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Abstract 15 

Results are presented for 170 wastewater treatment works sites (20 per substance in influent, 16 

effluent and 36 per substance in river water upstream and downstream of the WwTW discharge) 17 

over a period of two years between 2015 and 2017; this comprises data for approximately 3,000 18 

samples for effluent and 6,000 for river samples taken downstream of effluent discharges. Seasonal 19 

trends in contaminant concentrations for several substances are reported. Two clear patterns  of 20 

seasonal variation are proposed over and above all of the variables associated with environmental 21 

data including process technology, dilution and geography. Firstly, variation of riverine 22 

concentrations caused by seasonal fluctuations in river flow (sewage flow being relatively consistent) 23 

resulting in summer maxima and winter minima. Alternatively, variation is observed that is 24 

attributable to the improved performance of wastewater treatment processes under warmer 25 

conditions. This leads to lowest concentrations in autumn when surface water/sewage treatment 26 

temperatures tend to peak. Seasonality for trace contaminants is more difficult to characterise than 27 

that of sanitary parameters owing to the higher variability in concentration of the substances of 28 

interest. The data also provide an insight into the amplitude of such variations. This makes it possible 29 

to assess the likely effects of seasonality and its impact on aquatic life. For example, the existence 30 

of seasonality (perhaps due only to dilution effects) might be demonstrated, but the amplitude might 31 

be too small in relation to the potential ecotoxicological effects to be of any consequence. 32 

 33 
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1. Introduction  35 

In the UK on each day, approximately 347,000km of sewers collect 11 billion litres of wastewater; 36 

this is treated in approximately 9,000 wastewater treatment works (WwTW) that serve 96% of the 37 

UK population [1]. WwTW effluents thus constitute the main discharges to surface waters and, 38 

consequently, are the principal source of contaminant inputs to receiving river waters. Over the last 39 

50 years, the water industry has made substantial investments in the improvement of wastewater 40 

treatment, principally in response to legislation including the Dangerous Substances Directive [2], 41 

Urban Wastewater Treatment Directive [3] and Water Framework Directive - WFD [4]. This has led 42 

to marked reductions in the discharge of the contaminants conventionally associated with sewage 43 

effluents, such as biochemical oxygen demand (BOD), suspended solids and ammonia. In more 44 

recent years, however, focus on pollution has widened to include a greater range of trace substance 45 

that did not feature in the original design criteria of treatment processes. Current concerns that are 46 

reflected in directives such as the WFD, now extend to over 50 substances, including metals, 47 

pesticides, industrial chemicals, solvents and other organic pollutants [5]. Reductions in 48 

concentrations of these substances in wastewater can be achieved by conventional treatment via 49 

biodegradation, volatilisation or adsorption to sludge solids. Indeed, for some contaminants removal 50 

mechanisms can be highly effective [6]; in other cases, further or enhanced treatment might be 51 

required.  52 

 53 

Many exercises have been conducted to assess both seasonal and sustained longer term trends in 54 

environmental variables. This is particularly the case for nutrients such as phosphate and nitrate, 55 

BOD and ammonia, which are key determinands in assessing water quality status at specific sites 56 

and catchments owing to the availability of long term datasets for routinely determined parameters 57 

[7-9]. However, there is no overall analysis of seasonal trends taking account of aggregated data of 58 

a substantial number of WwTW in order to analyse the seasonality of treatment for emerging 59 

compounds such as pharmaceuticals or the generic influences of WwTW effluents on receiving 60 

waters for substances of high concern but for which routine data is rarely collected (i.e. for priority 61 

micropollutants chemicals known to be persistent, bioaccumulating and toxic).      62 

  63 

Extensive monitoring over the past five years as part of the UK Water Industry Research (UKWIR) 64 

Chemical Investigation Programme (CIP) phase 2 (described as CIP2 from here onwards) has 65 

played a key role in the selection of substances and sites for future controls and remedial measures 66 

[10,11]. The most recent elements of the CIP2 are scheduled to report on effluent and river quality 67 

at over 600 sewage works in the period 2015-2020. Seasonal variation in contaminant 68 

concentrations in sewage effluents and river waters impacted by effluents can be an important 69 
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feature of interest in this context. An understanding of seasonality is important if monitoring is to 70 

provide accurate information on which to base water quality management decisions. Otherwise, 71 

there is the potential for programme outputs (for example annual average concentrations) to be 72 

biased, thereby calling into question the validity of the assessment of environmental quality and 73 

compliance with standards.  74 

 75 

Seasonality can also be of interest for several other reasons. Environmental impacts of contaminants 76 

might only be of concern if the highest concentrations of contaminants coincide with the seasonal 77 

presence of sensitive species or aquatic life stages in the surface water of interest. Furthermore, 78 

various unsupported assumptions are often made regarding the nature of seasonal trends (for 79 

example, that antibiotics or analgesics might be present at higher concentration in winter or, 80 

conversely, that higher river flows in winter will reduce concentrations below those that prevail in 81 

summer); such assumptions are rarely quantified or fully supported by reliable evidence. The 2015-82 

