Role of recent climate change on carbon sequestration in peatland systems

*Corresponding author. School of Geography, Earth and Environmental Science, Portland Square, Drake Circus Plymouth University, Plymouth, Devon PL4 8AA. paul.lunt@plymouth.ac.uk, 01782 584580

Highlights

- Mean rates of carbon accumulation since 1850 were 11.26 t ± 0.68 t CO$_2$e ha$^{-1}$ yr$^{-1}$ for valley mire and 11.77 t ± 0.88 t CO$_2$e ha$^{-1}$ yr$^{-1}$ for blanket bog
- Contemporary rate of CO$_2$ sequestration was 9.13 t ± 0.98 t CO$_2$e ha$^{-1}$ yr$^{-1}$
- Past and contemporary peatland carbon sinks were found to be at the upper limits of those reported in the literature
- Recent changes in climate appear to have had minimal impact on the strength of peatland carbon sinks in South West England

Abstract

This paper provides information on the impact of recent climate change on carbon sequestration in peatland systems in South West England. This is important because peatlands have the potential to sequester and hold large quantities of anthropogenically released CO$_2$. This paper investigates whether there has been a reduction in the strength of carbon sinks in a valley mire and blanket bog; which occur on the limits of the biogeographical envelop for peatlands in Britain. Past rates of carbon accumulation were determined from peat depth and the sequential analysis of peat age, bulk density and carbon content from cores taken from valley mire and blanket bog. At the valley mire site contemporary net ecosystem carbon balance (NECB) was calculated by measuring inputs to
the peat body, via net primary productivity (NPP), of *Sphagna*. Losses of C from the peat body were calculated by measuring CH₄, and aquatic carbon; calculated from catchment export of particulate and dissolved organic carbon. The study found similar mean rates of carbon accumulation since 1850 of 11.26 t CO₂e ha⁻¹ yr⁻¹ (307 g C m⁻² yr⁻¹) in valley mire and 11.77 t CO₂e ha⁻¹ yr⁻¹ (321 g C m⁻² yr⁻¹) in blanket bog. The mean present-day CO₂ sequestration rate for *Sphagna* on valley mire was calculated to be 9.13 t ± 0.98 t CO₂e ha⁻¹ yr⁻¹ (249 g C m⁻² yr⁻¹). Both past and contemporary rates of CO₂ sequestration were found to be at the upper limits of those reported in the literature for temperate peatlands. NPP was found to vary according to microform with higher rates of carbon sequestration found in lawn and hummock microforms compared with pools. Our work suggests that recent changes in the climate appear to have had limited impact on the strength of peatland carbon sinks in South West England.

Key Words

CO₂ sequestration; peatlands; *Sphagnum*; net ecosystem carbon balance; climate change; peat accumulation

The authors use the term net ecosystem carbon balance (NECB), as defined in Chapin *et al.*, (2006) to describe carbon uptake in peatlands. All values for carbon are presented as CO₂ equivalents (t CO₂e ha⁻¹ yr⁻¹), where carbon (C) is converted to CO₂ based on molecular mass difference by multiplying the amount of C by 3.667. Where values are cited from the literature the original units are reported, along with converted values in t CO₂e ha⁻¹ yr⁻¹ for comparison. ‘Carbon accumulation’ refers to carbon accumulated as peat. The term ‘Carbon exchange’ has been used where CO₂ fluxes have been measured. ‘Carbon balance’ is the difference between CO₂ uptake by the peatland ecosystem (photosynthesis) and CO₂ loss to
the atmosphere by respiration. ‘Carbon sequestration’ refers to is the removal and storage of carbon from the atmosphere in peat.

1.0 Introduction

Peatlands have the highest carbon storage capacity per unit area of all terrestrial ecosystems (Brooks & Stoneman, 1997; Worrall et al. 2009; Yu et al. 2011b). Cox et al. (2000) estimated globally that 60 gigatonnes of carbon (Gt C) are removed each year from the atmosphere by NPP of photosynthetic plants. Known peatlands are estimated to cover 3–4% of the world’s land area (Gorham, 1991; Parish et al. 2008; Xu et al. 2018) and contain ~612 Gt C (Yu et al. 2011b). Variation in the size of the peatland carbon sink could have a significant cumulative effect on global atmospheric CO₂ concentrations (Chambers & Charman, 2004; Charman et al. 2013). Estimates of global carbon accumulation by peatlands vary from 0.09 to 0.5 Gt C yr⁻¹ (Gorham, 1991; Yu, 2011a). These figures represent 1–5% of global annual anthropogenic greenhouse gas (GHG) emissions (Friedlingstein et al. 2014).

Globally, appropriate protection and management of peatlands is one of the most cost-effective measures in reaching the ultimate goal of zero net carbon emissions from the land-use management sector (Ostle et al. 2009).

Peatlands cover 24,600 km² or ~15% of the land area and store 2.3–3.12 Gt C in the UK (Billett et al. 2010; Lindsay & Clough 2017). Peatlands have the potential to sequester and hold large quantities of anthropogenically-released atmospheric CO₂, making a significant contribution to international GHG budgets (Waddington et al. 2010; Bain et al. 2011; Yu, 2011a). Research on rates of carbon sequestration on peatlands has focused on two approaches: contemporary gaseous exchange of CO₂ using eddy covariance measurements (Billett et al. 2010; Helfter et al. 2015; Levy & Gray 2015; Wilson et al. 2016) and Holocene rates of carbon accumulation established from peat cores (Pendea & Chmura 2012; Charman...
Chamber studies have also been widely used in the UK and elsewhere to investigate net carbon balance (Rowson et al. 2010; Dixon et al. 2014; Gatis et al. 2015; Green et al. 2018).

Net ecosystem carbon balance (NECB: Chapin et al. 2006) models can be used to assess contemporary rates of carbon gain and loss from peatlands. In recent years there has been a significant amount of work to understand the factors effecting site-level NECB values. Dinsmore et al. (2010) found contemporary site-level NECB of 3.52 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (352 g CO$_2$ m$^{-2}$ yr$^{-1}$) in a UK ombrotrophic peatland whilst Billett et al. (2010) report contemporary site-level NECB in two ombrotrophic peatlands of 2.05–2.64 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (56-72 g C m$^{-2}$ yr$^{-1}$). Values reported for NECB in boreal and northern continental peatlands of the Northern Hemisphere are typically at the lower end of the range reported for undisturbed peatlands at 0.79 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (21.5±39.0 g C m$^{-2}$ yr$^{-1}$) (Roulet et al. 2007; Payne et al. 2016). These findings suggest that there is a great deal of variability in NECB due to latitude and geographical location as well as mire community type (Billet et al. 2010; Dinsmore et al. 2010; House et al., 2010; Koehler et al. 2011).

