurkat cells, a T-cell leukemia line, to genistein resulted in a 

dose-dependent, growth inhibition. Cell-cycle analysis of genistein-treated cells 

revealed a G2/M arrest at low genistein concentrations. The imbalances in cell-

cycle control were followed by apoptotic death of genistein-treated cells. 

Immunocytochemical analysis of cells showed that genistein effectively inhibit 

tyrosine kinase activity in cultured Jurkat cells. This indicate that the natural 

isoflavone genistein antagonises tumour cell growth by both cell-cycle arrest 

and induction of apoptosis and suggest that it could be an encouraging new 

agent in cancer therapy (Spinozzi et al., 1994). Epidemiological studies have 

been contradictory, suggesting variously that diets with a high phytoestrogen 

content may promote the risk of prostate and breast cancer, reduce the risk, or 

have no association at all with these forms of cancer (Trock, Hilakivi-Clarke & 

Clarke, 2006; Wu et al., 2008; Yan & Spitznagel, 2009). 

Positive associations have been noted between soy protein intake and reduced 

incidence of breast cancer in both Asian populations, whose diets have a high 

soy content (Wu et al., 2008) and in Westerners given supplements (Trock, 

Hilakivi-Clarke & Clarke, 2006). Other studies, however, contest this assertion, 

and report that high soy consumption in Asian women living in Asia had no 
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effect on breast cancer incidence (Trock, Hilakivi-Clarke & Clarke, 2006). Also,  

the results of meta-analysis of epidemiological studies have indicated that soy 

consumption in Asian populations has no disadvantageous effects on the risk of 

breast cancer recurrence, and in some cases it significantly reduces the risk 

(Magee & Rowland, 2012). Similarly, a six-month isoflavones intervention 

involving Western women increased Ki-67 levels, a marker of proliferation, in 

breast epithelial cells of premenopausal women (Khan et al., 2012).  

On the other hand, dietary soy isoflavones have been shown to stimulate 

metastatic tumour formation in lungs and increased Ki-67 protein expression in 

these metastasised tumours (Yang et al., 2015). In prostate tumours, additional 

factors, including PSA and IGFs, may also increase tumour growth 

(Abrahamsson, 2004).  Genetic predisposition, inflammation and increased cell 

proliferation are some of the pre-element factors for prostate cancer 

commencement. Prostate cancer development depends on the decrease of 

androgen levels until a completely androgen-independent cancer is formed. 

Molecular and pathological analysis of human prostate cancer samples and 

animal model-based researches have both shown that infectious agents, 

oestrogenic hormones, age, race, genetics and other occupational factors can 

damage the prostate epithelium and provoke inflammatory responses leading to 

chronic or recurrent condition of prostate cancer (Joshi et al., 2015). 

Alterations in molecules that regulate the cell cycle and apoptosis offer 

promising avenues for further investigation. P53, p27, p21, and Rb have been 

studied, resulting in variable levels of evidence that they participate in the 

pathogenesis of prostate cancer. In one study, loss of expression of the tumour 

suppressor protein p27 was strongly associated with the development of benign 
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prostatic hyperplasia, (BPH), whereas variable levels of p27 expression were 

noted in prostate cancers. In addition, there is a high frequency of somatic 

mutations in PTEN, a tumour suppressor gene, which suggests that this may be 

a frequent target for inactivation in sporadic prostate cancers growth factors. 

Their receptors also play an important role in the growth regulation of normal 

and cancerous cells.  Several specific growth factors have been associated with 

the growth and survival of prostate cancer (Oh et al., 2003). It seems that 

several signalling cascades are involved in prostate cancer progression, and 

understanding the key signalling events and their complex inter-relationships 

has become essential to better therapeutic methods (Joshi et al., 2015). 

The interaction of receptors with their specific growth hormone results in cell 

growth and proliferation. The overexpression of either or both growth factors 

and receptors contribute to the consecutive signalling in cancer (Perona, 2006). 

Growth factor TGF-β causes growth arrest of most of the cell types. The 

mechanisms, which differ somewhat between cell types, involve the inhibition of 

the expression of the transcription factors Myc and members of the Id family, 

and induction of the cell cycle inhibitor tumour cells becomes increasingly 

resistant to the cytostatic effects of TGF-β, which is a vital factor in the shift from 

being a tumour suppressor to a tumour promoter. During tumourigenesis, TGF-β 

promotes cell survival and metastasis of breast cancer cells by increased 

expression of the anti-apoptotic factor (DEC1) (Heldin, Landström & Moustakas, 

2009).  

The conflicted nature of the literature may reflect differences between 

menopausal status and short term and long term effects of PE, with earlier 

exposure being more beneficial. It may also reflect interactions between the 

diverse ranges of PE that can be obtained from a diet, which could also impact 
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on the outcome, according to supplementation studies. While it is clear that 

most individuals will be exposed to a range of dietary phytoestrogens, which 

may have contrasting effects, in vitro studies examining the cellular impact of 

PEs have typically assessed the impact of PEs in isolation.  Thus, the current 

study initially investigates the effect of individual and combinations of PEs on 

breast (MCF7) and prostate (PC3) cancer cell lines’ viability to ascertain which 

is more effective after incubation for 72 hours. This is followed by a wound 

healing assay to study the effect of phytoestrogens on motility, and to observe 

whether there is a connection with invasion and metastases of these cell lines. 
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 3.2 Materials and Methods 

 

Methods used here in chapter 3 are similar to what been mentioned in chapter 2 

(materials and methods) for the points: 

2.1 media reagents and cell culture 

2.2 cell cryopreservation and reanimation  

2.3 measurements of cell viability 

2.4 motility assay 

2.6 statistical analyses  
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3.3 Results 

3.3.1 Combinations of phytoestrogens have less effect on viability 

Experiments were undertaken to establish how prostate (PC3) and breast 

(MCF7) cancer cells respond to PE individually, in combination and to non-

selective oestrogen antagonist ICI 182,780. 

PC3 and MCF7 cells were incubated with phytoestrogens for 72 hours to have 

long exposure time of cells to PE. Genistein significantly decreased PC3 and 

MCF7 cell viability, PC3 cells response at 10-7 M was (15%, P = 0.01) and for 

10-6 M was (11%, P = 0.04) (Figure 3.1 A); for MCF7 cells response at 10-6 M 

was (15%, P = 0.04) and for 10-5 M was (25%, P = 0.04) (Figure 3.1 B). 

Daidzein significantly reduced viability of PC3 cells, 10-8 M (18%, P = 0.04) and 

for 10-7 M (22%, P = 0.01) (Figure 3.1 A), whereas it had no effect on MCF7 cell 

viability at any concentration (Figure 3.1 B).  In contrast coumestrol reduced 

MCF7 viability at 10-7 M (29%, P = 0.03,) 10-6 M (34%, P = 0.01) and 10-5 M 

(37%, P = 0.007) (Figure 3.1 B), but had no effect on PC3 cells and increase 

cell proliferation compared to control (Figure 3.1 A). The inhibitory effect of all 

phytoestrogens was reversed by incubating with the oestrogen receptor 

antagonist ICI 182, 780 and this may be related to the effect of endogenous 

oestrogen and to the ER-independent pathway  (Figure 3.2 A and B). 

To determine the nature of any interaction between phytoestrogens the effect of 

incubating cells with combinations of phytoestrogens shown to significantly reduce 

viability was examined.  Surprisingly combinations of phytoestrogens were antagonistic, 

as while individual phytoestrogens reduced viability no significant effect was noted 

when cells were incubated with combinations (Figure 3.3 A and B). In light of this, all 

subsequent studies examined effective concentrations of individual PE rather than 

combinations. 
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Figure 3.1 Effect of phytoestrogens on cell viability. Concentrations of genistein, 

daidzein and coumestrol that significantly reduced A. PC3 and B. MCF7 cell viability. 

Cells were transferred to 96-well plates at a density of 105 cells per well and cultured 

with combinations of genistein, daidzein and coumestrol (10-5 to 10-9 M) for 72 hours. 

Viability was then assessed using an AQueous one cell viability assay (Promega UK) 

according to manufacturer’s instructions. Results are the mean ± SEM for three repeat 

experiments. * P<0.05 ,  ** P<0.01 versus control. 
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Figure 3.2 The non-selective oestrogen antagonist ICI 182,780. (10-5 M) prevents the 

effect of phytoestrogens on cell viability in A. PC3 and B. MCF7 cells. Cells were 

transferred to 96-well plates at a density of 105 cells per well and cultured with 

combinations of genistein, daidzein and coumestrol (10-5 to 10-9 M) and ICI 182,780 for 

72 hours. Viability was then assessed using an AQueous one cell viability assay 

(Promega, UK) according to manufacturer’s instructions. Results are the mean ± SEM 

for three repeat experiments. * P<0.05 and  *** P<0.0001versus control 
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Figure 3.3 The inhibitory effect of phytoestrogens is lost when effective concentrations 

are combined in A. PC3 and B. MCF7 cells. Cells were transferred to 96-well plates at a 

density of 105 cells per well and cultured with effective combinations of genistein, 

daidzein and coumestrol for 72 hours. Viability was then assessed using an AQueous 

one cell viability assay (Promega, UK) according to manufacturer’s instructions. Results 

are the mean ± SEM for three repeat experiments. * P<0.05 versus control.  
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3.3.2 Motility 

As expected, breast and prostate cancer cells closed the scratch within 42 

hours with little to no gap present between the edges of the scratch at this time 

point. In cultures of PC3 cells (Fig 3.4) there was little effect of phytoestrogens 

on the rate of closure with only one statistically significant effect noted with 

daidzein (10-7 M) and was (33%, P = 0.01), which promoted the rate of closure 

at 12 hours table (3.2). Genistein and daidzein had no significant effect on 

MCF7 motility  table (3.1), whereas coumestrol (Fig 3.5) significantly decreased 

scratch width at 6 hours for 10-8 M (70%, P = 0.02), 10-7 M (68%, P = 0.003) and  

10-6 M (71%, P = 0.04); at 12 hours for 10-7 M (51%, P = 0.01) and 10-6 M (53%, 

P = 0.04); and for 24 hours the effect was from concentrations (10-9 to 10-5 M) 

and was for 10-9 M (33%, P = 0.01), 10-8 M (30%, P = 0.002), 10-7 M (24%, P = 

<0.0001)10-6 M (28%, P = 0.0005) and  for 10-5 M was (35%, P = 0.03) (Table 

3.1 B). 
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Figure 3.4: showing the growth of the PC3 cells and closure of the scratch at 0 time and 

after 6, 12, 24 and 42 hours.  
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Figure 3.5: showing the growth of the MCF-7 cells and closure of the scratch at 0 time 

and after 6, 12, 24 and 42 hours.  
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Table 3.1 Coumestrol significantly increases the rate of wound closure of MCF7 cells in a scratch 

assay. 

 

 

 

 

MCF7 cells were treated with genistein, daidzein and coumestrol for 72 hours. A scratch was then made in the middle of 

wells using a sterile pipette tip. Digital images were taken after scratching on an inverted microscope (Leica, Germany) 

fitted with a digital camera (Scopetek, DCM-510, China) at x40 magnification. The separation of the edges of the scratch 

was used to quantify motility by measuring the distance between the edges in mm using ImageJ analysis software (National 

Institute of Health, USA). * P<0.05 versus control. (A) daidzein, (B) coumestrol and (C) genistein. 

Concentrations 

( M ) 

 

Scratch 

width 

6 hr 

(mm) 

SEM 

Scratch 

width 

12 hr 

(mm) 

SEM 

Scratch 

width 

24 hr 

(mm) 

SEM 

Scratch 

width 

42 hr 

(mm) 

SEM 

Control 0.77 0.02 0.62 0.03 0.41 0.04 0.20 0.03 

-9 M 0.80 0.05 0.66 0.06 0.47 0.06 0.28 0.07 

-8 M 0.74 0.03 0.60 0.03 0.36 0.03 0.19 0.02 

-7 M 0.72 0.02 0.53 0.03 0.34 0.04 0.15 0.03 

-6 M 0.72 0.02 0.52 0.02 0.28 0.03 0.11 0.03 

-5 M 0.78 0.03 0.62 0.04 0.37 0.04 0.20 0.04 

Concentrations 

( M ) 

 

Scratch 

width 

6 hr 

(mm) 

SEM 

Scratch 

width 

12 hr 

(mm) 

SEM 

Scratch 

width 

24 hr 

(mm) 

SEM 

Scratch 

width 

42 hr 

(mm) 

SEM 

Control 0.76 0.02 0.61 0.03 0.45 0.05 0.20 0.04 

-9 M 0.71 0.03 0.60 0.05 0.33 0.05 * 0.17 0.05 

-8 M 0.70 0.02 * 0.57 0.02 0.30 0.03 * 0.18 0.02 

-7 M 0.68 0.02 * 0.51 0.03* 0.24 0.03 * 0.15 0.02 

-6 M 0.71 0.01* 0.53 0.02* 0.28 0.02* 0.16 0.02 

-5 M 0.75 0.02 0.59 0.03 0.35 0.03* 0.15 0.03 

Concentrations 

( M ) 

 

Scratch 

width 

6 hr 

(mm) 

SEM 

Scratch 

width 

12 hr 

(mm) 

SEM 

Scratch 

width 

24 hr 

(mm) 

SEM 

Scratch 

width 

42 hr 

(mm) 

SEM 

Control 0.76 0.02 0.64 0.03 0.39 0.04 0.18 0.04 

-9 M 0.75 0.02 0.64 0.03 0.42 0.05 0.22 0.04 

-8 M 0.78 0.02 0.63 0.03 0.43 0.04 0.18 0.03 

-7 M 0.76 0.02 0.60 0.02 0.41 0.04 0.17 0.03 

-6 M 0.81 0.02 0.66 0.03 0.45 0.04 0.17 0.03 

-5 M 0.75 0.02 0.58 0.03 0.37 0.04 0.14 0.03 

A 

C 

B 
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Table 3.2 shows there was no effect of coumestrol and genistein on wound clouser just for 

daidzein after 12 hours in PC3 cell culture in the scratch assay. 