2017 output of CIP2 data provides a source of high quality analytical data over two years of sampling 83 

for 170 WwTW and associated downstream sites across the whole geographic area of England. This 84 

paper summarises findings on the basis of seasonality, through an analysis of results for up to 6000 85 

samples, collected across of England and Wales. Determinands include nutrients, sanitary 86 

parameters (BOD, ammonia) as well as a range of priority substances regulated under the Water 87 

Framework Directive for which no previous seasonal patterns of environmental distribution has been 88 

analysed. Furthermore, the density of the dataset has allowed conclusions to be drawn regarding 89 

seasonal trends without the need to access data on flows, temperature and catchment 90 

characteristics.  Access to such a substantial dataset facilitates the illustration of trends and allows 91 

conclusions to be drawn regarding the occurrence and magnitude of seasonal variation at an overall 92 

national scale. It should be noted that whilst compliance levels with water quality standards are 93 

important and are discussed elsewhere [12], this is not the focus of this paper and is therefore not a 94 

major feature of the discussion below.  95 

2. Methodology 96 

2.1 Substance selection 97 

The complete CIP2 programme included up to 73 individual determinands including dissolved and 98 

total metals (not considered here), priority hazardous substances, priority substances and specific 99 

pollutants identified under the Water Framework Directive, nutrients such as nitrate, phosphate 100 

(soluble and total), ammonia, biochemical oxygen demand, chemical oxygen demand, total 101 

suspended solids, pH, dissolved organic carbon and major ions. Not all determinands were analysed 102 

in all samples, pharmaceuticals were only determined in influent and effluent from WwTW. A full list 103 
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of determinands included within CIP2 are provided in Table S1. The data reported here are for a 104 

subset of substances covering sanitary determinands (BOD, ammonium ion), nutrients (soluble 105 

reactive phosphate), priority hazardous substances under the WFD (perfluorooctane sulphonic and 106 

octanoic acids: PFOS, PFOA respectively; hexabromocyclododecane: HBCDD; cypermethrin and 107 

benzo-a-pyrene in effluent and receiving waters. Furthermore, the seasonal trends of the 108 

pharmaceuticals ethinyloestradiol, a hormonal steroid, the antibiotic, erythromycin, and the non-109 

steroidal anti-inflammatory drugs ibuprofen and diclofenac (the former available over the counter 110 

and by prescription, the latter prescription only) in WwTW influent and effluent were assessed. These 111 

12 chemicals were selected to be illustrative of certain types of substance characteristics as well as 112 

seasonal trends associated with either WwTW efficiency or river dilution patterns. A full analysis of 113 

all 73 CIP2 determinands was beyond the scope of this assessment.  114 

 115 

2.2 Sampling  116 

Results to date have been processed for 170 WwTW sites (20 occasions per substance in effluent 117 

and 36 per substance in river water upstream and downstream of the effluent discharge – Table 1) 118 

over a period of two years between June 2015 and June 2017 across the whole of England (Figure 119 

1).  Numbers of results per substance therefore corresponded to over 3000 for effluent and over 120 

6,000 for river samples taken downstream of effluent discharges, outside of the mixing zone [13] at 121 

the nearest practical bridge access point.  122 

 123 

Samples were collected as random, single grab samples using clean telescopic dipper systems off 124 

bridges in the middle of the flow from below the surface of the water. Sampling equipment was acid 125 

and/or decon cleaned prior to use and rinsed thoroughly with sample (at least 3 times) prior to 126 

collecting the sample for processing. Samples were taken at approximately evenly spaced time 127 

intervals over the two-year sampling period, rather than as composite sampling. This latter approach 128 

was precluded by concerns about sample stability raised in tests prior to the commencement of the 129 

programme [14]. There are no internationally agreed specifications for determining when to take 130 

samples during the course of a working day or week. However, it is widely accepted that taking 131 

samples between working hours from Monday to Friday may not lead to a truly representative 132 

estimate of the effluent or water at that site [15]. Therefore as a pragmatic and practical target, a 133 

minimum of 15% of sampling was undertaken in non-working hours (evenings and weekends) which 134 

was a sufficiently high frequency to account for any possible bias in the sample collection process; 135 

whilst being practical in terms of staff availability and gaining access to sites (for WwTW sample 136 

collection).  137 

 138 
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 142 

Table 1 Summary of data used for this analysis 143 

CIP2 Driver 

Code 

Name Sample type Total 

samples per 

site 

Samples per 

sampling 

occasion  

Substances* Comments 

C1a Further effluent 

characterisation 

Effluent from the 

works 

20 1 sample at 

each of 20 

events 

Metals, P(H)Ss, 

sanitaries 

Sampled at 

same time as 

C1e 

C1b Emerging 

substances 

Influent and effluent 

to the works 

20 1 sample at 

each of 20 

events 

Pharmaceuticals 

and sanitaries 

Sampled at 

same time as 

C1a 

C1e River sampling Upstream and 

downstream of 

effluent discharge 

36 1 sample at 

each of 36 

events 

Metals, P(H)Ss, 

sanitaries 

Sampled at 

same time as 

C1a 

* P(H)S = Priority and Priority Hazardous Substances under the Water Framework Directive 144 