Gorham (1991) estimated mean rates of accumulation of 0.84 t CO$_2$e ha$^{-1}$ yr$^{-1}$ for boreal and subarctic peatlands during the Holocene based on peat cores and these values are broadly similar to NECB for boreal and northern continental peatlands. In Canada, Roulet et al. (2007) compared contemporary carbon exchange with apparent C accumulation over 3000 years and found similar levels of carbon accumulation in contemporary site-level net ecosystem C exchange (0.78 t ± 1.43 t CO$_2$e ha$^{-1}$ yr$^{-1}$) and dated peat cores (0.8 t ± 0.1–0.51 ± 1.37 t CO$_2$e ha$^{-1}$ yr$^{-1}$). In spite of this apparent agreement there is a great deal of variability in rates of peat accumulation from peat cores in response to climate and geographical location (Belyea & Clymo, 2001). For example, Belyea and Malmer (2004) report values between 0.51–2.64 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (14-72 g C m$^{-2}$ yr$^{-1}$), with higher rates
Temperate peatland carbon exchange model

associated with climatic optima during periods of higher temperatures and rainfall. Levy and Gray (2015) found that the contemporary carbon sink in blanket bog in northern Scotland was larger than estimates from local peat cores, based on peat accumulation over the last several thousand years. Whilst mean rates of carbon accumulation across Holocene time scales appears to match contemporary carbon exchange we can observe significant variation through the course of the Holocene [illustrated by Belyea & Malmer, 2004], with variation in carbon sequestration controlled by changes in net primary productivity forced by temperature and cloudiness variability (Charman et al. 2013).

Net primary productivity (NPP) is by far the largest constituent of a NECB model in an active peatland (Moore et al. 2002; Nilsson et al. 2008; Billett et al. 2010). Koehler et al. (2011) measured components of site-level NECB over a six year period in an ombrotrophic mire in southern Ireland, and found mean annual carbon uptake was 29.7 ± 30.0 (±1 SD) g C m$^{-2}$ yr$^{-1}$ (1.09 ± 0.01 t CO$_2$e ha$^{-1}$yr$^{-1}$). The main components of their NECB were as follows: carbon uptake in CO$_2$ from the atmosphere was 47.8 ± 30.0 g C m$^{-2}$ yr$^{-1}$ (1.75 ± 0.01 t CO$_2$e ha$^{-1}$yr$^{-1}$); carbon loss as CH$_4$ was 4.1 ± 0.5 g C m$^{-2}$ yr$^{-1}$ (0.15 ± 0.018 t CO$_2$e ha$^{-1}$yr$^{-1}$); and the carbon exported as stream-dissolved organic carbon (DOC) was a loss of 14.0 ± 1.6 g C m$^{-2}$ yr$^{-1}$ (0.51 ± 0.059 t CO$_2$e ha$^{-1}$yr$^{-1}$). For two out of the six years, the site was a source of carbon with the sum of CH$_4$ and DOC flux exceeding the carbon sequestered as CO$_2$.

In northern peatlands, Sphagnum mosses dominate the surface cover of pristine, ombrotrophic bogs and often account for a significant proportion of past accumulated peat. Sphagnum productivity is controlled by mean annual temperature, precipitation and photosynthetically active radiation (PAR) (Gunnarsson, 2005; Loisel et al. 2012; Nijp et al. 2015). As previously outlined, Charman et al. (2013) found that total carbon accumulated over the last 1000 years is linearly related to growing season length and PAR, demonstrating
changes in peat body carbon sequestration with climatic change. Climate change alters rates of carbon sequestration primarily through changes in the frequency and amount of precipitation and secondarily via temperature. Increased mean seasonal temperatures have positive impacts by increasing the length of the growth season and negative impacts by increasing rates of microbial decomposition and evapotranspiration. Blanket bog is a globally restricted peatland habitat confined to cool, high rainfall, typically flat upland areas with low levels of evapotranspiration. In Europe this habitat type typically occurs in oceanic climates along the Atlantic coast of the UK and Ireland with southern limits in Brittany and northern Spain (Joosten et al. 2017). It has been suggested that future climatic changes will result in a contraction of the distribution of active blanket bog in the UK towards the north and west, and outside this distribution peatlands may cease active growth (Gallego-Sala et al. 2010; Gallego-Sala & Prentice, 2013). An understanding of recent changes in rates of carbon sequestration in regions such as South West England, indicated as marginal to growth, is therefore vital to our understanding of how sensitive these peatlands are to present and future climate change.

This paper addresses the challenge of understanding the impact of recent climatic change in a potentially marginal blanket bog setting (the southwest UK uplands) by adopting a NECB approach and comparing current rates of CO\textsubscript{2} sequestration in Sphagnum-dominated south-west UK temperate peatlands to CO\textsubscript{2} equivalent, carbon accumulation rates that occurred at the same sites over the last 160 years and relating these findings to instrumental records of climate change over this period.

1.1 Study site description

Dartmoor represents the largest extent of blanket mire in southern England with an estimated 158 km2 of peat having a depth greater than 0.4 m (Gatis et al. 2019). The upland is
Temperate peatland carbon exchange model

composed of an eroded granite plateau, of elevation range 300–623 m, with an annual mean
temperature of 8°C at 400 m. Mean monthly air temperatures range from 0.8°C (Feb) to
17.7°C (July) with a mean rainfall of 1974 mm yr\(^{-1}\) and ca. 180.9 days of rainfall (> 1 mm),
(Met Office 2017: 1971–2000 averages). All months have an average of over 100 mm
rainfall, with the four wetter months over 200 mm.
Data were collected from two contrasting intact mire sites on Dartmoor, Fox Tor Mire and Red Lake Mire (Fig. 1). Fox Tor Mire is a valley mire, with a 58.3 ha peat body, located 4 km south-east of Princetown (50.517°N, 03.956°W) at an elevation of 351 m. Almost all of the previous peat deposits at Fox Tor Mire were removed during commercial peat mining operations which ceased in the 1850s (Wright, 1884). A layer of mine washings occurred at the base of the peat column, which was dated to a period of extensive mining at White Works on the periphery of the mire, in 1876 (Wright, 1884). All subsequent peat developed in the period following 1876. Plant communities are intermediate between soligenous and ombrogenous mire. Sample areas were permanently saturated and Sphagnum-dominated, consisting primarily of National Vegetation Classification (NVC) communities M15b and M6, *Scirpus cespitosus–Erica tetralix* wet heath and *Carex echinata–Sphagnum fallax/denticulatum* mire (Rodwell, 1991). The three dated peat cores were taken from separate areas with surface vegetation typical of nutrient poor fen, constant species included *Eriophorum angustifolium, Sphagnum papillosum, Sphagnum fallax, Sphagnum denticulatum, Molinia caerulea and Menyanthes trifoliata*.

Red Lake Mire is a precipitation-only ombrotrophic blanket bog, situated 8.5 km south-east of Princetown, (50.488°N, 03.910°W) at an elevation of 470 m. The main vegetation community consists of *Scirpus cespitosus–Eriophorum vaginatum* blanket mire (NVC code M17) with a *Sphagnum* base layer overlying a hummock and hollow microtopography. Peat cores were taken from an area to the north of Red Lake, with an intact primary bog surface. Ground and
LIDAR observations showed several drainage ditches local to the area which were infilled with peat-forming vegetation. *Sphagna* were present in all quadrats, with *S. papillosum* (87%) and *S. cuspidatum* (61%) having the highest abundance. Other constant species included *Eriophorum angustifolium* (85%), *E. vaginatum* (71%), *Narthecium ossifragum* (71%) and *Trichophorum cespitosum* (59%).