 

 

PC3 cells were treated with genistein, daidzein and coumestrol for 72 hours. A scratch was then made in 

the middle of wells using a sterile pipette tip. Digital images were taken after scratching on an inverted 

microscope (Leica, Germany) fitted with a digital camera (Scopetek, DCM-510, China) at x40 

magnification. The separation of the edges of the scratch was used to quantify motility by measuring the 

distance between the edges in mm using ImageJ analysis software (National Institute of Health, USA). * 

P<0.05 versus control. (A) daidzein, (B) coumestrol and (C) genistein. 

Concentrations 

( M ) 

 

Scratch 

width 

6 hr 

(mm) 

SEM 

Scratch 

width 

12 hr 

(mm) 

SEM 

Scratch 

width 

24 hr 

(mm) 

SEM 

Scratch 

width 

42 hr 

(mm) 

SEM 

Control 0.63 0.06 0.52 0.07 0.32 0.08 0.18 0.06 

-9 M 0.69 0.05 0.52 0.06 0.33 0.07 0.22 0.07 

-8 M 0.60 0.03 0.45 0.05 0.29 0.07 0.10 0.04 

-7 M 0.58 0.04 0.33 0.06* 0.15 0.05 0.11 0.07 

-6 M 0.69 0.05 0.50 0.06 0.23 0.06 0.13 0.05 

-5 M 0.61 0.04 0.40 0.06 0.25 0.06 0.10 0.04 

Concentrations 

( M ) 

 

Scratch 

width 

6 hr 

(mm) 

SEM 

Scratch 

width 

12 hr 

(mm) 

SEM 

Scratch 

width 

24 hr 

(mm) 

SEM 

Scratch 

width 

42 hr 

(mm) 

SEM 

Control 0.54 0.03 0.38 0.04 0.17 0.03 0.06 0.03 

-9 M 0.58 0.03 0.40 0.03 0.22 0.04 0.04 0.03 

-8 M 0.57 0.03 0.41 0.03 0.17 0.03 0.09 0.05 

-7 M 0.53 0.03 0.36 0.03 0.14 0.03 0.05 0.03 

-6 M 0.57 0.03 0.33 0.02 0.20 0.04 0.11 0.05 

-5 M 0.56 0.03 0.36 0.03 0.19 0.03 0.03 0.02 

Concentrations 

( M ) 

 

Scratch 

width 

6 hr 

(mm) 

SEM 

Scratch 

width 

12 hr 

(mm) 

SEM 

Scratch 

width 

24 hr 

(mm) 

SEM 

Scratch 

width 

42 hr 

(mm) 

SEM 

Control 0.60 0.03 0.47 0.03 0.26 0.04 0.08 0.03 

-9 M 0.58 0.03 0.43 0.03 0.23 0.04 0.11 0.03 

-8 M 0.62 0.03 0.51 0.04 0.30 0.03 0.10 0.03 

-7 M 0.66 0.02 0.51 0.03 0.22 0.04 0.06 0.02 

-6 M 0.58 0.04 0.44 0.04 0.26 0.06 0.07 0.02 

-5 M 0.57 0.03 0.42 0.04 0.25 0.05 0.11 0.04 

A 

B 

C 
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3.4 Discussion 

There is conflicting data in the literature regarding the effect of phytoestrogens 

on breast and prostate cancer. Studies indicate variously that diets rich in 

phytoestrogens or phytoestrogen supplementation can have beneficial or 

detrimental effects on risk, cell viability and gene expression (Bilal et al., 2014).  

While many previous studies have examined the effect of individual 

phytoestrogens, there is little data on the impact of combinations of 

phytoestrogens, studies in which PE with different variables have been 

combined (Charles et al., 2007) or studies focussing on genomic effects (Dip et 

al., 2009).  These areas are worthy of further investigation, as it is highly likely 

that individuals are exposed to many PE at different concentrations, due to the 

varied nature of PE obtained from dietary sources.  Even with supplementation 

with distinct PE, individuals will still be receiving a range of PE, which could 

modify the action of the supplement.  This study indicates that while genistein, 

daidzein and coumestrol reduce breast and prostate cell viability individually in 

an oestrogen receptor dependent manner, this beneficial action is lost when 

previously effective concentrations are combined. Antagonism between 

chemotherapeutic agents is not a novel phenomenon: genistein has been 

shown to modulate the anti-proliferative effect of cisplatin on breast and colonic 

tumour cells. Genistein at 10-4 M inhibits cell growth and induces apoptosis in 

breast cancer MCF7 cells and colon cancer cells HT29. In contrast, co-

treatment of genistein with the same concentration of 10-4 M with cisplatin 

results in an additive effect and abolishes the anti-proliferative effect of cisplatin 

on breast and colon cancer cells. (Hu et al., 2014). It has also been reported to 

induce resistance to doxorubicin and mitoxantrone by increasing ABC 

transporter expression, which increases the expulsion of the tumour 

suppression drugs from the cells (Rigalli et al., 2016). The basis of the 
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antagonistic action observed in the current study is not known, but in the light of 

the concentration-dependent effect on viability may relate to combinations 

exceeding effective concentration windows. For example, no PE reduced 

viability at 10-5 M, but a significant effect was noted with 10-6 M genistein. 

Exposing cells to additional PE in the presence of 10-6 M genistein would, 

therefore, be expected to reduce viability as overall concentrations rise. The 

work of Choi supports this, and the biphasic concentration-dependent effects of 

genistein and daidzein noted in these studies were attributed to differential 

actions, mediated through ER (Choi & Kim, 2013).  In the current study, the 

inhibitory effect of PEs was also ER-dependent, as it was prevented by a non-

selective oestrogen antagonist. It is not clear, however, whether this action was 

mediated through ERα or through β, which have opposing actions on breast and 

prostate cell viability (Omoto & Iwase, 2015). While ERα is typically associated 

with greater proliferation and increased tumour burden in breast and prostate 

cancer, overexpression of ER β in vitro reduces oestrogen-driven proliferation 

and tumour formation (Paruthiyil et al., 2004). Similarly, in clinical studies, ERβ 

expression has been shown to correlate with increased proliferation and higher 

grade invasive tumours in breast cancer (Huang et al., 2014).  While evidence 

supports a beneficial effect of ERβ and a detrimental effect of ERα, there is 

added complication due to splice variants with opposing actions on tumour cell 

activity (Dey et al., 2012). ER β1 is often lost in advanced cases and has a 

tumour suppressive action, whereas ER β2 is elevated in more advanced cases 

and promotes proliferation (Dey et al., 2012). Thus, there is a crosstalk between 

ER influences transcription of ER responsive genes through the receptors own 

intrinsic activity and competition for binding to oestrogen-responsive DNA 

elements. Thus, oestrogen receptor dependent ligands, such as phytoestrogens, 
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induce a unique cellular response that is determined by their specific affinity for 

ER variants, and modified by the presence of other ER binding ligands.  

Phytoestrogens have differential binding affinities for ER α and β.  Studies have 

indicated that genistein and daidzein have a significantly higher affinity for ER 

beta than coumestrol, which has similar affinities for ER α and β (Harris et al., 

2005; Kostelac, Rechkemmer & Briviba, 2003). However, data on phytoestrogen 

affinities for splice variants is lacking in breast and prostate cancer is lacking, 

and it is possible that they have significantly different EC50. Thus, the 

antagonistic response seen in the current study could arise due to crosstalk 

between ER signalling and differences between proliferative and apoptotic 

actions.  

Phytoestrogens have additional ER-independent effects that modify mitosis and 

cell death. These include changes in redox status and inhibition of tyrosine 

kinase activity (Lee et al., 2012; Ullah et al., 2016; Zafar, Singh & Naseem, 

2016). Therefore, an alternative explanation for the antagonistic effect is that it 

is due to crosstalk between ER dependent and independent actions. Whatever 

the explanation, it is clear from the present data that individual PEs are more 

effective than combinations in reducing cancer cell viability. This antagonism 

may, in part, explain the lack of consensus within the literature, as absolute 

control of dietary PE sources is unfeasible.  This has important implications for 

their clinical utilisation. The overall dietary profile and an individual’s ER status 

should be considered as part of any supplementation strategy to maximise a 

response. 
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One of the limitations of the wound healing assay, however, was the non-use of 

more sophisticated techniques, such as like biomimetic hydrogels, microchannel 

devices, grooved substrates, microcontact-printed and micropatterned lines, 

vertical confinement devices and micropost arrays. .  

This study shows that PEs have a varied effect on breast and prostate cancer 

cells in vitro, with genistein showing the greatest potential.  In contrast to 

daidzein and coumestrol, it reduced viability in both breast and prostate cancer 

cells, and had a broader effect on gene expression. However, not all the effects 

of coumestrol were beneficial, it increased breast cancer mobility, which could 

enhance the metastatic potential of primary breast cancer cells.  

The results of this study suggest that some of the conflicting data in the 

literature may have arisen due to differences in the concentration and types of 

dietary PE present and stages of tumour development. If PEs are to be 

considered as having potential for reducing the incidence or severity of breast 

and prostate cancer, then further analysis of each individual’s phytoestrogen 

intake and ER status should be considered. 
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3.5 summary of chapter 3 results  

 

Table 3.5.1 Summary of PEs effect on PC3 in individual treatment 
 

Concentration  
(M) 

Genistein Coumestrol Daidzein 

% of 
control 

P Value % of 
control 

P Value % of 
control 

P Value 

10-9 87 0.17 107 0.43 84 0.06 

10-8 93 0.47 106 0.48 82 * 0.04 

10-7 85  *  0.01 107 0.46 78  * 0.01 

10-6 89  * 0.04 109 0.31 89 0.19 

10-5 97 0.70 101 0.92 91 0.27 

 
Note: “    “ , “     “ and “         “ means upregulation, down-regulation and little or no 
modulation of the indicated target respectively. * P<0.05 versus control. 
 
 
 
 
 
 
Table 3.5.2 Summary of PEs effect on MCF7 in individual treatment 
 

Concentration 
(M) 

Genistein Coumestrol Daidzein 

% of 
control 

P Value % of 
control 

P 
Value 

% of 
control 

P Value 

10-9 120 0.42 92 0.56 120 0.22 

10-8 116 0.51 89 0.13 110 0.54 

10-7 103 0.88 29  * 0.03   94 0.70 

10-6 85  * 0.04 66  * 0.01   84 0.32 

10-5 75  * 0.04 63  ** 0.007  78 0.19 

 
 
Note: “    “, “      “and “         “ means upregulation, down-regulation and little or no 

modulation of the indicated target respectively. * P<0.05, ** P<0.01 versus control 
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Table 3.5.3 Summary of PEs effect on PC3 with non-selective oestrogen 
modulator antagonist ICI 182,780 
 
 

Concentration (M) % of control P Value 

Gen 10-6 + ICI 10-5 140 *** 0.001 

Gen 10-7 + ICI 10-5 142 *** 0.0009 

Daid 10-7+ ICI 10-5 139 *** 0.001 

Daid 10-8+ ICI 10-5 124 0.05 

ICI 10-5 153 *** 0.001 

 

 
Note: “    “  means upregulation of the indicated target. *** P<0.001 versus control. 
 

 

 
 
 
Table 3.5.4 Summary of PEs effect on MCF7 with non-selective oestrogen 
modulator antagonist ICI 182,780 
 

Concentration (M) % of control P Value 

Gen 10-5 + ICI 10-5 106 0.23 

Gen 10-6 + ICI 10-5 143 0.64 

Cou 10-5 + ICI 10-5 106 0.74 

Cou 10-6 + ICI 10-5 114 0.79 

Cou 10-7 + ICI 10-5 94 0.66 

ICI 10-5 101 0.98 

 

Note: “    “, “      “and “         “ means upregulation, down-regulation and little or no 
modulation of the indicated target respectively.  
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Table 3.5.5 Summary of PEs effect on PC3 in combination of the effective 
individual treatment 
 
 

Concentration (M) % of control P Value 

Gen 10-6 + Daid 10-7 100 0.99 

Gen 10-6 + Daid 10-8 98 0.88 

Gen 10-7 + Daid 10-7 105 0.69 

Gen 10-7 + Daid 10-8 115 0.20 

 

Note: “    “, “      “and “         “ means upregulation, down-regulation and little or no 
modulation of the indicated target respectively.  
 

 

 

 

 

 

 

 
Table 3.5.6 Summary of PEs effect on MCF7 in combination of the effective 
individual treatment 
 
 

Concentration (M) % of control P Value 

Gen 10-5 + Cou 10-5 97 0.79 

Gen 10-5 + Cou 10-6 83 0.12 

Gen 10-5 + Cou 10-7 101 0.93 

Gen 10-6 + Cou 10-5 92 0.49 

Gen 10-6 + Cou 10-6 100 0.97 

Gen 10-6 + Cou 10-7 102 0.85 

 

Note: “    “, “      “and “         “ means upregulation, down-regulation and little or no 
modulation of the indicated target respectively.  
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Chapter Four 

 Transforming growth factor-β (TGF-β) and bone morphogenic 

protein 7 (BMP7) interfere with the effect of phytoestrogens in breast 

and prostate cancer cell lines 
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4.1 Introduction  

After studying the effect of individual phytoestrogens on the viability of prostate 

and breast cancer cells, this chapter will study their effect on gene expression 

and in the presence or absence of cytokines typical of that seen in the bone 

microenvironment. The transforming growth factor-β (TGF-β) family of cytokines 

has 33 members in humans, including TGF-β isoforms, activins, bone 

morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). 