Sanitaries = BOD, ammonium ion, Chemical Oxygen Demand, suspended solids  145 

 146 

 147 

 148 
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 149 

 150 

Figure 1 Location of sampling sites for CIP2  151 

 152 
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2.3 Sample treatment and analysis 153 

The samples were collected in stainless steel samplers, stored in glass containers and transported 154 

at 4° C to the analytical laboratories. The maximum sample storage period was determined for key 155 

determinands prior to the beginning of the programme by undertaking tests of sample stability. A 156 

period of 3 to 5 days storage for trace determinands (depending on substance) was shown not to 157 

lead to more than a 20% change in concentration. Detailed sampling, filtration and preservation 158 

requirements are provided in S2. Analytical work was commissioned from contracted laboratories, 159 

who used their own in-house analytical methodologies, which were not standardised but had to meet 160 

a minimum and exacting performance criteria. Given the variety of potential methods used and 161 

allowing for commercial sensitivities it is not possible to detail specific Gas and/or Liquid 162 

Chromatographic-Mass Spectrometry techniques employed by the laboratories. However, to ensure 163 

analytical quality was paramount the programme management team demanded a number of criteria 164 

for laboratories to meet before participating. This included ISO17025 accreditation, the requirement 165 

to undertake tests of analytical performance to demonstrate that they met the stated programme 166 

requirements for limit of detection (LOD), precision and recovery in relevant sample matrices at 167 

relevant concentrations (Table 2, S1) that is, proof of performance was required, rather that methods 168 

being stipulated. See section S1 and Table S1 of the electronic supporting information for more 169 

detail.  170 

 171 

 172 

Table 2 Determinand abbreviations, required limits of detection and total error for WFD 173 

priority chemicals assessed 174 

Code Determinand 
Required LOD 
effluent  

Require
d LOD 
river  

P
% 
(i) 

PFOS Perfluorooctane sulfonic acid (µg/l) 0.00065 0.00009 50 

PFOA Perfluorooctanoic acid (µg/l) 0.00065 0.00009 50 

HBCD
D 

Hexabromocyclododecane (µg/l) 0.0016 0.00023 50 

BAP Benzo(a)pyrene (µg/l) 0.00017 0.00002 50 

CYP Cypermethrin (µg/l) 0.00008 0.00001 50 

DCF Diclofenac (µg/l) 0.01 0.01 50 

IBPF Ibuprofen (µg/l) 0.01 0.01 50 

EE2 17α ethinyloestradiol (µg/l) 0.00003 0.00003 50 

ERMY Erythromycin (µg/l) 0.1 0.1 50 

AMON Ammoniacal nitrogen (as N) (mg/l) 0.1 0.1 50 

BOD Biochemical Oxygen Demand (mg/l) 2 2 50 

TP Total phosphorus (as P) (mg P/l) 0.01 0.01 50 

SRP 
Soluble reactive phosphate (as P) (mg P/l) (filtrable (0.45 µm pore size) 
and molybdate reactive phosphate 

0.01 0.01 50 

1 P% is the target maximum tolerable error and is equal to:  175 

 [(𝑡𝑎𝑟𝑔𝑒𝑡𝐿𝑂𝐷)2 + (
𝐴×𝑃%

100
)
2
]

1

2

 176 
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Where the target maximum LOD and P% are given in the Table 1 and A is the determinand concentration in the sample.  177 

 178 

Performance testing was designed to demonstrate that the tolerable total error limit is achieved by 179 

showing that precision (2 x standard deviation) and bias was respectively no larger than half the 180 

target maximum total error. Thus, for example, for a total tolerable error limit of 100 units, standard 181 

deviation should be shown not to be larger than 25 and bias should not exceed 50. The LOD was 182 

defined as 3.3x the standard deviation of blank-corrected results of determinations made on a 183 

sample containing essentially no determinand (where possible in a relevant sample matrix) [16]. In 184 

some cases, it was not possible to find effluent samples free from determinands in which case a 185 

synthetic sample was used.  186 

 187 

Within laboratory QC analyses were undertaken for both laboratory tests and field sampling. 188 

Laboratories also took part in a bespoke proficiency testing scheme. Details of the proficiency testing 189 

scheme used to confirm data quality is provided in S1 of the Electronic Supplementary Information 190 

(ESI). Where reported concentrations were below the required LOD, the result was substituted at 191 

half face value - as stipulated in the relevant Directive [17]. As part of the proficiency testing scheme 192 

Z scores were calculated. A Z-score is a numerical measurement of a value's relationship to the 193 

mean in a group of values. If a Z-score is 0, it represents the score as identical to the mean score. 194 

