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1. Introduction

Several relevant strongly coupled systems in Condensed Matter and Particle Physics are de-
scribed by a complex action. Examples range from QCD at non-zero density to dense quantum mat-
ter and strongly correlated electron systems. In most of these cases, robust analytical approaches
are not known and currently numerical methods provide the only ab-initio reliable tool of investi-
gation.

For the class of systems with a complex action, the partition function can be cast into the
general form

Z =
∫
[Dφ ]e−βSR[φ ]+iµSI [φ ] , (1.1)

where we have made explicit the decomposition of the action into its real part SR and imaginary
part SI , controlled respectively by the couplings β and µ . In the previous equation, φ represents
the collection of quantum fields that describe the theory.

When µ = 0, Eq. (1.1) can be interpreted as a Boltzmann weight and standard Markov Chain
Monte Carlo methods can be used in numerical studies of the corresponding system. Conversely,
at µ 6= 0, the path integral measure is complex and standard importance sampling methods are
inadequate to generate an ensemble of representative configurations for the model. At the origin
of this failure are the strong cancellations that arise between positive and negative contributions to
the partition function, which leave us with a numerical result that is several orders of magnitude
smaller than the positive and the negative parts of the integral. This cancellation is known in the
literature as the sign problem (see [1] for a recent review).

It is worth noting at this point that the sign problem may be related to our way of describing
the system rather than to some of its intrinsic physical properties. Indeed, for some systems it
is possible to rewrite the action using dual variables. In this dual formulation, the sign problem
disappears and Monte Carlo methods are perfectly viable [2, 3]. Nevertheless, for several relevant
systems (e.g. QCD at finite density), a dual formulation is not known. Hence, if we want to solve
the sign problem, finding a new technique that is capable of handling the numerical cancellations
in the direct formulation is paramount. While a single algorithm that enables us to successfully
address all the systems with a sign problem can not possibly be provided, since this will amount
to solve at least one non-polynomial complete problem in a polynomial time [4], several recent
attempts using various techniques (including Complex Langevin dynamics, dual formulation, ana-
lytic continuation, density of states and thimble methods, see [1] a discussion) have shown a good
degree of success in different models.

Our contribution further develops the density of state calculation (originally proposed in [5]
and more recently discussed in [6, 7, 8, 9]) with the LLR algorithm [10, 11]. Our proposal has
two components: first, we determine numerically a positive-definite density of states to a very high
precision, spanning around 20 orders of magnitude with approximately fixed relative error; then,
we integrate analytically a smoothed interpolation of the latter. We shall use the interacting Bose
gas in four dimensions as a case study to illustrate our approach. Numerical results for this model
using the same algorithm have been presented in [12, 13], where the main focus was mostly on
the feasibility of performing the numerical integral. Other studies of density of states methods for
complex action systems include [9, 14, 15, 16, 17].
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The rest of our work is structured as follows. In Sect. 2, we review the generalities of the LLR
algorithm for the determination of the density of states. Our numerical results are then presented
in Sect. 3. Finally, we summarise our findings and discuss open directions in Sect. 4.

2. The LLR algorithm

Let us start for simplicity by considering an Euclidean Quantum Field Theory described by a
real action S:

Z(β ) =
∫
[Dφ ]e−βS[φ ] . (2.1)

The density of states, defined as

ρ(E) =
∫
[Dφ ] δ (S[φ ]−E) , (2.2)

allows us to rewrite Z as
Z(β ) =

∫
dE ρ(E) e−βE = e−βF ,

where the integral runs over all possible values E of the action S weighted by ρ(E), which repre-
sents the density of numbers of configurations having S = E, and F is the free energy of the system.
In terms of ρ(E) the expectation value of an observable O(E) can be recast into the form

〈O〉=
∫

dE ρ(E) O(E) e−βE∫
dE ρ(E) e−βE .

Hence, the numerical knowledge of ρ(E) allows us to determine the expectation values of all
observables that are function of E and - in principle at least - to compute the free energy F , from
which the thermodynamical or the relevant QFT properties of the system follow.

The main issue affecting the numerical determination of the density of states is the variation
of the latter over several order of magnitudes. The LLR algorithm, which has been inspired by
the successful Wang-Landau approach to systems with a discrete energy spectrum [18], allows us
to obtain a piecewise-continuous approximation of the logarithm of the density of states that has
a controlled and exponentially suppressed error. Both these features are important for the correct
reconstruction of the density of states: the fact that the error is controlled means that the method
is a first-principle approach; having an exponentially suppressed error, in turn, guarantees that the
numerical effort does not depend on the local value of the density of states, but only on the degree
of accuracy that one wants to reach.