These control cell growth, survival, migration and differentiation, and have 

significant roles during embryonic development and adult tissue homeostasis 

(Heldin, Vanlandewijck & Moustakas, 2012). TGF-β family members are 

involved in fibrotic conditions, cancer and autoimmune disease As a regulatory 

'switch', it can, in combination with other cytokines, can 'reprogramme' effector T 

cell differentiation along different pathways (Veldhoen et al., 2008); enhance the 

proliferation of mouse CD8+; increase TNF-a; and accelerate T-cell death (Wan 

& Flavell, 2008). In carcinogenesis, TGF-β has a dual role; originally it 

represses tumorigenesis by inducing growth arrest and promoting apoptosis. In 

advanced cancers, however, where TGF-β is often overexpressed, it promotes 

tumorigenesis by induction of epithelial-mesenchymal transition (EMT), whereby 

tumour cells become more invasive and prone to form metastases. The tumour-

promoting effects of TGF-β also introduce effects on non-malignant cells; 

promoting angiogenesis (Heldin, Vanlandewijck & Moustakas, 2012) and 

inhibiting the production of IL-2, a chemokine known to potently activate T cells, 

and this suppresses immune monitoring cells, such as NK, CD4+ and CD8+  

(Kehrl et al., 1986; Ribatti, 2017). 
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Growth factors, including TGF-β, liberated during the bone destruction 

associated with breast and prostate cancer, acts on cancer cells to induce a 

positive feedback response, in which matrix factors induce the production of 

additional osteolytic factors such as PTHrP, IL-6 and IL-11, which in turn 

stimulate more osteoclastic resorption and increase TGF-β release. Therefore, 

TGF-β plays a central role in this vicious cycle of bone metastasis and, 

consequently, the TGF-β signalling pathway in tumour cells and its cross talk 

within the bone microenvironment present an attractive therapeutic target (Dorai 

et al., 2014). 

Since metastasis is the primary cause of cancer lethality, a wider understanding 

of the mechanisms that promote metastasis is required. TGF-β signaling has 

been linked to the process of metastasis in many cancer types, including those 

of the breast, prostate and lung. Moreover, TGF-β signaling is triggered in PCa 

bone metastatic patients because TGF-β is one of the most abundant growth 

factors in bone and is released during osteoclastic bone resorption. In breast 

cancer bone metastases, TGF-β enhance the expression of genes that shown 

to be associated with bone metastases, including PTHrP, IL-11, CTGF, CXCR4, 

and MMP1(Nguyen, Bos & Massagué, 2009). Evidence supports the concept 

that EMT encourages invasiveness and intravasation into lymph or blood 

vessels of cancer cells as one of the early manifestations of metastasis (Thiery 

et al., 2009). In addition to the direct effects of EMT on cancer cells, invasive 

tumour cells that started EMT secrete many growth factors and chemokines that 

promote and recruit stromal cells, facilitating migration and intravasation of the 

tumour cell. Regarding TGF-β, it is important to know whether TGF-β continues 

to play an active role during additional steps in the pathway that guides tumour 

cells to form metastases (Heldin, Vanlandewijck & Moustakas, 2012). Further 
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investigations are required in order to augment our knowledge of the dynamics 

and interactions that exist between EMT and MET programmes in regulating cell 

reprogramming, and to determine the therapeutic potential of targeting these 

differences (Morrison, Parvani & Schiemann, 2013). 

Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily, 

and are known to be strong inducers of bone formation. More than 30 BMP-

related proteins have been recognized. They are synthesized by skeletal cells, 

and have an important role in early embryogenesis, skeletogenesis and in the 

maintenance of bone mass in the mature skeleton. They play a role in the 

differentiation of marrow stromal cells toward osteoblasts, chondrocytes and 

adipocytes, and also in a variety of extraskeletal tissues, particularly in vascular 

and neural development and diseases (Biver, Hardouin & Caverzasio, 2013). 

BMP receptors activate intracellular signalling pathways. Smad is the major 

route, in which phosphorylated Smad 1/5/8 form heterocomplexes with Smad 4, 

which then translocate to the nucleus. Nuclear Smad complexes control 

transcription of BMP target genes by binding to sequence motifs in the promoter 

regions of BMP-responsive genes, and through interaction with transcription 

factors or transcriptional co-activators and/or repressors (Attisano & Wrana, 

2002; Miyazono, 1999). In breast cancer cells, BMP7 induces different 

phenotypic changes. The capacity of BMP7 to dramatically stimulate breast 

cancer cells is displayed in MDA-MB-231 cells, in which a remarkable increase 

in cell growth, migration, and invasion was detected. Thus, it is concluded that 

BMP7 has a substantial impact on breast cancer cells and is an important factor 

determining breast cancer responses in bone (Alarmo et al., 2009).  

BMP7 indirectly control the expression of important genes involved in promoting 

the EMT process by ZEB1, ZEB2, Snail1, Snail2, N-cad and Vimentin, by 
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abolishing TGFβ-induced activation of theses genes. Also, BMP7 significantly 

abolished TGFβ-induced suppression of E-cadherin, suggesting a possible 

antagonising effect of BMP7 against TGFβ-mediated EMT in breast cancer cells 

(Ying, Sun & He, 2015). Buijs and co-workers showed that, in prostate cancer 

cells, bone morphogenic protein-7, (BMP7), is an antagonist of the TGF-β and 

can inhibit osteolytic metastases that are characteristic of prostate cancer in 

vivo. Buijs showed that while TGF-β alone decreases E-cadherin expression 

and generates epithelial mesenchymal transition, (EMT), in prostate cancer 

cells which facilitate the invasive and metastatic phenotype, a combination of 

TGF-β and BMP7 promote E-cadherin expression and enhance the epithelial 

phenotype and repress the development of prostate cancer bone metastases 

(Buijs et al., 2007a; Buijs et al., 2007b; Buijs et al., 2007c). In prostate cancer 

cell line LNCaP, BMP7 promotes an epithelial phenotype by increasing E-

cadherin expression, decreasing proliferation, and vimentin expression which is 

a marker of mesenchymal cells (Morrissey et al., 2010). 

BMP pathways have been correlated with mechanisms determining the 

osteoclastic and osteoblastic response to cancer metastases. BMPs and their 

receptors are expressed by human cancer cell lines and human biopsy 

specimens from bone metastatic sites (especially BMP-2, 4, 6 and 7), with clear 

effects on proliferation, migration and invasion of tumour cells, and expression 

pattern, according to the primary cancer (Biver, Hardouin & Caverzasio, 2013). 

BMP -2, -4, and -7 are generally expressed in breast and prostate cancers, and 

mostly BMP7 in breast cancer. Other cell line specific differential expression of 

BMPs is observed in gastric and colon adenocarcinoma. Expression of Bone 

morphogenic protein receptors (BMPRs) (type I and type II) has been noticed in 

various prostate cancer cell lines and tissues. Other BMPRs such as BMP type 
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1A, 1B and II are also expressed in lung cancer and osteosarcoma (Singh & 

Morris, 2010) 

Lack of BMP7 expression by the cancer cells, or resistance of these cells to the 

BMP7 produced by the surrounding normal epithelial or stromal cells drives the 

malignant cells to operate with a TGF-β bias, promoting loss of E-cadherin 

expression and metastasis (Dorai et al., 2014). BMP7 inhibits bone metastasis 

formation in vivo and decreased BMP7 expression has been shown in primary 

breast cancer. Daily BMP7 treatment to nude mice inhibited the growth of 

prostate cancer cells in bone, suggesting that BMP7 and TGF-beta have 

important impacts on the outcome of prostatic metastases in bone (Biver, 

Hardouin & Caverzasio, 2013). 

Most of the literature and a majority of researchers have not focussed 

particularly on the relation of phytoestrogens and BMP-7 in prostate and breast 

cancer in their studies, although there may be  ongoing investigations in this 

area that have yet to be announced. For this reason, it was a challenge to 

decide working on this relation here in this chapter that focused on BMP-7 in 

prostate and breast cancer cell lines in the presence of phytoestrogens. 

Unfortunately, there are no direct studies that combine the PEs/TGF/BMP-7 

model and compare the responses of the prostate cell lines and the breast 

cancer cell lines.   

As shown with individual PEs it appears to be more effective than combinations 

on the viability of prostate and breast cancer cells.  In this chapter, there will be 

a detailed observation of their impact on genes involved in the disease process, 

and attempts will be made to replicate more closely the cytokines (TGF-β and 

BMP7) that these cells would experience in-vivo, in order to see whether this 

modulates the response to individual PEs. 
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Therefore, the effect of PEs on breast and prostate cancer expression of genes 

involved in preferential metastasis to the skeleton will be investigated. Also in 

this chapter, there will be an attempt to model the status that the cells would 

experience in the bone microenvironment and to discover whether the PEs 

would still have an effect similar to that of their individual effect in the presence 

of TGF- β and BMP7 cytokines. Further, the chapter will study the possible 

effect on genes that are important in the EMT process (Integrin α5β3) and 

osteomimicry (Runx2, Osx and collagen type I) in PC3 cells as runx2 has been 

proposed to mediate gene expression and associated with increased motility 

and invasiveness of PCa cells, and the aggressiveness of osteolytic bone 

disease that occur with PCa metastasis to bone (Akech et al., 2010). It will also 

study these cytokines as a model of what prostate and breast cancer cells may 

encounter in the presence and absence of PEs and the expression of genes 

involved in EMT (Snail and Integrin α5β3) and bone vicious cycle (PTHrP and 

collagen type I) in MCF7 cells as PTHrP expression was investigated as 

previous studies have proposed that production of PTHrP is more common in 

metastatic breast cancer cells in bone than in the primary tumour and may be 

responsible for the local bone destruction taking place in patients with breast 

cancer (Guise et al., 1996). Also collagen type I is regarded as simply a physical 

barrier against cancer invasion and tumour cells migration and the essential for 

tumour invasion is collagen degradation, for which matrix metalloproteinases 

(MMPs) play an important role (Fang et al., 2013). 
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4.2 Materials and methods 

Methods used here in chapter 4 are similar to what has been mentioned in chapter 2 

(materials and methods) for the points: 

2.5.1 RNA extraction and reverse transcription  

2.5.2 Verification of PCR primers and RT  

2.5.3 10x Tris-acetate-EDTA (TAE) buffer  

2.5.4 Real-time quantitative PCR analysis of metastatic marker expression 

2.6 Statistical analysis 

4.2.1 cytokines 

Recombinant Human TGF-β1 (Human Cells) and Purified recombinant protein 

of Human bone morphogenetic protein 7 (BMP7) was purchased from Insight 

Biotechnology Limited (Wembley Middlesex, United Kingdom). Concentrations 

used for the cytokines TGFβ and BMP7 were 0.1 ng/mL(Vo et al., 2013) and 30 

ng/mL  (Chen et al., 2014) respectively.  

  

Table 4.1 PCR primers and their amplicons used with individual phytoestrogens, TGF-β 
and BMP7 experiments 

 5 -́3  ́Forward primer 3 -́5  ́Reverse primer  

Human β-actin GCGCGGCTACAGCTTCACCA TGGCCGTCAGGCAGCTCGTA 777-929 

Human Runx2 AGACCCCAGGCAGGCACAGT GCGCCTAGGCACATCGGTGA 816-972 

Human CXCR4 GCGCAAGGCCCTCAAGA GTGCGTGCTGGGCAGAGGTT 1010-1257 

Human Snail CGAGTGGTTCTTCTGCGCTA CTGCTGGAAGGTAAACTCTGGA 27-183 

Human  Integrin  

α5β3 
AATTTTACTGGCGAGCAG TTGGTGGCATGCTTCGAG 1054- 1465 

Human PTHrP GTCTCAGCCGCCGCCTCAA GGAAGAATCGTCGCCGTAAA 693-785 

Human collagen 

type I 
CCTGGCAGCCCTGGTCCTGA CTTGCCGGGCTCTCCAGCAG 1766-1918 

Human  (osx) GGCTCTAGCCCTCTGCGGGA CGTGGGGGTTTGGCTCCACC 459-1123 
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4.3 Results 

4.3.1 Expression of genes involved in metastasis 

The effect of phytoestrogens on expression of genes associated with epithelial 

to mesenchymal transition (snail), preferential metastasis (CXCR4 and integrin 

α5β3) and disruption of bone remodelling (Runx2 as mechanistically linked to 

androgen responsive pathways that support prostate cancer cell growth and 

PTHrP as breast cancer cells in bone express parathyroid hormone-related 

protein (PTHrP) more frequently) was determined by quantitative PCR. 

Genistein (10-7 - 10-6 M) significantly reduced PC3 snail expression at 24 hours 

was (30%, P = 0.02) and (36%, P = 0.02) at 72 hours for genistein 10-6 M and for 

genistein 10-7 M the reduction in expression for snail was (25%, P = 0.02) at 24 

hours and (2%, P = 0.002) at 72 hours (Figure 4.1 A), CXCR4 and integrin α5β3 

expression were also significantly reduced at 24 (1%, P = 0.005) and (11%, P = 

0.0002) at 24 hours and (3%, P = <0.0001) and (13%, P = 0.002) at 72 hours for 

genistein 10-6 M, respectively, and for 10-7 M the reduction in expression was 

significant only at 24 hours (2%, P = <0.005) for CXCR4 and (20%, P = 0.0005) 

for Integrin α5 (Figure 4.1 B and D).  Genistein had a bimodal effect on PC3 

Runx2 expression reducing expression at the earliest time point (11%, P = 

<0.0001) for 10-6 M and (20%, P = 0.0001) for 10-7 M and significantly increasing 

expression at 72 hours (10-7 M) (160%, P = <0.47) for 10-6 M and (282%, P = 0.4) 

for 10-7 M probably because of the oestrogen receptor availability during the 24 

hour and become less available after 72 hour (Figure 4.1 C). Daidzein also 

reduced gene expression in a dose and time dependent manner in PC3 cells, 

significantly decreased snail, CXCR4, integrin α5β3 and Runx2 expression.  