Z-scores may also be positive or negative, with a positive value indicating the score is above the 195 

mean and a negative score indicating it is below the mean. Positive and negative scores also reveal 196 

the number of standard deviations that the score is either above or below the mean [18]. Of the 197 

approximately 250 z-scores calculated for the above pharmaceuticals tested there were only eleven 198 

instances of z-scores greater than 2. Of these only three were larger than 3 (rated as 199 

“unsatisfactory”). There were no instances of continued or consistent patterns of error. Hence 200 

proficiency test results indicate a very positive picture, with CIP laboratories performing to a high 201 

standard with respect to CIP requirements. Consequently, it was concluded that for the substances 202 

considered here, there were no important instances of inter-laboratory bias or inter-regional variation 203 

(data not shown), which would indicate important bias in the methodology of sample handling and 204 

analysis. 205 

  206 

The approach to the assessment of seasonality was to list all reported results for a given determinand 207 

in order of sampling date, to group the resulting string of data into monthly sets and to calculate the 208 

mean and 90% confidence interval for each month (combining information of a given calendar month 209 

in each of the two years of sampling). Results were also in some cases assessed as single series 210 

over the sampling period to examine whether or not an annual variation was repeated over the two 211 

years of sampling.   212 
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 213 

 214 

2.4 Data analysis principle and methodology 215 

The purpose of the analysis carried out on this dataset was to determine whether or not seasonal 216 

trends could be observed using measured concentrations alone, independent of environmental 217 

variables such as dilution in the river, temperature affecting WwTW performance, time of sampling, 218 

type of WwTW etc. In order to undertake this analysis it was necessary to condense the large dataset 219 

into monthly averages to achieve this a Locally weighted scatter-plot smoother (LOESS) smoothing 220 

curve [19] was plotted where appropriate. The results of this analysis are shown below. Values 221 

plotted are monthly averages (of approximately 300 results for effluents and 500-600 results for river 222 

waters) with an associated 90% confidence interval.  223 

 224 

3. Results and discussion  225 

Samples were collected from 170 sites across the whole of England from Pegswood in 226 

Northumberland to Fraddon in Cornwall, a distance of approximately 750 km, encompassing large 227 

(e.g. Thames, Severn and Humber) catchments as well as much smaller rivers where previous 228 

assessments have considered WwTW to have a potential impact on downstream contaminant 229 

concentrations. Sampling not only covered geographic extent and catchment size, but also widely 230 

varying geology (chalk through to granite), demographics (urban to rural) and climatic conditions 231 

(Figure S1). WwTW size sampled varied from serving a population of less than 1,000 to almost 1.5m. 232 

Average dilution of the CIP2 WwTW varies but sites were selected on the basis of likely to have 233 

lower dilution and hence a higher priority for monitoring the impacts of effluents on receiving waters. 234 

A mean estimated dilution from previous work was approximately 150 times but the median much 235 

lower at around 8 times dilution [20].  Met Office data [21] for the whole of England suggests that 236 

2016 was a slightly warmer (mean of 10.2 vs degrees Celsius) than the long term trend but typical 237 

for overall average rainfall (821mm).   238 

   239 

By aggregating and analysing the full data it was possible to examine concentrations across the 240 

sampling period to determine trends in concentrations which might therefore have an impact on 241 

reported annual averages against environmental quality standards as well as assessing the 242 

magnitude of impact that WwTW may have on downstream observed concentrations. This approach 243 

of plotting monthly data provides three clear types of annual profiles associated with seasonal trends 244 

in observed concentrations within river water receiving WwTW effluent. These trends may be 245 

explained in the following way: 246 
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 247 

Type A: concentrations influenced primarily by in-river dilution rather than WwTW treatment 248 

efficiency; 249 

Type B: concentrations that follow seasonal (largely temperature-based) WwTW efficiency 250 

patterns;  251 

Type C: concentrations with relatively seasonally invariant patterns  252 

Although quite simplistic in concept, dividing the observed trends up into these three types is 253 

designed to illustrate the potential significance of impact a WwTW effluent might have on observed 254 

downstream concentrations. The data analysis shows that in fact for some substances discussed 255 

below, it is the performance of the WwTW (largely related to temperature changes and hence 256 

microbiological activity and/or efficiency) which determines the observed seasonal profiles, not 257 

environmental factors such as in-river dilution.     258 

Although a full analysis of river flows associated with each individual WwTW would be helpful in 259 

determining dilution factors available, obtaining such data for 170 WwTW locations across 260 

catchments extending across the whole of England was far beyond the scope of this project. Such 261 

data have formed part of the source apportionment analysis detailed elsewhere [20]. Suffice to say, 262 

the general pattern of seasonality in river flow in the UK is well established and reported [22] with 263 

higher flows during winter months (December to February) compared with summer (June to August) 264 

although regional variations occur. A degree of dilution of wastewater may occur within the sewer 265 

system after periods of rain owing to some sewer catchments collecting both domestic and industrial 266 

wastewater as well as runoff from rooves and roads (termed combined sewers). In fact, within some 267 

catchments there is a mix of both combined and separated sewerage within the same urban 268 

catchment, with combined sewers within the older urban centres and separated systems in newer 269 

satellite housing estates [20]. Furthermore, some temperature trends across the UK could have also 270 

impacted on works efficiency but have not been allowed for because the point of this data analysis 271 

exercise has been to use a sufficiently large chemical analysis dataset to absorb these influences 272 

and therefore to determine seasonal trends which are over and above such variables.    273 