2.0 Methods

2.1 Measurement of past rates of carbon accumulation

Apparent past rates of carbon accumulation were determined for Red Lake Mire (blanket bog) and Fox Tor Mire (valley mire) using a multi-technique approach on replicate peat cores, extracted using a 5 cm diameter semi-circular Russian peat corer.

Three cores were extracted from three separate areas of Fox Tor Mire. Cores were ~ 150 cm in length and consisted of the entire column of peat, down to the mineral layer. Cores were dated using sequential analysis of concentrations of Spheroidal Carbonaceous Particles (SCPs), combined with the presence of a definitive alluvial deposit dated to 1876.

In addition to the three cores taken for SCP analysis, a further 20 cores were extracted from across Fox Tor Mire. Mean rates of peat accumulation on these cores were determined by the presence of an alluvial mineral layer, widely deposited at the base of peat cores by washings, from the White Works mine on the periphery of the mire. This layer provided a definitive marker dated to 1876.

At Red Lake Mire, four 100 cm long cores were extracted from three separate unmodified active mire areas. Three cores were dated using sequential analysis of SCPs, combined with X-Ray Florescence (XRF) readings and a fourth core was dated using known peaks in the radionuclides ^{210}Pb and ^{137}Cs.
2.1.1 Dating ranges using Spheroidal Carbonaceous Particles (SCPs)

A analysis of SCPs was the principal method used to obtain dates and dating ranges (Swindles, 2010). SCP analysis was undertaken on cores following the method outlined by Rose et al. (1995). Peat cores were cut into 2 cm segments at 5 cm intervals throughout their depths. SCP densities and linear accumulation rates were calculated for individual segments down the core.

Laboratory protocol for measurement of bulk density and calculation of ash-free carbon content (g C cm\(^{-3}\)) followed the method outlined by Chambers et al. (2011). Bulk density (g cm\(^{-3}\)) was determined by measuring the dry weight (g) divided by fresh sample volume (cm\(^3\)). To increase accuracy, sample volumes were measured by water displacement following the method set out by Buffam et al. (2010). Samples were oven dried (100° C) to constant weight and ashed in a furnace at 550° C for 4 hours to determine ash-free dry weight and organic matter content (Chambers et al. 2011). Ash-free carbon content (g C cm\(^{-3}\)) was calculated by multiplying the bulk density by 51% (mean % fraction of ash-free carbon for Sphagnum peat). Carbon masses were up-scaled to t C ha\(^{-1}\) cm\(^{-1}\), and converted to CO\(_2\) (t CO\(_2\)e ha\(^{-1}\)) (using a carbon mass to CO\(_2\)e multiple of 3.667), which was then multiplied by the average accumulation rate (cm yr\(^{-1}\)) to produce the average CO\(_2\) accumulation rate (t CO\(_2\)e ha\(^{-1}\) yr\(^{-1}\)) (Pendea & Chmura, 2012).

Equation: Peat Accumulation Rate (AR) in cm yr\(^{-1}\)

\[
AR = \frac{D}{T}
\]

Where \(D\) is distance between date markers (cm) and \(T\) is time between date markers.

CO\(_2\) Accumulation Rate (CO\(_2\)AR) in t CO\(_2\)e ha\(^{-1}\) yr\(^{-1}\)

\[
CO_2\text{AR} = BD \times 0.51 \times 3.667 \times AR \times 100
\]
Where BD is Bulk Density (g cm\(^{-3}\))

2.2 Estimates of contemporary rates of net ecosystem carbon balance in *Sphagnum*-dominated valley mire

![Schematic representation of peatland carbon exchange](image)

Fig. 2 Schematic representation of peatland carbon exchange. *Net Primary Productivity (NPP) = Gross Primary Productivity (GPP) – Ecosystem Respiration (ER). ER = autotrophic respiration + heterotrophic aerobic respiration + heterotrophic anaerobic respiration.**

Greenhouse gas (GHG) balance measurements, calculated for Fox Tor Mire, were used to produce a model for contemporary net ecosystem carbon balance (NECB). The NECB balance of a peat body is measured by quantifying the amount of gaseous and aquatic C gained or lost (fluxes) per surface unit area (Fig. 2). Values calculated for *Sphagnum* NPP were used as estimates of CO\(_2\)e inputs in the peatland model. Export of carbon from the peatland model occurs via methane (CH\(_4\)) emissions and aquatic carbon pathways (Fig. 2).

2.2.1 Model Formula

Net ecosystem carbon balance NECB = NPP (CO\(_2\) assimilation based on *Sphagnum* growth) - Carbon losses as aquatic DOC & POC – carbon losses as CH\(_4\) and CO\(_2\)*
No measure was taken of direct losses of CO₂ from the peat body resulting from aerobic heterotrophic respiration. Average values for ombrotrophic sites have been used from the literature to quantify potential losses from heterotrophic aerobic respiration (Section 4.4).

2.2.2 Measurement of *Sphagnum* growth and net primary production

Measures of annual increase in *Sphagnum* stem lengths, over a two year period, were used to calculate NPP and provide estimates of present-day levels of CO₂e sequestration. Single-species stands of aquatic and terrestrial *Sphagna* were harvested from replicate 100 cm² (1 dm⁻²) sample areas in December 2012 and 2013. The current year’s annual growth was separated from the previous year’s growth at the point of ‘growth shut down’, denoted by a kink in the stem and aggregation of stem branches (Clymo, 1970). Arising’s were dried to constant mass, ground to a fine powder and the carbon content analysed in a CHN Elemental Analyser (EA1110). Carbon density was derived by multiplying dry weight (g cm⁻²) by the carbon content measured for individual species samples. In addition, mean annual increase in stem length (cm yr⁻¹) and mean stem density (number of capitula dm⁻²) was calculated and presented for each *Sphagnum* species.

2.2.3 Export of aquatic carbon

Continuous stream discharge flow rates were measured for the stream which drained the Fox Tor Mire *Sphagnum* and methane sample sites. Automated samples of drainage water were collected during the summer of 2011, under storm flow and base flow conditions to determine export of DOC and particulate organic carbon (POC). DOC was analysed using a Shimadzu TOC 5000a analyser coupled to an ASI 5000A auto-sampler and a Sievers NCD 255 Detector. POC was collected on filter paper and analysed using a CHN Elemental Analyser (EA1110). The concentrations of DOC and POC, over the monitoring period, were multiplied by the associated stream discharge (Q) to provide continuous load data in mg s⁻¹.
Summer values for continuous load were used to estimate annual load by multiplying mean daily load by the annual discharge (Hope et al. 1994). Flux was calculated by dividing load by the peatland area (58.3 ha), giving the flux as Total Organic Carbon (TOC).

2.2.4 Methane emissions associated with Sphagnum-dominated microforms

Methane emissions were collected over lawn, pond and hummock microforms, using static chambers, during the summers of 2014 and 2015. Chambers, consisting of transparent 4.5 L PET plastic demijohns with a footprint of 130 mm2 and a total headspace of ca. 4 L were levelled and inserted into the peat or water surface to a depth of 5 cm (Moore & Roulet, 1991). Floatation aids were attached to the sides of the chambers that were to be placed in the pool microform. Temperatures in the chamber headspace were not dissimilar to ambient temperature, which ranged from 8-24°C.