The LLR algorithm is implemented through the following steps [10, 11]:

1. divide the (continuum) energy interval in N sub-intervals of amplitude δE

2. for each interval, given its centre En, define

logρ(E) = an (E−En−δE/2)+ cn for En−δE/2≤ E ≤ En +δE/2 (2.3)

3. obtain an as the root of the stochastic equation

〈〈∆E〉〉an = 0⇒
∫ En+

δE
2

En−
δE
2

(E−En−δE/2)ρ(E)e−anEdE = 0 (2.4)
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using the Robbins-Monro iterative method

lim
m→∞

a(m)
n = an , a(m+1)

n = a(m)
n −

α

m

〈〈∆E〉〉
a(m)

n

〈〈∆E2〉〉
a(m)

n

. (2.5)

At fixed m, one has Gaussian fluctuations of a(m)
n around an

4. Define

cn =
δE

2
a1 +δE

n−1

∑
k=2

ak +
δE

2
an , (2.6)

which, together with the numerically determined an, specifies the local approximation (2.3).
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Figure 1: Left: The density of states for the SU(2) and the SU(3) Lattice Gauge Theory models with the
plaquette action. Right: Probability distribution at criticality for U(1) Lattice Gauge Theory on a 204 lattice.

It is easy to see that, defining βµ(E) the microcanonical temperature at fixed E, we have

lim
δE→0

an =
dlogρ(E)

dE

∣∣∣∣
E=En

= βµ(En) . (2.7)

Under our assumption that ρ is twice-differentiable, which holds everywhere except for values of
En at which βµ(En) corresponds to a phase transition canonical β , away from the minimum of the
action Emin, ρ(E) converges quadratically to the density of states ρ(E) in the limit δE → 0.

For ensemble averages of observables of the form O(E), the convergence to the expectation
value computed with ρ(E) to the canonical one is also quadratic in δE ,

〈O〉β =

∫
O(E) ρ(E) e−βE dE∫

ρ(E) e−βEdE
= 〈O〉β +O

(
δ

2
E
)
. (2.8)

Moreover, we can prove that ρ(E) is measured with constant relative error (a feature that is known
as exponential error reduction):

∆ρ(E)
ρ(E)

' constant , (2.9)
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where ∆ρ(E) denotes the statistical error on the numerically reconstructed quantity ρ(E). To date,
the LLR algorithm for real actions has been showcased in several models. We show two applica-
tions in Fig. 1, where in the left pane we report the density for SU(2) and SU(3) and show that they
can be accurately determined respectively over 120000 and over 250000 orders of magnitude [10].
In Fig. 1 (right), we show the doubly peaked energy distribution at criticality in U(1) lattice gauge
theory on a 204 lattice with periodic boundary conditions [11], which - owing to severe metastabil-
ities - is out of reach with traditional importance sampling methods, including specialised ones.

Controlled convergence to the exact value and exponential error suppression are the two fea-
tures of the algorithm that make it a viable possibility for tackling the sign problem. For the case
µ 6= 0 in Eq. (1.1), we define the generalised density of states as

ρ(Q) =
∫
[Dφ ] e−βSR[φ ] δ (SI[φ ]−Q) , (2.10)

in terms of which the partition function is obtained as

Z(µ) =
∫

dQ ρ(Q) eiµQ . (2.11)

Due to the symmetry µ→−µ , the partition function is real. However, the integrand is not positive
definite. In fact, the integral proves to be strongly oscillating, with the oscillations giving rise to
severe numerical cancellations. Therefore, in order to obtain a meaningful numerical result, ρ(Q)

needs to be known with an extraordinary precision. While the specific value of the latter depends
on the problem at hand, at least a precision of order 10−20 on ρ is in general necessary. The need
to compute ρ to such a high accuracy is the manifestation of the sign problem in the (generalised)
density of states formulation.