  274 

 275 

 276 

3.1 Type A: Seasonal trends determined by dilution 277 

 278 

This is illustrated with reference to phosphorus concentrations. WwTW sources, along with diffuse 279 

agricultural runoff, are the principal phosphorus inputs to surface waters [20]. Elevated 280 

concentrations are a major cause of Environmental Quality Standard (EQS) exceedances under the 281 
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WFD [23]. Understanding relative contributions and seasonality is vital as phosphorus 282 

concentrations and standards are linked to biological activity which is itself seasonally mediated. 283 

Figure 2 provides a LOESS fit for SRP in river samples downstream of effluent discharge over two 284 

years.  285 

 286 

 287 

Figure 2 Soluble reactive phosphorus in river samples downstream of effluent discharge 288 

over two years (averages with a 90% confidence interval) 289 

 290 

Soluble reactive phosphorus concentrations show marked seasonality within downstream receiving 291 

waters. Highest concentrations were observed in later summer and lowest in later winter. This picture 292 

is consistent with relatively constant emission of phosphorus from WwTW over an annual period, 293 

with mean monthly concentrations for all 170 WwTW effluents only varying between 1.7 and 2.5 mg-294 

P/l over the sampling period, compared with a variation of a factor of 3 (ca. 0.4 to 1.2 mg-P/l) for 295 

observed downstream river concentrations (Figure S2).  296 

 297 

Some of the observed limited variability of WwTW SRP concentrations reflects that a large proportion 298 

of the WwTW (in this case approximately two thirds of the 170 sampled) have discharge permits 299 

applied to their effluents; restricting concentrations to an annual average of typically 1 or 2 mg-P/l. 300 

Works without explicit measures for phosphorus removal, have effluents of concentration of around 301 

5 mg-P/l [24]. The lower concentration of P present in the WwTW effluent during winter months is 302 

most likely to reflect the increased proportion of surface water runoff low in P from combined sewers 303 

entering the WwTW during wetter times of the year (e.g. Figure S3) rather than within WwTW 304 
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efficiency variation (see Type B below) because there is an excess of P entering WwTW over and 305 

above that required to maintain works performance [25,26].   306 

 307 

Recent trend analyses have been carried out for P in the UK [7-9] using long term datasets. They 308 

have assessed the wider catchment influences including WwTW, which also recognise the 309 

asynchronous relationship between river flow and observed concentrations associated with 310 

predominantly low flows in summer and higher flows in winter (for example see Thames river flows 311 

in Figure S3). Changes in amplitude of the seasonality and slight shifts in synchronisation were 312 

attributed to changes in WwTW effluent quality and long term decline in fertiliser use on agricultural 313 

land. It may be concluded therefore that variation in available dilution of effluent derived P in receiving 314 

waters significantly exceeds variation in seasonal effluent concentrations.   315 

 316 

Analysis in-river data downstream of WwTW effluent discharges for priority chemicals regulated 317 

under the WFD there is evidence that perfluorinated octane sulphonic acid (PFOS), perfluorinated 318 

octanoic acid (PFOA) and hexabromocyclododecane (HBCDD) fall into Type A patterns. Figure 3 319 

shows PFOS, PFOA and HBCDD averages by calendar month respectively. Prior to extensive 320 

source control, all three compounds were used extensively in products and as flame retardants 321 

owing to their thermal stability, which is an important factor in their persistence in the environment, 322 

leading to bioaccumulation and concerns regarding toxicity and food chain transfer.  323 

 324 

PFOS was originally included in REACH annex xvii restricted substances list. After PFOS was added 325 

to the Annex B of the Stockholm Convention in 2009, the European Commission removed PFOS 326 

from REACH annex xvii and added it to the annex I of the Regulation (EC) No 850/2004 of the 327 

European Parliament and of the Council on persistent organic pollutants. PFOS is now regulated as 328 

a persistent organic pollutant (POP) in EU [27]. Consequently, it is limited to less than <10 mg/kg in 329 

products and preparations, <0.1 % by weight calculated with reference to the mass of structurally or 330 

micro-structurally distinct parts that contain PFOS, <1 μg/m2 of the coated material in textiles or other 331 

coated materials. Exemptions occur for photoresists or anti reflective coatings for photolithography 332 

processes, photographic coatings, provided certain conditions are met.  333 

  334 
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 335 

 336 

 337 

Figure 3 PFOS (top graph), PFOA (middle graph) and HBCDD (bottom graph) in river 338 

samples downstream of effluent discharge over two years with LOESS plot 339 

(averages with a 90% confidence interval) 340 
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Perfluorooctanoic acid (PFOA) and its salts are suspected to have a similar hazard profile to PFOS, 341 

estimates of 100’s to low 1,000’s of tonnes per year use in the EU have been calculated with a high 342 

degree of uncertainty [28,29], which appear to be less than that for PFOS. PFOA was added to 343 