A total of 15 chambers were positioned, five replicates over each microform and weekly samples taken. Chambers were fitted with sample points and extracted gas transferred to the laboratory for analysis in sterile vacuum sample bags. Accumulated gas was analysed using a Bruker IFS-66 spectrometer and Fourier Transform Infrared (FT-IR) analysis (as described by Christian et al., 2014). Outputs from the FT-IR were calibrated using a series of known concentrations of CH$_4$. Methane values were converted from a volume to a mass using the Ideal Gas Law $PV = nRT$; where $P =$ atmospheric pressure (Pa), $V =$ volume (m3), $n =$ molar mass (g mol$^{-1}$), R is the ideal gas constant (m3 Pa K$^{-1}$ mol$^{-1}$), and $T =$ temperature of the gas (K). CH$_4$ fluxes were converted to CO$_2$ equivalent values (t CO$_2$e ha$^{-1}$ yr$^{-1}$) using a global warming potential (GWP) of 28 times that of CO$_2$ over a 100 year period (Myhre et al. 2013).

2.3 Statistical Analyses
All statistical comparison ($P \leq 0.05$) of rates of carbon sequestration between sites and between past and contemporary periods were evaluated using Kruskal-Wallis and Mann-Whitney U-tests. Site measures of central tendency and variation are reported as mean ± standard error (SE) with replicate numbers (n) unless otherwise indicated.

3.0 Results

3.1 Past rates of CO$_2$ accumulation in valley mire and blanket bog
Mean rates of CO₂ accumulation in the valley mire (Fig. 3) appear stable around 12 t CO₂ ha⁻¹ yr⁻¹ until 1930. Fig. 3 shows a step change in the mean rate of CO₂ sequestration from 1940 onwards, with a decrease to a mean of less than 10 t CO₂e ha⁻¹ yr⁻¹. There is a large variability around the means, particularly in the late 1800s and early 1900s with maximum values for CO₂ sequestration of 21.6 t CO₂e ha⁻¹ yr⁻¹ and minimum values of 5.7 t CO₂e ha⁻¹ yr⁻¹. The alluvial marker showed mean depths of peat of 127.5 cm and rates of peat accumulation of 9.51 mm ± 2 mm yr⁻¹ (Table 1). This rate was broadly in agreement with mean peat accumulation rates determined using the SCP dating method (7.86 mm ± 0.23 mm yr⁻¹), providing validation of this method; values were considerably higher than rates for valley mire in the published literature (Gorham, 1991; Barber et al. 1994; Tallis, 1998). Bulk density was comparatively low at 0.079 ± 0.004 g cm⁻³ dry matter (Table 1), compared to values published in the literature.

Table 1 Rates of peat growth, bulk density, carbon accumulation and CO₂ sequestration in valley mire (1876–2010). Estimates were based on an alluvial clay marker dated to 1876. Values represent the means of 20 cores at all depths. Values ± mean show standard error.

<table>
<thead>
<tr>
<th>Number of peat cores</th>
<th>Rate of peat accumulation (mm yr⁻¹)</th>
<th>Bulk density of peat (g cm⁻³)</th>
<th>Ash-free carbon content (%)</th>
<th>Carbon accumulation (t C ha⁻¹ yr⁻¹)</th>
<th>CO₂ sequestration (t CO₂e ha⁻¹ yr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>9.51 ± 2</td>
<td>0.079 ± 0.004</td>
<td>51 ± 3.49</td>
<td>3.61 ± 0.45</td>
<td>13.23 ± 1.64</td>
</tr>
</tbody>
</table>
Using the mean accumulation rate of 11.26 ± 0.68 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (307 g C m$^{-2}$ yr$^{-1}$), calculated using the SCP method, (Fig. 3), we can estimate that 88,000 tonnes of CO$_2$ have been sequestered in the valley mire over the 134 years (1876-2010) [https://plymu.ni/peat-animation].

Fig. 4 Past rates of carbon accumulation (expressed as CO$_2$e) at the blanket bog site (1850–1980 AD). Data were obtained from Red Lake Mire, Dartmoor, via sequential analyses of carbon densities in peat core segments dated using SCP techniques. Values represent the means of four cores taken in 2011. Error bars represent ± 1 standard deviation.
Rates of CO₂ sequestration in blanket bog ranged from 7.3 to 19.2 t CO₂e ha⁻¹ yr⁻¹ (Fig. 4). Mean values of ~10 t CO₂e ha⁻¹ yr⁻¹ occur until 1950. The most recent record from 1980 showed an apparent increase to 18 t CO₂e ha⁻¹ yr⁻¹. Rose and Appleby (2005) acknowledge that SCP dating methods are only accurate to within 15 years of the actual date. Any error could be further compounded in the surface peat layers, where there is greater physical difficulty in obtaining intact cores, due to the abundance of Eriophorum roots.

Table 2 Mean rates of peat accumulation and CO₂ sequestration (1850–2010) in blanket bog dated using the spheroidal carbonaceous particle (SCP) method. Values ± mean show standard error.

<table>
<thead>
<tr>
<th></th>
<th>Core 1</th>
<th>Core 2</th>
<th>Core 3</th>
<th>Core 4</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peat accumulation</td>
<td>6.83</td>
<td>6.97</td>
<td>6.97</td>
<td>5.7</td>
<td>6.62 ± 0.31</td>
</tr>
<tr>
<td>CO₂ sequestration</td>
<td>11.92 ± 1.69</td>
<td>11.72 ± 2.26</td>
<td>11.74 ± 2.4</td>
<td>11.74 ± 1.79</td>
<td>11.77 ± 0.88</td>
</tr>
</tbody>
</table>

Mean rates of peat accumulation (Table 1) were significantly higher (9.51 ± 2 mm yr⁻¹) in the less consolidated valley mire peat compared to values shown in Table 2, for the higher density blanket bog peat cores (6.62 mm ± 0.31 mm yr⁻¹). However, means rate of CO₂ sequestration for valley mire (Table 1) and blanket bog were not significantly different (P ≤ 0.05).

3.2 Net primary productivity of Sphagnum species on blanket bog and valley mire sites

Table 3 Capitulum density and annual increase in stem length for four Sphagnum species on Dartmoor. Samples were collected from blanket bog and valley mire sites in the Decembers.
of 2012 and 2013. Values following the means shown as ± denote standard error. Values with
different letters differ significantly (P ≤ 0.05). Differences of variables were analysed with
the Kruskal Wallis test and a multiple comparison test after Siegel & Castellan (1988).