The effect of daidzein (10-7 - 10-8 M) was more pronounced at later time points 

and was (27%, P = <0.01) for snail and (4%, P = 0.0001) for CXCR4 and (7%, P 
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= <0.04) for Integrin α5 for 10-7 M (Figure 4.1 A, B and D) and for 10-8 M the 

reduction was (18%, P = <0.006) for snail and (3%, P = 0.0001) for CXCR4 and 

(9%, P = <0.01) for Integrin α5β3. Apart from Runx2 expression where a 

significant decrease was only noted at 24 hours for daidzein (10-7 - 10-8 M) and 

was (14%, P = <0.0001) and (18%, P = <0.0001) respectively (Figure 4.1 C). 

In MCF7 cells, genistein significantly suppressed CXCR4 and integrin α5β3 

expression at all concentrations and time points and was (42%, P = 0.0004) and 

(50%, P = 0.01) at 24 hours for (10-6  - 10-5 M) respectively for CXCR4 except for 

genistein 10-5M after 72 hour and was (61%, P = 0.08) (Figure 4.3 B), for 

Integrin α5β3 the reduction in expression was for both genistein (10-6 - 10-5  M) 

at 24 and 72 hours and was (12%, P = 0.0001) and (0%, P = <0.0001), 

respectively, and at 72 hours was (12%, P = <0.0001) and (9%, P = <0.0001) for 

(10-6 and 10-5 M), respectively. Coumestrol also significantly reduced integrin 

α5β3 at 24 and 72 hour for Coumestrol (10-7 , 10-6 and 10-5M ) and was (0%, P = 

<0.0001) , (6%, P = <0.0001) and (19%, P = <0.0001) for 24 hours ,respectively, 

and the reduction at 72 hours was (14%, P = <0.0001) , (16%, P = <0.0001) and 

(7%, P = <0.0001)  respectively(Figure 4.2C).  For the reduction in CXCR4 

expression was at 24 hours only in Coumestrol (10-7 , 10-6 and 10-5M ) and was 

(53%, P = <0.001) , (23%, P = <0.0001) and (9%, P = <0.0001) respectively 

(Figure 4.2 B).  Genistein had a differential effect on MCF7 snail and PTHrP 

expression that significantly increased at 10-6  and 10-5  M after 24 hours (329%, 

P = <0.0001) and (495%, P = <0.0001), respectively, for snail and for PTHrP the 

increase was not significant and was (126%, P = 0.84) and (179%, P = 0.3) for 

10-6  and 10-5  M respectively, then a suppressive expression at 72 hours was 

significant in snail for 10-6  and 10-5  M and was (20%, P = <0.0001) and (34%, P 

= 0.0003), respectively, but was not significant decrease in PTHrP and was 
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(67%, P = 0.74) and (11%, P = 0.29) for 10-6  and 10-5 M respectively (Figure 4.2 

A and D).  Coumestrol  decreased PTHrP and snail genes expression after 24 

and 72 hours for 10-6 M and 10-5 M but not  to a significant levels and was higher 

at 10-7 M for both snail and PTHrP at 24 and 72 hours (305%, P = 0.0001), 

(126%, P = 0.08) and (180%, P = 0.27) (127%, P = 0.04) respectively(Figure 4.2 

A and D). 
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Figure 4.1 PC3 cells genes expression with individual phytoestrogens. Concentrations 

of genistein and daidzein shown to reduce cell viability also modify the expression of 

genes implicated in EMT (snail), preferential metastasis (CXCR4 and integrin α5β3) 

and osteomimicry (Runx2) in PC3 cells. Cells were cultured with genistein or daidzein 

for 24 or 72 hours prior to mRNA isolation. Gene expression was then assessed using 

cT qPCR and the DNA-binding dye SYBR green for detection of PCR products. The 

relative quantification (RQ) value for each group was calculated using CT values for 

non-treated controls normalized to the expression β-actin mRNA. Samples were 

analysed in triplicate and experiments repeated separately three times. * P<0.05 and 

*** P<0.0001 
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Figure 4.2 MCF7 genes expression with individual phytoestrogens. Concentrations of 

genistein and coumestrol shown to reduce cell viability also modify the expression of 

genes implicated in EMT (snail), preferential metastasis (CXCR4 and integrin α5β3) 

and osteolysis (PTHrP) in MCF7 cells. Cells were cultured with genistein or daidzein for 

24 or 72 hours prior to mRNA isolation. Gene expression was then assessed using 

cT qPCR and the DNA-binding dye SYBR green for detection of PCR products. The 

relative quantification (RQ) value for each group was calculated using CT values for 

non-treated controls normalized to the expression β-actin mRNA. Samples were 

analysed in triplicate and experiments repeated separately three times. * P<0.05, ** 

P<0.01 and *** P<0.0001versus control 
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4.3.2 Modulation of phytoestrogens effect by TGF-β on genes involved in the 

metastatic process in prostate and breast cancer cells. 

This experiment will look at the role of TGF on phytoestrogens that induced 

changes to genes expression in a microenvironment that mimic what 

phytoestrogen will encounter in this microenvironment in PC3 and MCF7 cells. 

Genes that been studied in PC3 are (Runx2, osterix and collagen type I) as the 

most abundant protein within the bone and that prostate and breast cancer cells 

bound with high affinity to this protein) and looking at (PTHrP, snail and collagen 

type I) expression in breast cancer cells (MCF7). 

TGF-β at 0.1 ng/mL for 72 hours significantly reduced PC3 Runx2 (74%, P = 

0.008) and osx (66%, P = 0.03) expression and increased collagen type I 

expression significantly (159% at P 0.02). Daidzein 10-7 M/TGF-β decrease 

Runx2 (60%, P = 0.008) and osx decreased (47%, P = <0.0001), while in 

genistein 10-6 M/TGF-β Runx2 decreased (58%, P = 0.003) and osx (77% at P= 

0.01)  after 72 hours This results of significant Runx2 reduction was opposite to 

the individual effect of these phytoestrogens in the absence of TGF-β on Runx2 

gene expression after 72 hours. TGF-β induced collagen type I expression 

reduced by PE, returning near the control levels. Also, collagen type I 

expression was less in combinations comparing to its high expression with the 

individual treatment of TGF- β (Figure 4.3). 

In MCF7 cells, treatment with TGF- β significantly increased Snail expression 

(148%, P = 0.01). Collagen type I expression also increased but not to 

significant levels (139%,  P = 0.16) while PTHrP stay lower but not to significant 

level (81%, P = 0.13). When TGF-β at 0.1 ng/mL combined with and coumestrol 

(10-5 M) for 72 hours significantly reduced the expression of the PTHrP (25%, P 

= 0.03), collagen type I (12%, P = <0.0001) and snail (33%, P = 0.008) which is 
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similar to the significant effect of individual genistein on both PTHrP and snail 

gene expression in the absence of TGF-β. Genistein (10-5 M) become more 

effective in the presence of TGF-β than when used individually and reduced 

PTHrP (22%, P = 0.001), collagen type I (22%, P = <0.0001) and snail (44%,P =  

0.003) significantly as shown in (Figure 4.4). 
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Figure 4.3  Transforming growth factor β (TGF-β) in PC3 cells. shown to interfere the 

effect of phytoestrogens and modify their individual action on the expression of genes 

involved in osteomimicry (Runx2) in PC3 cells. Cells were cultured with genistein or 

daidzein for 72 hours prior to mRNA isolation. Gene expression was then assessed 

using CT qPCR and the DNA-binding dye SYBR green for detection of PCR 

products. The relative quantification (RQ) value for each group was calculated using CT 

values for non-treated controls normalized to the expression β-actin mRNA. Samples 

were analysed in triplicate and experiments repeated separately three times. * P<0.05, 

** P<0.01 and *** P<0.0001versus control 
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Figure 4.4 Transforming growth factor β (TGF-β) shown to interfere the effect of 

phytoestrogens and modify their individual action on the expression of genes involved 

in bone vicious cycle (PTHrP) and metastasis process of EMT (Snail) in MCF7 cells. 

Cells were cultured with genistein or coumestrol for 72 hours prior to mRNA isolation. 

Gene expression was then assessed using CT qPCR and the DNA-binding dye 

SYBR green for detection of PCR products. The relative quantification (RQ) value for 

each group was calculated using CT values for non-treated controls normalized to the 

expression β-actin mRNA. Samples were analysed in triplicate and experiments 

repeated separately three times. * P<0.05, ** P<0.01 and *** P<0.0001versus control 
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4.3.3 Bone morphogenic protein 7 (BMP 7) modify the individual effect of 

phytoestrogens on gene expression in prostate and breast cancer cell 

lines. 

 Bone morphogenic protein 7 (BMP 7), a bone formation and remodelling factor, 

and combinations of phytoestrogens with BMP7 or TGF-β were studied. Runx2 

and integrin α5β3 expression was investigated in PC3 cells while expression of 

snail and integrin α5β3 were investigated in MCF7 cells after 72 hours to give 

phytoestrogens more time of engaging with cytokine environment containing 

BMP7 and to determine the importance of osteomimicry and the ability to initiate 

the EMT process in these cell lines.  

BMP7 reduced PC3 cell integrin α5β3 expression to significant levels (18%, P = 

0.09), while Runx2 expression was not reduced significantly by BMP7 exposure 

(79%, P = 0.70). Previously, individual Daidzein and genistein reduced Integrin 

α5β3 significantly in the absence of BMP7.In the presence of BMP7 the 

expression of Integrin α5β3 highly increased (99%, P = 0.98) but not to a 

significant level. Runx2 gene expression did not show any decrease but stayed 

on its high non-significant levels in the presence or absence of BMP7 (167%, P 

= 0.22) (Figure 4.5). 

Combining BMP7 and TGF-β at 0.1 ng/mL also had no significant effect on 

Runx2 (68%, P = 0.60) and integrin α5β3 (79%, P = 0.65) expression. Genistein 

or daidzein and BMP7 combination non-significantly increased the expression of 

Runx2 (169%, P = 0.21) and (167%, P = 0.22) and integrin α5β3, (155%, P = 

0.26) and (99%, P = 0.98) respectively, which is similar to the previous result 

with individual phytoestrogens in the absence of BMP7 (Figure 4.5). 
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In MCF7 cells, BMP7 significantly reduced integrin α5β3 expression (43%, P = 

0.009). Combining BMP7 and TGF-β also significantly reduced integrin α5β3 

expression (28%, P = 0.001). Previously, individual genistein significantly 

decreased snail expression in the absence of BMP7. In the presence of BMP7, 

genistein alters its effect and increased snail expression significantly (377%, P = 

0.009). Individual coumestrol had a similar non-significant effect in the presence 

and absence of BMP7 (131%, P = 0.76) and (85%, P = 0.31) respectively, 

neither decreased nor increased snail expression significantly. Previous 

individual genistein and coumestrol significantly reduced the expression of 

Integrin α5β3 in the absence of BMP7 (9%, P = <0.0001) and (7%, P = <0.0001) 

respectively. In the presence of BMP7, phytoestrogens genistein 10-5 M and 

coumestrol 10-5 M lost their significant effect (81%, P = 0.39) and (68%, P = 0.1) 

respectively (Figure 4.6). 
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Figure 4.5  Modification of Runx2 and Integrin α5β3 gene expression in PC3 cell line by 

BMP7. BMP7 interfere the effect of phytoestrogens and modify their individual action on 

the expression of genes involved in osteomimicry (Runx2) and metastasis process of 

EMT (Integrin α5β3) in PC3 cells. Cells were cultured with genistein or daidzein for 72 

hours prior to mRNA isolation. Gene expression was then assessed using CT qPCR 

and the DNA-binding dye SYBR green for detection of PCR products. The relative 

quantification (RQ) value for each group was calculated using CT values for non-

treated controls normalized to the expression β-actin mRNA. Samples were analysed in 

triplicate and experiments repeated separately three times. * P<0.05 versus control. 
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Figure 4.6 Modification of snail and gene expression in MCF7 cell line by 

BMP7:BMP7interfere the effect of phytoestrogens and modify their individual action on 

the expression of genes involved in metastasis process of EMT (Snail and Integrin 

α5β3) in MCF7 cells. Cells were cultured with genistein or coumestrol for 72 hours prior 

to mRNA isolation. Gene expression was then assessed using CT qPCR and the 

DNA-binding dye SYBR green for detection of PCR products. The relative quantification 

(RQ) value for each group was calculated using CT values for non-treated controls 

normalized to the expression β-actin mRNA. Samples were analysed in triplicate and 

experiments repeated separately three times. * P<0.05, ** P<0.01 and *** 

P<0.0001versus control. 
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4.4 Discussion 

The potential benefit of individual phytoestrogens is underlined by their ability to 

modify the expression of genes implicated in tumour progression when 

cytokines typical of the bone environment are absent.  Snail, a key transcription 

factor that induces integrin and cadherin expression during epithelial to 

mesenchymal transition, was suppressed by genistein and daidzein in the 

absence of TGF-β and BMP7 (Figure 4.2 A). In keeping with this, genistein and 

daidzein also reduced integrin α5β3 and CXCR4 expression (Figure 4.2 B and 

D). CXCR4 plays a major role in preferential metastasis of breast and prostate 

cancer to the skeleton, as bone marrow is the major source of CXCR4’s ligand. 

A decrease in CXCR4 expression would, therefore, be expected to reduce the 

incidence of skeletal secondaries. These pose a major therapeutic challenge 

due to the tumour promoting stimulus provided by the bone environment. 

Central to this is the binding of aberrantly expressed cell adhesion molecules, 

such as integrin α5β2, to Arginylglycylaspartic acid (RGD) containing proteins in 

the bone matrix. This sequesters tumour cells to bone, provides additional 

proliferative stimuli and promotes pro-angiogenic growth factor connective 

tissue. Growth factor (CTGF) induced angiogenesis, contributing to the 

disproportionate impact of skeletal metastases in late-stage disease (Heldin, 

Vanlandewijck & Moustakas, 2012). Decreased integrin α5β3 and CXCR4 

expression would, therefore, reduce disease progression and morbidity.  

However, it could be argued that cells would disseminate to other organs, 

delaying, rather than limiting, progression. 