REACH annex XVII restricted substances (entry 68) by Commission Regulation (EU) 2017/1000 on 344 

14 June 2017. Requirements include that it shall not be manufactured, or placed on the market as 345 

substances on their own from 4 July 2020; shall not, from 4 July 2020, be used in the production of, 346 

or placed on the market in (a) another substance, as a constituent; (b) a mixture; (c) an article, in a 347 

concentration equal to or above 25 µg/kg of PFOA including its salts or 1000 µg/kg of one or a 348 

combination of PFOA-related substances. A number of exemptions apply through to 2032 [30]. 349 

Control over the production and use of these substances means that concentrations should be 350 

decreasing in the environment, although sources are most likely to be associated with WwTW with 351 

the exception of inputs from release of firefighting foams directly into the environment, as was the 352 

case with the Buncefield fire in the UK in 2005 [31].  353 

 354 

The prevalence of these compounds in the products and their persistence means that they are still 355 

detectable, and the fact that they are resistant to degradation means they will be less impacted by 356 

seasonal changes in WwTW efficiency and observed river concentrations will be controlled by river 357 

dilution. Two-year trends for samples collected downstream of WwTW for PFOS (Figure 3) show 358 

minima during December and January for the two years. The EQS for PFOS is 6.5x10-4 µg/l as an 359 

annual average [32] and so concentrations in the river downstream of the WwTW are still of the order 360 

of 10 times the compliance target, at any given time of the year (across all sites in England and 361 

Wales downstream of WwTW). Consequently, any observed seasonality combined with frequency 362 

of compliance monitoring schemes, will not impact on the observed compliance for this substance.  363 

 364 

PFOS has been reported in river samples downstream of WwTW in other countries such as Japan 365 

and USA where concentrations range from low ng/l as reported here up to 100’s of ng/l, which is 366 

significantly higher [33-35]. The reported higher concentrations may be resulting from lower dilution, 367 

the fact that the data reported elsewhere is at least 10 years old (and so pre any possible restrictions) 368 

or potential contributions from surface runoff [35].     369 

 370 

PFOA concentrations downstream of WwTW are of similar concentrations, but marginally lower, 371 

likely to reflect the lower volumes used within Europe. The PNEC assigned to PFOA is the same as 372 

the EQS value for PFOS (6.5E-04 µg/l) and so observed levels across England and Wales are just 373 

under 10 times the PNEC for any given waterbody at any time of the year. Seasonality shows the 374 

same trend (Figure 3) but with an amplitude that varies by about a factor of two, and is better defined 375 

than that for PFOS. For the same reasons of source and persistence, the observed concentrations 376 
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downstream are driven by dilution. As for PFOS, other reported concentrations in Japan and USA 377 

range from ng/l to 1000’s of ng/l downstream of manufacturing facilities or sewage treatment works 378 

[33,34]. There was however, no assessment of seasonal patterns to compare with the UK data 379 

reported here.   380 

 381 

For HBCDD concentrations across all sites sampled throughout England and Wales are lower than 382 

PFOS or PFOA monthly concentrations, averaging around 0.0025 µg/l downstream of the 172 383 

WwTW (Figure 3). The lower concentrations may reflect reduced production and use compared with 384 

PFOS/PFOA although a seasonal trend still is evident, the winter minimum in 2016 is less 385 

pronounced than that for 2015. The annual average EQS set for identified sites within waterbodies 386 

is 0.0016 µg/l and so again, seasonality and monitoring frequency/pattern will not impact on 387 

compliance assessments for these sites as observed concentrations are almost exclusively greater 388 

than the EQS. The limited data reported from other sources shows HBCDD levels are similar, for 389 

example, effluent concentrations ranged from 0.4 to 12 ng/l in WwTW effluents and 0.19 to 14 ng/l 390 

in river samples, therefore of the same order as reported here for the UK [36].  391 

