doi:10.1093/neuonc/nox238

NEURO-ONCOLOGY

BNOS 2017 Abstracts: Poster Presentations

THE POTENTIAL OF CRL4DCAF1 AND KSR1 AS THERAPEUTIC TARGETS IN MERLIN-DEFICIENT MENINGIOMA
Ms Jade Lyons Rimmer, Dr Daniele Baiz, Ms Emanuela Ercoleano, Prof Oliver Hanemann; Plymouth University

BACKGROUND: Merlin-deficient meningiomas are caused by mutations in the neurofibromin 2 gene and occur in approximately 60% of sporadic meningiomas. Merlin loss is commonly associated with the genetic condition Neurofibromatosis type 2, leading to the development of multiple low grade tumours including schwannoma and meningioma. Currently, the only treatment for low grade meningioma is (radio)surgery therefore identification of novel drug targets is vital. Previous studies have shown that Knase suppressor of Ras (KSR) and CRL4DCAF1 is a potential therapeutic target. In our previous work, we showed that CRL4DCAF1 knockdown in a CL4DCAF1 positive cell line was associated with a significant decrease in proliferation, cell migration and invasion. CRL4DCAF1 knockdown led to a reduction of nuclear pERK1/2 and a significant decrease in proliferation of meningioma cells but pERK1/2 and Cyclin D1 levels were unchanged. Combination of shCRL4DCAF1 and AP2_2_79, a specific KSR1 inhibitor, reduced pERK and proliferation in both BenMen-1, a benign meningioma cell line and primary meningioma. Therefore, targeting both DCAF1 and KSR1 represents an attractive novel therapeutic strategy in meningioma.

5-ALA FLUORESCENCE BASED ISOLATION OF MINORITY POPULATION GBM CELLS IDENTIFIES PUTATIVE INVASION ASSOCIATED MOLECULAR CHANGES
Dr Marca de los Angeles Estevez-Cebrero, Dr Anbarasu Lourdusamy, Dr Ruman Rahman, Dr Stuart Smith; The University of Nottingham

INTRODUCTION: Glioblastoma (GBM) is a highly pleomorphic polyclonal tumour with molecular abnormalities varying temporally-spatially (intra-tumour heterogeneity), one mechanism of therapy resistance. Fluorescence guided resection (FGR) is performed with prior administration of 5-aminolevulinic acid (5-ALA) leading to individually fluorescent tumour cells mixed within a background population of non-neoplastic neural cells in the invasive region beyond the “pure” tumour. We have isolated this invasive tumour population by fluorescence activated cell sorting (FACS) to allow the study of invasive tumour cells without an overwhelming background ‘normal’ signal. We conducted genome wide gene expression of phenotypically distinct areas of the tumour and from fluorescent/non-fluorescent cancer/normal cancer cells purified from the invasive zone respectively.METHODS: We performed genome-wide gene expression analysis on 14 glioma samples from three different GBM patients including samples from tumour core, rim and invasive margin and GBM cells from the invasive margin that were isolated by 5-ALA assisted FACS. RESULTS: Statistical analysis by linear models for microarray data identified 325 differentially expressed genes between FACS positive cells were enriched with signal transduction (DDR2 and MTSS1L) and ECM-receptor interaction (COL4A1, COL4A2, and HSPG2). DISCUSSION: Residual cells responsible for GBM recurrence in the invasive zone are shown to be not only phenotypically different but also exhibiting activation of distinct molecular pathways and biological processes. These unique molecular features offer hope for developing more efficacious targeted therapies focusing on this population rather than the bulk tumour that has been the subject of most historical analyses.