While, overall, the tumour burden is augmented in the skeleton, bone tissue is 

not a supportive environment for its development, as its mineralised nature 

limits growth and lacks a dense capillary network.  This paradox is explained by 
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the ability of tumour cells to disrupt bone remodelling and, as a consequence, 

circumvent these limitations and generate a more conducive environment for 

growth. Breast cancer cells generate a developmental niche through the 

production of PTHrP, which indirectly stimulates osteoclast formation and bone 

resorption, by increasing the RANKL expression on osteoblasts and bone 

marrow stromal cells (Patel et al., 2011).  Prostate cancer, in contrast, is 

associated with an osteosclerotic response, caused by a process that is termed 

osteomimicry.  Osteomimicry forms part of the EMT, during which the tumour 

cells express transcription factors such as Runx2 that are typically restricted to 

the osteoblastic lineage (Cox et al., 2012; Jadaan, Jadaan & McCabe, 2015).  

The current data indicate that individual phytoestrogens modify the expression 

of these genes. Genistein and daidzein transiently reduced Runx2 expression in 

prostate cells and genistein significantly reduced PTHrP expression in breast 

cells. These changes would be expected to further limit the ability of skeletally 

disseminated cancer cells to survive and prosper in bone tissue, further 

reducing skeletal morbidity, such as hypercalcemia of malignancy. 

The addition of TGF-β at (0.1 ng/mL) and BMP7 at (30 ng/mL) to the culture 

environment was to construct a cytokine model which the cells would typically 

encounter in bone, and to assess whether this modified the response of the PEs. 

Interestingly, the addition of rhTGF-β was found to block the signalling of 

rhBMP7,  thus blocking the expression of genes important in bone formation 

(Ehnert et al., 2012). In contrast, according to a study by Zeisberg et al., BMP7 

was found to counteract the TGF-β signalling mechanism (Zeisberg et al., 2003). 

Transforming growth factor β, (rhTGF-β), shows an antagonist effect on 

phytoestrogen-induced changes, in combinations with daidzein and genistein. 
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The same results were observed when studying the effect on Runx2 and Osx, 

but not for collagen type I. This result suggests an important role for TGF-β on 

PE (daidzein and genistein) in early stages of metastasis, by inhibiting the 

expression of the osteomimicry genes (Runx2 and Osx) which are responsible 

for the direction of the cancer cell to the bone microenvironment in many 

cancers, including prostate cancer (Han et al., 2012). TGF-β blocks any effect of 

PE and increases collagen type I gene expression, but did not display this effect 

on Runx2 and osx, which both decreased significantly. This is contrary to the 

findings of Enhert et al., that TGF- β effectively blocks BMP7 in osteoblast, thus 

suggesting that blocking of the process of osteomimicry in cancer cells (Ehnert 

et al., 2012). Therefore, in the presence of TGF-β, daidzein and genistein, which 

increase the expression of Runx2, lost their effect on the expression of genes 

responsible for osteomimicry (Runx2 and Osx).  

The inhibitory effect of genistein on PTHrP and snail is also lost in the presence 

of TGF-β. The latter reduced the non-inhibitory effect of individual coumestrol on 

PTHrP and snail gene expression to a significant extent (Figure 4.5).This 

suggest a strong effect of TGF-β on coumestrol and genistein action presented 

in a bone microenvironment vicious cycle. 

Furthermore, low Snail expression suggest a decrease in the EMT process by 

elevating levels of epithelial phenotype, markers such as E-cadherin and 

integrin α5β3, at the primary tumour site. In contrast, TGF-β alone increased the 

expression of PTHrP, collagen type I and Snail in breast cancer cells, indicating 

a negative effect of TGF-β on the invasive, migration and proliferation of cancer 

cells which were inhibited when combined with phytoestrogens (Figure 4.5). It is 

suggested that TGF-β might be of importance on genistein action which has 
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been clear in this study results , and indicates that a relation between PEs and 

growth factors really exists (Adlercreutz, 2002). 

BMP7 has shown an inhibitory effect on the phytoestrogens daidzein and 

genistein, and increased the expression of Runx2 in prostate cancer cell lines 

(Figure 4.6). Also, BMP7 inhibited the effect of genistein and coumestrol in 

breast cancer cell lines and increase the expression of snail to a high level. This 

is opposite to what had been observed of the individual effect of genistein 

(Figure 4.7).  Individual coumestrol and genistein effects were noticeably 

greater than when combined with BMP7,and lost the significant decrease of 

integrin α5β3 (Figure 4.7). 

Here, the current results demonstrated that BMP7 interferes and abolishes the 

inhibitory effect of individual phytoestrogens (daidzein, genistein and 

coumestrol),  increases the expression of genes important in osteomimicry, 

(Runx2), EMT process (snail and Integrin α5β3) and enhances the migration of 

prostate and breast cancer cells. (Alarmo et al., 2009).  

The data summarised here sets the scene for further research and 

investigations into this new class of plant-derived compounds that are capable 

of interfering with very complicated diseases, such as prostate and breast 

cancer, and its interaction with important growth factors and cytokines, such as 

TGF-β and BMP7, that may cause further complications to the patient. 
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4.5 summary of chapter 4 results 

 
Table 4.5.1 phytoestrogens effect on expression of genes involved in metastasis in PC3 for  24h and 72h 
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25* 0.02  2 *** 2x10-3 2** 5x10-3 126 0.1 20*** <10
-4 

282 0.4 20*** <5x10-

4 

142 0.2 

Gen 
10-6 

30* 0.02  36 * 0.02 1** 5x10-3 3*** 10-4 11*** <10
-4 

160 0.47 11*** <2x10-

4 

13* 0.02 

Daid 
10-8 

25* 0.01  18*** <6x10-3  6** 0.01 3*** 10-4 18*** <10
-4 

179 0.29 3*** <10-4 9* 0.01 

Daid 
10-7 

117 0.55 27* 0.01 112 0.67 4*** 10-4 14*** <10
-4 

134 0.48 228*** <10-4 7* 0.04 

 
Note: “    “ and  “      “ means upregulation, down-regulation of the indicated target respectively. * P<0.05, ** P<0.01 and *** P<0.0001 
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Table 4.5.2 phytoestrogens effect on expression of genes involved in metastasis in MCF7 for 24h and 72h 
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Cou 
10-5 
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0.11 85 0.31 9*** <10-4 71 0.17 60 0. 39 78 0.8
6 

19*** <10-4 7*** <10-4 

 
Note: “    “ and  “      “ means upregulation, down-regulation of the indicated target respectively. * P<0.05, ** P<0.01 and *** P<0.0001 
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Table 4.5.3 TGFβ interfere the individual effect PEs action on expression of 
genes involved in osteomimicry in PC3 cells 
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TGFβ 74** 0.008 159* 0.02 66* 0.03 

Daid 10-7 134 0.48     

TGFβ + Daid 10-7 60** 0.008 103 0.88 47*** <0.0001 

Gen 10-6 160 0.47     

TGFβ + Gen 10-6 58** 0.003 96 0.82 77* 0.01 

 
Note: “    “ and  “      “ means upregulation, down-regulation of the indicated target 

respectively. * P<0.05, ** P<0.01 and *** P<0.0001 

 

 

Table 4.5.4 TGFβ interfere the individual effect PEs action on expression of 
genes involved in bone vicious cycle in MCF7 cells 
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TGFβ 81 0.13 139 0.16 148* 0.01 

Cou 10-5 78 0.86   85 0.31 

TGFβ + Cou 10-5  25* 0.03 12*** <0.0001 33** 0.008 

Gen 10-5 11 0.29   34*** 0.0003 

TGFβ + Gen 10-5 22*** 0.001 22*** <0.0001 44** 0.003 

 

Note: “    “ and  “      “ means upregulation, down-regulation of the indicated target 

respectively. * P<0.05, ** P<0.01 and *** P<0.0001 
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Table 4.5.5 BMP7 interference the effect of individual PEs action on expression 
of genes involved in osteomimicry and metastasis process EMT in PC3 cells 
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BMP7 79 0.7 18 0.09 

BMP7+TGFβ 68 0.6 79 0.65 

10-7 134 0.48   

Daid 10-7  +BMP7 167 0.22 99 0.98 

Daid 10-7  + BMP7 + TGFβ 169 0.21 166 0.17 

Gen 10-6 160 0.47   

Gen 10-6 + BMP7 169 0.21 155 0.26 

Gen 10-6 + BMP7 + TGFβ 183 0.14 203 0.03 

 
 

Note: “    “ and  “      “ means upregulation, down-regulation of the indicated target 

respectively. * P<0.05, ** P<0.01 and *** P<0.0001 
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Table 4.5.6 BMP7 interference the effect of individual PEs action on expression 
of genes involved in metastasis process EMT in MCF7 cells 
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BMP7 186 0.37 43** 0.009 

BMP7+TGFβ 186 0.95 28*** 0.001 

Cou 10-5 85 0.31 7*** <0.0001 

Cou 10-+ BMP7 131 0.76 68 0.1 

Cou 10-5 + BMP7 + TGFβ 303 0.06 82 0.49 

Gen 10-5 34*** 0.0003 9*** <0.0001 

Gen 10-5 + BMP7 377** 0.009 81 0.39 

Gen 10-5 + BMP7 + TGFβ 547*** 0.0001 64 0.11 

 
 

Note: “    “ and  “      “ means upregulation, down-regulation of the indicated target 

respectively. * P<0.05, ** P<0.01 and *** P<0.0001 
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Chapter Five 

 Modulatory effect of IL-33 on phytoestrogen-induced changes in the 

gene expression of breast and prostate cancer cell lines  
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5.1 Introduction 

Interleukin IL-33, a member of IL-1 cytokine family, is a dual-function protein 

that acts both as an alarming extracellular cytokine and as an intracellular 

nuclear factor. Abundant nuclear expression of IL-33 in endothelial cells from 

both large and small blood vessels in most normal human tissues, as well as in 

human tumours IL-33 is constitutively expressed in epithelial barrier tissues and 

lymphoid organs, maintaining the barrier function in normal conditions, and is 

released as a danger signal upon cellular damage or stress. By binding to its 

membrane ST2 receptor, IL-33 exerts an important role in inflammation, and 

allergy, and promotes the production of large amounts of IL-5 and IL-13 as part 

of  type-2 innate immunity, IL-33 also induces the phosphorylation and 

activation of ERK1/2, JNK, p38 and PI3K/AKT signaling modules causing a 

production and release of pro-inflammatory cytokines(Hu et al., 2017; Koyasu & 

Moro, 2011).   

The IL-33/ST2 pathway augments breast cancer progression and metastasis by 

promoting intra-tumoural accumulation of immunosuppressive cells, such as 

macrophages, myeloid-derived suppressor cells (MDSCs), mesenchymal 

stromal cells (MSCs) and by decreasing innate anti-tumour immunity (Figure 

5.1). Furthermore, IL-33 was over-expressed in various cancers. A high 

expression of IL-33 was reported in colorectal cancer(CRC) tissues (Liu et al., 

2014b), and the serum of breast cancer (Lu et al., 2014), and non-small cell 

lung cancer (NSCLC) patients (Hu et al., 2013). Further studies shown that     

IL-33 is constitutively expressed to high levels in the nuclei of endothelial and 

epithelial cells in vivo and that it can be released in the extracellular space after 

cellular damage. Thus, IL-33 was suggested to function as an endogenous 

danger signal or alarmin to alert cells of the innate immune system of tissue 
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damage during trauma or infection and a full-length IL-33 does not require 

processing for biological activity (Lefrançais et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 5.1: Cellular sources and targets of IL-33. IL-33 is released from endothelial cells, 

epithelial cells and fibroblasts in response to tissue damage or mechanical stress (dotted 

arrow). After release, IL-33 functions as an alarmin and activates different types of cells , 

including Th2 cells, Tregs, basophils, mast cells, eosinophils, macrophages, dendritic cells, 

innate lymphoid cells (ILC2s), NK cells and NKT cells. These activated cells respond to IL-

33/ST2 signaling by producing both pro-inflammatory and anti-inflammatory mediators (Xu et 

al., 2017). 
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Toll-like receptors (TLRs) and other pattern recognition receptors, (PRRs), 

enhance the immune response after the recognition of conserved motifs 

expressed by pathogens. TLRs are also triggered by endogenous danger 

signals, termed danger-associated molecular patterns (DAMPs), which are 

released from the damaged host tissue after trauma or stress and may be 

considered as a signalling pathway for IL-33 (Xu et al., 2017). 

It has been reported that transgenic expression of IL-33 may activate CD8 (+) T 

cells and NK cells, and inhibit tumour growth and metastasis in B16 melanoma 

and Lewis lung carcinoma metastatic models. It has also been shown to have 

direct effects on cancer cells, activating multiple intracellular signalling 

cascades to promote stemness and inhibit chemotherapy-induced cell death. 

Thus, IL-33, through direct and in-direct actions, has an important role in 

promoting tumour progression.  Therefore, like other cytokines, IL-33 may 

modulate the response to potential therapeutic agents, leading to poorer 

outcomes. Currently, there is an absence of literature studying the effect of      

IL-33 in the presence of phytoestrogens or any other phytochemicals in breast 

and prostate cancer.  

This chapter will try to model a breast and prostate cancer environment for IL-33 

in the presence of phytoestrogens, and will attempt to study the effect of IL-33 

on phytoestrogen-induced gene expression in PC3 cells (CXCR4, Runx2, snail 

and Integrin α5β) and (CXCR4, snail and Integrin α5β) in MCF7 cells.  This 

chapter will also investigate whether phytoestrogens, will keep their individual 

beneficial effects on expression of these genes (as in Chapter Three) and will 

attempt to find a relationship between this expression and the presence of IL-33. 
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5.2 Materials and methods 

Methods used here in chapter 5 are similar to what has been mentioned in 

chapter 2 (materials and methods) for the points: 

2.5.1 RNA extraction and reverse transcription  

2.5.2 Verification of PCR primers and RT  

2.5.3 10x Tris-acetate-EDTA (TAE) buffer  

2.5.4 Real-time quantitative PCR analysis of metastatic marker expression 

2.6 Statistical analysis 

5.2.1 IL-33 Cytokine 

 

Recombinant Human IL-33 was purchased from Insight Biotechnology Limited 

(Wembley Middlesex, United Kingdom) and concentration used was 10 ng/mL 

(Choi et al., 2009). IL-33 added to two sets one for individual IL-33 for 24 and 72 

hours and one for IL-33 and phytoestrogens also for 24 and 72 hours.  