 392 

3.2 Type B: Seasonal trends determined by treatment efficiency 393 

 394 

Before discussing trends in treatment efficiency, it is important to note that the statistical analysis 395 

has been undertaken using all CIP WwTW for which data are available. There has been no attempt 396 

to split WwTW into different treatment types for a number of reasons. Firstly, sub dividing the dataset 397 

weakens the power of the statistical analysis and so detracts from the objective of determining 398 

statistically seasonal trends based on big datasets and secondly previous data has shown that any 399 

variation between works was not shown to be statistically significant [6]. 400 

 401 

Biochemical Oxygen Demand (BOD) is a key metric for water quality (Figure 4). The seasonal 402 

profiles for BOD are almost in complete opposition to those seen for SRP. Although clear seasonality 403 

is observed, its phase, with minima in early autumn and maxima in late winter, is the reverse of that 404 

for SRP. Furthermore, the amplitude of the variability is considerably greater in effluent than in river 405 

samples (again opposite to the behaviour observed for SRP), indicating a source of variation in the 406 

wastewater treatment process, and one that is powerful enough to reverse the effect of in-river 407 

dilution. This source of variation is proposed as the temperature dependence of the biological 408 

treatment process. During the warmer late summer/early autumn period the temperature and hence 409 

efficiency of BOD removal is at its highest, compared with winter where the opposite is the case [37]. 410 

This assumption is supported by data from further north, where under more Arctic conditions winter 411 

temperatures drop significantly below zero Celsius and impacts on WwTW efficiency has also been 412 
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reported [38]. There are unlikely to be significant variation across the English geographic regions, 413 

because winter temperatures between the extreme north and south of the UK only vary by 2 degrees 414 

Celsius (Met Office data).  415 

  416 
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 417 

 418 

 419 

 420 

Figure 4 BOD in WwTW effluent (top graph) and downstream (bottom graph) over two 421 

years (averages with a 90% confidence interval) 422 

 423 

 424 

 425 
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Ammonia also exhibits a Type B behaviour similar to that for BOD, where reduced treatment 426 

efficiency in winter leads to higher concentrations observed downstream even when greater dilution 427 

occurs through the winter months (Figure 5). For good status under the WFD depending on typology 428 

(upland, lowland, high and low alkalinity) 90th percentile concentrations range from 0.3 to 0.6 mg/l 429 

total ammonia (0.25 mg-N/l and 0.49 mg-N/l respectively). It is not possible to compare these values 430 

directly with an EQS because of the aforementioned aggregation of England and Wales data and 431 

the fact that compliance is based on a river typology and reported 90th percentile concentrations. 432 

The influence of WwTW effluents on downstream concentrations is obvious for the UK, however, in 433 

rural environments where effluents are not a significant source of river flow, then observed 434 

concentrations tend to reflect a flow-based pattern, such is the case for the North Saskatchewan 435 

River, Canada [39]. 436 

 437 

  438 
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 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

Figure 5 Ammonium ion concentrations in effluent (top graph) and in downstream river 448 

samples (bottom graph) over two years with LOESS plot (averages with a 90% 449 

confidence interval) 450 
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3.3 Type C: Little seasonal variation 451 

 452 

Other priority substances exhibited limited seasonal variation (Type C) in terms of obvious and 453 

statistically robust conclusions. Cypermethrin for example (Figure 6) showed no statistically relevant 454 

trends at 90% confidence level.  455 

 456 

 457 

 458 

 459 

Figure 6 Cypermethrin in river samples downstream of effluent discharge over two years 460 

with LOESS plot (averages with a 90% confidence interval) 461 

 462 

A further potential driver of seasonality, illustrated below by benzo(a)pyrene (Figure 7), should not 463 

be neglected. This is the case of substances for which the inputs to surface waters might vary, but 464 

for which WwTW effluent is not the primary source. Low concentration in the summer months are 465 

not related to sewage inputs and could probably be ascribed to seasonally reduced rainfall and 466 

consequent more limited influence of run-off as an input to rivers [40]. The EQS is 1.7x10-4 µg/l and 467 

so observed concentrations exceed the EQS by over 50 times largely as a result of diffuse runoff 468 

sources [41].   469 

 470 
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 471 

 472 

Figure 7 Benzo(a) pyrene in river samples downstream of effluent discharge over two years 473 

with LOESS plot (averages with a 90% confidence interval) 474 

 475 

The CIP monitoring has shown that sewage effluents are not the principal sources of PAHs. Current 476 

opinion is that the main source in the UK is related to soils and surface waters contaminated by 477 

combustion products [42]. Given this, it might be proposed that run-off from soils and urban surfaces 478 

might be the main source and that lower volumes of run-off in the drier summer months could explain 479 

the seasonal effect illustrated above.  480 

  481 
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 482 

3.4 Seasonal trends in influent and effluent for pharmaceuticals  483 

 484 

There is a dearth of data on seasonal trends for pharmaceutical concentrations within the 485 

environment. The ability to analyse the CIP2 data provides vital information for wastewater 486 

undertakers and regulators in terms of being able to plan future management strategies. Figure 8 487 

below shows seasonal assessments for four pharmaceuticals representative of three large classes 488 

of popular medicines: a steroid oestrogen (ethinyloestradiol - EE2) where inputs to works may be 489 

expected to be constant year-round; two non-steroidal anti-inflammatory drugs (NSAIDs - ibuprofen 490 

and diclofenac) where again seasonality would not be expected in use [38] and an antibiotic 491 