<table>
<thead>
<tr>
<th></th>
<th>Sphagnum cuspidatum</th>
<th>Sphagnum denticulatum</th>
<th>Sphagnum papillosum</th>
<th>Sphagnum capillifolium var. rubellum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of replicate sample plots (dm(^{-2}))</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Mean density of capitulum (dm(^{-1}))</td>
<td>103 ± 9.8b</td>
<td>60 ± 6.2a</td>
<td>105 ± 11.1b</td>
<td>117 ± 19.2b</td>
</tr>
<tr>
<td>Number of stem measurements</td>
<td>272</td>
<td>272</td>
<td>272</td>
<td>272</td>
</tr>
<tr>
<td>Mean annual growth of stem (cm yr(^{-1}))</td>
<td>6.9 ± 0.22b</td>
<td>5.5 ± 0.11a</td>
<td>7.35 ± 0.17c</td>
<td>6.85 ± 0.37b</td>
</tr>
</tbody>
</table>

Sphagnum capillifolium var. rubellum had the highest capitulum density followed by *S.
papillosum and S. cuspidatum* (Table 3). *S. denticulatum* was found to have a significantly (P ≤ 0.05) lower capitulum density when compared with the three other species. *S. papillosum* had the highest annual increase in length of 7.35 cm ± 0.17 cm yr\(^{-1}\), which was significantly greater than the three other species. Krebs *et al.* (2016) reported that globally rates of growth of *S. papillosum* range from 0.4 cm to 4.6 cm yr\(^{-1}\), with mean capitulum density ranging from 125 dm\(^{-2}\) to 175 dm\(^{-2}\). In Georgia, Black Sea, Krebs *et al.* (2016) found a mean increase in stem length of 5 cm yr\(^{-1}\) for *S. papillosum* with a range from 2.3 cm ± 1.3 cm to 10.2 cm ± 3.0 cm yr\(^{-1}\) and significantly higher mean values of over 12 cm yr\(^{-1}\) for *S. palustre.*
Fig. 5 Mean rates of net primary productivity of four *Sphagnum* species on Dartmoor, during 2012 and 2013. Samples were collected from blanket bog and valley mire sites in the Decembers of 2012 and 2013 and are based on 1 year’s growth. Bars show standard error plus and minus the mean. Values represent the means for replicated sample plots (dm2); *S. cuspidatum* $n = 25$, *S. denticulatum* $n = 10$, *S. papillosum* $n = 24$ and *S. capillifolium* var. *rubellum* $n = 15$. No significant differences ($P \leq 0.05$) were found in NPP between the four species, using the Kruskal Wallis test.

Fig. 5 shows that *S. papillosum* had the highest NPP (12.59 t CO$_2$e ha$^{-1}$ yr$^{-1}$), followed by *S. capillifolium* var. *rubellum* (12.3 t CO$_2$e ha$^{-1}$ yr$^{-1}$) and, the aquatic *Sphagna*: *S. cuspidatum* (11.89 t ± 0.47 t CO$_2$e ha$^{-1}$ yr$^{-1}$) and *S. denticulatum* (11.8 t ± 0.58 t CO$_2$e ha$^{-1}$ yr$^{-1}$). Rates were not found to be significantly different at $P \leq 0.05$. Higher rates of NPP were found for *S. papillosum* (16.11 t ± 0.45 t CO$_2$e ha$^{-1}$ yr$^{-1}$) in the lawn microform compared with *S. papillosum* in hummock microform (9.06 t CO$_2$e ha$^{-1}$ yr$^{-1}$).
3.3 Net ecosystem carbon balance for the valley mire

Fig. 6 Net ecosystem carbon balance for three peatland microforms (2011–2015). All values are in t CO$_2$e ha$^{-1}$ yr$^{-1}$. Net primary productivity (NPP) of the Sphagnum species from each microform were calculated from annual stem increment data. Mean NPP of Sphagnum capillifolium var. rubellum (12.3 t \pm 0.61 t CO$_2$e ha$^{-1}$yr$^{-1}$) and Sphagnum papillosum (9.06 t CO$_2$e ha$^{-1}$yr$^{-1}$) for hummock microforms; Sphagnum papillosum (16.11 t \pm 0.45 t CO$_2$e ha$^{-1}$yr$^{-1}$) for lawn microforms; and Sphagnum cuspidatum (11.89 t \pm 0.47 t CO$_2$e ha$^{-1}$yr$^{-1}$) and Sphagnum denticulatum (11.8 t \pm 0.58 t CO$_2$e ha$^{-1}$yr$^{-1}$)
for pool microforms. Aquatic loss of carbon of 2.13 t CO$_2$e ha$^{-1}$ yr$^{-1}$ was calculated from annual export of POC and DOC estimated for the entire peat body. CH$_4$ emissions were monitored for microforms during 2014 and 2015 and converted to CO$_2$e. CO$_2$e losses from CH$_4$, POC and DOC were subtracted from NPP CO$_2$e inputs to give NECB values.

The values in the central circles of the NECB model (Fig. 6) show that all three of the Sphagnum-dominated microforms in the valley mire were significant sinks for CO$_2$ during the study period, with mean sequestration rates of 9.13 t ± 0.98 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (249 g C m$^{-2}$ yr$^{-1}$). The lawn microform was found to be the largest sink for CO$_2$, followed by the hummock and pool microforms, due largely to higher rates of Sphagnum NPP (Fig. 6). Average summer CH$_4$ emissions were highest for the pool microform, 2.84 t ± 1.5 t CO$_2$e ha$^{-1}$ yr$^{-1}$, and lowest for the hummock microform, 0.28 t ± 0.07 t CO$_2$e ha$^{-1}$ yr$^{-1}$; the lawn microform had intermediate losses of CH$_4$ at 1.73 t ± 0.69 t CO$_2$e ha$^{-1}$ yr$^{-1}$.

4.0 Discussion

4.1 Past rates of peat accumulation

Actively growing peatlands sequester carbon, accumulating organic mass as the excess of vegetation production over decay. In temperate peatlands, peat accumulation rates vary according to differences in growing season, depth of oxygen diffusion, microform and plant species composition (Clymo, 1984; Tallis, 1998; Charman, 2002; Ukonmaanaho et al. 2006; Chambers et al. 2011). Our study suggests that since the industrial revolution (1850), rates of peat accumulation averaged 9.51 mm ± 2 mm yr$^{-1}$ for valley mire (Table 1) and 6.62 mm ± 0.31 mm yr$^{-1}$ for blanket bog (Table 2). These rates far exceed the average historical rates described for more northerly, boreal and continental peatlands (Gorham, 1991; Clymo et al. 1998; Tallis, 1998; Roulet et al. 2007). Higher values were estimated by
Botch and Masing (1983) of up to 3 mm yr\(^{-1}\) for boreal mires and 30.3 mm yr\(^{-1}\) for lowland warm and humid mires in Georgia, Black Sea (Krebs et al. 2016). Long-term records for temperate systems suggest an average peat accumulation of 0.2–1 mm yr\(^{-1}\) (Aaby & Tauber, 1975), with blanket bogs reported as having a large range 0.1–1.2 mm yr\(^{-1}\) (Tallis, 1998) and raised mires at rates of 0.5–1 mm yr\(^{-1}\) (Charman, 2002; Roulet et al. 2007). The surface profile and vegetation composition of mires are in a constant state of change as shifts in peat accumulation rates are influenced by various factors, including changes in climate (Clymo & Pearce, 1995). Vegetation on the peat surface may show poor affiliation with depth of peat. Under natural conditions, acrotelm peat layers tend to show higher rates of carbon accumulation than the catotelm layers. This may arise because the fresh peat at the base of the acrotelm is still subject to occasional aerobic decomposition, or because of differences in vegetation composition in the past, or because there have been periods in the past when conditions were sub-optimal for peat formation (Charman, 2002; Holden et al. 2007; Lindsay, 2010; Charman et al. 2013).