The severity of the sign problem is indicated by the vacuum expectation value of the phase
factor in the phase quenched ensemble, which is defined by the action SR,

〈eiµQ〉SR =
Z(µ)
Z(0)

= e−V ∆ f , (2.12)

where ∆ f is the specific free energy density difference between the original system and its phase
quenched counterpart and V is the total spacetime volume occupied by the system. In this language,
the sign problem is an overlap problem. For future reference, we define the overlap free energy
difference ∆F as

∆F =V ∆ f . (2.13)

The motivation for using the LLR algorithm to compute ρ(Q) mostly stems from the proven ability
of this algorithm to solve overlap problems.

However, one still needs to perform the integral with the required accuracy, and for this the
most direct approach (i.e. a numerical Fourier transform of the piecewise approximation of the
generalised density of states) proves to be not accurate enough. The reason for this failure is that
one is bound to observe the singularities that arise at points in which we connect the piecewise
approximations. These singularities have a frequency 1/δQ, where δQ is the width of the interval
for the restricted sampling in Q. In addition, the data have a numerical error that generates local
fluctuations in logρ . Both these effects result in a loss of precision that obfuscates the tiny signal
modulated by µ .
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In order to bypass these difficulties, in [8] it has been proposed to smooth the measured ak

with a polynomial interpolation. More specifically, the smoothing consists in a compression of the
generalised density of states using a global fit of the form

logρ(Q) =
k

∑
i=0

αiQ2i . (2.14)

The effectiveness of the procedure has been demonstrated for the Z(3) spin model, which is the
system which QCD reduces to at strong coupling, for large fermion mass and finite temperature.
For finite µ , the system is formulated as

Z(µ) = ∑
{φ}

exp
{

τ ∑
x,ν

(
φx φ

∗
x+ν̂

+ c.c.
)
+∑

x

(
ηφx + η̄φ

∗
x

)}
= ∑
{φ}

exp
{

Sτ [φ ]+Sη [φ ]
}
,

where φi ∈ Z(3) is a spin variable defined on the sites x of a three dimensional lattice of volume
V = L3, ν̂ is the unit vector in the direction ν , τ is a coupling, η = κeµ and η̄ = κe−µ , with
κ another coupling. The sum in the exponent is performed over all points x and directions ν ,
while the partition function is computed as a sum over all possible configurations {φ}. We have
explicitly separated the real part of the action (proportional to the coupling τ) from the imaginary
one (governed by η). We note that while the action is complex, the partition function is real.

Figure 2: Left: The numerator and the denominator defining the phase twist as a function of µ . Right: the
phase twist as a function of µ . Both figures have been obtained on a 243 lattice at τ = 0.1 and κ = 0.01.

This model has been simulated using complex Langevin techniques and the worm algorithm,
the latter providing reference benchmarks for novel approaches. It has been shown [19] that an
observable that is particularly sensitive to the sign problem is the phase twist p(µ), defined as

p(µ) = i

√
3

V
〈Nz−Nz∗〉=

1
V

∑Q Q ρ(Q)sin
(
k
√

3sinh(µ)Q
)

∑Q ρ(Q)cos
(
k
√

3sinh(µ)Q
) =

1
V

I1(µ)

I2(µ)
, (2.15)

5



Density of states Biagio Lucini

where Nz and N?
z are respectively the number of spins pointing along z and z∗, the two non-trivial

elements of Z(3). In Fig. 2 (left) we show numerical results for the numerator and the denominator
determining the phase twist. Those quantities vary over 15-16 orders of magnitude in the simulated
range of µ . Their ratio, however, has much less variation (Fig. 2, right). Hence, for an accurate
determination of the phase shift, a very precise measurements of I1 and I2 is required. Fig. 2
reports the determination of the phase shift with the LLR method using two interpolations of the
the generalised density of states, respectively with a polynomium of order 4 and a polynomium of
order 8, which provide compatible results. In the same figure, we report also results determined
with a simulation of the dual model using a worm algorithm, which are not affected by the sign
problem. The agreement between this latter set of data and the ones obtained with the LLR (shown
in [8], from which the figures have been borrowed) is striking.

We stress that in order to obtain those results a smoothing of the density of states has been
crucial. We can interpret the polynomial interpolation as a Taylor expansion of logρ that, for some
reason that deserves to be further understood, has a convergence radius covering the whole range of
interesting µ . A number of open questions remain. Among them, if we assume that a polynomial
interpolation of the data can be used over the range of ak that contribute to the integral, we would
need to study the sensitiveness to the order of the polynomial, since a priori we do not have any
guidance on the optimal order. More in detail, one would expect that a minimal order will be
determined by the goodness of the fit, while a maximal order is imposed ultimately by the number
of data points and before that by the maximum information they expose. The main objectives of
this contribution is to devise a physically motivated method to put a meaningful upper bound on the
maximal order of the fitting polynomium and to study the sensitiveness of the result with respect to
the polynomial interpolation as a function of its order when the latter varies in the optimal range.
This will allow us to get a handle on the convergence of the method.