(erythromycin) which could be expected to be more prescribed during winter months [43]. These 492 

substances were determined in both wastewater influent and effluent (but not in receiving river 493 

water). The volume of data for pharmaceuticals was not as substantial as for the determinands 494 

discussed above; results were obtained for 45 sites instead of 170. Figure 8 illustrates, by the 495 

differences in concentration in influent and effluent, the overall extent by which wastewater treatment 496 

reduces concentrations of each determinand and provide an indication that seasonality is not a 497 

particularly important factor in determining the concentrations of these substances either in influent 498 

or effluent. This suggests the assumption that NSAIDs and steroid hormones are consumed at a 499 

fairly constant rate throughout the year with few peaks or troughs in influent concentrations appears 500 

to hold true. There was, however, no significant pattern in the influent concentrations observed for 501 

erythromycin, which as an antibiotic, may lead to the assumption that there would be more 502 

prescription in winter than summer and hence increased influent concentrations during the winter 503 

months. Prescription data for macrolides such as erythromycin in America have shown seasonal 504 

trends in prescriptions of macrolide drugs [44]. In the UK, erythromycin is not used as a flu vaccine 505 

that is widely administered and is predominantly used for bacterial infections and is not effective 506 

against colds, flu or other viral infections and so may not necessarily be expected to follow a seasonal 507 

trend. Examination of effluent concentrations of the pharmaceuticals also fail to show a seasonal 508 

trend. This may be owing to the fact that many pharmaceuticals are either readily biodegradable 509 

such as EE2 and ibuprofen or poorly degradable such as diclofenac and erythromycin and so 510 

temperature has only a limited impact on removal. In colder climates such as Finland, a distinct 511 

reduction in removal has been reported for pharmaceuticals such as ibuprofen, diclofenac and 512 

naproxen in the winter months [38]. However average winter temperature in Finland are sub-zero 513 

Celsius compared with 6.8 Celsius for the UK (Met Office data).  514 

 515 

The notable feature of data for all four substances is that there is little seasonal variation; certainly, 516 

there is little that might be of practical importance. The real-time (sequential) results for ibuprofen in 517 

effluents appear to be influenced by some high measured values early in the monitoring programme. 518 
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There is no indication of any seasonality for erythromycin either by calendar month or over the 2-519 

year monitoring period. Finally, the time / concentration profile of the synthetic steroid EE2 is unusual 520 

in that the data for early 2015 appear to be higher than subsequent values, but there is a striking 521 

correspondence in the differences between the influent and effluent data; indicating a consistent 522 

reduction in concentration of two thirds during treatment.   523 

 524 
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 581 

Figure 8 Ethinylestradiol (A), diclofenac (B), ibuprofen (C) and erythromycin (D) in WwTW influent  582 

(left hand side) and effluent (right hand side) over two years with LOESS plot  583 

(averages with a 90% confidence interval) 584 
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4. Conclusions 585 

An analysis of over 6,000 samples has been completed to determine if it is possible to discern 586 

seasonal trends in observed receiving water concentrations and/or effluent and influent wastewater 587 

in the case of 4 pharmaceuticals. This has been the first time such a large dataset has been analysed 588 

for these substances, many of which are not routinely determined. Furthermore, it has been possible 589 

to show impacts that WwTW effluent has on downstream water quality irrespective of flow or climatic 590 

conditions. Seasonality has been observed in data for several determinands reported here. Two 591 

specific patterns driving seasonal variation within receiving waters are proposed: 592 

a. Variation of riverine concentrations likely to be dominated by seasonal fluctuations in 593 

river flow (sewage concentration being relatively consistent). This appears to be 594 

responsible for a cyclic variation in riverine phosphate concentrations characterised 595 

by high concentrations in late summer and low concentrations in late winter; 596 

b. Variation attributable to the performance of wastewater treatment rather than river 597 

flow and therefore subsequent dilution. Consequently higher concentrations are 598 

observed in colder months owing to less efficient wastewater treatment which is 599 

sufficiently to counteract any increase in dilution within the receiving water.  600 

Seasonality for trace contaminants is more difficult to characterise than that of sanitary parameters 601 

owing to the higher variability in effluent concentrations and the significantly lower concentrations of 602 

the substances of interest leading to lower analytical precision. However, there is clear statistical 603 

evidence for in-river dilution on observed concentrations of PFOS and hexabromocyclododecane.  604 

For pharmaceutical concentrations measured within WwTW (influent and effluent) no such seasonal 605 

cycling was observed, even for an antibiotic.   606 

Overall, the data show not only the existence of seasonality (or lack of it), but also provide an insight 607 

into the amplitude of such variation. This makes it possible to use this type of mathematical modelling 608 

approach to assess the likely effects of seasonality in a wider context of regulation and potential 609 

impact on aquatic life. For example, the existence of seasonality (perhaps due only to dilution effects) 610 

might be demonstrated, but the amplitude might be too small to have any significant impact on either 611 

compliance monitoring bias or possible ecological effects.  612 

 613 

 614 
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