Primers used were as following: 

 

 5 -́3  ́Forward primer 3 -́5  ́Reverse primer  

Human β-actin GCGCGGCTACAGCTTCACCA TGGCCGTCAGGCAGCTCGTA 777-929 

Human Runx2 AGACCCCAGGCAGGCACAGT GCGCCTAGGCACATCGGTGA 816-972 

Human CXCR4 GCGCAAGGCCCTCAAGA GTGCGTGCTGGGCAGAGGTT 1010-1257 

Human Snail CGAGTGGTTCTTCTGCGCTA CTGCTGGAAGGTAAACTCTGGA 27-183 

Human  Integrin 

α5β3 
AATTTTACTGGCGAGCAG TTGGTGGCATGCTTCGAG 1054- 1465 

 

Table 5.1 PCR primers and their amplicons used with IL-33 experiments 
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5.3 Results 

5.3.1 IL-33 effect on phytoestrogen-induced changes in CXCR4 gene 

expression in PC3 cells 

Here in this experiment the effect of phytoestrogens in the presence of IL-33 on 

CXCR4 was studied. IL-33 alone had no significant effect on CXCR4 expression 

in either 24 or 72 hours and was (117%, P = 0.58) and (120%, P = 0.57). 

However, the suppressive effect of daidzein and genistein seen in previous 

chapters was abolished in the presence of IL-33. After 24 hours, CXCR4 

expression increased significantly in the presence of IL-33 plus daidzein (189%, 

P = 0.02) or genistein (187%, P = 0.03). After 72 hours, there was an increase in 

CXCR4 expression in both combinations (239%, P = 0.01) for IL-33 with 

daidzein and (168%, P = 0.19) for IL-33 with genistein, but this increase was 

significant only with daidzein (Figure 5.2). 
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Figure 5.2 Interleukin 33 (IL-33) prevents the inhibitory effect of phytoestrogens on 

CXCR4 in PC3 cells. Cells were cultured with genistein or daidzein for 24 or 72 hours 

prior to mRNA isolation. Gene expression was then assessed using CT qPCR and 

the DNA-binding dye SYBR green for detection of PCR products. The relative 

quantification (RQ) value for each group was calculated using CT values for non-

treated controls normalized to the expression β-actin mRNA. Samples were analysed in 

triplicate and experiments repeated separately three times. * P<0.05, ** P<0.01 and *** 

P<0.0001versus control 
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5.3.2 IL-33  has negative effect on Snail gene expression in the presence of 

phytoestrogens in PC3 cells. 

IL-33 alone had no significant effect on Snail expression at 24 and 72 hours 

(130%, P = 0.47) (170%, P = 0.15) respectively.  However, in the presence of 

IL-33 the inhibitory effect of daidzein and genistein on snail expression was lost 

and a significant increase was noted at 72 hours for daidzein (199%, P = 0.04) 

(Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Interleukin 33 (IL-33) modifies the response to PE on snail expression in 

PC3 cells. Cells were cultured with genistein or daidzein for 24 or 72 hours prior to 

mRNA isolation. Gene expression was then assessed using CT qPCR and the DNA-

binding dye SYBR green for detection of PCR products. The relative quantification (RQ) 

value for each group was calculated using CT values for non-treated controls 

normalized to the expression β-actin mRNA. Samples were analysed in triplicate and 

experiments repeated separately three times. * P<0.05 versus control. 
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5.3.3 IL-33  increased Runx2 gene expression in the presence or absence of 

phytoestrogens in PC3 cells 

There was no significant inhibitory effect of IL-33 alone on Runx2 gene 

expression at 24 or 72 hours and was (156%, P = 0.13) (134%, P = 0.34) 

respectively. However, the inhibitory effect of genistein and daidzein on runx2 

expression was lost in the presence of IL-33 for genistein at 24 hours was 

significant (332%, P = <0.0001) and at 72 hour was (143%, P = 0.18)  and for 

daidzein at 24 hours was (125%, P = 0.46) and at 72 hours was (82%, P = 0.58)  

(Figure 5.4). 
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Figure 5.4 Interleukin 33 (IL-33) modifies the response to PE on runx2 expression in 

PC3 cells. Cells were cultured with genistein or daidzein for 24 or 72 hours prior to 

mRNA isolation. Gene expression was then assessed using CT qPCR and the DNA-

binding dye SYBR green for detection of PCR products. The relative quantification (RQ) 

value for each group was calculated using CT values for non-treated controls 

normalized to the expression β-actin mRNA. Samples were analysed in triplicate and 

experiments repeated separately three times. *** P<0.0001versus control. 

  



 
106 

 

5.3.4 Effect of IL-33 on phytoestrogen-induced effects on integrin 

α5β3 gene expression in prostate cancer PC3 cells. 

 

IL-33 alone decreased the expression of integrin α5β3 significantly after 72 

hours (34%, P = 0.009) which indicate for a protection against the loss of cell-

cell contact which is a known behaviour in cancer initiation for migration. IL-33 

prevented the inhibitory effect of genistein on integrin α5β3 expression and led 

to a significant increase in expression after 24 hours for genistein (452%, P = 

<0.0003) and decreased sharply after 72 hours with genistein, this might be 

related to unknown behaviour of IL-33 at these time points. On the other hand, 

the individual daidzein significant effect on integrin α5β3 gene expression 

decreased but not to a significant level (49%, P = 0.44) after 24 hours with IL-33 

(Figure 5.5). 
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Figure 5.5 Interleukin 33 (IL-33) modifies the response to PE on integrin α5β3 

expression in PC3 cells. Cells were cultured with genistein or daidzein for 24 or 72 

hours prior to mRNA isolation. Gene expression was then assessed using CT qPCR 

and the DNA-binding dye SYBR green for detection of PCR products. The relative 

quantification (RQ) value for each group was calculated using CT values for non-

treated controls normalized to the expression β-actin mRNA. Samples were analysed in 

triplicate and experiments repeated separately three times. * P<0.05 and *** P<0.0001 

versus control. 
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5.3.5 The effect of IL-33 on phytoestrogen-induced changes in CXCR4 gene 

expression in MCF7 cells. 

IL-33 alone had no significant effect on CXCR4 expression at 24 and 72 hours 

and was (63%, P = 0.053) and (120%, P = 0.65) respectively. IL-33 had no 

effect on the inhibitory action of genistein or coumestrol at 24 hours but 

prevented the inhibitory effect genistein on CXCR4 expression at 72 hours and 

was (123%, P = 0.59) and (124%, P = 0.58) respectively (Figure 5.6). 

 

Figure 5.6 Interleukin 33 didn’t interfere the inhibitory action of coumestrol and genistein on 

CXCR4 gene expression in MCF7 cells at 24 hours but modifies later responses to 

genistein on CXCR4 expression in MCF7 cells. Cells were cultured with genistein or 

coumestrol for 24 or 72 hours prior to mRNA isolation. Gene expression was then assessed 

using CT qPCR and the DNA-binding dye SYBR green for detection of PCR products. 

The relative quantification (RQ) value for each group was calculated using CT values for 

non-treated controls normalized to the expression β-actin mRNA. Samples were analysed 

in triplicate and experiments repeated separately three times.                         * P<0.05, ** 

P<0.01 and *** P<0.0001versus control 
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5.2.6 IL-33 prevented the inhibitory effect of genistein on snail expression at 

later stage in MCF7 cells 

IL-33 has been tested here to observe whether there is any effect on EMT 

related gene (snail) expression with and without phytoestrogens. It has been 

noticed that IL-33, alone, significantly decreased snail expression at 72 hours 

(38%, P = 0.02). Also, IL-33 prevented the inhibitory effect of genistein at 72 

hours (81%, P = 0.45) and decreased it at 24 hours but not to a significant level 

compared to individual genistein, whereas the effect with coumestrol was not 

changed (Figure 5.7). 

 

 

 

 

 

 

 

 

 

 

Figure 5.7  Interleukin 33 (IL-33) modifies the later response to genistein on snail 

expression in MCF7 cells. Cells were cultured with genistein or coumestrol for 24 or 72 

hours prior to mRNA isolation. Gene expression was then assessed using CT qPCR and 

the DNA-binding dye SYBR green for detection of PCR products. The relative quantification 

(RQ) value for each group was calculated using CT values for non-treated controls 

normalized to the expression β-actin mRNA. Samples were analysed in triplicate and 

experiments repeated separately three times. * P<0.05 versus control. * P<0.05 and *** 

P<0.0001 
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5.2.7 IL-33 modifies the response to phytoestrogen-induced changes in integrin 

α5β3 expression in MCF7 cells.    

IL-33 significantly decreased integrin α5β3 expression at 72 hours (53%, P = 

0.01) and 24 hours but was not significant decrease (24%, P = 0.07).  IL-33 

modified the response to genistein and coumestrol and prevented the decrease 

in expression at 24 hours (158%, P = 0.13) and (65%, P = 0.30), however the 

same significant decrease at 72 hours remained for genistein and coumestrol 

(Figure 5.8). 

 

Figure 5.8 Interleukin 33 in MCF7 cells and Integrin α5β3 gene expression.    

Interleukin 33 (IL-33) modifies the early response to genistein and coumestrol on 

integrin expression in MCF7 cells.  Cells were cultured with genistein or coumestrol for 

24 or 72 hours prior to mRNA isolation. Gene expression was then assessed using 

CT qPCR and the DNA-binding dye SYBR green for detection of PCR products. The 

relative quantification (RQ) value for each group was calculated using CT values for 

non-treated controls normalized to the expression β-actin mRNA. Samples were 

analysed in triplicate and experiments repeated separately three times. * P<0.05 and 

*** P<0.0001 
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5.3 Discussion 

IL-33 has been studied mainly for its role in Th2 immunity and Th2-related 

diseases, such as asthma, atopic dermatitis, and anaphylaxis. IL-33 is released 

from a variety of tissues as a pro-inflammatory cytokine (Villarreal & Weiner, 

2014). Serum levels of IL-33 and sST2 in breast cancer patients were 

significantly higher than in healthy women, and it is thought to be a prognostic 

marker in several cancers (Lu et al., 2014). ST2 was initially shown to be 

selectively expressed on Th2, but not Th1 or regulatory T cells (Treg). More 

studies have shown that IL-33 can activate murine dendritic cells directly driving 

polarisation of naïve T cells towards a Th2 phenotype, and it can act directly on 

Th2 cells to increase secretion of Th2 cytokines such as IL-5 and IL-13. 

Moreover, IL-33 can also act as a chemo-attractant for Th2 cells. Limited 

studies have addressed the role of IL-33/ST2 signaling on anti-tumour immune 

responses, tumour growth and or metastasis. However, recent studies revealed 

that ST2 negative mice with mammary tumour have attenuated tumour growth 

and metastasis, with increased circulating levels of pro-inflammatory cytokines 

and activated NK and CD8+ T cells. Therefore, IL-33 may be an important 

mediator in tumour escape from immune control and in tumour angiogenesis 

and thus warrants further investigation (Miller, 2011). 

Moreover, IL-33 and its receptor sST2 were found to have a significant 

correlation with serum VEGF, which indicates an association of  IL-33 and sST2 

with angiogenesis (Lu et al., 2014). Zhang et al. also indicated that tumour 

derived IL-33 enhanced the recruitment of myeloid cells. such as macrophages, 

that secrete VEGF to promote tumour angiogenesis and metastasis by 

remodelling the tumour microenvironment, rather than by modifying the intrinsic 

propensity of tumour cells to invade, migrate, or undergo EMT (Zhang et al., 



 
112 

 

2017). IL-33 has been shown to enhance liver inflammation and fibrosis, thus, 

providing a substrate for hepatobiliary tumour development.  By affecting 

multiple pro-tumour processes, directly and indirectly, IL-33, through AKT and 

Yes-associated proteins, promotes oncogene-induced cholangiocarcinoma 

(CCA) in mice (Yamada et al., 2015). Jovanovic et al. found that exogenously 

administrated IL-33 enhanced primary 4T1 (mouse breast cancer) growth and 

inhibited innate anti-tumour immunity (Jovanovic et al., 2012). In gastric cancer, 

IL-33 enhanced invasion and migration in a dose-dependent manner (Yu et al., 

2015). 

It has been observed that serum levels of IL-33 are higher in patients with ER-

positive tumours, suggesting that the IL-33/ST2 axis may be involved in 

hormone receptor signaling (Liu et al., 2014a). Hormone therapy is a first-line 

treatment for ER-positive breast cancer, with tamoxifen as the most widely used 

anti-oestrogen drug. Haiyan and his team indicated an important function of    

IL-33 in producing an endocrine resistance of breast cancer patients by 

promoting expressions of stem cell genes, including ALDH1A3, OCT4, NANOG 

and SOX2, promoting tumourigenesis, leading to the development of breast 

cancer stem cells. In clinical breast cancer patients, higher serum IL-33 levels 

predict tumour recurrence, while increased IL-33 expression in cancer cells 

predicts tamoxifen resistance, due to less ER expression (Hu et al., 2017). 

 IL-33 was studied herein to find whether it modified the effect of phytoestrogens 

on expression of genes important in osteomimicry (Runx2), cell migration 

(CXCR4), EMT (snail and integrin α5β3). In prostate cancer, interleukin-33 

abolishes the significant reduction of CXCR4 gene expression caused by 

individual genistein and daidzein and increases it to higher levels. Also, IL-33 
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affects the expression of runx2 that increased with both individual treatment of 

IL-33 and when combined with phytoestrogens but not to a significant levels 

only increased significantly with genistein at 24 hours. Also IL-33 increased 

snail expression but was significant only with daidzein at 72 hours and 

increased integrin α5β3 expression and was significant only when combined 

with genistein after 24 hours. Thus, in the presence of IL-33 the potentially 

beneficial effect of PEs on osteomimicry, preferential metastasis and epithelial 

transition is lost.   