4.2 Comparison of past rates of carbon accumulation

Our calculations of past (1850–2010) rates of carbon accumulation in temperate mires show similar rates for valley mire, 11.26 ± 0.68 t CO\(_2\)e ha\(^{-1}\) yr\(^{-1}\) (307 g C m\(^{-2}\) yr\(^{-1}\)) (Fig. 3) and blanket bog, 11.77 ± 0.88 t CO\(_2\)e ha\(^{-1}\) yr\(^{-1}\) (321 g C m\(^{-2}\) yr\(^{-1}\)) (Table 2). When compared to CO\(_2\) sequestration recorded for boreal and high latitude northern peatlands (Gorham, 1991; Vitt et al. 2000; Turunen et al. 2002), our rates are at the upper limits of those recorded. According to Roulet et al. (2007) the rate of C accumulation in northern peatlands, over the last 6–8 thousand years, is estimated to be 0.73–1.1 t CO\(_2\)e ha\(^{-1}\) yr\(^{-1}\) (20–30 g C m\(^{-2}\) yr\(^{-1}\)), with CO\(_2\) sequestration rates for two peat cores in Ontario, Canada for the time interval 3000–400 BP of 0.8 t ± 0.1 (SD) t CO\(_2\)e ha\(^{-1}\) yr\(^{-1}\) and 0.51 t ± 1.37 t CO\(_2\)e ha\(^{-1}\) yr\(^{-1}\). Values of
< 1 t CO$_2$e ha$^{-1}$ yr$^{-1}$, are typically reported for long-term peat records in northern and boreal peatlands.

Utstøl-Klein et al. (2015) reported peat growth and C accumulation for 1978–1995 of 8.38 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (230 g C m$^{-2}$ yr$^{-1}$) and for 1995–2012 of 13.56 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (370 g C m$^{-2}$ yr$^{-1}$) in *Sphagnum*-dominated boreal peatland in south-east Norway. These values are similar to those reported for contemporary CO$_2$ sequestration in our study. Utstøl-Klein et al. (2015) and Helfter et al. (2015) suggested that higher rates of C accumulation were associated with increased precipitation. McNeil and Waddington (2003) concluded that *Sphagnum* photosynthesis was greatest at wetter sites and that drying and wetting cycles negatively affect *Sphagnum* NPP and net ecosystem CO$_2$ exchange.

4.3 Net Primary Productivity (NPP) of *Sphagnum*

Fig. 5 shows that present-day mean rates of *Sphagnum* NPP for the southern moors ranged from 11.8 t ± 0.58 t CO$_2$e ha$^{-1}$ yr$^{-1}$ for the aquatic species, *Sphagnum denticulatum*, to 12.59 t ± 0.45 t CO$_2$e ha$^{-1}$ yr$^{-1}$ for the lawn species, *Sphagnum papillosum*, with *Sphagnum capillifolium var. rubellum* (12.3 t ± 0.61 t CO$_2$e ha$^{-1}$ yr$^{-1}$) and *Sphagnum cuspidatum* (11.89 t ± 0.47 t CO$_2$e ha$^{-1}$ yr$^{-1}$) intermediate. These rates for contemporary NPP are similar to past rates of carbon accumulation occurring on site during the last 160 years. Krebs et al. (2016) reported mean global NPP of *S. papillosum* to be 3.81 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (204 g dry weight m$^{-2}$ yr$^{-1}$) with a range of 0.54–9.15 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (29–490 g dry weight m$^{-2}$ yr$^{-1}$). Gunnarsson (2005) suggested a mean global NPP for *Sphagnum* of 3.74–5.6 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (2–3 t dry weight m$^{-2}$ yr$^{-1}$). Krebs et al. (2016) recorded the highest *Sphagna* productivity in warm and humid peatlands in southern Georgia, Black Sea, with NPP for *S. papillosum* of 5.03–10.24 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (269–548 g dry weight m$^{-2}$ yr$^{-1}$) and for *S. palustre* of 7.23–14.72 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (387–788 g dry weight m$^{-2}$ yr$^{-1}$); rates closer to our NPP values for *S.
Temperate peatland carbon exchange model

L. papillosum. Lütt (1992) reported CO₂ sequestration rates of 3.21–4.11 t CO₂e ha⁻¹ yr⁻¹ (172–220 g dry weight m⁻² yr⁻¹) for *S. papillosum* in northern Germany, at similar latitudes to the UK but with a less favourable continental climate. In the UK, Clymo (1970) reported values of 11.4 t CO₂e ha⁻¹ yr⁻¹ (610 g dry weight m⁻² yr⁻¹) for transplanted *Sphagnum*. There is a great deal of variability in the literature reflecting local growth conditions (Gunnarson, 2005; Loisel et al. 2012; Campbell, 2014; Nijp et al. 2015; Krebs et al. 2016), the methodology used and difficulty in assessing annual increases in *Sphagnum* growth (Clymo, 1970).

However, our mean values for *Sphagnum* NPP are over twice those of global means reported by Gunnarsson (2005) and suggest that means reported from the literature may well provide an underestimate of contemporary rates of carbon sequestration occurring under optimal conditions in temperate peatlands. Similar values of 8.58 t CO₂e ha⁻¹ yr⁻¹ (234 g C m⁻² y⁻¹) have been reported for a raised bog in New Zealand (Campbell et al. 2014), ascribed to the mild climate and long growing season at temperate sites, showing the sensitivity of ombrotrophic peat growth to climatic conditions.

4.4 Net Ecosystem Carbon Balance (NECB)

Mean contemporary CO₂ sequestration rates for *Sphagna* in the valley mire were calculated to be 9.13 t ± 0.98 t CO₂e ha⁻¹ yr⁻¹ from the NECB model (Fig. 6). This value does not take into account aerobic heterotrophic respiration. Ecosystem respiration is one of the major fluxes in peatland net ecosystem CO₂ exchange (composed of autotrophic + heterotrophic respiration), comprising of up to 80% of exchange (Riutta et al. 2007; Wilson et al. 2016; Kandel et al. 2018). By not accounting for the aerobic heterotrophic component of respiration in our model, the calculated value of 9.13 t ± 0.98 t CO₂e ha⁻¹ yr⁻¹ is likely to be the maximum value for the contribution of carbon sequestration to long-term carbon storage. Taking an upper estimate for aerobic respiration from the literature of 50% of heterotrophic respiration (Riutta et al. 2007;
Temperate peatland carbon exchange model

Laine et al. 2009; Minke et al. 2016; Wilson et al. 2016), it is possible that 3.65 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (40% of annual NPP) could be lost from the acrotelm via aerobic heterotrophic microbial decomposition. This would leave a minimum contribution of 5.48 t CO$_2$e ha$^{-1}$ yr$^{-1}$. However, values at the lower end of the range 9.13 - 5.48 t CO$_2$e ha$^{-1}$ yr$^{-1}$, are unlikely in the pool and lawn microforms, where levels of aerobic heterotrophic respiration will be low in the permanently saturated conditions (Laine et al. 2009; Wilson et al. 2016). Wilson et al. (2016) found considerable spatial and temporal variation in the annual NECB with the highest uptake observed in Eriophorum angustifolium dominated intact sites in 2009 (6.25 t CO$_2$-eq ha$^{-1}$ yr$^{-1}$). Vegetation at the Fox Tor valley mire site consisted of a mosaic of mire communities including Eriophorum sp., other Cyperaceae and dwarf shrub species. As reported by Wilson et al. (2016) many of these vascular plant species have higher growth rates than Sphagna and where present with Sphagnum mosses are likely to lead to increased overall NPP.