3. The Bose Gas

We pursue the programme illustrated in the previous section in the self-interacting Bose Gas
in four Euclidean dimensions and at finite density. The model is described by the action

S = ∑
i,a

[
1
2
(
2d +m2)

φ
2
a,i +

λ

4
(
φ

2
a,i
)2−

3

∑
ν=1

φa,iφa,i+ν̂ − cosh(µ)φa,iφa,i+4̂

]
+ isinh(µ) ∑

i,a,b
εabφa,iφb,i+4̂

= SR + isinh(µ)SI , (3.1)

where λ is the self-coupling, µ the chemical potential and m the mass of the bosons. The field has
been decomposed into its real part φ1 and its imaginary part φ2. The phase diagram (consisting in
a low-density phase separated by a phase transition from a high-density phase) has been mapped
out numerically through simulations of the sign-problem free dual theory in [3], which finds very
good agreement with mean-field theory calculations [20].

Throughout our calculation, we fix the self-interacting coupling λ to the value λ = 1.0 and the
particle mass m to m = 1.0. We compute the density of states related to the imaginary action

SI = εabφa,iφb,i+4̂ (3.2)

6
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performing a constrained Monte Carlo simulation for SR. More in detail, we define

ρ(Q) =
∫

[Dφ ]δ (SI−Q)e−SR , (3.3)

from which, using the LLR algorithm, we compute the quantities

ak =
dlogρ

dQ

∣∣∣∣
Qk

, (3.4)

for chosen values of Qk, which we take equally spaced. As an example, we report in Fig. 3 (left) the
determination of the ak for µ = 0.8, V = 104. As discussed previously, a piecewise approximation
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Figure 3: Coefficients ak (left) and their derivative (right) for µ = 0.8, V = 104.
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Figure 4: Left: Reduced χ2 for f ′′. Right: description of f ′′ using various order n polynomial interpolations
of the ak on a subset of the data (highlighted in red for the derivative). Both sets of results are obtained at
µ = 0.8 and V = 84.

is not precise enough to uncover the cancellations that typically take place in this system. Hence, we
resort to a polynomial interpolation over the whole interval. This immediately opens the problem
of the stability of the polynomial fit with the order of the polynomium. If the functional form we
choose is not adequate to describe the data, the χ2 will expose its failure. However, it is easy
to see that one can improve the goodness of the fit by increasing the order of the polynomium.
The latter process will result in a different type of failure, which is now common to refer to as

7



Density of states Biagio Lucini

overfitting: if the number of parameters is large enough, the fitted functional form will not describe
correctly the data despite the low χ2. This is generally visible through unwanted oscillation of the
interpolation between consecutive data points. In our case, it becomes paramount to detect even
the slightest hint of overfitting, since any oscillation, no matter how small, can affect the precision
of the cancellation. In order to better constrain the fit, we resort to the second derivative of logρ ,
which is formally given by

f ′′ =
d2 logρ

dQ2

∣∣∣∣
SI ,k

=
360
δ 4

Q

(
s2−

δ 2
Q

12

)
+O(δ 2

Q) , (3.5)

with s2 the order two cumulant evaluated with an average restricted to the k-th interval and δQ the
width of each interval. An example determination of f ′′ is provided in Fig. 3 (right).

Rather than using the second derivative of logρ with respect to Q directly in the fitting proce-
dure, we look at how well the polynomial fit of the ak describes this quantity. This gives us both
a visual (through oscillations) and a quantitative indication of whether the chosen functional form
is overfitting the data. Fig. 4 shows an example of our procedure. As the order of the polynomium
describing the ak increases, one can see that oscillations in its derivative are more evident, espe-
cially for larger values of Q. We tale this as an indication of overfitting. Looking at the reduced χ2

obtained with the description of the f ′′ data through the derivative of the polynomial smoothing of
the ak, we find that a range of optimal polynomial degrees for the simultaneous description of the
ak and the f ′′ can be identified. For instance, in the case µ = 0.8 and V = 8 the range for the degree
n of the fitting polynomial is generally between 5 ≤ n ≤ 15 (see Fig. 4, left). While this has been
illustrated on a specific example, the procedure gives similar results for other sizes and different
values of µ .