The data on the role of IL-33 in cancer progression is limited, especially with 

regard to the function mediated in human breast cancer cells (Liu et al., 2014a). 

IL-33 was used to inhibit the individual effect of genistein and coumestrol on 

important genes in metastasis and cell migration. IL-33 modified the individual 

effect of PEs, and altered their effect by upregulation of CXCR4, snail and 

integrin α5β3 gene expression. This data suggests that the presence or 

expression of IL-33 in the breast cancer environment have a role in promoting 

the epithelial-mesenchymal transition process and cell migration. 

There was a difference between individual genistein phytoestrogen and when 

combined with IL-33 in both prostate and breast cancer cell lines at 24 and 72 

hours. This might be the availability of oestrogen receptors ER and that IL-33 

and its reaction with its receptor ST2 affect the ER signaling of genistein and 

abolish its effect. A further detailed investigation should elucidate this activity.      
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In conclusion, IL-33 might have an important role in both prostate and breast 

cancers. Due to the shortage of literatures regarding the cross-talk between    

IL-33 and phytoestrogens in cancers, particularly breast and prostate cancers, 

this study tried to add to the evidence that IL-33 plays a non-protective role, 

enhancing the progression of the disease and worsening the situation, both in 

vitro and in vivo. Further expansion of research on IL-33 interaction with the 

phytochemical are necessary if we are attain a sound knowledge of the function 

of phytoestrogens. 
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5.4 summary of chapter 5 results 

 

Table 5.4.1 IL-33 modification to the response to PEs in PC3 cells at 24h and 72h 
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IL-33 117 0.58 120 0.57 130 0.47 170 0.15 

Daid 10-7 112 0.67 4*** 0.0001 117 0.55 27* 0.01 

Daid 10-7 + IL-33 189 * 0.02 239* 0. 01 173 0.1 199* 0.04 

Gen 10-6  1** 0.005 3*** 0.0001 30* 0.02 36* 0.02 

Gen 10-6  + IL-33 187* 0.03 168 0.19 119 0.7 198 0.0505 

 
 

Concentration 
(M) 

Runx2 Integrin α5 

24h 72h 24h 72h 

% of 
control  

P 
Value 

% of 
control  

P 
Value 

% of 
control  

P 
Value 

% of 
control  

P 
 Value 

IL-33 156 0.13 134 0.34 131 0.64 34** 0.009 

Daid 10-7 14*** 0.0001 134 0.48 *** 
228 

0.0001 7* 0.04 

Daid 10-7 + IL-33 125 0.46 82 0.58 49 0.44 51* 0.04 

Gen 10-6  *** 
11 

0.0001 160 0.47 *** 
11 

0.0002 13* 0.02 

Gen 10-6  + IL-33 *** 
332 

 

<0.000
1 

143 0.18 *** 
452 

0.0003 68 0.14 

 
Note: “    “ and  “      “ means upregulation, down-regulation of the indicated target 

respectively. * P<0.05, ** P<0.01 and *** P<0.0001 
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Table 5.4.2 IL-33 modification to the response to PEs in MCF7 cells at 24h and 72h 
 

Concentration (M) 
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IL-33 
63 

0. 053 120 0.65 98 0.95 38* 0.02 24 0.07 53* 0.01 

Cou 10-5 9*** <10-4 71 0.17 46 0.11 85 0.31 19*** <10-4 7*** <10-4 

Cou 10-5 + IL-33 22*** <10-4 124 0.58 48 0.12 99 0.98 65 0.30 54* 0.02 

Gen 10-5 42*** 4x10-4 37* 0.01 
*** 
329 

<10-4 20*** <10-4 12*** <10-4 12*** <10-4 

Gen 10-5 + IL-33 36** 0.002 123 0.59 52 0.18 81 0.45 158 0.13 29*** 7x10-4 

 

 

Note: “    “ ,  “      “  and “         “ means upregulation, down-regulation and little or no regulation of the indicated target respectively. * P<0.05, ** P<0.01 

and *** P<0.0001 
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6. General discussion 

Of particular interest in relation to human health are the class of compounds 

known as the phytoestrogens, which are comprised of various groups of non-

steroidal oestrogenic compounds that are broadly distributed within the plant 

kingdom. There is an increasing body of evidence that consumption of some of 

these plants or their molecules could be an additive effective tool to prevent and 

treat several diseases associated with ageing, metabolism, malignant 

transformation and cardiovascular disease (Sirotkin & Harrath, 2014).  

Soybeans, along with other phytoestrogen- rich food such as legumes, are rich 

with phytochemicals, are processed into various food products for digestibility, 

taste and bioavailability of nutrients and bioactive compounds (Zaheer & 

Humayoun Akhtar, 2017). The oestrogenic compounds (i.e. isoflavones) in 

phytoestrogens are found in the form of glucosides, malonylglucosides, 

acetylglucosides and aglycones. In the gut, the isoflavone glycosides present in 

soy products are deglycosylated by β- glucosidases in the small intestine. The 

metabolism of soy isoflavones by bacteria varies among individuals. Inter-

individual differences in phytochemical metabolism may be affected by gut 

microbial identity and activity, and stability and variation in concentrations of 

endogenous compounds that may modulate biotransformation pathways. 

Furthermore, gut bacterial modification of soy isoflavones results in  metabolites 

that differ in biological activity from the main compounds (Miura et al., 2016). 

Thus, human gut microflora have been shown to employ metabolic activities on 

isoflavones that influence bioavailability and bioactivity (Turner, Thomson & 

Shaw, 2003) 
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Oestrogens impact on the growth and functioning of female and male 

reproductive tissue, support the skeletal and central nervous system, contribute 

to cardio-protective effects, and protect against colon cancer and skin aging. In 

the light of the numerous effects on the human body of oestrogens, it is not 

unusual to consider the importance of phytoestrogens for human health. They 

are perceived as a more natural way to complement medical health care, and 

many women turn to phytoestrogens as an alternative to hormone replacement 

therapy (HRT) in order to circumvent undesirable side effects, such as 

increased risk of breast and endometrial cancer and irregular bleeding (Ososki 

& Kennelly, 2003b). 

One may ask why the role of phytoestrogens in prostate carcinogenesis should 

be studied when prostate growth and development are regulated by 

testosterone. However, epidemiological studies indicate a lower rate of prostate 

and breast cancers in Asian communities than in Western communities, which is 

explainable in terms of diet, chiefly the regular intake of soy phytoestrogens 

(Adjakly et al., 2015). The phenolic ring structures of isoflavones enable these 

phytochemical compounds to bind oestrogen receptors (ER) and mimic 

oestrogen (E2). In addition to genistein and daidzein binding ER, it is with a 

lower affinity when compared with estradiol, and with greater affinity for ERβ 

than for ERα. Furthermore, phytoestrogens have been described as acting like 

natural selective ER modulators (SERMs) at various tissue sites throughout the 

body (Lund et al., 2004). 

The results here indicate that phytoestrogens (genistein and daidzein) have a 

significant effect on reducing prostate cancer cell growth. Genistein and 

daidzein can bind to ERβ and mimic the action of oestrogens. This binding 

between these phytoestrogens and the receptor could partly explain the anti-
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cancer effects of these molecules and their impact as a focus for prostate 

pathology research (Adjakly et al., 2015; Mentor-Marcel et al., 2001). 

Furthermore, Piccolella et al. indicated that genistein in prostate cancer shows 

antiproliferative action through ERβ (Piccolella et al., 2014). In vitro studies 

demonstrate a role for phytoestrogens (tectorigenin and irigenin) in controlling 

prostate cancer cell numbers by inhibiting proliferation through cell cycle 

regulation. These compounds would reduce cell numbers and increase the 

ability of antiandrogens to induce cell death in prostate cancer cells and prove 

that many other phytoestrogens beside genistein and daidzein have a 

significant effect on prostate cancer cell inhibition (Morrissey et al., 2004). 

Another study on prostate cancer cells showed that genistein directly inhibits Akt 

and NF-κB pathways, which leads to activation of apoptosis (Russo et al., 2016). 

Many studies suggest that phytoestrogens like genistein may compete with, and 

prevent, endogenous oestrogens from binding to the oestrogen receptor (ER), 

thus inhibiting cellular proliferation and promoting differentiation. Also, several 

clinical studies suggest high soy consumption may facilitate prostate cancer 

prevention, but its role as therapy for an established tumour is conflicting 

(Masko, Allott & Freedland, 2013). Results of other studies indicate the 

functional beneficial effects of coumestrol in promoting apoptosis of human 

prostate cancer cells PC3, thus reducing cell numbers. The study suggests a 

mechanism for coumestrol action in prostate cancer that an intrinsic apoptotic 

pathways and inhibition of PI3K/AKT and activation of MAPKs (ERK1/2 and JNK) 

cell signaling may be involved. These mechanistic conclusions support the 

suggestion that coumestrol has anti-cancer effects on prostate cancer cells, 

affecting their viability and mitochondrial functions by a significant loss of 

mitochondrial membrane potential. Additionally, cleavage of caspase-3 and -9, 
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which are apoptotic proteins associated with mitochondria, also altered in 

response to coumestrol. Furthermore, coumestrol caused mitochondrial 

dysfunction resulting in an increase in ROS production in PC3 and LNCaP cells, 

although that finding contradicts the current results, which concluded that 

coumestrol did not suppress cell proliferation in prostate cancer cells, but rather 

enhanced it (Lim et al., 2017) 

In breast cancer, phytoestrogens have been studied to see their effect on cell 

viability. Phytoestrogens (genistein and coumestrol) have the greatest 

significant effect on breast cancer cell growth reduction in my studies, whereas 

daidzein acted as a promoter ofr breast cancer cell growth. It has been found 

that dietary phytoestrogen intake during adolescence may be associated with a 

decreased risk of adult breast cancer. This finding has significant implications 

for breast cancer prevention, since diet is a potentially modifiable determinant 

(Thanos et al., 2006). Furthermore, it has been observed that phytoestrogens 

(genistein, glycitein, daidzein,O-Desmethylangolensin (O-Dma), coumestrol and 

equol) shown a potent inhibitory effect on MDA-MB-231 breast cancer cell 

invasion, while lignans exerted a minimal effect in matrigel experiments (Magee, 

McGlynn & Rowland, 2004). 

This study produced outcomes similar to those of Wang et al., which suggested 

that genistein above 10−5 M inhibited growth of MCF7 cells, while below this 

concentration genistein stimulated growth  (Wang, Sathyamoorthy & Phang, 

1996). The proposed mechanism for phytoestrogen effects in breast tumour 

cells is that the set of genes upregulated by ERβ activation promote cell cycle 

progression and consequently suppress proliferation, while activation of ERα 

appears to do largely the opposite (Patisaul & Jefferson, 2010). There is some 

epidemiological evidence of increased phytoestrogen intake being associated 
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with a reduced risk of breast cancer, but it is inconsistent.  Unlike soy flour 

which had no effect, soy extracts and purified isoflavones caused growth 

stimulation of MCF7 cells transplanted into ovariectomised athymic mice 

(Velentzis et al., 2008). It has been suggested that dietary consumption of 

phytoestrogens, including coumestrol, reduces the risk of breast cancer.  

However, phytoestrogens also share antagonistic characteristics that affec the 

risk of developing breast cancer (Zafar, Singh & Naseem, 2017).  In a previous 

study on MCF7 cells, phytoestrogens seem to have had the effect of increasing 

cell numbers, which contradicted the findings of my own study, interestingly; 

however, this increase is not the result of a stimulation of proliferation, butis the 

consequence of the inhibition of the rate of apoptosis. These results support the 

hypothesis that phytoestrogens may stimulate the progression of an existing 

tumour (Schmidt, Michna & Diel, 2005). Another suggestion was that genistein 

phytoestrogen treatment resulted in a greater cell survival in MCF7 cells, 

probably due to its oestrogenic activity through its binding to ERα. However, the 

interaction of genistein with the ERβ perhaps suggests that the most important 

part of the study was that of phytoestrogens in combination. Furthermore, these 

results suggest that the anti-oestrogenic activity of phytoestrogens was 

established by a mechanism similar to tamoxifen or ICI 182,780, leading to a 

reduction in cell proliferation (Collins, McLachlan & Arnold, 1997; Pons et al., 

2016) . Furthermore, Mário L de Lemos concluded that genistein and daidzein 

may stimulate existing breast tumour growth and antagonise the effects of 

tamoxifen. He warned women with breast cancer that they should be aware of 

the risks of possible tumour growth when taking soy products. Thus, adding 

phytoestrogens will return with negative effect on the HRT as the study here 

indicated an increase in most of the genes expression in prostate and breast 
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cancers, thus adding to the evidence of that adding phytoestrogen has a 

negative effect on HRT. which is an indication of the bad effect of 

phytoestrogens and IL33 in combinations(de Lemos, 2001).  