AN EPGENETICALLY CONTROLLED PML/SLIT AXIS AT THE ROOT OF CELL MIGRATION IN BOTH NORMAL AND NEOPLASTIC CELLS IN THE CNS
Dr A Deli, Dr Valeria Amodeo, Dr Joanne Betts, Dr Stefano Bartasgh, Dr Mikaela Vouyi, Dr Rozita Roshani, Dr Sara Galavotti, Ms Ying Zhang, Dr Matthew Ellis, Ms Joanne Lau, Ms Sarah Oberndorfer, Dr AnaLeite, Dr David Dinsdale, Prof Chris Jones, Prof Pierluigi Nicotera, Dr David Michod, Prof Sebastian Brandner, Prof Paolo Salomoni; UCL Cancer Institute The Paul O’Gorman Building

In the central nervous system (CNS), regulation of nuclear function has been implicated in the control of cell cycle and migratory processes during neurogenesis. Alterations of these processes can lead to neoplastic transformation of neural stem cells (NSCs) and glioblastoma multiforme (GBM). The ability of GBM cells to migrate through the brain parenchyma represents a key factor underlying GBM aggressiveness and resistance to treatment. Notably, brain cancer cells use the same routes utilized by neuroblasts and mesenchymal cells, suggesting a neural origin and migration defects as a risk factor of brain cancer migration. However, our understanding of potentially common mechanisms regulating cell migration/invasion during neurogenesis and brain tumourigenesis remains limited. Our previous work has implicated the Promyelocytic Leukaemia nuclear protein (PML), the essential component of the PML nuclear body (PML-NB), in regulation of embryonic neurogenesis via its ability to control proliferation in NSCs. We set out to investigate the role of PML in adult neurogenesis and GBM. Loss of PML leads to impaired NSC and neoplastic migration in vitro and in vivo presents a candidate strategy to inhibit brain tumour migration. Changes in Slit transcription upon PML knockdown are caused by global reduction of the repressive H3K27me3 epigenetic mark. This is associated with its redistribution to nuclear lamina-associated domains (LADs). Finally, PML controls tumor invasion and survival in an orthotopic animal model and inversely correlates with patient prognosis in GBM. Taken together, these findings support a model whereby PML-mediated modifications of chromatin structure and function regulate cell migration during normal neurogenesis and brain tumourigenesis, suggesting a neurobiological root of brain cancer invasion.

/E0016194-10104d40-302y University of Plymouth user on 28 March 2019

Downloaded from https://academic.oup.com/neuro-oncology/article-abstract/20/suppl_1/i10/4831302 by University of Plymouth user on 28 March 2019

EPGENETIC INACTIVATION OF ARGININE BIOSYNTHESIS GENES IN PAEDIATRIC INTRACRANIAL EPENDYMOMA
Dr Katherine Karakoula, Dr Nelofar Syed, Dr Thomas Jacques, Mrs Kim Shipp, Mr Dominic Thompson, Prof John Darling, Prof Tracy Watt; University of Wolverhampton

Aberrant cellular metabolism is recognized as a major event in the growth and development of many cancers and the targeting of metabolic defects in tumour cells represents a new therapeutic opportunity. For example, cells that do not express sufficient levels of argininosuccinate synthetase-1 (ASS1) or argininosuccinate lyase (ASL) become auxotrophic for arginine and require exogenous supply. Arginine deprivation using arginine deiminase (ADI-PEG20) is currently under evaluation in clinical trials for adult GBM. In this study, we investigated the arginine biosynthesis pathway in paediatric intracranial ependymoma, comprising 24 fresh frozen biopsies and 17 short-term cell cultures of low passage (<10). The methylation status of ASS1 and ASL was assessed by methylation-specific PCR and gene expression levels measured using real-time Q-PCR analysis. The response of ependymoma cell cultures in vitro to ADI-PEG20 was determined at various time points using the sulforhodamine B (SRB) assay. Promoter hypermethylation of ASS1 was present in 41.5% ependymoma (17/41 samples) and methylation correlated with down-regulation of ASS1 expression (p<0.0001, Fisher’s exact test). Importantly, methylation and expression status was maintained in 6 patient-derived cell cultures for which paired biopsies were available. Conversely, methylation of ASL was not detected in any samples. A trend with ADI-PEG20 inhibited proliferation of ependymoma cells only in those cultures with methylation-dependent silencing of ASS1. Our findings suggest that arginine depletion therapy may benefit a significant proportion of paediatric patients with intracranial ependymoma.

AUG10104d40-302y University of Plymouth user on 28 March 2019

© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com.