Having found a method for assessing the robustness of the fit, we now move to the determi-
nation of quantities of physical interest. First, we study the ak for a range of chemical potentials
below the phase transition. The results for a V = 44 lattice are reported in Fig. 5, top left panel.
We see that for small values of SI = Q (with the displayed range being the one that contributes
to the integral (1.1)) the variation of these quantities is small as a function of µ on the scale of
the figure up to the maximum studied value µ = 1.0, which is relatively close to the critical value
µc ' 1.15 [3]. Nevertheless, the reconstructed phase average (displayed in Fig. 5, top right) varies
over three orders of magnitude. From the phase average, we extract the overlap free energy ∆F ,
which is shown in Fig. 5, bottom left. The dependency of the latter on the fit order is plotted in
Fig. 5, bottom right. In this figure, we display the percentage variation of ∆Fn, where the index n
refers to the order of the polynomial fit, with respect to the reference value ∆F3. For µ ≤ 0.8 we
see a clear plateau. At higher µ , while the data are still compatible with a plateau, they display
larger errors. At larger lattice sizes, the noise at those values of µ increases. However, we have
found that the accuracy of the results can be still be reasonably controlled by a moderate increase
of the accumulated statistics for the data. So far we have collected reliable results for µ ≤ 1.0 and
volumes up to 124.

The quantity we are interested in here (which ultimately measures our ability to extract nu-
merical results with our approach) is the overlap free energy in the thermodynamic limit. We show
its determination as a function of the fit order in Fig. 6, left; the data show good convergence with
the order of the polynomial used in the fit at all simulated volumes. We then take the plateau value
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Figure 5: Top left: behaviour of the ak at the studied values of µ for an optimal choice of the fit order in
each case. Top right: the phase average as a function of µ for polynomial fits of various orders in the optimal
region. Bottom left: the extracted overlap free energy ∆F as a function of the fit order for optimal choices
of the latter. Bottom right: convergence of the fit with the polynomial order, using as a reference the n = 3
result; note that for each µ the n = 3 result is positioned at the simulated value of µ , while higher orders are
displaced progressively on the right, for the sake of readability of the figure. All data shown are obtained on
a V = 44 lattice.

and extrapolate it to the infinite volume limit using a 1/V and a 1/V 2 correction, which appear to
describe correctly our data (see Fig. 6, right). This fitting ansatz provides us with the result

∆F = 0.012548(2)− 0.24(1)
V

− 98(17)
V 2 ,

whose relative difference from the mean field calculation ∆FMF ' 0.012522 [20] is of order 10−4.

4. Conclusions

We have provided a numerical study of the self-interacting Bose gas using the density of states
method. For the determination of the density of states, we have used the LLR algorithm, which has
been proved to have significant advantages over traditional important sampling methods in cases
in which one needs to measure exponentially suppressed signals and has been shown to be able to
solve the sign problem for some toy models like the Z(3) spin model and heavy-dense QCD. With
respect to applications involving a real action, in the complex action case an additional smoothing
procedure of the density of states is needed. Here, we have provided a systematic study of this
smoothing for the self-interacting Bose gas choosing as an interpolating function a polynomium
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Figure 6: Left: ∆F as a function of the polynomial fit order for the latter chosen in the optimal region at the
shown values of the lattice volume. Right: extrapolation of the plateau value of ∆F to the infinite volume
limit.

of order n and investigating the dependence of our results from n. We have discussed criteria
for assessing the robustness of the interpolation and shown that an optimal range of values of n
can be identified. Within this range, results appear to be independent of the chosen polynomial
order. Using the developed methodology, for a particular choice of the chemical potential, we have
provided an extrapolation to the infinite volume limit of the overlap free energy. The result we have
obtained is compatible with mean-field, which has been shown to work well for this model. An
extended calculations aimed to the determination of the infinite-volume ∆F is currently under way,
and will be reported elsewhere. Our preliminary results indicate that with our technique we can
determine the infinite volume value of ∆F up to µ = 1.0, using finite volume results up to V = 204.
We are currently investigating whether other improvements are needed for reaching higher µ , closer
to the critical value.
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