NECB and its components in peatlands are known to vary considerably between sites (Limpens et al. 2008; Lund et al. 2009), as well as inter-annually within sites. During a two-year study of NECB in an intact low-lying ombrotrophic mire in Scotland, Dinsmore et al. (2010) found that the peatland acted as a net CO$_2$e sink of 3.52 t CO$_2$e ha$^{-1}$ yr$^{-1}$. Run-off of DOC was found to be the principal route for loss of carbon, accounting for 24% of the uptake via NECB, with an estimated 12% evasion of carbon from the stream surface. Gaseous emissions of CH$_4$ and N$_2$O combined returned 4% of CO$_2$e. In our study the valley mire peatland acted as a carbon sink with a mean for peatland microforms of 9.13 t ± 0.98 t CO$_2$e ha$^{-1}$ yr$^{-1}$ (Fig. 6). This value was over twice that recorded by Dinsmore et al. (2010) for Scottish ombrotrophic mire. Our value for carbon sequestration of 9.13 t ± 0.98 t CO$_2$e ha$^{-1}$ yr$^{-1}$ is at the upper limits of reported values, but is consistent with the figure of 11.26 t ± 0.64 t CO$_2$e ha$^{-1}$ yr$^{-1}$, derived from the analysis of dated cores at the same valley mire site. This current study and that of Dinsmore et al. (2010) found that annual rates of
carbon sequestration accounted for 60-70% of NPP. As in Dinsmore et al. (2010) the most
significant loss of C from the peat body in our study occurred via the aquatic C pathway
(Fig. 6). Export of aquatic carbon accounted for 17% of the NEE. Under base flow conditions
in our study, DOC and POC loads contributed equal proportions of the total organic carbon
load (48% and 51%, respectively). Dinsmore et al. (2010) and Pawson et al. (2008) found
higher losses of carbon under storm flow conditions and concluded that the release of POC
was episodic. Evans and Warburton (2007) found that the POC component contributed on
average 60% of the total organic carbon load on degraded peatland. Higher peat temperatures
and water table draw-down produce higher soil DOC concentrations, indicating either
increased biological production or increased aerobic oxidation (Fenner et al. 2005; Evans &
Warburton, 2007; Limpens et al. 2008).

In our study, variation in microform was observed with export of CO₂ as CH₄, accounting for
over 24% of NECB for the pool microform, 11% for the lawn microform and 2% for the
hummock microform (Fig. 6). This variation in CH₄ export for microforms is consistent with
that reported by other authors (Laine et al. 2009; Levy & Gray, 2015; Kendal et al. 2018)
who found that depth of water table was the key determinant of CH₄ export.

4.5 Optimal conditions for Sphagnum growth

Sphagnum productivity is controlled by mean annual temperature, precipitation and
photosynthetically active radiation (PAR) (Gunnarsson, 2005; Loisel et al. 2012; Nijp et al.
2015; Zhao et al. 2016). Dartmoor has limited seasonal variability and high precipitation,
providing waterlogged conditions to retard decomposition processes and giving rise to an
extended growing period. Lund et al. (2009) for northern peatland and tundra found that the
length of the growing season was the most important variable describing the spatial variation
in summertime gross primary production.
Table 4 shows a significant increase in annual rainfall in three of the four Dartmoor sites. A significant seasonal increase occurred in summer, autumn and winter at the Double Waters site and autumn and winter at Princetown. Current climatic models for the UK (Murphy et al. 2018), predict ensemble-mean reductions of 26% for summer rainfall and therefore a projected potential reduction in the size of the bioclimatic envelope for UK blanket bog (Gallego-Sala & Prentice, 2013). If such projections prove correct this may make peatlands in the southwest of the UK marginal for future peat growth (Gallego-Sala et al. 2010). Table 4 shows a trend of increasing rainfall for all seasons apart from spring (March-May). Particularly noteworthy are the increases in summer rainfall (June-August); which is

<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plymouth Mountbatten</td>
<td>50 m</td>
<td>-5.4 (11)</td>
<td>13.6 (26.3)</td>
<td>7.7 (22.1)</td>
<td>5.6 (17.9)</td>
<td>5.2 (52.4)</td>
</tr>
<tr>
<td>Double Waters (DNP)</td>
<td>355 m</td>
<td>6 (21)</td>
<td>*23.2 (82.7)</td>
<td>**20.3 (106.3)</td>
<td>**20.9 (20.9)</td>
<td>**18.3 (208.4)</td>
</tr>
<tr>
<td>Hurston Ridge (DNP)</td>
<td>418 m</td>
<td>-1.5 (5.8)</td>
<td>12.6 (40.1)</td>
<td>10 (56.4)</td>
<td>13.9 (97.6)</td>
<td>**10.6 (208.4)</td>
</tr>
<tr>
<td>Princetown (DNP)</td>
<td>433 m</td>
<td>6.6 (26.1)</td>
<td>18.8 (74.5)</td>
<td>*14.5 (81.1)</td>
<td>*17.3 (106)</td>
<td>**14.8 (289.7)</td>
</tr>
<tr>
<td>White Ridge (DNP)</td>
<td>488 m</td>
<td>-3.6 (15.3)</td>
<td>13.3 (47)</td>
<td>8.2 (49.3)</td>
<td>11.3 (85.4)</td>
<td>7.8 (166.7)</td>
</tr>
</tbody>
</table>

Table 4 Changes in total seasonal precipitation from Dartmoor National Park (DNP) and Plymouth between 1961 and 2015. Values show % change from the mean, calculated by subtracting the 1961–2015 mean from the 1961 - 2015 trend (linear least squares fit). Values in brackets show the change in actual rainfall (mm). Statistically significant linear trends, using the seasonal Mann Kendall test, are denoted **P≤0.01, *P ≤0.05. Data source Met Office (2016).
significant at Double Waters, the most westerly windward upland site. Across all sites, average annual rainfall for 1961–2010 was 1968 mm, compared with the mean for the study period (2011–2015) of 2165 mm, an increase of 10%.

South west UK has an optimal climate for *Sphagnum* growth with a long growing season associated with a warm, wet climate and limited seasonal variability compared with boreal and continental climates (Charman *et al.* 2013). In recent decades, Dartmoor has seen an increase in the length of the growing season for *Sphagnum* (number of days with minimum air temperatures above freezing), an increase in total rainfall and an increase in the number of contiguous days with rainfall. Krebs *et al.* (2016) modelled global biomass productivity of *S. papillosum* and found a step change increase in carbon sequestration when the mean duration of contiguous days with rain is longer than three days during the growth period.