Various studies have focused on the effect of single phytoestrogens in isolation 

and have mostly ignored the effect that these phytochemicals may have in 

combination with one another. It is important to examine these compounds in 

suitable combinations, correlated with their origin in the environment, 

metabolism, and presence in vivo. It has been suggested that when 

environmental oestrogens in general are found in combination with one another, 

they may either cancel each other out, resulting in no physiological effect a 

synergistic oestrogenic impact, or a synergistic anti-oestrogenic effect on 

oestrogen-sensitive pathways (Willard & Frawley, 1998). After studying the 

effect of individual phytoestrogens to establish effective concentrations in 

experiment model, a further investigations applied to study the impact of these 

PEs in combination. Phytoestrogens, when combined, lost their inhibitory effect 

on cell viability for both cell lines. Cell numbers increased and no synergistic 

effect was observed. This suggests the antagonist behaviour of each 

phytoestrogen, and could be a mechanism of ER-dependent and independent 

antagonistic interactions, including kinase activation, that work against each 

other and cause loss of growth inhibition. The current results both differ from, 

and agree ,  the small number of studies that have examined  combinations 

(Dong et al., 2013; Kumar et al., 2011; Willard & Frawley, 1998).  It has been 

suggested that a combination of phytoestrogens had no stimulatory effect at all, 

or may be antagonistic, depending on the precise combination of PEs (Mousavi 

& Adlercreutz, 1992; Willard & Frawley, 1998) and these findings concur with 

the current study. 
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When studying the motility and migration in both prostate and breast cancer 

cells, the effect of phytoestrogens on PC3 cells’ rate of closure was found to be 

minimal and only daidzein showed an enhancement of the closure rate. On the 

other hand, in MCF7 cells, genistein and daidzein displayed no effect on motility 

rate, while coumestrol decreased the scratch width at in the early stages. 

Moreira et al. noticed a decrease in the proliferation rate of breast cancer cells 

and motility when phytoestrogens were used. This is in contrast to other current 

findings i.e., that for most phytoestrogens there was no effect (Moreira et al., 

2012). Genistein and other phytochemicals inhibited the proliferation of prostate 

cancer cells and also tumour growth in mice, via modulation of Gli1 expression. 

It was also shown that genistein inhibited Hedgehog (Hh) signalling in prostate 

cancer cells, thus suppressing their stem cell properties and reducing cell 

motility by maintaining epithelial properties.  It has been found also that daidzein 

metabolites, such as equol,  were significantly more active than daidzein, 

implying that there was a similarly enhanced effect of daidzein and its 

metabolites on regulation of in vivo invasion and migration in breast tumours 

(Bao et al., 2014). This may be an area for further exploration. Also, both R- and 

S- equol enantiomers were found to inhibit the growth of breast cancer cell line 

MDA-MB-231 and the prostate cancer cell lines LNCap, and to inhibit the 

invasion of MDA-MB-231 and PC3 cancer cells through matrigel. Furthermore, 

S-equol was unable to prevent DNA damage in MCF7 cells but R- eqoul was 

protective in the same cell line, suggesting a variation in the chemoprotective 

properties of equol in vivo (Magee et al., 2006).  

The data from the current study clearly shows differences between the effects of 

individual phytoestrogens on prostate and prostate cell viability and motility. 

While individual PEs significantly reduced cell numbers, this reduction was lost 
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when they were in combination. As a result, these observations add more 

indefinite characteristics to PE and their use in prostate and breast cancer 

patients. Hence, further and deeper investigations are required to determine the 

precise clinical use of PE. 

After studying the effect of PEs on prostate and breast cancer viability and 

motility, there followed a further investigation of their effect on gene expression 

levels. The genes that were studied have important roles in promoting cell 

migration, EMT process, osteomimicry and bone vicious cycles. Two of the PEs 

that had been shown previously to affect a significant reduction in cell numbers 

were deployed to study the effect of these phytoestrogens on the genes 

responsible for cell migration, epithelial-mesenchymal transition EMT and 

metastasis such as in snail, CXCR4 and integrin α5β. Genistein and coumestrol 

displayed no significant effect, the only effect was that of Gen 10-5M  on the 

PTHrP gene expression in breast cancer cells after 72 hours, suggesting no 

roles for these phytoestrogens on bone vicious cycle and thus more TGF-β and 

osteoclast differentiation and more osteolysis.  

Runx2 expression was studied as a marker of osteomimicry in prostate cancers. 

The results indicated a favourable impact of phytoestrogens on genes related to 

metastasis EMT and osteomimicry. The results also indicated that the 

phytoestrogens under study (genistein, daidzein and coumestrol) resist 

transformation into mesenchymal stem cells and detachment from the primary 

site instead of heading to its next target organ. It has also been demonstrated 

that genistein is capable of inhibiting invasion through a variety of mechanisms 

in multiple cell types (Pavese, Farmer & Bergan, 2010). The studies here agree 

with the latest studies that have explained that phytoestrogens, particularly 

genistein, may have the potential to inhibit cancer metastasis by particularly 
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adjusting the EMT process via diverse signaling pathways and their effect on 

gene expression under study in prostate and breast cancer has been 

demonstrated (Lee, Hwang & Choi, 2016). It can be concluded that there was a 

clear and important effect of the phytoestrogens under investigation on the gene 

expression in prostate and breast cancer cells. As discussed earlier, individual 

phytoestrogens affect cell viability that may involve both ERα and ERβ 

dependent and independent signaling pathways. These signaling routes may 

apply to the same effect of phytoestrogens on genes that consider very 

important and associated with vital cell pathology and morphology like cell 

migration, EMT process, osteoclast differentiation, vicious cycle and osteolysis 

through the same signaling pathways. Therefore, further and deeper studies are 

needed in order to investigate phytoestrogens, possible active receptors or 

channels, their connection to gene expression and their effect on cell 

pathological activity. 

The study tried to model the environment that prostate and breast cancer cells 

may face in bone. To investigate this, a three cytokines: TGF-β, BMP7 and      

IL-33 has been used. In prostate cancer TGF-β appear to abolish the activity of 

phytoestrogens, decrease the gene expression of Runx2 and Osx, and increase 

collagen type I expression. This suggests that TGF-β promotes a late stage of 

osteomimicry in prostate cancer in the presence of phytoestrogens, compared 

to the same phytoestrogens when studied individually. In breast cancer, TGF-β 

significantly decreased the expression of PTHrP, collagen type I and snail, 

which suggests that TGF-β causes less EMT, reduced vicious cycles and 

osteomimicry, and plays a protective role, which is opposite to its role as a 

promoter of tumourigenesis in breast cancer. In conclusion, TGF-β can have 

strong tumour suppressive properties in the earlier stages of the disease, while 
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having a tumour-promoting effect at more advanced stages. Thus, treatments 

that target TGF-β too early in the disease process may be detrimental, and the 

timing of certain therapies needs careful consideration. Thus, phytoestrogens 

may play a dual role in prostate and breast cancer in the presence of TGF-β 

(Principe et al., 2014). 

 The results show that BMP7 in prostate cancer enhances the progression of the 

disease progression through interference with the action of phytoestrogens by 

increasing the expression of Runx2 and integrin α5β3. In breast cancer cells, 

BMP7 showed an increase in snail and integrin α5β3 expression that might 

suggest an acceleration of tumour burden and of a late stage EMT type 

response.  However, other studies suggest that not all BMPs induce EMT, and 

some appear to promote MET, reducing the aggressive properties of tumour 

cells. In murine mammary epithelial cells , BMP-7 was not able to induce EMT, 

whereas TGF-β could suggest a protective role for BMP7, which is opposite to 

results suggested here (Zabkiewicz et al., 2017). 

In the IL-33 prostate cancer model experiment, the addition of phytoestrogens 

results in increased gene expression (CXCR4, snail, Runx2 and integrin α5β3), 

causing  IL-33 to prevent or cancel the effect of phytoestrogens when added 

individually. These results might suggest that IL-33 had a detrimental effect at 

the early stage of tumours. Furthermore, the IL-33 effect on breast cancer in the 

presence of phytoestrogens also showed an ablation of their effect on CXCR4 

and snail expression, but didn’t affect expression of integrin α5β, compared to 

the individual phytoestrogens. These results in breast cancer may suggest that 

IL-33 has a detrimental effect by promoting cell migration and metastasis, which 

increases the tumour burden at the early stages. The data on the role of IL-33 in 

cancer progression is limited, especially the data concerning the function 
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mediated in human breast cancer cells (Liu et al., 2014a).  For this reason, 

intensive and detailed studies are recommended for IL-33 involvement in cancer 

diseases, and efforts need to be made to elucidate its important role in the 

presence of phytoestrogens. This study contributes to the literature in a small 

way, but further study will be required if we are to grasp the whole picture. 

There were positive and negative aspects to this study. The in vitro results add 

some data to the contemporary studies of phytoestrogens; but, on the negative 

side, the phytoestrogens were not studied in vivo and conjoined with the in vitro  

results to achieve a better understanding of their effect. I hope in future to study 

further the effect of phytoestrogens on other cancer cell lines and to include in 

vivo studies on animals. There will be a greater focus on the in vivo outcomes, 

and, hopefully, more advanced molecular techniques applied.  

In conclusion, this study showed that phytoestrogens are effective when 

administered individually but lose this effect when they are combined. Also, 

growth factors should be taken in considerations if recommend phytoestrogens 

as hormone replacing therapy. Hence, before considering phytoestrogens as a 

supplement, clinicians must take into consideration the overall profile of 

phytoestrogens before administration. Furthermore, what applied to the 

epidemiological effect of phytoestrogens in one area may not apply in others. 

Hence, administrating phytoestrogens at an early stage might be of more benefit 

than at a later stage. Finally, intensely focussed studies of phytoestrogens are 

most certainly required, and must include further agents and factors involved in 

the progression and pathology of tumours. 
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Bone is one of the most preferential metastatic target sites for cancers including breast and prostate. Up to 70%
of breast or prostate cancer will develop bone metastasis. The consequences of bone metastasis are always
devastating. Metastatic process include proliferation and invasion of cancer cells at primary site, intravasation ,
migration in the circulation and extravasation, arrest in bone marrow, egress from central sinus and attachment
to bone surfaces and colonization of cancer cells and bone destruction(Zhang, Ma & Fan, 2010).

Bone metastases may be associated with bone destruction (osteolytic lesions) or alternatively osteosclerosis in
which increased osteoblast activity predominates (prostate cancer). Breast cancer patients tend to have a mixed
pattern of metastases,40% producing lytic metastases, 40% mixed lytic and sclerotic and 20% sclerotic(Iddon,
Byrne & Bundred, 1999).
There is ample evidence that the movement of cancer cells through the body is not random and that different

types of cancer cells have different destinations. A specific set of genes that mediate bone metastasis has been
described. Cells over-expressing IL-11, MMP-1, connective tissue growth factor (CTGF), CXCR-4 (Fig,1) and
osteopontin (OPN), were highly metastatic to the bone in vivo(Sierra, 2005).
Dietary soy has been shown in mice to inhibit prostate tumour growth through inhibition of cell proliferation,
increased apoptosis, and reduced microvessel density [3]. Epidemiology studies of Asian women indicate that
consumption of a traditional diet high in soy confers significant protection against breast cancer(Hsu et al.,
2009).

Breast (MCF-7) and prostate (PC3) cancer cells were cultured in 25cc Flask with the phytoestrogens genistein
(10-5M and 10-6M) and coumestrol( 10-5M, 10-6M and 10-7M) for breast cancer MCF-7 cells and genistein (10-6M
and 10-7M) and daidzein ( 10-7M and 10-8M) for prostate cancer cells (PC3). Each concentration was incubated
with the cells individually into two timepoint groups 24 and 72 hours in 37oC and 5% CO2.
RNA extracted from the cells using GenElute Mammalian total RNA miniprep kit(sigma-aldrich) then cDNA was
prepared by M-MLV reverse transcriptase (sigma-aldrich) to be used as a template for quantitation real-time
PCR to quantify the CXCR4 gene expression in Breast and prostate cancer treated with phytoestrogens. CXCR4
primers used were Eurofins 5’-GCG CAA GGC CCT CAA GAC CA-3’ (Forward) and 5’-GTG CGT GCT GGG CAG
AGGTT-3’ (Reverse).
Quantitative real-time PCR thermal cycler(Applied Biosystems) used to detect the CXCR4 gene expression in
breast and prostate cancer cells using SYBER®Green JumpStart™ Taq ReadyMix™ (Sigma-aldrich) and internal
Reference Dye (Sigma-aldrich) in 48 reaction-plate(Applied Biosystems).

1- see the effect of individual phytoestrogens on breast and prostate cancer viability.
2- see the effective phytoestrogen combinations on cell viability.
3- look at the expression of factors involved in preferential metastasis ,CXCR4, using  quantitative  

real-time PCR.
4- look at the expression of genes involved in osteomimicry or disease progression PTHrP, Runx2  

and Collagen I.

RNA Extraction 
using GenElute
Mamalian total 

RNA miniprep kit

Synthesise the 
complementary DNA 
(cDNA) using M-MLV 

reverse transcriptase kit 

Phytoestrogens were added to 
breast (MCF-7) and prostate 
(PC3) cell culture  into two 
timepoint groups 24 and 72 
hours
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and 5% CO2  for 24 
and 72 hours

Real-time PCR for the (cDNA) 
prepared to quantify the 
CXCR4 gene expression in 
breast and prostate cancer

Introduction

Methods

Aim of study

Results

Figure 2: showing the materials and methods used to detect CXCR4 gene expression

Figure 1:showing the role of CXCR4 role in cancer metastasis
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Figure 3:CXCR4 gene expression  in MCF-7 cells after treatment with phytoestrogens for 24 and 72 hours showing 
significant  decrease in CXCR4 gene expression for both timepoints 24 and 72 hours but not for coumestrol 
concentrations after 72 hours.    P<0.05
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Figure 4: CXCR4 gene expression  in PC3 cells after treatment with phytoestrogens for 24 and 72 hour 
showing significant  decrease in CXCR4 gene expression for both timepoints 24 and 72 hours . P<0.05

Figure 5: showing the effect of phytoestrogens on Runx2 and Collagen I genes expression in 
prostate cancer PC3 cells with PTHrP and Collagen I genes expression in breast cancer (MCF-7) cells   

Conclusions 
 In the whole these effects may reduce preferential metastasis and could lead to decreased tumour

burden and morbidity as a consequence.
 More investigations are required to further understand the functional importance of these and other

genes to support the potential therapeutic usage of phytochemicals in breast and prostate cancer.
 Looking further into the role of other factors enhance these factors such as growth factors and the role of

phytoestrogens on this enhancement.
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