4.6 Response of modelled peatland bioclimatic envelope to climate change

Many authors working with global climate models propose that there may be a decline in the strength of high latitude and tropical peatland carbon sinks throughout the 21st century (Friedlingstein *et al.* 2006; Canadell *et al.* 2007; Limpens *et al.* 2008; Clark *et al.* 2010; House *et al.* 2010). Gallego-Sala and Prentice (2013) suggested that blanket bogs in south-west UK are at the lower limit of bioclimatic space and that, when future climate change scenarios were applied, a decline in the area of blanket peat was, according to their model, projected under both UKCIP02 high and low emission scenarios (Hulme *et al.* 2002). These modelled predictions do not appear to fit with the findings presented in this study for blanket bog in South West England. Our results for contemporary rates of carbon sequestration suggest that recent climate change may be having a positive effect on *Sphagnum* NPP and rates of carbon sequestration in rain-fed peatlands, due to increased precipitation and an extension in the length of the growing period for *Sphagnum* (Campbell *et al.* 2014; Krebs *et al.* 2016).
Temperate peatland carbon exchange model

Contrary to the bioclimatic envelope model predictions of Clark et al. (2010) and House et al. (2010), our findings suggest that blanket bogs in south-west UK may have the potential to act as a significant sink for CO$_2$ under present upland climatic trends.

There is agreement amongst climate scientists that peatlands have had an important role in past global cooling and that they have potential for significant negative feedbacks to the climate system (Freeman et al., 1993; Gorham, 1995; Fenner, 2005; Roulet et al. 2007; Limpens et al. 2008; Yu et al. 2012; Charman et al. 2013). Peatland ecosystems are the most efficient carbon store of all terrestrial ecosystems (Brooks & Stoneman, 1997; Worrall et al. 2003) and retaining active peatlands is one of the most cost-effective measures in achieving zero net global carbon emissions (Ostle et al. 2009; Lindsay, 2010). Actively growing peatlands are important in the global C cycle, capturing atmospheric CO$_2$ emissions and have the potential to make a significant contribution over 100-year timescales.

5.0 Conclusions and future research challenges

This paper reports mean rates of CO$_2$ sequestration for Sphagna of

9.13 t ± 0.98 t CO$_2$e ha$^{-1}$ yr$^{-1}$ and carbon accumulation rates from peat cores dated to 1850 of

11.26 t ± 0.68 t CO$_2$e ha$^{-1}$ yr$^{-1}$ for valley mire and 11.77 t ± 0.88 t CO$_2$e ha$^{-1}$ yr$^{-1}$ for blanket bog from an oceanic peatland setting in southwest England. These values are much higher than the uncertainty range for rates of carbon accumulation in undrained/rewetted peatlands reported in the IPCC Wetlands Supplement met-analysis (Blain et al. 2014). The IPCC values do not incorporate local variability and are much lower than values for temperate peatlands reported recently (Laine et al. 2009; Campbell et al. 2014; Wilson et al. 2016). Our findings, together with other studies (Levy & Gray 2015; Ratcliffe et al. 2018), where NEE and NECB models have been used to measure the strengths of carbon sinks, suggest that using past rates
of peat growth based on peat cores provides an underestimate of contemporary rates of CO$_2$ sequestration.

Recent changes in climate appear to have had no impact on the strength of peatland carbon sinks in South West England. Past and contemporary peatland carbon sinks on our study sites located in South West England were found to be at the upper limits of those reported in the literature for temperate peatlands. This finding suggest that recent bioclimatic envelope models (Clarke et al. 2010; House et al. 2010; Gallego-Saga et al. 2013) may underestimate the potential future contribution that UK peatlands can make to carbon sequestration under observed climatic trends. Temperate oceanic peatlands offer one of the more viable and achievable options for long term storage of carbon fixed by photosynthesis under present climate trends.

This study highlights how peatland carbon sinks have responded to anthropogenic climate change and historic anthropogenic impacts, comparing contemporary rates of carbon sequestration with past rates of carbon accumulation for the same site. Findings suggest that, contrary to expectations based on bioclimatic envelope models, peatland carbon sequestration rates in South West England are stable and possibly increasing, due to amongst other factors, altered patterns of precipitation amount and frequency.

6.0 Acknowledgements

We thank all of the postgraduate students from the MSc Environmental Consultancy programme who have been instrumental in methodological refinement and data collection. Particular thanks go to Heather Runnacles-Goodridge, Tomos Hughes, Simon Caine, Rebecca Coombes, Fiona Waldron, Lottie Miles and Alice Hughes. Undergraduate students from the BSc Environmental Science programme include Daniella Pascoe and Laurie Spacie. Particular thanks also to Frances Cooper of the Dartmoor Mires Project and Norman Baldock.
from DNPA; to Andrew Tonkin for help with laboratory work; Richard Hartley and Dr
Andrew Williams for help with field work.

7.0 References

Aaby B, Tauber H (1975) Rates of peat formation in relation to humification and local
environment as shown by study of a raised bog in Denmark. Boreas, 4, 1–17.

on Peatlands, 1–112. IUCN UK Peatland Programme, Edinburgh.

Barber KE, Chambers FM, Maddy D, et al. (1994) A sensitive high-resolution record of late-

Belyea L, Clymo RS (2001) Feedback control in the rate of peat formation. Proceedings of
the Royal Society of London. Series B: Biological Sciences, 268, 1315–1321.

Billett MF, Charman DJ, Clark JM, Evans CD et al. (2010) Carbon balance of UK peatlands:
current state of knowledge and future research challenges. Climate Research, 45, 13–29.

Hiraishi T, Krug T, Tanabe K, et al. (eds.), 2013 Supplement to the 2006 IPCC Guidelines for
National Greenhouse Gas Inventories: Wetlands. Intergovernmental Panel on Climate
Change, Switzerland.

Botch MS, Masing VV (1983) Mire ecosystems in the U.S.S.R. In: Mires; swamp, bog, fen
and moor; regional studies (ed AJP Gore), Ecosystems of the world, 48, 95–152. Elsevier,
Oxford, UK.

Office Limited, Edinburgh, UK.

Charman DJ, Beilman DW, Blaauw M et al. (2013) Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences, 10 (2), 929–944.

Fenner N, Freeman C, Reynolds B (2005) Hydrological effects on the diversity of phenolic
degrading bacteria in a peatland, implications for carbon cycling. Soil Biology and
Biochemistry, 37, 1277–87.

Friedlingstein P, Cox PM, Betts RA et al. (2006) Climate–carbon cycle feedback analysis:
Results from the C4MIP model intercomparison. Journal of Climate, 19, 3337–3353.

Friedlingstein PRM, Andrew J, Rogelj GP et al. (2014) Persistent growth of CO2 emissions

Joosten H, Tanneberger F, Moen A (eds.) (2017) In Mires and peatlands of Europe: Status,

SJ (2010) Bioclimatic envelope model of climate change impacts on blanket peat distribution
in Great Britain. Climate Research, 45, 151-162.

Nature Climate Change, 3(2), 152-155. DOI: 10.1038/NCLIMATE1672.

Gatis N, Luscombe D, Carless D, Parry LE, Fyfe RM, Harrod T, Brazier RE, Anderson K
(2019) Mapping upland peat depth using airborne radiometric and LiDAR survey data
Geoderma, 335, 78-87.

Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to

Hulme M, Jenkins GL, Lu X, Turnpenny JR et al. (2002) *Climate change scenarios for the United Kingdom: the UKCIP02 scientific report*, pp. 1–124. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK.

Temperate peatland carbon exchange model

https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Land-report.pdf (last accessed 03/12/18)

Temperate peatland carbon exchange model

DOI: 10.1177/0959683617715689

